1
|
Schettler F, Gattor AO, Koch P, Keller M. Characterization of [ 3H]Propionylated Human Peptide YY-A New Probe for Neuropeptide Y Y 2 Receptor Binding Studies. ACS Pharmacol Transl Sci 2025; 8:785-799. [PMID: 40109743 PMCID: PMC11915035 DOI: 10.1021/acsptsci.4c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 03/22/2025]
Abstract
The neuropeptide Y (NPY) Y2 receptor (Y2R) is a G-protein-coupled receptor that is involved in the regulation of various physiological processes such as neurotransmitter release, bone metabolism, and memory. Consequently, the Y2R represents a potential drug target, e.g., for the treatment of epilepsy and mood disorders. Until now, the determination of the Y2R binding affinities of Y2R ligands has primarily been performed using 125I-labeled derivatives of the endogenous Y2R agonists NPY and peptide YY (PYY). A tritium-labeled NPY derivative has also been used; however, its suitability for binding assays in sodium-containing buffer is doubtful. We synthesized a tritium-labeled PYY derivative by [3H]propionylation at Lys4 ([3H]2). The radioligand was characterized by saturation binding, association, and dissociation kinetics and was applied in competition binding assays. Specific binding of [3H]2 at intact Chinese hamster ovary cells expressing the hY2R was saturable in both sodium-free buffer (apparent K d = 0.016-0.067 nM) and sodium-containing buffer (175 mM Na+, apparent K d = 0.16-0.18 nM). Competition binding experiments with Y2R reference ligands yielded K i values, which are in good agreement with the reported Y2R binding affinities, showing that [3H]2 represents a useful tritiated tool compound for the determination of Y2R binding affinities also in buffers containing sodium at physiological concentrations.
Collapse
Affiliation(s)
- Franziska Schettler
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93040, Germany
| | - Albert O Gattor
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93040, Germany
| | - Pierre Koch
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93040, Germany
| | - Max Keller
- Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg D-93040, Germany
| |
Collapse
|
2
|
Qi Y, Lee NJ, Ip CK, Enriquez R, Tasan R, Zhang L, Herzog H. Agrp-negative arcuate NPY neurons drive feeding under positive energy balance via altering leptin responsiveness in POMC neurons. Cell Metab 2023:S1550-4131(23)00177-8. [PMID: 37201523 DOI: 10.1016/j.cmet.2023.04.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/14/2022] [Accepted: 04/26/2023] [Indexed: 05/20/2023]
Abstract
Neuropeptide Y (NPY) in the arcuate nucleus (ARC) is known as one of the most critical regulators of feeding. However, how NPY promotes feeding under obese conditions is unclear. Here, we show that positive energy balance, induced by high-fat diet (HFD) or in genetically obese leptin-receptor-deficient mice, leads to elevated Npy2r expression especially on proopiomelanocortin (POMC) neurons, which also alters leptin responsiveness. Circuit mapping identified a subset of ARC agouti-related peptide (Agrp)-negative NPY neurons that control these Npy2r expressing POMC neurons. Chemogenetic activation of this newly discovered circuitry strongly drives feeding, while optogenetic inhibition reduces feeding. Consistent with that, lack of Npy2r on POMC neurons leads to reduced food intake and fat mass. This suggests that under energy surplus conditions, when ARC NPY levels generally drop, high-affinity NPY2R on POMC neurons is still able to drive food intake and enhance obesity development via NPY released predominantly from Agrp-negative NPY neurons.
Collapse
Affiliation(s)
- Yue Qi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Nicola J Lee
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Ronaldo Enriquez
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Ramon Tasan
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Peng S, Wu WQ, Li LY, Shi YC, Lin S, Song ZY. Deficiency of neuropeptide Y attenuates neointima formation after vascular injury in mice. BMC Cardiovasc Disord 2023; 23:239. [PMID: 37149580 PMCID: PMC10164319 DOI: 10.1186/s12872-023-03267-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/26/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Restenosis after percutaneous coronary intervention (PCI) limits therapeutic revascularization. Neuropeptide Y (NPY), co-stored and co-released with the sympathetic nervous system, is involved in this process, but its exact role and underlying mechanisms remain to be fully understood. This study aimed to investigate the role of NPY in neointima formation after vascular injury. METHODS Using the left carotid arteries of wild-type (WT, NPY-intact) and NPY-deficient (NPY-/-) mice, ferric chloride-mediated carotid artery injury induced neointima formation. Three weeks after injury, the left injured carotid artery and contralateral uninjured carotid artery were collected for histological analysis and immunohistochemical staining. RT-qPCR was used to detect the mRNA expression of several key inflammatory markers and cell adhesion molecules in vascular samples. Raw264.7 cells were treated with NPY, lipopolysaccharide (LPS), and lipopolysaccharide-free, respectively, and RT-qPCR was used to detect the expression of these inflammatory mediators. RESULTS Compared with WT mice, NPY-/- mice had significantly reduced neointimal formation three weeks after injury. Mechanistically, immunohistochemical analysis showed there were fewer macrophages and more vascular smooth muscle cells in the neointima of NPY-/- mice. Moreover, the mRNA expression of key inflammatory markers such as interleukin-6 (IL-6), transforming growth factor-β1 (TGF-β1), and intercellular adhesion molecule-1 (ICAM-1) was significantly lower in the injured carotid arteries of NPY-/- mice, compared to that in the injured carotid arteries of WT mice. In RAW264.7 macrophages, NPY significantly promoted TGF-β1 mRNA expression under unactivated but not LPS-stimulated condition. CONCLUSIONS Deletion of NPY attenuated neointima formation after artery injury, at least partly, through reducing the local inflammatory response, suggesting that NPY pathway may provide new insights into the mechanism of restenosis.
Collapse
Affiliation(s)
- Song Peng
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei-Qiang Wu
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lin-Yu Li
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yan-Chuan Shi
- Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia
| | - Shu Lin
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - Zhi-Yuan Song
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
4
|
Exposure to Obesogenic Environments during Perinatal Development Modulates Offspring Energy Balance Pathways in Adipose Tissue and Liver of Rodent Models. Nutrients 2023; 15:nu15051281. [PMID: 36904281 PMCID: PMC10005203 DOI: 10.3390/nu15051281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Obesogenic environments such as Westernized diets, overnutrition, and exposure to glycation during gestation and lactation can alter peripheral neuroendocrine factors in offspring, predisposing for metabolic diseases in adulthood. Thus, we hypothesized that exposure to obesogenic environments during the perinatal period reprograms offspring energy balance mechanisms. Four rat obesogenic models were studied: maternal diet-induced obesity (DIO); early-life obesity induced by postnatal overfeeding; maternal glycation; and postnatal overfeeding combined with maternal glycation. Metabolic parameters, energy expenditure, and storage pathways in visceral adipose tissue (VAT) and the liver were analyzed. Maternal DIO increased VAT lipogenic [NPY receptor-1 (NPY1R), NPY receptor-2 (NPY2R), and ghrelin receptor], but also lipolytic/catabolic mechanisms [dopamine-1 receptor (D1R) and p-AMP-activated protein kinase (AMPK)] in male offspring, while reducing NPY1R in females. Postnatally overfed male animals only exhibited higher NPY2R levels in VAT, while females also presented NPY1R and NPY2R downregulation. Maternal glycation reduces VAT expandability by decreasing NPY2R in overfed animals. Regarding the liver, D1R was decreased in all obesogenic models, while overfeeding induced fat accumulation in both sexes and glycation the inflammatory infiltration. The VAT response to maternal DIO and overfeeding showed a sexual dysmorphism, and exposure to glycotoxins led to a thin-outside-fat-inside phenotype in overfeeding conditions and impaired energy balance, increasing the metabolic risk in adulthood.
Collapse
|
5
|
The Bidirectional Relationship of NPY and Mitochondria in Energy Balance Regulation. Biomedicines 2023; 11:biomedicines11020446. [PMID: 36830982 PMCID: PMC9953676 DOI: 10.3390/biomedicines11020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Energy balance is regulated by several hormones and peptides, and neuropeptide Y is one of the most crucial in feeding and energy expenditure control. NPY is regulated by a series of peripheral nervous and humoral signals that are responsive to nutrient sensing, but its role in the energy balance is also intricately related to the energetic status, namely mitochondrial function. During fasting, mitochondrial dynamics and activity are activated in orexigenic neurons, increasing the levels of neuropeptide Y. By acting on the sympathetic nervous system, neuropeptide Y modulates thermogenesis and lipolysis, while in the peripheral sites, it triggers adipogenesis and lipogenesis instead. Moreover, both central and peripheral neuropeptide Y reduces mitochondrial activity by decreasing oxidative phosphorylation proteins and other mediators important to the uptake of fatty acids into the mitochondrial matrix, inhibiting lipid oxidation and energy expenditure. Dysregulation of the neuropeptide Y system, as occurs in metabolic diseases like obesity, may lead to mitochondrial dysfunction and, consequently, to oxidative stress and to the white adipose tissue inflammatory environment, contributing to the development of a metabolically unhealthy profile. This review focuses on the interconnection between mitochondrial function and dynamics with central and peripheral neuropeptide Y actions and discusses possible therapeutical modulations of the neuropeptide Y system as an anti-obesity tool.
Collapse
|
6
|
Vasiliev G, Chadaeva I, Rasskazov D, Ponomarenko P, Sharypova E, Drachkova I, Bogomolov A, Savinkova L, Ponomarenko M, Kolchanov N, Osadchuk A, Oshchepkov D, Osadchuk L. A Bioinformatics Model of Human Diseases on the Basis of Differentially Expressed Genes (of Domestic Versus Wild Animals) That Are Orthologs of Human Genes Associated with Reproductive-Potential Changes. Int J Mol Sci 2021; 22:2346. [PMID: 33652917 PMCID: PMC7956675 DOI: 10.3390/ijms22052346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Earlier, after our bioinformatic analysis of single-nucleotide polymorphisms of TATA-binding protein-binding sites within gene promoters on the human Y chromosome, we suggested that human reproductive potential diminishes during self-domestication. Here, we implemented bioinformatics models of human diseases using animal in vivo genome-wide RNA-Seq data to compare the effect of co-directed changes in the expression of orthologous genes on human reproductive potential and during the divergence of domestic and wild animals from their nearest common ancestor (NCA). For example, serotonin receptor 3A (HTR3A) deficiency contributes to sudden death in pregnancy, consistently with Htr3a underexpression in guinea pigs (Cavia porcellus) during their divergence from their NCA with cavy (C. aperea). Overall, 25 and three differentially expressed genes (hereinafter, DEGs) in domestic animals versus 11 and 17 DEGs in wild animals show the direction consistent with human orthologous gene-markers of reduced and increased reproductive potential. This indicates a reliable association between DEGs in domestic animals and human orthologous genes reducing reproductive potential (Pearson's χ2 test p < 0.001, Fisher's exact test p < 0.05, binomial distribution p < 0.0001), whereas DEGs in wild animals uniformly match human orthologous genes decreasing and increasing human reproductive potential (p > 0.1; binomial distribution), thus enforcing the norm (wild type).
Collapse
Affiliation(s)
- Gennady Vasiliev
- Novosibirsk State University, 630090 Novosibirsk, Russia;
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Ekaterina Sharypova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Irina Drachkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Alexander Osadchuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| | - Ludmila Osadchuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.C.); (D.R.); (P.P.); (E.S.); (I.D.); (A.B.); (L.S.); (N.K.); (A.O.); (D.O.); (L.O.)
| |
Collapse
|
7
|
Bertocchi I, Oberto A, Longo A, Palanza P, Eva C. Conditional inactivation of Npy1r gene in mice induces sex-related differences of metabolic and behavioral functions. Horm Behav 2020; 125:104824. [PMID: 32755609 DOI: 10.1016/j.yhbeh.2020.104824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
Abstract
Sex hormone-driven differences in gene expression have been identified in experimental animals, highlighting brain neuronal populations implicated in dimorphism of metabolic and behavioral functions. Neuropeptide Y-Y1 receptor (NPY-Y1R) system is sexually dimorphic and sensitive to gonadal steroids. In the present study we compared the phenotype of male and female conditional knockout mice (Npy1rrfb mice), carrying the inactivation of Npy1r gene in excitatory neurons of the brain limbic system. Compared to their male control (Npy1r2lox) littermates, male Npy1rrfb mice exhibited hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis that is associated with anxiety and executive dysfunction, reduced body weight growth, after-fasting refeeding, white adipose tissue (WAT) mass and plasma leptin levels. Conversely, female Npy1rrfb mice displayed an anxious-like behavior but no differences in HPA axis activity, executive function and body weight, compared to control females. Moreover, conditional inactivation of Npy1r gene induced an increase of subcutaneous and gonadal WAT weight and plasma leptin levels and a compensatory decrease of Agouti-related protein immunoreactivity in the hypothalamic arcuate (ARC) nucleus in females, compared to their respective control littermates. Interestingly, Npy1r mRNA expression was reduced in the ARC and in the paraventricular hypothalamic nuclei of female, but not male mice. These results demonstrated that female mice are resilient to hormonal and metabolic effects of limbic Npy1r gene inactivation, suggesting the existence of an estrogen-dependent relay necessary to ensure the maintenance of the homeostasis, that can be mediated by hypothalamic Y1R.
Collapse
Affiliation(s)
- Ilaria Bertocchi
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043 Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126 Turin, Italy; Neuroscience Institute of Turin, Italy
| | - Alessandra Oberto
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043 Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126 Turin, Italy; Neuroscience Institute of Turin, Italy
| | - Angela Longo
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043 Orbassano, Turin, Italy
| | - Paola Palanza
- Department of Medicine and Surgery, University of Parma, 43100 Parma, Italy
| | - Carola Eva
- Neuroscience Institute of the Cavalieri-Ottolenghi Foundation, 10043 Orbassano, Turin, Italy; Department of Neuroscience, University of Turin, 10126 Turin, Italy; Neuroscience Institute of Turin, Italy.
| |
Collapse
|
8
|
Anorectic response to the trichothecene T-2 toxin correspond to plasma elevations of the satiety hormone glucose-dependent insulinotropic polypeptide and peptide YY 3-36. Toxicology 2018; 402-403:28-36. [PMID: 29689362 DOI: 10.1016/j.tox.2018.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/30/2018] [Accepted: 04/19/2018] [Indexed: 12/25/2022]
Abstract
T-2 toxin, a potent type A trichothecene mycotoxin, is produced by various Fusarium species and can negatively impact animal and human health. Although anorexia induction is a common hallmark of T-2 toxin-induced toxicity, the underlying mechanisms for this adverse effect are not fully understood. The goal of this study was to determine the roles of two gut satiety hormones, glucose-dependent insulinotropic polypeptide (GIP) and Peptide YY3-36 (PYY3-36) in anorexia induction by T-2 toxin. Elevations of plasma GIP and PYY3-36 markedly corresponded to anorexia induction following oral exposure to T-2 toxin using a nocturnal mouse anorexia model. Direct administration of exogenous GIP and PYY3-36 similarly induced anorectic responses. Furthermore, the GIP receptor antagonist Pro3GIP dose-dependently attenuated both GIP- and T-2 toxin-induced anorectic responses. Pretreatment with NPY2 receptor antagonist JNJ-31020028 induced a dose-dependent attenuation of both PYY3-36- and T-2 toxin-induced anorectic responses. To summarize, these findings suggest that both GIP and PYY3-36 might be critical mediators of anorexia induction by T-2 toxin.
Collapse
|
9
|
Ailanen L, Vähätalo LH, Salomäki-Myftari H, Mäkelä S, Orpana W, Ruohonen ST, Savontaus E. Peripherally Administered Y 2-Receptor Antagonist BIIE0246 Prevents Diet-Induced Obesity in Mice With Excess Neuropeptide Y, but Enhances Obesity in Control Mice. Front Pharmacol 2018; 9:319. [PMID: 29674968 PMCID: PMC5895854 DOI: 10.3389/fphar.2018.00319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/20/2018] [Indexed: 12/27/2022] Open
Abstract
Neuropeptide Y (NPY) plays an important role in the regulation of energy homeostasis in the level of central and sympathetic nervous systems (SNSs). Genetic silencing of peripheral Y2-receptors have anti-obesity effects, but it is not known whether pharmacological blocking of peripheral Y2-receptors would similarly benefit energy homeostasis. The effects of a peripherally administered Y2-receptor antagonist were studied in healthy and energy-rich conditions with or without excess NPY. Genetically obese mice overexpressing NPY in brain noradrenergic nerves and SNS (OE-NPYDβH) represented the situation of elevated NPY levels, while wildtype (WT) mice represented the normal NPY levels. Specific Y2-receptor antagonist, BIIE0246, was administered (1.3 mg/kg/day, i.p.) for 2 or 4.5 weeks to OE-NPYDβH and WT mice feeding on chow or Western diet. Treatment with Y2-receptor antagonist increased body weight gain in both genotypes on chow diet and caused metabolic disturbances (e.g., hyperinsulinemia and hypercholesterolemia), especially in WT mice. During energy surplus (i.e., on Western diet), blocking of Y2-receptors induced obesity in WT mice, whereas OE-NPYDβH mice showed reduced fat mass gain, hepatic glycogen and serum cholesterol levels relative to body adiposity. Thus, it can be concluded that with normal NPY levels, peripheral Y2-receptor antagonist has no potential for treating obesity, but oppositely may even induce metabolic disorders. However, when energy-rich diet is combined with elevated NPY levels, e.g., stress combined with an unhealthy diet, Y2-receptor antagonism has beneficial effects on metabolic status.
Collapse
Affiliation(s)
- Liisa Ailanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland.,Drug Research Doctoral Program, University of Turku, Turku, Finland
| | - Laura H Vähätalo
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Henriikka Salomäki-Myftari
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland.,Drug Research Doctoral Program, University of Turku, Turku, Finland
| | - Satu Mäkelä
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Wendy Orpana
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Suvi T Ruohonen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Eriika Savontaus
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland.,Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| |
Collapse
|
10
|
Zhu P, Zhang Z, Huang X, Liang S, Khandekar N, Song Z, Lin S. RANKL Reduces Body Weight and Food Intake via the Modulation of Hypothalamic NPY/CART Expression. Int J Med Sci 2018; 15:969-977. [PMID: 30013437 PMCID: PMC6036154 DOI: 10.7150/ijms.24373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/31/2018] [Indexed: 12/16/2022] Open
Abstract
The receptor activator of nuclear factor-κB ligand (RANKL) modulates energy metabolism. However, how RANKL regulates energy homeostasis is still not clear. This study aims to investigate the central mechanisms by which central administration of RANKL inhibits food intake and causes weight loss in mice. We carried out a systematic and in-depth analysis of the neuronal pathways by which RANKL mediates catabolic effects. After intracerebroventricle (i.c.v.) injection of RANKL, the expression of neuropeptide Y (NPY) mRNA in the Arc was significantly decreased, while the CART mRNA expression dramatically increased in the Arc and DMH. However, the agouti-related protein (AgRP) and pro-opiomelanocortin (POMC) mRNA had no significant changes compared with control groups. Together, the results suggest that central administration of RANKL reduces food intake and causes weight loss via modulating the hypothalamic NPY/CART pathways.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), China
| | - Zhihui Zhang
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), China
| | - Xufeng Huang
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia
| | - Shiyu Liang
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), China
| | - Neeta Khandekar
- Neurological Diseases Division, Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Zhiyuan Song
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), China
| | - Shu Lin
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), China.,School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, NSW 2522, Australia
| |
Collapse
|
11
|
The central mechanism of risperidone-induced hyperprolactinemia. Prog Neuropsychopharmacol Biol Psychiatry 2017; 76:134-139. [PMID: 28336493 DOI: 10.1016/j.pnpbp.2017.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 03/10/2017] [Accepted: 03/19/2017] [Indexed: 11/20/2022]
Abstract
Risperidone is known to increase prolactin secretion in treating mental illness patients. This side-effect is thought to be mediated via central signaling pathway. However, the exact pathway involved between risperidone and hyperprolactinemia are still unknown. Therefore, we have treated mice with risperidone and investigated the central mechanisms. The present study showed that in risperidone treated group, the level of the serum prolactin significantly increased, which was consistent with increased positive prolactin staining in pituitary gland. Elevated c-fos expression was observed in the arcuate hypothalamic nucleus (Arc) where we found 65% c-fos positive neurons co-localised with neuropeptide Y (NPY) in mice treated with risperidone. In addition, the results from in situ hybridization showed that the NPY mRNA in the Arc was significantly increased, whereas the tyrosine hydroxylase (TH) mRNA dramatically decreased compared with control group in the paraventricular hypothalamic nucleus (PVN). These findings revealed that risperidone may mediate the transcriptional regulation of Arc NPY and TH in the PVN. Furthermore, risperidone induced a decreased dopamine synthesis in the PVN and thus reduced the dopamine-induced inhibition of prolactin release, ultimately lead to hyperprolactinemia. Therefore, insights into these neuronal mechanisms open up potential new ways to treat schizophrenia patients in order to ameliorate hyperprolactinemia.
Collapse
|
12
|
Zhang Y, Zhang SW, Khandekar N, Tong SF, Yang HQ, Wang WR, Huang XF, Song ZY, Lin S. Reduced serum levels of oestradiol and brain derived neurotrophic factor in both diabetic women and HFD-feeding female mice. Endocrine 2017; 56:65-72. [PMID: 27981512 DOI: 10.1007/s12020-016-1197-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/02/2016] [Indexed: 02/08/2023]
Abstract
The estrogen levels in the pre and post menstrual phases interact with brain-derived neurotrophic factor in a complex manner, which influences the overall state of the body. To study the role of oestradiol and brain-derived neurotrophic factor in modulating obesity related type 2 diabetes and the interactions between two factors, we enrolled 15 diabetic premenopausal women and 15 diabetic postmenopausal women respectively, the same number of healthy pre and postmenopausal women were recruited as two control groups. The fasting blood glucose, insulin, lipids, estrogen, and brain-derived neurotrophic factor levels were measured through clinical tests. Additionally, we set up obese female mouse model to mimic human trial stated above, to verify the relationship between estrogen and brain-derived neurotrophic factor. Our findings revealed that there is a moderately positive correlation between brain-derived neurotrophic factor and oestradiol in females, and decreased brain-derived neurotrophic factor may worsen impaired insulin function. The results further confirmed that high fat diet-fed mice which exhibited impaired glucose tolerance, showed lower levels of oestradiol and decreased expression of brain-derived neurotrophic factor mRNA in the ventromedial hypothalamus. The level of brain-derived neurotrophic factor reduced on condition that the level of oestradiol is sufficiently low, such as women in postmenopausal period, which aggravates diabetes through feeding-related pathways. Increasing the level of brain-derived neurotrophic factor may help to alleviate the progression of the disease in postmenopausal women with diabetes.
Collapse
Affiliation(s)
- Yi Zhang
- Quanzhou first Hospital, Fujian Medical University, Fuzhou, China
| | - Shan-Wen Zhang
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Neeta Khandekar
- Neurological Diseases Division, Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Shi-Fei Tong
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - He-Qin Yang
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wan-Ru Wang
- Quanzhou first Hospital, Fujian Medical University, Fuzhou, China
| | - Xu-Feng Huang
- School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Zhi-Yuan Song
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Shu Lin
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China.
- Neurological Diseases Division, Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| |
Collapse
|
13
|
Lau J, Shi YC, Herzog H. Temperature dependence of the control of energy homeostasis requires CART signaling. Neuropeptides 2016; 59:97-109. [PMID: 27080622 DOI: 10.1016/j.npep.2016.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/22/2016] [Accepted: 03/31/2016] [Indexed: 01/22/2023]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is a key neuropeptide with predominant expression in the hypothalamus central to the regulation of diverse biological processes, including food intake and energy expenditure. While there is considerable information on CART's role in the control of feeding, little is known about its thermoregulatory potential. Here we show the consequences of lack of CART signaling on major parameters of energy homeostasis in CART-/- mice under standard ambient housing (RT, 22°C), which is considered a mild cold exposure for mice, and thermoneutral conditions (TN, 30°C). WT mice kept at RT showed an increase in food intake, energy expenditure, BAT UCP-1 expression, and physical activity compared with TN condition, reflecting the augmented energy demand for thermogenesis at RT. On the molecular level, RT housing led to upregulated mRNA expression of TH, CRH, and TRH at the PVN, while NPY, AgRP and CART mRNA levels in the Arc were downregulated. CART-/- mice displayed elevated adiposity and diminished lean mass across both RT and TN. At RT, CART-/- mice showed unchanged food consumption yet greater body weight gain. In addition, an increase in energy expenditure and heightened BAT thermogenesis marked by UCP-1 protein expression was observed in the CART-/- mice. In contrast, TN-housed CART-/- mice exhibited lower weight gain than WT mice accompanied with pronounced reduction in basal feeding. These findings were correlated with reduced BAT temperature, but unchanged energy expenditure and UCP-1 levels. Interestingly, the respiratory exchange ratio for CART-/- mice, which shifted from lower at RT to higher at TN with respect to WT controls, indicates a transition of relative fuel source preference from fat to carbohydrate in the absence of CART signaling. Taken together, these results demonstrate that CART is a critical regulator of energy expenditure, energy partitioning and utilization dependent on the thermal environment.
Collapse
Affiliation(s)
- Jackie Lau
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney 2052, Australia
| | - Yan-Chuan Shi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney 2052, Australia.
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney 2052, Australia.
| |
Collapse
|
14
|
Khor EC, Yulyaningsih E, Driessler F, Kovaĉić N, Wee NKY, Kulkarni RN, Lee NJ, Enriquez RF, Xu J, Zhang L, Herzog H, Baldock PA. The y6 receptor suppresses bone resorption and stimulates bone formation in mice via a suprachiasmatic nucleus relay. Bone 2016; 84:139-147. [PMID: 26721736 DOI: 10.1016/j.bone.2015.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/06/2015] [Accepted: 12/19/2015] [Indexed: 12/15/2022]
Abstract
The neuropeptide Y system is known to play an important role in the regulation of bone homeostasis and while the functions of its major receptors, Y1R and Y2R, in this process have become clearer, the contributions of other Y-receptors, like the y6 receptor (y6R), are unknown. Y6R expression is restricted to the suprachiasmatic nucleus (SCN) of the hypothalamus, an area known to regulate circadian rhythms, and the testis. Here we show that lack of y6R signalling, results in significant reduction in bone mass, but no changes in bone length. Male and female y6R knockout (KO) mice display reduced cortical and cancellous bone volume in axial and appendicular bones. Mechanistically, the reduction in cancellous bone is the result of an uncoupling of bone remodelling, leading to an increase in osteoclast surface and number, and a reduction in osteoblast number, osteoid surface, mineralizing surface and bone formation rate. y6R KO mice displayed increased numbers of osteoclast precursors and produced greater numbers of osteoclasts in RANKL-treated cultures. They also produced fewer CFU-ALP osteoblast precursors in the marrow and showed reduced mineralization in primary osteoblastic cultures, as well as reduced expression for the osteoblast lineage marker, alkaline phosphatase, in bone isolates. The almost exclusive location of y6Rs in the hypothalamus suggests a critical role of central neuronal pathways controlling this uncoupling of bone remodelling which is in line with known actions or other Y-receptors in the brain. In conclusion, y6R signalling is required for maintenance of bone mass, with loss of y6R uncoupling bone remodelling and resulting in a negative bone balance. This study expands the scope of hypothalamic regulation of bone, highlighting the importance for neural/endocrine coordination and their marked effect upon skeletal homeostasis.
Collapse
Affiliation(s)
- Ee-Cheng Khor
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Ernie Yulyaningsih
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Frank Driessler
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Natasha Kovaĉić
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Natalie K Y Wee
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Rishikesh N Kulkarni
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Nicola J Lee
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; Faculty of Medicine, University of NSW, Kensington, Sydney, NSW 2052, Australia
| | - Ronaldo F Enriquez
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, WA 6009, Australia
| | - Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; Faculty of Medicine, University of NSW, Kensington, Sydney, NSW 2052, Australia
| | - Paul A Baldock
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; Faculty of Medicine, University of NSW, Kensington, Sydney, NSW 2052, Australia.
| |
Collapse
|
15
|
Qi Y, Fu M, Herzog H. Y2 receptor signalling in NPY neurons controls bone formation and fasting induced feeding but not spontaneous feeding. Neuropeptides 2016; 55:91-7. [PMID: 26444586 DOI: 10.1016/j.npep.2015.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 12/24/2022]
Abstract
Y2 receptors have been implicated in the development of obesity and are a potential target for obesity treatment due to their known role of inhibiting neuropeptide Y (NPY) induced feeding responses. However, the precise neuronal population on which Y2 receptors act to fulfil this role is less clear. Here we utilise a novel inducible, postnatal onset NPY neurons specific deletion model to investigate the functional consequences of loss of Y2 signalling in this population of neurons on feeding and energy homeostasis regulation. While the consequences of lack of Y2 signalling in NPY neurons are confirmed in terms of the uncoupling of suppression/increasing of NPY and pro-opiomelanocortin (POMC) mRNA expression in the arcuate nuclei (Arc), respectively, this lack of Y2 signalling surprisingly does not have any significant effect on spontaneous food intake. Fasting induced food intake, however, is strongly increased but only in the first 1h after re-feeding. Consequently no significant changes in body weight are being observed although body weight gain is increased in male mice after postnatal onset Y2 deletion. Importantly, another known function of central Y2 receptor signalling, the suppression of bone formation is conserved in this conditional model with whole body bone mineral content being decreased. Taken together this model confirms the critical role of Y2 signalling to control NPY and associated POMC expression in the Arc, but also highlights the possibility that others, non-NPY neuronal Y2 receptors, are also involved in controlling feeding and energy homeostasis regulation.
Collapse
Affiliation(s)
- Yue Qi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
| | - Melissa Fu
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| |
Collapse
|
16
|
Hallberg M. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors. Med Res Rev 2015; 35:464-519. [PMID: 24894913 DOI: 10.1002/med.21323] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The proteolytic processing of neuropeptides has an important regulatory function and the peptide fragments resulting from the enzymatic degradation often exert essential physiological roles. The proteolytic processing generates, not only biologically inactive fragments, but also bioactive fragments that modulate or even counteract the response of their parent peptides. Frequently, these peptide fragments interact with receptors that are not recognized by the parent peptides. This review discusses tachykinins, opioid peptides, angiotensins, bradykinins, and neuropeptide Y that are present in the central nervous system and their processing to bioactive degradation products. These well-known neuropeptide systems have been selected since they provide illustrative examples that proteolytic degradation of parent peptides can lead to bioactive metabolites with different biological activities as compared to their parent peptides. For example, substance P, dynorphin A, angiotensin I and II, bradykinin, and neuropeptide Y are all degraded to bioactive fragments with pharmacological profiles that differ considerably from those of the parent peptides. The review discusses a selection of the large number of drug-like molecules that act as agonists or antagonists at receptors of neuropeptides. It focuses in particular on the efforts to identify selective drug-like agonists and antagonists mimicking the effects of the endogenous peptide fragments formed. As exemplified in this review, many common neuropeptides are degraded to a variety of smaller fragments but many of the fragments generated have not yet been examined in detail with regard to their potential biological activities. Since these bioactive fragments contain a small number of amino acid residues, they provide an ideal starting point for the development of drug-like substances with ability to mimic the effects of the degradation products. Thus, these substances could provide a rich source of new pharmaceuticals. However, as discussed herein relatively few examples have so far been disclosed of successful attempts to create bioavailable, drug-like agonists or antagonists, starting from the structure of endogenous peptide fragments and applying procedures relying on stepwise manipulations and simplifications of the peptide structures.
Collapse
Affiliation(s)
- Mathias Hallberg
- Beijer Laboratory, Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
17
|
Fernando HA, Zibellini J, Hsu MS, Seimon RV, Nguyen AD, Sainsbury A. The neuropeptide Y-ergic system: potential therapeutic target against bone loss with obesity treatments. Expert Rev Endocrinol Metab 2015; 10:177-191. [PMID: 30293515 DOI: 10.1586/17446651.2015.1001741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Obesity is no longer considered to provide protection against osteoporosis. Moreover, treatments for obesity are now suspected of reducing bone mass. With the escalating incidence of obesity, combined with increases in the frequency, duration and intensity of interventions used to combat it, we face a potential increase in health burden due to osteoporotic fractures. The neuropeptide Y-ergic system offers a potential target for the prevention and anabolic treatment of bone loss in obesity, due to its dual role in the regulation of energy homeostasis and bone mass. Although the strongest stimulation of bone mass by this system appears to occur via indirect hypothalamic pathways involving Y2 receptors (one of the five types of receptors for neuropeptide Y), Y1 receptors on osteoblasts (bone-forming cells) induce direct effects to enhance bone mass. This latter pathway may offer a suitable target for anti-osteoporotic treatment while also minimizing the risk of adverse side effects.
Collapse
Affiliation(s)
- Hamish A Fernando
- a 1 The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, The University of Sydney, Camperdown NSW 2006, Australia
| | - Jessica Zibellini
- a 1 The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, The University of Sydney, Camperdown NSW 2006, Australia
| | - Michelle Sh Hsu
- a 1 The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, The University of Sydney, Camperdown NSW 2006, Australia
| | - Radhika V Seimon
- a 1 The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, The University of Sydney, Camperdown NSW 2006, Australia
| | - Amy D Nguyen
- b 2 Neuroscience Program, Garvan Institute of Medical Research, University of New South Wales, Darlinghurst, Australia
| | - Amanda Sainsbury
- a 1 The Boden Institute of Obesity, Nutrition, Exercise & Eating Disorders, Sydney Medical School, The University of Sydney, Camperdown NSW 2006, Australia
| |
Collapse
|
18
|
Wee NKY, Baldock PA. The hunger games of skeletal metabolism. BONEKEY REPORTS 2014; 3:588. [PMID: 25396052 DOI: 10.1038/bonekey.2014.83] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 08/22/2014] [Indexed: 12/17/2022]
Abstract
Gastrointestinal peptides and adipokines are critical signalling molecules involved in controlling whole-body energy homeostasis. These circulating hormones regulate a variety of biological responses such as hunger, satiety and glucose uptake. In vivo experiments have established that these hormones also regulate bone metabolism, while associations between these hormones and bone mass have been observed in human clinical studies. With a focus on recent research, this review aims to describe the roles that gastrointestinal peptides (ghrelin, peptide YY, glucose-dependent insulinotropic polypeptide, glucagon-like peptide 1 and glucagon-like peptide 2) and adipokines (leptin and adiponectin) have in bone metabolism and to examine their effects on bone in situations of altered metabolism, such as obesity. As the prevalence of obesity continues to increase, there is a growing interest in understanding the interactions between nutritional regulators from the gut and adipose tissue and their influence on bone mass.
Collapse
Affiliation(s)
- Natalie K Y Wee
- Skeletal Metabolism Group, Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research , Sydney, NSW, Australia
| | - Paul A Baldock
- Skeletal Metabolism Group, Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research , Sydney, NSW, Australia ; Faculty of Medicine, University of New South Wales , Sydney, NSW, Australia
| |
Collapse
|
19
|
Jonnalagadda VG, Ram Raju AVS, Pittala S, Shaik A, Selkar NA. The prelude on novel receptor and ligand targets involved in the treatment of diabetes mellitus. Adv Pharm Bull 2014; 4:209-17. [PMID: 24754003 DOI: 10.5681/apb.2014.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/09/2013] [Accepted: 12/30/2013] [Indexed: 12/17/2022] Open
Abstract
Metabolic disorders are a group of disorders, due to the disruption of the normal metabolic process at a cellular level. Diabetes Mellitus and Tyrosinaemia are the majorly reported metabolic disorders. Among them, Diabetes Mellitus is a one of the leading metabolic syndrome, affecting 5 to 7 % of the population worldwide and mainly characterised by elevated levels of glucose and is associated with two types of physiological event disturbances such as impaired insulin secretion and insulin resistance. Up to now, various treatment strategies are like insulin, alphaglucosidase inhibitors, biguanides, incretins were being followed. Concurrently, various novel therapeutic strategies are required to advance the therapy of Diabetes mellitus. For the last few decades, there has been an extensive research in understanding the metabolic pathways involved in Diabetes Mellitus at the cellular level and having the profound knowledge on cell-growth, cell-cycle, and apoptosis at a molecular level provides new targets for the treatment of Diabetes Mellitus. Receptor signalling has been involved in these mechanisms, to translate the information coming from outside. To understand the various receptors involved in these pathways, we must have a sound knowledge on receptors and ligands involved in it. This review mainly summarises the receptors and ligands which are involved the Diabetes Mellitus. Finally, researchers have to develop the alternative chemical moieties that retain their affinity to receptors and efficacy. Diabetes Mellitus being a metabolic disorder due to the glucose surfeit, demands the need for regular exercise along with dietary changes.
Collapse
Affiliation(s)
- Venu Gopal Jonnalagadda
- Shree Dhootapapeshwar Ayurvedic Research Foundation (SDARF), Panvel, Navi Mumbai-410206, Maharastra, India
| | - Allam Venkata Sita Ram Raju
- National Institute of Pharmaceutical Education and Research, Bala Nagar, Hyderabad, Andhra Pradhesh-500037, India
| | - Srinivas Pittala
- CSIR-Institute of Genomics and Integrative Biology, Near Jubilee Hall, Mall Road, Delhi-110 007, India
| | - Afsar Shaik
- Gokula Krishna college of Pharmacy, Sullurpet - 524121, Nellore dist, A.P, India
| | - Nilakash Annaji Selkar
- National Institute for Research in Reproductive Health, Parel, Mumbai-400012, Maharastra, India
| |
Collapse
|
20
|
Hsieh YS, Chen PN, Yu CH, Liao JM, Kuo DY. The neuropeptide Y Y1 receptor knockdown modulates activator protein 1-involved feeding behavior in amphetamine-treated rats. Mol Brain 2013; 6:46. [PMID: 24225225 PMCID: PMC4226007 DOI: 10.1186/1756-6606-6-46] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/07/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hypothalamic neuropeptide Y (NPY) and two immediate early genes, c-fos and c-jun, have been found to be involved in regulating the appetite-suppressing effect of amphetamine (AMPH). The present study investigated whether cerebral catecholamine (CA) might regulate NPY and POMC expression and whether NPY Y1 receptor (Y1R) participated in activator protein-1 (AP-1)-mediated feeding. METHODS Rats were given AMPH daily for 4 days. Changes in the expression of NPY, Y1R, c-Fos, c-Jun, and AP-1 were assessed and compared. RESULTS Decreased CA could modulate NPY and melanocortin receptor 4 (MC4R) expressions. NPY and food intake decreased the most on Day 2, but Y1R, c-Fos, and c-Jun increased by approximately 350%, 280%, and 300%, respectively, on Day 2. Similarly, AP-1/DNA binding activity was increased by about 180% on Day 2. The expression patterns in Y1R, c-Fos, c-Jun, and AP-1/DNA binding were opposite to those in NPY during AMPH treatment. Y1R knockdown was found to modulate the opposite regulation between NPY and AP-1, revealing an involvement of Y1R in regulating NPY/AP-1-mediated feeding. CONCLUSIONS These results point to a molecular mechanism of CA/NPY/Y1R/AP-1 signaling in the control of AMPH-mediated anorexia and may advance the medical research of anorectic and anti-obesity drugs.
Collapse
Affiliation(s)
- Yih-Shou Hsieh
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Ching-Han Yu
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Jiuan-Miaw Liao
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Dong-Yih Kuo
- Department of Physiology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| |
Collapse
|
21
|
Compensatory actions of orexinergic neurons in the lateral hypothalamus during metabolic or cortical challenges may enable the coupling of metabolic dysfunction and cortical dysfunction. Med Hypotheses 2013; 80:520-6. [DOI: 10.1016/j.mehy.2013.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/03/2013] [Accepted: 02/07/2013] [Indexed: 11/20/2022]
|
22
|
Wong IPL, Nguyen AD, Khor EC, Enriquez RF, Eisman JA, Sainsbury A, Herzog H, Baldock PA. Neuropeptide Y is a critical modulator of leptin's regulation of cortical bone. J Bone Miner Res 2013; 28:886-98. [PMID: 23044938 DOI: 10.1002/jbmr.1786] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/07/2012] [Accepted: 09/24/2012] [Indexed: 12/27/2022]
Abstract
Leptin signaling is required for normal bone homeostasis; however, loss of leptin results in differing effects on cortical and cancellous bone, as well as altered responses between the axial and appendicular regions. Local β-adrenergic actions are responsible for the greater cancellous bone volume in leptin-deficient (ob/ob) mice; however, the mechanism responsible for the opposing reduction in cortical bone in ob/ob mice is not known. Here we show that blocking the leptin-deficient increase in neuropeptide Y (NPY) expression reverses the cortical bone loss in ob/ob mice. Mice null for both NPY and leptin (NPY(-/-) ob/ob), display greater cortical bone mass in both long-bones and vertebra, with NPY(-/-) ob/ob mice exhibiting thicker and denser cortical bone, associated with greater endocortical and periosteal mineral apposition rate (MAR), compared to ob/ob animals. Importantly, these cortical changes occurred without significant increases in body weight, with NPY(-/-) ob/ob mice showing significantly reduced adiposity compared to ob/ob controls, most likely due to the reduced respiratory exchange ratio seen in these animals. Interestingly, cancellous bone volume was not different between NPY(-/-) ob/ob and ob/ob, suggesting that NPY is not influencing the adrenergic axis. Taken together, this work demonstrates the critical role of NPY signaling in the regulation of bone and energy homeostasis, and more importantly, suggests that reduced leptin levels or leptin resistance, which occurs in obesity, could potentially inhibit cortical bone formation via increased central NPY signaling.
Collapse
Affiliation(s)
- Iris P L Wong
- Neuroscience Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Implications of leptin in neuroendocrine regulation of male reproduction. Reprod Biol 2013; 13:1-14. [DOI: 10.1016/j.repbio.2012.12.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 01/14/2023]
|
24
|
Liu T, Wang Q, Berglund ED, Tong Q. Action of Neurotransmitter: A Key to Unlock the AgRP Neuron Feeding Circuit. Front Neurosci 2013; 6:200. [PMID: 23346045 PMCID: PMC3549528 DOI: 10.3389/fnins.2012.00200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/31/2012] [Indexed: 01/08/2023] Open
Abstract
The current obesity epidemic and lack of efficient therapeutics demand a clear understanding of the mechanism underlying body weight regulation. Despite intensive research focus on obesity pathogenesis, an effective therapeutic strategy to treat and cure obesity is still lacking. Exciting studies in last decades have established the importance of hypothalamic agouti-related protein-expressing neurons (AgRP neurons) in the regulation of body weight homeostasis. AgRP neurons are both required and sufficient for feeding regulation. The activity of AgRP neurons is intricately regulated by nutritional hormones as well as synaptic inputs from upstream neurons. Changes in AgRP neuron activity lead to alterations in the release of mediators, including neuropeptides Neuropeptide Y (NPY) and AgRP, and fast-acting neurotransmitter GABA. Recent studies based on mouse genetics, novel optogenetics, and designer receptor exclusively activated by designer drugs have identified a critical role for GABA release from AgRP neurons in the parabrachial nucleus and paraventricular hypothalamus in feeding control. This review will summarize recent findings about AgRP neuron-mediated control of feeding circuits with a focus on the role of neurotransmitters. Given the limited knowledge on feeding regulation, understanding the action of neurotransmitters may be a key to unlock neurocircuitry that governs feeding.
Collapse
Affiliation(s)
- Tiemin Liu
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas Dallas, TX, USA
| | | | | | | |
Collapse
|
25
|
Rojas JM, Stafford JM, Saadat S, Printz RL, Beck-Sickinger AG, Niswender KD. Central nervous system neuropeptide Y signaling via the Y1 receptor partially dissociates feeding behavior from lipoprotein metabolism in lean rats. Am J Physiol Endocrinol Metab 2012; 303:E1479-88. [PMID: 23074243 PMCID: PMC3532466 DOI: 10.1152/ajpendo.00351.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Elevated plasma triglyceride (TG) levels contribute to an atherogenic dyslipidemia that is associated with obesity, diabetes, and metabolic syndrome. Numerous models of obesity are characterized by increased central nervous system (CNS) neuropeptide Y (NPY) tone that contributes to excess food intake and obesity. Previously, we demonstrated that intracerebroventricular (icv) administration of NPY in lean fasted rats also elevates hepatic production of very low-density lipoprotein (VLDL)-TG. Thus, we hypothesize that elevated CNS NPY action contributes to not only the pathogenesis of obesity but also dyslipidemia. Here, we sought to determine whether the effects of NPY on feeding and/or obesity are dissociable from effects on hepatic VLDL-TG secretion. Pair-fed, icv NPY-treated, chow-fed Long-Evans rats develop hypertriglyceridemia in the absence of increased food intake and body fat accumulation compared with vehicle-treated controls. We then modulated CNS NPY signaling by icv injection of selective NPY receptor agonists and found that Y1, Y2, Y4, and Y5 receptor agonists all induced hyperphagia in lean, ad libitum chow-fed Long-Evans rats, with the Y2 receptor agonist having the most pronounced effect. Next, we found that at equipotent doses for food intake NPY Y1 receptor agonist had the most robust effect on VLDL-TG secretion, a Y2 receptor agonist had a modest effect, and no effect was observed for Y4 and Y5 receptor agonists. These findings, using selective agonists, suggest the possibility that the effect of CNS NPY signaling on hepatic VLDL-TG secretion may be relatively dissociable from effects on feeding behavior via the Y1 receptor.
Collapse
|
26
|
Baldock PA, Driessler F, Lin S, Wong IPL, Shi Y, Yulyaningsih E, Castillo L, Janmaat S, Enriquez RF, Zengin A, Kieffer BL, Schwarzer C, Eisman JA, Sainsbury A, Herzog H. The endogenous opioid dynorphin is required for normal bone homeostasis in mice. Neuropeptides 2012; 46:383-94. [PMID: 23062312 DOI: 10.1016/j.npep.2012.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/16/2012] [Accepted: 08/16/2012] [Indexed: 11/20/2022]
Abstract
Chronic opiate usage, whether prescribed or illicit, has been associated with changes in bone mass and is a recognized risk factor for the development of osteoporosis; however, the mechanism behind this effect is unknown. Here we show that lack of dynorphin, an endogenous opioid, in mice (Dyn-/-), resulted in a significantly elevated cancellous bone volume associated with greater mineral apposition rate and increased resorption indices. A similar anabolic phenotype was evident in bone of mice lacking dynorphin's cognate receptor, the kappa opioid receptor. Lack of opioid receptor expression in primary osteoblastic cultures and no change in bone cell function after dynorphin agonist treatment in vitro indicates an indirect mode of action. Consistent with a hypothalamic action, central dynorphin signaling induces extracellular signal-regulated kinase (ERK) phosphorylation and c-fos activation of neurons in the arcuate nucleus of the hypothalamus (Arc). Importantly, this signaling also leads to an increase in Arc NPY mRNA expression, a change known to decrease bone formation. Further implicating NPY in the skeletal effects of dynorphin, Dyn-/-/NPY-/- double mutant mice showed comparable increases in bone formation to single mutant mice, suggesting that dynorphin acts upstream of NPY signaling to control bone formation. Thus the dynorphin system, acting via NPY, may represent a pathway by which higher processes including stress, reward/addiction and depression influence skeletal metabolism. Moreover, understanding of these unique interactions may enable modulation of the adverse effects of exogenous opioid treatment without directly affecting analgesic responses.
Collapse
Affiliation(s)
- Paul A Baldock
- Neuroscience Research Program, Garvan Institute of Medical Research, 384 Victoria St., Darlinghurst, Sydney, NSW 2010, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sainsbury A, Zhang L. Role of the hypothalamus in the neuroendocrine regulation of body weight and composition during energy deficit. Obes Rev 2012; 13:234-57. [PMID: 22070225 DOI: 10.1111/j.1467-789x.2011.00948.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Energy deficit in lean or obese animals or humans stimulates appetite, reduces energy expenditure and possibly also decreases physical activity, thereby contributing to weight regain. Often overlooked in weight loss trials for obesity, however, is the effect of energy restriction on neuroendocrine status. Negative energy balance in lean animals and humans consistently inhibits activity of the hypothalamo-pituitary-thyroid, -gonadotropic and -somatotropic axes (or reduces circulating insulin-like growth factor-1 levels), while concomitantly activating the hypothalamo-pituitary-adrenal axis, with emerging evidence of similar changes in overweight and obese people during lifestyle interventions for weight loss. These neuroendocrine changes, which animal studies show may result in part from hypothalamic actions of orexigenic (e.g. neuropeptide Y, agouti-related peptide) and anorexigenic peptides (e.g. alpha-melanocyte-stimulating hormone, and cocaine and amphetamine-related transcript), can adversely affect body composition by promoting the accumulation of adipose tissue (particularly central adiposity) and stimulating the loss of lean body mass and bone. As such, current efforts to maximize loss of excess body fat in obese people may inadvertently be promoting long-term complications such as central obesity and associated health risks, as well as sarcopenia and osteoporosis. Future weight loss trials would benefit from assessment of the effects on body composition and key hormonal regulators of body composition using sensitive techniques.
Collapse
Affiliation(s)
- A Sainsbury
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia.
| | | |
Collapse
|
28
|
Shi YC, Baldock PA. Central and peripheral mechanisms of the NPY system in the regulation of bone and adipose tissue. Bone 2012; 50:430-6. [PMID: 22008645 DOI: 10.1016/j.bone.2011.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/02/2011] [Accepted: 10/03/2011] [Indexed: 12/24/2022]
Abstract
Skeletal research is currently undergoing a period of marked expansion. The boundaries of "bone" research are being re-evaluated and with this, a growing recognition of a more complex and interconnected biology than previously considered. One aspect that has become the focus of particular attention is the relationship between bone and fat homeostasis. Evidence from a number of avenues indicates that bone and adipose regulation are both related and interdependent. This review examines the neuropeptide Y (NPY) system, known to exert powerful control over both bone and fat tissue. The actions of this system are characterized by signaling both within specific nuclei of the hypothalamus and also the target tissues, mediated predominantly through two G-protein coupled receptors (Y1 and Y2). In bone tissue, elevated NPY levels act consistently to repress osteoblast activity. Moreover, both central Y2 receptor and osteoblastic Y1 receptor signaling act similarly to repress bone formation. Conversely, loss of NPY expression or receptor signaling induces increased osteoblast activity and bone mass in both cortical and cancellous envelopes. In fat tissue, NPY action is more complex. Energy homeostasis is powerfully altered by elevations in hypothalamic NPY, resulting in increases in fat accretion and body-wide energy conservation, through the action of locally expressed Y1 receptors, while local Y2 receptors act to inhibit NPY-ergic tone. Loss of central NPY expression has a markedly reduced effect, consistent with a physiological drive to promote fat accretion. In fat tissue, NPY and Y1 receptors act to promote lipogenesis, consistent with their roles in the brain. Y2 receptors expressed in adipocytes also act in this manner, showing an opposing action to their role in the hypothalamus. While direct investigation of these processes has yet to be completed, these responses appear to be interrelated to some degree. The starvation-based signal of elevated central NPY inducing marked inhibition of osteoblast activity, whilst promoting fat accretion, indicating skeletal tissue is a component of the energy conservation system. Moreover, when NPY expression is reduced, consistent with high calorie intake and weight gain, bone formation is stimulated, strengthening the skeleton. In conclusion, NPY acts to regulate both bone and fat tissue in a coordinated manner, and remains a strong candidate for mediating interactions between these two tissues.
Collapse
Affiliation(s)
- Yan-Chuan Shi
- Neuroscience Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst NSW 2010, Australia
| | | |
Collapse
|
29
|
Yulyaningsih E, Zhang L, Herzog H, Sainsbury A. NPY receptors as potential targets for anti-obesity drug development. Br J Pharmacol 2011; 163:1170-202. [PMID: 21545413 DOI: 10.1111/j.1476-5381.2011.01363.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The neuropeptide Y system has proven to be one of the most important regulators of feeding behaviour and energy homeostasis, thus presenting great potential as a therapeutic target for the treatment of disorders such as obesity and at the other extreme, anorexia. Due to the initial lack of pharmacological tools that are active in vivo, functions of the different Y receptors have been mainly studied in knockout and transgenic mouse models. However, over recent years various Y receptor selective peptidic and non-peptidic agonists and antagonists have been developed and tested. Their therapeutic potential in relation to treating obesity and other disorders of energy homeostasis is discussed in this review.
Collapse
Affiliation(s)
- Ernie Yulyaningsih
- Neuroscience Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
30
|
Shi YC, Lin S, Castillo L, Aljanova A, Enriquez RF, Nguyen AD, Baldock PA, Zhang L, Bijker MS, Macia L, Yulyaningsih E, Zhang H, Lau J, Sainsbury A, Herzog H. Peripheral-specific y2 receptor knockdown protects mice from high-fat diet-induced obesity. Obesity (Silver Spring) 2011; 19:2137-48. [PMID: 21546930 DOI: 10.1038/oby.2011.99] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Y2 receptors, particularly those in the brain, have been implicated in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone mass. Recent evidence also indicates a role for Y2 receptors in peripheral tissues in this process by promoting adipose tissue accretion; however their effects on energy balance remain unclear. Here, we show that adult-onset conditional knockdown of Y2 receptors predominantly in peripheral tissues results in protection against diet-induced obesity accompanied by significantly reduced weight gain, marked reduction in adiposity and improvements in glucose tolerance without any adverse effect on lean mass or bone. These changes occur in association with significant increases in energy expenditure, respiratory exchange ratio, and physical activity and despite concurrent hyperphagia. On a chow diet, knockdown of peripheral Y2 receptors results in increased respiratory exchange ratio and physical activity with no effect on lean or bone mass, but decreases energy expenditure without effecting body weight or food intake. These results suggest that peripheral Y2 receptor signaling is critical in the regulation of oxidative fuel selection and physical activity and protects against the diet-induced obesity. The lack of effects on bone mass seen in this model further indicates that bone mass is primarily controlled by non-peripheral Y2 receptors. This study provides evidence that novel drugs that target peripheral rather than central Y2 receptors could provide benefits for the treatment of obesity and glucose intolerance without adverse effects on lean and bone mass, with the additional benefit of avoiding side effects often associated with pharmaceuticals that act on the central nervous system.
Collapse
Affiliation(s)
- Yan-Chuan Shi
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
The neuropeptide Y system: Pathophysiological and therapeutic implications in obesity and cancer. Pharmacol Ther 2011; 131:91-113. [DOI: 10.1016/j.pharmthera.2011.03.011] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 03/07/2011] [Indexed: 12/28/2022]
|
32
|
Zhang L, Riepler SJ, Turner N, Enriquez RF, Lee ICJ, Baldock PA, Herzog H, Sainsbury A. Y2 and Y4 receptor signaling synergistically act on energy expenditure and physical activity. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1618-28. [DOI: 10.1152/ajpregu.00345.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neuropeptide Y receptors are critical regulators of energy homeostasis and are well known for their powerful influence on feeding, but their roles in other important aspects of energy homeostasis, such as energy expenditure and their functional interactions in these processes, are largely unknown. Here we show that mice lacking both Y2 and Y4 receptors exhibited a reduction in adiposity, more prominent in intra-abdominal vs. subcutaneous fat, and an increase in lean mass as determined by dual-energy X-ray absorptiometry. These changes were more pronounced than those seen in mice with Y2 or Y4 receptor single deletion, demonstrating the important roles and synergy of Y2 and Y4 signaling in the regulation of body composition. These changes in body composition occurred without significant changes in food intake, but energy expenditure and physical activity were significantly increased in Y4−/− and particularly in Y2−/−Y4−/− but not in Y2−/− mice, suggesting a critical role of Y4 signaling and synergistic interactions with Y2 signaling in the regulation of energy expenditure and physical activity. Y2−/− and Y4−/− mice also exhibited a decrease in respiratory exchange ratio with no further synergistic decrease in Y2−/−Y4−/− mice, suggesting that Y2 and Y4 signaling each play important and independent roles in the regulation of substrate utilization. The synergy between Y2 and Y4 signaling in regulating fat mass may be related to differences in mitochondrial oxidative capacity, since Y2−/−Y4−/− but not Y2−/− or Y4−/− mice showed significant increases in muscle protein levels of peroxisome proliferator-activated receptor (PPAR)γ coactivator (PGC)-1α, and mitochondrial respiratory chain complexes I and III. Taken together, this work demonstrates the critical roles of Y2 and Y4 receptors in the regulation of body composition and energy metabolism, highlighting dual antagonism of Y2 and Y4 receptors as a potentially effective anti-obesity treatment.
Collapse
Affiliation(s)
| | | | - Nigel Turner
- Diabetes and Obesity Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Darlinghurst, Sydney, Australia
- St. Vincent's Hospital Clinical School,
| | | | | | | | - Herbert Herzog
- Neuroscience Research Program and
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Amanda Sainsbury
- Neuroscience Research Program and
- School of Medical Sciences, and
| |
Collapse
|
33
|
Franquinho F, Liz MA, Nunes AF, Neto E, Lamghari M, Sousa MM. Neuropeptide Y and osteoblast differentiation - the balance between the neuro-osteogenic network and local control. FEBS J 2010; 277:3664-74. [DOI: 10.1111/j.1742-4658.2010.07774.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Shi YC, Lin S, Wong IPL, Baldock PA, Aljanova A, Enriquez RF, Castillo L, Mitchell NF, Ye JM, Zhang L, Macia L, Yulyaningsih E, Nguyen AD, Riepler SJ, Herzog H, Sainsbury A. NPY neuron-specific Y2 receptors regulate adipose tissue and trabecular bone but not cortical bone homeostasis in mice. PLoS One 2010; 5:e11361. [PMID: 20613867 PMCID: PMC2894044 DOI: 10.1371/journal.pone.0011361] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 06/01/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Y2 receptor signalling is known to be important in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone physiology. Y2 receptors are located post-synaptically as well as acting as auto receptors on NPY-expressing neurons, and the different roles of these two populations of Y2 receptors in the regulation of energy homeostasis and body composition are unclear. METHODOLOGY/PRINCIPAL FINDINGS We thus generated two conditional knockout mouse models, Y2(lox/lox) and NPYCre/+;Y2(lox/lox), in which Y2 receptors can be selectively ablated either in the hypothalamus or specifically in hypothalamic NPY-producing neurons of adult mice. Specific deletion of hypothalamic Y2 receptors increases food intake and body weight compared to controls. Importantly, specific ablation of hypothalamic Y2 receptors on NPY-containing neurons results in a significantly greater adiposity in female but not male mice, accompanied by increased hepatic triglyceride levels, decreased expression of liver carnitine palmitoyltransferase (CPT1) and increased expression of muscle phosphorylated acetyl-CoA carboxylase (ACC). While food intake, body weight, femur length, bone mineral content, density and cortical bone volume and thickness are not significantly altered, trabecular bone volume and number were significantly increased by hypothalamic Y2 deletion on NPY-expressing neurons. Interestingly, in situ hybridisation reveals increased NPY and decreased proopiomelanocortin (POMC) mRNA expression in the arcuate nucleus of mice with hypothalamus-specific deletion of Y2 receptors in NPY neurons, consistent with a negative feedback mechanism between NPY expression and Y2 receptors on NPY-ergic neurons. CONCLUSIONS/SIGNIFICANCE Taken together these data demonstrate the anti-obesogenic role of Y2 receptors in the brain, notably on NPY-ergic neurons, possibly via inhibition of NPY neurons and concomitant stimulation of POMC-expressing neurons in the arcuate nucleus of the hypothalamus, reducing lipogenic pathways in liver and/or skeletal muscle in females. These data also reveal as an anti-osteogenic effect of Y2 receptors on hypothalamic NPY-expressing neurons on trabecular but not on cortical bone.
Collapse
Affiliation(s)
- Yan-Chuan Shi
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Shu Lin
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Iris P. L. Wong
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Paul A. Baldock
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Aygul Aljanova
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ronaldo F. Enriquez
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Lesley Castillo
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Natalie F. Mitchell
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ji-Ming Ye
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Lei Zhang
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Laurence Macia
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ernie Yulyaningsih
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Amy D. Nguyen
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Sabrina J. Riepler
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Herbert Herzog
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Amanda Sainsbury
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
35
|
Sainsbury A, Shi YC, Zhang L, Aljanova A, Lin Z, Nguyen AD, Herzog H, Lin S. Y4 receptors and pancreatic polypeptide regulate food intake via hypothalamic orexin and brain-derived neurotropic factor dependent pathways. Neuropeptides 2010; 44:261-8. [PMID: 20116098 DOI: 10.1016/j.npep.2010.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 01/06/2010] [Accepted: 01/07/2010] [Indexed: 11/23/2022]
Abstract
Gut-derived peptides are known to regulate food intake by activating specific receptors in the brain, but the target nuclei and neurons influenced are largely unknown. Here we show that peripherally administered pancreatic polypeptide (PP) stimulates neurons in key nuclei of the hypothalamus critical for appetite and satiety regulation. In the lateral hypothalamic area (LHA), also known as the feeding center, neurons expressing the orexigenic neuropeptide orexin co-localize with the early neuronal activation marker c-Fos upon i.p. injection of PP into mice. In the ventromedial hypothalamus (VMH), also known as the satiety center, neurons activated by PP, as indicated by induction of c-Fos immunoreactivity, express the anorexigenic brain-derived neurotrophic factor (BDNF). Activation of neurons in the LHA and VMH in response to PP occurs via a Y4 receptor-dependent process as it is not seen in Y4 receptor knockout mice. We further demonstrate that in response to i.p. PP, orexin mRNA expression in the LHA is down-regulated, with Y4 receptors being critical for this effect as it is not seen in Y4 receptor knockout mice, whereas BDNF mRNA expression is up-regulated in the VMH in response to i.p. PP in the fasted, but not in the non-fasted state. Taken together these data suggest that PP can regulate food intake by suppressing orexigenic pathways by down-regulation of orexin and simultaneously increasing anorexigenic pathways by up-regulating BDNF.
Collapse
Affiliation(s)
- Amanda Sainsbury
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria St., Darlinghurst, Sydney, NSW 2010, Australi
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Kirchner H, Tong J, Tschöp MH, Pfluger PT. Ghrelin and PYY in the regulation of energy balance and metabolism: lessons from mouse mutants. Am J Physiol Endocrinol Metab 2010; 298:E909-19. [PMID: 20179246 DOI: 10.1152/ajpendo.00191.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effective control of body weight and energy homeostasis requires stringent regulation of caloric intake and energy expenditure. Gut-brain interactions comprise a central axis for the control of energy homeostasis by integrating the intake of nutrients with an effective utilization of ingested calories either by storage or by expenditure as cellular fuel. Ghrelin, a stomach-derived peptide, is the only known circulating orexigenic hormone. It is acylated with a medium-chain fatty acid by the enzyme ghrelin O-acetyltransferase (GOAT) and displays a broad range of activity, from central control of food intake to peripheral functions such as gastric emptying and insulin secretion. PYY, a peptide produced by L cells of the small intestine and rectum, has been shown to inhibit gut motility and is proposed to stimulate a powerful central satiety response. In recent years, pharmacological studies in animals and clinical studies in humans have contributed to our knowledge of principal ghrelin and PYY actions. However, valuable findings from studies using ghrelin-deficient mice, ghrelin receptor [growth hormone secretagogue receptor-1a (GHSR1a)]-deficient mice, double-knockout mice (for ghrelin and GHSR), and GOAT-deficient or -overexpressor mice, as well as mice deficient for PYY or neuropeptide Y receptors have allowed better definition of the actual physiological functions of ghrelin and PYY. This review summarizes findings from mutant mouse studies with emphasis on respective gene knockout and transgenic animals and describes how these studies contribute to the current understanding of how endogenous ghrelin and PYY as two major representatives of endocrine gut-brain communications may regulate energy and glucose homeostasis.
Collapse
Affiliation(s)
- Henriette Kirchner
- Obesity Research Centre, Department of Internal Medicine, University of Cincinnati College of Medicine, 2170 E. Galbraith Rd., Cincinnati, OH 45237, USA
| | | | | | | |
Collapse
|
37
|
Igwe JC, Jiang X, Paic F, Ma L, Adams DJ, Baldock PA, Pilbeam CC, Kalajzic I. Neuropeptide Y is expressed by osteocytes and can inhibit osteoblastic activity. J Cell Biochem 2009; 108:621-30. [PMID: 19670271 DOI: 10.1002/jcb.22294] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Osteocytes are the most abundant osteoblast lineage cells within the bone matrix. They respond to mechanical stimulation and can participate in the release of regulatory proteins that can modulate the activity of other bone cells. We hypothesize that neuropeptide Y (NPY), a neurotransmitter with regulatory functions in bone formation, is produced by osteocytes and can affect osteoblast activity. To study the expression of NPY by the osteoblast lineage cells, we utilized transgenic mouse models in which we can identify and isolate populations of osteoblasts and osteocytes. The Col2.3GFP transgene is active in osteoblasts and osteocytes, while the DMP1 promoter drives green fluorescent protein (GFP) expression in osteocytes. Real-time PCR analysis of RNA from the isolated populations of cells derived from neonatal calvaria showed higher NPY mRNA in the preosteocytes/osteocytes fraction compared to osteoblasts. NPY immunostaining confirmed the strong expression of NPY in osteocytes (DMP1GFP(+)), and lower levels in osteoblasts. In addition, the presence of NPY receptor Y1 mRNA was detected in cavaria and long bone, as well as in primary calvarial osteoblast cultures, whereas Y2 mRNA was restricted to the brain. Furthermore, NPY expression was reduced by 30-40% in primary calvarial cultures when subjected to fluid shear stress. In addition, treatment of mouse calvarial osteoblasts with exogenous NPY showed a reduction in the levels of intracellular cAMP and markers of osteoblast differentiation (osteocalcin, BSP, and DMP1). These results highlight the potential regulation of osteoblast lineage differentiation by local NPY signaling.
Collapse
Affiliation(s)
- John C Igwe
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Prodynorphin-derived peptides are critical modulators of anxiety and regulate neurochemistry and corticosterone. Neuropsychopharmacology 2009; 34:775-85. [PMID: 18800067 PMCID: PMC2873573 DOI: 10.1038/npp.2008.142] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Stress and anxiety are mainly regulated by amygdala and hypothalamic circuitries involving several neurotransmitter systems and providing physiological responses to peripheral organs via the hypothalamic-pituitary-adrenal axis and other pathways. The role of endogenous opioid peptides in this process is largely unknown. Here we show for the first time that anxiolytic parameters of explorative behavior in mice lacking prodynorphin were increased 2-4-fold in the open field, the elevated plus maze and the light-dark test. Consistent with this, treatment of wild-type mice with selective kappa-opioid receptor antagonists GNTI or norbinaltorphimine showed the same effects. Furthermore, treatment of prodynorphin knockout animals with U-50488H, a selective kappa-opioid receptor agonist, fully reversed their anxiolytic phenotype. These behavioral data are supported by an approximal 30% reduction in corticotropin-releasing hormone (CRH) mRNA expression in the hypothalamic paraventricular nucleus and central amygdala and an accompanying 30-40% decrease in corticosterone serum levels in prodynorphin knockout mice. Although stress-induced increases in corticosterone levels were attenuated in prodynorphin knockout mice, they were associated with minor increases in depression-like behavior in the tail suspension and forced swim tests. Taken together, our data suggest a pronounced impact of endogenous prodynorphin-derived peptides on anxiety, but not stress coping ability and that these effects are mediated via kappa-opioid receptors. The delay in the behavioral response to kappa-opioid receptor agonists and antagonist treatment suggests an indirect control level for the action of dynorphin, probably by modulating the expression of CRH or neuropeptide Y, and subsequently influencing behavior.
Collapse
|
39
|
Suto JI. The Ay allele at the agouti locus reduces the size and alters the shape of the mandible in mice. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2009; 85:248-57. [PMID: 19644225 PMCID: PMC3561848 DOI: 10.2183/pjab.85.248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
To confirm my previous findings that the A(y) allele at the agouti locus reduced the mandible size and therefore altered the mandible shape in a KK mouse strain background, I further investigated the effects of the A(y) allele on mandible morphology on different strain backgrounds, DDD and B6. Principal component analysis revealed that the mandible was significantly smaller in A(y) mice (DDD-A(y) and B6-A(y)) than in corresponding non-A(y) mice (DDD and B6, respectively). Discriminant and canonical discriminant analyses revealed that most mice were classified correctly in their own strains, and misclassification was not observed between DDD (-A(y)) and B6 (-A(y)). The results confirmed that the A(y) allele reduced the mandible size and altered the mandible shape regardless of the strain background. However, the difference in mandible morphology between A(y) mice and the corresponding non-A(y) mice within a strain was not as large as that which intrinsically underlay the two strains. Possible mechanisms of the A(y) action are discussed.
Collapse
Affiliation(s)
- Jun-ichi Suto
- Division of Animal Sciences, National Institute of Agrobiological Sciences, Ibaraki, Japan.
| |
Collapse
|
40
|
Painsipp E, Wultsch T, Edelsbrunner ME, Tasan RO, Singewald N, Herzog H, Holzer P. Reduced anxiety-like and depression-related behavior in neuropeptide Y Y4 receptor knockout mice. GENES BRAIN AND BEHAVIOR 2008; 7:532-42. [PMID: 18221379 DOI: 10.1111/j.1601-183x.2008.00389.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuropeptide Y (NPY) acting through Y1 receptors reduces anxiety- and depression-like behavior in rodents, whereas Y2 receptor stimulation has the opposite effect. This study addressed the implication of Y4 receptors in emotional behavior by comparing female germ line Y4 knockout (Y4-/-) mice with control and germ line Y2-/- animals. Anxiety- and depression-like behavior was assessed with the open field (OF), elevated plus maze (EPM), stress-induced hyperthermia (SIH) and tail suspension tests (TST), respectively. Learning and memory were evaluated with the object recognition test (ORT). In the OF and EPM, both Y4-/- and Y2-/- mice exhibited reduced anxiety-related behavior and enhanced locomotor activity relative to control animals. Locomotor activity in a familiar environment was unchanged in Y4-/- but reduced in Y2-/- mice. The basal rectal temperature exhibited diurnal and genotype-related alterations. Control mice had temperature minima at noon and midnight, whereas Y4-/- and Y2-/- mice displayed only one temperature minimum at noon. The magnitude of SIH was related to time of the day and genotype in a complex manner. In the TST, the duration of immobility was significantly shorter in Y4-/- and Y2-/- mice than in controls. Object memory 6 h after initial exposure to the ORT was impaired in Y2-/- but not in Y4-/- mice, relative to control mice. These results show that genetic deletion of Y4 receptors, like that of Y2 receptors, reduces anxiety-like and depression-related behavior. Unlike Y2 receptor knockout, Y4 receptor knockout does not impair object memory. We propose that Y4 receptors play an important role in the regulation of behavioral homeostasis.
Collapse
Affiliation(s)
- E Painsipp
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
41
|
The effects of high fat on central appetite genes in Wistar rats: a microarray analysis. Clin Chim Acta 2008; 397:96-100. [PMID: 18721800 DOI: 10.1016/j.cca.2008.07.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 07/25/2008] [Accepted: 07/25/2008] [Indexed: 11/22/2022]
Abstract
BACKGROUND To evaluate the effects of high fat on central appetite regulatory genes in Wistar rats by microarray. METHODS Sixteen male Wistar rats were randomly assigned to control (15% energy from fat) and high-fat (60% energy from fat) diets for 12 weeks. Body weight and food intake were recorded. Plasma leptin, ghrelin and insulin were measured by radioimmunoassay method. The expression of 111 appetite regulatory genes in the hypothalamus was evaluated by microarray and six genes, including leptin receptor, insulin receptor, orexin, NPY, AgRP, MC-4R, were further evaluated by real-time RT-PCR. RESULTS Body weight increased significantly in HF group compared with control group, whereas energy intake was similar in the two groups. HF had a time dependent effect on plasma leptin, but insulin and ghrelin level remained stable throughout the study. A positive relation was also found between body weight and plasma leptin (r=0.88, P<0.01). The expression of 27 appetite genes in the hypothalamus was significantly affected by HF diet. However, only the expression of leptin receptor was confirmed lower in HF group than that in control by real-time PCR, which suggested that lower expression of leptin receptor might be another reason for leptin resistance. CONCLUSIONS HF diet fed rats demonstrated leptin resistance, which could be targeted for obesity treatment.
Collapse
|
42
|
Lee NJ, Enriquez RF, Boey D, Lin S, Slack K, Baldock PA, Herzog H, Sainsbury A. Synergistic attenuation of obesity by Y2- and Y4-receptor double knockout in ob/ob mice. Nutrition 2008; 24:892-9. [PMID: 18662863 DOI: 10.1016/j.nut.2008.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 06/19/2008] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Neuropeptide Y regulates numerous processes including food intake, body composition, and reproduction by at least five different Y receptors. We previously demonstrated a synergistic interaction between Y2 and Y4 receptors in reducing adiposity in chow- or fat-fed Y2Y4-receptor double-knockout mice. In the present study, we investigated whether this synergy could reduce the massive obesity of leptin-deficient ob/ob mice. METHODS Mice with germline deletions of Y2 and Y4 receptors were crossed onto the ob/ob strain. Body weight was measured weekly until 15-18 wk of age before decapitation for collection of trunk blood and tissues. RESULTS Male and female Y24ob triple mutants showed highly significant reductions in body weight and white adipose tissue mass compared with ob/ob mice. This reduction in body weight was not evident in Y2ob or Y4ob double mutants, and the effect on adiposity was significantly greater than that seen in Y2ob or Y4ob mice. These changes were associated with significant attenuation of the increased brown adipose tissue mass and small intestinal hypertrophy seen in ob/ob mice and with normalization of the low circulating free thyroxine concentrations seen in female ob/ob mice and the high circulating corticosterone concentrations seen in male ob/ob mice. CONCLUSION These data reveal a synergistic interaction between Y2 and Y4 receptors in attenuating the massive obesity of ob/ob mice, possibly mediated by stimulation of thyroid function and inhibition of intestinal nutrient absorption. Dual pharmacologic antagonism of Y2 and Y4 receptors could help people to attain and maintain a healthy weight.
Collapse
Affiliation(s)
- Nicola J Lee
- Neuroscience Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Painsipp E, Herzog H, Holzer P. Implication of neuropeptide-Y Y2 receptors in the effects of immune stress on emotional, locomotor and social behavior of mice. Neuropharmacology 2008; 55:117-26. [PMID: 18508096 DOI: 10.1016/j.neuropharm.2008.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 04/22/2008] [Accepted: 05/06/2008] [Indexed: 01/09/2023]
Abstract
Neuropeptide Y (NPY) is involved in the regulation of emotional behavior, and there is indirect evidence for a role of NPY in the cerebral responses to peripheral immune challenge. Since the NPY receptors involved in these reactions are not known, we investigated the effect of Escherichia coli lipopolysaccharide (LPS) on emotional, locomotor and social behavior, body temperature and circulating corticosterone in female Y2 (Y2-/-) and Y4 (Y4-/-) receptor knockout mice. LPS (0.1mg/kg injected IP 2.5h before testing) increased rectal temperature in control and Y4-/- mice to a larger degree than in Y2-/- animals. Both Y2-/- and Y4-/- mice exhibited reduced anxiety-related and depression-like behavior in the open field, elevated plus-maze and tail suspension test, respectively. While depression-like behavior was not changed by LPS, anxiety-related behavior was enhanced by LPS in Y2-/-, but not control and Y4-/- animals. Y2-/- mice were also particularly susceptible to the effect of LPS to attenuate locomotor behavior and social interaction with another mouse. The corticosterone response to LPS was blunted in Y2-/- mice which presented elevated levels of circulating corticosterone following vehicle treatment. These data show that Y2-/- mice are particularly sensitive to the effects of LPS-evoked immune stress to attenuate locomotion and social interaction and to increase anxiety-like behavior, while the LPS-induced rise of temperature and circulating corticosterone is suppressed by Y2 receptor knockout. Our observations attest to an important role of endogenous NPY acting via Y2 receptors in the cerebral response to peripheral immune challenge.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Corticosterone/blood
- Exploratory Behavior/drug effects
- Exploratory Behavior/physiology
- Female
- Fever/etiology
- Immobility Response, Tonic/drug effects
- Immobility Response, Tonic/physiology
- Lipopolysaccharides/pharmacology
- Locomotion/physiology
- Maze Learning/drug effects
- Mice
- Mice, Knockout
- Receptors, Neuropeptide Y/deficiency
- Receptors, Neuropeptide Y/physiology
- Social Behavior
- Stress, Psychological/blood
- Stress, Psychological/chemically induced
- Stress, Psychological/physiopathology
Collapse
Affiliation(s)
- Evelin Painsipp
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria
| | | | | |
Collapse
|
44
|
Boey D, Lin S, Enriquez RF, Lee NJ, Slack K, Couzens M, Baldock PA, Herzog H, Sainsbury A. PYY transgenic mice are protected against diet-induced and genetic obesity. Neuropeptides 2008; 42:19-30. [PMID: 18164057 DOI: 10.1016/j.npep.2007.11.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 10/16/2007] [Accepted: 11/12/2007] [Indexed: 10/22/2022]
Abstract
The gut-derived hormone, peptide YY (PYY) reduces food intake and enhances satiety in both humans and animals. Obese individuals also have a deficiency in circulating peptide YY, although whether this is a cause or a consequence of obesity is unclear. Our aims were to determine whether peptide YY (PYY) over-expression may have therapeutic effects for the treatment of obesity by altering energy balance and glucose homeostasis. We generated PYY transgenic mice and measured body weight, food intake, temperature, adiposity, glucose tolerance, circulating hormone and lipid concentrations and hypothalamic neuropeptide levels (neuropeptide Y; proopiomelanocortin, and thyrotropin-releasing hormone) under chow and high-fat feeding and after crossing these mice onto the genetically obese leptin-deficient ob/ob mouse background. PYY transgenic mice were protected against diet-induced obesity in association with increased body temperature (indicative of increased thermogenesis) and sustained expression of thyrotropin-releasing hormone in the paraventricular nucleus of the hypothalamus. Moreover, PYY transgenic mice crossed onto the genetically obese ob/ob background had significantly decreased weight gain and adiposity, reduced serum triglyceride levels and improved glucose tolerance compared to ob/ob controls. There was no effect of PYY transgenic over expression on basal or fasting-induced food intake measured at 11-12 weeks of age. Together, these findings suggest that long-term administration of PYY, PYY-like compounds or agents that stimulate PYY synthesis in vivo can reduce excess adiposity and improve glucose tolerance, possibly via effects on the hypothalamo-pituitary-thyroid axis and thermogenesis.
Collapse
Affiliation(s)
- Dana Boey
- Neuroscience Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Obesity is a serious public health problem throughout the world, affecting both developed societies and developing countries. The central nervous system has developed a meticulously interconnected circuitry in order to keep us fed and in an adequate nutritional state. One of these consequences is that an energy-dense environment favors the development of obesity. Neuropeptide Y (NPY) is one of the most abundant and widely distributed peptides in the central nervous system of both rodents and humans and has been implicated in a variety of physiological actions. Within the hypothalamus, NPY plays an essential role in the control of food intake and body weight. Centrally administered NPY causes robust increases in food intake and body weight and, with chronic administration, can eventually produce obesity. NPY activates a population of at least six G protein-coupled Y receptors. NPY analogs exhibit varying degrees of affinity and specificity for these Y receptors. There has been renewed speculation that ligands for Y receptors may be of benefit for the treatment of obesity. This review highlights the therapeutic potential of Y(1), Y(2), Y(4), and Y(5) receptor agonists and antagonists as additional intervention to treat human obesity.
Collapse
Affiliation(s)
- M M Kamiji
- Department of Gastroenterology, Faculty of Medicine, University of Sao Paulo, Ribeirão Preto Campus 14048-900, Ribeirão Preto-SP, Brazil
| | | |
Collapse
|
46
|
Abstract
We briefly survey the current knowledge and concepts regarding structure and function of the neuropeptide Y Y2 receptor and its agonists, especially as related to pharmacology of the receptor and its roles in pathological processes. Specific structural features are considered that could be responsible for the known compartmentalization and participation of the receptor in cell and tissue organization. This is further discussed in relation to changes of levels of the Y2 receptor in pathological conditions (especially in epilepsy and drug abuse), to endocytosis and recycling, and to participation in wound healing, retinopathy and angiogenesis. Properties of the receptor and of Y2 agonists are considered and reviewed in connection to the negative regulation of transmitter release, feeding, mood and social behavior. The possible involvement of the Y2 receptor in diabetes, carcinogenesis and bone formation is also reviewed.
Collapse
Affiliation(s)
- S L Parker
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | |
Collapse
|
47
|
Kuo LE, Kitlinska JB, Tilan JU, Li L, Baker SB, Johnson MD, Lee EW, Burnett MS, Fricke ST, Kvetnansky R, Herzog H, Zukowska Z. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med 2007; 13:803-11. [PMID: 17603492 DOI: 10.1038/nm1611] [Citation(s) in RCA: 457] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 05/25/2007] [Indexed: 12/29/2022]
Abstract
The relationship between stress and obesity remains elusive. In response to stress, some people lose weight, whereas others gain. Here we report that stress exaggerates diet-induced obesity through a peripheral mechanism in the abdominal white adipose tissue that is mediated by neuropeptide Y (NPY). Stressors such as exposure to cold or aggression lead to the release of NPY from sympathetic nerves, which in turn upregulates NPY and its Y2 receptors (NPY2R) in a glucocorticoid-dependent manner in the abdominal fat. This positive feedback response by NPY leads to the growth of abdominal fat. Release of NPY and activation of NPY2R stimulates fat angiogenesis, macrophage infiltration, and the proliferation and differentiation of new adipocytes, resulting in abdominal obesity and a metabolic syndrome-like condition. NPY, like stress, stimulates mouse and human fat growth, whereas pharmacological inhibition or fat-targeted knockdown of NPY2R is anti-angiogenic and anti-adipogenic, while reducing abdominal obesity and metabolic abnormalities. Thus, manipulations of NPY2R activity within fat tissue offer new ways to remodel fat and treat obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Lydia E Kuo
- Department of Physiology & Biophysics, Georgetown University Medical Center, 3900 Reservoir Rd. NW, BSB 234, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Baldock PA, Allison SJ, Lundberg P, Lee NJ, Slack K, Lin EJD, Enriquez RF, McDonald MM, Zhang L, During MJ, Little DG, Eisman JA, Gardiner EM, Yulyaningsih E, Lin S, Sainsbury A, Herzog H. Novel role of Y1 receptors in the coordinated regulation of bone and energy homeostasis. J Biol Chem 2007; 282:19092-102. [PMID: 17491016 DOI: 10.1074/jbc.m700644200] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The importance of neuropeptide Y (NPY) and Y2 receptors in the regulation of bone and energy homeostasis has recently been demonstrated. However, the contributions of the other Y receptors are less clear. Here we show that Y1 receptors are expressed on osteoblastic cells. Moreover, bone and adipose tissue mass are elevated in Y1(-/-) mice with a generalized increase in bone formation on cortical and cancellous surfaces. Importantly, the inhibitory effects of NPY on bone marrow stromal cells in vitro are absent in cells derived from Y1(-/-) mice, indicating a direct action of NPY on bone cells via this Y receptor. Interestingly, in contrast to Y2 receptor or germ line Y1 receptor deletion, conditional deletion of hypothalamic Y1 receptors in adult mice did not alter bone homeostasis, food intake, or adiposity. Furthermore, deletion of both Y1 and Y2 receptors did not produce additive effects in bone or adiposity. Thus Y1 receptor pathways act powerfully to inhibit bone production and adiposity by nonhypothalamic pathways, with potentially direct effects on bone tissue through a single pathway with Y2 receptors.
Collapse
Affiliation(s)
- Paul A Baldock
- Bone and Mineral Program, Garvan Institute of Medical Research, St Vincent's Hospital, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Campbell CD, Lyon HN, Nemesh J, Drake JA, Tuomi T, Gaudet D, Zhu X, Cooper RS, Ardlie KG, Groop LC, Hirschhorn JN. Association studies of BMI and type 2 diabetes in the neuropeptide Y pathway: a possible role for NPY2R as a candidate gene for type 2 diabetes in men. Diabetes 2007; 56:1460-7. [PMID: 17325259 DOI: 10.2337/db06-1051] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The neuropeptide Y (NPY) family of peptides and receptors regulate food intake. Inherited variation in this pathway could influence susceptibility to obesity and its complications, including type 2 diabetes. We genotyped a set of 71 single nucleotide polymorphisms (SNPs) that capture the most common variation in NPY, PPY, PYY, NPY1R, NPY2R, and NPY5R in 2,800 individuals of recent European ancestry drawn from the near extremes of BMI distribution. Five SNPs located upstream of NPY2R were nominally associated with BMI in men (P values = 0.001-0.009, odds ratios [ORs] 1.27-1.34). No association with BMI was observed in women, and no consistent associations were observed for other genes in this pathway. We attempted to replicate the association with BMI in 2,500 men and tested these SNPs for association with type 2 diabetes in 8,000 samples. We observed association with BMI in men in only one replication sample and saw no association in the combined replication samples (P = 0.154, OR = 1.09). Finally, a 9% haplotype was associated with type 2 diabetes in men (P = 1.73 x 10(-4), OR = 1.36) and not in women. Variation in this pathway likely does not have a major influence on BMI, although small effects cannot be ruled out; NPY2R should be considered a candidate gene for type 2 diabetes in men.
Collapse
Affiliation(s)
- Catarina D Campbell
- Program in Genomics and Division of Endocrinology, Children's Hospital, Boston, Massachusetts 021115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lin S, Lin EJD, Boey D, Lee NJ, Slack K, During MJ, Sainsbury A, Herzog H. Fasting inhibits the growth and reproductive axes via distinct Y2 and Y4 receptor-mediated pathways. Endocrinology 2007; 148:2056-65. [PMID: 17272395 DOI: 10.1210/en.2006-1408] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neuropeptide Y, a neuropeptide abundantly expressed in the brain, has been implicated in the regulation of the hypothalamo-pituitary-somatotropic axis and the hypothalamo-pituitary-gonadotropic axis. Elevated hypothalamic neuropeptide Y expression, such as that occurs during fasting, is known to inhibit both of these axes. However, it is not known which Y receptor(s) mediate these effects. Here we demonstrate, using Y receptor knockout mice, that Y2 and Y4 receptors are separately involved in the regulation of these axes. Fasting-induced inhibition of hypothalamic GHRH mRNA expression and reduction of circulating IGF-I levels were observed in wild-type and Y4(-/-) mice but not Y2(-/-) or Y2(-/-)Y4(-/-) mice. In contrast, fasting-induced reduction of GnRH expression in the medial preoptic area and testis testosterone content were abolished in the absence of Y4 receptors. Colocalization of Y2 receptors and GHRH in the arcuate nucleus (Arc) suggests that GHRH mRNA expression in this region might be directly regulated by Y2 receptors. Indeed, hypothalamic-specific deletion of Y2 receptors in conditional knockout mice prevented the fasting-induced reduction in Arc GHRH mRNA expression. On the other hand, fasting-induced decrease in GnRH mRNA expression in the medial preoptic area is more likely indirectly influenced by Y4 receptors because no Y4 receptors could be detected on GnRH neurons in this region. Together these data show that fasting inhibits the somatotropic axis via direct action on Y2 receptors in the Arc and indirectly inhibits the gonadotropic axis via Y4 receptors.
Collapse
Affiliation(s)
- Shu Lin
- Neuroscience Research Program, The Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|