1
|
Mishra D, Reddy I, Dey CS. PKCα Isoform Inhibits Insulin Signaling and Aggravates Neuronal Insulin Resistance. Mol Neurobiol 2023; 60:6642-6659. [PMID: 37470970 DOI: 10.1007/s12035-023-03486-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Overexpression of PKCα has been linked to inhibit insulin signaling disrupting IRS-1 and Akt phosphorylations in skeletal muscle. PKCα inhibits IRS-1 and Akt phosphorylations, but not required for insulin-stimulated glucose transport in skeletal muscles. Inhibition of PKCα increased whereas in some studies decreased GLUT-4 levels at the plasma membrane in skeletal muscles and adipocytes. Controversial studies have reported opposite expression pattern of PKCα expression in insulin-resistant skeletal muscles. These findings indicate that the role of PKCα on insulin signaling is controversial and could be tissue specific. Evidently, studies are required to decipher the role of PKCα in regulating insulin signaling and preferably in other cellular systems. Utilizing neuronal cells, like Neuro-2a, SHSY-5Y and insulin-resistant diabetic mice brain tissues; we have demonstrated that PKCα inhibits insulin signaling, through IRS-Akt pathway in PP2A-dependent mechanism by an AS160-independent route involving 14-3-3ζ. Inhibition and silencing of PKCα improves insulin sensitivity by increasing GLUT-4 translocation to the plasma membrane and glucose uptake. PKCα regulates GSK3 isoforms in an opposite manner in insulin-sensitive and in insulin-resistant condition. Higher activity of PKCα aggravates insulin-resistant neuronal diabetic condition through GSK3β but not GSK3α. Our results mechanistically explored the contribution of PKCα in regulating neuronal insulin resistance and diabetes, which opens up new avenues in dealing with metabolic disorders and neurodegenerative disorders.
Collapse
Affiliation(s)
- Devanshi Mishra
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, Hauz Khas, -110016, India
| | - Ishitha Reddy
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, Hauz Khas, -110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, Hauz Khas, -110016, India.
| |
Collapse
|
2
|
Angiotensin II Inhibits Insulin Receptor Signaling in Adipose Cells. Int J Mol Sci 2022; 23:ijms23116048. [PMID: 35682723 PMCID: PMC9181642 DOI: 10.3390/ijms23116048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Angiotensin II (Ang II) is a critical regulator of insulin signaling in the cardiovascular system and metabolic tissues. However, in adipose cells, the regulatory role of Ang II on insulin actions remains to be elucidated. The effect of Ang II on insulin-induced insulin receptor (IR) phosphorylation, Akt activation, and glucose uptake was examined in 3T3-L1 adipocytes. In these cells, Ang II specifically inhibited insulin-stimulated IR and insulin receptor substrate-1 (IRS-1) tyrosine-phosphorylation, Akt activation, and glucose uptake in a time-dependent manner. These inhibitory actions were associated with increased phosphorylation of the IR at serine residues. Interestingly, Ang II-induced serine-phosphorylation of IRS was not detected, suggesting that Ang II-induced desensitization begins from IR regulation itself. PKC inhibition by BIM I restored the inhibitory effect of Ang II on insulin actions. We also found that Ang II promoted activation of several PKC isoforms, including PKCα/βI/βII/δ, and its association with the IR, particularly PKCβII, showed the highest interaction. Finally, we also found a similar regulatory effect of Ang II in isolated adipocytes, where insulin-induced Akt phosphorylation was inhibited by Ang II, an effect that was prevented by PKC inhibitors. These results suggest that Ang II may lead to insulin resistance through PKC activation in adipocytes.
Collapse
|
3
|
Jiang X, Wu J. Structure and activity study of tripeptide IRW in TNF-α induced insulin resistant skeletal muscle cells. Food Funct 2022; 13:4061-4068. [PMID: 35315845 DOI: 10.1039/d1fo02893f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Egg white protein ovotransferrin derived peptide IRW (Ile-Arg-Trp) was found to improve tumor necrosis factor alpha (TNF-α) or angiotensin II induced insulin resistance in L6 cells. Our recent study further showed that this peptide can improve glucose tolerance in high fat diet fed C57BL/6 mice. However, the structural requirements of IRW, especially the significance of each amino acid residue of IRW, is unknown. The study was aimed to investigate the structure and activity relationships of IRW in TNF-α induced insulin resistance L6 cells. The peptides were designed to determine the significance of individual amino acids in IRW using alanine scanning (replacing one amino acid at one time), the order of the peptide sequence and the constituting elements of IRW. Among the tested peptides and amino acids, only IRA and IR showed the same effects as that of IRW: enhanced glucose uptake, improvement in the impaired insulin signaling pathway and increased glucose transporter protein 4 (GLUT4) translocation in TNF-α treated L6 myotubes. This study demonstrated that C-terminal W is not essential to the activity of IRW. Further study is necessary to establish if IR and IRA show similar effects to that of IRW in vivo.
Collapse
Affiliation(s)
- Xu Jiang
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
4
|
Mishra D, Dey CS. PKCα: Prospects in Regulating Insulin Resistance and AD. Trends Endocrinol Metab 2021; 32:341-350. [PMID: 33858742 DOI: 10.1016/j.tem.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Protein kinase C alpha (PKCα) is known to participate in various signaling pathways due to its ubiquitous and dynamic characteristics. Previous studies report that PKCα abrogates peripheral insulin resistance, and recent publications show that it takes part in regulating Alzheimer's disease (AD). Based on evidence in the literature, we have highlighted how many of the substrates of PKCα in its signal transduction cascades are common in AD and diabetes and may have the capability to regulate both diseases simultaneously. Signaling pathways crosslinking these two diseases by PKCα have not been explored. Understanding the complexities of PKCα interactions with common molecules will deepen our understanding of its regulation of relevant pathophysiologies and, in the future, may broaden the possibility of using PKCα as a therapeutic target.
Collapse
Affiliation(s)
- Devanshi Mishra
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India.
| |
Collapse
|
5
|
Welz B, Bikker R, Hoffmeister L, Diekmann M, Christmann M, Brand K, Huber R. Activation of GSK3 Prevents Termination of TNF-Induced Signaling. J Inflamm Res 2021; 14:1717-1730. [PMID: 33986607 PMCID: PMC8111165 DOI: 10.2147/jir.s300806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background Termination of TNF-induced signaling plays a key role in the resolution of inflammation with dysregulations leading to severe pathophysiological conditions (sepsis, chronic inflammatory disease, cancer). Since a recent phospho-proteome analysis in human monocytes suggested GSK3 as a relevant kinase during signal termination, we aimed at further elucidating its role in this context. Materials and Methods For the analyses, THP-1 monocytic cells and primary human monocytes were used. Staurosporine (Stauro) was applied to activate GSK3 by inhibiting kinases that mediate inhibitory GSK3α/β-Ser21/9 phosphorylation (eg, PKC). For GSK3 inhibition, Kenpaulone (Ken) was used. GSK3- and PKC-siRNAs were applied for knockdown experiments. Protein expression and phosphorylation were assessed by Western blot or ELISA and mRNA expression by qPCR. NF-κB activation was addressed using reporter gene assays. Results Constitutive GSK3β and PKCβ expression and GSK3α/β-Ser21/9 and PKCα/βII-Thr638/641 phosphorylation were not altered during TNF long-term incubation. Stauro-induced GSK3 activation (demonstrated by Bcl3 reduction) prevented termination of TNF-induced signaling as reflected by strongly elevated IL-8 expression (used as an indicator) following TNF long-term incubation. A similar increase was observed in TNF short-term-exposed cells, and this effect was inhibited by Ken. PKCα/β-knockdown modestly increased, whereas GSK3α/β-knockdown inhibited TNF-induced IL-8 expression. TNF-dependent activation of two NF-κB-dependent indicator plasmids was enhanced by Stauro, demonstrating transcriptional effects. A TNF-induced increase in p65-Ser536 phosphorylation was further enhanced by Stauro, whereas IκBα proteolysis and IKKα/β-Ser176/180 phosphorylation were not affected. Moreover, PKCβ-knockdown reduced levels of Bcl3. A20 and IκBα mRNA, both coding for signaling inhibitors, were dramatically less affected under our conditions when compared to IL-8, suggesting differential transcriptional effects. Conclusion Our results suggest that GSK3 activation is involved in preventing the termination of TNF-induced signaling. Our data demonstrate that activation of GSK3 – either pathophysiologically or pharmacologically induced – may destroy the finely balanced condition necessary for the termination of inflammation-associated signaling.
Collapse
Affiliation(s)
- Bastian Welz
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Rolf Bikker
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Leonie Hoffmeister
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Mareike Diekmann
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Martin Christmann
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| | - René Huber
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, 30625, Germany
| |
Collapse
|
6
|
Egg white hydrolysate and peptide reverse insulin resistance associated with tumor necrosis factor-α (TNF-α) stimulated mitogen-activated protein kinase (MAPK) pathway in skeletal muscle cells. Eur J Nutr 2018; 58:1961-1969. [PMID: 29955954 PMCID: PMC6647935 DOI: 10.1007/s00394-018-1753-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/11/2018] [Indexed: 12/19/2022]
Abstract
Purpose Excessive formation of tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine, has been implicated in the development of insulin resistance in obesity and type-2 diabetes. In skeletal muscle, chronic exposure to TNF-α impairs insulin-stimulated glucose uptake and insulin signaling. The aim of this study is to investigate the effects of enzymatic egg white hydrolysate (EWH) and its responsible peptide, IRW, on TNF-α-induced insulin resistance and the underlying molecular mechanisms using rat skeletal muscle cells (L6 cells). Methods Insulin resistance was induced by treating L6 cells with 5 ng/ml TNF-α for 24 h. Effects of EWH and IRW on glucose uptake were detected by glucose uptake assay, glucose transporter 4 (GLUT4) translocation by immunofluorescence, and western blot, while insulin-signaling pathway and mitogen-activated protein kinase (MAPK) pathway were investigated using western blot. Results Adding both EWH and IRW significantly improved glucose uptake in TNF-α-treated cells, increased activation of insulin receptor substrate (IRS-1) tyrosine residue and protein kinase B (Akt), whereas decreased activation of IRS-1 serine residue. In addition, TNF-α-induced activation of p38-mitogen-activated protein kinase (p38) and c-Jun N-terminal kinases (JNK) 1/2 were decreased by either EWH or IRW treatment. Conclusion EWH and IRW improve impaired insulin sensitivity by down-regulating the activation of p38 and JNK1/2 in TNF-α-treated skeletal muscle cells.
Collapse
|
7
|
Wu J, Jiao ZY, Li RZ, Lu HL, Zhang HH, Cianflone K. Cholinergic activation suppresses palmitate-induced macrophage activation and improves acylation stimulating protein resistance in co-cultured adipocytes. Exp Biol Med (Maywood) 2017; 242:961-973. [PMID: 28440734 DOI: 10.1177/1535370217700522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Acylation-stimulating protein (ASP), produced through activation of the alternative complement immune system, modulates lipid metabolism. Using a trans-well co-culture cell model, the mitigating role of α7-nicotinic acetylcholine receptor (α7nAChR)-mediated cholinergic pathway on ASP resistance was evaluated. ASP signaling in adipocytes via its receptor C5L2 and signaling intermediates Gαq, Gβ, phosphorylated protein kinase C-α, and protein kinase C-ζ were markedly suppressed in the presence of TNFα or medium from palmitate-treated RAW264.7 macrophages, indicating ASP resistance. There was no direct effect of α7nAChR activation in 3T3-L1 cell culture. However, α7nAChR activation almost completely reversed the ASP resistance in adipocytes co-cultured with palmitate-treated RAW264.7 macrophages. Further, α7nAChR activation could suppress the production of pro-inflammatory molecules TNFα and interleukin-6 produced from palmitate-treated co-cultured macrophages. These results suggest that macrophages play a significant role in the pathogenesis of ASP resistance and α7nAChR activation secondarily improves adipose ASP resistance through suppression of inflammation in macrophages. Impact statement 1. Adipocyte-macrophage interaction in acylation-stimulating protein (ASP) resistance 2. Lipotoxicity induced inflammatory response in ASP resistance 3. A vicious circle between lipotoxicity and inflammatory response in ASP resistance 4. Cholinergic modulation of inflammatory response in adipocyte and macrophage.
Collapse
Affiliation(s)
- Jing Wu
- 1 Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhou-Yang Jiao
- 2 Department of Cardiovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Rui-Zhen Li
- 3 Department of Endocrinology, Wuhan Children's Hospital, Wuhan Medical and Healthcare Center for Women and Children, Wuhan 430016, China
| | - Hui-Ling Lu
- 4 Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao-Hao Zhang
- 5 Department of Endocrinology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Katherine Cianflone
- 6 Centre de Recherche Institut Universitaire de Cardiologie and Pneumologie de Québec, Université Laval, Ville de Québec, QC G1V 4G5, Canada
| |
Collapse
|
8
|
The phosphatidylethanolamine derivative diDCP-LA-PE mimics intracellular insulin signaling. Sci Rep 2016; 6:27267. [PMID: 27251941 PMCID: PMC4890120 DOI: 10.1038/srep27267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/14/2016] [Indexed: 12/30/2022] Open
Abstract
Insulin facilitates glucose uptake into cells by translocating the glucose transporter GLUT4 towards the cell surface through a pathway along an insulin receptor (IR)/IR substrate 1 (IRS-1)/phosphatidylinositol 3 kinase (PI3K)/3-phosphoinositide-dependent protein kinase-1 (PDK1)/Akt axis. The newly synthesized phosphatidylethanolamine derivative 1,2-O-bis-[8-{2-(2-pentyl-cyclopropylmethyl)-cyclopropyl}-octanoyl]-sn-glycero-3-phosphatidylethanolamine (diDCP-LA-PE) has the potential to inhibit protein tyrosine phosphatase 1B (PTP1B) and to directly activate PKCζ, an atypical isozyme, and PKCε, a novel isozyme. PTP1B inhibition enhanced insulin signaling cascades downstream IR/IRS-1 by preventing tyrosine dephosphorylation. PKCζ and PKCε directly activated Akt2 by phosphorylating at Thr309 and Ser474, respectively. diDCP-LA-PE increased cell surface localization of GLUT4 and stimulated glucose uptake into differentiated 3T3-L1 adipocytes, still with knocking-down IR or in the absence of insulin. Moreover, diDCP-LA-PE effectively reduced serum glucose levels in type 1 diabetes (DM) model mice. diDCP-LA-PE, thus, may enable type 1 DM therapy without insulin injection.
Collapse
|
9
|
Khodabandehloo H, Gorgani-Firuzjaee S, Panahi G, Meshkani R. Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Transl Res 2016; 167:228-56. [PMID: 26408801 DOI: 10.1016/j.trsl.2015.08.011] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
Obesity is a major public health problem worldwide, and it is associated with an increased risk of developing type 2 diabetes. It is now commonly accepted that chronic inflammation associated with obesity induces insulin resistance and β-cell dysfunction in diabetic patients. Obesity-associated inflammation is characterized by increased abundance of macrophages and enhanced production of inflammatory cytokines in adipose tissue. Adipose tissue macrophages are suggested to be the major source of local and systemic inflammatory mediators such as tumor necrosis factor α, interleukin (IL)-1β, and IL-6. These cytokines induce insulin resistance in insulin target tissues by activating the suppressors of cytokine signaling proteins, several kinases such as c-Jun N-terminal kinase, IκB kinase β, and protein kinase C, inducible nitric oxide synthase, extracellular signal-regulated kinase, and protein tyrosine phosphatases such as protein tyrosine phosphatase 1B. These activated factors impair the insulin signaling at the insulin receptor and the insulin receptor substrates levels. The same process most likely occurs in the pancreas as it contains a pool of tissue-resident macrophages. High concentrations of glucose or palmitate via the chemokine production promote further immune cell migration and infiltration into the islets. These events ultimately induce inflammatory responses leading to the apoptosis of the pancreatic β cells. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation are discussed, with particular attention being placed on the roles of the molecular players linking inflammation to insulin resistance and β-cell dysfunction.
Collapse
Affiliation(s)
- Hadi Khodabandehloo
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Ghodratollah Panahi
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Reza Meshkani
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
10
|
Shabrova E, Hoyos B, Vinogradov V, Kim YK, Wassef L, Leitges M, Quadro L, Hammerling U. Retinol as a cofactor for PKCδ-mediated impairment of insulin sensitivity in a mouse model of diet-induced obesity. FASEB J 2015; 30:1339-55. [PMID: 26671999 DOI: 10.1096/fj.15-281543] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/23/2015] [Indexed: 12/15/2022]
Abstract
We previously defined that the mitochondria-localized PKCδ signaling complex stimulates the conversion of pyruvate to acetyl-coenzyme A by the pyruvate dehydrogenase complex. We demonstrated in vitro and ex vivo that retinol supplementation enhances ATP synthesis in the presence of the PKCδ signalosome. Here, we tested in vivo if a persistent oversupply of retinol would further impair glucose metabolism in a mouse model of diet-induced insulin resistance. We crossed mice overexpressing human retinol-binding protein (hRBP) under the muscle creatine kinase (MCK) promoter (MCKhRBP) with the PKCδ(-/-) strain to generate mice with a different status of the PKCδ signalosome and retinoid levels. Mice with a functional PKCδ signalosome and elevated retinoid levels (PKCδ(+/+)hRBP) developed the most advanced stage of insulin resistance. In contrast, elevation of retinoid levels in mice with inactive PKCδ did not affect remarkably their metabolism, resulting in phenotypic similarity between PKCδ(-/-)hRBP and PKCδ(-/-) mice. Therefore, in addition to the well-defined role of PKCδ in the etiology of metabolic syndrome, we present a novel PKCδ signaling pathway that requires retinol as a metabolic cofactor and is involved in the regulation of fuel utilization in mitochondria. The distinct role in whole-body energy homeostasis establishes the PKCδ signalosome as a promising target for therapeutic intervention in metabolic disorders.
Collapse
Affiliation(s)
- Elena Shabrova
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Beatrice Hoyos
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Valerie Vinogradov
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Youn-Kyung Kim
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Lesley Wassef
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Michael Leitges
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Loredana Quadro
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| | - Ulrich Hammerling
- *Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Department of Food Science, Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA; and Biotechnology Center of Oslo, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Tsuchiya A, Kanno T, Shimizu T, Tanaka A, Nishizaki T. Rac1 and ROCK are implicated in the cell surface delivery of GLUT4 under the control of the insulin signal mimetic diDCP-LA-PE. J Pharmacol Sci 2015; 128:179-84. [PMID: 26238253 DOI: 10.1016/j.jphs.2015.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/27/2015] [Accepted: 07/02/2015] [Indexed: 12/16/2022] Open
Abstract
The phosphatidylethanolamine derivative 1,2-O-bis-[8-{2-(2-pentyl-cyclopropylmethyl)-cyclopropyl}-octanoyl]-sn-glycero-3-phosphatidylethanolamine (diDCP-LA-PE) promoted GLUT4 translocation to the cell surface in differentiated 3T3-L1-GLUT4myc adipocytes through a pathway along a phosphatidylinositol 3-kinase (PI3K)/3-phosphoinositide-dependent protein kinase-1 (PDK1)/Akt axis, that mimics insulin signaling. Moreover, diDCP-LA-PE-induced GLUT4 translocation was suppressed by inhibitors of the Rho GTPase Rac1 and Rho-associated coiled-coil-containing protein kinase (ROCK) or knocking-down Rac1 and ROCK1. The results of the present study show that Rac1 and ROCK are critical for regulation of GLUT4 trafficking by diDCP-LA-PE as well as insulin.
Collapse
Affiliation(s)
- Ayako Tsuchiya
- Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Takeshi Kanno
- Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tadashi Shimizu
- Laboratory of Chemical Biology, Advanced Medicinal Research Center, Hyogo University of Health Sciences, Kobe, Japan
| | - Akito Tanaka
- Laboratory of Chemical Biology, Advanced Medicinal Research Center, Hyogo University of Health Sciences, Kobe, Japan
| | - Tomoyuki Nishizaki
- Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, Nishinomiya, Japan.
| |
Collapse
|
12
|
Obesity-related insulin resistance: implications for the surgical patient. Int J Obes (Lond) 2015; 39:1575-88. [PMID: 26028059 DOI: 10.1038/ijo.2015.100] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 05/17/2015] [Accepted: 05/24/2015] [Indexed: 12/20/2022]
Abstract
In healthy surgical patients, preoperative fasting and major surgery induce development of insulin resistance (IR). IR can be present in up to 41% of obese patients without diabetes and this can rise in the postoperative period, leading to an increased risk of postoperative complications. Inflammation is implicated in the aetiology of IR. This review examines obesity-associated IR and its implications for the surgical patient. Searches of the Medline and Science Citation Index databases were performed using various key words in combinations with the Boolean operators AND, OR and NOT. Key journals, nutrition and metabolism textbooks and the reference lists of key articles were also hand searched. Adipose tissue has been identified as an active endocrine organ and the chemokines secreted as a result of macrophage infiltration have a role in the pathogenesis of IR. Visceral adipose tissue appears to be the most metabolically active, although results across studies are not consistent. Results from animal and human studies often provide conflicting results, which has rendered the pursuit of a common mechanistic pathway challenging. Obesity-associated IR appears, in part, to be related to inflammatory changes associated with increased adiposity. Postoperatively, the surgical patient is in a proinflammatory state, so this finding has important implications for the obese surgical patient.
Collapse
|
13
|
Czifra G, Szöllősi A, Nagy Z, Boros M, Juhász I, Kiss A, Erdődi F, Szabó T, Kovács I, Török M, Kovács L, Blumberg PM, Bíró T. Protein kinase Cδ promotes proliferation and induces malignant transformation in skeletal muscle. J Cell Mol Med 2014; 19:396-407. [PMID: 25283340 PMCID: PMC4407591 DOI: 10.1111/jcmm.12452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
In this paper, we investigated the isoform-specific roles of certain protein kinase C (PKC) isoforms in the regulation of skeletal muscle growth. Here, we provide the first intriguing functional evidence that nPKCδ (originally described as an inhibitor of proliferation in various cells types) is a key player in promoting both in vitro and in vivo skeletal muscle growth. Recombinant overexpression of a constitutively active nPKCδ in C2C12 myoblast increased proliferation and inhibited differentiation. Conversely, overexpression of kinase-negative mutant of nPKCδ (DN-nPKCδ) markedly inhibited cell growth. Moreover, overexpression of nPKCδ also stimulated in vivo tumour growth and induced malignant transformation in immunodeficient (SCID) mice whereas that of DN-nPKCδ suppressed tumour formation. The role of nPKCδ in the formation of rhabdomyosarcoma was also investigated where recombinant overexpression of nPKCδ in human rhabdomyosarcoma RD cells also increased cell proliferation and enhanced tumour formation in mouse xenografts. The other isoforms investigated (PKCα, β, ε) exerted only minor (mostly growth-inhibitory) effects in skeletal muscle cells. Collectively, our data introduce nPKCδ as a novel growth-promoting molecule in skeletal muscles and invite further trials to exploit its therapeutic potential in the treatment of skeletal muscle malignancies.
Collapse
Affiliation(s)
- Gabriella Czifra
- DE-MTA "Lendület" Cellular Physiology Research Group, Department of Physiology, Medical Faculty, University of Debrecen, Research Center for Molecular Medicine, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Tsuchiya A, Kanno T, Nishizaki T. Diacylglycerol promotes GLUT4 translocation to the cell surface in a PKCε-dependent and PKCλ/ι and -ζ-independent manner. Life Sci 2013; 93:240-6. [DOI: 10.1016/j.lfs.2013.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/04/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
|
15
|
Liu M, Zhou L, Wei L, Villarreal R, Yang X, Hu D, Riojas RA, Holmes BM, Langlais PR, Lee H, Dong LQ. Phosphorylation of adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain, and leucine zipper motif 1 (APPL1) at Ser430 mediates endoplasmic reticulum (ER) stress-induced insulin resistance in hepatocytes. J Biol Chem 2012; 287:26087-93. [PMID: 22685300 DOI: 10.1074/jbc.m112.372292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
APPL1 is an adaptor protein that plays a critical role in regulating adiponectin and insulin signaling. However, how APPL1 is regulated under normal and pathological conditions remains largely unknown. In this study, we show that APPL1 undergoes phosphorylation at Ser(430) and that this phosphorylation is enhanced in the liver of obese mice displaying insulin resistance. In cultured mouse hepatocytes, APPL1 phosphorylation at Ser(430) is stimulated by phorbol 12-myristate 13-acetate, an activator of classic PKC isoforms, and by the endoplasmic reticulum (ER) stress inducer, thapsigargin. Overexpression of wild-type but not dominant negative PKCα increases APPL1 phosphorylation at Ser(430) in mouse hepatocytes. In addition, suppressing PKCα expression by shRNA in hepatocytes reduces ER stress-induced APPL1 phosphorylation at Ser(430) as well as the inhibitory effect of ER stress on insulin-stimulated Akt phosphorylation. Consistent with a negative regulatory role of APPL1 phosphorylation at Ser(430) in insulin signaling, overexpression of APPL1(S430D) but not APPL1(S430A) impairs the potentiating effect of APPL1 on insulin-stimulated Akt phosphorylation at Thr(308). Taken together, our results identify APPL1 as a novel target in ER stress-induced insulin resistance and PKCα as the kinase mediating ER stress-induced phosphorylation of APPL1 at Ser(430).
Collapse
Affiliation(s)
- Meilian Liu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas 78229, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Suagee JK, Corl BA, Geor RJ. A Potential Role for Pro-Inflammatory Cytokines in the Development of Insulin Resistance in Horses. Animals (Basel) 2012; 2:243-60. [PMID: 26486919 PMCID: PMC4494330 DOI: 10.3390/ani2020243] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/16/2012] [Accepted: 04/26/2012] [Indexed: 02/07/2023] Open
Abstract
Insulin resistance is a metabolic condition involving reduced sensitivity of insulin-sensitive tissues to insulin-induced glucose disposal, including adipose tissue, skeletal muscle, and liver. Insulin resistance occurs in overweight and obese horses, and may increase risk for the development of laminitis. The development of insulin resistance is thought to occur in response to increased production of pro-inflammatory cytokines by adipose tissue in obesity, that then have an inhibitory effect on insulin signaling pathways in multiple tissues. This article reviews current knowledge of the involvement of pro-inflammatory cytokines in the development of insulin resistance in horses and uses data from other species to provide context. Understanding the mechanisms involved in the development of insulin resistance in horses should enable development of effective treatment and prevention strategies. Current knowledge of these mechanisms is based upon research in obese humans and rodents, in which there is evidence that the increased production of pro-inflammatory cytokines by adipose tissue negatively influences insulin signaling in insulin-responsive tissues. In horses, plasma concentrations of the cytokine, tumor necrosis factor-α, have been positively correlated with body fatness and insulin resistance, leading to the hypothesis that inflammation may reduce insulin sensitivity in horses. However, little evidence has documented a tissue site of production and a direct link between inflammation and induction of insulin resistance has not been established. Several mechanisms are reviewed in this article, including the potential for macrophage infiltration, hyperinsulinemia, hypoxia, and lipopolysaccharide to increase pro-inflammatory cytokine production by adipose tissue of obese horses. Clearly defining the role of cytokines in reduced insulin sensitivity of horses will be a very important step in determining how obesity and insulin resistance are related.
Collapse
Affiliation(s)
- Jessica K Suagee
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24071, USA.
| | - Benjamin A Corl
- Department of Dairy Science, Virginia Tech, Blacksburg, VA 24071, USA.
| | - Raymond J Geor
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
17
|
Brutman-Barazani T, Horovitz-Fried M, Aga-Mizrachi S, Brand C, Brodie C, Rosa J, Sampson SR. Protein kinase Cδ but not PKCα is involved in insulin-induced glucose metabolism in hepatocytes. J Cell Biochem 2012; 113:2064-76. [DOI: 10.1002/jcb.24078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Brand C, Horovitz-Fried M, Inbar A, Tamar-Brutman-Barazani, Brodie C, Sampson SR. Insulin stimulation of PKCδ triggers its rapid degradation via the ubiquitin-proteasome pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1265-75. [PMID: 20708645 DOI: 10.1016/j.bbamcr.2010.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 07/15/2010] [Accepted: 07/26/2010] [Indexed: 01/20/2023]
Abstract
Insulin rapidly upregulates protein levels of PKCδ in classical insulin target tissues skeletal muscle and liver. Insulin induces both a rapid increase in de novo synthesis of PKCδ protein. In this study we examined the possibility that insulin may also inhibit degradation of PKCδ. Experiments were performed on L6 skeletal muscle myoblasts or myotubes in culture. Phorbol ester (PMA)- and insulin-induced degradation of PKCδ were abrogated by proteasome inhibition. Both PMA and insulin induced ubiquitination of PKCδ, but not of that PKCα or PKCε and increased proteasome activity within 5 min. We examined the role of tyrosine phosphorylation of PKCδ in targeting PKCδ for degradation by the ubiquitin-proteasome pathway. Transfection of cells with PKCδY(311)F, which is not phosphorylated, resulted in abolition of insulin-induced ubiquitination of PKCδ and increase in proteasome activity. We conclude that insulin induces degradation of PKCδ via the ubiquitin-proteasome system, and that this effect requires phosphorylation on specific tyrosine residues for targeting PKCδ for degradation by the ubiquitin-proteasome pathway. These studies provide additional evidence for unique effects of insulin on regulation of PKCδ protein levels.
Collapse
Affiliation(s)
- Chagit Brand
- The Faculty of Life Science, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | |
Collapse
|
19
|
Pan Y, Cai B, Wang K, Wang S, Zhou S, Yu X, Xu B, Chen L. Neferine enhances insulin sensitivity in insulin resistant rats. JOURNAL OF ETHNOPHARMACOLOGY 2009; 124:98-102. [PMID: 19527823 DOI: 10.1016/j.jep.2009.04.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 12/02/2008] [Accepted: 04/03/2009] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Neferine was isolated from green seed embryo of Nelumbo nucifera Gaertn which has been used as an anti-obesity agent in traditional Chinese herbal medicine. AIM OF THE STUDY This study was conducted to investigate the effects of neferine on enhancing insulin sensitivity in insulin resistant rats compared with rosiglitazone and to potentially reveal its role in mediating the anti-obesity properties of Nelumbo nucifera Gaertn. MATERIALS AND METHODS Fasting blood glucose (FBG), fasting blood insulin (FINS), triglycerides (TG) and tumor necrosis factor-alpha (TNF-alpha) were measured, and the oral glucose tolerance test for 2-h plasma glucose level (2-h PG) was carried out. The glucose infusion rate (GIR) was used to measure the insulin sensitivity by hyperinsulinemic euglycemic clamp technique. RESULTS The levels of FBG, FINS, TG, TNF-alpha and 2-h PG all decreased significantly in the rosiglitazone and neferine groups compared with the insulin resistance (IR) model group. Neferine diminished the 2-h PG more than did rosiglitazone treatment. Compared to the IR model group, the treatments of neferine and rosiglitazone remarkably increased GIRs but no difference between these two treatments themselves was evident. CONCLUSIONS These data demonstrate that neferine has effects similar to rosiglitazone in decreasing fasting blood glucose, insulin, TG, TNF-alpha and enhancing insulin sensitivity in insulin resistant rats.
Collapse
Affiliation(s)
- Yang Pan
- Laboratory of Medical Fungi and Phyto-Biotech, Research Institute of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210029, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Insulin signaling at target tissues is essential for growth and development and for normal homeostasis of glucose, fat, and protein metabolism. Control over this process is therefore tightly regulated. It can be achieved by a negative feedback control mechanism whereby downstream components inhibit upstream elements along the insulin-signaling pathway (autoregulation) or by signals from apparently unrelated pathways that inhibit insulin signaling thus leading to insulin resistance. Phosphorylation of insulin receptor substrate (IRS) proteins on serine residues has emerged as a key step in these control processes under both physiological and pathological conditions. The list of IRS kinases implicated in the development of insulin resistance is growing rapidly, concomitant with the list of potential Ser/Thr phosphorylation sites in IRS proteins. Here, we review a range of conditions that activate IRS kinases to phosphorylate IRS proteins on "hot spot" domains. The flexibility vs. specificity features of this reaction is discussed and its characteristic as an "array" phosphorylation is suggested. Finally, its implications on insulin signaling, insulin resistance and type 2 diabetes, an emerging epidemic of the 21st century are outlined.
Collapse
Affiliation(s)
- Sigalit Boura-Halfon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100 Israel
| | | |
Collapse
|
21
|
Liu H, Yang H, Wang D, Liu Y, Liu X, Li Y, Xie L, Wang G. Insulin regulates P-glycoprotein in rat brain microvessel endothelial cells via an insulin receptor-mediated PKC/NF-kappaB pathway but not a PI3K/Akt pathway. Eur J Pharmacol 2008; 602:277-82. [PMID: 19049803 DOI: 10.1016/j.ejphar.2008.11.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 10/26/2008] [Accepted: 11/10/2008] [Indexed: 11/18/2022]
Abstract
Our previous study showed that insulin restored impaired function and expression of P-glycoprotein in diabetic blood-brain barrier, and further study showed that insulin up-regulated P-glycoprotein expression and function in normal blood-brain barrier, so insulin might be one of the factors that regulated the function and expression of P-glycoprotein in blood-brain barrier of diabetes. In this study, the intracellular pathways that insulin regulated the P-glycoprotein were investigated using primarily cultured rat brain microvessel endothelial cells model. The rat brain microvessel endothelial cells were incubated in normal culture medium containing 50 mU/l insulin and different concentrations of inhibitors for 72 h. The P-glycoprotein function and expression in the rat brain microvessel endothelial cells were assessed using the uptake of P-glycoprotein substrate rhodamine 123 and western blot assay, respectively. It was found that treatment of 50 mU/l insulin significantly increased P-glycoprotein function and expression in rat brain microvessel endothelial cells. This induced effect was blocked by insulin receptor antibody, insulin receptor tyrosine kinase inhibitor I-OMe-AG538, PKC inhibitor chelerythrine and NF-kappaB inhibitor pyrrolidine dithiocarbamate ammonium (PDTC). But this induced effect was not inhibited by phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor LY294002. These results indicated that insulin regulated P-glycoprotein function and expression through signal transduction pathways involving activation of PKC/NF-kappaB but not PI3K/Akt pathway.
Collapse
Affiliation(s)
- Haiyan Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Subtoxic chlorpyrifos treatment resulted in differential expression of genes implicated in neurological functions and development. Arch Toxicol 2008; 83:319-33. [PMID: 18668222 DOI: 10.1007/s00204-008-0346-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
Abstract
Chlorpyrifos (CPF), a commonly used organophosphorus insecticide, induces acetylcholinesterase inhibition and cholinergic toxicity. Subtoxic exposure to CPF has long-term adverse effects on synaptic function/development and behavioral performance. To gain insight into the possible mechanism(s) of these observations, this study aims to investigate gene expression changes in the forebrain of rats treated with subtoxic CPF doses using DNA microarrays. Statistical analysis revealed that CPF treatment resulted in differential expression of 277 genes. Gene ontology and pathway analyses revealed that these genes have important roles in nervous system development and functions including axon guidance, dorso-ventral axis formation, long-term potentiation, synaptic transmission, and insulin signaling. The results of biological associated network analysis showed that Gsk3b is highly connected in several of these networks suggesting its potential role in cellular response to CPF exposure/neurotoxicity. These findings might serve as the basis for future mechanistic analysis of the long-term adverse effects of subtoxic CPF exposure.
Collapse
|
23
|
Xu J, Kim HT, Ma Y, Zhao L, Zhai L, Kokorina N, Wang P, Messina JL. Trauma and hemorrhage-induced acute hepatic insulin resistance: dominant role of tumor necrosis factor-alpha. Endocrinology 2008; 149:2369-82. [PMID: 18187553 PMCID: PMC2329283 DOI: 10.1210/en.2007-0922] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
It has long been known that injury, infections, and other critical illnesses are often associated with hyperglycemia and hyperinsulinemia. Mortality of critically ill patients is greatly reduced by intensive insulin therapy, suggesting the significance of reversing or compensating for the development of acute insulin resistance. However, the development of acute injury/infection-induced insulin resistance is poorly studied, much less than the chronic diseases associated with insulin resistance, such as type 2 diabetes and obesity. We previously found that insulin resistance develops acutely in the liver after trauma and hemorrhage. The present study was designed to begin to understand the first steps in the development of trauma and hemorrhage-induced acute hepatic insulin resistance in an animal model of injury and blood loss similar to traumatic or surgical injury and hemorrhage. We present novel data that indicate that hepatic insulin resistance increased dramatically with an increasing extent of hemorrhage. With increasing extent of blood loss, there were increases in serum TNF-alpha levels, phosphorylation of liver insulin receptor substrate-1 on serine 307, and liver c-Jun N-terminal kinase activation/phosphorylation. Exogenous TNF-alpha infusion increased c-Jun N-terminal kinase phosphorylation and insulin receptor substrate-1 serine 307 phosphorylation, and inhibited insulin-induced signaling in liver. Conversely, neutralizing TNF-alpha antibody treatment reversed many of the hemorrhage-induced changes in hepatic insulin signaling. Our data indicate that the acute development of insulin resistance after trauma and hemorrhage may have some similarities to the insulin resistance that occurs in chronic diseases. However, because so little is known about this acute insulin-resistant state, much more needs to be done before we can attain a level of understanding similar to that of chronic states of insulin resistance.
Collapse
Affiliation(s)
- Jie Xu
- Department of Pathology, Division of Molecular and Cellular Pathology, The University of Alabama at Birmingham, Birmingham, Alabama 35294-0019, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Waraich RS, Weigert C, Kalbacher H, Hennige AM, Lutz SZ, Häring HU, Schleicher ED, Voelter W, Lehmann R. Phosphorylation of Ser357 of rat insulin receptor substrate-1 mediates adverse effects of protein kinase C-delta on insulin action in skeletal muscle cells. J Biol Chem 2008; 283:11226-33. [PMID: 18285345 DOI: 10.1074/jbc.m708588200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The activation of the protein kinase C (PKC) family of serine/threonine kinases contributes to the modulation of insulin signaling, and the PKC-dependent phosphorylation of insulin receptor substrate (IRS)-1 has been implicated in the development of insulin resistance. Here we demonstrate Ser(357) of rat IRS-1 as a novel PKC-delta-dependent phosphorylation site in skeletal muscle cells upon stimulation with insulin and phorbol ester using Ser(P)(357) antibodies and active and kinase dead mutants of PKC-delta. Phosphorylation of this site was simulated using IRS-1 Glu(357) and shown to reduce insulin-induced tyrosine phosphorylation of IRS-1, to decrease activation of Akt, and to subsequently diminish phosphorylation of glycogen synthase kinase-3. When the phosphorylation was prevented by mutation of Ser(357) to alanine, these effects of insulin were enhanced. When the adjacent Ser(358), present in mouse and rat IRS-1, was mutated to alanine, which is homologous to the human sequence, the insulin-induced phosphorylation of glycogen synthase kinase-3 or tyrosine phosphorylation of IRS-1 was not increased. Moreover, both active PKC-delta and phosphorylation of Ser(357) were shown to be necessary for the attenuation of insulin-stimulated Akt phosphorylation. The phosphorylation of Ser(357) could lead to increased association of PKC-delta to IRS-1 upon insulin stimulation, which was demonstrated with IRS-1 Glu(357). Together, these data suggest that phosphorylation of Ser(357) mediates at least in part the adverse effects of PKC-delta activation on insulin action.
Collapse
|
25
|
Aga-Mizrachi S, Brutman-Barazani T, Jacob AI, Bak A, Elson A, Sampson SR. Cytosolic protein tyrosine phosphatase-epsilon is a negative regulator of insulin signaling in skeletal muscle. Endocrinology 2008; 149:605-14. [PMID: 18006633 DOI: 10.1210/en.2007-0908] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Whereas positive regulatory events triggered by insulin binding to insulin receptor (IR) have been well documented, the mechanism by which the activated IR is returned to the basal status is not completely understood. Recently studies focused on the involvement of protein tyrosine phosphatases (PTPs) and how they might influence IR signaling. In this study, we examined the possibility that cytosolic PTPepsilon (cytPTPepsilon) is involved in IR signaling. Studies were performed on L6 skeletal muscle cells. cytPTPepsilon was overexpressed by using pBABE retroviral expression vectors. In addition, we inhibited cytPTPepsilon by RNA silencing. We found that insulin induced rapid association of cytPTPepsilon with IR. Interestingly, this association appeared to occur in the plasma membrane and on stimulation with insulin the two proteins internalized together. Moreover, it appeared that almost all internalized IR was associated with cytPTPepsilon. We found that knockdown of cytPTPepsilon by RNA silencing increased insulin-induced tyrosine phosphorylation of IR and IR substrate (IRS)-1 as well as phosphorylation of protein kinase B and glycogen synthase kinase-3 and insulin-induced stimulation of glucose uptake. Moreover, overexpression of wild-type cytPTPepsilon reduced insulin-induced tyrosine phosphorylation of IR, IRS-1, and phosphorylation of protein kinase B and glycogen synthase kinase-3 and insulin-induced stimulation of glucose uptake. Finally, insulin-induced tyrosine phosphorylation of IR and IRS-1 was greater in skeletal muscle from mice lacking the cytPTPepsilon gene than that from wild-type control animals. We conclude that cytPTPepsilon serves as another major candidate negative regulator of IR signaling in skeletal muscle.
Collapse
Affiliation(s)
- Shlomit Aga-Mizrachi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | |
Collapse
|
26
|
Lalli CA, Pauli JR, Prada PO, Cintra DE, Ropelle ER, Velloso LA, Saad MJA. Statin modulates insulin signaling and insulin resistance in liver and muscle of rats fed a high-fat diet. Metabolism 2008; 57:57-65. [PMID: 18078859 DOI: 10.1016/j.metabol.2007.07.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 07/12/2007] [Indexed: 02/06/2023]
Abstract
Recent studies have shown that statins might have relevant effects on insulin resistance in animal models and in humans. However, the molecular mechanisms that account for this improvement in insulin sensitivity are not well established. The aim of the present study was to investigate the effect of a statin on insulin sensitivity and insulin signaling in liver and muscle of rats fed on a high-fat diet (HFD) for 4 weeks, treated or not with lovastatin during the last week. Our data show that treatment with lovastatin results in a marked improvement in insulin sensitivity characterized by an increase in glucose disappearance rate during the insulin tolerance test. This increase in insulin sensitivity was associated with an increase in insulin-induced insulin receptor (IR) tyrosine phosphorylation and, in parallel, a decrease in IR serine phosphorylation and association with PTP1B. Our data also show that lovastatin treatment was associated with an increase in insulin-stimulated insulin receptor substrate (IRS) 1/phosphatidylinositol 3-kinase/Akt pathway in the liver and muscle of HFD-fed rats in parallel with a decrease in the inflammatory pathway (c-jun N-terminal kinase and I kappa beta kinase (IKKbeta)/inhibitor of kappaB/nuclear factor kappaB) related to insulin resistance. In summary, statin treatment improves insulin sensitivity in HFD-fed rats by reversing the decrease in the insulin-stimulated IRS-1/phosphatidylinositol 3-kinase/Akt pathway in liver and muscle. The effect of statins on insulin action is further supported by our findings that HFD rats treated with statin show a reduction in IRS-1 serine phosphorylation, I kappa kinase (IKK)/inhibitor of kappaB/nuclear factor kappaB pathway, and c-jun N-terminal kinase activity, associated with an improvement in insulin action. Overall, these results provide important new insight into the mechanism of statin action in insulin sensitivity.
Collapse
Affiliation(s)
- Cristina Alba Lalli
- Departamento de Clínica Médica, FCM, Universidade Estadual de Campinas (UNICAMP) 13081-970 Campinas, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
27
|
Lorenzo M, Fernández-Veledo S, Vila-Bedmar R, Garcia-Guerra L, De Alvaro C, Nieto-Vazquez I. Insulin resistance induced by tumor necrosis factor-alpha in myocytes and brown adipocytes. J Anim Sci 2007; 86:E94-104. [PMID: 17940160 DOI: 10.2527/jas.2007-0462] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Insulin resistance is an important contributor to the pathogenesis of type 2 diabetes, and obesity is a risk factor for its development, in part because adipose tissue secretes proteins, called adipokines, that may influence insulin sensitivity. Among these molecules, tumor necrosis factor (TNF)-alpha has been proposed as a link between obesity and insulin resistance because TNF-alpha is overexpressed in adipose tissues of obese animals and humans, and obese mice lacking either TNF-alpha or its receptor show protection against developing insulin resistance. Direct exposure to TNF-alpha induces a state of insulin resistance in terms of glucose uptake in myocytes and brown adipocytes because of the activation of proinflammatory pathways that impair insulin signaling at the level of the insulin receptor substrate (IRS) proteins. In this regard, the Ser(307) residue in IRS-1 has been identified as a site for the inhibitory effects of TNF-alpha in myotubes, with p38 mitogen-activated protein kinase and inhibitor kB kinase being involved in the phosphorylation of this residue. Conversely, Ser phosphorylation of IRS-2 mediated by TNF-alpha activation of mitogen-activated protein kinase was the mechanism found in brown adipocytes. Protein-Tyr phosphatase (PTP)1B acts as a physiological, negative regulator of insulin signaling by dephosphorylating the phosphotyrosine residues of the insulin receptor and IRS-1, and PTP1B expression is increased in muscle and white adipose tissue of obese and diabetic humans and rodents. Moreover, up-regulation of PTP1B expression was recently found in cells treated with TNF-alpha Accordingly, myocytes and primary brown adipocytes deficient in PTP1B are protected against insulin resistance induced by this cytokine. Furthermore, down-regulation of PTP1B activity is possible by the use of pharmacological agonists of nuclear receptors that restore insulin sensitivity in the presence of TNF-alpha. In conclusion, the lack of PTP1B in muscle and brown adipocytes increases insulin sensitivity and glucose uptake and could confer protection against insulin resistance induced by adipokines.
Collapse
Affiliation(s)
- M Lorenzo
- Departamento de Bioquimica y Biologia Molecular II, Facultad de Farmacia, Universidad Complutense, 28040-Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
28
|
Pierno S, Nico B, Burdi R, Liantonio A, Didonna MP, Cippone V, Fraysse B, Rolland JF, Mangieri D, Andreetta F, Ferro P, Camerino C, Zallone A, Confalonieri P, De Luca A. Role of tumour necrosis factor alpha, but not of cyclo-oxygenase-2-derived eicosanoids, on functional and morphological indices of dystrophic progression in mdx mice: a pharmacological approach. Neuropathol Appl Neurobiol 2007; 33:344-59. [PMID: 17493014 DOI: 10.1111/j.1365-2990.2007.00798.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The role of tumour necrosis factor (TNF)-alpha or cyclo-oxygenase-2 (COX-2) eicosanoids in dystrophinopathies has been evaluated by chronically treating (4-8 weeks) adult dystrophic mdx mice with the anti-TNF-alpha etanercept (0.5 mg/kg) or the COX-2 inhibitor meloxicam (0.2 mg/kg). Throughout the treatment period the mdx mice underwent a protocol of exercise on treadmill in order to worsen the pathology progression; gastrocnemious muscles from exercised mdx mice showed an intense staining for TNF-alpha by immunohistochemistry. In vivo, etanercept, but not meloxicam, contrasted the exercise-induced forelimb force drop. Electrophysiological recordings ex vivo, showed that etanercept counteracted the decrease in chloride channel function (gCl), a functional index of myofibre damage, in both diaphragm and extensor digitorum longus (EDL) muscle, meloxicam being effective only in EDL muscle. None of the drugs ameliorated calcium homeostasis detected by electrophysiology and/or spectrofluorimetry. Etanercept, more than meloxicam, effectively reduced plasma creatine kinase (CK). Etanercept-treated muscles showed a reduction of connective tissue area and of pro-fibrotic cytokine TGF-beta1 vs. untreated ones; however, the histological profile was weakly ameliorated. In order to better evaluate the impact of etanercept treatment on histology, a 4-week treatment was performed on 2-week-old mdx mice, so to match the first spontaneous degeneration cycle. The histology profile of gastrocnemious was significantly improved with a reduction of degenerating area; however, CK levels were only slightly lower. The present results support a key role of TNF-alpha, but not of COX-2 products, in different phases of dystrophic progression. Anti-TNF-alpha drugs may be useful in combined therapies for Duchenne patients.
Collapse
Affiliation(s)
- S Pierno
- Unit of Pharmacology, Department of Pharmacobiology, Faculty of Pharmacy, University of Bari, Bari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ghosh N, Patel N, Jiang K, Watson JE, Cheng J, Chalfant CE, Cooper DR. Ceramide-activated protein phosphatase involvement in insulin resistance via Akt, serine/arginine-rich protein 40, and ribonucleic acid splicing in L6 skeletal muscle cells. Endocrinology 2007; 148:1359-66. [PMID: 17158207 PMCID: PMC2664306 DOI: 10.1210/en.2006-0750] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Elevated TNFalpha levels are associated with insulin resistance, but the molecular mechanisms linking cytokine signaling to impaired insulin function remain elusive. We previously demonstrated a role for Akt in insulin regulation of protein kinase CbetaII alternative splicing through phosphorylation of serine/arginine-rich protein 40, a required mechanism for insulin-stimulated glucose uptake. We hypothesized that TNFalpha attenuated insulin signaling by dephosphorylating Akt and its targets via ceramide-activated protein phosphatase. Western blot analysis of L6 cell lysates demonstrated impaired insulin-stimulated phosphorylation of Akt, serine/arginine-rich protein 40, and glycogen synthase kinase 3beta in response to TNFalpha and the short chain C6 ceramide analog. TNFalpha increased serine/threonine phosphatase activity of protein phosphatase 1 (PP1) in response to C6, but not insulin, suggesting a ceramide-specific effect. Myriocin, an inhibitor of de novo ceramide synthesis, blocked stimulation of the PP1 activity. Ceramide species measurement by liquid chromatography-mass spectrometry showed consistent increases in C24:1 and C16 ceramides. Effects of TNFalpha and C6 on insulin-stimulated phosphorylation of glycogen synthase kinase 3beta were prevented by myriocin and tautomycin, a PP1 inhibitor, further implicating a de novo ceramide-PP1 pathway. Alternative splicing assays demonstrated that TNFalpha abolished insulin-mediated inclusion of the protein kinase CbetaII exon. Collectively, our work demonstrates a role for PP1-like ceramide-activated protein phosphatase in mediating TNFalpha effects blocking insulin phosphorylation cascades involved in glycogen metabolism and alternative splicing.
Collapse
Affiliation(s)
- Nilanjan Ghosh
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612
| | - Niketa Patel
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612
| | - Kun Jiang
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612
| | - James E. Watson
- The Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612
| | - Jin Cheng
- Moffitt Cancer Center, Tampa, FL 33612
| | - Charles E. Chalfant
- Department of Biochemistry, Virginia Commonwealth University, Richmond Virginia 23298
| | - Denise R. Cooper
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612
- The Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612
| |
Collapse
|
30
|
Nieto-Vazquez I, Fernández-Veledo S, de Alvaro C, Rondinone CM, Valverde AM, Lorenzo M. Protein-tyrosine phosphatase 1B-deficient myocytes show increased insulin sensitivity and protection against tumor necrosis factor-alpha-induced insulin resistance. Diabetes 2007; 56:404-13. [PMID: 17259385 DOI: 10.2337/db06-0989] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Protein-tyrosine phosphatase (PTP)1B is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes. In this study, we have assessed the role of PTP1B in the insulin sensitivity of skeletal muscle under physiological and insulin-resistant conditions. Immortalized myocytes have been generated from PTP1B-deficient and wild-type neonatal mice. PTP1B(-/-) myocytes showed enhanced insulin-dependent activation of insulin receptor autophosphorylation and downstream signaling (tyrosine phosphorylation of insulin receptor substrate [IRS]-1 and IRS-2, activation of phosphatidylinositol 3-kinase, and serine phosphorylation of AKT), compared with wild-type cells. Accordingly, PTP1B(-/-) myocytes displayed higher insulin-dependent stimulation of glucose uptake and GLUT4 translocation to the plasma membrane than wild-type cells. Treatment with tumor necrosis factor-alpha (TNF-alpha) induced insulin resistance on glucose uptake, impaired insulin signaling, and increased PTP1B activity in wild-type cells. Conversely, the lack of PTP1B confers protection against insulin resistance by TNF-alpha in myocyte cell lines and in adult male mice. Wild-type mice treated with TNF-alpha developed a pronounced hyperglycemia along the glucose tolerance test, accompanied by an impaired insulin signaling and increased PTP1B activity in muscle. However, mice lacking PTP1B maintained a rapid clearance of glucose and insulin sensitivity and displayed normal muscle insulin signaling regardless the presence of TNF-alpha.
Collapse
Affiliation(s)
- Iria Nieto-Vazquez
- Department of Biochemistry, Faculty of Pharmacy, Universidad Complutense, 28040-Madrid, Spain
| | | | | | | | | | | |
Collapse
|
31
|
Horovitz-Fried M, Sampson SR. Involvement of PKCα in insulin-induced PKCδ expression: Importance of SP-1 and NFκB transcription factors. Biochem Biophys Res Commun 2007; 352:78-83. [PMID: 17109817 DOI: 10.1016/j.bbrc.2006.10.149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 10/26/2006] [Indexed: 10/23/2022]
Abstract
Protein kinase C delta (PKCdelta) is a key molecule in insulin signaling essential for insulin-induced glucose transport in skeletal muscle. Recent studies in our laboratory have shown that insulin rapidly stimulates PKCdelta activity and increases PKCdelta protein and RNA levels, and that the SP-1 transcription factor is involved in insulin-induced transcription of the PKCdelta gene. Activation of SP-1 involves serine phosphorylation and translocation to the nucleus. In this study we examined the possibility that PKCalpha might be involved in serine phosphorylation and activation of SP-1. We found that insulin rapidly phosphorylates and translocates SP-1. In the cytoplasm, SP-1 was constitutively associated with PKCalpha, and insulin stimulation caused these proteins to dissociate. In contrast, in the nucleus insulin induced an increase in association between PKCalpha and SP-1. PKCalpha inhibition blocked insulin-induced serine phosphorylation of SP-1 and its association with PKCalpha in the nucleus. Inhibition of PKCalpha also reduced the insulin-induced increase in PKCdelta RNA and protein in the cytoplasmic and nuclear fractions. We also attempted to determine if another transcription factor might be involved in regulation of PKCdelta expression. We earlier showed that insulin did not affect nuclear NFkappaB levels. Inhibition of NFkappaB, however, increased insulin-induced increase in PKCdelta RNA and protein in the cytoplasmic and nuclear fractions. Surprisingly, this inhibition reduced the insulin-induced increase in cytoplasmic and nuclear PKCalpha RNA and protein. Inhibition of PKCdelta reduced IkappaBalpha phosphorylation as well as NFkappaB activation. Thus, PKCalpha regulates insulin-induced PKCdelta expression levels and this regulation involves activation of SP-1 and NFkappaB.
Collapse
Affiliation(s)
- Miriam Horovitz-Fried
- The Faculty of Life Sciences, Department of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|
32
|
Sampson SR, Cooper DR. Specific protein kinase C isoforms as transducers and modulators of insulin signaling. Mol Genet Metab 2006; 89:32-47. [PMID: 16798038 PMCID: PMC2664304 DOI: 10.1016/j.ymgme.2006.04.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Revised: 04/23/2006] [Accepted: 04/23/2006] [Indexed: 12/14/2022]
Abstract
Recent studies implicate specific PKC isoforms in the insulin-signaling cascade. Insulin activates PKCs alpha, betaII, delta and zeta in several cell types. In addition, as will be documented in this review, certain members of the PKC family may also be activated and act upstream of PI3 and MAP kinases. Each of these isoforms has been shown one way or another either to mimic or to modify insulin-stimulated effects in one or all of the insulin-responsive tissues. Moreover, each of the isoforms has been shown to be activated by insulin stimulation or conditions important for effective insulin stimulation. Studies attempting to demonstrate a definitive role for any of the isoforms have been performed on different cells, ranging from appropriate model systems for skeletal muscle, liver and fat, such as primary cultures, and cell lines and even in vivo studies, including transgenic mice with selective deletion of specific PKC isoforms. In addition, studies have been done on certain expression systems such as CHO or HEK293 cells, which are far removed from the tissues themselves and serve mainly as vessels for potential protein-protein interactions. Thus, a clear picture for many of the isoforms remains elusive in spite of over two decades of intensive research. The recent intrusion of transgenic and precise molecular biology technologies into the research armamentarium has opened a wide range of additional possibilities for direct involvement of individual isoforms in the insulin signaling cascade. As we hope to discuss within the context of this review, whereas many of the long sought-after answers to specific questions are not yet clear, major advances have been made in our understanding of precise roles for individual PKC isoforms in mediation of insulin effects. In this review, in which we shall focus our attention on isoforms in the conventional and novel categories, a clear case will be made to show that these isoforms are not only expressed but are importantly involved in regulation of insulin metabolic effects.
Collapse
Affiliation(s)
- Sanford R Sampson
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel. <>
| | | |
Collapse
|
33
|
Brand C, Cipok M, Attali V, Bak A, Sampson SR. Protein kinase Cdelta participates in insulin-induced activation of PKB via PDK1. Biochem Biophys Res Commun 2006; 349:954-62. [PMID: 16962999 DOI: 10.1016/j.bbrc.2006.08.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2006] [Accepted: 08/17/2006] [Indexed: 10/24/2022]
Abstract
PKCdelta has been shown to be activated by insulin and to interact with insulin receptor and IRS. PKB(Akt) plays an important role in glucose transport and glycogen synthesis. In this study, we investigated the possibility that PKCdelta may be involved in insulin-induced activation of PKB. Studies were conducted on primary cultures of rat skeletal muscle. PKB was activated by insulin stimulation within 5min and reached a peak by 15-30min. Insulin also increased the physical association between PKCdelta with PKB and with PDK1. The insulin-induced PKCdelta-PKB association was PI3K dependent. PKB-PKCdelta association was accounted for by the involvement of PDK1. Overexpression of dominant negative PKCdelta abrogated insulin-induced association of PKCdelta with both PKB and PDK1. Blockade of PKCdelta also decreased insulin-induced Thr308 PKB phosphorylation and PKB translocation. Moreover, PKCdelta inhibition reduced insulin-induced GSK3 phosphorylation. The results indicate that insulin-activated PKCdelta interacts with PDK1 to regulate PKB.
Collapse
Affiliation(s)
- Chagit Brand
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | |
Collapse
|
34
|
Nawaratne R, Gray A, Jørgensen CH, Downes CP, Siddle K, Sethi JK. Regulation of insulin receptor substrate 1 pleckstrin homology domain by protein kinase C: role of serine 24 phosphorylation. Mol Endocrinol 2006; 20:1838-52. [PMID: 16574739 PMCID: PMC4303764 DOI: 10.1210/me.2005-0536] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phosphorylation of insulin receptor substrate (IRS) proteins on serine residues is an important posttranslational modification that is linked to insulin resistance. Several phosphoserine sites on IRS1 have been identified; the majority are located proximal to the phosphotryosine-binding domain or near key receptor tyrosine kinase substrate- and/or Src-homology 2 domain-binding sites. Here we report on the characterization of a serine phosphorylation site in the N-terminal pleckstrin homology (PH) domain of IRS1. Bioinformatic tools identify serine 24 (Ser24) as a putative substrate site for the protein kinase C (PKC) family of serine kinases. We demonstrate that this site is indeed a bona fide substrate for conventional PKC. In vivo, IRS-1 is also phosphorylated on Ser24 after phorbol 12-myristate 13-acetate treatment of cells, and isoform-selective inhibitor studies suggest the involvement of PKCalpha. By comparing the pharmacological characteristics of phorbol 12-myristate 13-acetate-stimulated Ser24 phosphorylation with phosphorylation at two other sites previously linked to PKC activity (Ser307 and Ser612), we show that PKCalpha is likely to be directly involved in Ser24 phosphorylation, but indirectly involved in Ser307 and Ser612 phosphorylation. Using Ser24Asp IRS-1 mutants to mimic the phosphorylated residue, we demonstrate that the phosphorylation status of Ser24 does play an important role in regulating phosphoinositide binding to, and the intracellular localization of, the IRS1-PH domain, which can ultimately impinge on insulin-stimulated glucose uptake. Hence we provide evidence that IRS1-PH domain function is important for normal insulin signaling and is regulated by serine phosphorylation in a manner that could contribute to insulin resistance.
Collapse
Affiliation(s)
- Ranmali Nawaratne
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, UK
| | | | | | | | | | | |
Collapse
|
35
|
Cipok M, Aga-Mizrachi S, Bak A, Feurstein T, Steinhart R, Brodie C, Sampson SR. Protein kinase Calpha regulates insulin receptor signaling in skeletal muscle. Biochem Biophys Res Commun 2006; 345:817-24. [PMID: 16707110 DOI: 10.1016/j.bbrc.2006.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 05/03/2006] [Indexed: 11/28/2022]
Abstract
Certain PKC isoforms are stimulated by insulin and interact with IR as well as with IRS, but it is still not clear if specific PKC isoforms regulate IR signaling directly or through IRS-1. PKCalpha may regulate IRS activity in response to insulin. We investigated the possibility that PKCalpha may be important in insulin signaling. Studies were conducted on skeletal muscle in adult mice and on L6 skeletal cells. PKCalpha is constitutively associated with IRS-1, and insulin stimulation of PKCalpha causes disassociation of the two proteins within 5 min. Blockade of PKCalpha inhibited insulin-induced disassociation of PKCalpha from IRS1. Selective inhibition of PKCalpha increased the ability of insulin to reduce blood glucose levels. Insulin stimulation activates PKB and increases the association of PKCalpha with PKB. Blockade of PKCalpha increased threonine phosphorylation of PKB. We suggest that PKCalpha regulates insulin signaling in skeletal muscle through its disassociation from IRS-1 and association with PKB.
Collapse
Affiliation(s)
- Michal Cipok
- Gonda Diagnostic Center, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | | | |
Collapse
|
36
|
Rimler A, Jockers R, Lupowitz Z, Sampson SR, Zisapel N. Differential effects of melatonin and its downstream effector PKCalpha on subcellular localization of RGS proteins. J Pineal Res 2006; 40:144-52. [PMID: 16441551 DOI: 10.1111/j.1600-079x.2005.00290.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Regulators of G protein signaling (RGS) are proteins that bind specifically to activated Galpha subunits of heterotrimeric G proteins to terminate signaling by both Galpha and Gbetagamma subunits. Signal-induced RGS redistribution may affect their activity in G protein-mediated signaling. We have previously shown that melatonin and the cell permeable cGMP analog 8-bromo cGMP, which lead to protein kinase C (PKC) activation, enhanced cytoplasmic distribution of RGS10 and RGS2 in prostate carcinoma PC3-AR cells. In the present study, we transfected PC3-AR cells with myc-tagged Galphai/Galphaq specific RGS proteins RGS2, RGS4 and RGS10 and examined the effects of melatonin, 8-bromo cGMP and PKC inhibitors on their nuclear-cytoplasmic partitioning. RGS10 and RGS2 were predominantly localized in the nucleus and perinuclear regions whereas RGS4 was mostly cytoplasmic in the PC3-AR cells. Melatonin and the cell permeable cGMP analog 8-bromo cGMP, previously found to activate PKCalpha in the PC3-AR cells, enhanced cytoplasmic localization of RGS10 and RGS2 but induced nuclear accumulation of RGS4. The isozyme specific PKC inhibitor GO6976 (PKCalpha and PKCbeta1) but not hispidin (PKCbeta) negated the effects of melatonin on RGS10, RGS2 and RGS4 localization. These findings indicate that PKCalpha, a downstream effector of the melatonin receptor, differentially affects nuclear/cytoplasmic localization of both Galphai and Galphaq specific RGS proteins. These observations provide further insight into melatonin's ability to fine-tune multiple membrane G-proteins signaling in cells.
Collapse
Affiliation(s)
- Avi Rimler
- Department of Neurobiochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
37
|
Horovitz-Fried M, Cooper DR, Patel NA, Cipok M, Brand C, Bak A, Inbar A, Jacob AI, Sampson SR. Insulin rapidly upregulates protein kinase Cdelta gene expression in skeletal muscle. Cell Signal 2005; 18:183-93. [PMID: 16095881 DOI: 10.1016/j.cellsig.2005.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 04/07/2005] [Indexed: 11/28/2022]
Abstract
Recent studies in our laboratories have shown that Protein Kinase C delta (PKCdelta) is essential for insulin-induced glucose transport in skeletal muscle, and that insulin rapidly stimulates PKCdelta activity skeletal muscle. The purpose of this study was to examine mechanisms of regulation of PKCdelta protein availability. Studies were done on several models of mammalian skeletal muscle and utilized whole cell lysates of differentiated myotubes. PKCdelta protein levels were determined by Western blotting techniques, and PKCdelta RNA levels were determined by Northern blotting, RT-PCR and Real-Time RT-PCR. Insulin stimulation increased PKCdelta protein levels in whole cell lysates. This effect was not due to an inhibition by insulin of the rate of PKCdelta protein degradation. Insulin also increased 35S-methionine incorporation into PKCdelta within 5-15 min. Pretreatment of cells with transcription or translation inhibitors abrogated the insulin-induced increase in PKCdelta protein levels. We also found that insulin rapidly increased the level of PKCdelta RNA, an effect abolished by inhibitors of transcription. The insulin-induced increase in PKCdelta expression was not reduced by inhibition of either PI3 Kinase or MAP kinase, indicating that these signaling mechanisms are not involved, consistent with insulin activation of PKCdelta. Studies on cells transfected with the PKCdelta promoter demonstrate that insulin activated the promoter within 5 min. This study indicates that the expression of PKCdelta may be regulated in a rapid manner during the course of insulin action in skeletal muscle and raise the possibility that PKCdelta may be an immediate early response gene activated by insulin.
Collapse
|
38
|
Rosenzweig T, Aga-Mizrachi S, Bak A, Sampson SR. Src tyrosine kinase regulates insulin-induced activation of protein kinase C (PKC) delta in skeletal muscle. Cell Signal 2005; 16:1299-308. [PMID: 15337529 DOI: 10.1016/j.cellsig.2004.03.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Revised: 03/29/2004] [Accepted: 03/29/2004] [Indexed: 02/06/2023]
Abstract
Insulin stimulation of skeletal muscle results in rapid activation of protein kinase Cdelta (PKCdelta), which is associated with its tyrosine phosphorylation and physical association with insulin receptor (IR). The mechanisms underlying tyrosine phosphorylation of PKCdelta have not been determined. In this study, we investigated the possibility that the Src family of nonreceptor tyrosine kinases may be involved upstream insulin signaling. Studies were done on differentiated rat skeletal myotubes in primary culture. Insulin caused an immediate stimulation of Src and induced its physical association with both IR and PKCdelta. Inhibition of Src by treatment with the Src family inhibitor PP2 reduced insulin-stimulated Src-PKCdelta association, PKCdelta tyrosine phosphorylation and PKCdelta activation. PP2 inhibition of Src also decreased insulin-induced IR tyrosine phosphorylation, IR-PKCdelta association and association of Src with both PKCdelta and IR. Finally, inhibition of Src decreased insulin-induced glucose uptake. We conclude that insulin activates Src tyrosine kinase, which regulates PKCdelta activity. Thus, Src tyrosine kinase may play an important role in insulin-induced tyrosine phosphorylation of both IR and PKCdelta. Moreover, both Src and PKCdelta appear to be involved in IR activation and subsequent downstream signaling.
Collapse
Affiliation(s)
- Tovit Rosenzweig
- Gonda-Goldschmeid Center, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | |
Collapse
|
39
|
Lorenzo M, Valverde ÁM, Benito M. Cellular Models for the Study of Type 2 Diabetes. THE METABOLIC SYNDROME AT THE BEGINNING OF THE XXI CENTURY 2005:43-65. [DOI: 10.1016/b978-84-8174-892-5.50003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
40
|
Abstract
AMONG THE BIOLOGICAL MEDIATORS OF INSULIN RESISTANCE: two compounds released by the adipocyte are found, such as free fatty acids and tumor necrosis factor-alpha. They are incriminated in the deleterious role of visceral adiposity on the metabolic parameters. INTRA-CELL CORTISOL: Attention is also focused on the potential implication of cortisol in the genesis of metabolic syndrome, because cortisol is a potent antagonist of the effect of insulin and its presence in excess enhances visceral obesity and insulin resistance. GENETIC ASPECTS: Although no major locus has yet been identified, recent findings of several mutations or polymorphisms in genes acting in different regulation systems (adiponectin, PPARgamma2) also provide an interesting insight into the pathogenesis of this syndrome. Moreover, there is growing epidemiological evidence that intra-uterine factors could induce a so-called programming of the individual that may, at least in part, account for the difficulties encountered by the classical genetic approach.
Collapse
Affiliation(s)
- A Boulogne
- Clinique endocrinologique Marc Linquette, Service d'endocrinologie et métabolisme, CHU de Lille.
| | | |
Collapse
|
41
|
Garcia-Galloway E, Arango C, Pons S, Torres-Aleman I. Glutamate excitotoxicity attenuates insulin-like growth factor-I prosurvival signaling. Mol Cell Neurosci 2004; 24:1027-37. [PMID: 14697666 DOI: 10.1016/j.mcn.2003.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent evidence suggests that impaired insulin/insulin-like growth factor I (IGF-I) input may be associated to neurodegeneration. Several major neurodegenerative diseases involve excitotoxic cell injury whereby excess glutamate signaling leads to neuronal death. Recently it was shown that glutamate inactivates Akt, a serine-kinase crucially involved in the prosurvival actions of IGF-I. We now report that excitotoxic doses of glutamate antagonize Akt activation by IGF-I and inhibit the neuroprotective effects of this growth factor on cultured neurons. Glutamate induces loss of sensitivity to IGF-I by phosphorylating the IGF-I receptor docking protein insulin-receptor-substrate (IRS)-1 in Ser(307) through a pathway involving activation of PKA and PKC in a hierarchical fashion. Administration of Ro320432, a selective PKC inhibitor, abrogates the inhibitory effects of glutamate on IGF-I-induced Akt activation in vitro and in vivo and is sufficient to block the neurotoxic action of glutamate on cultured neurons. Notably, administration of Ro320432 after ischemic insult, a major form of excitotoxic injury in vivo, results in a marked decrease ( approximately 50%) in infarct size. Therefore, uncoupling of IGF-I signaling by glutamate may constitute an additional route contributing to excitotoxic neuronal injury. Further work should determine the potential use of PKC inhibitors as a novel therapeutic strategy in ischemia and other excitotoxic insults.
Collapse
Affiliation(s)
- E Garcia-Galloway
- Laboratory of Neuroendocrinology, Cajal Institute, CSIC, Avda. Dr. Arce 37. 28002 Madrid, Spain
| | | | | | | |
Collapse
|
42
|
de Alvaro C, Teruel T, Hernandez R, Lorenzo M. Tumor necrosis factor alpha produces insulin resistance in skeletal muscle by activation of inhibitor kappaB kinase in a p38 MAPK-dependent manner. J Biol Chem 2004; 279:17070-8. [PMID: 14764603 DOI: 10.1074/jbc.m312021200] [Citation(s) in RCA: 302] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Insulin stimulation produced a reliable 3-fold increase in glucose uptake in primary neonatal rat myotubes, which was accompanied by a similar effect on GLUT4 translocation to plasma membrane. Tumor necrosis factor (TNF)-alpha caused insulin resistance on glucose uptake and GLUT4 translocation by impairing insulin stimulation of insulin receptor (IR) and IR substrate (IRS)-1 and IRS-2 tyrosine phosphorylation, IRS-associated phosphatidylinositol 3-kinase activation, and Akt phosphorylation. Because this cytokine produced sustained activation of stress and proinflammatory kinases, we have explored the hypothesis that insulin resistance by TNF-alpha could be mediated by these pathways. In this study we demonstrate that pretreatment with PD169316 or SB203580, inhibitors of p38 MAPK, restored insulin signaling and normalized insulin-induced glucose uptake in the presence of TNF-alpha. However, in the presence of PD98059 or SP600125, inhibitors of p42/p44 MAPK or JNK, respectively, insulin resistance by TNF-alpha was still produced. Moreover, TNF-alpha produced inhibitor kappaB kinase (IKK)-beta activation and inhibitor kappaB-beta and -alpha degradation in a p38 MAPK-dependent manner, and treatment with salicylate (an inhibitor of IKK) completely restored insulin signaling. Furthermore, TNF-alpha produced serine phosphorylation of IR and IRS-1 (total and on Ser(307) residue), and these effects were completely precluded by pretreatment with either PD169316 or salicylate. Consequently, TNF-alpha, through activation of p38 MAPK and IKK, produces serine phosphorylation of IR and IRS-1, impairing its tyrosine phosphorylation by insulin and the corresponding activation of phosphatidylinositol 3-kinase and Akt, leading to insulin resistance on glucose uptake and GLUT4 translocation.
Collapse
Affiliation(s)
- Cristina de Alvaro
- Departamento de Bioquimica y Biologia Molecular II, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
43
|
Tsugawa K, Jones MK, Akahoshi T, Moon WS, Maehara Y, Hashizume M, Sarfeh IJ, Tarnawski AS. Abnormal PTEN expression in portal hypertensive gastric mucosa: a key to impaired PI 3-kinase/Akt activation and delayed injury healing? FASEB J 2003; 17:2316-2318. [PMID: 14525948 DOI: 10.1096/fj.02-1107fje] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphatase and tensin homologue deleted on chromosome ten (PTEN) is a dual-specificity phosphatase that has activity toward both phosphorylated peptides and phospholipids. PTEN inhibits activation of Akt, the downstream effector of PI 3-kinase, which is integral to cell proliferation, migration, survival, and angiogenesis essential for tissue injury healing. PTEN expression and activation during injury healing remain unexplored. Portal hypertensive (PHT) gastric mucosa has impaired injury healing, but the underlying mechanisms remain unknown. We investigated whether impaired healing of injured PHT gastric mucosa is due to abnormal PTEN expression/activation that leads to decreased Akt activation. We also investigated the possible involvement of Egr-1, which regulates PTEN in some cells (e.g., fetal kidney epithelial cells), and TNF-alpha, which can induce Egr-1 expression. In PHT gastric mucosa 6 h after injury, PTEN protein levels were increased by 2.7-fold; unphosphorylated PTEN (reflecting activated PTEN) was increased by 2.4-fold; Akt phosphorylation (reflecting Akt activation) was reduced by 2-fold; and Egr-1 expression was increased by 3.3-fold vs. normal gastric mucosa. TNF-alpha neutralization reversed all of the above abnormalities in PHT gastric mucosa, reduced mucosal injury, and enhanced healing. We conclude that, in injured PHT gastric mucosa, overexpressed/activated PTEN leads to the reduced activation of the PI 3-kinase/Akt pathway that results in impaired injury healing.
Collapse
Affiliation(s)
- Kouji Tsugawa
- Department of Medicine, Department of Veterans Affairs Medical Center, Long Beach, CA 90822, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Talior I, Yarkoni M, Bashan N, Eldar-Finkelman H. Increased glucose uptake promotes oxidative stress and PKC-delta activation in adipocytes of obese, insulin-resistant mice. Am J Physiol Endocrinol Metab 2003; 285:E295-302. [PMID: 12857675 DOI: 10.1152/ajpendo.00044.2003] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased oxidative stress is believed to be one of the mechanisms responsible for hyperglycemia-induced tissue damage and diabetic complications. In these studies, we undertook to characterize glucose uptake and oxidative stress in adipocytes of type 2 diabetic animals and to determine whether these promote the activation of PKC-delta. The adipocytes used were isolated either from C57Bl/6J mice that were raised on a high-fat diet (HF) and developed obesity and insulin resistance or from control animals. Basal glucose uptake significantly increased (8-fold) in HF adipocytes, and this was accompanied with upregulation of GLUT1 expression levels. Insulin-induced glucose uptake was inhibited in HF adipocytes and GLUT4 content reduced by 20% in these adipocytes. Reactive oxygen species (ROS) increased twofold in HF adipocytes compared with control adipocytes and were largely reduced with decreased glucose concentrations. At zero glucose, ROS levels were reduced to the normal levels seen in control adipocytes. The activity of PKC-delta increased twofold in HF adipocytes compared with control adipocytes and was further activated by H2O2. Moreover, PKC-delta activity was inhibited in HF adipocytes either by glucose deprivation or by treatment with the antioxidant N-acetyl-l-cysteine. In summary, we propose that increased glucose intake in HF adipocytes increases oxidative stress, which in turn promotes the activation of PKC-delta. These consequential events may be responsible, at least in part, for development of HF diet-induced insulin resistance in the fat tissue.
Collapse
Affiliation(s)
- Ilana Talior
- Dept. of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
45
|
Current literature in diabetes. Diabetes Metab Res Rev 2002; 18:419-26. [PMID: 12397584 DOI: 10.1002/dmrr.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|