1
|
Rodrigues VF, Elias-Oliveira J, Pereira ÍS, Pereira JA, Barbosa SC, Machado MSG, Guimarães JB, Pacheco TCF, Bortolucci J, Zaramela LS, Bonato VLD, Silva JS, Martins FS, Alves-Filho JC, Gardinassi LG, Reginatto V, Carlos D. Akkermansia muciniphila restrains type 1 diabetes onset by eliciting cDC2 and Treg cell differentiation in NOD and STZ-induced experimental models. Life Sci 2025; 372:123624. [PMID: 40204069 DOI: 10.1016/j.lfs.2025.123624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/26/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
AIMS Akkermansia muciniphila (A. muciniphila), a Gram-negative anaerobic mucus-layer-degrading bacterium found in the intestinal mucosa, exhibits potential as a probiotic, showing promise in mitigating autoimmune and chronic inflammatory diseases. This study aims to investigate whether A. muciniphila supplementation might confer protection against type 1 diabetes (T1D) and to elucidate the immunological pathways through which it exerts its beneficial effects. MATERIALS AND METHODS Non-obese diabetic (NOD) mice and streptozotocin (STZ)-induced type 1 diabetes (T1D) models were used to evaluate the protective effects of A. muciniphila during T1D course. Body weight, blood glucose levels, and T1D incidence were monitored. Immune responses in the pancreas, pancreatic (PLN) and cecal lymph nodes (CLN) and bone marrow-derived dendritic cells (BMDC) were evaluated by flow cytometry and ELISA. KEY FINDINGS Viable A. muciniphila supplementation conferred protection against T1D onset in STZ-induced T1D and NOD mouse models. T1D modulation by A. muciniphila in the STZ model was independent of the gut microbiota, and it was associated with increased tolerogenic type-2 dendritic cells (SIRP-α+CD11b+CD103+) and regulatory T (Treg) cells in PLN and pancreas. BMDC differentiated in the presence of A. muciniphila exhibited a tolerogenic profile and induced Treg cell generation in vitro. A. muciniphila-induced protection in T1D outcome was abrogated in FOXP3-DTR mice depleted of Treg cells, indicating that its mechanism of action is dependent on the CD4+Foxp3+ Treg cells. SIGNIFICANCE A. muciniphila supplementation attenuates T1D development in mice by modulating the tolerogenic immune response and is a promising new therapeutic tool for this autoimmune disease.
Collapse
Affiliation(s)
- Vanessa Fernandes Rodrigues
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Jefferson Elias-Oliveira
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ítalo Sousa Pereira
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jéssica Assis Pereira
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Sara Cândida Barbosa
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Melissa Santana Gonsalez Machado
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jhefferson Barbosa Guimarães
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thaílla Cristina Faria Pacheco
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jonatã Bortolucci
- Department of Chemistry, University of São Paulo, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Lívia Soares Zaramela
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Vânia Luiza Deperon Bonato
- Laboratory of Immunology and Pulmonary Inflammation, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Santana Silva
- Fiocruz-Bi-Institutional Translational Medicine Plataform, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Flaviano Santos Martins
- Laboratory of Biotherapeutics Agents, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - José Carlos Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Center for Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Valeria Reginatto
- Department of Chemistry, University of São Paulo, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Daniela Carlos
- Laboratory of Imunorregulation of Metabolic Diseases, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
2
|
Carneiro P, Vicente MM, Leite MI, Santos ME, Pinho SS, Fernandes Â. The role of N-glycans in regulatory T cells in autoimmunity. Autoimmun Rev 2025; 24:103791. [PMID: 40043894 DOI: 10.1016/j.autrev.2025.103791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 05/17/2025]
Abstract
Regulatory T cells (Tregs) have a key role in the maintenance of immune tolerance and in the prevention of autoimmunity. Recent studies have shown an association between decreased Treg frequency and a deficient suppressive activity with the development of many autoimmune diseases. Although glycosylation, which consists in the addition of glycans to proteins and lipids on the cell surface, is recognized as a critical modification for T cell development and function, the relevance of glycans in Treg biology and activity, as well as their impact in the immunopathogenesis of autoimmune diseases, deserves more attention, as it is far from being fully understood. This review discusses the biological impact of N-glycans in Treg biology, highlighting their potential to uncover novel pathogenic mechanisms in autoimmunity and new targets for promising therapeutic approaches with clinical applications in autoimmune disease patients.
Collapse
Affiliation(s)
- Pedro Carneiro
- i3s - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Manuel M Vicente
- i3s - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Maria Isabel Leite
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Maria Ernestina Santos
- CHUdSA - Centro Hospitalar Universitário de Santo António, Department of Neurology, Porto, Portugal
| | - Salomé S Pinho
- i3s - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Ângela Fernandes
- i3s - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.
| |
Collapse
|
3
|
Vasilev G, Kokudeva M, Siliogka E, Padilla N, Shumnalieva R, Della-Morte D, Ricordi C, Mihova A, Infante M, Velikova T. T helper 17 cells and interleukin-17 immunity in type 1 diabetes: From pathophysiology to targeted immunotherapies. World J Diabetes 2025; 16:99936. [PMID: 40236846 PMCID: PMC11947927 DOI: 10.4239/wjd.v16.i4.99936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/06/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
Type 1 diabetes (T1D) is a chronic organ-specific autoimmune disorder characterized by a progressive loss of the insulin-secreting pancreatic beta cells, which ultimately results in insulinopenia, hyperglycemia and lifelong need for exogenous insulin therapy. In the pathophysiological landscape of T1D, T helper 17 cells (Th17 cells) and their hallmark cytokine, interleukin (IL)-17, play pivotal roles from disease onset to disease progression. In this narrative mini-review, we discuss the dynamic interplay between Th17 cells and IL-17 in the context of T1D, providing insights into the underlying immunologic mechanisms contributing to the IL-17-immunity-mediated pancreatic beta-cell destruction. Furthermore, we summarized the main animal and clinical studies that investigated Th17- and IL-17-targeted interventions as promising immunotherapies able to alter the natural history of T1D.
Collapse
Affiliation(s)
- Georgi Vasilev
- Clinic of Neurology and Department of Emergency Medicine, UMHAT "Sv. Georgi", Plovdiv 4000, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Maria Kokudeva
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia 1000, Bulgaria
| | - Elina Siliogka
- Faculty of Medicine, National and Kapodistrian University of Athens, Athens 11527, Attikí, Greece
| | - Nathalia Padilla
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Russka Shumnalieva
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Rheumatology, Clinic of Rheumatology, University Hospital "St. Anna", Medical University-Sofia, Sofia 1612, Bulgaria
| | - David Della-Morte
- Department of Biomedicine and Prevention, Section of Clinical Nutrition and Nutrigenomics, University of Rome Tor Vergata, Rome 00133, Italy
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | | | - Marco Infante
- Section of Diabetes & Metabolic Disorders, UniCamillus, Saint Camillus International University of Health Sciences, Rome 00131, Italy
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
4
|
Rodacki M, Silva KR, Araujo DB, Dantas JR, Ramos MEN, Zajdenverg L, Baptista LS. Immunomodulatory agents and cell therapy for patients with type 1 diabetes. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2025; 68:e240233. [PMID: 40215356 PMCID: PMC11967186 DOI: 10.20945/2359-4292-2024-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/17/2024] [Indexed: 04/15/2025]
Abstract
Type 1 diabetes (TID) is a chronic disease caused by autoimmune destruction of pancreatic β-cells, that progresses in three stages: 1) stage 1: β-cell autoimmunity + normoglycemia; 2) stage 2: β-cell autoimmunity + mild dysglycemia; 3) stage 3: symptomatic disease + hyperglycemia. Interventions to prevent or cure T1D in the various stages of the disease have been pursued and may target the prevention of the destruction of β cells, regression of insulitis, preservation or recovery of β cells residual mass. Some therapies show promising results that might change the natural history and the approach to patients with T1D in the next few years. Teplizumab, a humanized monoclonal antibody that binds to CD3, was recently approved in the USA to delay Stage 3 T1D in individuals ≥ 8 years of age. Other non-cellular immunomodulatory therapies, both antigen-specific and non-specific, have shown interesting results either in patients with stage 2 or recent onset stage 3 T1D. Cell therapies such as non-myeloablative transplantation of autologous hematopoietic stem cells, mesenchymal stem cells, and tolerogenic dendritic cells have been also studied in these individuals, aiming immunomodulation. Stem cell-derived islet replacement therapy is promising for patients with long- standing T1D, especially with asymptomatic hypoglycemia not resolved by technology. This review aimed to provide updated information on the main immunomodulatory agents and cell therapy options for type 1 diabetes.
Collapse
Affiliation(s)
- Melanie Rodacki
- Departamento de Medicina Interna, Universidade Federal do Rio de Janeiro,
Rio de Janeiro, RJ, Brasil
| | - Karina Ribeiro Silva
- Laboratório de Pesquisa com Células-Tronco, Departamento de
Histologia e Embriologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro,
Rio de Janeiro, RJ, Brasil
| | | | - Joana R. Dantas
- Departamento de Medicina Interna, Universidade Federal do Rio de Janeiro,
Rio de Janeiro, RJ, Brasil
| | | | - Lenita Zajdenverg
- Departamento de Medicina Interna, Universidade Federal do Rio de Janeiro,
Rio de Janeiro, RJ, Brasil
| | - Leandra Santos Baptista
- NUMPEX-BIO, Campus Duque de Caxias Professor Geraldo Cidade, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
5
|
Wu L, Zhu L, Chen J. Diverse potential of chimeric antigen receptor-engineered cell therapy: Beyond cancer. Clin Transl Med 2025; 15:e70306. [PMID: 40205818 PMCID: PMC11982526 DOI: 10.1002/ctm2.70306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-engineered cell therapies have made significant progress in haematological cancer treatment. This success has motivated researchers to investigate its potential applications in non-cancerous diseases, with substantial strides already made in this field. MAIN BODY This review summarises the latest research on CAR-engineered cell therapies, with a particular focus on CAR-T cell therapy for non-cancerous diseases, including but not limited to infectious diseases, autoimmune diseases, cardiac diseases and immune-mediated disorders in transplantation. Additionally, the review discusses the current obstacles that need to be addressed for broader clinical applications. CONCLUSION With ongoing research and continuous improvements, CAR-engineered cell therapy holds promise as a potent tool for treating various diseases in the future. KEY POINTS CAR-engineered cell therapy has expanded beyond cancer to treat autoimmune diseases, infections, cardiac diseases, and transplant-related rejection. The CAR platform is diverse, with various cell types such as CAR-T, CAR-NK, and CAR-M potentially suited for different disease contexts. The safety, efficacy, and practicality of CAR cell therapy in non-cancer diseases remain challenging, requiring further technological optimization and clinical translation.
Collapse
Affiliation(s)
- Lvying Wu
- Institute of Clinical MedicineThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Lingfeng Zhu
- Minimally Invasive Urology and Translational Medicine CenterFuzhou First General Hospital Affiliated With Fujian Medical UniversityFuzhouFujianChina
| | - Jin Chen
- Institute of Clinical MedicineThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Minimally Invasive Urology and Translational Medicine CenterFuzhou First General Hospital Affiliated With Fujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
6
|
Velikova T, Vasilev GV, Linkwinstar D, Siliogka E, Kokudeva M, Miteva D, Vasilev GH, Gulinac M, Atliev K, Shumnalieva R. Regulatory T cell-based therapies for type 1 diabetes: a narrative review. METABOLISM AND TARGET ORGAN DAMAGE 2025; 5. [DOI: 10.20517/mtod.2024.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease caused by the destruction of pancreatic insulin-secreting beta cells, resulting in hyperglycemia and a lifelong need for exogenous insulin therapy. Regulatory T cells (Tregs) are essential for maintaining immune tolerance and preventing autoimmune reactions. It has been shown that dysfunctional Tregs participate in the pathophysiology of T1D. Therapeutic approaches designed to enhance Treg stability, survival, and function have progressively emerged as a promising treatment strategy for T1D. This narrative review explores the potential of Treg cell-based therapy as a therapeutic tool to alter the natural history of T1D. It discusses different pharmacological strategies to enhance Treg stability and function, as well as the latest advances in Treg cell-based therapies, including adoptive Treg cell therapy and genetic engineering of Tregs. It also outlines current challenges and future research directions for integrating Treg cell-based therapy into clinical practice, aiming to provide a comprehensive overview of its potential benefits and limitations as an innovative therapeutic intervention for T1D.
Collapse
|
7
|
Ng STH, Price MJ, Richardson N, Nawaf M, Copland A, Streeter HB, Narendran P, Wraith DC. Preclinical Development of a Tolerogenic Peptide From Glutamate Decarboxylase as a Candidate for Antigen-Specific Immunotherapy in Type 1 Diabetes. Diabetes 2025; 74:384-397. [PMID: 39571092 DOI: 10.2337/db23-0996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 11/18/2024] [Indexed: 02/22/2025]
Abstract
Dysregulation and loss of immune tolerance toward pancreatic β-cell autoantigens are features of type 1 diabetes (T1D). Until recently, life-long insulin injection was the only approved treatment for T1D, but it does not address the underlying disease pathology. The aim for antigen-specific immunotherapy (ASI) is to restore tolerance. ASI holds potential as a new therapeutic strategy for treating autoimmune diseases with well-characterized antigens. Peptide ASI using processing-independent CD4+ T-cell epitopes (PIPs) shows promising results in several autoimmune diseases. Here, we successfully applied the principles of PIP design to the T1D autoantigen glutamate decarboxylase 65 (GAD65). Peptides spanning GAD65 predicted to be pan-HLA-DR binding were selected. Peptide 10 (P10) displayed enriched responses in peripheral blood mononuclear cells from people with T1D. The minimal epitope of the P10 peptide was fine mapped using T-cell hybridomas generated from HLA-DRB1*04:01 transgenic mice. This minimal epitope, P10Sol, was demonstrated, using a novel activation-induced marker assay, to induce tolerance to the parent peptide in the transgenic mice. Finally, we show that GAD65 P10Sol PIP is recognized by CD4+ T cells from people with T1D who possess a range of HLA-DR alleles and, therefore, can be defined as a pan-DR-binding peptide with therapeutic potential. ARTICLE HIGHLIGHTS There are currently no approved antigen-specific immunotherapies (ASIs) for people with type 1 diabetes (T1D). We aimed to develop a peptide for ASI for T1D based on the T1D-associated auto-antigen glutamate decarboxylase 65 (GAD65). A minimal and soluble peptide derived from GAD65 was demonstrated to induce tolerance in an HLA transgenic mouse. Our data suggest this peptide derived from the GAD65 islet protein should be tested for therapeutic potential in people with T1D who have residual β-cell function.
Collapse
Affiliation(s)
- Sky T H Ng
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Michael J Price
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Naomi Richardson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Maher Nawaf
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Alastair Copland
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Heather B Streeter
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Parth Narendran
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - David C Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| |
Collapse
|
8
|
Yue D, Wang R, Zhao Y, Wu B, Li S, Zeng W, Wan S, Liu L, Dai Y, Shi Y, Xu R, Yang Z, Wang X, Zou Y. Investigating the molecular mechanisms between type 1 diabetes and mild cognitive impairment using bioinformatics analysis, with a focus on immune response. Int Immunopharmacol 2024; 142:113256. [PMID: 39340997 DOI: 10.1016/j.intimp.2024.113256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
The immune system is involved in the development and progression of several diseases. Type 1 diabetes mellitus (T1DM), an autoimmune disorder, influences the progression of several other conditions; however, the link between T1DM and mild cognitive impairment (MCI) remains unclear. This study investigated the underlying immune response mechanisms that contribute to the development and progression of T1DM and MCI. Microarray datasets for MCI (GSE63060) and T1DM (GSE30208) were retrieved from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified using the limma package. To explore the functional implications of these DEGs, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted using ClusterProfiler. Protein-protein interaction networks for the DEGs were constructed using the STRING database and visualized using Cytoscape. The Molecular Complex Detection algorithm was used to analyze DEGs. Immune cell infiltration in patients with T1DM and MCI was analyzed using the xCell method. Gene set enrichment analysis was used to gain in-depth insights into the functional characteristics of T1DM and MCI. Immune-related genes were obtained from the GeneCards and ImmPort databases. Machine learning algorithms were used to identify potential hub genes associated with immunity for T1DM and MCI diagnosis, and the diagnostic value was assessed using the receiver operating characteristic curve. The identified genes were validated using quantitative polymerase chain reaction. In the T1DM and MCI datasets, 610 DEGs showed consistent trends, of which 232 and 378 were upregulated and downregulated, respectively. Immune response analysis revealed significant changes in the immune cells associated with MCI and T1DM. Using immune-related genes, DEGs, and machine learning techniques, we identified CD3D in the MCI and T1DM groups. We observed a gradual decline in the cognitive function of mice with T1DM as the disease progressed. CD3D expression increased with increasing disease severity; CD3D primarily affected CD4+ T cells. This study revealed a complex interaction between T1DM and MCI, providing novel insights into the intricate relationship between immune dysregulation and cognitive impairment and expanding our understanding of these two interconnected disorders. These findings will facilitate the development of therapeutic interventions and identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Dongxu Yue
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China
| | - Runze Wang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China
| | - Yanli Zhao
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China
| | - Bangxu Wu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China
| | - Shude Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China
| | - Weilin Zeng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, PR China
| | - Shanshan Wan
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lifang Liu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China
| | - Yating Dai
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China
| | - Yuling Shi
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China
| | - Ruobing Xu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China
| | - Zhihong Yang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China.
| | - Xie Wang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China.
| | - Yingying Zou
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, PR China.
| |
Collapse
|
9
|
Miličić T, Jotić A, Marković I, Popadić D, Lalić K, Uskoković V, Lukić L, Maćešić M, Stanarčić J, Stoiljković M, Milovančević M, Rafailović Đ, Božović A, Radisavljević N, Lalić NM. Changes in CD4+CD25HIGH T cells and TGFβ1 levels in different stages of adult-onset type 1 diabetes. J Med Biochem 2024; 43:915-926. [PMID: 39876913 PMCID: PMC11771973 DOI: 10.5937/jomb0-49868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/01/2024] [Indexed: 01/31/2025] Open
Abstract
Background Previous studies suggested an important role of impairments in T cell subsets in different stages during type 1 diabetes (T1D) development, while data regarding CD25high T cells and transforming growth factor b1 (TGFβ1), both T regulatory associated, remains controversial. We analyzed the level of (a) CD25high T cells (b) TGFβ1 in 17 first-degree relatives of patients with T1D in stage 1 (FDRs1) (GADA+, IA-2+); 34 FDRs in stage 0 (FDRs0) (GADA, IA-2); 24 recent-onset T1D in insulin-requiring state (IRS); 10 patients in clinical remission (CR); 18 healthy, unrelated controls (CTR). Methods T cell subsets were characterized by two-color immunofluorescence staining and flow cytometry; TGFβ1 was determined by ELISA, GADA, and IA-2 by RIA. Results The percentage of CD25high T cells in FDRs1 was lower than controls, FDRs0, IRS, and CR (p<0.001). Additionally, the cut-off value for CD25high = 1.19%, with a probability of 0.667, for having a higher risk for T1D. TGFβ1 concentration in FDRs1, FDRs0, IRS, and CR, was lower than controls (p<0.001). IRS has a higher TGFβ1 concentration than CR (p<0.001). Conclusions Stage 1, a higher risk for T1D, is characterized by decreases in CD25high T cells and TGFβ1, partially reflecting impaired T regulatory response, implying that changes of this T cells subset might be a risk marker for T1D. FDRs, irrespective of risk for T1D and T1D patients irrespective of state, had depletion of TGFβ1, suggesting the association of TGFβ1 could have potential with familiar risk and manifestation of T1D. Furthermore, the result suggested that the clinical course of overt T1D might be modulated on the TGFβ1 level.
Collapse
Affiliation(s)
- Tanja Miličić
- University of Belgrade, Faculty of Medicine, University Clinical Centre of Serbia, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Belgrade
| | - Aleksandra Jotić
- University of Belgrade, Faculty of Medicine, University Clinical Centre of Serbia, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Belgrade
| | - Ivanka Marković
- University of Belgrade, Faculty of Medicine, Institute for Medical and Clinical Biochemistry, Belgrade
| | - Dušan Popadić
- University of Belgrade, Faculty of Medicine, Institute for Microbiology and Immunology, Belgrade
| | - Katarina Lalić
- University of Belgrade, Faculty of Medicine, University Clinical Centre of Serbia, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Belgrade
| | - Veljko Uskoković
- University of Belgrade, Faculty of Organizational Sciences, Department for Operations Research and Statistics, Belgrade
| | - Ljiljana Lukić
- University of Belgrade, Faculty of Medicine, University Clinical Centre of Serbia, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Belgrade
| | - Marija Maćešić
- University of Belgrade, Faculty of Medicine, University Clinical Centre of Serbia, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Belgrade
| | - Jelena Stanarčić
- University of Belgrade, Faculty of Medicine, University Clinical Centre of Serbia, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Belgrade
| | - Milica Stoiljković
- University of Belgrade, Faculty of Medicine, University Clinical Centre of Serbia, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Belgrade
| | - Mina Milovančević
- University of Belgrade, Faculty of Medicine, University Clinical Centre of Serbia, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Belgrade
| | - Đurđa Rafailović
- University of Belgrade, Faculty of Medicine, University Clinical Centre of Serbia, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Belgrade
| | - Aleksandra Božović
- University of Belgrade, Faculty of Medicine, University Clinical Centre of Serbia, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Belgrade
| | - Nina Radisavljević
- University of Belgrade, Faculty of Medicine, University Clinical Centre of Serbia, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Belgrade
| | - Nebojša M. Lalić
- University of Belgrade, Faculty of Medicine, University Clinical Centre of Serbia, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Belgrade
| |
Collapse
|
10
|
Bakery HH, Hussein HAA, Ahmed OM, Abuelsaad ASA, Khalil RG. The potential therapeutic role of IL-35 in pathophysiological processes in type 1 diabetes mellitus. Cytokine 2024; 182:156732. [PMID: 39126765 DOI: 10.1016/j.cyto.2024.156732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
A chronic autoimmune condition known as type 1 diabetes mellitus (T1DM) has characteristics marked by a gradual immune-mediated deterioration of the β-cells that produce insulin and causes overt hyperglycemia. it affects more than 1.2 million kids and teenagers (0-19 years old). In both, the initiation and elimination phases of T1DM, cytokine-mediated immunity is crucial in controlling inflammation. T regulatory (Treg) cells, a crucial anti-inflammatory CD4+ T cell subset, secretes interleukin-35 (IL-35). The IL-35 has immunomodulatory properties by inhibiting pro-inflammatory cells and cytokines, increasing the secretion of interleukin-10 (IL-10) as well as transforming Growth Factor- β (TGF-β), along with stimulating the Treg and B regulatory (Breg) cells. IL-35, it is a possible target for cutting-edge therapies for cancers, inflammatory, infectious, and autoimmune diseases, including TIDM. Unanswered questions surround IL-35's function in T1DM. Increasing data suggests Treg cells play a crucial role in avoiding autoimmune T1DM. Throughout this review, we will explain the biological impacts of IL-35 and highlight the most recently progresses in the roles of IL-35 in treatment of T1DM; the knowledge gathered from these findings might lead to the development of new T1DM treatments. This review demonstrates the potential of IL-35 as an effective autoimmune diabetes inhibitor and points to its potential therapeutic value in T1DM clinical trials.
Collapse
Affiliation(s)
- Heba H Bakery
- Immunology Division, Faculty of Science, Beni-Suef University, Egypt
| | - Heba A A Hussein
- Faculty of Medicine, Egyptian Fellowship of Radiology, Beni-Suef University, Egypt
| | - Osama M Ahmed
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Egypt
| | | | - Rehab G Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Egypt.
| |
Collapse
|
11
|
Luo Z, Mejia-Cordova M, Hamze N, Berggren E, Chopra S, Safi B, Blixt M, Sandler S, Singh K. Assessing the effectiveness of Interleukin-2 therapy in experimental type 1 diabetes. Endocrine 2024; 85:626-637. [PMID: 38424350 PMCID: PMC11291609 DOI: 10.1007/s12020-024-03753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
AIM Much focus of immunotherapy for type 1 diabetes (T1D) has been devoted on selectively boosting regulatory T (Treg) cells using low dose IL-2 due to their constitutive expression of IL-2Rα, CD25. However, several clinical trials using a low dose of IL-2 only showed a limited improvement of metabolic control. It can therefore be hypothesized that further decreasing IL-2 dosage may increase the selective responsiveness of Treg cells. METHODS We induced experimental T1D using multiple low dose streptozotocin (STZ) injections and treated the mice with an ultra-low dose IL-2 (uIL-2, approximately 7-fold lower than low dose). Immune response was studied using multicolor flow cytometry. RESULTS We found that uIL-2 did not protect STZ mice from developing hyperglycemia. It did neither increase Treg cell proportions, nor did it correct the phenotypic shift of Treg cells seen in T1D. It only partially decreased the proportion of IFN-γ+ T cells. Likewise, uIL-2 also did not protect the dysfunction of regulatory B (Breg) cells. Strikingly, when administered in combination with an anti-inflammatory cytokine IL-35, uIL-2 abrogated IL-35's protective effect. Low dose IL-2, on the other hand, protected half of the STZ mice from developing hyperglycemia. No difference was found in the Treg and Breg response, and it only tended to decrease CD80 expression in macrophages and dendritic cells. CONCLUSION In conclusion, further decreasing IL-2 dosage may not be a suitable approach for T1D therapy, and the limited success suggests that an alternative low dose IL-2 therapy strategy or other immunotherapies should be considered.
Collapse
Affiliation(s)
- Zhengkang Luo
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | - Nour Hamze
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Elin Berggren
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Saloni Chopra
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Bilal Safi
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Martin Blixt
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Stellan Sandler
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Kailash Singh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
12
|
Alhosseini MN, Ebadi P, Karimi MH, Migliorati G, Cari L, Nocentini G, Heidari M, Soleimanian S. Therapy with regulatory T-cell infusion in autoimmune diseases and organ transplantation: A review of the strengths and limitations. Transpl Immunol 2024; 85:102069. [PMID: 38844002 DOI: 10.1016/j.trim.2024.102069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/17/2024]
Abstract
In the last decade, cell therapies have revolutionized the treatment of some diseases, earning the definition of being the "third pillar" of therapeutics. In particular, the infusion of regulatory T cells (Tregs) is explored for the prevention and control of autoimmune reactions and acute/chronic allograft rejection. Such an approach represents a promising new treatment for autoimmune diseases to recover an immunotolerance against autoantigens, and to prevent an immune response to alloantigens. The efficacy of the in vitro expanded polyclonal and antigen-specific Treg infusion in the treatment of a large number of autoimmune diseases has been extensively demonstrated in mouse models. Similarly, experimental work documented the efficacy of Treg infusions to prevent acute and chronic allograft rejections. The Treg therapy has shown encouraging results in the control of type 1 diabetes (T1D) as well as Crohn's disease, systemic lupus erythematosus, autoimmune hepatitis and delaying graft rejection in clinical trials. However, the best method for Treg expansion and the advantages and pitfalls with the different types of Tregs are not fully understood in terms of how these therapeutic treatments can be applied in the clinical setting. This review provides an up-to-date overview of Treg infusion-based treatments in autoimmune diseases and allograft transplantation, the current technical challenges, and the highlights and disadvantages of this therapeutic approaches."
Collapse
Affiliation(s)
| | - Padideh Ebadi
- Islamic Azad University, Department of Biochemistry, Kazerun, Iran
| | | | - Graziella Migliorati
- University of Perugia, Department of Medicine and Surgery, Section of Pharmacology, Perugia, Italy
| | - Luigi Cari
- University of Perugia, Department of Medicine and Surgery, Section of Pharmacology, Perugia, Italy
| | - Giuseppe Nocentini
- University of Perugia, Department of Medicine and Surgery, Section of Pharmacology, Perugia, Italy
| | - Mozhdeh Heidari
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Allergy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Sumida TS, Cheru NT, Hafler DA. The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases. Nat Rev Immunol 2024; 24:503-517. [PMID: 38374298 PMCID: PMC11216899 DOI: 10.1038/s41577-024-00994-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
The discovery of FOXP3+ regulatory T (Treg) cells as a distinct cell lineage with a central role in regulating immune responses provided a deeper understanding of self-tolerance. The transcription factor FOXP3 serves a key role in Treg cell lineage determination and maintenance, but is not sufficient to enable the full potential of Treg cell suppression, indicating that other factors orchestrate the fine-tuning of Treg cell function. Moreover, FOXP3-independent mechanisms have recently been shown to contribute to Treg cell dysfunction. FOXP3 mutations in humans cause lethal fulminant systemic autoinflammation (IPEX syndrome). However, it remains unclear to what degree Treg cell dysfunction is contributing to the pathophysiology of common autoimmune diseases. In this Review, we discuss the origins of Treg cells in the periphery and the multilayered mechanisms by which Treg cells are induced, as well as the FOXP3-dependent and FOXP3-independent cellular programmes that maintain the suppressive function of Treg cells in humans and mice. Further, we examine evidence for Treg cell dysfunction in the context of common autoimmune diseases such as multiple sclerosis, inflammatory bowel disease, systemic lupus erythematosus and rheumatoid arthritis.
Collapse
Affiliation(s)
- Tomokazu S Sumida
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Nardos T Cheru
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
14
|
Sameir M, Soleimanifar N, Assadiasl S, Selman N, Sadr M, Mojtahedi H, Mohammed AJ, Abdulhussein RH, Hamid Al-Gawwam ZM, Hussein S, Saber AF, Nicknam MH. The Increased Frequency of Type 1 Regulatory T (Tr1) Cells and the Altered Expression of Aryl Hydrocarbon Receptor (AHR) and Interferon Regulatory Factor-4 (IRF4) Genes in Type 1 Diabetes: A Case-Control Study. Cureus 2024; 16:e65749. [PMID: 39211721 PMCID: PMC11361286 DOI: 10.7759/cureus.65749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background and aim Type 1 diabetes is an autoimmune disorder characterized by the destruction of pancreatic beta cells, leading to insulin deficiency and hyperglycemia. Regulatory T cells (Tregs), particularly type 1 regulatory T (Tr1) cells, play a crucial role in modulating autoimmune responses. Therefore, this study aimed to evaluate the frequency of Tr1 cells and their association with aryl hydrocarbon receptor (AHR) and interferon regulatory factor-4 (IRF4) gene expression levels in type 1 diabetes mellitus (T1DM) compared to the healthy controls. Method A case-control study design was used. The case group included patients diagnosed with T1DM, while the control group consisted of healthy individuals, matched for age and sex. Blood samples were collected, and peripheral blood mononuclear cells (PBMCs) were isolated. Serum interleukin 10 (IL-10) and interleukin 21 (IL-21) levels were measured using enzyme-linked immunosorbent assay (ELISA). The gene expression of AHR and IRF4 was analyzed using quantitative real-time polymerase chain reaction (qPCR), and Tr1 cell populations were determined using flow cytometry. Data were summarized with mean and standard error of the mean (SEM) for quantitative variables. Independent sample t-test, chi-square test, and the Mann-Whitney U test were used to compare groups. Statistical analyses were performed using SPSS version 25 (IBM SPSS Statistics, Armonk, NY), with significance levels set at p < 0.05. Figures were created using GraphPad Prism (GraphPad Software, San Diego, CA). Results A total of 45 cases were enrolled in the study, with 30 T1DM patients and 15 healthy controls. The mean IL-10 concentration was significantly higher in the patients (10.4 ± 1.1 pg/mL) compared to the healthy controls (5.1 ± 0.7 pg/mL), with a p-value of 0.001. There was no significant difference in IL-21 levels between the patients (76.1 ± 9.0 pg/mL) and healthy controls (88.2 ± 17.5 pg/mL), indicated by a p-value of 0.480. AHR gene expression was significantly lower in patients, with a p-value of 0.037. Although IRF4 gene expression was higher in patients, the difference was not statistically significant (p = 0.449). Tr1 cell frequency was significantly higher in T1DM patients (1.45% of cluster of differentiation 4+ {CD4+} T cells) compared to the healthy controls (0.40% of CD4+ T cells), with a p-value of 0.045. Conclusions The study demonstrated that T1DM is associated with higher IL-10 levels, decreased AHR gene expression, and a higher frequency of Tr1 cells. Policymakers should focus on developing targeted immunomodulatory therapies to address these immunological abnormalities. Healthcare providers should prioritize monitoring cytokine levels and gene expression in T1DM patients to tailor treatment plans effectively. Further research is needed to explore the therapeutic potential of modulating Tr1 cells and their related pathways in T1DM management.
Collapse
Affiliation(s)
- Mohammed Sameir
- Department of Clinical Autoimmune Therapy, Hammurabi College of Medicine, University of Babylon, Hilla, IRQ
| | - Narjes Soleimanifar
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, IRN
| | - Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, IRN
| | - Nihad Selman
- College of Medicine, University of Babylon, Hilla, IRQ
| | - Maryam Sadr
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, IRN
| | - Hanieh Mojtahedi
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, IRN
| | - Ali J Mohammed
- Department of Physiology, Hammurabi College of Medicine, University of Babylon, Hilla, IRQ
| | - Rasha H Abdulhussein
- Department of Pediatrics, Hammurabi College of Medicine, University of Babylon, Hilla, IRQ
| | | | - Safin Hussein
- Department of Molecular Medicine, Tehran University of Medical Sciences, Tehran, IRN
- Department of Biology, University of Raparin, Ranya, IRQ
| | - Abdulmalik F Saber
- Department of Psychiatry and Mental Health Nursing, College of Nursing, Hawler Medical University, Erbil, IRQ
| | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, IRN
| |
Collapse
|
15
|
Shi L, Lim JY, Kam LC. Improving regulatory T cell production through mechanosensing. J Biomed Mater Res A 2024; 112:1138-1148. [PMID: 38450935 PMCID: PMC11065567 DOI: 10.1002/jbm.a.37702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Induced Tregs (iTregs) have great promise in adoptive immunotherapy for treatment of autoimmune diseases. This report investigates the impacts of substrate stiffness on human Treg induction, providing a powerful yet simple approach to improving production of these cells. Conventional CD4+ human T cells were activated on materials of different elastic modulus and cultured under suppressive conditions. Enhanced Treg induction was observed on softer materials as early as 3 days following activation and persisted for multiple weeks. Substrate stiffness also affected epigenetic modification of Treg specific genes and Treg suppressive capacity. Tregs induced on substrates of an optimal stiffness balance quantity and suppressive quality.
Collapse
Affiliation(s)
- Lingting Shi
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jee Yoon Lim
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Lance C. Kam
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
16
|
Honing DY, Luiten RM, Matos TR. Regulatory T Cell Dysfunction in Autoimmune Diseases. Int J Mol Sci 2024; 25:7171. [PMID: 39000278 PMCID: PMC11241405 DOI: 10.3390/ijms25137171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Regulatory T cells (Tregs), a suppressive subpopulation of T cells, are potent mediators of peripheral tolerance, responsible for immune homeostasis. Many autoimmune diseases exhibit disruptions in Treg function or quantity, resulting in an imbalance between protective and pathogenic immune cells. Selective expansion or manipulation of Tregs is a promising therapeutic approach for autoimmune diseases. However, the extensive diversity of Treg subpopulations and the multiple approaches used for Treg identification leads to high complexity, making it difficult to develop a successful treatment capable of modulating Tregs. In this review, we describe the suppressive mechanisms, subpopulations, classification, and identification methodology for Tregs, and their role in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Dionne Y Honing
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| | - Rosalie M Luiten
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| | - Tiago R Matos
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Sanofi, 1105 BP Amsterdam, The Netherlands
| |
Collapse
|
17
|
Liric Rajlic I, Guglieri‐Lopez B, Rangoonwala N, Ivaturi V, Van L, Mori S, Wipke B, Burdette D, Attarwala H. Translational kinetic-pharmacodynamics of mRNA-6231, an investigational mRNA therapeutic encoding mutein interleukin-2. CPT Pharmacometrics Syst Pharmacol 2024; 13:1067-1078. [PMID: 38676306 PMCID: PMC11179705 DOI: 10.1002/psp4.13142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining immune homeostasis by serving as negative regulators of adaptive immune system effector cell responses. Reduced production or function of Tregs has been implicated in several human autoimmune diseases. The cytokine interleukin 2 plays a central role in promoting Treg differentiation, survival, and function in vivo and may therefore have therapeutic benefits for autoimmune diseases. mRNA-6231 is an investigational, lipid nanoparticle-encapsulated, mRNA-based therapy that encodes a modified human interleukin 2 mutein fused to human serum albumin (HSA-IL2m). Herein, we report the development of a semi-mechanistic kinetic-pharmacodynamic model to quantify the relationship between subcutaneous dose(s) of mRNA-6231, HSA-IL2m protein expression, and Treg expansion in nonhuman primates. The nonclinical kinetic-pharmacodynamic model was extrapolated to humans using allometric scaling principles and the physiological basis of pharmacological mechanisms to predict the clinical response to therapy a priori. Model-based simulations were used to inform the dose selection and design of the first-in-human clinical study (NCT04916431). The modeling approach used to predict human responses was validated when data became available from the phase I clinical study. This validation indicates that the approach is valuable in informing clinical decision-making.
Collapse
Affiliation(s)
| | | | | | | | - Linh Van
- Pharmacometrics, Moderna, Inc.CambridgeMassachusettsUSA
| | - Simone Mori
- External Research Ventures, Moderna, Inc.CambridgeMassachusettsUSA
| | - Brian Wipke
- Immune Therapeutics Discovery, Moderna, Inc.CambridgeMassachusettsUSA
| | - Douglas Burdette
- Drug Metabolism and Pharmacokinetics, Moderna, Inc.CambridgeMassachusettsUSA
| | | |
Collapse
|
18
|
Baeten P, Hamad I, Hoeks C, Hiltensperger M, Van Wijmeersch B, Popescu V, Aly L, Somers V, Korn T, Kleinewietfeld M, Hellings N, Broux B. Rapamycin rescues loss of function in blood-brain barrier-interacting Tregs. JCI Insight 2024; 9:e167457. [PMID: 38386413 PMCID: PMC11128200 DOI: 10.1172/jci.insight.167457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
In autoimmunity, FOXP3+ Tregs skew toward a proinflammatory, nonsuppressive phenotype and are, therefore, unable to control the exaggerated autoimmune response. This largely affects the success of autologous Treg therapy, which is currently under investigation for autoimmune diseases, including multiple sclerosis (MS). There is a need to ensure in vivo Treg stability before successful application of Treg therapy. Using genetic fate-mapping mice, we demonstrate that inflammatory, cytokine-expressing exFOXP3 T cells accumulate in the CNS during experimental autoimmune encephalomyelitis. In a human in vitro model, we discovered that interaction with inflamed blood-brain barrier endothelial cells (BBB-ECs) induces loss of function by Tregs. Transcriptome and cytokine analysis revealed that in vitro migrated Tregs have disrupted regenerative potential and a proinflammatory Th1/17 signature, and they upregulate the mTORC1 signaling pathway. In vitro treatment of migrated human Tregs with the clinically approved mTORC1 inhibitor rapamycin restored suppression. Finally, flow cytometric analysis indicated an enrichment of inflammatory, less-suppressive CD49d+ Tregs in the cerebrospinal fluid of people with MS. In summary, interaction with BBB-ECs is sufficient to affect Treg function, and transmigration triggers an additive proinflammatory phenotype switch. These insights help improve the efficacy of autologous Treg therapy of MS.
Collapse
Affiliation(s)
- Paulien Baeten
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Ibrahim Hamad
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Cindy Hoeks
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Michael Hiltensperger
- Klinikum Rechts der Isar, Institute for Experimental Neuroimmunology, Technische Universität München, Munich, Germany
| | - Bart Van Wijmeersch
- Universitair MS Centrum, Campus Pelt, Belgium
- Noorderhart, Revalidatie & MS Centrum, Pelt, Belgium
| | - Veronica Popescu
- Universitair MS Centrum, Campus Pelt, Belgium
- Noorderhart, Revalidatie & MS Centrum, Pelt, Belgium
| | - Lilian Aly
- Klinikum Rechts der Isar, Institute for Experimental Neuroimmunology, Technische Universität München, Munich, Germany
| | - Veerle Somers
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Thomas Korn
- Klinikum Rechts der Isar, Institute for Experimental Neuroimmunology, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Markus Kleinewietfeld
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Niels Hellings
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Bieke Broux
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
19
|
Tuomela K, Levings MK. Genetic engineering of regulatory T cells for treatment of autoimmune disorders including type 1 diabetes. Diabetologia 2024; 67:611-622. [PMID: 38236408 DOI: 10.1007/s00125-023-06076-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/07/2023] [Indexed: 01/19/2024]
Abstract
Suppression of pathogenic immune responses is a major goal in the prevention and treatment of type 1 diabetes. Adoptive cell therapy using regulatory T cells (Tregs), a naturally suppressive immune subset that is often dysfunctional in type 1 diabetes, is a promising approach to achieving localised and specific immune suppression in the pancreas or site of islet transplant. However, clinical trials testing administration of polyclonal Tregs in recent-onset type 1 diabetes have observed limited efficacy despite an excellent safety profile. Several barriers to efficacy have been identified, including lack of antigen specificity, low cell persistence post-administration and difficulty in generating sufficient cell numbers. Fortunately, the emergence of advanced gene editing techniques has opened the door to new strategies to engineer Tregs with improved specificity and function. These strategies include the engineering of FOXP3 expression to produce a larger source of suppressive cells for infusion, expressing T cell receptors or chimeric antigen receptors to generate antigen-specific Tregs and improving Treg survival by targeting cytokine pathways. Although these approaches are being applied in a variety of autoimmune and transplant contexts, type 1 diabetes presents unique opportunities and challenges for the genetic engineering of Tregs for adoptive cell therapy. Here we discuss the role of Tregs in type 1 diabetes pathogenesis and the application of Treg engineering in the context of type 1 diabetes.
Collapse
Affiliation(s)
- Karoliina Tuomela
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
20
|
Mehta JM, Hiremath SC, Chilimba C, Ghasemi A, Weaver JD. Translation of cell therapies to treat autoimmune disorders. Adv Drug Deliv Rev 2024; 205:115161. [PMID: 38142739 PMCID: PMC10843859 DOI: 10.1016/j.addr.2023.115161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Autoimmune diseases are a diverse and complex set of chronic disorders with a substantial impact on patient quality of life and a significant global healthcare burden. Current approaches to autoimmune disease treatment comprise broadly acting immunosuppressive drugs that lack disease specificity, possess limited efficacy, and confer undesirable side effects. Additionally, there are limited treatments available to restore organs and tissues damaged during the course of autoimmune disease progression. Cell therapies are an emergent area of therapeutics with the potential to address both autoimmune disease immune dysfunction as well as autoimmune disease-damaged tissue and organ systems. In this review, we discuss the pathogenesis of common autoimmune disorders and the state-of-the-art in cell therapy approaches to (1) regenerate or replace autoimmune disease-damaged tissue and (2) eliminate pathological immune responses in autoimmunity. Finally, we discuss critical considerations for the translation of cell products to the clinic.
Collapse
Affiliation(s)
- Jinal M Mehta
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Shivani C Hiremath
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Chishiba Chilimba
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Azin Ghasemi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jessica D Weaver
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
21
|
James EA, Joglekar AV, Linnemann AK, Russ HA, Kent SC. The beta cell-immune cell interface in type 1 diabetes (T1D). Mol Metab 2023; 78:101809. [PMID: 37734713 PMCID: PMC10622886 DOI: 10.1016/j.molmet.2023.101809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND T1D is an autoimmune disease in which pancreatic islets of Langerhans are infiltrated by immune cells resulting in the specific destruction of insulin-producing islet beta cells. Our understanding of the factors leading to islet infiltration and the interplay of the immune cells with target beta cells is incomplete, especially in human disease. While murine models of T1D have provided crucial information for both beta cell and autoimmune cell function, the translation of successful therapies in the murine model to human disease has been a challenge. SCOPE OF REVIEW Here, we discuss current state of the art and consider knowledge gaps concerning the interface of the islet beta cell with immune infiltrates, with a focus on T cells. We discuss pancreatic and immune cell phenotypes and their impact on cell function in health and disease, which we deem important to investigate further to attain a more comprehensive understanding of human T1D disease etiology. MAJOR CONCLUSIONS The last years have seen accelerated development of approaches that allow comprehensive study of human T1D. Critically, recent studies have contributed to our revised understanding that the pancreatic beta cell assumes an active role, rather than a passive position, during autoimmune disease progression. The T cell-beta cell interface is a critical axis that dictates beta cell fate and shapes autoimmune responses. This includes the state of the beta cell after processing internal and external cues (e.g., stress, inflammation, genetic risk) that that contributes to the breaking of tolerance by hyperexpression of human leukocyte antigen (HLA) class I with presentation of native and neoepitopes and secretion of chemotactic factors to attract immune cells. We anticipate that emerging insights about the molecular and cellular aspects of disease initiation and progression processes will catalyze the development of novel and innovative intervention points to provide additional therapies to individuals affected by T1D.
Collapse
Affiliation(s)
- Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Alok V Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amelia K Linnemann
- Center for Diabetes and Metabolic Diseases, and Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Sally C Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
22
|
Riaz F, Wei P, Pan F. PPARs at the crossroads of T cell differentiation and type 1 diabetes. Front Immunol 2023; 14:1292238. [PMID: 37928539 PMCID: PMC10623333 DOI: 10.3389/fimmu.2023.1292238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
T-cell-mediated autoimmune type 1 diabetes (T1D) is characterized by the immune-mediated destruction of pancreatic beta cells (β-cells). The increasing prevalence of T1D poses significant challenges to the healthcare system, particularly in countries with struggling economies. This review paper highlights the multifaceted roles of Peroxisome Proliferator-Activated Receptors (PPARs) in the context of T1D, shedding light on their potential as regulators of immune responses and β-cell biology. Recent research has elucidated the intricate interplay between CD4+ T cell subsets, such as Tregs and Th17, in developing autoimmune diseases like T1D. Th17 cells drive inflammation, while Tregs exert immunosuppressive functions, highlighting the delicate balance crucial for immune homeostasis. Immunotherapy has shown promise in reinstating self-tolerance and restricting the destruction of autoimmune responses, but further investigations are required to refine these therapeutic strategies. Intriguingly, PPARs, initially recognized for their role in lipid metabolism, have emerged as potent modulators of inflammation in autoimmune diseases, particularly in T1D. Although evidence suggests that PPARs affect the β-cell function, their influence on T-cell responses and their potential impact on T1D remains largely unexplored. It was noted that PPARα is involved in restricting the transcription of IL17A and enhancing the expression of Foxp3 by minimizing its proteasomal degradation. Thus, antagonizing PPARs may exert beneficial effects in regulating the differentiation of CD4+ T cells and preventing T1D. Therefore, this review advocates for comprehensive investigations to delineate the precise roles of PPARs in T1D pathogenesis, offering innovative therapeutic avenues that target both the immune system and pancreatic function. This review paper seeks to bridge the knowledge gap between PPARs, immune responses, and T1D, providing insights that may revolutionize the treatment landscape for this autoimmune disorder. Moreover, further studies involving PPAR agonists in non-obese diabetic (NOD) mice hold promise for developing novel T1D therapies.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Ping Wei
- Department of Otolaryngology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
23
|
Bi Y, Kong R, Peng Y, Yu H, Zhou Z. Umbilical cord blood and peripheral blood-derived regulatory T cells therapy: Progress in type 1 diabetes. Clin Immunol 2023; 255:109716. [PMID: 37544491 DOI: 10.1016/j.clim.2023.109716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Regulatory T cells (Tregs) are key regulators for the inflammatory response and play a role in maintaining the immune tolerance. Type 1 diabetes (T1D) is a relatively common autoimmune disease that results from the loss of immune tolerance to β-cell-associated antigens. Preclinical models have demonstrated the safety and efficacy of Tregs given in transplant rejection and autoimmune diseases such as T1D. Adoptive transfer of Tregs has been utilized in clinical trials for over a decade. However, the achievement of the adoptive transfer of Tregs therapy in clinical application remains challenging. In this review, we highlight the characterization of Tregs and compare the differences between umbilical cord blood and adult peripheral blood-derived Tregs. Additionally, we summarize conditional modifications in the expansion of Tregs in clinical trials, especially for the treatment of T1D. Finally, we discuss the existing technical challenges for Tregs in clinical trials for the treatment of T1D.
Collapse
Affiliation(s)
- Yuanjie Bi
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ran Kong
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yani Peng
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haibo Yu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Hunan Engineering Research Center of Cell Therapy for Diabetes, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
24
|
Hosseinalizadeh H, Rabiee F, Eghbalifard N, Rajabi H, Klionsky DJ, Rezaee A. Regulating the regulatory T cells as cell therapies in autoimmunity and cancer. Front Med (Lausanne) 2023; 10:1244298. [PMID: 37828948 PMCID: PMC10565010 DOI: 10.3389/fmed.2023.1244298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Regulatory T cells (Tregs), possess a pivotal function in the maintenance of immune homeostasis. The dysregulated activity of Tregs has been associated with the onset of autoimmune diseases and cancer. Hence, Tregs are promising targets for interventions aimed at steering the immune response toward the desired path, either by augmenting the immune system to eliminate infected and cancerous cells or by dampening it to curtail the damage to self-tissues in autoimmune disorders. The activation of Tregs has been observed to have a potent immunosuppressive effect against T cells that respond to self-antigens, thus safeguarding our body against autoimmunity. Therefore, promoting Treg cell stability presents a promising strategy for preventing or managing chronic inflammation that results from various autoimmune diseases. On the other hand, Tregs have been found to be overactivated in several forms of cancer, and their role as immune response regulators with immunosuppressive properties poses a significant impediment to the successful implementation of cancer immunotherapy. However, the targeting of Tregs in a systemic manner may lead to the onset of severe inflammation and autoimmune toxicity. It is imperative to develop more selective methods for targeting the function of Tregs in tumors. In this review, our objective is to elucidate the function of Tregs in tumors and autoimmunity while also delving into numerous therapeutic strategies for reprogramming their function. Our focus is on reprogramming Tregs in a highly activated phenotype driven by the activation of key surface receptors and metabolic reprogramming. Furthermore, we examine Treg-based therapies in autoimmunity, with a specific emphasis on Chimeric Antigen Receptor (CAR)-Treg therapy and T-cell receptor (TCR)-Treg therapy. Finally, we discuss key challenges and the future steps in reprogramming Tregs that could lead to the development of novel and effective cancer immunotherapies.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Rabiee
- Department of Pharmacology and Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Negar Eghbalifard
- Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Rajabi
- Faculty of Medicine, ShahreKord University of Medical Sciences, Shahrekord, Iran
| | - Daniel J. Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Infante M, Vitiello L, Fabbri A, Ricordi C, Padilla N, Pacifici F, Perna PD, Passeri M, Della-Morte D, Caprio M, Uccioli L. Prolonged clinical remission of type 1 diabetes sustained by calcifediol and low-dose basal insulin: a case report. Immunotherapy 2023; 15:1009-1019. [PMID: 37401348 DOI: 10.2217/imt-2022-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/15/2023] [Indexed: 07/05/2023] Open
Abstract
Herein, we describe an unusually prolonged duration (31 months) of the clinical remission phase in a 22-year-old Italian man with new-onset type 1 diabetes. Shortly after the disease diagnosis, the patient was treated with calcifediol (also known as 25-hydroxyvitamin D3 or calcidiol), coupled with low-dose basal insulin, to correct hypovitaminosis D and to exploit the anti-inflammatory and immunomodulatory properties of vitamin D. During the follow-up period, the patient retained a substantial residual β-cell function and remained within the clinical remission phase, as evidenced by an insulin dose-adjusted glycated hemoglobin value <9. At 24 months, we detected a peculiar immunoregulatory profile of peripheral blood cells, which may explain the prolonged duration of the clinical remission sustained by calcifediol as add-on treatment to insulin.
Collapse
Affiliation(s)
- Marco Infante
- CTO Andrea Alesini Hospital, Division of Endocrinology & Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, Rome, 00145, Italy
- Division of Cellular Transplantation, Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL 33136, USA
- Section of Diabetes & Metabolic Disorders, UniCamillus, Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, Rome, 00131, Italy
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Via Cola di Rienzo 28, Rome, 00192, Italy
| | - Laura Vitiello
- Laboratory of Flow Cytometry, IRCCS San Raffaele, Via di Val Cannuta 247, Rome, 00166, Italy
| | - Andrea Fabbri
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
| | - Camillo Ricordi
- Division of Cellular Transplantation, Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL 33136, USA
| | - Nathalia Padilla
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Colonia Centroamérica L-823, Managua, 14048, Nicaragua
| | - Francesca Pacifici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
| | - Pasquale Di Perna
- CTO Andrea Alesini Hospital, Division of Endocrinology & Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, Rome, 00145, Italy
| | - Marina Passeri
- CTO Andrea Alesini Hospital, Division of Endocrinology & Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, Rome, 00145, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
- Department of Human Sciences & Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, Rome, 00166, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, 1120 NW 14th St, Miami, FL 33136, USA
| | - Massimiliano Caprio
- Department of Human Sciences & Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, Rome, 00166, Italy
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, Via di Val Cannuta 247, Rome, 00166, Italy
| | - Luigi Uccioli
- CTO Andrea Alesini Hospital, Division of Endocrinology & Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, Rome, 00145, Italy
| |
Collapse
|
26
|
Quattrin T, Mastrandrea LD, Walker LSK. Type 1 diabetes. Lancet 2023; 401:2149-2162. [PMID: 37030316 DOI: 10.1016/s0140-6736(23)00223-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/03/2022] [Accepted: 01/26/2023] [Indexed: 04/10/2023]
Abstract
Type 1 diabetes is a chronic disease caused by autoimmune destruction of pancreatic β cells. Individuals with type 1 diabetes are reliant on insulin for survival. Despite enhanced knowledge related to the pathophysiology of the disease, including interactions between genetic, immune, and environmental contributions, and major strides in treatment and management, disease burden remains high. Studies aimed at blocking the immune attack on β cells in people at risk or individuals with very early onset type 1 diabetes show promise in preserving endogenous insulin production. This Seminar will review the field of type 1 diabetes, highlighting recent progress within the past 5 years, challenges to clinical care, and future directions in research, including strategies to prevent, manage, and cure the disease.
Collapse
Affiliation(s)
- Teresa Quattrin
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Diabetes Center, John R Oishei Children's Hospital, Buffalo, NY, USA.
| | - Lucy D Mastrandrea
- Department of Pediatrics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Diabetes Center, John R Oishei Children's Hospital, Buffalo, NY, USA
| | - Lucy S K Walker
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
27
|
Harris F, Berdugo YA, Tree T. IL-2-based approaches to Treg enhancement. Clin Exp Immunol 2023; 211:149-163. [PMID: 36399073 PMCID: PMC10019135 DOI: 10.1093/cei/uxac105] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/12/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
Immune homeostasis is heavily dependent on the action of regulatory T cells (Tregs) which act to suppress the activation of many immune cell types including autoreactive conventional T cells. A body of evidence has shown that Tregs are intrinsically defective in many common autoimmune diseases, and gene polymorphisms which increase the susceptibility of autoimmune disease development have implicated the interleukin-2 (IL-2) signaling pathway as a key dysregulated mechanism. IL-2 is essential for Treg function and survival, and Tregs are highly sensitive to low levels of this cytokine in their environment. This review will revisit the rationale behind using low-dose IL-2 as a therapy to treat autoimmune diseases and evaluate the outcomes of trials to date. Furthermore, novel engineered IL-2 therapies with increased Treg specificity have shown promise in pre-clinical studies and human clinical trials for some agents have begun. Future studies will determine whether low-dose IL-2 or engineered IL-2 therapies can change the course of autoimmune and inflammatory diseases in patients.
Collapse
Affiliation(s)
- Ffion Harris
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King’s College, London, UK
| | - Yoana Arroyo Berdugo
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King’s College, London, UK
| | - Timothy Tree
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King’s College, London, UK
- National Institute of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service Foundation Trust, King’s College London, London, UK
| |
Collapse
|
28
|
Anindya R, Rutter GA, Meur G. New-onset type 1 diabetes and severe acute respiratory syndrome coronavirus 2 infection. Immunol Cell Biol 2023; 101:191-203. [PMID: 36529987 PMCID: PMC9877852 DOI: 10.1111/imcb.12615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Type 1 diabetes (T1D) is a condition characterized by an absolute deficiency of insulin. Loss of insulin-producing pancreatic islet β cells is one of the many causes of T1D. Viral infections have long been associated with new-onset T1D and the balance between virulence and host immunity determines whether the viral infection would lead to T1D. Herein, we detail the dynamic interaction of pancreatic β cells with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the host immune system with respect to new-onset T1D. Importantly, β cells express the crucial entry receptors and multiple studies confirmed that β cells are infected by SARS-CoV-2. Innate immune system effectors, such as natural killer cells, can eliminate such infected β cells. Although CD4+ CD25+ FoxP3+ regulatory T (TREG ) cells provide immune tolerance to prevent the destruction of the islet β-cell population by autoantigen-specific CD8+ T cells, it can be speculated that SARS-CoV-2 infection may compromise self-tolerance by depleting TREG -cell numbers or diminishing TREG -cell functions by repressing Forkhead box P3 (FoxP3) expression. However, the expansion of β cells by self-duplication, and regeneration from progenitor cells, could effectively replace lost β cells. Appearance of islet autoantibodies following SARS-CoV-2 infection was reported in a few cases, which could imply a breakdown of immune tolerance in the pancreatic islets. However, many of the cases with newly diagnosed autoimmune response following SARS-CoV-2 infection also presented with significantly high HbA1c (glycated hemoglobin) levels that indicated progression of an already set diabetes, rather than new-onset T1D. Here we review the potential underlying mechanisms behind loss of functional β-cell mass as a result of SARS-CoV-2 infection that can trigger new-onset T1D.
Collapse
Affiliation(s)
- Roy Anindya
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore City, Singapore.,Centre of Research of Centre Hospitalier de l'Université de Montréal (CRCHUM), Faculty of Medicine, University of Montréal, Montréal, QC, Canada
| | - Gargi Meur
- ICMR-National Institute of Nutrition, Hyderabad, Telangana, India
| |
Collapse
|
29
|
Spanier JA, Fung V, Wardell CM, Alkhatib MH, Chen Y, Swanson LA, Dwyer AJ, Weno ME, Silva N, Mitchell JS, Orban PC, Mojibian M, Verchere CB, Fife BT, Levings MK. Insulin B peptide-MHC class II-specific chimeric antigen receptor-Tregs prevent autoimmune diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529737. [PMID: 36865264 PMCID: PMC9980092 DOI: 10.1101/2023.02.23.529737] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Adoptive immunotherapy with Tregs is a promising approach for prevention or treatment of type 1 diabetes. Islet antigen-specific Tregs have more potent therapeutic effects than polyclonal cells, but their low frequency is a barrier for clinical application. To generate Tregs that recognize islet antigens, we engineered a chimeric antigen receptor (CAR) derived from a monoclonal antibody with specificity for the insulin B-chain 10-23 peptide presented in the context of the IA g7 MHC class II allele present in NOD mice. Peptide specificity of the resulting InsB-g7 CAR was confirmed by tetramer staining and T cell proliferation in response to recombinant or islet-derived peptide. The InsB-g7 CAR re-directed NOD Treg specificity such that insulin B 10-23-peptide stimulation enhanced suppressive function, measured via reduction of proliferation and IL-2 production by BDC2.5 T cells and CD80 and CD86 expression on dendritic cells. Co-transfer of InsB-g7 CAR Tregs prevented adoptive transfer diabetes by BDC2.5 T cells in immunodeficient NOD mice. In wild type NOD mice, InsB-g7 CAR Tregs stably expressed Foxp3 and prevented spontaneous diabetes. These results show that engineering Treg specificity for islet antigens using a T cell receptor-like CAR is a promising new therapeutic approach for the prevention of autoimmune diabetes. Brief Summary Chimeric antigen receptor Tregs specific for an insulin B-chain peptide presented by MHC class II prevent autoimmune diabetes.
Collapse
Affiliation(s)
- Justin A. Spanier
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Autoimmune Disease Research, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Vivian Fung
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Christine M. Wardell
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Mohannad H. Alkhatib
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Yixin Chen
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Linnea A. Swanson
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Alexander J. Dwyer
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Matthew E. Weno
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Nubia Silva
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jason S. Mitchell
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Autoimmune Disease Research, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Paul C. Orban
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Majid Mojibian
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - C. Bruce Verchere
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Brian T. Fife
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Center for Autoimmune Disease Research, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Megan K. Levings
- Dept of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Marshall G, Cserny J, Wang CW, Looney B, Posgai AL, Bacher R, Keselowsky B, Brusko TM. Biomaterials-based nanoparticles conjugated to regulatory T cells provide a modular system for localized delivery of pharmacotherapeutic agents. J Biomed Mater Res A 2023; 111:185-197. [PMID: 36082558 PMCID: PMC9742177 DOI: 10.1002/jbm.a.37442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022]
Abstract
Type 1 diabetes (T1D) presents with two therapeutic challenges: the need to correct underlying autoimmunity and restore β-cell mass. We harnessed the unique capacity of regulatory T cells (Tregs) and the T cell receptor (TCR) to direct tolerance induction along with tissue-localized delivery of therapeutic agents to restore endogenous β-cell function. Specifically, we designed a combinatorial therapy involving biomaterials-based poly(lactic-co-glycolic acid) nanoparticles co-loaded with the Treg growth factor, IL-2, and the β-cell regenerative agent, harmine (a tyrosine-regulated kinase 1A [DYRK1A] inhibitor), conjugated to the surface of Tregs. We observed continuous elution of IL-2 and harmine from nanoparticles for at least 7 days in vitro. When conjugated to primary human Tregs, IL-2 nanoparticles provided sufficient IL-2 receptor signaling to support STAT5 phosphorylation for sustained phenotypic stability and viability in culture. Inclusion of poly-L-lysine (PLL) during nanoparticle-cell coupling dramatically increased conjugation efficiency, providing sufficient IL-2 to support in vitro proliferation of IL-2-dependent CTLL-2 cells and primary murine Tregs. In 12-week-old female non-obese diabetic mice, adoptive transfer of IL-2/harmine nanoparticle-conjugated NOD.BDC2.5 Tregs, which express an islet antigen-specific TCR, significantly prevented diabetes demonstrating preserved in vivo viability. These data provide the preclinical basis to develop a biomaterials-optimized cellular therapy to restore immune tolerance and promote β-cell proliferation in T1D through receptor-targeted drug delivery within pancreatic islets.
Collapse
Affiliation(s)
| | - Judit Cserny
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32601, USA
| | | | | | - Amanda L. Posgai
- Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32601, USA
| | - Rhonda Bacher
- Department of Biostatistics, College of Public Health and Health Professions, and College of Medicine, University of Florida, Gainesville, FL
| | - Benjamin Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, College of Engineering, University of Florida, Gainesville, FL 32601, USA
| | - Todd M. Brusko
- Inspira Therapeutics, Inc., Alachua, FL 32615, USA,Department of Pathology, Immunology and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32601, USA,Department of Pediatrics, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL 32601, USA,Correspondence to: Todd M. Brusko, PhD, Department of Pathology, University of Florida, College of Medicine, Box 100275, 1600 SW Archer Road, Gainesville, FL 32610; (352) 273-9255; Fax (352) 273-9339;
| |
Collapse
|
31
|
Leung SS, Borg DJ, McCarthy DA, Boursalian TE, Cracraft J, Zhuang A, Fotheringham AK, Flemming N, Watkins T, Miles JJ, Groop PH, Scheijen JL, Schalkwijk CG, Steptoe RJ, Radford KJ, Knip M, Forbes JM. Soluble RAGE Prevents Type 1 Diabetes Expanding Functional Regulatory T Cells. Diabetes 2022; 71:1994-2008. [PMID: 35713929 PMCID: PMC9862506 DOI: 10.2337/db22-0177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023]
Abstract
Type 1 diabetes is an autoimmune disease with no cure, where clinical translation of promising therapeutics has been hampered by the reproducibility crisis. Here, short-term administration of an antagonist to the receptor for advanced glycation end products (sRAGE) protected against murine diabetes at two independent research centers. Treatment with sRAGE increased regulatory T cells (Tregs) within the islets, pancreatic lymph nodes, and spleen, increasing islet insulin expression and function. Diabetes protection was abrogated by Treg depletion and shown to be dependent on antagonizing RAGE with use of knockout mice. Human Tregs treated with a RAGE ligand downregulated genes for suppression, migration, and Treg homeostasis (FOXP3, IL7R, TIGIT, JAK1, STAT3, STAT5b, CCR4). Loss of suppressive function was reversed by sRAGE, where Tregs increased proliferation and suppressed conventional T-cell division, confirming that sRAGE expands functional human Tregs. These results highlight sRAGE as an attractive treatment to prevent diabetes, showing efficacy and reproducibility at multiple research centers and in human T cells.
Collapse
Affiliation(s)
- Sherman S. Leung
- Glycation and Diabetes, Mater Research, The University of Queensland and Translational Research Institute, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Danielle J. Borg
- Glycation and Diabetes, Mater Research, The University of Queensland and Translational Research Institute, Brisbane, Australia
- Inflammatory Disease Biology and Therapeutics, Mater Research, The University of Queensland and Translational Research Institute, Brisbane, Australia
| | - Domenica A. McCarthy
- Glycation and Diabetes, Mater Research, The University of Queensland and Translational Research Institute, Brisbane, Australia
| | | | | | - Aowen Zhuang
- Glycation and Diabetes, Mater Research, The University of Queensland and Translational Research Institute, Brisbane, Australia
| | - Amelia K. Fotheringham
- Glycation and Diabetes, Mater Research, The University of Queensland and Translational Research Institute, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Nicole Flemming
- Glycation and Diabetes, Mater Research, The University of Queensland and Translational Research Institute, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Thomas Watkins
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - John J. Miles
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Per-Henrik Groop
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Nephrology, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Jean L. Scheijen
- Laboratory for Metabolism and Vascular Medicine, Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands
- Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - Casper G. Schalkwijk
- Laboratory for Metabolism and Vascular Medicine, Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands
- Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands
| | - Raymond J. Steptoe
- Diamantina Institute, The University of Queensland and Translational Research Institute, Brisbane, Australia
| | - Kristen J. Radford
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
- Cancer Immunotherapies, Mater Research, The University of Queensland and Translational Research Institute, Brisbane, Australia
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Josephine M. Forbes
- Glycation and Diabetes, Mater Research, The University of Queensland and Translational Research Institute, Brisbane, Australia
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
- Mater Clinical School, The University of Queensland, Brisbane, Australia
| |
Collapse
|
32
|
Kerdidani D, Papaioannou NE, Nakou E, Alissafi T. Rebooting Regulatory T Cell and Dendritic Cell Function in Immune-Mediated Inflammatory Diseases: Biomarker and Therapy Discovery under a Multi-Omics Lens. Biomedicines 2022; 10:2140. [PMID: 36140240 PMCID: PMC9495698 DOI: 10.3390/biomedicines10092140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) are a group of autoimmune and chronic inflammatory disorders with constantly increasing prevalence in the modern world. The vast majority of IMIDs develop as a consequence of complex mechanisms dependent on genetic, epigenetic, molecular, cellular, and environmental elements, that lead to defects in immune regulatory guardians of tolerance, such as dendritic (DCs) and regulatory T (Tregs) cells. As a result of this dysfunction, immune tolerance collapses and pathogenesis emerges. Deeper understanding of such disease driving mechanisms remains a major challenge for the prevention of inflammatory disorders. The recent renaissance in high throughput technologies has enabled the increase in the amount of data collected through multiple omics layers, while additionally narrowing the resolution down to the single cell level. In light of the aforementioned, this review focuses on DCs and Tregs and discusses how multi-omics approaches can be harnessed to create robust cell-based IMID biomarkers in hope of leading to more efficient and patient-tailored therapeutic interventions.
Collapse
Affiliation(s)
- Dimitra Kerdidani
- Immune Regulation Laboratory, Center of Basic Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikos E. Papaioannou
- Immune Regulation Laboratory, Center of Basic Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Evangelia Nakou
- Immune Regulation Laboratory, Center of Basic Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Themis Alissafi
- Immune Regulation Laboratory, Center of Basic Research, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
33
|
Schlöder J, Shahneh F, Schneider FJ, Wieschendorf B. Boosting regulatory T cell function for the treatment of autoimmune diseases – That’s only half the battle! Front Immunol 2022; 13:973813. [PMID: 36032121 PMCID: PMC9400058 DOI: 10.3389/fimmu.2022.973813] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 01/04/2023] Open
Abstract
Regulatory T cells (Treg) represent a subset of specialized T cells that are essential for the regulation of immune responses and maintenance of peripheral tolerance. Once activated, Treg exert powerful immunosuppressive properties, for example by inhibiting T cell-mediated immune responses against self-antigens, thereby protecting our body from autoimmunity. Autoimmune diseases such as multiple sclerosis, rheumatoid arthritis or systemic lupus erythematosus, exhibit an immunological imbalance mainly characterized by a reduced frequency and impaired function of Treg. In addition, there has been increasing evidence that – besides Treg dysfunction – immunoregulatory mechanisms fail to control autoreactive T cells due to a reduced responsiveness of T effector cells (Teff) for the suppressive properties of Treg, a process termed Treg resistance. In order to efficiently treat autoimmune diseases and thus fully induce immunological tolerance, a combined therapy aimed at both enhancing Treg function and restoring Teff responsiveness could most likely be beneficial. This review provides an overview of immunomodulating drugs that are currently used to treat various autoimmune diseases in the clinic and have been shown to increase Treg frequency as well as Teff sensitivity to Treg-mediated suppression. Furthermore, we discuss strategies on how to boost Treg activity and function, and their potential use in the treatment of autoimmunity. Finally, we present a humanized mouse model for the preclinical testing of Treg-activating substances in vivo.
Collapse
Affiliation(s)
- Janine Schlöder
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- ActiTrexx GmbH, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- *Correspondence: Janine Schlöder,
| | - Fatemeh Shahneh
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Franz-Joseph Schneider
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- ActiTrexx GmbH, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Björn Wieschendorf
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- ActiTrexx GmbH, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
34
|
Nekoua MP, Alidjinou EK, Hober D. Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol 2022; 18:503-516. [PMID: 35650334 PMCID: PMC9157043 DOI: 10.1038/s41574-022-00688-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2022] [Indexed: 12/15/2022]
Abstract
Enteroviruses are believed to trigger or accelerate islet autoimmunity in genetically susceptible individuals, thereby resulting in loss of functional insulin-producing β-cells and type 1 diabetes mellitus (T1DM). Although enteroviruses are primarily involved in acute and lytic infections in vitro and in vivo, they can also establish a persistent infection. Prospective epidemiological studies have strongly associated the persistence of enteroviruses, especially coxsackievirus B (CVB), with the appearance of islet autoantibodies and an increased risk of T1DM. CVB can persist in pancreatic ductal and β-cells, which leads to structural or functional alterations of these cells, and to a chronic inflammatory response that promotes recruitment and activation of pre-existing autoreactive T cells and β-cell autoimmune destruction. CVB persistence in other sites, such as the intestine, blood cells and thymus, has been described; these sites could serve as a reservoir for infection or reinfection of the pancreas, and this persistence could have a role in the disturbance of tolerance to β-cells. This Review addresses the involvement of persistent enterovirus infection in triggering islet autoimmunity and T1DM, as well as current strategies to control enterovirus infections for preventing or reducing the risk of T1DM onset.
Collapse
Affiliation(s)
| | | | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, Lille, France.
| |
Collapse
|
35
|
de Picciotto S, DeVita N, Hsiao CJ, Honan C, Tse SW, Nguyen M, Ferrari JD, Zheng W, Wipke BT, Huang E. Selective activation and expansion of regulatory T cells using lipid encapsulated mRNA encoding a long-acting IL-2 mutein. Nat Commun 2022; 13:3866. [PMID: 35790728 PMCID: PMC9256694 DOI: 10.1038/s41467-022-31130-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
Interleukin-2 (IL-2) is critical for regulatory T cell (Treg) function and homeostasis. At low doses, IL-2 can suppress immune pathologies by expanding Tregs that constitutively express the high affinity IL-2Rα subunit. However, even low dose IL-2, signaling through the IL2-Rβ/γ complex, may lead to the activation of proinflammatory, non-Treg T cells, so improving specificity toward Tregs may be desirable. Here we use messenger RNAs (mRNA) to encode a half-life-extended human IL-2 mutein (HSA-IL2m) with mutations promoting reliance on IL-2Rα. Our data show that IL-2 mutein subcutaneous delivery as lipid-encapsulated mRNA nanoparticles selectively activates and expands Tregs in mice and non-human primates, and also reduces disease severity in mouse models of acute graft versus host disease and experimental autoimmune encephalomyelitis. Single cell RNA-sequencing of mouse splenic CD4+ T cells identifies multiple Treg states with distinct response dynamics following IL-2 mutein treatment. Our results thus demonstrate the potential of mRNA-encoded HSA-IL2m immunotherapy to treat autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Zheng
- Moderna, Inc, Cambridge, MA, 02139, USA
| | | | - Eric Huang
- Moderna, Inc, Cambridge, MA, 02139, USA.
| |
Collapse
|
36
|
Brown ME, Peters LD, Hanbali SR, Arnoletti JM, Sachs LK, Nguyen KQ, Carpenter EB, Seay HR, Fuhrman CA, Posgai AL, Shapiro MR, Brusko TM. Human CD4 +CD25 +CD226 - Tregs Demonstrate Increased Purity, Lineage Stability, and Suppressive Capacity Versus CD4 +CD25 +CD127 lo/- Tregs for Adoptive Cell Therapy. Front Immunol 2022; 13:873560. [PMID: 35693814 PMCID: PMC9178079 DOI: 10.3389/fimmu.2022.873560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/28/2022] [Indexed: 01/21/2023] Open
Abstract
Regulatory T cell (Treg) adoptive cell therapy (ACT) represents an emerging strategy for restoring immune tolerance in autoimmune diseases. Tregs are commonly purified using a CD4+CD25+CD127lo/- gating strategy, which yields a mixed population: 1) cells expressing the transcription factors, FOXP3 and Helios, that canonically define lineage stable thymic Tregs and 2) unstable FOXP3+Helios- Tregs. Our prior work identified the autoimmune disease risk-associated locus and costimulatory molecule, CD226, as being highly expressed not only on effector T cells but also, interferon-γ (IFN-γ) producing peripheral Tregs (pTreg). Thus, we sought to determine whether isolating Tregs with a CD4+CD25+CD226- strategy yields a population with increased purity and suppressive capacity relative to CD4+CD25+CD127lo/- cells. After 14d of culture, expanded CD4+CD25+CD226- cells displayed a decreased proportion of pTregs relative to CD4+CD25+CD127lo/- cells, as measured by FOXP3+Helios- expression and the epigenetic signature at the FOXP3 Treg-specific demethylated region (TSDR). Furthermore, CD226- Tregs exhibited decreased production of the effector cytokines, IFN-γ, TNF, and IL-17A, along with increased expression of the immunoregulatory cytokine, TGF-β1. Lastly, CD226- Tregs demonstrated increased in vitro suppressive capacity as compared to their CD127lo/- counterparts. These data suggest that the exclusion of CD226-expressing cells during Treg sorting yields a population with increased purity, lineage stability, and suppressive capabilities, which may benefit Treg ACT for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Matthew E. Brown
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Leeana D. Peters
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Seif R. Hanbali
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Juan M. Arnoletti
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Lindsey K. Sachs
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Kayla Q. Nguyen
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Emma B. Carpenter
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Howard R. Seay
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
- ROSALIND, Inc., San Diego, CA, United States
| | - Christopher A. Fuhrman
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
- NanoString Technologies, Inc., Seattle, WA, United States
| | - Amanda L. Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Melanie R. Shapiro
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
37
|
Roach T, Morel L. Genetic Variations Controlling Regulatory T Cell Development and Activity in Mouse Models of Lupus-Like Autoimmunity. Front Immunol 2022; 13:887489. [PMID: 35693798 PMCID: PMC9178176 DOI: 10.3389/fimmu.2022.887489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Immune homeostasis is a constant balancing act between effector T cells and regulatory T cells defined by Foxp3 expression, the transcription factor that drives their differentiation and immunosuppressive activity. Immune homeostasis is altered when Treg cells are not generated or maintained in sufficient numbers. Treg cells rendered unstable by loss of Foxp3 expression, known as ex-Treg cells, gain pro-inflammatory functions. Treg cells may also become dysfunctional and lose their suppressive capabilities. These alterations can cause an imbalance between effector and regulatory subsets, which may ultimately lead to autoimmunity. This review discusses recent studies that identified genetic factors that maintain Treg cell stability as well as preserve their suppressive function. We focus on studies associated with systemic lupus erythematosus and highlight their findings in the context of potential therapeutic gene targeting in Treg cells to reverse the phenotypic changes and functional dysregulation inducing autoimmunity.
Collapse
|
38
|
Okamura T, Hamaguchi M, Tominaga H, Kitagawa N, Hashimoto Y, Majima S, Senmaru T, Okada H, Ushigome E, Nakanishi N, Shichino S, Fukui M. Characterization of Peripheral Blood TCR in Patients with Type 1 Diabetes Mellitus by BD RhapsodyTM VDJ CDR3 Assay. Cells 2022; 11:cells11101623. [PMID: 35626661 PMCID: PMC9139223 DOI: 10.3390/cells11101623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 02/05/2023] Open
Abstract
The sequence of complementarity-determining region 3 of the T-cell receptor (TCR) varies widely due to the insertion of random bases during V-(D)-J recombination. In this study, we used single-cell VDJ sequencing using the latest technology, BD Rhapsody, to identify the TCR sequences of autoreactive T-cells characteristic of Japanese type 1 diabetes mellitus (T1DM) and to clarify the pairing of TCR of peripheral blood mononuclear cells from four patients with T1DM at the single-cell level. The expression levels of the TCR alpha variable (TRAV) 17 and TRAV21 in T1DM patients were higher than those in healthy Japanese subjects. Furthermore, the Shannon index of CD8+ T cells and FOXP3+ cells in T1DM patients was lower than that of healthy subjects. The gene expression of PRF1, GZMH, ITGB2, NKG7, CTSW, and CST7 was increased, while the expression of CD4, CD7, CD5, HLA-A, CD27, and IL-32 was decreased in the CD8+ T cells of T1DM patients. The upregulated gene expression was IL4R and TNFRSF4 in FOXP3+ cells of T1DM patients. Overall, these findings demonstrate that TCR diversity and gene expression of CD8+ and FOXP3+ cells are different in patients with T1DM and healthy subjects.
Collapse
Affiliation(s)
- Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Hiroyuki Tominaga
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Noriyuki Kitagawa
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Saori Majima
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan;
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.); (H.T.); (N.K.); (Y.H.); (S.M.); (T.S.); (H.O.); (E.U.); (N.N.)
- Correspondence: ; Tel.: +81-75-251-5505
| |
Collapse
|
39
|
Harnessing the inherent power of chimeric antigen receptor (CAR)-expressing regulatory T cells (CAR-Tregs) to treat autoimmune-related disorders. Mol Biol Rep 2022; 49:4069-4078. [PMID: 35534581 DOI: 10.1007/s11033-022-07511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Over the past years, adoptive cell therapy with regulatory T lymphocytes (Tregs) has captured the attention of many scientists and clinicians as a novel promising approach for treating a wide range of immune-mediated disorders. In particular, the robust immunosuppressive properties of these cells have been demonstrated to make them uniquely valuable for the treatment of autoimmune diseases. More recently, it has been brought to light that adoptive transfer of chimeric antigen receptor (CAR) Tregs (CAR-Tregs) can also serve a protective role against autoimmune-related disorders. Interestingly, a growing body of evidence indicates that the beneficial and therapeutic effects of antigen-specific CAR-Tregs surpass those of polyclonal Tregs in treating autoimmune conditions. Therefore, harnessing and adapting CAR technology to generate more specific and effective CAR-Tregs, both in terms of tissue localization and antigen recognition, may lay the foundations for the development of far more potent immunotherapeutic strategies for autoimmune-related disorders. Herein, we first highlight the major immunosuppressive abilities of CAR-Tregs and further summarize the current findings on their potential applications in treating autoimmune-related disorders. Then, we will attempt to address the practical challenges in the clinical use of CAR-Treg therapies.
Collapse
|
40
|
Smigoc Schweiger D. Recent Advances in Immune-Based Therapies for Type 1 Diabetes. Horm Res Paediatr 2022; 96:631-645. [PMID: 35533645 DOI: 10.1159/000524866] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/18/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by progressive destruction of the pancreatic beta cells, leading to a lifelong dependence on insulin. It is associated with an increased morbidity and mortality from diabetes-related complications and a significant treatment burden. However, there has been substantial progress in therapeutic strategies that can affect the course of the disease. SUMMARY This review addresses advances in immunotherapy aimed at preserving residual beta-cell function in individuals with a recent onset of T1D and arresting the disease in pre-symptomatic stages. Recent and ongoing clinical trials have investigated the efficacy and safety of various immunotherapeutic strategies aimed at targeting several mechanisms of autoimmunity, which are thought to be important in disease pathogenesis, and therapies that also address beta-cell health. So far, T-cell-directed therapies that led to a favourable balance between T-effector cell depletion or modulation and preservation or expansion of regulatory T cells have shown the most success. Furthermore, regarding the timing of intervention, teplizumab was the first immunomodulatory agent to demonstrate a significant delay in disease progression in high-risk individuals before clinical onset. KEY MESSAGES As more targeted immune interventions with potentially fewer side effects are closer to the translation into clinical practice, some new challenges may need to be addressed. The use of combination approaches that include immunotherapeutic strategies targeting different aspects of the immune system and interventions that improve beta-cell health may be required, along with the use of individualized patient-tailored approaches, a move towards early intervention, and a focus on patient-reported outcome measures.
Collapse
Affiliation(s)
- Darja Smigoc Schweiger
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
41
|
Liu YF, Powrie J, Arif S, Yang JH, Williams E, Khatri L, Joshi M, Lhuillier L, Fountoulakis N, Smith E, Beam C, Lorenc A, Peakman M, Tree T. Immune and Metabolic Effects of Antigen-Specific Immunotherapy Using Multiple β-Cell Peptides in Type 1 Diabetes. Diabetes 2022; 71:722-732. [PMID: 35073398 PMCID: PMC8965665 DOI: 10.2337/db21-0728] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/15/2022] [Indexed: 01/11/2023]
Abstract
Type 1 diabetes is characterized by a loss of tolerance to pancreatic β-cell autoantigens and defects in regulatory T-cell (Treg) function. In preclinical models, immunotherapy with MHC-selective, autoantigenic peptides restores immune tolerance, prevents diabetes, and shows greater potency when multiple peptides are used. To translate this strategy into the clinical setting, we administered a mixture of six HLA-DRB1*0401-selective, β-cell peptides intradermally to patients with recent-onset type 1 diabetes possessing this genotype in a randomized placebo-controlled study at monthly doses of 10, 100, and 500 μg for 24 weeks. Stimulated C-peptide (measuring insulin functional reserve) had declined in all placebo subjects at 24 weeks but was maintained at ≥100% baseline levels in one-half of the treated group. Treatment was accompanied by significant changes in islet-specific immune responses and a dose-dependent increase in Treg expression of the canonical transcription factor FOXP3 and changes in Treg gene expression. In this first-in-human study, multiple-peptide immunotherapy shows promise as a strategy to correct immune regulatory defects fundamental to the pathobiology of autoimmune diabetes.
Collapse
Affiliation(s)
- Yuk-Fun Liu
- Department of Diabetes, School of Life Course Sciences, King’s College London, London, U.K
- Department of Diabetes and Endocrinology, Guy’s and St. Thomas’ NHS Foundation Trust, London, U.K
- Institute of Diabetes, Endocrinology and Obesity, King’s Health Partners, London, U.K
| | - Jake Powrie
- Department of Diabetes and Endocrinology, Guy’s and St. Thomas’ NHS Foundation Trust, London, U.K
| | - Sefina Arif
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, U.K
| | - Jennie H.M. Yang
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, U.K
- National Institute for Health Research Biomedical Research Centre, Guy’s and St. Thomas’ NHS Foundation Trust and Kings College London, London, U.K
| | - Evangelia Williams
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, U.K
- National Institute for Health Research Biomedical Research Centre, Guy’s and St. Thomas’ NHS Foundation Trust and Kings College London, London, U.K
| | - Leena Khatri
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, U.K
- National Institute for Health Research Biomedical Research Centre, Guy’s and St. Thomas’ NHS Foundation Trust and Kings College London, London, U.K
| | - Mamta Joshi
- Department of Diabetes and Endocrinology, Guy’s and St. Thomas’ NHS Foundation Trust, London, U.K
| | - Loic Lhuillier
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, U.K
| | - Nikolaos Fountoulakis
- Department of Diabetes and Endocrinology, Guy’s and St. Thomas’ NHS Foundation Trust, London, U.K
| | | | - Craig Beam
- Department of Biomedical Sciences, Homer Stryker MD School of Medicine, Western Michigan University, Kalamazoo, MI
| | - Anna Lorenc
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, U.K
| | - Mark Peakman
- Department of Diabetes, School of Life Course Sciences, King’s College London, London, U.K
- Department of Diabetes and Endocrinology, Guy’s and St. Thomas’ NHS Foundation Trust, London, U.K
- Institute of Diabetes, Endocrinology and Obesity, King’s Health Partners, London, U.K
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, U.K
- Corresponding authors: Mark Peakman, , and Timothy Tree,
| | - Timothy Tree
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London, U.K
- National Institute for Health Research Biomedical Research Centre, Guy’s and St. Thomas’ NHS Foundation Trust and Kings College London, London, U.K
- Corresponding authors: Mark Peakman, , and Timothy Tree,
| |
Collapse
|
42
|
Mitchell AM, Michels AW. Self-Antigens Targeted by Regulatory T Cells in Type 1 Diabetes. Int J Mol Sci 2022; 23:3155. [PMID: 35328581 PMCID: PMC8954990 DOI: 10.3390/ijms23063155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 12/15/2022] Open
Abstract
While progress has been made toward understanding mechanisms that lead to the development of autoimmunity, there is less knowledge regarding protective mechanisms from developing such diseases. For example, in type 1 diabetes (T1D), the immune-mediated form of diabetes, the role of pathogenic T cells in the destruction of pancreatic islets is well characterized, but immune-mediated mechanisms that contribute to T1D protection have not been fully elucidated. One potential protective mechanism includes the suppression of immune responses by regulatory CD4 T cells (Tregs) that recognize self-peptides from islets presented by human leukocyte antigen (HLA) class II molecules. In this review, we summarize what is known about the antigenic self-peptides recognized by Tregs in the context of T1D.
Collapse
Affiliation(s)
| | - Aaron W. Michels
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO 80045, USA;
| |
Collapse
|
43
|
Boldison J, Long AE, Aitken RJ, Wilson IV, Megson C, Hanna SJ, Wong FS, Gillespie KM. Activated but functionally impaired memory Tregs are expanded in slow progressors to type 1 diabetes. Diabetologia 2022; 65:343-355. [PMID: 34709423 PMCID: PMC8741669 DOI: 10.1007/s00125-021-05595-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/26/2021] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Slow progressors to type 1 diabetes are individuals positive for multiple pancreatic islet autoantibodies who have remained diabetes-free for at least 10 years; regulation of the autoimmune response is understudied in this group. Here, we profile CD4+ regulatory T cells (Tregs) in a small but well-characterised cohort of extreme slow progressors with a median age 43 (range 31-72 years), followed up for 18-32 years. METHODS Peripheral blood samples were obtained from slow progressors (n = 8), age- and sex-matched to healthy donors. One participant in this study was identified with a raised HbA1c at the time of assessment and subsequently diagnosed with diabetes; this donor was individually evaluated in the analysis of the data. Peripheral blood mononuclear cells (PBMCs) were isolated, and to assess frequency, phenotype and function of Tregs in donors, multi-parameter flow cytometry and T cell suppression assays were performed. Unsupervised clustering analysis, using FlowSOM and CITRUS (cluster identification, characterization, and regression), was used to evaluate Treg phenotypes. RESULTS Unsupervised clustering on memory CD4+ T cells from slow progressors showed an increased frequency of activated memory CD4+ Tregs, associated with increased expression of glucocorticoid-induced TNFR-related protein (GITR), compared with matched healthy donors. One participant with a raised HbA1c at the time of assessment had a different Treg profile compared with both slow progressors and matched controls. Functional assays demonstrated that Treg-mediated suppression of CD4+ effector T cells from slow progressors was significantly impaired, compared with healthy donors. However, effector CD4+ T cells from slow progressors were more responsive to Treg suppression compared with healthy donors, demonstrated by increased suppression of CD25 and CD134 expression on effector CD4+ T cells. CONCLUSIONS/INTERPRETATIONS We conclude that activated memory CD4+ Tregs from slow progressors are expanded and enriched for GITR expression, highlighting the need for further study of Treg heterogeneity in individuals at risk of developing type 1 diabetes.
Collapse
Affiliation(s)
- Joanne Boldison
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, UK.
- Institute of Biomedical & Clinical Science, University of Exeter, Exeter, UK.
| | - Anna E Long
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, UK
| | - Rachel J Aitken
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, UK
| | - Isabel V Wilson
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, UK
| | - Clare Megson
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, UK
| | - Stephanie J Hanna
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - F Susan Wong
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Kathleen M Gillespie
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
44
|
Yang Y, Santamaria P. Antigen-specific nanomedicines for the treatment of autoimmune disease: target cell types, mechanisms and outcomes. Curr Opin Biotechnol 2022; 74:285-292. [PMID: 35007990 DOI: 10.1016/j.copbio.2021.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/07/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023]
Abstract
Nanoparticle (NP)-based delivery of autoantigenic ligands represents a promising approach to modulate autoimmune responses in vivo. Over the last 15 years, a growing number of compounds have been tested in animal models of various experimental and/or spontaneous autoimmune diseases. Based on the underlying design principles and mechanistic underpinnings, these compounds can be categorized into three broad groups: NPs (or microparticles, MPs) as vehicles for targeted delivery of antigens to tolerogenic antigen-presenting cells (APCs); NPs as scaffolds for targeted delivery of both antigen and immunomodulatory molecules to professional APCs; and NPs as multimerization platforms for direct cognate T-cell targeting via recombinant peptide-major histocompatibility complex molecules (pMHCs). These various compounds operate through different mechanisms of action, eliciting pharmacodynamic effects that range from antigen-specific clonal deletion to induction of comprehensive, yet disease-specific, bystander immunoregulation. Here, we review the outcomes of the various approaches tested to date and discuss their translational significance in the context of mode of action vis-à-vis immunologically complex human autoimmune diseases.
Collapse
Affiliation(s)
- Yang Yang
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1 Canada; Department of Biochemistry and Molecular Biology and Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada.
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1 Canada; Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona 08036, Spain.
| |
Collapse
|
45
|
CAR Treg: A new approach in the treatment of autoimmune diseases. Int Immunopharmacol 2021; 102:108409. [PMID: 34863655 DOI: 10.1016/j.intimp.2021.108409] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/07/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022]
Abstract
Regulatory T cells (Tregs) have the role of regulating self-tolerance, and suppressing immune responses. Defects in Treg function and number can lead to in loss of tolerance or autoimmune disease. To treat or control autoimmune diseases, one of the options is to develop immune tolerance for Tregs cell therapy, which includes promotion and activation. Recently, cell-based treatment as a promising approach to increase cells function and number has been developed. Cell therapy by chimeric T antigen receptor (CAR-T) cells has shown significant efficacy in the treatment of leukemia, which has led researchers to use CAR-T cells in other diseases like autoimmune diseases. Here, we describe the existing treatments for autoimmune diseases and the available treatments based on Treg, their benefits and restrictions for implementation in clinical trials. We also discussed potential solutions to overcome these limitations. It seems novel designs of CARs to be new hope for autoimmune diseases and expected to be a potential cure option in a wide array of disease in the future. Therefore, it is very important to address this issue and increase information about it.
Collapse
|
46
|
Goepp M, Crittenden S, Zhou Y, Rossi AG, Narumiya S, Yao C. Prostaglandin E 2 directly inhibits the conversion of inducible regulatory T cells through EP2 and EP4 receptors via antagonizing TGF-β signalling. Immunology 2021; 164:777-791. [PMID: 34529833 PMCID: PMC8561111 DOI: 10.1111/imm.13417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/28/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022] Open
Abstract
Regulatory T (Treg) cells are essential for control of inflammatory processes by suppressing effector T-cell functions. The actions of PGE2 on the development and function of Treg cells, particularly under inflammatory conditions, are debated. In this study, we employed pharmacological and genetic approaches to examine whether PGE2 had a direct action on T cells to modulate de novo differentiation of Treg cells. We found that TGF-β-induced Foxp3 expression and iTreg cell differentiation in vitro is markedly inhibited by PGE2 , which was mediated by the receptors EP2 and EP4. Mechanistically, PGE2 -EP2/EP4 signalling interrupts TGF-β signalling during iTreg differentiation. Moreover, EP4 deficiency in T cells impaired iTreg cell differentiation in vivo. Thus, our results demonstrate that PGE2 negatively regulates iTreg cell differentiation through a direct action on T cells, highlighting the potential for selectively targeting the PGE2 -EP2/EP4 pathway to control T cell-mediated inflammation.
Collapse
Affiliation(s)
- Marie Goepp
- Centre for Inflammation Research, Queen’s Medical Research Institute,The University of EdinburghEdinburghUK
| | - Siobhan Crittenden
- Centre for Inflammation Research, Queen’s Medical Research Institute,The University of EdinburghEdinburghUK
| | - You Zhou
- Systems Immunity University Research Institute, and Division of Infection and ImmunityCardiff UniversityCardiffUK
| | - Adriano G Rossi
- Centre for Inflammation Research, Queen’s Medical Research Institute,The University of EdinburghEdinburghUK
| | - Shuh Narumiya
- Alliance Laboratory for Advanced Medical Research and Department of Drug Discovery Medicine, Medical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Chengcan Yao
- Centre for Inflammation Research, Queen’s Medical Research Institute,The University of EdinburghEdinburghUK
| |
Collapse
|
47
|
Chellappa S, Kushekhar K, Hagness M, Horneland R, Taskén K, Aandahl EM. The Presence of Activated T Cell Subsets prior to Transplantation Is Associated with Increased Rejection Risk in Pancreas Transplant Recipients. THE JOURNAL OF IMMUNOLOGY 2021; 207:2501-2511. [PMID: 34607938 DOI: 10.4049/jimmunol.2001103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Pancreas and islet transplantation (PTx) are currently the only curative treatment options for type 1 diabetes. CD4+ and CD8+ T cells play a pivotal role in graft function, rejection, and survival. However, characterization of immune cell status from patients with and without rejection of the pancreas graft is lacking. We performed multiparameter immune phenotyping of T cells from PTx patients prior to and 1 y post-PTx in nonrejectors and histologically confirmed rejectors. Our results suggest that rejection is associated with presence of elevated levels of activated CD4+ and CD8+ T cells with a gut-homing phenotype both prior to and 1 y post-PTx. The CD4+ and CD8+ T cells were highly differentiated, with elevated levels of type 1 inflammatory markers (T-bet and INF-γ) and cytotoxic components (granzyme B and perforin). Furthermore, we observed increased levels of activated FOXP3+ regulatory T cells in rejectors, which was associated with a hyporesponsive phenotype of activated effector T cells. Finally, activated T and B cell status was correlated in PTx patients, indicating a potential interplay between these cell types. In vitro treatment of healthy CD4+ and CD8+ T cells with tacrolimus abrogated the proliferation and cytokine (INF-γ, IL-2, and TNF-α) secretion associated with the type 1 inflammatory phenotype observed in pre- and post-PTx rejectors. Together, our results suggest the presence of activated CD4+ and CD8+ T cells prior to PTx confer increased risk for rejection. These findings may be used to identify patients that may benefit from more intense immunosuppressive treatment that should be monitored more closely after transplantation.
Collapse
Affiliation(s)
- Stalin Chellappa
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, Oslo University Hospital, Oslo, Norway; and
| | - Kushi Kushekhar
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, Oslo University Hospital, Oslo, Norway; and
| | - Morten Hagness
- Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Rune Horneland
- Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, Oslo University Hospital, Oslo, Norway; and
| | - Einar Martin Aandahl
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; .,K.G. Jebsen Centre for Cancer Immunotherapy, Institute for Clinical Medicine, University of Oslo, Oslo University Hospital, Oslo, Norway; and.,Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
48
|
Deer E, Amaral LM, Campbell N, Fitzgerald S, Herrock O, Ibrahim T, LaMarca B. Low Dose of IL-2 Normalizes Hypertension and Mitochondrial Function in the RUPP Rat Model of Placental Ischemia. Cells 2021; 10:2797. [PMID: 34685775 PMCID: PMC8534834 DOI: 10.3390/cells10102797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/30/2022] Open
Abstract
IL-2 is a cytokine released from CD4+T cells with dual actions and can either potentiate the inflammatory response or quell a chronic inflammatory response depending on its circulating concentration. IL-2 is elevated in many chronic inflammatory conditions and is increased during preeclampsia (PE). PE is characterized by new-onset hypertension during pregnancy and organ dysfunction and increasing evidence indicates that proinflammatory cytokines cause hypertension and mitochondrial (mt) dysfunction during pregnancy. The reduced uterine perfusion pressure (RUPP) model of placental ischemia is a rat model of PE that we commonly use in our laboratory and we have previously shown that low doses of recombinant IL-2 can decrease blood pressure in RUPP rats. The objective of this study was to determine the effects of a low dose of recombinant IL-2 on multi-organ mt dysfunction in the RUPP rat model of PE. We tested our hypothesis by infusing recombinant IL-2 (0.05 ng/mL) into RUPP rats on GD14 and examined mean arterial pressure (MAP), renal, placental and endothelial cell mt function compared to control RUPP. MAP was elevated in RUPP rats (n = 6) compared to controls (n = 5) (122 ± 5 vs. 102 ± 3 mmHg, p < 0.05), but was reduced by administration of LD recombinant IL-2 (107 ± 1 vs. 122 ± 5 mmHg, n = 9, p < 0.05). Renal, placental and endothelial mt ROS were significantly increased in RUPP rats compared to RUPP+ IL-2 and controls. Placental and renal respiration rates were reduced in RUPP rats compared to control rats but were normalized with IL-2 administration to RUPPs. These data indicate that low-dose IL-2 normalized multi-organ mt function and hypertension in response to placental ischemia.
Collapse
Affiliation(s)
- Evangeline Deer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (E.D.); (L.M.A.); (N.C.); (S.F.); (O.H.); (T.I.)
| | - Lorena M. Amaral
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (E.D.); (L.M.A.); (N.C.); (S.F.); (O.H.); (T.I.)
| | - Nathan Campbell
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (E.D.); (L.M.A.); (N.C.); (S.F.); (O.H.); (T.I.)
| | - Sarah Fitzgerald
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (E.D.); (L.M.A.); (N.C.); (S.F.); (O.H.); (T.I.)
| | - Owen Herrock
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (E.D.); (L.M.A.); (N.C.); (S.F.); (O.H.); (T.I.)
| | - Tarek Ibrahim
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (E.D.); (L.M.A.); (N.C.); (S.F.); (O.H.); (T.I.)
| | - Babbette LaMarca
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (E.D.); (L.M.A.); (N.C.); (S.F.); (O.H.); (T.I.)
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Departments of Pharmacology, Physiology, and Obstetrics and Gynecology, Center for Excellence in Cardiovascular and Renal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
49
|
Dwyer AJ, Ritz JM, Mitchell JS, Martinov T, Alkhatib M, Silva N, Tucker CG, Fife BT. Enhanced CD4 + and CD8 + T cell infiltrate within convex hull defined pancreatic islet borders as autoimmune diabetes progresses. Sci Rep 2021; 11:17142. [PMID: 34433860 PMCID: PMC8387412 DOI: 10.1038/s41598-021-96327-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
The notion that T cell insulitis increases as type 1 diabetes (T1D) develops is unsurprising, however, the quantitative analysis of CD4+ and CD8+ T cells within the islet mass is complex and limited with standard approaches. Optical microscopy is an important and widely used method to evaluate immune cell infiltration into pancreatic islets of Langerhans for the study of disease progression or therapeutic efficacy in murine T1D. However, the accuracy of this approach is often limited by subjective and potentially biased qualitative assessment of immune cell subsets. In addition, attempts at quantitative measurements require significant time for manual analysis and often involve sophisticated and expensive imaging software. In this study, we developed and illustrate here a streamlined analytical strategy for the rapid, automated and unbiased investigation of islet area and immune cell infiltration within (insulitis) and around (peri-insulitis) pancreatic islets. To this end, we demonstrate swift and accurate detection of islet borders by modeling cross-sectional islet areas with convex polygons (convex hulls) surrounding islet-associated insulin-producing β cell and glucagon-producing α cell fluorescent signals. To accomplish this, we used a macro produced with the freeware software ImageJ equipped with the Fiji Is Just ImageJ (FIJI) image processing package. Our image analysis procedure allows for direct quantification and statistical determination of islet area and infiltration in a reproducible manner, with location-specific data that more accurately reflect islet areas as insulitis proceeds throughout T1D. Using this approach, we quantified the islet area infiltrated with CD4+ and CD8+ T cells allowing statistical comparison between different age groups of non-obese diabetic (NOD) mice progressing towards T1D. We found significantly more CD4+ and CD8+ T cells infiltrating the convex hull-defined islet mass of 13-week-old non-diabetic and 17-week-old diabetic NOD mice compared to 4-week-old NOD mice. We also determined a significant and measurable loss of islet mass in mice that developed T1D. This approach will be helpful for the location-dependent quantitative calculation of islet mass and cellular infiltration during T1D pathogenesis and can be combined with other markers of inflammation or activation in future studies.
Collapse
Affiliation(s)
- Alexander J Dwyer
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, 2101 6th St SE, Wallin Medical Biosciences Building, 3-146, Minneapolis, MN, 55455, USA
| | - Jacob M Ritz
- School of Physics and Astronomy, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Jason S Mitchell
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Tijana Martinov
- Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Mohannad Alkhatib
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, 2101 6th St SE, Wallin Medical Biosciences Building, 3-146, Minneapolis, MN, 55455, USA
| | - Nubia Silva
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, 2101 6th St SE, Wallin Medical Biosciences Building, 3-146, Minneapolis, MN, 55455, USA
| | - Christopher G Tucker
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, 2101 6th St SE, Wallin Medical Biosciences Building, 3-146, Minneapolis, MN, 55455, USA
| | - Brian T Fife
- Center for Immunology, Department of Medicine, Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, 2101 6th St SE, Wallin Medical Biosciences Building, 3-146, Minneapolis, MN, 55455, USA.
| |
Collapse
|
50
|
Koufakis T, Dimitriadis G, Metallidis S, Zebekakis P, Kotsa K. The role of autoimmunity in the pathophysiology of type 2 diabetes: Looking at the other side of the moon. Obes Rev 2021; 22:e13231. [PMID: 33682984 DOI: 10.1111/obr.13231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
Efforts to unravel the pathophysiological mechanisms of type 2 diabetes (T2D) have been traditionally trapped into a metabolic perspective. However, T2D is a phenotypically and pathophysiologically heterogenous disorder, and the need for a tailored approach in its management is becoming increasingly evident. There is emerging evidence that irregular immune responses contribute to the development of hyperglycemia in T2D and, inversely, that insulin resistance is a component of the pathogenesis of autoimmune diabetes. Nevertheless, it has not yet been fully elucidated to what extent the presence of conventional autoimmune markers, such as autoantibodies, in subjects with T2D might affect the natural history of the disease and particularly each response to various treatments. The challenge for future research in the field is the discovery of novel genetic, molecular, or phenotypical indicators that would enable the characterization of specific subpopulations of people with T2D who would benefit most from the addition of immunomodulatory therapies to standard glucose-lowering treatment. This narrative review aims to discuss the plausible mechanisms through which the immune system might be implicated in the development of metabolic disturbances in T2D and obesity and explore a potential role of immunotherapy in the future management of the disorder and its complications.
Collapse
Affiliation(s)
- Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - George Dimitriadis
- Athens University Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Symeon Metallidis
- Infectious Diseases Division, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Pantelis Zebekakis
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece.,Infectious Diseases Division, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Center, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|