1
|
Okamoto J, Yin X, Ryan B, Chiou J, Luca F, Pique-Regi R, Im HK, Morrison J, Burant C, Fauman EB, Laakso M, Boehnke M, Wen X. Multi-INTACT: integrative analysis of the genome, transcriptome, and proteome identifies causal mechanisms of complex traits. Genome Biol 2025; 26:19. [PMID: 39901160 PMCID: PMC11789355 DOI: 10.1186/s13059-025-03480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 01/21/2025] [Indexed: 02/05/2025] Open
Abstract
We present multi-integration of transcriptome-wide association studies and colocalization (Multi-INTACT), an algorithm that models multiple "gene products" (e.g., encoded RNA transcript and protein levels) to implicate causal genes and relevant gene products. In simulations, Multi-INTACT achieves higher power than existing methods, maintains calibrated false discovery rates, and detects the true causal gene product(s). We apply Multi-INTACT to GWAS on 1408 metabolites, integrating the GTEx expression and UK Biobank protein QTL datasets. Multi-INTACT infers 52 to 109% more metabolite causal genes than protein-alone or expression-alone analyses and indicates both gene products are relevant for most gene nominations.
Collapse
Affiliation(s)
- Jeffrey Okamoto
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Xianyong Yin
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Brady Ryan
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joshua Chiou
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, 02139, USA
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Hae Kyung Im
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Jean Morrison
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Charles Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eric B Fauman
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, 02139, USA
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, 70210, Finland
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Xiaoquan Wen
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Liu Y, Lou X. The Bidirectional Association Between Metabolic Syndrome and Long-COVID-19. Diabetes Metab Syndr Obes 2024; 17:3697-3710. [PMID: 39398386 PMCID: PMC11471063 DOI: 10.2147/dmso.s484733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/22/2024] [Indexed: 10/15/2024] Open
Abstract
Background The rapid global spread of a new coronavirus disease known as COVID-19 has led to a significant increase in mortality rates, resulting in an unprecedented worldwide pandemic. Methods The impact of COVID-19, particularly its long-term effects, has also had a profound effect on the health and well-being of individuals.Metabolic syndrome increases the risk of heart and brain diseases, presenting a significant danger to human well-being. Purpose The prognosis of long COVID and the progression of metabolic syndrome interact with each other, but there is currently a lack of systematic reports.In this paper, the pathogenesis, related treatment and prognosis of long COVID and metabolic syndrome are systematically reviewed.
Collapse
Affiliation(s)
- Yanfen Liu
- Department of Endocrinology at Zhejiang University School of Medicine, Jinhua Hospital, Jinhua, People’s Republic of China
| | - Xueyong Lou
- Department of Endocrinology at Zhejiang University School of Medicine, Jinhua Hospital, Jinhua, People’s Republic of China
| |
Collapse
|
3
|
Steffen D, Kjaer M, Yeung CYC. Exercise entrainment of musculoskeletal connective tissue clocks. Am J Physiol Cell Physiol 2024; 327:C270-C277. [PMID: 38881419 DOI: 10.1152/ajpcell.00285.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024]
Abstract
The musculoskeletal system, crucial for movement and support, relies on the delicate balance of connective tissue homeostasis. Maintaining this equilibrium is essential for tissue health and function. There has been increasing evidence in the past decade that shows the circadian clock as a master regulator of extracellular matrix (ECM) homeostasis in several connective tissue clocks. Very recently, exercise has emerged as a significant entrainment factor for cartilage and intervertebral disk circadian rhythms. Understanding the implications of exercise on connective tissue peripheral clocks holds promise for enhancing tissue health and disease prevention. Exercise-induced factors such as heat, glucocorticoid release, mechanical loading, and inter-tissue cross talk may play pivotal roles in entraining the circadian rhythm of connective tissues. This mini review underscores the importance of elucidating the mechanisms through which exercise influences circadian rhythms in connective tissues to optimize ECM homeostasis. Leveraging exercise as a modulator of circadian rhythms in connective tissues may offer novel therapeutic approaches to physical training for preventing musculoskeletal disorders and enhancing recovery.
Collapse
Affiliation(s)
- Danielle Steffen
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjaer
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ching-Yan Chloé Yeung
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Qiao R, Guo J, Zhang C, Wang S, Fang J, Geng R, Kang SG, Huang K, Tong T. Diabetes-induced muscle wasting: molecular mechanisms and promising therapeutic targets. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 39049742 DOI: 10.1080/10408398.2024.2382348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Diabetes has become a serious public health crisis, presenting significant challenges to individuals worldwide. As the largest organ in the human body, skeletal muscle is a significant target of this chronic disease, yet muscle wasting as a complication of diabetes is still not fully understood and effective treatment methods have yet to be developed. Here, we discuss the targets involved in inducing muscle wasting under diabetic conditions, both validated targets and emerging targets. Diabetes-induced skeletal muscle wasting is known to involve changes in various signaling molecules and pathways, such as protein degradation pathways, protein synthesis pathways, mitochondrial function, and oxidative stress inflammation. Recent studies have shown that some of these present potential as promising therapeutic targets, including the neuregulin 1/epidermal growth factor receptor family, advanced glycation end-products, irisin, ferroptosis, growth differentiation factor 15 and more. This study's investigation and discussion of such pathways and their potential applications provides a theoretical basis for the development of clinical treatments for diabetes-induced muscle wasting and a foundation for continued focus on this disease.
Collapse
Affiliation(s)
- Ruixue Qiao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
| | - Jingya Guo
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
| | - Chengmei Zhang
- Guizhou Academy of Testing and Analysis, Guiyang, The People's Republic of China
| | - Sirui Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
| | - Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
| | - Seong-Gook Kang
- Department of Food Engineering and Solar Salt Research Center, Mokpo National University, Muangun, Republic of Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, The People's Republic of China
- Beijing Laboratory for Food Quality and Safety, Beijing, The People's Republic of China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, The People's Republic of China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, The People's Republic of China
- Beijing Laboratory for Food Quality and Safety, Beijing, The People's Republic of China
| |
Collapse
|
5
|
Yan X, Fu P, Zhang Y, Ling D, Reynolds L, Hua W, Wang Z, Ma F, Li B, Yu J, Liu Y, Gong L, Zhang E. MCC950 Ameliorates Diabetic Muscle Atrophy in Mice by Inhibition of Pyroptosis and Its Synergistic Effect with Aerobic Exercise. Molecules 2024; 29:712. [PMID: 38338456 PMCID: PMC10856337 DOI: 10.3390/molecules29030712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetic muscle atrophy is an inflammation-related complication of type-2 diabetes mellitus (T2DM). Even though regular exercise prevents further deterioration of atrophic status, there is no effective mediator available for treatment and the underlying cellular mechanisms are less explored. In this study, we investigated the therapeutic potential of MCC950, a specific, small-molecule inhibitor of NLRP3, to treat pyroptosis and diabetic muscle atrophy in mice. Furthermore, we used MCC950 to intervene in the protective effects of aerobic exercise against muscle atrophy in diabetic mice. Blood and gastrocnemius muscle (GAS) samples were collected after 12 weeks of intervention and the atrophic state was assessed. We initially corroborated a diabetic muscle atrophy phenotype in db/db mice (D) by comparison with control m/m mice (W) by examining parameters such as fasting blood glucose (D vs. W: 24.47 ± 0.45 mmol L-1 vs. 4.26 ± 0.6 mmol L-1, p < 0.05), grip strength (D vs. W: 166.87 ± 15.19 g vs. 191.76 ± 14.13 g, p < 0.05), exercise time (D vs. W: 1082.38 ± 104.67 s vs. 1716 ± 168.55 s, p < 0.05) and exercise speed to exhaustion (D vs. W: 24.25 ± 2.12 m min-1 vs. 34.75 ± 2.66 m min-1, p < 0.05), GAS wet weight (D vs. W: 0.07 ± 0.01 g vs. 0.13 ± 0.01 g, p < 0.05), the ratio of GAS wet weight to body weight (D vs. W: 0.18 ± 0.01% vs. 0.54 ± 0.02%, p < 0.05), and muscle fiber cross-sectional area (FCSA) (D vs. W: 1875 ± 368.19 µm2 vs. 2747.83 ± 406.44 µm2, p < 0.05). We found that both MCC950 (10 mg kg-1) treatment and exercise improved the atrophic parameters that had deteriorated in the db/db mice, inhibited serum inflammatory markers and significantly attenuated pyroptosis in atrophic GAS. In addition, a combined MCC950 treatment with exercise (DEI) exhibited a further improvement in glucose uptake capacity and muscle performance. This combined treatment also improved the FCSA of GAS muscle indicated by Laminin immunofluorescence compared to the group with the inhibitor treatment alone (DI) (DEI vs. DI: 2597 ± 310.97 vs. 1974.67 ± 326.15 µm2, p < 0.05) or exercise only (DE) (DEI vs. DE: 2597 ± 310.97 vs. 2006.33 ± 263.468 µm2, p < 0.05). Intriguingly, the combination of MCC950 treatment and exercise significantly reduced NLRP3-mediated inflammatory factors such as cleaved-Caspase-1, GSDMD-N and prevented apoptosis and pyroptosis in atrophic GAS. These findings for the first time demonstrate that targeting NLRP3-mediated pyroptosis with MCC950 improves diabetic muscle homeostasis and muscle function. We also report that inhibiting pyroptosis by MCC950 can enhance the beneficial effects of aerobic exercise on diabetic muscle atrophy. Since T2DM and muscle atrophy are age-related diseases, the young mice used in the current study do not seem to fully reflect the characteristics of diabetic muscle atrophy. Considering the fragile nature of db/db mice and for the complete implementation of the exercise intervention, we used relatively young db/db mice and the atrophic state in the mice was thoroughly confirmed. Taken together, the current study comprehensively investigated the therapeutic effect of NLRP3-mediated pyroptosis inhibited by MCC950 on diabetic muscle mass, strength and exercise performance, as well as the synergistic effects of MCC950 and exercise intervention, therefore providing a novel strategy for the treatment of the disease.
Collapse
Affiliation(s)
- Xiaoyu Yan
- Key Laboratory of Exercise and Physical Fitness of Ministry of Education, Beijing Sport University, Beijing 100084, China; (X.Y.); (J.Y.)
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
| | - Pengyu Fu
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
- Department of Physical Education, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yimin Zhang
- Key Laboratory of Exercise and Physical Fitness of Ministry of Education, Beijing Sport University, Beijing 100084, China; (X.Y.); (J.Y.)
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
| | - Dongmei Ling
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
| | - Lewis Reynolds
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, 21428 Malmö, Sweden (E.Z.)
- NanoLund Center for NanoScience, Lund University, 22100 Lund, Sweden
| | - Weicheng Hua
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
| | - Zhiyuan Wang
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
| | - Fangyuan Ma
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
- School of Life Sciences, Nankai University, Tianjin 300071, China
| | - Boxuan Li
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Jingjing Yu
- Key Laboratory of Exercise and Physical Fitness of Ministry of Education, Beijing Sport University, Beijing 100084, China; (X.Y.); (J.Y.)
| | - Yujia Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
- Institute of Physical Education, Jiangsu Normal University, Xuzhou 221116, China
| | - Lijing Gong
- Key Laboratory of Exercise and Physical Fitness of Ministry of Education, Beijing Sport University, Beijing 100084, China; (X.Y.); (J.Y.)
| | - Enming Zhang
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, 21428 Malmö, Sweden (E.Z.)
- NanoLund Center for NanoScience, Lund University, 22100 Lund, Sweden
| |
Collapse
|
6
|
Serrano QA, Le Garf S, Martin V, Colson SS, Chevalier N. Is Physical Activity an Efficient Strategy to Control the Adverse Effects of Persistent Organic Pollutants in the Context of Obesity? A Narrative Review. Int J Mol Sci 2024; 25:883. [PMID: 38255955 PMCID: PMC10815489 DOI: 10.3390/ijms25020883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Obesity affects nearly 660 million adults worldwide and is known for its many comorbidities. Although the phenomenon of obesity is not fully understood, science regularly reveals new determinants of this pathology. Among them, persistent organic pollutants (POPs) have been recently highlighted. Mainly lipophilic, POPs are normally stored in adipose tissue and can lead to adverse metabolic effects when released into the bloodstream. The main objective of this narrative review is to discuss the different pathways by which physical activity may counteract POPs' adverse effects. The research that we carried out seems to indicate that physical activity could positively influence several pathways negatively influenced by POPs, such as insulin resistance, inflammation, lipid accumulation, adipogenesis, and gut microbiota dysbiosis, that are associated with the development of obesity. This review also indicates how, through the controlled mobilization of POPs, physical activity could be a valuable approach to reduce the concentration of POPs in the bloodstream. These findings suggest that physical activity should be used to counteract the adverse effects of POPs. However, future studies should accurately assess its impact in specific situations such as bariatric surgery, where weight loss promotes POPs' blood release.
Collapse
Affiliation(s)
| | | | - Vincent Martin
- Université Clermont Auvergne, AME2P, F-63000 Clermont-Ferrand, France;
- Institut Universitaire de France (IUF), 75005 Paris, France
| | | | | |
Collapse
|
7
|
Hu Z, Li X, Yang Y, Zhang Z, Ding S. High-Intensity Interval Training Ameliorates High-Fat Diet-Induced Metabolic Disorders via the Cyclic GMP-AMP Synthase-Stimulator of Interferon Gene Signaling Pathway. Int J Mol Sci 2023; 24:13840. [PMID: 37762143 PMCID: PMC10531371 DOI: 10.3390/ijms241813840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolic diseases are growing in prevalence worldwide. Although the pathogenesis of metabolic diseases remains ambiguous, the correlation between cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) and metabolic diseases has been identified recently. Exercise is an effective intervention protecting against metabolic diseases, however, the role of the cGAS-STING signaling pathway in this process is unclear, and the effect and mechanism of different exercise intensities on metabolic disorders are still unknown. Thus, we explored the association between exercise to ameliorate HFD-induced metabolic disorders and the cGAS-STING signaling pathway and compared the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT). Male C57BL/6 mice (6-8 weeks old) were fed HFD for 8 weeks to establish a metabolic disease model and were subjected to 8-week MICT or HIIT training. Glucose tolerance tests (GTT) and insulin tolerance tests (ITT) were used to assess glucose metabolism. Serum triglyceride (TG) and total cholesterol (TC) were measured to evaluate lipid metabolism. Oil red staining was used to observe the lipid droplets in the gastrocnemius muscle. An enzyme-linked immunosorbent assay was used to detect the serum inflammatory factors IL-6 and IFN-β. The protein expression of the cGAS-STING signaling pathway was detected by the WesTM automatic protein expression analysis system. We reported that HFD induced metabolic disorders with obesity, abnormal glucolipid metabolism, and significant inflammatory responses. Both HIIT and MICT ameliorated the above adverse reactions, but MICT was superior to HIIT in improving glucolipid disorders. Additionally, HIIT significantly increased the expression of STING protein, as well as the phosphorylation of TBKI and the ratio of p-IRF3/IRF3. MICT only increased the expression of STING protein. Our findings suggest that HIIT may alleviate HFD-induced metabolic disorder phenotype through the cGAS-STING signaling pathway. However, the improvement of MICT on metabolic disorder phenotype is less associated with the cGAS-STING pathway, which needs to be further explored.
Collapse
Affiliation(s)
- Zhiwen Hu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China; (Z.H.); (X.L.); (Y.Y.)
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Xi Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China; (Z.H.); (X.L.); (Y.Y.)
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Yangjun Yang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China; (Z.H.); (X.L.); (Y.Y.)
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Zhe Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China; (Z.H.); (X.L.); (Y.Y.)
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai 200241, China; (Z.H.); (X.L.); (Y.Y.)
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| |
Collapse
|
8
|
Okamoto J, Wang L, Yin X, Luca F, Pique-Regi R, Helms A, Im HK, Morrison J, Wen X. Probabilistic integration of transcriptome-wide association studies and colocalization analysis identifies key molecular pathways of complex traits. Am J Hum Genet 2023; 110:44-57. [PMID: 36608684 PMCID: PMC9892769 DOI: 10.1016/j.ajhg.2022.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/06/2022] [Indexed: 01/07/2023] Open
Abstract
Integrative genetic association methods have shown great promise in post-GWAS (genome-wide association study) analyses, in which one of the most challenging tasks is identifying putative causal genes and uncovering molecular mechanisms of complex traits. Recent studies suggest that prevailing computational approaches, including transcriptome-wide association studies (TWASs) and colocalization analysis, are individually imperfect, but their joint usage can yield robust and powerful inference results. This paper presents INTACT, a computational framework to integrate probabilistic evidence from these distinct types of analyses and implicate putative causal genes. This procedure is flexible and can work with a wide range of existing integrative analysis approaches. It has the unique ability to quantify the uncertainty of implicated genes, enabling rigorous control of false-positive discoveries. Taking advantage of this highly desirable feature, we further propose an efficient algorithm, INTACT-GSE, for gene set enrichment analysis based on the integrated probabilistic evidence. We examine the proposed computational methods and illustrate their improved performance over the existing approaches through simulation studies. We apply the proposed methods to analyze the multi-tissue eQTL data from the GTEx project and eight large-scale complex- and molecular-trait GWAS datasets from multiple consortia and the UK Biobank. Overall, we find that the proposed methods markedly improve the existing putative gene implication methods and are particularly advantageous in evaluating and identifying key gene sets and biological pathways underlying complex traits.
Collapse
Affiliation(s)
- Jeffrey Okamoto
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Lijia Wang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xianyong Yin
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Adam Helms
- University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Hae Kyung Im
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jean Morrison
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiaoquan Wen
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Wang X, Zhao J, Li Y, Rao J, Xu G. Epigenetics and endoplasmic reticulum in podocytopathy during diabetic nephropathy progression. Front Immunol 2022; 13:1090989. [PMID: 36618403 PMCID: PMC9813850 DOI: 10.3389/fimmu.2022.1090989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Proteinuria or nephrotic syndrome are symptoms of podocytopathies, kidney diseases caused by direct or indirect podocyte damage. Human health worldwide is threatened by diabetic nephropathy (DN), the leading cause of end-stage renal disease (ESRD) in the world. DN development and progression are largely dependent on inflammation. The effects of podocyte damage on metabolic disease and inflammatory disorders have been documented. Epigenetic and endoplasmic reticulum (ER) stress are also evident in DN. Targeting inflammation pathway and ER stress in podocytes may be a prospective therapy to prevent the progression of DN. Here, we review the mechanism of epigenetics and ER stress on podocyte inflammation and apoptosis, and discuss the potential amelioration of podocytopathies by regulating epigenetics and ER stress as well as by targeting inflammatory signaling, which provides a theoretical basis for drug development to ameliorate DN.
Collapse
Affiliation(s)
- Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China,*Correspondence: Xiaokang Wang,
| | - Jingqian Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yuanqing Li
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Jiaoyu Rao
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Gengrui Xu
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, The Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
10
|
Aerobic Exercise Prevents Chronic Inflammation and Insulin Resistance in Skeletal Muscle of High-Fat Diet Mice. Nutrients 2022; 14:nu14183730. [PMID: 36145106 PMCID: PMC9503887 DOI: 10.3390/nu14183730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity is commonly accompanied by chronic tissue inflammation and leads to insulin resistance. Aerobic exercise is an essential treatment for insulin resistance and has anti-inflammatory effects. However, the molecular mechanisms of exercise on obesity-associated inflammation and insulin resistance remain largely unknown. Here, we evaluated the effects of aerobic exercise on inflammation and insulin resistance in skeletal muscles of high-fat diet (HFD) mice. Male C57BL/6J mice were fed a high-fat diet or a normal diet for 12 weeks, and then aerobic training was performed on a treadmill for 8 weeks. Body weight, fasting blood glucose, food intake levels, and glucose and insulin tolerance were evaluated. The levels of cytokines, skeletal muscle insulin resistance, and inflammation were also analyzed. Eight weeks of aerobic exercise attenuated HFD-induced weight gain and glucose intolerance, and improved insulin sensitivity. This was accompanied by enhanced insulin signaling. Exercise directly resulted in a significant reduction of lipid content, inflammation, and macrophage infiltration in skeletal muscles. Moreover, exercise alleviated HFD-mediated inflammation by suppressing the activation of the NF-κB pathway within skeletal muscles. These results revealed that aerobic exercise could lead to an anti-inflammatory phenotype with protection from skeletal muscle insulin resistance in HFD-induced mice.
Collapse
|
11
|
Rebello CJ, Axelrod CL, Reynolds CF, Greenway FL, Kirwan JP. Exercise as a Moderator of Persistent Neuroendocrine Symptoms of COVID-19. Exerc Sport Sci Rev 2022; 50:65-72. [PMID: 35019862 PMCID: PMC8900884 DOI: 10.1249/jes.0000000000000284] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Precipitated by chronic psychological stress, immune system dysregulation, and a hyperinflammatory state, the sequelae of postacute COVID-19 (long COVID) include depression and new-onset diabetes. We hypothesize that exercise counters the neuropsychiatric and endocrine sequelae of long COVID by inducing the release of circulating factors that mediate the anti-inflammatory response, support brain homeostasis, and increase insulin sensitivity.
Collapse
|
12
|
Garcia LA, Zapata-Bustos R, Day SE, Campos B, Hamzaoui Y, Wu L, Leon AD, Krentzel J, Coletta RL, De Filippis E, Roust LR, Mandarino LJ, Coletta DK. Can Exercise Training Alter Human Skeletal Muscle DNA Methylation? Metabolites 2022; 12:metabo12030222. [PMID: 35323665 PMCID: PMC8953782 DOI: 10.3390/metabo12030222] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle is highly plastic and dynamically regulated by the body’s physical demands. This study aimed to determine the plasticity of skeletal muscle DNA methylation in response to 8 weeks of supervised exercise training in volunteers with a range of insulin sensitivities. We studied 13 sedentary participants and performed euglycemic hyperinsulinemic clamps with basal vastus lateralis muscle biopsies and peak aerobic activity (VO2 peak) tests before and after training. We extracted DNA from the muscle biopsies and performed global methylation using Illumina’s Methylation EPIC 850K BeadChip. Training significantly increased peak aerobic capacity and insulin-stimulated glucose disposal. Fasting serum insulin and insulin levels during the steady state of the clamp were significantly lower post-training. Insulin clearance rates during the clamp increased following the training. We identified 13 increased and 90 decreased differentially methylated cytosines (DMCs) in response to 8 weeks of training. Of the 13 increased DMCs, 2 were within the following genes, FSTL3, and RP11-624M8.1. Of the 90 decreased DMCs, 9 were within the genes CNGA1, FCGR2A, KIF21A, MEIS1, NT5DC1, OR4D1, PRPF4B, SLC26A7, and ZNF280C. Moreover, pathway analysis showed an enrichment in metabolic and actin-cytoskeleton pathways for the decreased DMCs, and for the increased DMCs, an enrichment in signal-dependent regulation of myogenesis, NOTCH2 activation and transmission, and SMAD2/3: SMAD4 transcriptional activity pathways. Our findings showed that 8 weeks of exercise training alters skeletal muscle DNA methylation of specific genes and pathways in people with varying degrees of insulin sensitivity.
Collapse
Affiliation(s)
- Luis A. Garcia
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Rocio Zapata-Bustos
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Samantha E. Day
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85004, USA;
| | - Baltazar Campos
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Yassin Hamzaoui
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA; (Y.H.); (L.W.)
| | - Linda Wu
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA; (Y.H.); (L.W.)
| | - Alma D. Leon
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Judith Krentzel
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Richard L. Coletta
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Eleanna De Filippis
- Department of Endocrinology, Metabolism and Diabetes, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA; (E.D.F.); (L.R.R.)
| | - Lori R. Roust
- Department of Endocrinology, Metabolism and Diabetes, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA; (E.D.F.); (L.R.R.)
| | - Lawrence J. Mandarino
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
| | - Dawn K. Coletta
- Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, AZ 85724, USA; (L.A.G.); (R.Z.-B.); (B.C.); (A.D.L.); (J.K.); (L.J.M.)
- Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, AZ 85724, USA;
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA; (Y.H.); (L.W.)
- Correspondence: ; Tel.: +1-(520)-626-9316
| |
Collapse
|
13
|
Abedpoor N, Taghian F, Hajibabaie F. Physical activity ameliorates the function of organs via adipose tissue in metabolic diseases. Acta Histochem 2022; 124:151844. [PMID: 35045377 DOI: 10.1016/j.acthis.2022.151844] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
Adipose tissue is a dynamic organ in the endocrine system that can connect organs by secreting molecules and bioactive. Hence, adipose tissue really plays a pivotal role in regulating metabolism, inflammation, energy homeostasis, and thermogenesis. Disruption of hub bioactive molecules secretion such as adipokines leads to dysregulate metabolic communication between adipose tissue and other organs in non-communicable disorders. Moreover, a sedentary lifestyle may be a risk factor for adipose tissue function. Physical inactivity leads to fat tissue accumulation and promotes obesity, Type 2 diabetes, cardiovascular disease, neurodegenerative disease, fatty liver, osteoporosis, and inflammatory bowel disease. On the other hand, physical activity may ameliorate and protect the body against metabolic disorders, triggering thermogenesis, metabolism, mitochondrial biogenesis, β-oxidation, and glucose uptake. Furthermore, physical activity provides an inter-organ association and cross-talk between different tissues by improving adipose tissue function, reprogramming gene expression, modulating molecules and bioactive factors. Also, physical activity decreases chronic inflammation, oxidative stress and improves metabolic features in adipose tissue. The current review focuses on the beneficial effect of physical activity on the cardiovascular, locomotor, digestive, and nervous systems. In addition, we visualize protein-protein interactions networks between hub proteins involved in dysregulating metabolic induced by adipose tissue.
Collapse
Affiliation(s)
- Navid Abedpoor
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Farzaneh Taghian
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Fatemeh Hajibabaie
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| |
Collapse
|
14
|
Vladimirsky VE, Vladimirsky EV, Lunina AN, Fesyun AD, Rachin AP, Lebedeva OD, Yakovlev MY, Tubekova MA. [Molecular mechanisms of adaptive and therapeutic effects of physical activity in patients with cardiovascular diseases]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2022; 99:69-77. [PMID: 35485663 DOI: 10.17116/kurort20229902169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Physical activity is one of the main components of the rehabilitation of patients with cardiovascular disease (CVD). As shown by practice and the results of evidence-based studies, the beneficial effects of physical activity on disease outcomes in a number of cardiac nosologies are comparable to drug treatment. This gives the doctor another tool to influence the unfavorable epidemiological situation in developed countries with the spread of diseases of the cardiovascular system and CVD mortality. Reliable positive results of cardiorehabilitation (CR) were obtained using various methods. The goal of CR is to restore the optimal physiological, psychological and professional status, reduce the risk of CVD and mortality. In most current CVD guidelines worldwide, cardiac rehabilitation is a Class I recommendation. The molecular mechanisms described in the review, initiated by physical activity, underlie the multifactorial effect of the latter on the function of the cardiovascular system and the course of cardiac diseases. Physical exercise is an important component of the therapeutic management of patients with CVD, which is supported by the results of a meta-analysis of 63 studies associated with various forms of aerobic exercise of varying intensity (from 50 to 95% VO2) for 1 to 47 months, which showed that CR based on physical exercise improves cardiorespiratory endurance. Knowledge of the molecular basis of the influence of physical activity makes it possible to use biochemical markers to assess the effectiveness of rehabilitation programs.
Collapse
Affiliation(s)
| | | | - A N Lunina
- Wagner Perm State Medical University, Perm, Russia
| | - A D Fesyun
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| | - A P Rachin
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| | - O D Lebedeva
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| | - M Yu Yakovlev
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| | - M A Tubekova
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| |
Collapse
|
15
|
Nitro Fatty Acids (NO 2-FAs): An Emerging Class of Bioactive Fatty Acids. Molecules 2021; 26:molecules26247536. [PMID: 34946618 PMCID: PMC8708353 DOI: 10.3390/molecules26247536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Unsaturated nitro fatty acids (NO2-FAs) constitute a category of molecules that may be formed endogenously by the reaction of unsaturated fatty acids (UFAs) with secondary species of nitrogen monoxide and nitrite anions. The warhead of NO2-FAs is a nitroalkene moiety, which is a potent Michael acceptor and can undergo nucleophilic attack from thiol groups of biologically relevant proteins, showcasing the value of these molecules regarding their therapeutic potential against many diseases. In general, NO2-FAs inhibit nuclear factorκ-B (NF-κB), and simultaneously they activate nuclear factor (erythroid derived)-like 2 (Nrf2), which activates an antioxidant signaling pathway. NO2-FAs can be synthesized not only endogenously in the organism, but in a synthetic laboratory as well, either by a step-by-step synthesis or by a direct nitration of UFAs. The step-by-step synthesis requires specific precursor compounds and is in position to afford the desired NO2-FAs with a certain position of the nitro group. On the contrary, the direct nitration of UFAs is not a selective methodology; thus, it affords a mixture of all possible nitro isomers.
Collapse
|
16
|
Takada Y, Hanaoka T, Imagita H, Yasui T, Takeshita D, Abe M, Kawata S, Yamakami T, Okada K, Washio H, Okuda S, Minematsu A, Nakamura T, Terada S, Yamada T, Nakatani A, Sakata S. Long-term wheel-running prevents reduction of grip strength in type 2 diabetic rats. Physiol Rep 2021; 9:e15046. [PMID: 34558206 PMCID: PMC8461031 DOI: 10.14814/phy2.15046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
Diabetic skeletal muscles show reduced contractile force and increased fatigability. Hands are a target for several diabetes-induced complications. Therefore, reduced handgrip strength often occurs as a consequence of diabetes. The aim of this study was to examine whether long-term exercise can prevent reduction of grip strength in type 2 diabetes mellitus (T2DM) model OLETF rats, and to explore the mechanisms underlying diabetes-induced grip strength reduction. Ten 5-week-old OLETF rats were used as experimental animals, and five non-diabetic LETO rats as controls of OLETF rats. Half OLETF rats performed daily voluntary wheel-running for 17 months (OLETF + EXE), and the rest of OLETF and LETO rats were sedentary. Grip strength was higher in OLETF + EXE and LETO groups than in OLETF group. OLETF group with hyperglycemia showed an increase in HbA1c, serum TNF-α, and muscle SERCA activity, but a decrease in circulating insulin. Each fiber area, total fiber area, and % total fiber area in type IIb fibers of extensor digitorum longus muscles were larger in OLETF + EXE and LETO groups than in OLETF group. There was a positive correlation between grip strength and the above three parameters concerning type IIb fiber area. Therefore, type IIb fiber atrophy may be the major direct cause of grip strength reduction in OLETF group, although there seems multiple etiological mechanisms. Long-term wheel-running may have blocked the diabetes-induced reduction of grip strength by preventing type IIb fiber atrophy. Regular exercise may be a potent modality for preventing not only the progression of diabetes but muscle dysfunction in T2DM patients.
Collapse
Affiliation(s)
- Yoshihiro Takada
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
- Department of Human DevelopmentGraduate School of Human Development and EnvironmentKobe UniversityKobeJapan
| | - Tomoko Hanaoka
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Hidetaka Imagita
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Toshihide Yasui
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
- Department of Health and SportsMukogawa Women's UniversityNishinomiyaJapan
| | - Daisuke Takeshita
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Masami Abe
- Graduate School of Health SciencesSapporo Medical UniversitySapporoJapan
| | - Shinnosuke Kawata
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Taku Yamakami
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Keisuke Okada
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Hiroe Washio
- Department of NursingSchool of Health SciencesKansai University of International StudiesMikiJapan
| | - Syunji Okuda
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Akira Minematsu
- Division of Health ScienceGraduate School of Health ScienceKio UniversityNaraJapan
| | - Tomohiro Nakamura
- Division of Human SciencesFaculty of EngineeringOsaka Institute of TechnologyOsakaJapan
| | - Shin Terada
- Department of Life SciencesGraduate School of Arts and SciencesUniversity of TokyoTokyoJapan
| | - Takashi Yamada
- Graduate School of Health SciencesSapporo Medical UniversitySapporoJapan
| | - Akira Nakatani
- Laboratory of Exercise PhysiologyDepartment of Health and Sports Science EducationNara University of EducationNaraJapan
| | - Susumu Sakata
- Department of Physiology 1Nara Medical University School of MedicineKashiharaJapan
| |
Collapse
|
17
|
Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nat Rev Nephrol 2021; 17:319-334. [PMID: 33547417 DOI: 10.1038/s41581-021-00393-8] [Citation(s) in RCA: 319] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 01/30/2023]
Abstract
Diabetic kidney disease is the leading cause of kidney failure worldwide; in the USA, it accounts for over 50% of individuals entering dialysis or transplant programmes. Unlike other complications of diabetes, the prevalence of diabetic kidney disease has failed to decline over the past 30 years. Hyperglycaemia is the primary aetiological factor responsible for the development of diabetic kidney disease. Once hyperglycaemia becomes established, multiple pathophysiological disturbances, including hypertension, altered tubuloglomerular feedback, renal hypoxia, lipotoxicity, podocyte injury, inflammation, mitochondrial dysfunction, impaired autophagy and increased activity of the sodium-hydrogen exchanger, contribute to progressive glomerular sclerosis and the decline in glomerular filtration rate. The quantitative contribution of each of these abnormalities to the progression of diabetic kidney disease, as well as their role in type 1 and type 2 diabetes mellitus, remains to be determined. Sodium-glucose co-transporter 2 (SGLT2) inhibitors have a beneficial impact on many of these pathophysiological abnormalities; however, as several pathophysiological disturbances contribute to the onset and progression of diabetic kidney disease, multiple agents used in combination will likely be required to slow the progression of disease effectively.
Collapse
|
18
|
Nwadiugwu MC. Inflammatory Activities in Type 2 Diabetes Patients With Co-morbid Angiopathies and Exploring Beneficial Interventions: A Systematic Review. Front Public Health 2021; 8:600427. [PMID: 33569370 PMCID: PMC7868423 DOI: 10.3389/fpubh.2020.600427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Diabetes is a long-term condition that can be treated and controlled but do not yet have a cure; it could be induced by inflammation and the goal of managing it is to prevent additional co-morbidities and reduce glycemic fluctuations. There is a need to examine inflammatory activities in diabetes-related angiopathies and explore interventions that could reduce the risk for future outcome or ameliorate its effects to provide insights for improved care and management strategies. Method: The study was conducted in Embase (1946–2020), Ovid Medline (1950–2020), and PubMed databases (1960–2020) using the PICO framework. Primary studies (randomized controlled trials) on type 2 diabetes mellitus and inflammatory activities in diabetes-related angiopathies were included. Terms for the review were retrieved from the Cochrane library and from PROSPERO using its MeSH thesaurus qualifiers. Nine articles out of 454 total hits met the eligibility criteria. The quality assessment for the selected study was done using the Center for Evidence-Based Medicine Critical Appraisal Sheet. Results: Data analysis showed that elevated CRP, TNF-α, and IL-6 were the most commonly found inflammatory indicator in diabetes-related angiopathies, while increased IL-10 and soluble RAGE was an indicator for better outcome. Use of drugs such as salsalate, pioglitazone, simvastatin, and fenofibrate but not glimepiride or benfotiamine reported a significant decrease in inflammatory events. Regular exercise and consumption of dietary supplements such as ginger, hesperidin which have anti-inflammatory properties, and those containing prebiotic fibers (e.g., raspberries) revealed a consistent significant (p < 0.05) reduction in inflammatory activities. Conclusion: Inflammatory activities are implicated in diabetes-related angiopathies; regular exercise, the intake of healthy dietary supplements, and medications with anti-inflammatory properties could result in improved protective risk outcome for diabetes patients by suppressing inflammatory activities and elevating anti-inflammatory events.
Collapse
Affiliation(s)
- Martin C Nwadiugwu
- Faculty of Health and Sports, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
19
|
Fiorentino TV, Monroy A, Kamath S, Sotero R, Cas MD, Daniele G, Chavez AO, Abdul-Ghani M, Hribal ML, Sesti G, Tripathy D, DeFronzo RA, Folli F. Pioglitazone corrects dysregulation of skeletal muscle mitochondrial proteins involved in ATP synthesis in type 2 diabetes. Metabolism 2021; 114:154416. [PMID: 33137378 DOI: 10.1016/j.metabol.2020.154416] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/25/2022]
Abstract
CONTEXT In this study, we aimed to identify the determinants of mitochondrial dysfunction in skeletal muscle (SKLM) of subjects with type 2 diabetes (T2DM), and to evaluate the effect of pioglitazone (PIO) on SKLM mitochondrial proteome. METHODS Two different groups of adults were studied. Group I consisted of 8 individuals with normal glucose tolerance (NGT) and 8 with T2DM, subjected to SKLM mitochondrial proteome analysis by 2D-gel electrophoresis followed by mass spectrometry-based protein identification. Group II included 24 individuals with NGT and 24 with T2DM, whose SKLM biopsies were subjected to immunoblot analysis. Of the 24 subjects with T2DM, 20 were randomized to receive placebo or PIO (15 mg daily) for 6 months. After 6 months of treatment, SKLM biopsy was repeated. RESULTS Mitochondrial proteomic analysis on Group I revealed that several mitochondrial proteins involved in oxidative metabolism were differentially expressed between T2DM and NGT groups, with a downregulation of ATP synthase alpha chain (ATP5A), electron transfer flavoprotein alpha-subunit (ETFA), cytochrome c oxidase subunit VIb isoform 1 (CX6B1), pyruvate dehydrogenase protein X component (ODPX), dihydrolipoamide dehydrogenase (DLDH), dihydrolipoamide-S-succinyltransferase (DLST), and mitofilin, and an up-regulation of hydroxyacyl-CoA-dehydrogenase (HCDH), 3,2-trans-enoyl-CoA-isomerase (D3D2) and delta3,5-delta2,4-dienoyl-CoA-isomerase (ECH1) in T2DM as compared to NGT subjects. By immunoblot analysis on SKLM lysates obtained from Group II we confirmed that, in comparison to NGT subjects, those with T2DM exhibited lower protein levels of ATP5A (-30%, P = 0.006), ETFA (-50%, P = 0.02), CX6B1 (-30%, P = 0.03), key factors for ATP biosynthesis, and of the structural protein mitofilin (-30%, P = 0.01). T2DM was associated with a reduced abundance of the enzymes involved in the Krebs cycle DLST and ODPX (-20%, P ≤ 0.05) and increased levels of HCDH and ECH1, enzymes implicated in the fatty acid catabolism (+30%, P ≤ 0.05). In subjects with type 2 diabetes treated with PIO for 6 months we found a restored SKLM protein abundance of ATP5A, ETFA, CX6B1, and mitofilin. Moreover, protein levels of HCDH and ECH1 were reduced by -10% and - 15% respectively (P ≤ 0.05 for both) after PIO treatment. CONCLUSION Type 2 diabetes is associated with reduced levels of mitochondrial proteins involved in oxidative phosphorylation and an increased abundance of enzymes implicated in fatty acid catabolism in SKLM. PIO treatment is able to improve SKLM mitochondrial proteomic profile in subjects with T2DM.
Collapse
Affiliation(s)
- Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy; Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Adriana Monroy
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America; Oncology, General Hospital of Mexico, Mexico City, Mexico
| | - Subash Kamath
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Rosa Sotero
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Michele Dei Cas
- Clinical Biochemistry and Mass Spectrometry Laboratory, Department of Health Science, University of Milan, Milan, Italy
| | - Giuseppe Daniele
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Alberto O Chavez
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Muhammad Abdul-Ghani
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, Rome, Italy
| | - Devjit Tripathy
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Ralph A DeFronzo
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Franco Folli
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America; Endocrinology and Metabolism, Department of Health Science, University of Milan, Diabetologia e Malattie Metaboliche, Aziende Socio Sanitarie Territoriali Santi Paolo e Carlo, Milan, Italy.
| |
Collapse
|
20
|
Short-Term Combined Exercise Improves Inflammatory Profile in the Retina of Obese Mice. Int J Mol Sci 2020; 21:ijms21176099. [PMID: 32847099 PMCID: PMC7503303 DOI: 10.3390/ijms21176099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Excess of adipose tissue increases the concentration of proinflammatory cytokines, triggering a subclinical inflammatory condition. This inflammatory profile contributes to retina damage, which can lead to retinal dysfunction and reduced vision. Regularly practicing both aerobic and strength exercises is well known for promoting anti-inflammatory effects on different organs in the peripheral and central regions. However, the effects of combined physical exercise (CPE; strength + aerobic) on the inflammatory process in the retina tissue are not yet known. This study aimed to investigate the effects of CPE on the inflammatory profile of the retina in obese mice. Swiss mice were distributed into control, sedentary obese, and trained obese groups. The trained obese group was subjected to short-term CPE, 1 h/day, for 7 days. The CPE was composed of aerobic and strength exercises in the same exercise session. The strength exercise protocol consisted of 10 climbing series, with 12 ± 1 dynamic climbing movements at 70% of the maximum voluntary carrying capacity (MVCC), and the aerobic exercise protocol consisted of 30 min of treadmill running, with an intensity of 75% of the exhaust velocity. Subsequently, the retina was excised and analyzed by Western blot. Obese animals presented impairment on glucose homeostasis and elevated levels of proinflammatory proteins in the serum and retina; however, CPE was effective in reversing these parameters, independently of changes in body adiposity. Therefore, for the first time, we have shown that short-term CPE can be an important strategy to treat an inflammatory profile in the retina.
Collapse
|
21
|
Yang L, Lin H, Lin W, Xu X. Exercise Ameliorates Insulin Resistance of Type 2 Diabetes through Motivating Short-Chain Fatty Acid-Mediated Skeletal Muscle Cell Autophagy. BIOLOGY 2020; 9:biology9080203. [PMID: 32756447 PMCID: PMC7464264 DOI: 10.3390/biology9080203] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023]
Abstract
Background: Exercise can ameliorate type II diabetes mellitus (T2DM) by regulating intestinal flora metabolites. However, the detailed mechanism needs to be further explored. Methods: A T2DM model using mice was established by feeding them a high-fat diet and giving them subsequent streptozocin injections. Fasting blood glucose and serum insulin were determined by blood glucose meter and radioimmunoassay, respectively. Intestinal flora was measured by 16sRNA sequencing. SCFA content was measured by gas chromatography (GC) or enzyme-linked immunosorbent assay (ELISA). A fluorescently labeled 2-deoxyglucose (2-NBDG) kit was employed to detect glucose uptake capacity, and western blot was utilized to explore the signaling pathway of insulin resistance and cell autophagy. Results: In the T2DM model, along with a reduction in insulin resistance (IR), exercise reversed the decline of intestinal Bacteroidetes and the increase of Firmicutes. For metabolites of Bacteroides, exercise restored the decline in total intestinal and plasma short-chain fatty acids (SCFAs) in T2DM mice. However, the administration of GLPG0974—the inhibitor of G protein-coupled receptor 43 (GPR43), which is the receptor of SCFAs—abolished exercise-mediated alleviation in IR in vivo and acetate-mediated reduction of skeletal muscle IR (SMIR) in vitro. Mechanistically, exercise induced skeletal muscle cell autophagy, thereby ameliorating SMIR, which was neutralized by GLPG0974 exposure. Conclusions: Exercise-mediated SCFAs-upregulation may ameliorate insulin resistance (IR) through increasing autophagy of skeletal muscle cells by binding to GPR43. This study provides a theoretical basis for targeting gut bacterial metabolites to prevent T2DM.
Collapse
Affiliation(s)
- Ling Yang
- National Demonstration Center for Experimental Sports Science Education, School of Physical Education, South China Normal University, Guangzhou 510006, China;
- School of Physical Education, Shao Guan University, Shaoguan 512000, China
| | - Haiqi Lin
- School of Physical Education, South China University of Technology, Guangzhou 510641, China;
| | - Wentao Lin
- Guangzhou Institute of Physical Education, Guangzhou Sport University, Guangzhou 510500, China;
| | - Xiaoyang Xu
- National Demonstration Center for Experimental Sports Science Education, School of Physical Education, South China Normal University, Guangzhou 510006, China;
- Correspondence: ; Tel.: +86-135-0300-9002
| |
Collapse
|
22
|
Abstract
Through diverse mechanisms, obesity contributes to worsened cardiometabolic health and increases rates of cardiovascular events. Effective treatment of obesity is necessary to reduce the associated burdens of diabetes mellitus, cardiovascular disease, and death. Despite increasing cardiovascular outcome data on obesity interventions, only a small fraction of the population with obesity are optimally treated. This is a primary impetus for this article in which we describe the typical weight loss, as well as the associated impact on both traditional and novel cardiovascular disease risk factors, provided by the 4 primary modalities for obtaining weight loss in obesity-dietary modification, increasing physical activity, pharmacotherapy, and surgery. We also attempt to highlight instances where changes in metabolic risk are relatively specific to particular interventions and appear at least somewhat independent of weight loss. Finally, we suggest important areas for further research to reduce and prevent adverse cardiovascular consequences due to obesity.
Collapse
Affiliation(s)
- Sean P. Heffron
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, New York, NY,NYU Center for the Prevention of Cardiovascular Disease, NYU Grossman School of Medicine, New York, NY,Corresponding author: Sean P. Heffron, 227 East 30 St., #834, New York, NY 10016, 646-501-2735 ,
| | - Johnathon S. Parham
- NYU Center for the Prevention of Cardiovascular Disease, NYU Grossman School of Medicine, New York, NY
| | - Jay Pendse
- Department of Medicine, Division of Endocrinology, NYU Grossman School of Medicine, New York, NY,Medical Service, Veterans Affairs New York Harbor Healthcare System, New York, NY
| | - José O. Alemán
- Department of Medicine, Division of Endocrinology, NYU Grossman School of Medicine, New York, NY
| |
Collapse
|
23
|
Radzikowska U, Rinaldi AO, Çelebi Sözener Z, Karaguzel D, Wojcik M, Cypryk K, Akdis M, Akdis CA, Sokolowska M. The Influence of Dietary Fatty Acids on Immune Responses. Nutrients 2019; 11:E2990. [PMID: 31817726 PMCID: PMC6950146 DOI: 10.3390/nu11122990] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
Diet-derived fatty acids (FAs) are essential sources of energy and fundamental structural components of cells. They also play important roles in the modulation of immune responses in health and disease. Saturated and unsaturated FAs influence the effector and regulatory functions of innate and adaptive immune cells by changing membrane composition and fluidity and by acting through specific receptors. Impaired balance of saturated/unsaturated FAs, as well as n-6/n-3 polyunsaturated FAs has significant consequences on immune system homeostasis, contributing to the development of many allergic, autoimmune, and metabolic diseases. In this paper, we discuss up-to-date knowledge and the clinical relevance of the influence of dietary FAs on the biology, homeostasis, and functions of epithelial cells, macrophages, dendritic cells, neutrophils, innate lymphoid cells, T cells and B cells. Additionally, we review the effects of dietary FAs on the pathogenesis of many diseases, including asthma, allergic rhinitis, food allergy, atopic dermatitis, rheumatoid arthritis, multiple sclerosis as well as type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Arturo O Rinaldi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| | - Zeynep Çelebi Sözener
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Department of Chest Disease, Division of Allergy and Clinical Immunology, Ankara University School of Medicine, 06100 Ankara, Turkey
| | - Dilara Karaguzel
- Department of Biology, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| | - Marzena Wojcik
- Department of Structural Biology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Katarzyna Cypryk
- Department of Internal Medicine and Diabetology, Medical University of Lodz, 90-549 Lodz, Poland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| |
Collapse
|
24
|
Di Pino A, DeFronzo RA. Insulin Resistance and Atherosclerosis: Implications for Insulin-Sensitizing Agents. Endocr Rev 2019; 40:1447-1467. [PMID: 31050706 PMCID: PMC7445419 DOI: 10.1210/er.2018-00141] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022]
Abstract
Patients with type 2 diabetes mellitus (T2DM) are at high risk for macrovascular complications, which represent the major cause of mortality. Despite effective treatment of established cardiovascular (CV) risk factors (dyslipidemia, hypertension, procoagulant state), there remains a significant amount of unexplained CV risk. Insulin resistance is associated with a cluster of cardiometabolic risk factors known collectively as the insulin resistance (metabolic) syndrome (IRS). Considerable evidence, reviewed herein, suggests that insulin resistance and the IRS contribute to this unexplained CV risk in patients with T2DM. Accordingly, CV outcome trials with pioglitazone have demonstrated that this insulin-sensitizing thiazolidinedione reduces CV events in high-risk patients with T2DM. In this review the roles of insulin resistance and the IRS in the development of atherosclerotic CV disease and the impact of the insulin-sensitizing agents and of other antihyperglycemic medications on CV outcomes are discussed.
Collapse
Affiliation(s)
- Antonino Di Pino
- Diabetes Division, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, Texas
| | - Ralph A DeFronzo
- Diabetes Division, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, Texas
| |
Collapse
|
25
|
Gorres-Martens BK, Field TJ, Schmidt ER, Munger KA. Exercise prevents HFD- and OVX-induced type 2 diabetes risk factors by decreasing fat storage and improving fuel utilization. Physiol Rep 2019; 6:e13783. [PMID: 29981201 PMCID: PMC6035332 DOI: 10.14814/phy2.13783] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 11/24/2022] Open
Abstract
Previous studies suggest that the loss of estrogens increase one's risk for type 2 diabetes (T2D), and combining the loss of estrogens with a high-fat diet (HFD) poses an even greater risk for T2D. The extent to which exercise can ameliorate the deleterious effects of estrogen loss combined with a HFD and the molecular mechanisms accounting for the whole body changes is currently unknown. Therefore, we fed female Wistar rats a standard diet or a HFD for 10 weeks. The rats fed the HFD were either ovariectomized (OVX) or their ovaries remained intact. A subset of the HFD/OVX rats also underwent exercise training on a motor-driven treadmill. Exercise significantly reduced the total body weight gain, periuterine white adipose tissue (WAT) weight, hyperglycemia, and hyperinsulinemia. Additionally, the ability to store fat, as measured by lipoprotein lipase (LPL) in the WAT, was increased in the HFD/OVX group; however, exercise reduced the LPL levels. Furthermore, the combination of the HFD with OVX decreased the WAT citrate synthase protein level, which was increased with exercise. These data suggest that even during the combined HFD/OVX physiological state, exercise can decrease several risk factors associated with T2D, decrease fat storage, and increase fuel utilization.
Collapse
Affiliation(s)
| | - Tyler J Field
- Exercise and Sport Sciences Department, Augustana University, Sioux Falls, South Dakota
| | - Emma R Schmidt
- Exercise and Sport Sciences Department, Augustana University, Sioux Falls, South Dakota
| | - Karen A Munger
- Research & Development, Sioux Falls VA Health Care System, Sioux Falls, South Dakota
| |
Collapse
|
26
|
Pinckard K, Baskin KK, Stanford KI. Effects of Exercise to Improve Cardiovascular Health. Front Cardiovasc Med 2019; 6:69. [PMID: 31214598 PMCID: PMC6557987 DOI: 10.3389/fcvm.2019.00069] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Obesity is a complex disease that affects whole body metabolism and is associated with an increased risk of cardiovascular disease (CVD) and Type 2 diabetes (T2D). Physical exercise results in numerous health benefits and is an important tool to combat obesity and its co-morbidities, including cardiovascular disease. Exercise prevents both the onset and development of cardiovascular disease and is an important therapeutic tool to improve outcomes for patients with cardiovascular disease. Some benefits of exercise include enhanced mitochondrial function, restoration and improvement of vasculature, and the release of myokines from skeletal muscle that preserve or augment cardiovascular function. In this review we will discuss the mechanisms through which exercise promotes cardiovascular health.
Collapse
Affiliation(s)
| | | | - Kristin I. Stanford
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
27
|
|
28
|
Dantas WS, Neves WD, Gil S, Barcellos CRG, Rocha MP, de Sá-Pinto AL, Roschel H, Gualano B. Exercise-induced anti-inflammatory effects in overweight/obese women with polycystic ovary syndrome. Cytokine 2019; 120:66-70. [PMID: 31005728 DOI: 10.1016/j.cyto.2019.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 04/07/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
Abstract
Polycystic ovary syndrome (PCOS) is characterized by exacerbated inflammation, which is implicated in cardiometabolic dysfunction. This study aimed to examine the potential effects of acute exercise on inflammatory responses in obese/overweight PCOS women and their controls. Participants underwent a single bout of moderate-intensity aerobic exercise (30 min at ∼65% of VO2peak). Blood and muscle samples were collected immediately before (PRE) and 60 min after the exercise session. Cytokines (i.e., IL-1β, IL-6, IL-4, IL-10, TNF-α) were measured both in plasma and in skeletal muscle, and proteins related to inflammatory signaling (IKKα/β and JNK) were assessed in skeletal muscle. At PRE, PCOS showed elevated muscle TNF-α (+62%, p = 0.0012) and plasma IL-1β (+76%, p = 0.0010) compared to controls. In PCOS, exercise decreased plasma and muscle TNF-α (-14%, p = 0.0003 and -46%, p = 0.0003), as well as increased plasma and muscle IL-4 (+147%, p = 0.0018 and +62%, p = 0.0474) and plasma IL-10 (+38%, p = 0.0029). Additionally, IKKα/β and JNK phosphorylation in skeletal muscle, which was higher in PCOS at PRE, was significantly reduced by exercise (-58%, p < 0.0001 and -46%, p < 0.0001, respectively), approaching control levels. Person's correlations between PRE values and delta changes (i.e., exercise effect) showed significant, negative associations for plasma IL-1β (r = -0.92, p < 0.0001), TNF-α (r = -0.72, p = 0.0100) and IL-6 (r = -0.58, p = 0.05), and muscle TNF-α (r = -0.95, p < 0.0001), IKKα/β (r = -0.75, p = 0.005), and JNK (r = -0.94, p < 0.0001) in PCOS. In conclusion, exercise can mitigate the inflammatory milieu in women with PCOS. The anti-inflammatory role of exercise could underlie its cardiometabolic protection in PCOS.
Collapse
Affiliation(s)
- Wagner Silva Dantas
- Applied Physiology & Nutrition Research Group, Laboratory of Assessment and Conditioning in Rheumatology, School of Physical Education and Sport, School of Medicine, University of São Paulo, Brazil
| | - Willian das Neves
- Clinical Oncology Service, Instituto do Câncer do Estado de São Paulo, Brazil
| | - Saulo Gil
- Applied Physiology & Nutrition Research Group, Laboratory of Assessment and Conditioning in Rheumatology, School of Physical Education and Sport, School of Medicine, University of São Paulo, Brazil
| | | | - Michele Patrocínio Rocha
- Endocrinology Department, Hospital Santa Marcelina, Faculdade de Medicina Santa Marcelina, Brazil
| | - Ana Lúcia de Sá-Pinto
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology & Nutrition Research Group, Laboratory of Assessment and Conditioning in Rheumatology, School of Physical Education and Sport, School of Medicine, University of São Paulo, Brazil; Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Brazil
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group, Laboratory of Assessment and Conditioning in Rheumatology, School of Physical Education and Sport, School of Medicine, University of São Paulo, Brazil; Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Brazil.
| |
Collapse
|
29
|
Myette-Côté É, Durrer C, Neudorf H, Bammert TD, Botezelli JD, Johnson JD, DeSouza CA, Little JP. The effect of a short-term low-carbohydrate, high-fat diet with or without postmeal walks on glycemic control and inflammation in type 2 diabetes: a randomized trial. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1210-R1219. [PMID: 30303707 PMCID: PMC6734060 DOI: 10.1152/ajpregu.00240.2018] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022]
Abstract
Lowering carbohydrate consumption effectively lowers glucose, but impacts on inflammation are unclear. The objectives of this study were to: 1) determine whether reducing hyperglycemia by following a low-carbohydrate, high-fat (LC) diet could lower markers of innate immune cell activation in type 2 diabetes (T2D) and 2) examine if the combination of an LC diet with strategically timed postmeal walking was superior to an LC diet alone. Participants with T2D ( n = 11) completed a randomized crossover study involving three 4-day diet interventions: 1) low-fat low-glycemic index (GL), 2) and 3) LC with 15-min postmeal walks (LC+Ex). Four-day mean glucose was significantly lower in the LC+Ex group as compared with LC (-5%, P < 0.05), whereas both LC+Ex (-16%, P < 0.001) and LC (-12%, P < 0.001) conditions were lower than GL. A significant main effect of time was observed for peripheral blood mononuclear cells phosphorylated c-Jun N-terminal kinase ( P < 0.001), with decreases in all three conditions (GL: -32%, LC: -45%, and LC+Ex: -44%). A significant condition by time interaction was observed for monocyte microparticles ( P = 0.040) with a significant decrease in GL (-76%, P = 0.035) and a tendency for a reduction in LC (-70%, P = 0.064), whereas there was no significant change in LC+Ex (0.5%, P = 0.990). Both LC (-27%, P = 0.001) and LC+Ex (-35%, P = 0.005) also led to significant reductions in circulating proinsulin. An LC diet improved 4-day glycemic control and fasting proinsulin levels when compared with GL, with added glucose-lowering benefits when LC was combined with postmeal walking.
Collapse
Affiliation(s)
- Étienne Myette-Côté
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Cody Durrer
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Helena Neudorf
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Tyler D Bammert
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - José Diego Botezelli
- Department of Cellular and Physiological Sciences, University of British Columbia , Vancouver, BC , Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, University of British Columbia , Vancouver, BC , Canada
| | - Christopher A DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado , Boulder, Colorado
| | - Jonathan P Little
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
30
|
Effects of Vaspin on Insulin Resistance in Rats and Underlying Mechanisms. Sci Rep 2018; 8:13542. [PMID: 30202052 PMCID: PMC6131547 DOI: 10.1038/s41598-018-31923-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/29/2018] [Indexed: 12/16/2022] Open
Abstract
Insulin resistance (IR) is the main pathogenesis of metabolic syndrome and a shared pathophysiological change in conditions such as diabetes mellitus, adiposity, hypertension, and atherosclerosis. Visceral adipose tissue-derived serpin (Vaspin) is a newly discovered adipocytokine with insulin-sensitizing and anti-inflammatory effects. To examine if vaspin can improve insulin resistance in rats fed a high-fat diet via the insulin receptor substrate/phosphatidylinositol 3 kinase/protein kinase B/glucose transport (IRS/PI3K/Akt/Glut) and inhibitory κB alpha/nuclear factor-kappa B (IκBα/NF-κB) signalling pathways, thirty male Sprague-Dawley (SD) rats were randomly divided into three groups: the normal control group (NC group, n = 10), high-fat diet group (HFD group, n = 10) and vaspin intervention group (HFD + vaspin group, n = 10). Results showed that intervention with vaspin significantly decreased fasting blood glucose (FBG) and fasting insulin (FINS) concentrations in HFD − fed rats without significantly affecting body weight or triglyceride (TG) or total cholesterol (TC) levels. The areas under the intraperitoneal glucose tolerance test (IPGTT) and the insulin tolerance test (ITT) curves were significantly decreased in HFD + vaspin group compared with the HFD group, and the glucose infusion rate (GIR) showed the same trends. Western blot, real-time polymerase chain reaction (RT-PCR) and immunofluorescence staining showed that vaspin could improve insulin resistance in liver, skeletal muscle and adipose tissue by activating the IRS/PI3K/Akt/Glut signalling pathway and inhibiting the IκBα/NF-κB signalling pathway.
Collapse
|
31
|
Jiang H, Ma Y, Yan J, Liu J, Li L. Geniposide promotes autophagy to inhibit insulin resistance in HepG2 cells via P62/NF‑κB/GLUT‑4. Mol Med Rep 2017; 16:7237-7244. [PMID: 28944847 PMCID: PMC5865851 DOI: 10.3892/mmr.2017.7503] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 05/26/2017] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance (IR) is known to be an important factor, which can lead to the onset of type 2 diabetes. Autophagy is a cellular process, which sequesters senescent or damaged proteins in autophagosomes for recycling of their products. Insulin and intracellular molecules, including mammalian target of rapamycin (mTOR), are well‑known inhibitors of autophagy. In patients with type 2 diabetes, the expression levels of glucose transporter 4 (GLUT‑4) in skeletal muscles are significantly decreased, indicating decreased glucose‑processing ability. Geniposide is an iridoid compound isolated from Gardenia jasminoides Ellis. Previously, it was reported that geniposide significantly promoted glucose uptake. In the present study, a HepG2 cell model of IR was constructed to determine whether geniposide can promote autophagy to inhibit insulin resistance in HepG2 cells via P62/nuclear factor (NF)‑κB/GLUT‑4. Cell proliferation was analyzed by performing an MTT assay, and the mRNA expression levels of NF‑κB and GLUT‑4 were assessed using semi‑quantitative polymerase chain reaction and immunohistochemical staining. In addition, the protein levels of GLUT‑4, P62 and phosphorylated‑P65 were assessed by western blotting. The expression of GLUT‑4 was initially increased following geniposide treatment, decreasing in time to its lowest level at 8 h. The expression levels of NF‑κB and GLUT‑4 in the IR cells treated with and without geniposide were significantly different, compared with those in the control group. Geniposide promoted autophagy in the IR HepG2 cells and significantly improved IR in the HepG2 cells, which may be associated with the dynamic regulation of the P62/NF‑κB/GLUT‑4 pathway.
Collapse
Affiliation(s)
- Hongwei Jiang
- Department of Endocrinology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Yujin Ma
- Department of Endocrinology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Jie Liu
- Department of Endocrinology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Liping Li
- Department of Endocrinology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
32
|
Barberio MD, Huffman KM, Giri M, Hoffman EP, Kraus WE, Hubal MJ. Pyruvate Dehydrogenase Phosphatase Regulatory Gene Expression Correlates with Exercise Training Insulin Sensitivity Changes. Med Sci Sports Exerc 2017; 48:2387-2397. [PMID: 27846149 DOI: 10.1249/mss.0000000000001041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Whole body insulin sensitivity (Si) typically improves after aerobic exercise training; however, individual responses can be highly variable. The purpose of this study was to use global gene expression to identify skeletal muscle genes that correlate with exercise-induced Si changes. METHODS Longitudinal cohorts from the Studies of Targeted Risk Reduction Intervention through Defined Exercise were used as Discovery (Affymetrix) and Confirmation (Illumina) of vastus lateralis gene expression profiles. Discovery (n = 39; 21 men) and Confirmation (n = 42; 19 men) cohorts were matched for age (52 ± 8 vs 51 ± 10 yr), body mass index (30.4 ± 2.8 vs 29.7 ± 2.8 kg·m), and V˙O2max (30.4 ± 2.8 vs 29.7 ± 2.8 mL·kg·min). Si was determined via intravenous glucose tolerance test pretraining and posttraining. Pearson product-moment correlation coefficients determined relationships between a) baseline and b) training-induced changes in gene expression and %ΔSi after training. RESULTS Expression of 2454 (Discovery) and 1778 genes (Confirmation) at baseline were significantly (P < 0.05) correlated to %ΔSi; 112 genes overlapped. Pathway analyses identified Ca signaling-related transcripts in this 112-gene list. Expression changes of 1384 (Discovery) and 1288 genes (Confirmation) after training were significantly (P < 0.05) correlated to %ΔSi; 33 genes overlapped, representing contractile apparatus of skeletal and smooth muscle genes. Pyruvate dehydrogenase phosphatase regulatory subunit expression at baseline (P = 0.01, r = 0.41) and posttraining (P = 0.01, r = 0.43) were both correlated with %ΔSi. CONCLUSIONS Exercise-induced adaptations in skeletal muscle Si are related to baseline levels of Ca-regulating transcripts, which may prime the muscle for adaptation. Relationships between %ΔSi and pyruvate dehydrogenase phosphatase regulatory, a regulatory subunit of the pyruvate dehydrogenase complex, indicate that the Si response is strongly related to key steps in metabolic regulation.
Collapse
Affiliation(s)
- Matthew D Barberio
- 1Research Center for Genetic Medicine, Children's National Medical Center, Durham, NC; 2Division of Rheumatology, Department of Medicine, Duke University School of Medicine, Durham, NC; 3Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC; 4Department of Exercise and Nutrition Sciences, George Washington University, WASHINGTON, DC; 5Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC; and 6Department of Integrative Systems Biology, George Washington University, Washington, DC
| | | | | | | | | | | |
Collapse
|
33
|
Wang N, Liu Y, Ma Y, Wen D. High-intensity interval versus moderate-intensity continuous training: Superior metabolic benefits in diet-induced obesity mice. Life Sci 2017; 191:122-131. [PMID: 28843495 DOI: 10.1016/j.lfs.2017.08.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/19/2017] [Accepted: 08/22/2017] [Indexed: 12/29/2022]
Abstract
AIMS Exercise is beneficial in obesity, however, the debate about the value of high-intensity interval training (HIIT) vs. moderate-intensity continuous training (MICT) has been long lasting. Therefore, here we have compared the possible beneficial effects of two different exercise training regimes in a mouse model of diet-induced obesity (DIO). MATERIALS AND METHODS Following 7wk. on high fat diet (HFD), ten-week-old male ICR mice (n=30) were assigned to HIIT, distance-matched MICT or remained sedentary for the next 8 constitutive weeks while maintaining the dietary treatments. Age-matched sedentary mice with standard diet were used as a control (n=10). Exercise was performed on a motorized treadmill for 5days a week. KEY FINDINGS Both modes of exercise ameliorated adiposity and related metabolic dysfunction induced by HFD and sedentary lifestyle, while mice following HIIT exhibited significantly lower body weight, percentage of fat mass and smaller adipocyte size. HIIT was more favorable in preventing liver lipid accumulation by restoring mRNA levels of genes involved in hepatic lipogenesis (SREBP1, ACC1, FAS) and β-oxidation (PPARα, CPT1a, HAD). In addition, HIIT was more efficient in mitigating adipose tissue inflammation and insulin insensitivity, partly dependent on abrogating phosphorylation of JNK/IRS1 (Ser307) pathway. Moreover, only HIIT led to pronounced beige adipocyte recruitment in inguinal subcutaneous adipose tissue. SIGNIFICANCE We conclude that HIIT contribute a more favorable regulation of metabolic dysfunctions in DIO mice compared with MICT.
Collapse
Affiliation(s)
- Ningning Wang
- School of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Yang Liu
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yanan Ma
- School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Deliang Wen
- School of Public Health, Dalian Medical University, Dalian, Liaoning, China; School of Public Health, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
34
|
Mikkelsen U, Agergaard J, Couppé C, Grosset J, Karlsen A, Magnusson S, Schjerling P, Kjaer M, Mackey A. Skeletal muscle morphology and regulatory signalling in endurance-trained and sedentary individuals: The influence of ageing. Exp Gerontol 2017; 93:54-67. [DOI: 10.1016/j.exger.2017.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 01/01/2023]
|
35
|
Fuller KNZ, Summers CM, Valentine RJ. Effect of a single bout of aerobic exercise on high-fat meal-induced inflammation. Metabolism 2017; 71:144-152. [PMID: 28521867 DOI: 10.1016/j.metabol.2017.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIMS Chronic low-grade inflammation is involved in the development of metabolic disorders including atherosclerosis, type 2 diabetes (T2D) and metabolic syndrome. Aerobic exercise has been shown to be anti-inflammatory and attenuate postprandial blood lipids, however, the effect of exercise on postprandial inflammation remains unclear. The aim of this study was to determine the protective effect of a single bout of aerobic exercise against postprandial lipemia and peripheral blood mononuclear cell (PBMC) inflammation and to evaluate associations with changes in the energy-sensing enzyme, AMP-activated protein kinase (AMPK). MATERIALS AND METHODS Healthy male subjects (n=12, age=23±2, %Fat=19±2) reported to the laboratory following an overnight fast (12-14h) on two separate occasions for consumption of a high-fat meal (HFM). Participants completed an acute bout of aerobic exercise the afternoon prior to one of the HFM visits. RESULTS AND CONCLUSION Results indicate that the single bout of moderate aerobic exercise increased AMPK signaling in PBMCs, as shown by increased phosphorylated acetyl-CoA carboxylase (p-ACC). This may be due to decreases in the AMPK inhibitory kinases PKD and GSK3β. Additionally, prior moderate intensity exercise decreased postprandial lipemia (PPL) and some mediators of the inflammatory pathway, such as p-NF-κB. These findings that acute aerobic exercise improves AMPK and NF-κB signaling in human PBMCs contribute support to the anti-inflammatory roles of exercise.
Collapse
Affiliation(s)
- Kelly N Z Fuller
- The Interdepartmental Graduate Program in Nutritional Sciences, Iowa State University, Ames, IA; Department of Kinesiology, Iowa State University, Ames, IA
| | - Corey M Summers
- Department of Kinesiology, Iowa State University, Ames, IA; The Immunobiology Interdepartmental Graduate Program, Iowa State University, Ames, IA
| | | |
Collapse
|
36
|
Adamu HA, Imam MU, Der-Jiun O, Ismail M. In utero Exposure to Germinated Brown Rice and Its GABA Extract Attenuates High-Fat-Diet-Induced Insulin Resistance in Rat Offspring. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2017; 10:19-31. [PMID: 28399529 DOI: 10.1159/000469663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 03/09/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Numerous studies have reported on the influence of diet on insulin resistance. Our study provides insight into the effect of germinated brown rice (GBR) and γ-aminobutyric acid (GABA) on early environment-driven programming and susceptibility to insulin resistance in rat offspring. METHODS Male rat offspring from female Sprague-Dawley rats fed with a high-fat diet (HFD) alone, HFD + GBR, or HFD + GABA extract throughout pregnancy and lactation were weaned 4 weeks after delivery and followed up for 8 weeks. A biochemical analysis and an assessment of the hepatic expression of insulin signaling genes were performed. RESULTS The results showed that intrauterine exposure to HFD caused metabolic perturbations in rat offspring which gravitated towards insulin resistance even though the rat offspring did not consume an HFD. GBR and GABA attenuated the HFD-induced changes by underlying regulation of the insulin signaling genes. CONCLUSIONS The results suggest that intake of GBR and GABA during pregnancy and lactation can influence the programming of genes in rat offspring, thereby enhancing insulin sensitivity.
Collapse
Affiliation(s)
- Hadiza Altine Adamu
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | | | | | | |
Collapse
|
37
|
Dehghan F, Soori R, Gholami K, Abolmaesoomi M, Yusof A, Muniandy S, Heidarzadeh S, Farzanegi P, Ali azarbayjani M. Purslane (Portulaca oleracea) Seed Consumption And Aerobic Training Improves Biomarkers Associated with Atherosclerosis in Women with Type 2 Diabetes (T2D). Sci Rep 2016; 6:37819. [PMID: 27917862 PMCID: PMC5137030 DOI: 10.1038/srep37819] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 10/31/2016] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to investigate the responses of atherosclerosis plaque biomarkers to purslane seed consumption and aerobic training in women with T2D. 196 women with T2D were assigned into; (1) placebo (PL), (2) aerobic training+placebo (AT + PL), 3) purslane seeds (PS), aerobic training+purslane seeds (AT + PS). The training program and purslane seeds consumption (2.5 g lunch and 5 g dinner) were carried out for 16 weeks. The components of purslane seed were identified and quantified by GC-MS. Blood samples were withdrawn via venipuncture to examine blood glucose, low-density lipoprotein (LDL), high-density lipoprotein (HDL), cholesterol, triglycerides (TG), creatinine, urea, uric acid, NF-κB, GLP1, GLP1R, TIMP-1, MMP2, MMP9, CRP, CST3, and CTSS expressions. Blood glucose, LDL, cholesterol, TG, creatinine, urea, and uric acid levels in the (P), (AT), and (AT + PS) groups were significantly decreased compared to the pre-experimental levels or the placebo group, while HDL, significantly increased. Furthermore, the protein and mRNA levels of NF-κB, TIMP-1, MMP2 &9, CRP, CST3, and CTSS in the (P), (AT), (AT + PS) significantly decreased compared to pre-experimental or the placebo group, while level of GLP1 and GLP1-R increased drastically. Findings suggest that purslane seed consumption alongside exercising could improve atherosclerosis plaque biomarkers through synergistically mechanisms in T2D.
Collapse
Affiliation(s)
- Firouzeh Dehghan
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Rahman Soori
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Khadijeh Gholami
- Department of Physiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mitra Abolmaesoomi
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ashril Yusof
- Department of Exercise Science, Sports Centre, University of Malaya, 50603 Kuala lumpur, Malaysia
| | - Sekaran Muniandy
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sara Heidarzadeh
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Parvin Farzanegi
- Department of Exercise Physiology, Sari Branch, Islamic Azad University, Sari, Iran
| | | |
Collapse
|
38
|
Flynn MG, McFarlin BK, Markofski MM. The Anti-Inflammatory Actions of Exercise Training. Am J Lifestyle Med 2016; 1:220-235. [PMID: 25431545 DOI: 10.1177/1559827607300283] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The list of diseases with a known inflammatory etiology is growing. Cardiovascular disease, osteoporosis, diabetes, geriatric cachexia, and Alzheimer's disease have all been shown to be linked to or exacerbated by aberrantly regulated inflammatory processes. Nevertheless, there is mounting evidence that those who are physically active, or who become physically active, have a reduction in biomarkers associated with chronic inflammation. There was strong early consensus that exercise-induced reductions in inflammation were explained by body mass index or body fatness, but recent studies provide support for the contention that exercise has body fat-independent anti-inflammatory effects. With few exceptions, the anti-inflammatory effects of exercise appear to occur regardless of age or the presence of chronic diseases. What remains unclear are the mechanisms by which exercise training induces these anti-inflammatory effects, but there are several intriguing possibilities, including release of endogenous products, such as heat shock proteins; selective reduction of visceral adipose tissue mass or reducing infiltration of adipocytes by macrophages; shift in immune cell phenotype; cross-tolerizing effects; or exercise-induced shifts in accessory proteins of toll-like receptor signaling. However, future research endeavors are likely to uncover additional potential mechanisms, and it could be some time before functional mechanisms are made clear. In summary, the potential anti-inflammatory influences of exercise training may provide a low-cost, readily available, and effective treatment for low-grade systemic inflammation and could contribute significantly to the positive effects of exercise training on chronic disease.
Collapse
Affiliation(s)
- Michael G Flynn
- Wastl Human Performance Lab, Department of Health and Kinesiology, Purdue University West Lafayette, Indiana (MGF, MMM) and the Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas (BKM)
| | - Brian K McFarlin
- Wastl Human Performance Lab, Department of Health and Kinesiology, Purdue University West Lafayette, Indiana (MGF, MMM) and the Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas (BKM)
| | - Melissa M Markofski
- Wastl Human Performance Lab, Department of Health and Kinesiology, Purdue University West Lafayette, Indiana (MGF, MMM) and the Laboratory of Integrated Physiology, Department of Health and Human Performance, University of Houston, Houston, Texas (BKM)
| |
Collapse
|
39
|
Zhu R, Zheng J, Chen L, Gu B, Huang S. Astragaloside IV facilitates glucose transport in C2C12 myotubes through the IRS1/AKT pathway and suppresses the palmitate-induced activation of the IKK/IκBα pathway. Int J Mol Med 2016; 37:1697-1705. [PMID: 27082050 DOI: 10.3892/ijmm.2016.2555] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/29/2016] [Indexed: 11/05/2022] Open
Abstract
Astragaloside IV is a monomer isolated from Astragalus membranaceus (Fisch.) Bunge, which is one of the most widely used plant-derived drugs in traditional Chinese medicine for diabetes therapy. In the present study, we aimed to examine the effects of astragaloside IV on glucose in C2C12 myotubes and the underlying molecular mechanisms responsible for these effects. Four-day differentiated C2C12 myotubes were exposed to palmitate for 16 h in order to establish a model of insulin resistance and 3H glucose uptake, using 2-Deoxy‑D‑[1,2-3H(N)]-glucose (radiolabeled 2-DG), was detected. Astragaloside IV was added 2 h prior to palmitate exposure. The translocation of glucose transporter 4 (GLUT4) was evaluated by subcellular fractionation, and the expression of insulin signaling molecules such as insulin receptor β (IRβ), insulin receptor substrate (IRS)1/protein kinase B (AKT) and inhibitory κB kinase (IKK)/inhibitor-κBα (IκBα), which are associated with insulin signal transduction, were assessed in the basal or the insulin‑stimulated state using western blot analysis or RT-PCR. We also examined the mRNA expression of monocyte chemotactic protein 1 (MCP-1), interleukin 6 (IL-6), tumor necrosis factor α (TNFα) and Toll‑like receptor 4 (TLR4). Taken together, these findings demonstrated that astragaloside IV facilitates glucose transport in C2C12 myotubes through a mechanism involving the IRS1/AKT pathway, and suppresses the palmitate-induced activation of the IKK/IκBα pathway.
Collapse
Affiliation(s)
- Rongfeng Zhu
- Department of Internal Medicine, The 95th Hospital of Chinese People's Liberation Army, Putian, Fujian 351100, P.R. China
| | - Jianjun Zheng
- Department of Internal Medicine, The 95th Hospital of Chinese People's Liberation Army, Putian, Fujian 351100, P.R. China
| | - Lizhen Chen
- Department of Internal Medicine, The 95th Hospital of Chinese People's Liberation Army, Putian, Fujian 351100, P.R. China
| | - Bin Gu
- Department of Internal Medicine, The 95th Hospital of Chinese People's Liberation Army, Putian, Fujian 351100, P.R. China
| | - Shengli Huang
- Department of Internal Medicine, The 95th Hospital of Chinese People's Liberation Army, Putian, Fujian 351100, P.R. China
| |
Collapse
|
40
|
Röhling M, Herder C, Stemper T, Müssig K. Influence of Acute and Chronic Exercise on Glucose Uptake. J Diabetes Res 2016; 2016:2868652. [PMID: 27069930 PMCID: PMC4812462 DOI: 10.1155/2016/2868652] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/31/2016] [Accepted: 02/03/2016] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance plays a key role in the development of type 2 diabetes. It arises from a combination of genetic predisposition and environmental and lifestyle factors including lack of physical exercise and poor nutrition habits. The increased risk of type 2 diabetes is molecularly based on defects in insulin signaling, insulin secretion, and inflammation. The present review aims to give an overview on the molecular mechanisms underlying the uptake of glucose and related signaling pathways after acute and chronic exercise. Physical exercise, as crucial part in the prevention and treatment of diabetes, has marked acute and chronic effects on glucose disposal and related inflammatory signaling pathways. Exercise can stimulate molecular signaling pathways leading to glucose transport into the cell. Furthermore, physical exercise has the potential to modulate inflammatory processes by affecting specific inflammatory signaling pathways which can interfere with signaling pathways of the glucose uptake. The intensity of physical training appears to be the primary determinant of the degree of metabolic improvement modulating the molecular signaling pathways in a dose-response pattern, whereas training modality seems to have a secondary role.
Collapse
Affiliation(s)
- Martin Röhling
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich, 85764 Neuherberg, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich, 85764 Neuherberg, Germany
| | - Theodor Stemper
- Department Fitness and Health, University Wuppertal, 42119 Wuppertal, Germany
| | - Karsten Müssig
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich, 85764 Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
41
|
DNAJB3/HSP-40 cochaperone improves insulin signaling and enhances glucose uptake in vitro through JNK repression. Sci Rep 2015; 5:14448. [PMID: 26400768 PMCID: PMC4585859 DOI: 10.1038/srep14448] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/06/2015] [Indexed: 12/20/2022] Open
Abstract
Heat shock response (HSR) is an essential host-defense mechanism that is dysregulated in obesity-induced insulin resistance and type 2 diabetes (T2D). Our recent data demonstrated that DNAJB3 was downregulated in obese human subjects and showed negative correlation with inflammatory markers. Nevertheless, DNAJB3 expression pattern in diabetic subjects and its mode of action are not yet known. In this study, we showed reduction in DNAJB3 transcript and protein levels in PBMC and subcutaneous adipose tissue of obese T2D compared to obese non-diabetic subjects. Overexpression of DNAJB3 in HEK293 and 3T3-L1 cells reduced JNK, IRS-1 Ser-307 phosphorylation and enhanced Tyr-612 phosphorylation suggesting an improvement in IRS-1 signaling. Furthermore, DNAJB3 mediated the PI3K/AKT pathway activation through increasing AKT and AS160 phosphorylation. AS160 mediates the mobilization of GLUT4 transporter to the cell membrane and thereby improves glucose uptake. Using pre-adipocytes cells we showed that DNAJB3 overexpression caused a significant increase in the glucose uptake, possibly through its phosphorylation of AS160. In summary, our results shed the light on the possible role of DNAJB3 in improving insulin sensitivity and glucose uptake through JNK repression and suggest that DNAJB3 could be a potential target for therapeutic treatment of obesity-induced insulin resistance.
Collapse
|
42
|
Minegishi Y, Haramizu S, Misawa K, Shimotoyodome A, Hase T, Murase T. Deletion of nuclear factor-κB p50 upregulates fatty acid utilization and contributes to an anti-obesity and high-endurance phenotype in mice. Am J Physiol Endocrinol Metab 2015; 309:E523-33. [PMID: 26173458 DOI: 10.1152/ajpendo.00071.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/12/2015] [Indexed: 02/06/2023]
Abstract
The transcription factor nuclear factor-κB (NF-κB) plays an important role in regulating physiological processes such as immunity and inflammation. In addition to this primary role, NF-κB interacts physically with peroxisome proliferator-activated receptors regulating lipid metabolism-related gene expression and inhibits their transcriptional activity. Therefore, inhibition of NF-κB may promote fatty acid utilization, which could ameliorate obesity and improve endurance capacity. To test this hypothesis, we attempted to elucidate the energy metabolic status of mice lacking the p50 subunit of NF-κB (p50 KO mice) from the tissue to whole body level. p50 KO mice showed a significantly lower respiratory quotient throughout the day than did wild-type (WT) mice; this decrease was associated with increased fatty acid oxidation activity in liver and gastrocnemius muscle of p50 KO mice. p50 KO mice that were fed a high-fat diet were also resistant to fat accumulation and adipose tissue inflammation. Furthermore, p50 KO mice showed a significantly longer maximum running time compared with WT mice, with a lower respiratory exchange ratio during exercise as well as higher residual muscle glycogen content and lower blood lactate levels after exercise. These results suggest that p50 deletion facilitates fatty acid catabolism, leading to an anti-obesity and high-endurance phenotype of mice and supporting the idea that NF-κB is an important regulator of energy metabolism.
Collapse
Affiliation(s)
| | - Satoshi Haramizu
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Koichi Misawa
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | | | - Tadashi Hase
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| | - Takatoshi Murase
- Biological Science Laboratories, Kao Corporation, Tochigi, Japan
| |
Collapse
|
43
|
Zhou MS, Liu C, Tian R, Nishiyama A, Raij L. Skeletal muscle insulin resistance in salt-sensitive hypertension: role of angiotensin II activation of NFκB. Cardiovasc Diabetol 2015; 14:45. [PMID: 25928697 PMCID: PMC4422462 DOI: 10.1186/s12933-015-0211-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/10/2015] [Indexed: 02/06/2023] Open
Abstract
Background We have previously shown that in hypertensive Dahl salt-sensitive (DS) rats, impaired endothelium-dependent relaxation to acetylcholine and to insulin is mechanistically linked to up-regulation of angiotensin (Ang) II actions and the production of reactive oxygen species (ROS) and to activation of the proinflammatory transcription factor (NF)κB. Here we investigated whether Ang II activation of NFκB contributed to insulin resistance in the skeletal muscle of this animal model. Methods DS rats were fed either a normal (NS, 0.5% NaCl) or high (HS, 4% NaCl) salt diet for 6 weeks. In addition, 3 separate groups of HS rats were given angiotensin receptor 1 blocker candesartan (ARB, 10 mg/kg/day in drinking water), antioxidant tempol (1 mmol/L in drinking water) or NFκB inhibitor PDTC (150 mg/kg in drinking water). Results DS rats manifested an increase in soleus muscle Ang II content, ROS production and phosopho-IκBα/IκBα ratio, ARB or tempol reduced ROS and phospho-IκBα/IκBα ratio. Hypertensive DS rats also manifested a reduction in glucose infusion rate, impaired insulin-induced Akt phosphorylation and Glut-4 translocation in the soleus muscle, which were prevented with treatment of either ARB, tempol, or PDTC. Data from the rat diabetes signaling pathway PCR array showed that 8 genes among 84 target genes were altered in the muscle of hypertensive rats with the increase in gene expression of ACE1 and 5 proinflammatory genes, and decrease of 2 glucose metabolic genes. Incubation of the muscle with NFκB SN50 (a specific peptide inhibitor of NFκB) ex vivo reversed changes in hypertension-induced gene expression. Conclusion The current findings strongly suggest that the activation of NFκB inflammatory pathway by Ang II play a critical role in skeletal muscle insulin resistance in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Ming-Sheng Zhou
- Department of Physiology, Liaoning Medical University, Jinzhou, China. .,Hypertension/Nephrology Section, Miami VA Medical Center, Miami, FL, USA.
| | - Chang Liu
- Department of Endocrinology, Liaoning Medical University, Jinzhou, China.
| | - Runxia Tian
- Hypertension/Nephrology Section, Miami VA Medical Center, Miami, FL, USA.
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University School of Medicine, Kagawa, Japan.
| | - Leopoldo Raij
- Hypertension/Nephrology Section, Miami VA Medical Center, Miami, FL, USA. .,Hypertension/Nephrology section, Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
44
|
Ghosh S, Lertwattanarak R, Garduño JDJ, Galeana JJ, Li J, Zamarripa F, Lancaster JL, Mohan S, Hussey S, Musi N. Elevated muscle TLR4 expression and metabolic endotoxemia in human aging. J Gerontol A Biol Sci Med Sci 2015; 70:232-46. [PMID: 24846769 PMCID: PMC4311182 DOI: 10.1093/gerona/glu067] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/07/2014] [Indexed: 12/25/2022] Open
Abstract
Aging is associated with alterations in glucose metabolism and sarcopenia that jointly contribute to a higher risk of developing type 2 diabetes. Because aging is considered as a state of low-grade inflammation, in this study we examined whether older, healthy (lean, community-dwelling) participants have altered signaling flux through toll-like receptor 4 (TLR4), a key mediator of innate and adaptive immune responses. We also examined whether a 4-month aerobic exercise program would have an anti-inflammatory effect by reducing TLR4 expression and signaling. At baseline, muscle TLR4, nuclear factor κB p50 and nuclear factor κB p65 protein content, and c-Jun N-terminal kinase phosphorylation were significantly elevated in older versus young participants. The plasma concentration of the TLR4 agonist lipopolysaccharide and its binding protein also were significantly elevated in older participants, indicative of metabolic endotoxemia, which is a recently described phenomenon of increased plasma endotoxin level in metabolic disease. These alterations in older participants were accompanied by decreased insulin sensitivity, quadriceps muscle volume, and muscle strength. The exercise training program increased insulin sensitivity, without affecting quadriceps muscle volume or strength. Muscle TLR4, nuclear factor κB, and c-Jun N-terminal kinase, and plasma lipopolysaccharide and lipopolysaccharide binding protein were not changed by exercise. In conclusion, insulin resistance and sarcopenia of aging are associated with increased TLR4 expression/signaling, which may be secondary to metabolic endotoxemia.
Collapse
Affiliation(s)
- Sangeeta Ghosh
- Geriatric Research, Education and Clinical Center, Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio. Barshop Institute for Longevity and Aging Studies, Center for Healthy Aging
| | | | | | | | | | | | | | - Sumathy Mohan
- Department of Pathology, University of Texas Health Science Center, San Antonio
| | - Sophie Hussey
- Geriatric Research, Education and Clinical Center, Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio. Barshop Institute for Longevity and Aging Studies, Center for Healthy Aging
| | - Nicolas Musi
- Geriatric Research, Education and Clinical Center, Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio. Barshop Institute for Longevity and Aging Studies, Center for Healthy Aging,
| |
Collapse
|
45
|
Van Pelt DW, Newsom SA, Schenk S, Horowitz JF. Relatively low endogenous fatty acid mobilization and uptake helps preserve insulin sensitivity in obese women. Int J Obes (Lond) 2014; 39:149-55. [PMID: 24785103 PMCID: PMC4216778 DOI: 10.1038/ijo.2014.70] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/15/2014] [Accepted: 04/14/2014] [Indexed: 12/15/2022]
Abstract
Background Although obesity is commonly linked with metabolic disease risk, some obese adults do not develop metabolic abnormalities, such as insulin resistance. Objectives The primary aim of this study was to determine whether alterations in fatty acid mobilization and uptake underlie differences in insulin sensitivity (Si) among a seemingly homogeneous cohort of obese women. Methods Insulin sensitivity (FSIVGTT), basal fatty acid rate of disappearance from plasma (Rd), resting whole-body fat oxidation, intramyocellular triacylglycerol (IMTG) concentration, and markers of skeletal muscle inflammation were measured in 21 obese women. Participants were divided into tertiles based on their Si. The subset of participants with the lowest Si (LOW-Si; Si ≤2.1 (mU/L)−1·min−1; n=7) was compared with the subset of participants with the highest Si, who exhibited relatively normal insulin sensitivity (NORM-Si; Si ≥3.4 (mU/L)−1·min−1; n=8). Results Despite nearly identical physical characteristics in LOW-Sivs. NORM-Si (BMI: 34±2 vs. 34±1 kg/m2; %body fat: 48±1% vs. 47±1%; waist circumference: 104±2 vs. 104±2 cm; VO2max: 2.2±0.2 vs. 2.3±0.1 L/min), fatty acid Rd was nearly 30% lower in NORM (P=0.02). Importantly, the greater rate of fatty acid uptake in LOW-Sivs. NORMSi did not translate to higher rate of fat oxidation (3.5±0.2 vs. 3.7±0.2 μmol/kg/min) or to a measureable difference in IMTG content, (68.3±12.7 vs. 63.7±6.7 μmol/g dry weight). In conjunction with the lower fatty acid Rd in NORM-Sivs. LOW-Si, activation of inflammatory pathways known to impair insulin action in skeletal muscle was also lower (i.e. lower phosphorylated JNK, higher IκBα abundance). In contrast, LOW-Si and NORM-Si exhibited no differences in plasma markers of inflammation (i.e. TNFα, IL-6, MCP-1). Conclusion These findings suggest that obese women who maintain a relatively low rate of endogenous fatty acid uptake may be somewhat “protected” against the development of insulin resistance potentially by less activation of inflammatory pathways within skeletal muscle.
Collapse
Affiliation(s)
- D W Van Pelt
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - S A Newsom
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - S Schenk
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - J F Horowitz
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
46
|
DeFronzo RA, Triplitt CL, Abdul-Ghani M, Cersosimo E. Novel Agents for the Treatment of Type 2 Diabetes. Diabetes Spectr 2014; 27:100-12. [PMID: 26246766 PMCID: PMC4522879 DOI: 10.2337/diaspect.27.2.100] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In Brief Impaired insulin secretion, increased hepatic glucose production, and decreased peripheral glucose utilization are the core defects responsible for the development and progression of type 2 diabetes. However, the pathophysiology of this disease also includes adipocyte insulin resistance (increased lipolysis), reduced incretin secretion/sensitivity, increased glucagon secretion, enhanced renal glucose reabsorption, and brain insulin resistance/neurotransmitter dysfunction. Although current diabetes management focuses on lowering blood glucose, the goal of therapy should be to delay disease progression and eventual treatment failure. Recent innovative treatment approaches target the multiple pathophysiological defects present in type 2 diabetes. Optimal management should include early initiation of combination therapy using multiple drugs with different mechanisms of action. This review examines novel therapeutic options that hold particular promise.
Collapse
|
47
|
Olesen J, Gliemann L, Biensø R, Schmidt J, Hellsten Y, Pilegaard H. Exercise training, but not resveratrol, improves metabolic and inflammatory status in skeletal muscle of aged men. J Physiol 2014; 592:1873-86. [PMID: 24514907 DOI: 10.1113/jphysiol.2013.270256] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aim was to investigate the metabolic and anti-inflammatory effects of resveratrol alone and when combined with exercise training in skeletal muscle of aged human subjects. Healthy, physically inactive men (60-72 years old) were randomized to either 8 weeks of daily intake of 250 mg resveratrol or placebo or to 8 weeks of high-intensity exercise training with 250 mg resveratrol or placebo. Before and after the interventions, resting blood samples and muscle biopsies were obtained and a one-legged knee-extensor endurance exercise test was performed. Exercise training increased skeletal muscle peroxisome proliferator-activated receptor-γ co-activator-1α mRNA ~1.5-fold, cytochrome c protein ~1.3-fold, cytochrome c oxidase I protein ~1.5-fold, citrate synthase activity ~1.3-fold, 3-hydroxyacyl-CoA dehydrogenase activity ~1.3-fold, inhibitor of κB-α and inhibitor of κB-β protein content ~1.3-fold and time to exhaustion in the one-legged knee-extensor endurance exercise test by ∼1.2-fold, with no significant additive or adverse effects of resveratrol on these parameters. Despite an overall ~25% reduction in total acetylation level in skeletal muscle with resveratrol, no exclusive resveratrol-mediated metabolic effects were observed on the investigated parameters. Notably, however, resveratrol blunted an exercise training-induced decrease (~20%) in protein carbonylation and decrease (~40%) in tumour necrosis factor α mRNA content in skeletal muscle. In conclusion, resveratrol did not elicit metabolic improvements in healthy aged subjects; in fact, resveratrol even impaired the observed exercise training-induced improvements in markers of oxidative stress and inflammation in skeletal muscle. Collectively, this highlights the metabolic efficacy of exercise training in aged subjects and does not support the contention that resveratrol is a potential exercise mimetic in healthy aged subjects.
Collapse
Affiliation(s)
- Jesper Olesen
- August Krogh Building, Universitetsparken 13, 4th floor, 2100 KBH Ø, Denmark.
| | | | | | | | | | | |
Collapse
|
48
|
Turner N, Cooney GJ, Kraegen EW, Bruce CR. Fatty acid metabolism, energy expenditure and insulin resistance in muscle. J Endocrinol 2014; 220:T61-79. [PMID: 24323910 DOI: 10.1530/joe-13-0397] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fatty acids (FAs) are essential elements of all cells and have significant roles as energy substrates, components of cellular structure and signalling molecules. The storage of excess energy intake as fat in adipose tissue is an evolutionary advantage aimed at protecting against starvation, but in much of today's world, humans are faced with an unlimited availability of food, and the excessive accumulation of fat is now a major risk for human health, especially the development of type 2 diabetes (T2D). Since the first recognition of the association between fat accumulation, reduced insulin action and increased risk of T2D, several mechanisms have been proposed to link excess FA availability to reduced insulin action, with some of them being competing or contradictory. This review summarises the evidence for these mechanisms in the context of excess dietary FAs generating insulin resistance in muscle, the major tissue involved in insulin-stimulated disposal of blood glucose. It also outlines potential problems with models and measurements that may hinder as well as help improve our understanding of the links between FAs and insulin action.
Collapse
Affiliation(s)
- Nigel Turner
- Department of Pharmacology School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia Diabetes and Obesity Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Australia St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
49
|
Abstract
Inflammation has been characterized as a double-edged sword, requiring a balance between health as maintained by regular exercise and activities that would exacerbate inflammatory diseases. The influence of exercise on inflammation is complex and has been widely studied in both healthy patient populations as well as populations of patients with many inflammatory and/or autoimmune rheumatic diseases. Inflammatory markers can be affected by the type of exercise and muscle contraction, as well as the intensity, duration, and consistency of the exercise sessions. Because of these potentially important effects, many members of the general public, as well as some clinicians, believe that exercise could exacerbate symptoms and accelerate the progression of such conditions. The effects of different types of exercise have been studied among patients with inflammatory conditions such as ankylosing spondylitis, systemic lupus erythematosus, rheumatoid arthritis, osteoarthritis, fibromyalgia, and idiopathic inflammatory myopathies, as well as congestive heart failure, type 2 diabetes mellitus, and metabolic syndrome, which are considered low-grade systemic inflammatory diseases. This review will help exercise professionals and clinicians understand the effects of exercise on inflammatory markers, as well as offer effective treatment options and recommendations for patients exercising with rheumatic or inflammatory conditions.
Collapse
Affiliation(s)
- Jennifer L Thomas
- Health Educator, Sandia National Laboratories, Albuquerque, NM; Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM.
| |
Collapse
|
50
|
Sakurai T, Kashimura O, Kano Y, Ohno H, Ji LL, Izawa T, Best TM. Role of nitric oxide in muscle regeneration following eccentric muscle contractions in rat skeletal muscle. J Physiol Sci 2013; 63:263-70. [PMID: 23606218 PMCID: PMC10717722 DOI: 10.1007/s12576-013-0262-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/10/2013] [Indexed: 01/15/2023]
Abstract
We examined the role of nitric oxide (NO) in muscle repair and regeneration following repetitive eccentric contractions (ECC). A standardized exercise protocol was used to create eccentric contraction-induced injury to the left tibialis anterior muscle of 48 male Wistar rats (body wt 250-350 g), using a customized isokinetic test device and a bout of 40 ECCs under electrical stimulation. A nitric oxide synthase inhibitor, N(G)-nitro-L-arginine-methyl ester (L-NAME; 35 mg kg(-1) day(-1)), was included in the diet for half the animals (n = 24) beginning 3 days prior to the ECC and continuing throughout the experiment, whereas the other half (n = 24) received a control diet. ECC/+L-NAME and ECC/-L-NAME were killed after the ECC protocol at 0, 1, 3 and 7 days (n = 6 on each day). An unexercised contralateral limb with and without L-NAME infusion served as a respective control muscle at each time point. Muscle NO content, skeletal muscle damage, leukocyte infiltration, calpain activity, and MyoD and myogenin expression were assessed. NO has both pro-inflammatory and anti-inflammatory properties, and several possible roles for NO in skeletal muscle damage have been postulated. NO content was greater in the ECC/-L-NAME group at all time points (p < 0.05) compared to ECC/+L-NAME. Additionally, significant differences in NO content were observed on day 0 (p < 0.05), and day 3 (p < 0.05), ECC/+L-NAME versus ECC/-L-NAME. One day following the bout of ECC, and NO levels were increased in the ECC/-L-NAME group. Three days following ECC, there was greater myofiber damage (measured by β-glucuronidase activity) and leukocyte invasion in the ECC/-L-NAME group as compared to the ECC/+L-NAME group. One day after ECC, calpain activity was significantly increased in ECC/-L-NAME compared with control muscles (p < 0.05). On days 3 and 7, Myo-D and myogenin gene expression was increased in both groups; however, the degree of regeneration was less in the ECC/+L-NAME-treated animals. These data suggest that NO dynamics have important implications in the regulation of various factors during skeletal muscle regeneration following damaging eccentric muscle contractions.
Collapse
Affiliation(s)
- Tomonobu Sakurai
- Faculty of Bio-Industry, Tokyo University of Agriculture, 196 Yasaka, Abashiri, Hokkaido, 099-2493, Japan.
| | | | | | | | | | | | | |
Collapse
|