1
|
Jiang Y, He P, Sheng K, Peng Y, Wu H, Qian S, Ji W, Guo X, Shan X. The protective roles of eugenol on type 1 diabetes mellitus through NRF2-mediated oxidative stress pathway. eLife 2025; 13:RP96600. [PMID: 39792010 PMCID: PMC11723580 DOI: 10.7554/elife.96600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Type 1 diabetes mellitus (T1DM), known as insulin-dependent diabetes mellitus, is characterized by persistent hyperglycemia resulting from damage to the pancreatic β cells and an absolute deficiency of insulin, leading to multi-organ involvement and a poor prognosis. The progression of T1DM is significantly influenced by oxidative stress and apoptosis. The natural compound eugenol (EUG) possesses anti-inflammatory, anti-oxidant, and anti-apoptotic properties. However, the potential effects of EUG on T1DM had not been investigated. In this study, we established the streptozotocin (STZ)-induced T1DM mouse model in vivo and STZ-induced pancreatic β cell MIN6 cell model in vitro to investigate the protective effects of EUG on T1DM, and tried to elucidate its potential mechanism. Our findings demonstrated that the intervention of EUG could effectively induce the activation of nuclear factor E2-related factor 2 (NRF2), leading to an up-regulation in the expressions of downstream proteins NQO1 and HMOX1, which are regulated by NRF2. Moreover, this intervention exhibited a significant amelioration in pancreatic β cell damage associated with T1DM, accompanied by an elevation in insulin secretion and a reduction in the expression levels of apoptosis and oxidative stress-related markers. Furthermore, ML385, an NRF2 inhibitor, reversed these effects of EUG. The present study suggested that EUG exerted protective effects on pancreatic β cells in T1DM by attenuating apoptosis and oxidative stress through the activation of the NRF2 signaling pathway. Consequently, EUG holds great promise as a potential therapeutic candidate for T1DM.
Collapse
Affiliation(s)
- Yalan Jiang
- Department of Pediatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Pingping He
- Department of Pediatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Ke Sheng
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yongmiao Peng
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Huilan Wu
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Songwei Qian
- Department of Genaral Surgery, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s HospitalQuzhouChina
- Department of General Surgery, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Weiping Ji
- Department of Genaral Surgery, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s HospitalQuzhouChina
- Department of General Surgery, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiaoling Guo
- Department of Pediatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- Basic Medical Research Center, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiaoou Shan
- Department of Pediatrics, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Children Genitourinary Diseases of Wenzhou, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
2
|
Boone C, Lewis SC. Bridging lipid metabolism and mitochondrial genome maintenance. J Biol Chem 2024; 300:107498. [PMID: 38944117 PMCID: PMC11326895 DOI: 10.1016/j.jbc.2024.107498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
Mitochondria are the nexus of cellular energy metabolism and major signaling hubs that integrate information from within and without the cell to implement cell function. Mitochondria harbor a distinct polyploid genome, mitochondrial DNA (mtDNA), that encodes respiratory chain components required for energy production. MtDNA mutation and depletion have been linked to obesity and metabolic syndrome in humans. At the cellular and subcellular levels, mtDNA synthesis is coordinated by membrane contact sites implicated in lipid transfer from the endoplasmic reticulum, tying genome maintenance to lipid storage and homeostasis. Here, we examine the relationship between mtDNA and lipid trafficking, the influence of lipotoxicity on mtDNA integrity, and how lipid metabolism may be disrupted in primary mtDNA disease.
Collapse
Affiliation(s)
- Casadora Boone
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
| | - Samantha C Lewis
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA; Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.
| |
Collapse
|
3
|
Thomas P, Gallagher MT, Da Silva Xavier G. Beta cell lipotoxicity in the development of type 2 diabetes: the need for species-specific understanding. Front Endocrinol (Lausanne) 2023; 14:1275835. [PMID: 38144558 PMCID: PMC10739424 DOI: 10.3389/fendo.2023.1275835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
The propensity to develop type 2 diabetes (T2D) is known to have both environmental and hereditary components. In those with a genetic predisposition to T2D, it is widely believed that elevated concentrations of circulatory long-chain fatty acids (LC-FFA) significantly contribute towards the demise of insulin-producing pancreatic β-cells - the fundamental feature of the development of T2D. Over 25 years of research support that LC-FFA are deleterious to β-cells, through a process termed lipotoxicity. However, the work underpinning the theory of β-cell lipotoxicity is mostly based on rodent studies. Doubts have been raised as to whether lipotoxicity also occurs in humans. In this review, we examine the evidence, both in vivo and in vitro, for the pathogenic effects of LC-FFA on β-cell viability and function in humans, highlighting key species differences. In this way, we aim to uncover the role of lipotoxicity in the human pathogenesis of T2D and motivate the need for species-specific understanding.
Collapse
Affiliation(s)
- Patricia Thomas
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Institute for Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Meurig T. Gallagher
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Institute for Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Gabriela Da Silva Xavier
- Institute for Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Zhao X, Ma Y, Shi M, Huang M, Xin J, Ci S, Chen M, Jiang T, Hu Z, He L, Pan F, Guo Z. Excessive iron inhibits insulin secretion via perturbing transcriptional regulation of SYT7 by OGG1. Cell Mol Life Sci 2023; 80:159. [PMID: 37209177 PMCID: PMC11072990 DOI: 10.1007/s00018-023-04802-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
Although iron overload is closely related to the occurrence of type 2 diabetes mellitus (T2DM), the specific mechanism is unclear. Here, we found that excessive iron inhibited the secretion of insulin (INS) and impaired islet β cell function through downregulating Synaptotagmin 7 (SYT7) in iron overload model in vivo and in vitro. Our results further demonstrated that 8-oxoguanine DNA glycosylase (OGG1), a key protein in the DNA base excision repair, was an upstream regulator of SYT7. Interestingly, such regulation could be suppressed by excessive iron. Ogg1-null mice, iron overload mice and db/db mice exhibit reduced INS secretion, weakened β cell function and subsequently impaired glucose tolerance. Notably, SYT7 overexpression could rescue these phenotypes. Our data revealed an intrinsic mechanism by which excessive iron inhibits INS secretion through perturbing the transcriptional regulation of SYT7 by OGG1, which suggested that SYT7 was a potential target in clinical therapy for T2DM.
Collapse
Affiliation(s)
- Xingqi Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Ying Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Munan Shi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Miaoling Huang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Jingyu Xin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Shusheng Ci
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Meimei Chen
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
| | - Tao Jiang
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, Jiangsu, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China.
| |
Collapse
|
5
|
OGG1 in the Kidney: Beyond Base Excision Repair. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5774641. [PMID: 36620083 PMCID: PMC9822757 DOI: 10.1155/2022/5774641] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/01/2023]
Abstract
8-Oxoguanine DNA glycosylase (OGG1) is a repair protein for 8-oxoguanine (8-oxoG) in eukaryotic atopic DNA. Through the initial base excision repair (BER) pathway, 8-oxoG is recognized and excised, and subsequently, other proteins are recruited to complete the repair. OGG1 is primarily located in the cytoplasm and can enter the nucleus and mitochondria to repair damaged DNA or to exert epigenetic regulation of gene transcription. OGG1 is involved in a wide range of physiological processes, such as DNA repair, oxidative stress, inflammation, fibrosis, and autophagy. In recent years, studies have found that OGG1 plays an important role in the progression of kidney diseases through repairing DNA, inducing inflammation, regulating autophagy and other transcriptional regulation, and governing protein interactions and functions during disease and injury. In particular, the epigenetic effects of OGG1 in kidney disease have gradually attracted widespread attention. This study reviews the structure and biological functions of OGG1 and the regulatory mechanism of OGG1 in kidney disease. In addition, the possibility of OGG1 as a potential therapeutic target in kidney disease is discussed.
Collapse
|
6
|
Burchat N, Sharma P, Ye H, Komakula SSB, Dobrzyn A, Vartanian V, Lloyd RS, Sampath H. Maternal Transmission of Human OGG1 Protects Mice Against Genetically- and Diet-Induced Obesity Through Increased Tissue Mitochondrial Content. Front Cell Dev Biol 2021; 9:718962. [PMID: 34604220 PMCID: PMC8480284 DOI: 10.3389/fcell.2021.718962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/09/2021] [Indexed: 01/05/2023] Open
Abstract
Obesity and related metabolic disorders are pressing public health concerns, raising the risk for a multitude of chronic diseases. Obesity is multi-factorial disease, with both diet and lifestyle, as well as genetic and developmental factors leading to alterations in energy balance. In this regard, a novel role for DNA repair glycosylases in modulating risk for obesity has been previously established. Global deletion of either of two different glycosylases with varying substrate specificities, Nei-like endonuclease 1 (NEIL1) or 8-oxoguanine DNA glycosylase-1 (OGG1), both predispose mice to diet-induced obesity (DIO). Conversely, enhanced expression of the human OGG1 gene renders mice resistant to obesity and adiposity. This resistance to DIO is mediated through increases in whole body energy expenditure and increased respiration in adipose tissue. Here, we report that hOGG1 expression also confers resistance to genetically-induced obesity. While Agouti obese (Ay/a) mice are hyperphagic and consequently develop obesity on a chow diet, hOGG1 expression in Ay/a mice (Ay/aTg) prevents increased body weight, without reducing food intake. Instead, obesity resistance in Ay/aTg mice is accompanied by increased whole body energy expenditure and tissue mitochondrial content. We also report for the first time that OGG1-mediated obesity resistance in both the Ay/a model and DIO model requires maternal transmission of the hOGG1 transgene. Maternal, but not paternal, transmission of the hOGG1 transgene is associated with obesity resistance and increased mitochondrial content in adipose tissue. These data demonstrate a critical role for OGG1 in modulating energy balance through changes in adipose tissue function. They also demonstrate the importance of OGG1 in modulating developmental programming of mitochondrial content and quality, thereby determining metabolic outcomes in offspring.
Collapse
Affiliation(s)
- Natalie Burchat
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
| | - Priyanka Sharma
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
| | - Hong Ye
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
| | - Sai Santosh Babu Komakula
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States.,Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Agnieszka Dobrzyn
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States.,Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Vladimir Vartanian
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States.,Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, United States
| | - Harini Sampath
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States.,Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States.,Center for Microbiome, Nutrition, and Health, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
7
|
Lipotoxic Impairment of Mitochondrial Function in β-Cells: A Review. Antioxidants (Basel) 2021; 10:antiox10020293. [PMID: 33672062 PMCID: PMC7919463 DOI: 10.3390/antiox10020293] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Lipotoxicity is a major contributor to type 2 diabetes mainly promoting mitochondrial dysfunction. Lipotoxic stress is mediated by elevated levels of free fatty acids through various mechanisms and pathways. Impaired peroxisome proliferator-activated receptor (PPAR) signaling, enhanced oxidative stress levels, and uncoupling of the respiratory chain result in ATP deficiency, while β-cell viability can be severely impaired by lipotoxic modulation of PI3K/Akt and mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinase (ERK) pathways. However, fatty acids are physiologically required for an unimpaired β-cell function. Thus, preparation, concentration, and treatment duration determine whether the outcome is beneficial or detrimental when fatty acids are employed in experimental setups. Further, ageing is a crucial contributor to β-cell decay. Cellular senescence is connected to loss of function in β-cells and can further be promoted by lipotoxicity. The potential benefit of nutrients has been broadly investigated, and particularly polyphenols were shown to be protective against both lipotoxicity and cellular senescence, maintaining the physiology of β-cells. Positive effects on blood glucose regulation, mitigation of oxidative stress by radical scavenging properties or regulation of antioxidative enzymes, and modulation of apoptotic factors were reported. This review summarizes the significance of lipotoxicity and cellular senescence for mitochondrial dysfunction in the pancreatic β-cell and outlines potential beneficial effects of plant-based nutrients by the example of polyphenols.
Collapse
|
8
|
Abstract
Mitochondria play various important roles in energy production, metabolism, and apoptosis. Mitochondrial dysfunction caused by alterations in mitochondrial DNA (mtDNA) can lead to the initiation and progression of cancers and other diseases. These alterations include mutations and copy number variations. Especially, the mutations in D-loop, MT-ND1, and MT-ND5 affect mitochondrial functions and are widely detected in various cancers. Meanwhile, several other mutations have been correlated with muscular and neuronal diseases, especially MT-TL1 is deeply related. These pieces of evidence indicated mtDNA alterations in diseases show potential as a novel therapeutic target. mtDNA repair enzymes are the target for delaying or stalling the mtDNA damage-induced cancer progression and metastasis. Moreover, some mutations reveal a prognosis ability of the drug resistance. Current efforts aim to develop mitochondrial transplantation technique as a direct cure for deregulated mitochondria-associated diseases. This review summarizes the implications of mitochondrial dysfunction in cancers and other pathologies; and discusses the relevance of mitochondria-targeted therapies, along with their contribution as potential biomarkers.
Collapse
Affiliation(s)
- Ngoc Ngo Yen Nguyen
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Hwa Jo
- Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Yuzefovych LV, Pastukh VM, Ruchko MV, Simmons JD, Richards WO, Rachek LI. Plasma mitochondrial DNA is elevated in obese type 2 diabetes mellitus patients and correlates positively with insulin resistance. PLoS One 2019; 14:e0222278. [PMID: 31600210 PMCID: PMC6786592 DOI: 10.1371/journal.pone.0222278] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/26/2019] [Indexed: 11/18/2022] Open
Abstract
Cells damaged by mechanical or infectious injury release proinflammatory mitochondrial DNA (mtDNA) fragments into the circulation. We evaluated the relation between plasma levels of mtDNA fragments in obese type 2 diabetes mellitus (T2DM) patients and measures of chronic inflammation and insulin resistance. In 10 obese T2DM patients and 12 healthy control (HC) subjects, we measured levels of plasma cell-free mtDNA with quantitative real-time polymerase chain reaction, and mtDNA damage in skeletal muscle with quantitative alkaline Southern blot. Also, markers of systemic inflammation and oxidative stress in skeletal muscle were measured. Plasma levels of mtDNA fragments, mtDNA damage in skeletal muscle and plasma tumor necrosis factor α levels were greater in obese T2DM patients than HC subjects. Also, the abundance of plasma mtDNA fragments in obese T2DM patients levels positively correlated with insulin resistance. To the best of our knowledge, this is the first published evidence that elevated level of plasma mtDNA fragments is associated with mtDNA damage and oxidative stress in skeletal muscle and correlates with insulin resistance in obese T2DM patients. Plasma mtDNA may be a useful biomarker for predicting and monitoring insulin resistance in obese patients.
Collapse
Affiliation(s)
- Larysa V. Yuzefovych
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Viktor M. Pastukh
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Mykhaylo V. Ruchko
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Jon D. Simmons
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
- Department of Surgery, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - William O. Richards
- Department of Surgery, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
| | - Lyudmila I. Rachek
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail:
| |
Collapse
|
10
|
Abstract
Cellular damage produced by conditions generating oxidative stress have far-reaching implications in human disease that encompass, but are not restricted to aging, cardiovascular disease, type 2 diabetes, airway inflammation/asthma, cancer, and metabolic syndrome including visceral obesity, insulin resistance, fatty liver disease, and dyslipidemia. Although there are numerous sources and cellular targets of oxidative stress, this review will highlight literature that has investigated downstream consequences of oxidatively-induced DNA damage in both nuclear and mitochondrial genomes. The presence of such damage can in turn, directly and indirectly modulate cellular transcriptional and repair responses to such stressors. As such, the persistence of base damage can serve as a key regulator in coordinated gene-response cascades. Conversely, repair of these DNA lesions serves as both a suppressor of mutagenesis and by inference carcinogenesis, and as a signal for the cessation of ongoing oxidative stress. A key enzyme in all these processes is 8-oxoguanine DNA glycosylase (OGG1), which, via non-catalytic binding to oxidatively-induced DNA damage in promoter regions, serves as a nucleation site around which changes in large-scale regulation of inflammation-associated gene expression can occur. Further, the catalytic function of OGG1 can alter the three-dimensional structure of specialized DNA sequences, leading to changes in transcriptional profiles. This review will concentrate on adverse deleterious health effects that are associated with both the diminution of OGG1 activity via population-specific polymorphic variants and the complete loss of OGG1 in murine models. This mouse model displays diet- and age-related induction of metabolic syndrome, highlighting a key role for OGG1 in protecting against these phenotypes. Conversely, recent investigations using murine models having enhanced global expression of a mitochondrial-targeted OGG1 demonstrate that they are highly resistant to diet-induced disease. These data suggest strategies through which therapeutic interventions could be designed for reducing or limiting adverse human health consequences to these ubiquitous stressors.
Collapse
Affiliation(s)
- Harini Sampath
- Department of Nutritional Sciences and New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, United States.
| | - R Stephen Lloyd
- Oregon Institute for Occupational Health Sciences, Department of Molecular and Medical Genetics, Oregon Health & Sciences University, Portland, Oregon, 97239, United States.
| |
Collapse
|
11
|
Mitochondrial DNA Integrity: Role in Health and Disease. Cells 2019; 8:cells8020100. [PMID: 30700008 PMCID: PMC6406942 DOI: 10.3390/cells8020100] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/06/2023] Open
Abstract
As the primary cellular location for respiration and energy production, mitochondria serve in a critical capacity to the cell. Yet, by virtue of this very function of respiration, mitochondria are subject to constant oxidative stress that can damage one of the unique features of this organelle, its distinct genome. Damage to mitochondrial DNA (mtDNA) and loss of mitochondrial genome integrity is increasingly understood to play a role in the development of both severe early-onset maladies and chronic age-related diseases. In this article, we review the processes by which mtDNA integrity is maintained, with an emphasis on the repair of oxidative DNA lesions, and the cellular consequences of diminished mitochondrial genome stability.
Collapse
|
12
|
Danobeitia JS, Chlebeck PJ, Shokolenko I, Ma X, Wilson G, Fernandez LA. Novel Fusion Protein Targeting Mitochondrial DNA Improves Pancreatic Islet Functional Potency and Islet Transplantation Outcomes. Cell Transplant 2018; 26:1742-1754. [PMID: 29338388 PMCID: PMC5784523 DOI: 10.1177/0963689717727542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Long-term graft survival is an ongoing challenge in the field of islet transplantation. With the growing demand for transplantable organs, therapies to improve organ quality and reduce the incidence of graft dysfunction are of paramount importance. We evaluated the protective role of a recombinant DNA repair protein targeted to mitochondria (Exscien I-III), as a therapeutic agent using a rodent model of pancreatic islet transplantation. We first investigated the effect of therapy on isolated rat islets cultured with pro-inflammatory cytokines (interleukin-1 β, interferon γ, and tumor necrosis factor α) for 48 h and documented a significant reduction in apoptosis by flow cytometry, improved viability by immunofluorescence, and conserved functional potency in vitro and in vivo in Exscien I-III-treated islets. We then tested the effect of therapy in systemic inflammation using a rat model of donor brain death (BD) sustained for a 6-h period. Donor rats were allocated to 4 groups: (non-BD + vehicle, non-BD + Exscien I-III, BD + vehicle, and BD + Exscien I-III) and treated with Exscien I-III (4 mg/kg) or vehicle 30 min after BD induction. Sham (non-BD)-operated animals receiving either Exscien I-III or vehicle served as controls. Islets purified from BD + Exscien I-III-treated donors showed a significant increase in glucose-stimulated insulin release in vitro when compared to islets from vehicle-treated counterparts. In addition, donor treatment with Exscien I-III attenuated the effects of BD and significantly improved the functional potency of transplanted islets in vivo. Our data indicate that mitochondrially targeted antioxidant therapy is a novel strategy to protect pancreas and islet quality from the deleterious effects of cytokines in culture and during the inflammatory response associated with donation after BD. The potential for rapid translation into clinical practice makes Exscien I-III an attractive therapeutic option for the management of brain-dead donors or as an additive to islets in culture after isolation setting.
Collapse
Affiliation(s)
- Juan S Danobeitia
- Division of Transplantation Madison, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Peter J Chlebeck
- Division of Transplantation Madison, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Inna Shokolenko
- Department of Allied Health, University of South Alabama, Mobile, Alabama, USA
| | - Xiaobo Ma
- Division of Transplantation Madison, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Glenn Wilson
- Exscien Corporation, Mobile, Alabama, USA.,College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Luis A Fernandez
- Division of Transplantation Madison, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
13
|
Komakula SSB, Tumova J, Kumaraswamy D, Burchat N, Vartanian V, Ye H, Dobrzyn A, Lloyd RS, Sampath H. The DNA Repair Protein OGG1 Protects Against Obesity by Altering Mitochondrial Energetics in White Adipose Tissue. Sci Rep 2018; 8:14886. [PMID: 30291284 PMCID: PMC6173743 DOI: 10.1038/s41598-018-33151-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/21/2018] [Indexed: 12/15/2022] Open
Abstract
Obesity and related metabolic pathologies represent a significant public health concern. Obesity is associated with increased oxidative stress that damages genomic and mitochondrial DNA. Oxidatively-induced lesions in both DNA pools are repaired via the base-excision repair pathway, initiated by DNA glycosylases such as 8-oxoguanine DNA glycosylase (OGG1). Global deletion of OGG1 and common OGG1 polymorphisms render mice and humans susceptible to metabolic disease. However, the relative contribution of mitochondrial OGG1 to this metabolic phenotype is unknown. Here, we demonstrate that transgenic targeting of OGG1 to mitochondria confers significant protection from diet-induced obesity, insulin resistance, and adipose tissue inflammation. These favorable metabolic phenotypes are mediated by an increase in whole body energy expenditure driven by specific metabolic adaptations, including increased mitochondrial respiration in white adipose tissue of OGG1 transgenic (Ogg1Tg) animals. These data demonstrate a critical role for a DNA repair protein in modulating mitochondrial energetics and whole-body energy balance.
Collapse
Affiliation(s)
- Sai Santosh Babu Komakula
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA.,Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jana Tumova
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Deeptha Kumaraswamy
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Natalie Burchat
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Vladimir Vartanian
- Oregon Institute of Occupational Health Sciences, Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Hong Ye
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Agnieszka Dobrzyn
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Harini Sampath
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
14
|
Valacchi G, Virgili F, Cervellati C, Pecorelli A. OxInflammation: From Subclinical Condition to Pathological Biomarker. Front Physiol 2018; 9:858. [PMID: 30038581 PMCID: PMC6046448 DOI: 10.3389/fphys.2018.00858] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/15/2018] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a complex systemic response evolved to cope with cellular injury, either due to infectious agents or, in general, with sporadic events challenging tissue integrity and function. Researchers involved in different fields have the tendency to look at the inflammatory response with different angles, according to their specific interest. Established its complexity, one of the most evident features of the inflammatory response is the generation of a pro-oxidative environment due to the production of high fluxes of pro-oxidant species. This production begins locally, close to the sites of tissue damage or infection, but eventually becomes a chronic challenge for the organism, if the inflammatory response is not properly controlled. In this review, we focus on this specific aspect of chronic, low-level sub-clinical inflammatory response. We propose the term "OxInflammation" as a novel operative term describing a permanent pro-oxidative feature that interact, in a positive feed-back manner, to a not yet clinically detectable inflammatory process, leading in a long run (chronically) to a systemic/local damage, as a consequence of the cross talk between inflammatory, and oxidative stress mediators. Therefore, it could be useful to analyze inflammatory markers in pathologies where there is an alteration of the redox homeostasis, although an inflammatory status is not clinically evident.
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Plants for Human Health Institute, Department of Animal Sciences, North Carolina State University, Kannapolis, NC, United States
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Fabio Virgili
- Council for Agricultural Research and Economics - Food and Nutrition Research Centre (C.R.E.A.-AN), Rome, Italy
| | - Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Plants for Human Health Institute, Department of Animal Sciences, North Carolina State University, Kannapolis, NC, United States
| |
Collapse
|
15
|
Sifuentes-Franco S, Pacheco-Moisés FP, Rodríguez-Carrizalez AD, Miranda-Díaz AG. The Role of Oxidative Stress, Mitochondrial Function, and Autophagy in Diabetic Polyneuropathy. J Diabetes Res 2017; 2017:1673081. [PMID: 29204450 PMCID: PMC5674726 DOI: 10.1155/2017/1673081] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/25/2017] [Accepted: 09/12/2017] [Indexed: 02/07/2023] Open
Abstract
Diabetic polyneuropathy (DPN) is the most frequent and prevalent chronic complication of diabetes mellitus (DM). The state of persistent hyperglycemia leads to an increase in the production of cytosolic and mitochondrial reactive oxygen species (ROS) and favors deregulation of the antioxidant defenses that are capable of activating diverse metabolic pathways which trigger the presence of nitro-oxidative stress (NOS) and endoplasmic reticulum stress. Hyperglycemia provokes the appearance of micro- and macrovascular complications and favors oxidative damage to the macromolecules (lipids, carbohydrates, and proteins) with an increase in products that damage the DNA. Hyperglycemia produces mitochondrial dysfunction with deregulation between mitochondrial fission/fusion and regulatory factors. Mitochondrial fission appears early in diabetic neuropathy with the ability to facilitate mitochondrial fragmentation. Autophagy is a catabolic process induced by oxidative stress that involves the formation of vesicles by the lysosomes. Autophagy protects cells from diverse stress factors and routine deterioration. Clarification of the mechanisms involved in the appearance of complications in DM will facilitate the selection of specific therapeutic options based on the mechanisms involved in the metabolic pathways affected. Nowadays, the antioxidant agents consumed exogenously form an adjuvant therapeutic alternative in chronic degenerative metabolic diseases, such as DM.
Collapse
Affiliation(s)
- Sonia Sifuentes-Franco
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, University of Guadalajara, Guadalajara, JAL, Mexico
| | - Fermín Paul Pacheco-Moisés
- Department of Chemistry, University Centre for Exact and Engineering Sciences, University of Guadalajara, Guadalajara, JAL, Mexico
| | - Adolfo Daniel Rodríguez-Carrizalez
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, University of Guadalajara, Guadalajara, JAL, Mexico
| | - Alejandra Guillermina Miranda-Díaz
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Health Sciences Centre, University of Guadalajara, Guadalajara, JAL, Mexico
| |
Collapse
|
16
|
Errichiello E, Venesio T. Mitochondrial DNA variants in colorectal carcinogenesis: Drivers or passengers? J Cancer Res Clin Oncol 2017; 143:1905-1914. [PMID: 28393270 DOI: 10.1007/s00432-017-2418-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/03/2017] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Mitochondrial DNA alterations have widely been reported in many age-related degenerative diseases and tumors, including colorectal cancer. In the past few years, the discovery of inter-genomic crosstalk between nucleus and mitochondria has reinforced the role of mitochondrial DNA variants in perturbing this essential signaling pathway and thus indirectly targeting nuclear genes involved in tumorigenic and invasive phenotype. FINDINGS Mitochondrial dysfunction is currently considered a crucial hallmark of carcinogenesis as well as a promising target for anticancer therapy. Mitochondrial DNA alterations include point mutations, deletions, inversions, and copy number variations, but numerous studies investigating their pathogenic role in cancer have provided inconsistent evidence. Furthermore, the biological impact of mitochondrial DNA variants may vary tremendously, depending on the proportion of mutant DNA molecules carried by the neoplastic cells (heteroplasmy). CONCLUSIONS In this review, we discuss the role of different type of mitochondrial DNA alterations in colorectal carcinogenesis and, in particular, we revisit the issue of whether they may be considered as causative driver or simply genuine passenger events. The advent of high-throughput techniques as well as the development of genetic and pharmaceutical interventions for the treatment of mitochondrial dysfunction in colorectal cancer are also explored.
Collapse
Affiliation(s)
- Edoardo Errichiello
- Department of Molecular Medicine, University of Pavia, Via Forlanini 14, 27100, Pavia, Italy.
- Molecular Pathology Laboratory, Unit of Pathology, Candiolo Cancer Institute, FPO-IRCCS, Starda Provinciale 142, Candiolo, 10060, Turin, Italy.
| | - Tiziana Venesio
- Molecular Pathology Laboratory, Unit of Pathology, Candiolo Cancer Institute, FPO-IRCCS, Starda Provinciale 142, Candiolo, 10060, Turin, Italy
| |
Collapse
|
17
|
Refat MS, El-Megharbel SM, Hussien MA, Hamza RZ, Al-Omar MA, Naglah AM, Afifi WM, Kobeasy MI. Spectroscopic, structural characterizations and antioxidant capacity of the chromium (III) niacinamide compound as a diabetes mellitus drug model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:122-131. [PMID: 27619974 DOI: 10.1016/j.saa.2016.08.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/02/2016] [Accepted: 08/28/2016] [Indexed: 06/06/2023]
Abstract
New binuclear chromium (III) niacinamide compound with chemical formula [Cr2(Nic)(Cl)6(H2O)4]·H2O was obtained upon the reaction of chromium (III) chloride with niacinamide (Nic) in methanol solvent at 60°C. The proposed structure was discussed with the help of microanalytical analyses, conductivity, spectroscopic (FT-IR and UV-vis.), magnetic calculations, thermogravimetric analyses (TG/TGA), and morphological studies (X-ray of solid powder and scan electron microscopy. The infrared spectrum of free niacinamide in comparison with its chromium (III) compound indicated that the chelation mode occurs via both nitrogen atoms of pyridine ring and primary -NH2 group. The efficiency of chromium (III) niacinamide compound in decreasing of glucose level of blood and HbA1c in case of diabetic rats was checked. The ameliorating gluconeogenic enzymes, lipid profile and antioxidant defense capacities are considered as an indicator of the efficiency of new chromium (III) compound as antidiabetic drug model.
Collapse
Affiliation(s)
- Moamen S Refat
- Chemistry Department, Faculty of Science, Taif University, P.O. Box 888, Al-Hawiah, Taif 21974, Saudi Arabia; Department of Chemistry, Faculty of Science, Port Said, Port Said University, Egypt.
| | - Samy M El-Megharbel
- Chemistry Department, Faculty of Science, Taif University, P.O. Box 888, Al-Hawiah, Taif 21974, Saudi Arabia; Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - M A Hussien
- Department of Chemistry, Faculty of Science, Port Said, Port Said University, Egypt
| | - Reham Z Hamza
- Department of Zoology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Mohamed A Al-Omar
- Department of Pharmaceutical Chemistry, Drug Exploration and Development Chair, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed M Naglah
- Department of Pharmaceutical Chemistry, Drug Exploration and Development Chair, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre, 12622-Dokki, Cairo, Egypt
| | - Walid M Afifi
- International Extended Care Center, Jeddah, Saudi Arabia; Nephrology Unit, Zagazig University Hospital, Egypt
| | - Mohamed I Kobeasy
- Chemistry Department, Faculty of Science, Taif University, P.O. Box 888, Al-Hawiah, Taif 21974, Saudi Arabia; Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
18
|
Animal Model of Gestational Diabetes Mellitus with Pathophysiological Resemblance to the Human Condition Induced by Multiple Factors (Nutritional, Pharmacological, and Stress) in Rats. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9704607. [PMID: 27379252 PMCID: PMC4917720 DOI: 10.1155/2016/9704607] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/08/2016] [Indexed: 01/31/2023]
Abstract
This study attempts to develop an experimental gestational diabetes mellitus (GDM) animal model in female Sprague-Dawley rats. Rats were fed with high fat sucrose diet, impregnated, and induced with Streptozotocin and Nicotinamide on gestational day 0 (D0). Sleeping patterns of the rats were also manipulated to induce stress, a lifestyle factor that contributes to GDM. Rats were tested for glycemic parameters (glucose, C-peptide, and insulin), lipid profiles (total cholesterol, triglycerides, HDL, and LDL), genes affecting insulin signaling (IRS-2, AKT-1, and PCK-1), glucose transporters (GLUT-2 and GLUT-4), proinflammatory cytokines (IL-6, TNF-α), and antioxidants (SOD, CAT, and GPX) on D6 and D21. GDM rats showed possible insulin resistance as evidenced by high expression of proinflammatory cytokines, PCK-1 and CRP. Furthermore, low levels of IRS-2 and AKT-1 genes and downregulation of GLUT-4 from the initial to final phases indicate possible defect of insulin signaling. GDM rats also showed an impairment of antioxidant status and a hyperlipidemic state. Additionally, GDM rats exhibited significantly higher body weight and blood glucose and lower plasma insulin level and C-peptide than control. Based on the findings outlined, the current GDM animal model closely replicates the disease state in human and can serve as a reference for future investigations.
Collapse
|
19
|
Réus GZ, Dos Santos MAB, Abelaira HM, Titus SE, Carlessi AS, Matias BI, Bruchchen L, Florentino D, Vieira A, Petronilho F, Ceretta LB, Zugno AI, Quevedo J. Antioxidant treatment ameliorates experimental diabetes-induced depressive-like behaviour and reduces oxidative stress in brain and pancreas. Diabetes Metab Res Rev 2016; 32:278-88. [PMID: 26432993 DOI: 10.1002/dmrr.2732] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/19/2015] [Accepted: 09/11/2015] [Indexed: 01/30/2023]
Abstract
Studies have shown a relationship between diabetes mellitus (DM) and the development of major depressive disorder. Alterations in oxidative stress are associated with the pathophysiology of both diabetes mellitus and major depressive disorder. This study aimed to evaluate the effects of antioxidants N-acetylcysteine and deferoxamine on behaviour and oxidative stress parameters in diabetic rats. To this aim, after induction of diabetes by a single dose of alloxan, Wistar rats were treated with N-acetylcysteine or deferoxamine for 14 days, and then depressive-like behaviour was evaluated. Oxidative stress parameters were assessed in the prefrontal cortex, hippocampus, amygdala, nucleus accumbens and pancreas. Diabetic rats displayed depressive-like behaviour, and treatment with N-acetylcysteine reversed this alteration. Carbonyl protein levels were increased in the prefrontal cortex, hippocampus and pancreas of diabetic rats, and both N-acetylcysteine and deferoxamine reversed these alterations. Lipid damage was increased in the prefrontal cortex, hippocampus, amygdala and pancreas; however, treatment with N-acetylcysteine or deferoxamine reversed lipid damage only in the hippocampus and pancreas. Superoxide dismutase activity was decreased in the amygdala, nucleus accumbens and pancreas of diabetic rats. In diabetic rats, there was a decrease in catalase enzyme activity in the prefrontal cortex, amygdala, nucleus accumbens and pancreas, but an increase in the hippocampus. Treatment with antioxidants did not have an effect on the activity of antioxidant enzymes. In conclusion, animal model of diabetes produced depressive-like behaviour and oxidative stress in the brain and periphery. Treatment with antioxidants could be a viable alternative to treat behavioural and biochemical alterations induced by diabetes.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Maria Augusta B Dos Santos
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Helena M Abelaira
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Stephanie E Titus
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anelise S Carlessi
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Beatriz I Matias
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Livia Bruchchen
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Drielly Florentino
- Laboratório de Fisiopatologia Clínica e Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Andriele Vieira
- Laboratório de Fisiopatologia Clínica e Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Fabricia Petronilho
- Laboratório de Fisiopatologia Clínica e Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Sul de Santa Catarina, Tubarão, SC, Brazil
| | - Luciane B Ceretta
- Laboratório de Saúde Coletiva, Programa de Pós-Graduação em Saúde Coletiva, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Alexandra I Zugno
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
20
|
Haldar SR, Chakrabarty A, Chowdhury S, Haldar A, Sengupta S, Bhattacharyya M. Oxidative stress-related genes in type 2 diabetes: association analysis and their clinical impact. Biochem Genet 2015; 53:93-119. [PMID: 25991559 DOI: 10.1007/s10528-015-9675-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 04/29/2015] [Indexed: 12/15/2022]
Abstract
Worldwide prevalence of diabetes mellitus motivates a number of association studies to be conducted throughout the world. Eleven polymorphisms from nine candidate genes in oxidative stress pathway have been analyzed in eastern Indian type 2 diabetic patients (n = 145) and healthy controls (n = 100). Different biochemical parameters were also analyzed for their association with the disease. Significant associations were observed for rs2070424 A>G SOD1 (OR 3.91, 95% CI 2.265-8.142, P < 0.001), rs854573 A>G PON1 (OR 3.415, 95% CI 2.116-5.512, P < 0.001), rs6954345 G>C PON2 (OR 3.208, 95% CI 2.071-4.969, P < 0.001), RAGE rs1800624 -374 T>A (OR 3.58, 95% CI 2.218-5.766, P < 0.001), and NOS3 -786 T>C (OR 3.75, 95% CI 2.225-6.666, P < 0.001). Haplotype containing two risk alleles of PON1 and PON2 genes was significantly associated with disease (OR 8.34, 95% CI 1.554-44.804, P < 0.002). Our results suggest that carriers of major and efficient alleles of oxidative stress genes are more likely to survive the comorbid complications and single copy of risk allele is sufficient for developing the disease.
Collapse
Affiliation(s)
- Suranjana Ray Haldar
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India,
| | | | | | | | | | | |
Collapse
|
21
|
Maiese K. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease. Neural Regen Res 2015; 10:518-28. [PMID: 26170801 PMCID: PMC4424733 DOI: 10.4103/1673-5374.155427] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus affects almost 350 million individuals throughout the globe resulting in significant morbidity and mortality. Of further concern is the growing population of individuals that remain undiagnosed but are susceptible to the detrimental outcomes of this disorder. Diabetes mellitus leads to multiple complications in the central and peripheral nervous systems that include cognitive impairment, retinal disease, neuropsychiatric disease, cerebral ischemia, and peripheral nerve degeneration. Although multiple strategies are being considered, novel targeting of trophic factors, Wnt signaling, Wnt1 inducible signaling pathway protein 1, and stem cell tissue regeneration are considered to be exciting prospects to overcome the cellular mechanisms that lead to neuronal injury in diabetes mellitus involving oxidative stress, apoptosis, and autophagy. Pathways that involve insulin-like growth factor-1, fibroblast growth factor, epidermal growth factor, and erythropoietin can govern glucose homeostasis and are intimately tied to Wnt signaling that involves Wnt1 and Wnt1 inducible signaling pathway protein 1 (CCN4) to foster control over stem cell proliferation, wound repair, cognitive decline, β-cell proliferation, vascular regeneration, and programmed cell death. Ultimately, cellular metabolism through Wnt signaling is driven by primary metabolic pathways of the mechanistic target of rapamycin and AMP activated protein kinase. These pathways offer precise biological control of cellular metabolism, but are exquisitely sensitive to the different components of Wnt signaling. As a result, unexpected clinical outcomes can ensue and therefore demand careful translation of the mechanisms that govern neural repair and regeneration in diabetes mellitus.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101, USA
| |
Collapse
|
22
|
Oyenihi AB, Ayeleso AO, Mukwevho E, Masola B. Antioxidant strategies in the management of diabetic neuropathy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:515042. [PMID: 25821809 PMCID: PMC4363503 DOI: 10.1155/2015/515042] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/10/2014] [Indexed: 02/07/2023]
Abstract
Chronic hyperglycaemia (an abnormally high glucose concentration in the blood) resulting from defects in insulin secretion/action, or both, is the major hallmark of diabetes in which it is known to be involved in the progression of the condition to different complications that include diabetic neuropathy. Diabetic neuropathy (diabetes-induced nerve damage) is the most common diabetic complication and can be devastating because it can lead to disability. There is an increasing body of evidence associating diabetic neuropathy with oxidative stress. Oxidative stress results from the production of oxygen free radicals in the body in excess of its ability to eliminate them by antioxidant activity. Antioxidants have different mechanisms and sites of actions by which they exert their biochemical effects and ameliorate nerve dysfunction in diabetes by acting directly against oxidative damage. This review will examine different strategies for managing diabetic neuropathy which rely on exogenous antioxidants.
Collapse
Affiliation(s)
- Ayodeji Babatunde Oyenihi
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, University Road, Durban 4000, South Africa
| | - Ademola Olabode Ayeleso
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2002, South Africa
| | - Emmanuel Mukwevho
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2002, South Africa
| | - Bubuya Masola
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, University Road, Durban 4000, South Africa
| |
Collapse
|
23
|
Maiese K. Programming apoptosis and autophagy with novel approaches for diabetes mellitus. Curr Neurovasc Res 2015; 12:173-88. [PMID: 25742566 PMCID: PMC4380829 DOI: 10.2174/1567202612666150305110929] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 12/13/2022]
Abstract
According to the World Health Organization, diabetes mellitus (DM) in the year 2030 will be ranked the seventh leading cause of death in the world. DM impacts all systems of the body with oxidant stress controlling cell fate through endoplasmic reticulum stress, mitochondrial dysfunction, alterations in uncoupling proteins, and the induction of apoptosis and autophagy. Multiple treatment approaches are being entertained for DM with Wnt1 inducible signaling pathway protein 1 (WISP1), mechanistic target of rapamycin (mTOR), and silent mating type information regulation 2 homolog) 1 (S. cerevisiae) (SIRT1) generating significant interest as target pathways that can address maintenance of glucose homeostasis as well as prevention of cellular pathology by controlling insulin resistance, stem cell proliferation, and the programmed cell death pathways of apoptosis and autophagy. WISP1, mTOR, and SIRT1 can rely upon similar pathways such as AMP activated protein kinase as well as govern cellular metabolism through cytokines such as EPO and oral hypoglycemics such as metformin. Yet, these pathways require precise biological control to exclude potentially detrimental clinical outcomes. Further elucidation of the ability to translate the roles of WISP1, mTOR, and SIRT1 into effective clinical avenues offers compelling prospects for new therapies against DM that can benefit hundreds of millions of individuals throughout the globe.
Collapse
Affiliation(s)
- Kenneth Maiese
- MD, Cellular and Molecular Signaling, Newark, New Jersey 07101, USA.
| |
Collapse
|
24
|
Sampath H. Oxidative DNA damage in disease--insights gained from base excision repair glycosylase-deficient mouse models. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:689-703. [PMID: 25044514 DOI: 10.1002/em.21886] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/24/2014] [Indexed: 05/10/2023]
Abstract
Cellular components, including nucleic acids, are subject to oxidative damage. If left unrepaired, this damage can lead to multiple adverse cellular outcomes, including increased mutagenesis and cell death. The major pathway for repair of oxidative base lesions is the base excision repair pathway, catalyzed by DNA glycosylases with overlapping but distinct substrate specificities. To understand the role of these glycosylases in the initiation and progression of disease, several transgenic mouse models have been generated to carry a targeted deletion or overexpression of one or more glycosylases. This review summarizes some of the major findings from transgenic animal models of altered DNA glycosylase expression, especially as they relate to pathologies ranging from metabolic disease and cancer to inflammation and neuronal health.
Collapse
Affiliation(s)
- Harini Sampath
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
25
|
Abstract
Endogenous mechanisms of protection against ischemia can be demonstrated in brain and other organs. The induction of such protection is via a response to sub lethal stress which induces "preconditioning". The preconditioned organ is then "tolerant" to injury from subsequent severe stress of the same or different etiology. Protection is substantial (70% reduction) but delayed in onset and is transient. Gene expression is unique between brains preconditioned, injured (stroke) or made tolerant. Thus, preconditioning reprograms the response to lethal ischemic stress (stroke), reprogrammed from an injury induction response to a neuroprotective processes. Postconditioning refers to attenuation of injurious processes occurring during reperfusion of ischemic brain. Transient mechanical interruption of reperfusion induces post-conditioning which can attenuate reperfusion injury. Post-conditioning protects ischemic brain by decreasing reperfusion induced oxygen free radical formation. The free radicals produce injury via mitochondrial damage which can be repaired experimentally. Post-conditioning produces neuroprotection as potent as experimental preconditioning. The recognition of broad based gene silencing (suppression of thousands of genes) as the phenotype of the preconditioned, ischemic tolerant brain, may explain failure of all single target drugs for stroke. As risks of reperfusion injury accompany treatment for acute stroke, endogenous neuroprotective and repair mechanisms offer translational stroke therapy.
Collapse
Affiliation(s)
- Roger Simon
- Neuroscience Institute, Morehouse School of Medicine
| |
Collapse
|
26
|
Wang T, Sun P, Chen L, Huang Q, Chen K, Jia Q, Li Y, Wang H. Cinnamtannin D-1 protects pancreatic β-cells from palmitic acid-induced apoptosis by attenuating oxidative stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5038-5045. [PMID: 24815044 DOI: 10.1021/jf500387d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In previous studies, A-type procyanidin oligomers isolated from Cinnamomum tamala were proved to possess antidiabetic effect and protect pancreatic β-cells in vivo. The aim of this study was to unveil the mechanisms of protecting pancreatic β-cells from palmitic acid-induced apoptosis by cinnamtannin D-1 (CD1), one of the main A-type procyanidin oligomers in C. tamala. CD1 was discovered to dose-dependently reduce palmitic acid- or H2O2-induced apoptosis and oxidative stress in INS-1 cells, MIN6 cells, and primary cultured murine islets. Moreover, CD1 could reverse palmitic acid-induced dysfunction of glucose-stimulated insulin secretion in primary cultured islets. These results indicate that reduction of apoptosis and oxidative stress might account for the protection effect of CD1, which provided a better understanding of the mechanisms of the antidiabetic effects of procyanidin oligomers.
Collapse
Affiliation(s)
- Ting Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Song H, Wohltmann M, Tan M, Ladenson JH, Turk J. Group VIA phospholipase A2 mitigates palmitate-induced β-cell mitochondrial injury and apoptosis. J Biol Chem 2014; 289:14194-210. [PMID: 24648512 DOI: 10.1074/jbc.m114.561910] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Palmitate (C16:0) induces apoptosis of insulin-secreting β-cells by processes that involve generation of reactive oxygen species, and chronically elevated blood long chain free fatty acid levels are thought to contribute to β-cell lipotoxicity and the development of diabetes mellitus. Group VIA phospholipase A2 (iPLA2β) affects β-cell sensitivity to apoptosis, and here we examined iPLA2β effects on events that occur in β-cells incubated with C16:0. Such events in INS-1 insulinoma cells were found to include activation of caspase-3, expression of stress response genes (C/EBP homologous protein and activating transcription factor 4), accumulation of ceramide, loss of mitochondrial membrane potential, and apoptosis. All of these responses were blunted in INS-1 cells that overexpress iPLA2β, which has been proposed to facilitate repair of oxidized mitochondrial phospholipids, e.g. cardiolipin (CL), by excising oxidized polyunsaturated fatty acid residues, e.g. linoleate (C18:2), to yield lysophospholipids, e.g. monolysocardiolipin (MLCL), that can be reacylated to regenerate the native phospholipid structures. Here the MLCL content of mouse pancreatic islets was found to rise with increasing iPLA2β expression, and recombinant iPLA2β hydrolyzed CL to MLCL and released oxygenated C18:2 residues from oxidized CL in preference to native C18:2. C16:0 induced accumulation of oxidized CL species and of the oxidized phospholipid (C18:0/hydroxyeicosatetraenoic acid)-glycerophosphoethanolamine, and these effects were blunted in INS-1 cells that overexpress iPLA2β, consistent with iPLA2β-mediated removal of oxidized phospholipids. C16:0 also induced iPLA2β association with INS-1 cell mitochondria, consistent with a role in mitochondrial repair. These findings indicate that iPLA2β confers significant protection of β-cells against C16:0-induced injury.
Collapse
Affiliation(s)
- Haowei Song
- From the Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine and
| | - Mary Wohltmann
- From the Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine and
| | - Min Tan
- From the Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine and
| | - Jack H Ladenson
- Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - John Turk
- From the Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine and
| |
Collapse
|
28
|
Wang C, Geng B, Cui Q, Guan Y, Yang J. Intracellular and extracellular adenosine triphosphate in regulation of insulin secretion from pancreatic β cells (β). J Diabetes 2014; 6:113-9. [PMID: 24134160 DOI: 10.1111/1753-0407.12098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 09/27/2013] [Accepted: 10/11/2013] [Indexed: 01/09/2023] Open
Abstract
Adenosine triphosphate (ATP) synthesis and release in mitochondria play critical roles in regulating insulin secretion in pancreatic β cells. Mitochondrial dysfunction is mainly characterized by a decrease in ATP production, which is a central event in the progression of pancreatic β cell dysfunction and diabetes. ATP has been demonstrated to regulate insulin secretion via several pathways: (i) Intracellular ATP directly closes ATP-sensitive potassium channel to open L-type calcium channel, leading to an increase in free cytosolic calcium levels and exocytosis of insulin granules; (ii) A decrease in ATP production is always associated with an increase in production of reactive oxygen species, which exerts deleterious effects on pancreatic β cell survival and insulin secretion; and (iii) ATP can be co-secreted with insulin from pancreatic β cells, and the released ATP functions as an autocrine signal to modulate insulin secretory process via P2 receptors on the cell membrane. In this review, the recent findings regarding the role and mechanism of ATP synthesis and release in regulation of insulin secretion from pancreatic β cells will be summarized and discussed.
Collapse
Affiliation(s)
- Chunjiong Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | | | | | | | | |
Collapse
|
29
|
Torres-Gonzalez M, Gawlowski T, Kocalis H, Scott BT, Dillmann WH. Mitochondrial 8-oxoguanine glycosylase decreases mitochondrial fragmentation and improves mitochondrial function in H9C2 cells under oxidative stress conditions. Am J Physiol Cell Physiol 2013; 306:C221-9. [PMID: 24304833 DOI: 10.1152/ajpcell.00140.2013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The mitochondrial DNA base modification 8-hydroxy 2'-deoxyguanine (8-OHdG) is one of the most common DNA lesions induced by reactive oxygen species (ROS) and is considered an index of DNA damage. High levels of mitochondrial 8-OHdG have been correlated with increased mutation, deletion, and loss of mitochondrial (mt) DNA, as well as apoptosis. 8-Oxoguanosine DNA glycosylase-1 (OGG1) recognizes and removes 8-OHdG to prevent further DNA damage. We evaluated the effects of OGG1 on mtDNA damage, mitochondrial function, and apoptotic events induced by oxidative stress using H9C2 cardiac cells treated with menadione and transduced with either Adv-Ogg1 or Adv-Control (empty vector). The levels of mtDNA 8-OHdG and the presence of apurinic/apyrimidinic (AP) sites were decreased by 30% and 35%, respectively, in Adv-Ogg1 transduced cells (P < 0.0001 and P < 0.005, respectively). In addition, the expression of base excision repair (BER) pathway members APE1 and DNA polymerase γ was upregulated by Adv-Ogg1 transduction. Cells overexpressing Ogg1 had increased membrane potential (P < 0.05) and decreased mitochondrial fragmentation (P < 0.005). The mtDNA content was found to be higher in cells with increased OGG1 (P < 0.005). The protein levels of fission and apoptotic factors such as DRP1, FIS1, cytoplasmic cytochrome c, activated caspase-3, and activated caspase-9 were lower in Adv-Ogg1 transduced cells. These observations suggest that Ogg1 overexpression may be an important mechanism to protect cardiac cells against oxidative stress damage.
Collapse
|
30
|
Elevated levels of plasma mitochondrial DNA DAMPs are linked to clinical outcome in severely injured human subjects. Ann Surg 2013; 258:591-6; discussion 596-8. [PMID: 23979273 DOI: 10.1097/sla.0b013e3182a4ea46] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Our objective was to execute a prospective cohort study to determine relationships between plasma mtDNA DAMP levels and the occurrence of systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), and mortality. BACKGROUND Mitochondrial DNA damage-associated molecular patterns (DAMPs) accumulate in the circulation after severe injury. Observations in animal models demonstrate that mtDNA DAMPs contribute to organ dysfunction; however, the link between plasma mtDNA DAMPs and outcome in severely injured human subjects has not been established. METHODS DNA was isolated from plasma samples taken from severely injured patients at hospital days 0, 1, and 2. Real-time PCR was used to quantify selected ≈200 base pair sequences of mtDNA within the COX1, ND1, and ND6 genes, as well as from the D-Loop transcriptional regulatory region. MODS was defined as a Denver Multiple Organ Failure score of 4 or greater. RESULTS MtDNA DAMPs were quantified as PCR threshold cycle number. Lower threshold cycles indicate increased mtDNA DAMP content. Patients with SIRS had significantly increased mtDNA DAMP levels in all 4 sequences examined (32.14 ± 0.90 vs 29.00 ± 1.15 for COX1, 31.90 ± 0.47 vs 30.16 ± 1.42 for ND1, 32.40 ± 0.61 vs 28.94 ± 1.13 for ND6, and 33.12 ± 0.83 vs 28.30 ± 1.14 for D-Loop). Patients who developed MODS also had elevated mtDNA DAMP levels compared with those who did not (32.57 ± 0.74 vs 27.12 ± 0.66 for COX1, 32.45 ± 0.65 vs 28.20 ± 0.73 for ND1, 32.52 ± 0.56 vs 27.60 ± 0.79 for ND6, and 32.85 ± 0.75 vs 27.86 ± 1.27 for D-Loop). Patients with above-median mtDNA DAMP levels had a significantly elevated relative risk for mortality. Four patients died secondary to severe MODS. CONCLUSIONS These findings comprise the first observational evidence that plasma mtDNA DAMPs is associated with the evolution of SIRS, MODS, and mortality in severely injured human subjects.
Collapse
|
31
|
Szczesny B, Olah G, Walker DK, Volpi E, Rasmussen BB, Szabo C, Mitra S. Deficiency in repair of the mitochondrial genome sensitizes proliferating myoblasts to oxidative damage. PLoS One 2013; 8:e75201. [PMID: 24066171 PMCID: PMC3774773 DOI: 10.1371/journal.pone.0075201] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022] Open
Abstract
Reactive oxygen species (ROS), generated as a by-product of mitochondrial oxidative phosphorylation, are particularly damaging to the genome of skeletal muscle because of their high oxygen consumption. Proliferating myoblasts play a key role during muscle regeneration by undergoing myogenic differentiation to fuse and restore damaged muscle. This process is severely impaired during aging and in muscular dystrophies. In this study, we investigated the role of oxidatively damaged DNA and its repair in the mitochondrial genome of proliferating skeletal muscle progenitor myoblasts cells and their terminally differentiated product, myotubes. Using the C2C12 cell line as a well-established model for skeletal muscle differentiation, we show that myoblasts are highly sensitive to ROS-mediated DNA damage, particularly in the mitochondrial genome, due to deficiency in 5’ end processing at the DNA strand breaks. Ectopic expression of the mitochondrial-specific 5’ exonuclease, EXOG, a key DNA base excision/single strand break repair (BER/SSBR) enzyme, in myoblasts but not in myotubes, improves the cell’s resistance to oxidative challenge. We linked loss of myoblast viability by activation of apoptosis with deficiency in the repair of the mitochondrial genome. Moreover, the process of myoblast differentiation increases mitochondrial biogenesis and the level of total glutathione. We speculate that our data may provide a mechanistic explanation for depletion of proliferating muscle precursor cells during the development of sarcopenia, and skeletal muscle dystrophies.
Collapse
Affiliation(s)
- Bartosz Szczesny
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| | - Gabor Olah
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Dillon K. Walker
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Elena Volpi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Blake B. Rasmussen
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sankar Mitra
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
32
|
Yuzefovych LV, Schuler AM, Chen J, Alvarez DF, Eide L, Ledoux SP, Wilson GL, Rachek LI. Alteration of mitochondrial function and insulin sensitivity in primary mouse skeletal muscle cells isolated from transgenic and knockout mice: role of ogg1. Endocrinology 2013; 154:2640-9. [PMID: 23748360 PMCID: PMC3713209 DOI: 10.1210/en.2013-1076] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent evidence has linked mitochondrial dysfunction and DNA damage, increased oxidative stress in skeletal muscle, and insulin resistance (IR). The purpose of this study was to determine the role of the DNA repair enzyme, human 8-oxoguanine DNA glycosylase/apurinic/apyrimidinic lyase (hOGG1), on palmitate-induced mitochondrial dysfunction and IR in primary cultures of skeletal muscle derived from hind limb of ogg1(-/-) knockout mice and transgenic mice, which overexpress human (hOGG1) in mitochondria (transgenic [Tg]/MTS-hOGG1). Following exposure to palmitate, we evaluated mitochondrial DNA (mtDNA) damage, mitochondrial function, production of mitochondrial reactive oxygen species (mtROS), mitochondrial mass, JNK activation, insulin signaling pathways, and glucose uptake. Palmitate-induced mtDNA damage, mtROS, mitochondrial dysfunction, and activation of JNK were all diminished, whereas ATP levels, mitochondrial mass, insulin-stimulated phosphorylation of Akt (Ser 473), and insulin sensitivity were increased in primary myotubes isolated from Tg/MTS-hOGG1 mice compared to myotubes isolated from either knockout or wild-type mice. In addition, both basal and maximal respiratory rates during mitochondrial oxidation on pyruvate showed a variable response, with some animals displaying an increased respiration in muscle fibers isolated from the transgenic mice. Our results support the model that DNA repair enzyme OGG1 plays a pivotal role in repairing mtDNA damage, and consequently, in mtROS production and regulating downstream events leading to IR in skeletal muscle.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Blotting, Western
- Cells, Cultured
- DNA Damage
- DNA Glycosylases/genetics
- DNA Glycosylases/metabolism
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Enzyme Activation/drug effects
- Humans
- Insulin/metabolism
- Insulin/pharmacology
- Insulin/physiology
- JNK Mitogen-Activated Protein Kinases/metabolism
- Mice
- Mice, Knockout
- Mice, Transgenic
- Mitochondria, Muscle/genetics
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/physiology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Palmitates/pharmacology
- Phosphorylation/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Reactive Oxygen Species/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Larysa V Yuzefovych
- Department of Cell Biology and Neuroscience, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Cheng Y, Ren X, Gowda ASP, Shan Y, Zhang L, Yuan YS, Patel R, Wu H, Huber-Keener K, Yang JW, Liu D, Spratt TE, Yang JM. Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress. Cell Death Dis 2013; 4:e731. [PMID: 23868064 PMCID: PMC3730425 DOI: 10.1038/cddis.2013.254] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/20/2013] [Accepted: 06/04/2013] [Indexed: 12/16/2022]
Abstract
Sirtuin 3 (Sirt3), a major mitochondrial NAD(+)-dependent deacetylase, targets various mitochondrial proteins for lysine deacetylation and regulates important cellular functions such as energy metabolism, aging, and stress response. In this study, we identified the human 8-oxoguanine-DNA glycosylase 1 (OGG1), a DNA repair enzyme that excises 7,8-dihydro-8-oxoguanine (8-oxoG) from damaged genome, as a new target protein for Sirt3. We found that Sirt3 physically associated with OGG1 and deacetylated this DNA glycosylase and that deacetylation by Sirt3 prevented the degradation of the OGG1 protein and controlled its incision activity. We further showed that regulation of the acetylation and turnover of OGG1 by Sirt3 played a critical role in repairing mitochondrial DNA (mtDNA) damage, protecting mitochondrial integrity, and preventing apoptotic cell death under oxidative stress. We observed that following ionizing radiation, human tumor cells with silencing of Sirt3 expression exhibited deteriorated oxidative damage of mtDNA, as measured by the accumulation of 8-oxoG and 4977 common deletion, and showed more severe mitochondrial dysfunction and underwent greater apoptosis in comparison with the cells without silencing of Sirt3 expression. The results reported here not only reveal a new function and mechanism for Sirt3 in defending the mitochondrial genome against oxidative damage and protecting from the genotoxic stress-induced apoptotic cell death but also provide evidence supporting a new mtDNA repair pathway.
Collapse
Affiliation(s)
- Y Cheng
- Department of Pharmacology, Milton S Hershey Medical Center, Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033-0850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gebb SA, Decoux A, Waggoner A, Wilson GL, Gillespie MN. Mitochondrial DNA damage mediates hyperoxic dysmorphogenesis in rat fetal lung explants. Neonatology 2013; 103:91-7. [PMID: 23154780 PMCID: PMC3568246 DOI: 10.1159/000342632] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/14/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Numerous studies in cultured cells indicate that damage to mitochondrial DNA (mtDNA) dictates cellular responses to oxidant stress, yet the consequences of mtDNA damage have not been studied directly in the preterm lung. OBJECTIVE We sought to determine whether hyperoxia-induced fetal lung dysmorphogenesis is linked to mtDNA damage and establish mtDNA repair as a potential therapeutic approach for treating lung dysplasia in the preterm neonate. METHODS Hyperoxia-induced mtDNA damage was assessed by quantitative alkaline gel electrophoresis in normoxic (3% O2) and hyperoxic (21% O2) fetal rat lung explants. A fusion protein construct targeting the DNA repair enzyme endonuclease III (Endo III) to the mitochondria was used to augment mtDNA repair. Fetal lung branching and surfactant protein C (SFPTC) were assessed in these tissues. RESULTS Hyperoxia induced mtDNA damage in lung explants and was accompanied by impaired branching morphogenesis and decreased SFPTC mRNA expression. Treatment of lung explants with Endo III fusion protein prevented hyperoxia-induced mtDNA damage and restored normal branching morphogenesis and SFPTC mRNA expression. CONCLUSION These findings support the concept that mtDNA governs cellular responses to oxidant stress in the fetal lung and suggest that modulation of mtDNA repair is a potential pharmacologic strategy in the prevention of hyperoxic lung injury.
Collapse
Affiliation(s)
- Sarah A Gebb
- Department of Cell Biology and Neuroscience, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
| | | | | | | | | |
Collapse
|
35
|
Peng L, Men X, Zhang W, Wang H, Xu S, Fang Q, Liu H, Yang W, Lou J. Involvement of dynamin-related protein 1 in free fatty acid-induced INS-1-derived cell apoptosis. PLoS One 2012; 7:e49258. [PMID: 23166623 PMCID: PMC3498159 DOI: 10.1371/journal.pone.0049258] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/04/2012] [Indexed: 01/09/2023] Open
Abstract
Elevated extracellular free fatty acids (FFAs) can induce pancreatic beta cell apoptosis, thereby contributing to the pathogenesis of type 2 diabetes mellitus (T2D). Mitochondrial dysfunction has been implicated in FFA-induced beta cell apoptosis. However, molecular mechanisms linking mitochondrial dysfunction and FFA-induced beta cell apoptosis are not clear. Dynamin-related protein 1 (DRP-1) is a mitochondrial fission modulator. In this study, we investigated its role in FFA-induced INS-1 beta cell apoptosis. DRP-1 protein was promptly induced in INS-1 cells and rat islets after stimulation by FFAs, and this DRP-1 upregulation was accompanied by increased INS-1 cell apoptosis. Induction of DRP-1 expression significantly promoted FFA-induced apoptosis in DRP-1 WT (DRP-1 wild type) inducible INS-1-derived cell line, but not in DRP-1K38A (a dominant negative mutant of DRP-1) inducible INS-1-derived cell line. To validate these in vitro results, we transplanted DRP-1 WT or DRP-1 K38A cells into renal capsules of streptozotocin (STZ)-treated diabetic mice to study the apoptosis in xenografts. Consistent with the in vitro results, the over-expression of DRP-1 led to aggravated INS-1-derived cell apoptosis triggered by FFAs. In contrast, dominant-negative suppression of DRP-1 function as represented by DRP-1 K38A significantly prevented FFA-induced apoptosis in xenografts. It was further demonstrated that mitochondrial membrane potential decreased, while cytochrome c release, caspase-3 activation, and generation of reactive oxygen species (ROS) were enhanced by the induction of DRP-1WT, but prevented by DRP-1 K38A in INS-1-derived cells under FFA stimulation. These results indicated that DRP-1 mediates FFA-induced INS-1-derived cell apoptosis, suggesting that suppression of DRP-1 is a potentially useful therapeutic strategy for protecting against beta cell loss that leads to type 2 diabetes.
Collapse
Affiliation(s)
- Liang Peng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Xiuli Men
- Department of Pathophysiology, North China Coal Medical University, Tangshan, China
| | - Wenjian Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Haiyan Wang
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, Geneva, Switzerland
| | - Shiqing Xu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Qing Fang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Honglin Liu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Wenying Yang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jinning Lou
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- * E-mail:
| |
Collapse
|
36
|
Sampath H, McCullough AK, Lloyd RS. Regulation of DNA glycosylases and their role in limiting disease. Free Radic Res 2012; 46:460-78. [PMID: 22300253 DOI: 10.3109/10715762.2012.655730] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review will present a current understanding of mechanisms for the initiation of base excision repair (BER) of oxidatively-induced DNA damage and the biological consequences of deficiencies in these enzymes in mouse model systems and human populations.
Collapse
Affiliation(s)
- Harini Sampath
- Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, Oregon 97239 - 3098, USA
| | | | | |
Collapse
|
37
|
Yuzefovych LV, Solodushko VA, Wilson GL, Rachek LI. Protection from palmitate-induced mitochondrial DNA damage prevents from mitochondrial oxidative stress, mitochondrial dysfunction, apoptosis, and impaired insulin signaling in rat L6 skeletal muscle cells. Endocrinology 2012; 153:92-100. [PMID: 22128025 PMCID: PMC3249685 DOI: 10.1210/en.2011-1442] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Saturated free fatty acids have been implicated in the increase of oxidative stress, mitochondrial dysfunction, apoptosis, and insulin resistance seen in type 2 diabetes. The purpose of this study was to determine whether palmitate-induced mitochondrial DNA (mtDNA) damage contributed to increased oxidative stress, mitochondrial dysfunction, apoptosis, impaired insulin signaling, and reduced glucose uptake in skeletal muscle cells. Adenoviral vectors were used to deliver the DNA repair enzyme human 8-oxoguanine DNA glycosylase/(apurinic/apyrimidinic) lyase (hOGG1) to mitochondria in L6 myotubes. After palmitate exposure, we evaluated mtDNA damage, mitochondrial function, production of mitochondrial reactive oxygen species, apoptosis, insulin signaling pathways, and glucose uptake. Protection of mtDNA from palmitate-induced damage by overexpression of hOGG1 targeted to mitochondria significantly diminished palmitate-induced mitochondrial superoxide production, restored the decline in ATP levels, reduced activation of c-Jun N-terminal kinase (JNK) kinase, prevented cells from entering apoptosis, increased insulin-stimulated phosphorylation of serine-threonine kinase (Akt) (Ser473) and tyrosine phosphorylation of insulin receptor substrate-1, and thereby enhanced glucose transporter 4 translocation to plasma membrane, and restored insulin signaling. Addition of a specific inhibitor of JNK mimicked the effect of mitochondrial overexpression of hOGG1 and partially restored insulin sensitivity, thus confirming the involvement of mtDNA damage and subsequent increase of oxidative stress and JNK activation in insulin signaling in L6 myotubes. Our results are the first to report that mtDNA damage is the proximal cause in palmitate-induced mitochondrial dysfunction and impaired insulin signaling and provide strong evidence that targeting DNA repair enzymes into mitochondria in skeletal muscles could be a potential therapeutic treatment for insulin resistance.
Collapse
Affiliation(s)
- Larysa V Yuzefovych
- Department of Cell Biology and Neuroscience, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | |
Collapse
|
38
|
Lopez X, Cypess A, Manning R, O'Shea S, Kulkarni RN, Goldfine AB. Exogenous insulin enhances glucose-stimulated insulin response in healthy humans independent of changes in free fatty acids. J Clin Endocrinol Metab 2011; 96:3811-21. [PMID: 21956413 PMCID: PMC3232618 DOI: 10.1210/jc.2011-0627] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Islet β-cells express both insulin receptors and insulin signaling proteins. Recent studies suggest insulin signaling is physiologically important for glucose sensing. OBJECTIVE Preexposure to insulin enhances glucose-stimulated insulin secretion (GSIS) in healthy humans. We evaluated whether the effect of insulin to potentiate GSIS is modulated through regulation of free fatty acids (FFA). DESIGN AND SETTING Subjects were studied on three occasions in this single-site study at an academic institution clinical research center. PATIENTS Subjects included nine healthy volunteers. INTERVENTIONS Glucose-induced insulin response was assessed on three occasions after 4 h saline (low insulin/sham) or isoglycemic-hyperinsulinemic (high insulin) clamps with or without intralipid and heparin infusion, using B28 Asp-insulin that could be distinguished from endogenous insulin immunologically. During the last 80 min of all three clamps, additional glucose was administered to stimulate insulin secretion (GSIS) with glucose concentrations maintained at similar concentrations during all studies. MAIN OUTCOME MEASURE β-Cell response to glucose stimulation was assessed. RESULTS Preexposure to exogenous insulin increased the endogenous insulin-secretory response to glucose by 32% compared with sham clamp (P = 0.001). This was accompanied by a drop in FFA during hyperinsulinemic clamp compared with the sham clamp (0.06 ± 0.02 vs. 0.60 ± 0.09 mEq/liter, respectively), which was prevented during the hyperinsulinemic clamp with intralipid/heparin infusion (1.27 ± 0.17 mEq/liter). After preexposure to insulin with intralipid/heparin infusion to maintain FFA concentration, GSIS was 21% higher compared with sham clamp (P < 0.04) and similar to preexposure to insulin without intralipid/heparin (P = 0.2). CONCLUSIONS Insulin potentiates glucose-stimulated insulin response independent of FFA concentrations in healthy humans.
Collapse
Affiliation(s)
- Ximena Lopez
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
39
|
Chouteau JM, Obiako B, Gorodnya OM, Pastukh VM, Ruchko MV, Wright AJ, Wilson GL, Gillespie MN. Mitochondrial DNA integrity may be a determinant of endothelial barrier properties in oxidant-challenged rat lungs. Am J Physiol Lung Cell Mol Physiol 2011; 301:L892-8. [PMID: 21890512 DOI: 10.1152/ajplung.00210.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In cultured pulmonary artery endothelial cells and other cell types, overexpression of mt-targeted DNA repair enzymes protects against oxidant-induced mitochondrial DNA (mtDNA) damage and cell death. Whether mtDNA integrity governs functional properties of the endothelium in the intact pulmonary circulation is unknown. Accordingly, the present study used isolated, buffer-perfused rat lungs to determine whether fusion proteins targeting 8-oxoguanine DNA glycosylase 1 (Ogg1) or endonuclease III (Endo III) to mitochondria attenuated mtDNA damage and vascular barrier dysfunction evoked by glucose oxidase (GOX)-generated hydrogen peroxide. We found that both Endo III and Ogg1 fusion proteins accumulated in lung cell mitochondria within 30 min of addition to the perfusion medium. Both constructs prevented GOX-induced increases in the vascular filtration coefficient. Although GOX-induced nuclear DNA damage could not be detected, quantitative Southern blot analysis revealed substantial GOX-induced oxidative mtDNA damage that was prevented by pretreatment with both fusion proteins. The Ogg1 construct also reversed preexisting GOX-induced vascular barrier dysfunction and oxidative mtDNA damage. Collectively, these findings support the ideas that mtDNA is a sentinel molecule governing lung vascular barrier responses to oxidant stress in the intact lung and that the mtDNA repair pathway could be a target for pharmacological intervention in oxidant lung injury.
Collapse
Affiliation(s)
- Joshua M Chouteau
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, 36688, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Mileshina D, Ibrahim N, Boesch P, Lightowlers RN, Dietrich A, Weber-Lotfi F. Mitochondrial transfection for studying organellar DNA repair, genome maintenance and aging. Mech Ageing Dev 2011; 132:412-23. [PMID: 21645537 DOI: 10.1016/j.mad.2011.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/02/2011] [Accepted: 05/21/2011] [Indexed: 12/15/2022]
Abstract
Maintenance of the mitochondrial genome is a major challenge for cells, particularly as they begin to age. Although it is established that organelles possess regular DNA repair pathways, many aspects of these complex processes and of their regulation remain to be investigated. Mitochondrial transfection of isolated organelles and in whole cells with customized DNA synthesized to contain defined lesions has wide prospects for deciphering repair mechanisms in a physiological context. We document here the strategies currently developed to transfer DNA of interest into mitochondria. Methodologies with isolated mitochondria claim to exploit the protein import pathway or the natural competence of the organelles, to permeate the membranes or to use conjugal transfer from bacteria. Besides biolistics, which remains restricted to yeast and Chlamydomonas reinhardtii, nanocarriers or fusion proteins have been explored as methods to target custom DNA into mitochondria in intact cells. In further approaches, whole mitochondria have been transferred into recipient cells. Repair failure or error-prone repair leads to mutations which potentially could be rescued by allotopic expression of proteins. The relevance of the different approaches for the analysis of mitochondrial DNA repair mechanisms and of aging is discussed.
Collapse
Affiliation(s)
- Daria Mileshina
- Institut de Biologie Moléculaire des Plantes, CNRS/Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
41
|
Ruchko MV, Gorodnya OM, Zuleta A, Pastukh VM, Gillespie MN. The DNA glycosylase Ogg1 defends against oxidant-induced mtDNA damage and apoptosis in pulmonary artery endothelial cells. Free Radic Biol Med 2011; 50:1107-13. [PMID: 20969951 PMCID: PMC3033972 DOI: 10.1016/j.freeradbiomed.2010.10.692] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/17/2010] [Accepted: 10/09/2010] [Indexed: 10/18/2022]
Abstract
Emerging evidence suggests that mitochondrial (mt) DNA damage may be a trigger for apoptosis in oxidant-challenged pulmonary artery endothelial cells (PAECs). Understanding the rate-limiting determinants of mtDNA repair may point to new targets for intervention in acute lung injury. The base excision repair (BER) pathway is the only pathway for oxidative damage repair in mtDNA. One of the key BER enzymes is Ogg1, which excises the base oxidation product 8-oxoguanine. Previously we demonstrated that overexpression of mitochondrially targeted Ogg1 in PAECs attenuated apoptosis induced by xanthine oxidase (XO) treatment. To test the idea that Ogg1 is a potentially rate-limiting BER determinant protecting cells from oxidant-mediated death, PAECs transfected with siRNA to Ogg1 were challenged with XO and the extent of mitochondrial and nuclear DNA damage was determined along with indices of apoptosis. Transfected cells demonstrated significantly reduced Ogg1 activity, which was accompanied by delayed repair of XO-induced mtDNA damage and linked to increased XO-mediated apoptosis. The nuclear genome was undamaged by XO in either control PAECs or cells depleted of Ogg1. These observations suggest that Ogg1 plays a critical and possibly rate-limiting role in defending PAECs from oxidant-induced apoptosis by limiting the persistence of oxidative damage in the mitochondrial genome.
Collapse
Affiliation(s)
- Mykhaylo V. Ruchko
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688
| | - Olena M. Gorodnya
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688
| | - Andres Zuleta
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688
| | - Viktor M. Pastukh
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688
| | - Mark N. Gillespie
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688
| |
Collapse
|
42
|
Tuo Y, Wang D, Li S, Chen C. Long-term exposure of INS-1 rat insulinoma cells to linoleic acid and glucose in vitro affects cell viability and function through mitochondrial-mediated pathways. Endocrine 2011; 39:128-38. [PMID: 21161439 DOI: 10.1007/s12020-010-9432-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 10/05/2010] [Accepted: 11/11/2010] [Indexed: 01/07/2023]
Abstract
Obesity with excessive levels of circulating free fatty acids (FFAs) is tightly linked to the incidence of type 2 diabetes. Insulin resistance of peripheral tissues and pancreatic β-cell dysfunction are two major pathological changes in diabetes and both are facilitated by excessive levels of FFAs and/or glucose. To gain insight into the mitochondrial-mediated mechanisms by which long-term exposure of INS-1 cells to excess FFAs causes β-cell dysfunction, the effects of the unsaturated FFA linoleic acid (C 18:2, n-6) on rat insulinoma INS-1 β cells was investigated. INS-1 cells were incubated with 0, 50, 250 or 500 μM linoleic acid/0.5% (w/v) BSA for 48 h under culture conditions of normal (11.1 mM) or high (25 mM) glucose in serum-free RPMI-1640 medium. Cell viability, apoptosis, glucose-stimulated insulin secretion, Bcl-2, and Bax gene expression levels, mitochondrial membrane potential and cytochrome c release were examined. Linoleic acid 500 μM significantly suppressed cell viability and induced apoptosis when administered in 11.1 and 25 mM glucose culture medium. Compared with control, linoleic acid 500 μM significantly increased Bax expression in 25 mM glucose culture medium but not in 11.1 mM glucose culture medium. Linoleic acid also dose-dependently reduced mitochondrial membrane potential (ΔΨm) and significantly promoted cytochrome c release from mitochondria in both 11.1 mM glucose and 25 mM glucose culture medium, further reducing glucose-stimulated insulin secretion, which is dependent on normal mitochondrial function. With the increase in glucose levels in culture medium, INS-1 β-cell insulin secretion function was deteriorated further. The results of this study indicate that chronic exposure to linoleic acid-induced β-cell dysfunction and apoptosis, which involved a mitochondrial-mediated signal pathway, and increased glucose levels enhanced linoleic acid-induced β-cell dysfunction.
Collapse
Affiliation(s)
- Ya Tuo
- Department of Forensic Science, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | | |
Collapse
|
43
|
Abstract
Globally, developed nations spend a significant amount of their resources on health care initiatives that poorly translate into increased population life expectancy. As an example, the United States devotes 16% of its gross domestic product to health care, the highest level in the world, but falls behind other nations that enjoy greater individual life expectancy. These observations point to the need for pioneering avenues of drug discovery to increase life span with controlled costs. In particular, innovative drug development for metabolic disorders such as diabetes mellitus becomes increasingly critical given that the number of diabetic people will increase exponentially over the next 20 years. This article discusses the elucidation and targeting of novel cellular pathways that are intimately tied to oxidative stress in diabetes mellitus for new treatment strategies. Pathways that involve wingless, β-nicotinamide adenine dinucleotide (NAD(+)) precursors, and cytokines govern complex biological pathways that determine both cell survival and longevity during diabetes mellitus and its complications. Furthermore, the role of these entities as biomarkers for disease can further enhance their utility irrespective of their treatment potential. Greater understanding of the intricacies of these unique cellular mechanisms will shape future drug discovery for diabetes mellitus to provide focused clinical care with limited or absent long-term complications.
Collapse
Affiliation(s)
- Kenneth Maiese
- Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
44
|
Yuzefovych L, Wilson G, Rachek L. Different effects of oleate vs. palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: role of oxidative stress. Am J Physiol Endocrinol Metab 2010; 299:E1096-105. [PMID: 20876761 PMCID: PMC3006254 DOI: 10.1152/ajpendo.00238.2010] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 09/23/2010] [Indexed: 12/16/2022]
Abstract
The type of free fatty acids (FFAs), saturated or unsaturated, is critical in the development of insulin resistance (IR), since the degree of saturation correlates with IR. We compared the effects of the saturated FFA palmitate, the unsaturated FFA oleate, and a mixture of each on the production of mitochondrial reactive oxygen species (mtROS), mitochondrial DNA (mtDNA) damage, mitochondrial function, apoptosis, and insulin-signaling pathway in skeletal muscle cells. Only palmitate caused a significant increase of mtROS production, which correlated with concomitant mtDNA damage, mitochondrial dysfunction, induction of JNK, apoptosis, and inhibition of insulin signaling. Blocking de novo synthesis of ceramide abolished the effects of palmitate on mtROS production, viability, and insulin signaling. Oleate alone did not cause mtROS generation and mtDNA damage, and its addition to palmitate prevented palmitate-induced mtDNA damage, increased total ATP levels and cell viability, and prevented palmitate-induced apoptosis and inhibition of insulin-stimulated Akt (Ser(473)) phosphorylation. The peroxisome proliferator activator receptor-γ coactivator 1α (PGC-1α) protein level and promoter activity were decreased at concentrations of palmitate ≥0.5 mM, whereas addition of oleate increased both PGC-1α level and promoter activity. Expression of the mitochondrial transcription factor (TFAM) was significantly diminished after palmitate but not oleate treatment. Addition of the ROS scavenger, N-acetylcystein (NAC), to palmitate restored both the expression and promoter activity of PGC-1α as well as TFAM expression. We propose that 1) mtROS generation is the initial event in the induction of mitochondrial dysfunction and consequent apoptosis and the inhibition of insulin signaling and that 2) oleate ameliorates palmitate-induced mitochondrial dysfunction and thus may contribute to the prevention of palmitate-induced IR.
Collapse
Affiliation(s)
- Larysa Yuzefovych
- Dept. of Cell Biology and Neuroscience, Univ. of South Alabama, Mobile, AL 36688, USA
| | | | | |
Collapse
|
45
|
Sun C, Liu X, Zhang H, Guo W, Cai Z, Chen H, Zhang K, Zhu D, Wang Y. Functional polymorphism of hOGG1 gene is associated with type 2 diabetes mellitus in Chinese population. Mol Cell Endocrinol 2010; 325:128-34. [PMID: 20562008 DOI: 10.1016/j.mce.2010.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/07/2010] [Accepted: 05/11/2010] [Indexed: 01/11/2023]
Abstract
hOGG1 protein excises the 8-hydroxy-2'-deoxyguanine (8-OHdG) which is associated with type 2 diabetes mellitus (T2DM). Our aim of this work is to explore whether the polymorphisms of hOGG1 gene are associated with T2DM. We screened the polymorphisms in the 5'-UTR (c.-18G>T, c.-23A>G, c.-45G>A and c.-53G>C) and c.977C>G (Ser326Cys) in exon 7 of hOGG1 gene. A case-control study indicated that c.-23A/G heterozygote was markedly associated with diabetes (P=0.004, OR=2.648, 95%CI=1.355-5.176) and with an increased level of C-peptide (705.00 versus 545.91 pmol/L, P=0.044). Furthermore, a significantly increased risk of T2DM was observed in the subjects carrying heterozygous variant of c.-23A>G and homozygous mutation of Ser326Cys (OR=3.684, 95%CI=1.400-9.697). The promoter activity of the variant allele c.-23G decreased 30-40% in Hela and HEK293 cell lines. In conclusion, the variant c.-23A>G of hOGG1 gene could decrease the gene promoter activity and was a risk factor for T2DM.
Collapse
Affiliation(s)
- Caixia Sun
- Department of Medical Genetics, Nanjing University School of Medicine, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bartz RR, Suliman HB, Fu P, Welty-Wolf K, Carraway MS, MacGarvey NC, Withers CM, Sweeney TE, Piantadosi CA. Staphylococcus aureus sepsis and mitochondrial accrual of the 8-oxoguanine DNA glycosylase DNA repair enzyme in mice. Am J Respir Crit Care Med 2010; 183:226-33. [PMID: 20732986 DOI: 10.1164/rccm.200911-1709oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Damage to mitochondrial DNA (mtDNA) by the production of reactive oxygen species during inflammatory states, such as sepsis, is repaired by poorly understood mechanisms. OBJECTIVES To test the hypothesis that the DNA repair enzyme, 8-oxoguanine DNA glycosylase (OGG1), contributes to mtDNA repair in sepsis. METHODS Using a well-characterized mouse model of Staphylococcus aureus sepsis, we analyzed molecular markers for mitochondrial biogenesis and OGG1 translocation into liver mitochondria as well as OGG1 mRNA expression at 0, 24, 48, and 72 hours after infection. The effects of OGG1 RNA silencing on mtDNA content were determined in control, tumor necrosis factor-α, and peptidoglycan-exposed rat hepatoma cells. Based on in situ analysis of the OGG1 promoter region, chromatin immunoprecipitation assays were performed for nuclear respiratory factor (NRF)-1 and NRF-2α GA-binding protein (GABP) binding to the promoter of OGG1. MEASUREMENTS AND MAIN RESULTS Mice infected with 10(7) cfu S. aureus intraperitoneally demonstrated hepatic oxidative mtDNA damage and significantly lower hepatic mtDNA content as well as increased mitochondrial OGG1 protein and enzyme activity compared with control mice. The infection also caused increases in hepatic OGG1 transcript levels and NRF-1 and NRF-2α transcript and protein levels. A bioinformatics analysis of the Ogg1 gene locus identified several promoter sites containing NRF-1 and NRF-2α DNA binding motifs, and chromatin immunoprecipitation assays confirmed in situ binding of both transcription factors to the Ogg1 promoter within 24 hours of infection. CONCLUSIONS These studies identify OGG1 as an early mitochondrial response protein during sepsis under regulation by the NRF-1 and NRF-2α transcription factors that regulate mitochondrial biogenesis.
Collapse
Affiliation(s)
- Raquel R Bartz
- Department of Anesthesiology, DUMC Box 3094, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The pathophysiology of type 2 diabetes mellitus (DM) is varied and complex. However, the association of DM with obesity and inactivity indicates an important, and potentially pathogenic, link between fuel and energy homeostasis and the emergence of metabolic disease. Given the central role for mitochondria in fuel utilization and energy production, disordered mitochondrial function at the cellular level can impact whole-body metabolic homeostasis. Thus, the hypothesis that defective or insufficient mitochondrial function might play a potentially pathogenic role in mediating risk of type 2 DM has emerged in recent years. Here, we summarize current literature on risk factors for diabetes pathogenesis, on the specific role(s) of mitochondria in tissues involved in its pathophysiology, and on evidence pointing to alterations in mitochondrial function in these tissues that could contribute to the development of DM. We also review literature on metabolic phenotypes of existing animal models of impaired mitochondrial function. We conclude that, whereas the association between impaired mitochondrial function and DM is strong, a causal pathogenic relationship remains uncertain. However, we hypothesize that genetically determined and/or inactivity-mediated alterations in mitochondrial oxidative activity may directly impact adaptive responses to overnutrition, causing an imbalance between oxidative activity and nutrient load. This imbalance may lead in turn to chronic accumulation of lipid oxidative metabolites that can mediate insulin resistance and secretory dysfunction. More refined experimental strategies that accurately mimic potential reductions in mitochondrial functional capacity in humans at risk for diabetes will be required to determine the potential pathogenic role in human insulin resistance and type 2 DM.
Collapse
|
48
|
Maiese K, Shang YC, Chong ZZ, Hou J. Diabetes mellitus: channeling care through cellular discovery. Curr Neurovasc Res 2010; 7:59-64. [PMID: 20158461 PMCID: PMC2844489 DOI: 10.2174/156720210790820217] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/29/2009] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) impacts a significant portion of the world's population and care for this disorder places an economic burden on the gross domestic product for any particular country. Furthermore, both Type 1 and Type 2 DM are becoming increasingly prevalent and there is increased incidence of impaired glucose tolerance in the young. The complications of DM are protean and can involve multiple systems throughout the body that are susceptible to the detrimental effects of oxidative stress and apoptotic cell injury. For these reasons, innovative strategies are necessary for the implementation of new treatments for DM that are generated through the further understanding of cellular pathways that govern the pathological consequences of DM. In particular, both the precursor for the coenzyme beta-nicotinamide adenine dinucleotide (NAD(+)), nicotinamide, and the growth factor erythropoietin offer novel platforms for drug discovery that involve cellular metabolic homeostasis and inflammatory cell control. Interestingly, these agents and their tightly associated pathways that consist of cell cycle regulation, protein kinase B, forkhead transcription factors, and Wnt signaling also function in a broader sense as biomarkers for disease onset and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
49
|
Gredilla R, Bohr VA, Stevnsner T. Mitochondrial DNA repair and association with aging--an update. Exp Gerontol 2010; 45:478-88. [PMID: 20096766 DOI: 10.1016/j.exger.2010.01.017] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/10/2010] [Accepted: 01/14/2010] [Indexed: 01/07/2023]
Abstract
Mitochondrial DNA is constantly exposed to oxidative injury. Due to its location close to the main site of reactive oxygen species, the inner mitochondrial membrane, mtDNA is more susceptible than nuclear DNA to oxidative damage. The accumulation of DNA damage is thought to play a critical role in the aging process and to be particularly deleterious in post-mitotic cells. Thus, DNA repair is an important mechanism for maintenance of genomic integrity. Despite the importance of mitochondria in the aging process, it was thought for many years that mitochondria lacked an enzymatic DNA repair system comparable to that in the nuclear compartment. However, it is now well established that DNA repair actively takes place in mitochondria. Oxidative DNA damage processing, base excision repair mechanisms were the first to be described in these organelles, and consequently the best understood. However, new proteins and novel DNA repair pathways, thought to be exclusively present in the nucleus, have recently been described also to be present in mitochondria. Here we review the main mitochondrial DNA repair pathways and their association with the aging process.
Collapse
Affiliation(s)
- Ricardo Gredilla
- Danish Center for Molecular Gerontology, Department of Molecular Biology, Aarhus University, C.F. Moellers allé 3, Aarhus C, Denmark
| | | | | |
Collapse
|
50
|
Abstract
Intracellular signalling mediated by secreted Wnt proteins is essential for the establishment of cell fates and proper tissue patterning during embryo development and for the regulation of tissue homeostasis and stem cell function in adult tissues. Aberrant activation of Wnt signalling pathways has been directly linked to the genesis of different tumours. Here, the components and molecular mechanisms implicated in the transduction of Wnt signal, along with important results supporting a central role for this signalling pathway in stem cell function regulation and carcinogenesis will be briefl y reviewed.
Collapse
|