1
|
Bonacina F, Zhang X, Manel N, Yvan-Charvet L, Razani B, Norata GD. Lysosomes in the immunometabolic reprogramming of immune cells in atherosclerosis. Nat Rev Cardiol 2025; 22:149-164. [PMID: 39304748 PMCID: PMC11835540 DOI: 10.1038/s41569-024-01072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Lysosomes have a central role in the disposal of extracellular and intracellular cargo and also function as metabolic sensors and signalling platforms in the immunometabolic reprogramming of macrophages and other immune cells in atherosclerosis. Lysosomes can rapidly sense the presence of nutrients within immune cells, thereby switching from catabolism of extracellular material to the recycling of intracellular cargo. Such a fine-tuned degradative response supports the generation of metabolic building blocks through effectors such as mTORC1 or TFEB. By coupling nutrients to downstream signalling and metabolism, lysosomes serve as a crucial hub for cellular function in innate and adaptive immune cells. Lysosomal dysfunction is now recognized to be a hallmark of atherogenesis. Perturbations in nutrient-sensing and signalling have profound effects on the capacity of immune cells to handle cholesterol, perform phagocytosis and efferocytosis, and limit the activation of the inflammasome and other inflammatory pathways. Strategies to improve lysosomal function hold promise as novel modulators of the immunoinflammatory response associated with atherosclerosis. In this Review, we describe the crosstalk between lysosomal biology and immune cell function and polarization, with a particular focus on cellular immunometabolic reprogramming in the context of atherosclerosis.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Xiangyu Zhang
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU), Oncoage, Nice, France
| | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Giuseppe D Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
2
|
Traetta ME, Vecchiarelli HA, Tremblay MÈ. Fundamental Neurochemistry Review: Lipids across microglial states. J Neurochem 2025; 169:e16259. [PMID: 39696753 DOI: 10.1111/jnc.16259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 12/20/2024]
Abstract
The capacity of immune cells to alter their function based on their metabolism is the basis of the emerging field of immunometabolism. Microglia are the resident innate immune cells of the central nervous system, and it is a current focus of the field to investigate how alterations in their metabolism impact these cells. Microglia have the ability to utilize lipids, such as fatty acids, as energy sources, but also alterations in lipids can impact microglial form and function. Recent studies highlighting different microglial states and transcriptional signatures have highlighted modifications in lipid processing as defining these states. This review highlights these recent studies and uses these altered pathways to discuss the current understanding of lipid biology in microglia. The studies highlighted here review how lipids may alter microglial phagocytic functioning or alter their pro- and anti-inflammatory balance. These studies provide a foundation by which lipid supplementation or diet alterations could influence microglial states and function. Furthermore, targets modulating microglial lipid metabolism may provide new treatment avenues.
Collapse
Affiliation(s)
- Marianela E Traetta
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Haley A Vecchiarelli
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
- Institute for Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada
- Département de médecine moléculaire, Université Laval, Québec City, Quebec, Canada
- Axe neurosciences, Centre de recherche du CHU de Québec, Université Laval, Québec City, Quebec, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Quebec, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Watanabe S, Oyama M, Iwai T, Tanabe M. Glucosylceramide synthase inhibitor ameliorates chronic inflammatory pain. J Pharmacol Sci 2024; 156:235-238. [PMID: 39608848 DOI: 10.1016/j.jphs.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/30/2024] [Accepted: 10/14/2024] [Indexed: 11/30/2024] Open
Abstract
Gangliosides play pivotal roles in neuronal tissue processes, such as axonal elongation, synaptic transmission, and neuronal degeneration. Several studies have shown that mice injected with gangliosides synthesized from glucosylceramide exhibit mechanical allodynia. Thus, we hypothesized that glucosylceramide synthase inhibitors affect nociceptive behavior. We investigated the analgesic effect of intrathecal glucosylceramide inhibition on bilateral allodynia caused by prolonged unilateral hind paw inflammation in mice. Repeated administration of a glucosylceramide inhibitor reduced mechanical allodynia in both inflamed and non-inflamed hind paws. These results suggested that ganglioside reduction is critical for analgesia during inflammatory pain.
Collapse
Affiliation(s)
- Shun Watanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Misa Oyama
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Takashi Iwai
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Mitsuo Tanabe
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
4
|
Alexander SN, Reed OA, Burton MD. Spinal cord microglia drive sex differences in ethanol-mediated PGE2-induced allodynia. Brain Behav Immun 2024; 122:399-421. [PMID: 39147173 DOI: 10.1016/j.bbi.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024] Open
Abstract
The mechanisms of how long-term alcohol use can lead to persistent pain pathology are unclear. Understanding how earlier events of short-term alcohol use can lower the threshold of non-painful stimuli, described as allodynia could prove prudent to understand important initiating mechanisms. Previously, we observed that short-term low-dose alcohol intake induced female-specific allodynia and increased microglial activation in the spinal cord dorsal horn. Other literature describes how chronic ethanol exposure activates Toll-like receptor 4 (TLR4) to initiate inflammatory responses. TLR4 is expressed on many cell types, and we aimed to investigate whether TLR4 on microglia is sufficient to potentiate allodynia during a short-term/low-dose alcohol paradigm. Our study used a novel genetic model where TLR4 expression is removed from the entire body by introducing a floxed transcriptional blocker (TLR4-null background (TLR4LoxTB)), then restricted to microglia by breeding TLR4LoxTB animals with Cx3CR1:CreERT2 animals. As previously reported, after 14 days of ethanol administration alone, we observed no increased pain behavior. However, we observed significant priming effects 3 hrs post intraplantar injection of a subthreshold dose of prostaglandin E2 (PGE2) in wild-type and microglia-TLR4 restricted female mice. We also observed a significant female-specific shift to pro-inflammatory phenotype and morphological changes in microglia of the lumbar dorsal horn. Investigations in pain priming-associated neuronal subtypes showed an increase of c-Fos and FosB activity in PKCγ interneurons in the dorsal horn of female mice directly corresponding to increased microglial activity. This study uncovers cell- and female-specific roles of TLR4 in sexual dimorphisms in pain induction among non-pathological drinkers.
Collapse
Affiliation(s)
- Shevon N Alexander
- Neuroimmunology and Behavior Lab (NIB), Department of Neuroscience, School of Behavioral and Brain Science, Center for Advanced Pain Studies (CAPS), University of Texas at Dallas, Richardson, TX, USA
| | - Olivia A Reed
- Neuroimmunology and Behavior Lab (NIB), Department of Neuroscience, School of Behavioral and Brain Science, Center for Advanced Pain Studies (CAPS), University of Texas at Dallas, Richardson, TX, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Lab (NIB), Department of Neuroscience, School of Behavioral and Brain Science, Center for Advanced Pain Studies (CAPS), University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
5
|
Xie F, Kitagawa Y, Ogata H, Yasuhara S, You Z, Jeevendra Martyn JA. Morphine induces inflammatory responses via both TLR4 and cGAS-STING signaling pathways. Cytokine 2024; 183:156737. [PMID: 39217915 PMCID: PMC11488688 DOI: 10.1016/j.cyto.2024.156737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Opioid activation of the microglia or macrophage Toll-like receptor 4 (TLR4) and associated inflammatory cytokine release are implicated in opioid-induced hyperalgesia and tolerance. The cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS-STING) signaling pathway, activated by double-stranded DNA including mitochondrial DNA (mtDNA), has emerged as another key mediator of inflammatory responses. This study tested the hypothesis that morphine induces immune inflammatory responses in microglia and macrophages involving TLR4 and cGAS-STING pathway. METHODS BV2 microglia and Raw 264.7 (Raw) macrophage cells were exposed to morphine with and without a STING inhibitor (C176) for 6 h or TLR 4 inhibitor (TAK242) for 24 h. Western blotting and RT-qPCR analyses assessed TLR4, cGAS, STING, nuclear factor-kappa B (NF-κB), and pro-inflammatory cytokine expression. Morphine-induced mitochondria dysfunction was quantified by reactive oxygen species (ROS) release using MitoSOX, mtDNA release by immunofluorescence, and RT-qPCR. Polarization of BV2 and Raw cells was assessed by inducible nitric oxide (iNOS) and CD86 expression. The role of mtDNA on morphine-related inflammation was investigated by mtDNA depletion of the cells with ethidium bromide (EtBr) or cell transfection of mtDNA extracted from morphine-treated cells. RESULTS Morphine significantly increased the expression of TLR4, cGAS, STING, p65 NF-κB, and cytokines (IL-6 and TNF-α) in BV2 and Raw cells. Morphine-induced mitochondrial dysfunction by increased ROS and mtDNA release; the increased iNOS and CD86 evidenced inflammatory M1-like phenotype polarization. TLR4 and STING inhibitors reduced morphine-induced cytokine release in both cell types. The transfection of mtDNA activated inflammatory signaling proteins, cytokine release, and polarization. Conversely, mtDNA depletion led to the reversal of these effects. CONCLUSION Morphine activates the cGAS-STING pathway in macrophage cell types. Inhibition of the STING pathway can be an additional method to overcome immune cell inflammation-related morphine tolerance and opioid-induced hyperalgesia.
Collapse
Affiliation(s)
- Fei Xie
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Harvard Medical School, Boston, MA, USA; Shriners Hospital for Children - Boston, Boston, MA, USA
| | - Yoshinori Kitagawa
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Hospital for Children - Boston, Boston, MA, USA
| | - Hiroki Ogata
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Hospital for Children - Boston, Boston, MA, USA
| | - Shingo Yasuhara
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Hospital for Children - Boston, Boston, MA, USA
| | - Zerong You
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Hospital for Children - Boston, Boston, MA, USA
| | - J A Jeevendra Martyn
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Shriners Hospital for Children - Boston, Boston, MA, USA.
| |
Collapse
|
6
|
Xu H, He J, Du H, Jing X, Liu X. Evaluation of the Choroid Plexus Epithelium Inflammation TLR4/NF-κB/NKCC1 Signal Pathway Activation in the Development of Hydrocephalus. CNS Neurosci Ther 2024; 30:e70085. [PMID: 39450988 PMCID: PMC11503839 DOI: 10.1111/cns.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Hydrocephalus is characterized by secretion, circulation, and absorption disorder of cerebrospinal fluid (CSF) with high morbidity and complication rate. The relationship between inflammation and abnormal secretion of CSF by choroid plexus epithelium (CPE) had received more attention. In this study, we aim to detect the role of Toll-like receptor 4/nuclear factor-kappa B/Na+/K+/2Cl-cotransporter 1(TLR4/NF-κB/NKCC1) signal pathway in the development of hydrocephalus. METHOD Hydrocephalus was induced in adult rats (8 weeks) by intracisternal kaolin injection, then pyrrolidinedithiocarbamate (PDTC) and bumetanide were administrated to the rats mode. Then the rat model was evaluated, and ventricular volume was calculated at different time points. Then CPE, cortex, preventricular tissue, and CSF were obtained. Protein expressions of TLR-4, NKCC/serine-threonine STE20/SPS1-related, proline-alanine-rich kinase (SPAK), pNKCC1, pSPAK, GFAP, AQP1, and AQP4 were measured by RT-PCR, western blot, and immunofluorescence (IF) stains in CPE, respectively. RESULT Our data showed that inflammation factors tumor necrosis factor-(TNF-α), interleukin 18(IL-18), and glial fibrillary acidic protein (GFAP) concentrations were significantly higher in the model group than in controls. The TLR4/NF-κB/NKCC1 signal pathway were actived by NF-κB-p65, NKCC1, pNKCC1- pSPAK complex, and Aquaporin1 (AQP1) high expression. PDTC and bumetanide use can help regular TLR4/NF-κB/NKCC1 expression and reduced AQP1 expression by down-regulate NF-B-p65 and inhibiting NKCC1, respectively. As a result, the treatment groups alleviated CPE abnormal secretion and ventricle enlargement. CONCLUSION These results confirmed that the inflammatory reaction contributes TLR4/NF-κB/NKCC1 mediated CPE abnormal secretion and consequent hydrocephalus. Regulation of TLR4/NF-κB/NKCC1 and AQP1 can prevent this process. Our study provides a strong rationale for further exploring alleviating CPE abnormal secretion as a therapeutic perspective of hydrocephalus.
Collapse
Affiliation(s)
- Hao Xu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Jiawei He
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen UniversitySchool of Medicine, Xiamen UniversityXiamenFujianChina
| | - Hua Du
- Key Laboratory of High Magnetic Field and Ion Beam Physical BiologyHefei Institutes of Physical Science, CASHefeiAnhuiP. R. China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control TechnologyHefei Institutes of Physical Science, CASHefeiAnhuiP. R. China
| | - Xiaolei Jing
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Xinfeng Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| |
Collapse
|
7
|
Sarkar A, Nagappa M, Dey S, Mondal S, Babu GS, Choudhury SP, Akhil P, Debnath M. Synergistic effects of immune checkpoints and checkpoint inhibitors in inflammatory neuropathies: Implications and mechanisms. J Peripher Nerv Syst 2024; 29:6-16. [PMID: 37988274 DOI: 10.1111/jns.12605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Immune checkpoint molecules play pivotal roles in the regulation of immune homeostasis. Disruption of the immune checkpoints causes autoimmune/inflammatory as well as malignant disorders. Over the past few years, the immune checkpoint molecules with inhibitory function emerged as potential therapeutic targets in oncological conditions. The inhibition of the function of these molecules by using immune checkpoint inhibitors (ICIs) has brought paradigmatic changes in cancer therapy due to their remarkable clinical benefits, not only in improving the quality of life but also in prolonging the survival time of cancer patients. Unfortunately, the ICIs soon turned out to be a "double-edged sword" as the use of ICIs caused multiple immune-related adverse effects (irAEs). The development of inflammatory neuropathies such as Guillain-Barré syndrome (GBS) and Chronic Inflammatory Demyelinating Polyradiculoneuropathy (CIDP) as the secondary effects of immunotherapy appeared very challenging as these conditions result in significant and often permanent disability. The underlying mechanism(s) through which ICIs trigger inflammatory neuropathies are currently not known. Compelling evidence suggests autoimmune reaction and/or inflammation as the independent risk mechanism of inflammatory neuropathies. There is a lack of understanding as to whether prior exposure to the risk factors of inflammatory neuropathies, the presence of germline genetic variants in immune function-related genes, genetic variations within immune checkpoint molecules, the existence of autoantibodies, and activated/memory T cells act as determining factors for ICI-induced inflammatory neuropathies. Herein, we highlight the available pieces of evidence, discuss the mechanistic basis, and propose a few testable hypotheses on inflammatory neuropathies as irAEs of immunotherapy.
Collapse
Affiliation(s)
- Aritrani Sarkar
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Saikat Dey
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sandipan Mondal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Gopika Suresh Babu
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Saptamita Pal Choudhury
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Pokala Akhil
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
8
|
Rahman Z, Shaikh AS, Rao KV, Dandekar MP. Oxyberberine protects middle cerebral artery occlusion triggered cerebral injury through TLR4/NLRP3 pathway in rats. J Chem Neuroanat 2024; 136:102393. [PMID: 38246265 DOI: 10.1016/j.jchemneu.2024.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Cerebral ischemia is a life-threatening health concern that leads to severe neurological complications and fatalities worldwide. Although timely intervention with clot-removing agents curtails serious post-stroke neurological dysfunctions, no effective neuroprotective intervention is available for addressing post-recanalization neuroinflammation. Herein, for the first time we studied the effect of oxyberberine (OBB), a derivative of berberine, on transient middle cerebral artery occlusion (MCAO)-generated neurological consequences in Sprague-Dawley rats. The MCAO-operated rats exhibited significant somatosensory and sensorimotor dysfunctions in adhesive removal, foot fault, paw whisker, and rotarod assays at 1 and 3 days post-surgery. These MCAO-generated neurological deficits were prevented in OBB-treated (50 and 100 mg/kg) rats, and also coincided with a smaller infarct area (in 2,3,5-triphenyl tetrazolium chloride staining) and decreased neuronal death (in cresyl violet staining) in the ipsilateral hemisphere of these animals. The immunostaining of neuronal nuclear protein (NeuN) and glial-fibrillary acidic protein (GFAP) also echoes the neuroprotective nature of OBB. The increased expression of neuroinflammatory and blood-brain barrier tight junction proteins like toll-like receptor 4 (TLR4), TRAF-6, nuclear factor kappa B (NF-κB), pNF-κB, nNOS, ASC, and IKBα in the ipsilateral part of MCAO-operated rats were restored to normal following OBB treatment. We also observed the decline in plasma levels/mRNA transcription of TNF-α, IL-1β, NLRP3, IL-6, and matrix metalloproteinase-9 and increased expression of occludin and claudin in OBB-treated rats. These outcomes imply that OBB may prevent the MCAO-induced neurological consequences and neuroinflammation by interfering with TLR4 and NLRP3 signaling in rats.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Arbaz Sujat Shaikh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - K Venkata Rao
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
9
|
Ago Y, Rintz E, Musini KS, Ma Z, Tomatsu S. Molecular Mechanisms in Pathophysiology of Mucopolysaccharidosis and Prospects for Innovative Therapy. Int J Mol Sci 2024; 25:1113. [PMID: 38256186 PMCID: PMC10816168 DOI: 10.3390/ijms25021113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Mucopolysaccharidoses (MPSs) are a group of inborn errors of the metabolism caused by a deficiency in the lysosomal enzymes required to break down molecules called glycosaminoglycans (GAGs). These GAGs accumulate over time in various tissues and disrupt multiple biological systems, including catabolism of other substances, autophagy, and mitochondrial function. These pathological changes ultimately increase oxidative stress and activate innate immunity and inflammation. We have described the pathophysiology of MPS and activated inflammation in this paper, starting with accumulating the primary storage materials, GAGs. At the initial stage of GAG accumulation, affected tissues/cells are reversibly affected but progress irreversibly to: (1) disruption of substrate degradation with pathogenic changes in lysosomal function, (2) cellular dysfunction, secondary/tertiary accumulation (toxins such as GM2 or GM3 ganglioside, etc.), and inflammatory process, and (3) progressive tissue/organ damage and cell death (e.g., skeletal dysplasia, CNS impairment, etc.). For current and future treatment, several potential treatments for MPS that can penetrate the blood-brain barrier and bone have been proposed and/or are in clinical trials, including targeting peptides and molecular Trojan horses such as monoclonal antibodies attached to enzymes via receptor-mediated transport. Gene therapy trials with AAV, ex vivo LV, and Sleeping Beauty transposon system for MPS are proposed and/or underway as innovative therapeutic options. In addition, possible immunomodulatory reagents that can suppress MPS symptoms have been summarized in this review.
Collapse
Affiliation(s)
- Yasuhiko Ago
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland;
| | - Krishna Sai Musini
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Zhengyu Ma
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Shunji Tomatsu
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1112, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
10
|
Akgun A, Gokcay G, Mungan NO, Sivri HS, Tezer H, Zeybek CA, Ezgu F. Expert-opinion-based guidance for the care of children with lysosomal storage diseases during the COVID-19 pandemic: An experience-based Turkey perspective. Front Public Health 2023; 11:1092895. [PMID: 36794069 PMCID: PMC9922761 DOI: 10.3389/fpubh.2023.1092895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023] Open
Abstract
This expert-opinion-based document was prepared by a group of specialists in pediatric inherited metabolic diseases and infectious diseases including administrative board members of Turkish Society for Pediatric Nutrition and Metabolism to provide guidance for the care of children with lysosomal storage disorders (LSDs) during the COVID-19 pandemic in Turkey. The experts reached consensus on key areas of focus regarding COVID-19-based risk status in relation to intersecting immune-inflammatory mechanisms and disease patterns in children with LSDs, diagnostic virus testing, particularly preventive measures and priorities during the pandemic, routine screening and diagnostic interventions for LSDs, psychological and socioeconomic impact of confinement measures and quarantines and optimal practice patterns in managing LSDs and/or COVID-19. The participating experts agreed on the intersecting characteristics of immune-inflammatory mechanisms, end-organ damage and prognostic biomarkers in LSD and COVID-19 populations, emphasizing the likelihood of enhanced clinical care when their interaction is clarified via further studies addressing certain aspects related to immunity, lysosomal dysfunction and disease pathogenesis. In the context of the current global COVID-19 pandemic, this expert-opinion-based document provides guidance for the care of children with LSDs during the COVID-19 pandemic based on the recent experience in Turkey.
Collapse
Affiliation(s)
- Abdurrahman Akgun
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Firat University, Elazig, Turkey
| | - Gulden Gokcay
- Division of Nutrition and Metabolism, Department of Pediatrics, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Neslihan Onenli Mungan
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Hatice Serap Sivri
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Hasan Tezer
- Department of Infectious Diseases, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Cigdem Aktuglu Zeybek
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Fatih Ezgu
- Division of Pediatric Metabolism and Division of Pediatric Genetics, Department of Pediatrics, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
11
|
Aureli M, Mauri L, Carsana EV, Dobi D, Breviario S, Lunghi G, Sonnino S. Gangliosides and Cell Surface Ganglioside Metabolic Enzymes in the Nervous System. ADVANCES IN NEUROBIOLOGY 2023; 29:305-332. [DOI: 10.1007/978-3-031-12390-0_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Mohammed SA, Saini RV, Jha AK, Hadda V, Singh AK, Prakash H. Sphingolipids, mycobacteria and host: Unraveling the tug of war. Front Immunol 2022; 13:1003384. [PMID: 36189241 PMCID: PMC9521350 DOI: 10.3389/fimmu.2022.1003384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shakeel Ahmed Mohammed
- Amity Institute of Virology and Immunology, Amity University, Noida, India
- Department of Biotechnology, Maharishi Markandeshwar (M. M). Engineering College, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Reena Vohra Saini
- Department of Biotechnology, Maharishi Markandeshwar (M. M). Engineering College, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | | | - Vijay Hadda
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Amit Kumar Singh
- Experimental Animal Facility, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj Agra, India
| | - Hridayesh Prakash
- Department of Biotechnology, Maharishi Markandeshwar (M. M). Engineering College, Maharishi Markandeshwar (Deemed to be University), Ambala, India
- *Correspondence: Hridayesh Prakash,
| |
Collapse
|
13
|
Lee JH, Han JH, Woo JH, Jou I. 25-Hydroxycholesterol suppress IFN-γ-induced inflammation in microglia by disrupting lipid raft formation and caveolin-mediated signaling endosomes. Free Radic Biol Med 2022; 179:252-265. [PMID: 34808332 DOI: 10.1016/j.freeradbiomed.2021.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 01/25/2023]
Abstract
Acute microglial activation plays an important role in neuroprotection. However, dysregulated, prolonged microgliosis exacerbates neurodegeneration through excessive release of pro-inflammatory cytokines and cytotoxic factors. Interferon-gamma (IFN-γ), an inflammatory cytokine, exacerbates the detrimental microglial response. Although various anti-inflammatory drugs have been evaluated as interventions for microglia-mediated neuroinflammation, no anti-inflammatories are in clinical use for microgliosis. The present study evaluated the anti-inflammatory mechanisms of oxysterols, blood brain barrier (BBB) penetrable bioactive lipids, revealing that this intervention suppresses neuroinflammation by disrupting membrane lipid raft formation and caveolae-mediated endosomal IFN-γ signaling. We find that 25-hydroxycholesterol (25-HC) rapidly repressed IFN-γ receptor trafficking to lipid rafts in microglia by disrupting raft formation, thereby suppressing microglial inflammatory response. IFN-γ treatment upregulated expression of Cav-1, a major component of caveolae, and IFN-γ signaling was sustained through Cav-1+ signaling endosomes. 25-HC repressed IFN-γ induction of Cav-1 expression in microglia, and subsequently suppressed the chronic inflammatory response. Taken together, these findings demonstrated that 25-HC effectively regulate the inflammatory status of microglia by mediating the formation of rafts and caveolae-dependent signaling endosomes. Given the important roles of IFN-γ and microglia in the pathology of neurodegenerative brain diseases, a novel anti-inflammatory mechanism of 25-HC that is not receptor-dependent, but rather is related to the regulation of membrane rafts and caveolae, suggests a new therapeutic target for inflammatory neurodegenerations.
Collapse
Affiliation(s)
- Jee Hoon Lee
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea.
| | - Ji-Hye Han
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea
| | - Joo Hong Woo
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea
| | - Ilo Jou
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea; Inflamm-aging Translational Research Center, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
14
|
Galleguillos D, Wang Q, Steinberg N, Zaidi A, Shrivastava G, Dhami K, Daskhan GC, Schmidt EN, Dworsky-Fried Z, Giuliani F, Churchward M, Power C, Todd K, Taylor A, Macauley MS, Sipione S. Anti-inflammatory role of GM1 and other gangliosides on microglia. J Neuroinflammation 2022; 19:9. [PMID: 34991625 PMCID: PMC8739653 DOI: 10.1186/s12974-021-02374-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022] Open
Abstract
Background Gangliosides are glycosphingolipids highly enriched in the brain, with important roles in cell signaling, cell-to-cell communication, and immunomodulation. Genetic defects in the ganglioside biosynthetic pathway result in severe neurodegenerative diseases, while a partial decrease in the levels of specific gangliosides was reported in Parkinson’s disease and Huntington’s disease. In models of both diseases and other conditions, administration of GM1—one of the most abundant gangliosides in the brain—provides neuroprotection. Most studies have focused on the direct neuroprotective effects of gangliosides on neurons, but their role in other brain cells, in particular microglia, is not known. In this study we investigated the effects of exogenous ganglioside administration and modulation of endogenous ganglioside levels on the response of microglia to inflammatory stimuli, which often contributes to initiation or exacerbation of neurodegeneration. Methods In vitro studies were performed using BV2 cells, mouse, rat, and human primary microglia cultures. Modulation of microglial ganglioside levels was achieved by administration of exogenous gangliosides, or by treatment with GENZ-123346 and L–t-PDMP, an inhibitor and an activator of glycolipid biosynthesis, respectively. Response of microglia to inflammatory stimuli (LPS, IL-1β, phagocytosis of latex beads) was measured by analysis of gene expression and/or secretion of pro-inflammatory cytokines. The effects of GM1 administration on microglia activation were also assessed in vivo in C57Bl/6 mice, following intraperitoneal injection of LPS. Results GM1 decreased inflammatory microglia responses in vitro and in vivo, even when administered after microglia activation. These anti-inflammatory effects depended on the presence of the sialic acid residue in the GM1 glycan headgroup and the presence of a lipid tail. Other gangliosides shared similar anti-inflammatory effects in in vitro models, including GD3, GD1a, GD1b, and GT1b. Conversely, GM3 and GQ1b displayed pro-inflammatory activity. The anti-inflammatory effects of GM1 and other gangliosides were partially reproduced by increasing endogenous ganglioside levels with L–t-PDMP, whereas inhibition of glycolipid biosynthesis exacerbated microglial activation in response to LPS stimulation. Conclusions Our data suggest that gangliosides are important modulators of microglia inflammatory responses and reveal that administration of GM1 and other complex gangliosides exerts anti-inflammatory effects on microglia that could be exploited therapeutically. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02374-x.
Collapse
Affiliation(s)
- Danny Galleguillos
- Department of Pharmacology, University of Alberta, 9-21 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Qian Wang
- Department of Pharmacology, University of Alberta, 9-21 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Noam Steinberg
- Department of Pharmacology, University of Alberta, 9-21 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Asifa Zaidi
- Department of Pharmacology, University of Alberta, 9-21 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Kamaldeep Dhami
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Gour C Daskhan
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Zoë Dworsky-Fried
- Department of Pharmacology, University of Alberta, 9-21 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Fabrizio Giuliani
- Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Matthew Churchward
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Christopher Power
- Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Kathryn Todd
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Anna Taylor
- Department of Pharmacology, University of Alberta, 9-21 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Simonetta Sipione
- Department of Pharmacology, University of Alberta, 9-21 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
15
|
Sialidase neu4 deficiency is associated with neuroinflammation in mice. Glycoconj J 2021; 38:649-667. [PMID: 34686927 DOI: 10.1007/s10719-021-10017-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/11/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Sialidases catalyze the removal of sialic acid residues from glycoproteins, oligosaccharides, and sialylated glycolipids. Sialidase Neu4 is in the lysosome and has broad substrate specificity. Previously generated Neu4-/- mice were viable, fertile and lacked gross morphological abnormalities, but displayed a marked vacuolization and lysosomal storage in lung and spleen cells. In addition, we showed that there is an increased level of GD1a ganglioside and a markedly decreased level of GM1 ganglioside in the brain of Neu4-/- mice. In this study, we further explored whether sialidase Neu4 deficiency causes neuroinflammation. We demostrated that elevated level of GD1a and GT1b is associated with an increased level of LAMP1-positive lysosomal vesicles and Tunel-positive neurons correlated with alterations in the expression of cytokines and chemokines in adult Neu4-/- mice. Astrogliosis and microgliosis were also significantly enhanced in the hippocampus, and cerebellum. These changes in brain immunity were accompanied by motor impairment in these mice. Our results indicate that sialidase Neu4 is a novel mediator of an inflammatory response in the mouse brain due to the altered catabolism of gangliosides.
Collapse
|
16
|
Finsterwald C, Dias S, Magistretti PJ, Lengacher S. Ganglioside GM1 Targets Astrocytes to Stimulate Cerebral Energy Metabolism. Front Pharmacol 2021; 12:653842. [PMID: 33995070 PMCID: PMC8115125 DOI: 10.3389/fphar.2021.653842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/13/2021] [Indexed: 02/01/2023] Open
Abstract
Gangliosides are major constituents of the plasma membrane and are known to promote a number of physiological actions in the brain, including synaptic plasticity and neuroprotection. In particular, the ganglioside GM1 was found to have a wide range of preclinical and clinical benefits in brain diseases such as spinal cord injury, Huntington’s disease and Parkinson’s disease. However, little is known about the underlying cellular and molecular mechanisms of GM1 in the brain. In the present study, we show that GM1 exerts its actions through the promotion of glycolysis in astrocytes, which leads to glucose uptake and lactate release by these cells. In astrocytes, GM1 stimulates the expression of several genes involved in the regulation of glucose metabolism. GM1 also enhances neuronal mitochondrial activity and triggers the expression of neuroprotection genes when neurons are cultured in the presence of astrocytes. Finally, GM1 leads to a neuroprotective effect in astrocyte-neuron co-culture. Together, these data identify a previously unrecognized mechanism mediated by astrocytes by which GM1 exerts its metabolic and neuroprotective effects.
Collapse
|
17
|
Paget TL, Parkinson-Lawrence EJ, Trim PJ, Autilio C, Panchal MH, Koster G, Echaide M, Snel MF, Postle AD, Morrison JL, Pérez-Gil J, Orgeig S. Increased Alveolar Heparan Sulphate and Reduced Pulmonary Surfactant Amount and Function in the Mucopolysaccharidosis IIIA Mouse. Cells 2021; 10:849. [PMID: 33918094 PMCID: PMC8070179 DOI: 10.3390/cells10040849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Mucopolysaccharidosis IIIA (MPS IIIA) is a lysosomal storage disease with significant neurological and skeletal pathologies. Respiratory dysfunction is a secondary pathology contributing to mortality in MPS IIIA patients. Pulmonary surfactant is crucial to optimal lung function and has not been investigated in MPS IIIA. We measured heparan sulphate (HS), lipids and surfactant proteins (SP) in pulmonary tissue and bronchoalveolar lavage fluid (BALF), and surfactant activity in healthy and diseased mice (20 weeks of age). Heparan sulphate, ganglioside GM3 and bis(monoacylglycero)phosphate (BMP) were increased in MPS IIIA lung tissue. There was an increase in HS and a decrease in BMP and cholesteryl esters (CE) in MPS IIIA BALF. Phospholipid composition remained unchanged, but BALF total phospholipids were reduced (49.70%) in MPS IIIA. There was a reduction in SP-A, -C and -D mRNA, SP-D protein in tissue and SP-A, -C and -D protein in BALF of MPS IIIA mice. Captive bubble surfactometry showed an increase in minimum and maximum surface tension and percent surface area compression, as well as a higher compressibility and hysteresis in MPS IIIA surfactant upon dynamic cycling. Collectively these biochemical and biophysical changes in alveolar surfactant are likely to be detrimental to lung function in MPS IIIA.
Collapse
Affiliation(s)
- Tamara L. Paget
- Mechanisms in Cell Biology and Disease Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (T.L.P.); (E.J.P.-L.)
| | - Emma J. Parkinson-Lawrence
- Mechanisms in Cell Biology and Disease Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (T.L.P.); (E.J.P.-L.)
| | - Paul J. Trim
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; (P.J.T.); (M.F.S.)
| | - Chiara Autilio
- Department of Biochemistry, Faculty of Biology and Research Institute Hospital 12 de Octubre (Imas12), Complutense University, 28003 Madrid, Spain; (C.A.); (M.E.); (J.P.-G.)
| | - Madhuriben H. Panchal
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.H.P.); (G.K.); (A.D.P.)
| | - Grielof Koster
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.H.P.); (G.K.); (A.D.P.)
| | - Mercedes Echaide
- Department of Biochemistry, Faculty of Biology and Research Institute Hospital 12 de Octubre (Imas12), Complutense University, 28003 Madrid, Spain; (C.A.); (M.E.); (J.P.-G.)
| | - Marten F. Snel
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; (P.J.T.); (M.F.S.)
| | - Anthony D. Postle
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.H.P.); (G.K.); (A.D.P.)
| | - Janna L. Morrison
- Early Origins Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Jésus Pérez-Gil
- Department of Biochemistry, Faculty of Biology and Research Institute Hospital 12 de Octubre (Imas12), Complutense University, 28003 Madrid, Spain; (C.A.); (M.E.); (J.P.-G.)
| | - Sandra Orgeig
- Mechanisms in Cell Biology and Disease Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (T.L.P.); (E.J.P.-L.)
| |
Collapse
|
18
|
Ernest James Phillips T, Maguire E. Phosphoinositides: Roles in the Development of Microglial-Mediated Neuroinflammation and Neurodegeneration. Front Cell Neurosci 2021; 15:652593. [PMID: 33841102 PMCID: PMC8032904 DOI: 10.3389/fncel.2021.652593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are increasingly recognized as vital players in the pathology of a variety of neurodegenerative conditions including Alzheimer’s (AD) and Parkinson’s (PD) disease. While microglia have a protective role in the brain, their dysfunction can lead to neuroinflammation and contributes to disease progression. Also, a growing body of literature highlights the seven phosphoinositides, or PIPs, as key players in the regulation of microglial-mediated neuroinflammation. These small signaling lipids are phosphorylated derivates of phosphatidylinositol, are enriched in the brain, and have well-established roles in both homeostasis and disease.Disrupted PIP levels and signaling has been detected in a variety of dementias. Moreover, many known AD disease modifiers identified via genetic studies are expressed in microglia and are involved in phospholipid metabolism. One of these, the enzyme PLCγ2 that hydrolyzes the PIP species PI(4,5)P2, displays altered expression in AD and PD and is currently being investigated as a potential therapeutic target.Perhaps unsurprisingly, neurodegenerative conditions exhibiting PIP dyshomeostasis also tend to show alterations in aspects of microglial function regulated by these lipids. In particular, phosphoinositides regulate the activities of proteins and enzymes required for endocytosis, toll-like receptor signaling, purinergic signaling, chemotaxis, and migration, all of which are affected in a variety of neurodegenerative conditions. These functions are crucial to allow microglia to adequately survey the brain and respond appropriately to invading pathogens and other abnormalities, including misfolded proteins. AD and PD therapies are being developed to target many of the above pathways, and although not yet investigated, simultaneous PIP manipulation might enhance the beneficial effects observed. Currently, only limited therapeutics are available for dementia, and although these show some benefits for symptom severity and progression, they are far from curative. Given the importance of microglia and PIPs in dementia development, this review summarizes current research and asks whether we can exploit this information to design more targeted, or perhaps combined, dementia therapeutics. More work is needed to fully characterize the pathways discussed in this review, but given the strength of the current literature, insights in this area could be invaluable for the future of neurodegenerative disease research.
Collapse
Affiliation(s)
| | - Emily Maguire
- UK Dementia Research Institute at Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
19
|
Taskiran AS, Avci O. Effect of captopril, an angiotensin-converting enzyme inhibitor, on morphine analgesia and tolerance in rats, and elucidating the inflammation and endoplasmic reticulum stress pathway in this effect. Neurosci Lett 2021; 741:135504. [PMID: 33197521 DOI: 10.1016/j.neulet.2020.135504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/28/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022]
Abstract
The purpose of current study was to examine the possible involvement of captopril, an angiotensin-converting enzyme inhibitor, on nociception, morphine analgesia and morphine tolerance development involving inflammation and ER-stress pathways in rats. In this study, thirty-six male Wistar rats were used. Animals were divided into six groups: Saline, 50 mg/kg captopril, 5 mg/kg morphine, morphine + captopril, morphine tolerance and morphine tolerance + captopril. The resulting analgesic effect was measured with hot plate and tail flick analgesia tests. The dorsal root ganglions (DRG) tissues were collected for inflammation parameters, endoplasmic reticulum (ER) stress and apoptosis proteins by using ELISA. Captopril showed anti-nociceptive effect when given alone (p < 0.05 to p < 0.01). In addition, captopril increased the analgesic effect of morphine (p < 0.05 to p < 0.001) and also decreased the tolerance to morphine at a significant level (p < 0.05 to p < 0.001). However, it decreased inflammation and ER-stress when applied with single-dose morphine and tolerance induction (p < 0.001). Moreover, captopril decreased apoptosis proteins after tolerance development (p < 0.001). In conclusion, captopril has antinociceptive properties, increasing analgesic effect of morphine, and preventing tolerance development. These effects may occur by suppressing inflammation and ER-stress pathways.
Collapse
Affiliation(s)
- Ahmet Sevki Taskiran
- Department of Physiology, Sivas Cumhuriyet University School of Medicine, Sivas, Turkey.
| | - Onur Avci
- Department of Anesthesiology and Reanimation, Sivas Cumhuriyet University, School of Medicine, Sivas, Turkey
| |
Collapse
|
20
|
Abdelsalam M, Abd Elmagid DS, Magdy H, El-Sabbagh AM, Mostafa M. The association between toll-like receptor 4 (TLR4) genotyping and the risk of epilepsy in children. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00102-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Background
Epilepsy is one of the most widely recognized neurological disorders; unfortunately, twenty to thirty percent of patients do not get cured from epilepsy, despite many trials of antiepileptic drug (AED) therapy. Immunotherapy may be a viable treatment strategy in a subset of epileptic patients. The association between Toll-like receptor polymorphisms and epilepsy clarifies the role of the immune system in epilepsy and its response to the drug. Thus, this study will focus on the relation between TLR4 rs1927914, rs11536858, rs1927911SNPs, and epilepsy in an Egyptian case-control study to assess their link to antiepileptic drug response.
Results
According to TLR4 rs1927914, there is a significant association between the SNP and the development of epilepsy, as CC genotype is 15.3 times more at risk for developing epilepsy than TT genotype, and CT is 11.1 times more at risk for developing epilepsy than TT. Also, patients with CC genotypes are 6.3 times more at risk for developing primary epilepsy than TT genotype.
According to rs11536858, there is a significant association between cases and control groups, as AA genotypes are found to be more at risk for developing epilepsy than GG genotypes. Also, there is a statistically significant association between clonazepam resistance and rs11536858, as p value < 0.001* with the highest frequency of TT genotypes at 4.3%.
According to rs1927911, there are no significant results between the cases and the control groups or between drug-responsive and drug resistance.
Conclusion
Possible involvement of the Toll-like receptor clarifies the importance of innate immunity in initiating seizures and making neuronal hyperexcitability. In this work, multiple significant associations between TLR SNPs and epilepsy, epileptic phenotype, and drug-resistant epilepsy have been found. More studies with bigger sample sizes and different techniques with different SNPs are recommended to find the proper immunotherapy for epilepsy instead of the treatment by antiepileptic drugs.
Collapse
|
21
|
Hp-s1 Ganglioside Suppresses Proinflammatory Responses by Inhibiting MyD88-Dependent NF-κB and JNK/p38 MAPK Pathways in Lipopolysaccharide-Stimulated Microglial Cells. Mar Drugs 2020; 18:md18100496. [PMID: 33003399 PMCID: PMC7600735 DOI: 10.3390/md18100496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Hp-s1 ganglioside is isolated from the sperm of sea urchin (Hemicentrotus pulcherrimus). In addition to neuritogenic activity, the biological function of Hp-s1 in neuroinflammation is unknown. In this study, we investigated the anti-neuroinflammatory effect of Hp-s1 on lipopolysaccharide (LPS)-stimulated microglial cells. MG6 microglial cells were stimulated with LPS in the presence or absence of different Hp-s1 concentrations. The anti-inflammatory effect and underlying mechanism of Hp-s1 in LPS-activated microglia cells were assessed through a Cell Counting kit-8 assay, Western blot analysis, and immunofluorescence. We found that Hp-s1 suppressed not only the expression of inducible nitric oxide synthase and cyclooxygenase-2 but also the expression of proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6. Hp-s1 inhibited the LPS-induced NF-κB signaling pathway by attenuating the phosphorylation and translocation of NF-κB p65 and by disrupting the degradation and phosphorylation of inhibitor κB-α (IκBα). Moreover, Hp-s1 inhibited the LPS-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK). Hp-s1 also reduced the expression of myeloid differentiation factor 88 (MyD88) and TNF receptor-associated factors 6 (TRAF6), which are prerequisites for NF-κB and MAPKs activation. These findings indicated that Hp-s1 alleviated LPS-induced proinflammatory responses in microglial cells by downregulating MyD88-mediated NF-κB and JNK/p38 MAPK signaling pathways, suggesting further evaluation as a new anti-neuroinflammatory drug.
Collapse
|
22
|
Bottai D, Adami R, Paroni R, Ghidoni R. Brain Cancer-Activated Microglia: A Potential Role for Sphingolipids. Curr Med Chem 2020; 27:4039-4061. [PMID: 31057101 DOI: 10.2174/0929867326666190506120213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/27/2018] [Accepted: 01/12/2019] [Indexed: 02/06/2023]
Abstract
Almost no neurological disease exists without microglial activation. Microglia has exert a pivotal role in the maintenance of the central nervous system and its response to external and internal insults. Microglia have traditionally been classified as, in the healthy central nervous system, "resting", with branched morphology system and, as a response to disease, "activated", with amoeboid morphology; as a response to diseases but this distinction is now outmoded. The most devastating disease that hits the brain is cancer, in particular glioblastoma. Glioblastoma multiforme is the most aggressive glioma with high invasiveness and little chance of being surgically removed. During tumor onset, many brain alterations are present and microglia have a major role because the tumor itself changes microglia from the pro-inflammatory state to the anti-inflammatory and protects the tumor from an immune intervention. What are the determinants of these changes in the behavior of the microglia? In this review, we survey and discuss the role of sphingolipids in microglia activation in the progression of brain tumors, with a particular focus on glioblastoma.
Collapse
Affiliation(s)
- Daniele Bottai
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Raffaella Adami
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Rita Paroni
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Riccardo Ghidoni
- Department of Health Sciences, University of Milan, Milan, Italy,Aldo Ravelli Research Center, Milan, Italy
| |
Collapse
|
23
|
Karimy JK, Reeves BC, Kahle KT. Targeting TLR4-dependent inflammation in post-hemorrhagic brain injury. Expert Opin Ther Targets 2020; 24:525-533. [PMID: 32249624 DOI: 10.1080/14728222.2020.1752182] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent data have implicated inflammation of the cerebrospinal fluid spaces after subarachnoid, intraventricular, and intracerebral hemorrhage to be a critical driver of multiple secondary brain injuries such as hydrocephalus, cerebral edema, and vasospasm. While TLR4-dependent reparative inflammation is an important protective response that can eliminate physical irritants and damaged cells, sustained or inappropriately triggered inflammation can initiate or propagate disease.Areas covered: We review recent advances in our understanding of how TLR4, including its upstream damage-associated molecular patterns and its downstream MyD88-dependent and independent signaling pathways, contributes to hemorrhage-induced inflammation in numerous brain diseases. We discuss prospects for the pharmacotherapeutic targeting of TLR4 in these disorders, including the use of repurposed FDA-approved agents.Expert opinion: TLR4 inhibitors with good blood-brain-barrier (BBB) penetration could be useful adjuncts in post-hemorrhagic hydrocephalus and multiple other diseases associated with brain hemorrhage and inflammation.
Collapse
Affiliation(s)
- Jason K Karimy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.,Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
24
|
Paudel YN, Angelopoulou E, Piperi C, Othman I, Shaikh MF. Implication of HMGB1 signaling pathways in Amyotrophic lateral sclerosis (ALS): From molecular mechanisms to pre-clinical results. Pharmacol Res 2020; 156:104792. [PMID: 32278047 DOI: 10.1016/j.phrs.2020.104792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 02/14/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and rapidly progressing neurodegenerative disorder with no effective disease-modifying treatment up to date. The underlying molecular mechanisms of ALS are not yet completely understood. However, the critical role of the innate immune system and neuroinflammation in ALS pathogenesis has gained increased attention. High mobility group box 1 (HMGB1) is a typical damage-associated molecular pattern (DAMP) molecule, acting as a pro-inflammatory cytokine mainly through activation of its principal receptors, the receptor for advanced glycation end products (RAGE) and toll-like receptor 4 (TLR4) which are crucial components of the innate immune system. HMGB1 is an endogenous ligand for both RAGE and TLR4 that mediate its biological effects. Herein, on the ground of pre-clinical findings we unravel the underlying mechanisms behind the plausible contribution of HMGB1 and its receptors (RAGE and TLR4) in the ALS pathogenesis. Furthermore, we provide an account of the therapeutic outcomes associated with inhibition/blocking of HMGB1 receptor signalling in preventing motor neuron's death and delaying disease progression in ALS experimental models. There is strong evidence that HMGB1, RAGE and TLR4 signaling axes might present potential targets against ALS, opening a novel headway in ALS research that could plausibly bridge the current treatment gap.
Collapse
Affiliation(s)
- Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
25
|
Vilcaes AA, Garbarino-Pico E, Torres Demichelis V, Daniotti JL. Ganglioside Synthesis by Plasma Membrane-Associated Sialyltransferase in Macrophages. Int J Mol Sci 2020; 21:ijms21031063. [PMID: 32033474 PMCID: PMC7043224 DOI: 10.3390/ijms21031063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/21/2022] Open
Abstract
Gangliosides are constituents of the mammalian cell membranes and participate in the inflammatory response. However, little is known about the presence and enzymatic activity of ganglioside sialyltransferases at the cell surface of macrophages, one of the most important immune cells involved in the innate inflammatory process. In the present study, using biochemical and fluorescent microscopy approaches, we found that endogenous ST8Sia-I is present at the plasma membrane (ecto-ST8Sia-I) of murine macrophage RAW264.7 cells. Moreover, ecto-ST8Sia-I can synthetize GD3 ganglioside at the cell surface in lipopolysaccharide (LPS)-stimulated macrophages even when LPS-stimulated macrophages reduced the total ST8Sia-I expression levels. Besides, cotreatment of LPS with an inhibitor of nitric oxide (NO) synthase recovered the ecto-ST8Sia-I expression, suggesting that NO production is involved in the reduction of ST8Sia-I expression. The diminution of ST8Sia-I expression in LPS-stimulated macrophages correlated with a reduction of GD3 and GM1 gangliosides and with an increment of GD1a. Taken together, the data supports the presence and activity of sialyltransferases at the plasma membrane of RAW264.7 cells. The variations of ecto-ST8Sia-I and ganglioside levels in stimulated macrophages constitutes a promissory pathway to further explore the physiological role of this and others ganglioside metabolism-related enzymes at the cell surface during the immune response.
Collapse
Affiliation(s)
- Aldo A. Vilcaes
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET. Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; (E.G.-P.); (V.T.D.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Correspondence: (A.A.V.); (J.L.D.)
| | - Eduardo Garbarino-Pico
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET. Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; (E.G.-P.); (V.T.D.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Vanina Torres Demichelis
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET. Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; (E.G.-P.); (V.T.D.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Jose L. Daniotti
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET. Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; (E.G.-P.); (V.T.D.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
- Correspondence: (A.A.V.); (J.L.D.)
| |
Collapse
|
26
|
Yanguas-Casás N, Ojalvo-Sanz AC, Martínez-Vázquez A, Goneau MF, Gilbert M, Nieto-Sampedro M, Romero-Ramírez L. Neurostatin and other O-acetylated gangliosides show anti-neuroinflammatory activity involving the NFκB pathway. Toxicol Appl Pharmacol 2019; 377:114627. [DOI: 10.1016/j.taap.2019.114627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 11/26/2022]
|
27
|
Eidson LN, Murphy AZ. Inflammatory mediators of opioid tolerance: Implications for dependency and addiction. Peptides 2019; 115:51-58. [PMID: 30890355 PMCID: PMC6863079 DOI: 10.1016/j.peptides.2019.01.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 12/27/2022]
Abstract
Each year, over 50 million Americans suffer from persistent pain, including debilitating headaches, joint pain, and severe back pain. Although morphine is amongst the most effective analgesics available for the management of severe pain, prolonged morphine treatment results in decreased analgesic efficacy (i.e., tolerance). Despite significant headway in the field, the mechanisms underlying the development of morphine tolerance are not well understood. The midbrain ventrolateral periaqueductal gray (vlPAG) is a primary neural substrate for the analgesic effects of morphine, as well as for the development of morphine tolerance. A growing body of literature indicates that activated glia (i.e., microglia and astrocytes) facilitate pain transmission and oppose morphine analgesia, making these cells important potential targets in the treatment of chronic pain. Morphine affects glia by binding to the innate immune receptor toll-like receptor 4 (TLR4), leading to the release of proinflammatory cytokines and opposition of morphine analgesia. Despite the established role of the vlPAG as an integral locus for the development of morphine tolerance, most studies have examined the role of glia activation within the spinal cord. Additionally, the role of TLR4 in the development of tolerance has not been elucidated. This review attempts to summarize what is known regarding the role of vlPAG glia and TLR4 in the development of morphine tolerance. These data, together, provide information about the mechanism by which central nervous system glia regulate morphine tolerance, and identify a potential therapeutic target for the enhancement of analgesic efficacy in the clinical treatment of chronic pain.
Collapse
Affiliation(s)
- Lori N Eidson
- Department of Physiology, Emory University, Atlanta, GA, 30322, United States
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30308, United States.
| |
Collapse
|
28
|
Chang CY, Jeon S, Yoon HJ, Choi B, Kim SS, Oshima M, Park EJ. Glial TLR2‐driven innate immune responses and CD8
+
T cell activation against brain tumor. Glia 2019; 67:1179-1195. [DOI: 10.1002/glia.23597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/06/2018] [Accepted: 01/09/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Chi Young Chang
- Immunotherapeutics Branch National Cancer Center Goyang South Korea
| | - Sae‐Bom Jeon
- Immunotherapeutics Branch National Cancer Center Goyang South Korea
| | - Hee Jung Yoon
- Immunotherapeutics Branch National Cancer Center Goyang South Korea
| | - Bum‐Kyu Choi
- Immunotherapeutics Branch National Cancer Center Goyang South Korea
| | - Sang Soo Kim
- Particle Therapy Research Branch National Cancer Center Goyang South Korea
| | - Masanobu Oshima
- Division of Genetics Cancer Research Institute, Kanazawa University Kanazawa Japan
| | - Eun Jung Park
- Immunotherapeutics Branch National Cancer Center Goyang South Korea
- Department of Cancer Biomedical Science Graduate School of Cancer Science and Policy, National Cancer Center Goyang South Korea
| |
Collapse
|
29
|
Isoflurane Preconditioning Attenuates Brain Injury Induced by Electromagnetic Pulse via the TLR4/NF κB Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9653494. [PMID: 30723536 PMCID: PMC6339739 DOI: 10.1155/2019/9653494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 12/27/2022]
Abstract
Electromagnetic pulse (EMP) is a unique type of electromagnetic radiation, and EMP exposure causes a series of biological effects. The nervous system is sensitive to EMP. We studied the neuroprotective effects of isoflurane preconditioning against EMP exposure and used hematoxylin-eosin staining (HE) to observe the effects of electromagnetic pulse and isoflurane preconditioning on neurons. Inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). Western blotting was used to detect the expression of caspase-3, CD11b, TLR4, and NFκBp65. We found that after EMP exposure, the number of abnormal neurons had increased, and the expression of caspase-3, CD11b, TLR4, and NFκBp65 had also increased. Isoflurane preconditioning can reverse the above phenomenon. Moreover, we found that isoflurane preconditioning can reduce neuronal apoptosis and improve cognitive impairment induced by EMP. These findings indicate that isoflurane preconditioning can protect neurons in the cerebral cortex from EMP exposure, alleviate the inflammatory reaction and cell apoptosis, and improve cognitive impairment induced by EMP. These effects may occur through the downregulation of the TLR4/NFκB signaling pathway and the inhibition of microglial activation.
Collapse
|
30
|
Averitt DL, Eidson LN, Doyle HH, Murphy AZ. Neuronal and glial factors contributing to sex differences in opioid modulation of pain. Neuropsychopharmacology 2019; 44:155-165. [PMID: 29973654 PMCID: PMC6235988 DOI: 10.1038/s41386-018-0127-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/21/2018] [Accepted: 05/27/2018] [Indexed: 12/12/2022]
Abstract
Morphine remains one of the most widely prescribed opioids for alleviation of persistent and/or severe pain; however, multiple preclinical and clinical studies report that morphine is less efficacious in females compared to males. Morphine primarily binds to the mu opioid receptor, a prototypical G-protein coupled receptor densely localized in the midbrain periaqueductal gray. Anatomical and physiological studies conducted in the 1960s identified the periaqueductal gray, and its descending projections to the rostral ventromedial medulla and spinal cord, as an essential descending inhibitory circuit mediating opioid-based analgesia. Remarkably, the majority of studies published over the following 30 years were conducted in males with the implicit assumption that the anatomical and physiological characteristics of this descending inhibitory circuit were comparable in females; not surprisingly, this is not the case. Several factors have since been identified as contributing to the dimorphic effects of opioids, including sex differences in the neuroanatomical and neurophysiological characteristics of the descending inhibitory circuit and its modulation by gonadal steroids. Recent data also implicate sex differences in opioid metabolism and neuroimmune signaling as additional contributing factors. Here we cohesively present these lines of evidence demonstrating a neural basis for sex differences in opioid modulation of pain, with a focus on the PAG as a sexually dimorphic core of descending opioid-induced inhibition and argue for the development of sex-specific pain therapeutics.
Collapse
Affiliation(s)
- Dayna L Averitt
- Department of Biology, Texas Woman's University, Denton, TX, 76204, USA
| | - Lori N Eidson
- Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hillary H Doyle
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
31
|
Toll-Like Receptors: Regulators of the Immune Response in the Human Gut. Nutrients 2018; 10:nu10020203. [PMID: 29438282 PMCID: PMC5852779 DOI: 10.3390/nu10020203] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/28/2022] Open
Abstract
Toll-like receptors (TLRs) are powerful molecular regulators by which the immune system may "sense" the environment and protect the host from pathogens or endogenous threats. In mammalian cells, several TLRs were identified with a tissue and cell type-specific distribution. Understanding the functions of specific TLRs is crucial for the development and discovery of compounds useful to maintaining or re-establishing homeostasis in the gastrointestinal tract (GIT). Due to their relevance in regulating the inflammatory response in the GIT, we will focus here on TLR2, TLR4, and TLR5. In particular, we describe (a) the molecular pathways activated by the stimulation of these receptors with their known bacterial ligands; (b) the non-bacterial ligands known to interact directly with TLR2 and TLR4 and their soluble forms. The scope of this minireview is to highlight the importance of bacterial and non-bacterial compounds in affecting the gut immune functions via the activation of the TLRs.
Collapse
|
32
|
Podbielska M, O'Keeffe J, Hogan EL. Autoimmunity in multiple sclerosis: role of sphingolipids, invariant NKT cells and other immune elements in control of inflammation and neurodegeneration. J Neurol Sci 2017; 385:198-214. [PMID: 29406905 DOI: 10.1016/j.jns.2017.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. It is classified as being an autoimmune response in the genetically susceptible individual to a persistent but unidentified antigen(s). Both the adaptive and the innate immune systems are likely to contribute significantly to MS pathogenesis. This review summarizes current understanding of the characteristics of MS autoimmunity in the initiation and progression of the disease. In particular we find it timely to classify the autoimmune responses by focusing on the immunogenic features of myelin-derived lipids in MS including molecular mimicry; on alterations of bioactive sphingolipids mediators in MS; and on functional roles for regulatory effector cells, including innate lymphocyte populations, like the invariant NKT (iNKT) cells which bridge adaptive and innate immune systems. Recent progress in identifying the nature of sphingolipids recognition for iNKT cells in immunity and the functional consequences of the lipid-CD1d interaction opens new avenues of access to the pathogenesis of demyelination in MS as well as design of lipid antigen-specific therapeutics.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Neurology and Neurosurgery, Medical University of South Carolina Charleston, SC, USA; Laboratory of Signal Transduction Molecules, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| | - Joan O'Keeffe
- Department of Biopharmaceutical & Medical Science, School of Science & Computing, Galway-Mayo Institute of Technology, Galway, Ireland
| | - Edward L Hogan
- Department of Neurology and Neurosurgery, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|
33
|
Nguyen TTN, Seo E, Choi J, Le OTT, Kim JY, Jou I, Lee SY. Phosphatidylinositol 4-phosphate 5-kinase α contributes to Toll-like receptor 2-mediated immune responses in microglial cells stimulated with lipoteichoic acid. Cell Signal 2017; 38:159-170. [DOI: 10.1016/j.cellsig.2017.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/21/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022]
|
34
|
Park J, Kwak CH, Ha SH, Kwon KM, Abekura F, Cho SH, Chang YC, Lee YC, Ha KT, Chung TW, Kim CH. Ganglioside GM3 suppresses lipopolysaccharide-induced inflammatory responses in rAW 264.7 macrophage cells through NF-κB, AP-1, and MAPKs signaling. J Cell Biochem 2017; 119:1173-1182. [PMID: 28708322 DOI: 10.1002/jcb.26287] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/13/2017] [Indexed: 02/06/2023]
Abstract
Gangliosides are known to specifically inhibit vascular leukocyte recruitment and consequent interaction with the injured endothelium, the basic inflammatory process. In this study, we have found that the production of nitric oxide (NO), a main regulator of inflammation, is suppressed by GM3 on murine macrophage RAW 264.7 cells, when induced by LPS. In addition, GM3 attenuated the increase in cyclooxyenase-2 (COX-2) protein and mRNA levels in lipopolysaccharide (LPS)-activated RAW 264.7 cells in a dose-dependent manner. Moreover, GM3 inhibited the expression and release of pro-inflammatory cytokines of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in RAW 264.7 macrophages. At the intracellular level, GM3 inhibited LPS-induced nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein (AP)-1 in RAW 264.7 macrophages. We, therefore, investigated whether GM3 affects mitogen-activated protein kinase (MAPK) phosphorylation, a process known as the upstream signaling regulator. GM3 dramatically reduced the expression levels of the phosphorylated forms of ERK, JNK, and p38 in LPS-activated RAW 264.7 cells. These results indicate that GM3 is a promising suppressor of the vascular inflammatory responses and ganglioside GM3 suppresses the LPS-induced inflammatory response in RAW 264.7 macrophages by suppression of NF-κB, AP-1, and MAPKs signaling. Accordingly, GM3 is suggested as a beneficial agent for the treatment of diseases that are associated with inflammation.
Collapse
Affiliation(s)
- Junyoung Park
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo, Jangan-Gu, Suwon, Gyunggi-Do, Republic of Korea
| | - Choong-Hwan Kwak
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo, Jangan-Gu, Suwon, Gyunggi-Do, Republic of Korea.,Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Sun-Hyung Ha
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo, Jangan-Gu, Suwon, Gyunggi-Do, Republic of Korea
| | - Kyung-Min Kwon
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo, Jangan-Gu, Suwon, Gyunggi-Do, Republic of Korea.,Research Institute, Davinch-K Co., Ltd, Geumcheon-Gu, Seoul, Republic of Korea
| | - Fukushi Abekura
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo, Jangan-Gu, Suwon, Gyunggi-Do, Republic of Korea
| | - Seung-Hak Cho
- Division of Enteric Diseases, Center for Infectious Diseases Research, Korea National Institute of Health, Heungdeok-gu, Cheongju, Republic of Korea
| | - Young-Chae Chang
- Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Young-Choon Lee
- Faculty of Medicinal Biotechnology, Dong-A University, Saha-Gu, Busan, Republic of Korea
| | - Ki-Tae Ha
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Tae-Wook Chung
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan City, Gyeongsangnam-Do, Republic of Korea
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, Sungkyunkwan University, Seoburo, Jangan-Gu, Suwon, Gyunggi-Do, Republic of Korea
| |
Collapse
|
35
|
Shah M, Choi S. Toll-like Receptor-Dependent Negative Effects of Opioids: A Battle between Analgesia and Hyperalgesia. Front Immunol 2017; 8:642. [PMID: 28620391 PMCID: PMC5450035 DOI: 10.3389/fimmu.2017.00642] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/17/2017] [Indexed: 11/28/2022] Open
Abstract
Our understanding of the pathophysiology of the pathological pain and the pharmacology of analgesic treatments has progressed tremendously over the past two decades. Among the well-documented pro-algesic factors, glia and other toll-like receptors (TLRs)-expressing cells in the neuroimmune interface have been recognized for their role in the development of neuropathic pain and for compromising the analgesic effects of opioids. Here, we comprehensively review the molecular mechanisms of pain initiation and progression, the role of TLRs in these processes, and the molecular mechanisms of morphine and morphine-3-glucuronide in TLR-dependent central immune signaling. The data reviewed here suggest that, while targeting glia to treat neuropathic pain, both analgesic and analgesia-opposing effects of opioids must be considered by acknowledging their role in TLR-mediated signaling.
Collapse
Affiliation(s)
- Masaud Shah
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| |
Collapse
|
36
|
Therapeutic Strategies Under Development Targeting Inflammatory Mechanisms in Amyotrophic Lateral Sclerosis. Mol Neurobiol 2017; 55:2789-2813. [PMID: 28455693 DOI: 10.1007/s12035-017-0532-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
|
37
|
Sex Differences in Microglia Activity within the Periaqueductal Gray of the Rat: A Potential Mechanism Driving the Dimorphic Effects of Morphine. J Neurosci 2017; 37:3202-3214. [PMID: 28219988 DOI: 10.1523/jneurosci.2906-16.2017] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 11/21/2022] Open
Abstract
Although morphine remains the primary drug prescribed for alleviation of severe or persistent pain, both preclinical and clinical studies have shown that females require two to three times more morphine than males to produce comparable levels of analgesia. In addition to binding to the neuronal μ-opioid receptor, morphine binds to the innate immune receptor toll-like receptor 4 (TLR4) localized primarily on microglia. Morphine action at TLR4 initiates a neuroinflammatory response that directly opposes the analgesic effects of morphine. Here, we test the hypothesis that the attenuated response to morphine observed in females is the result of increased microglia activation in the periaqueductal gray (PAG), a central locus mediating the antinociceptive effects of morphine. We report that, whereas no overall sex differences in the density of microglia were noted within the PAG of male or female rats, microglia exhibited a more "activated" phenotype in females at baseline, with the degree of activation a significant predictor of morphine half-maximal antinociceptive dose (ED50) values. Priming microglia with LPS induced greater microglia activation in the PAG of females compared with males and was accompanied by increased transcription levels of IL-1β and a significant rightward shift in the morphine dose-response curve. Blockade of morphine binding to PAG TLR4 with (+)-naloxone potentiated morphine antinociception significantly in females such that no sex differences in ED50 were observed. These results demonstrate that PAG microglia are sexually dimorphic in both basal and LPS-induced activation and contribute to the sexually dimorphic effects of morphine in the rat.SIGNIFICANCE STATEMENT We demonstrate that periaqueductal gray (PAG) microglia contribute to the sexually dimorphic effects of morphine. Specifically, we report that increased activation of microglia in the PAG contributes to the attenuated response to morphine observed in females. Our data further implicate the innate immune receptor toll-like receptor 4 (TLR4) as an underlying mechanism mediating these effects and establish that TLR4 inhibition in the PAG of females reverses the sex differences in morphine responsiveness. These data suggest novel methods to improve current opioid-based pain management via inhibition of glial TLR4 and illustrate the necessity for sex-specific research and individualized treatment strategies for the management of pain in men and women.
Collapse
|
38
|
Boondam Y, Cheepsunthorn P. Original article. Patterns of microglial innate immune responses elicited by amyloid β1–42 and lipopolysaccharide: the similarities of the differences. ASIAN BIOMED 2017. [DOI: 10.5372/1905-7415.0802.299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Background: As part of their innate immune response to changes in the central nervous system environment, normally quiescent microglia become activated and increase expression of pattern recognition receptors, scavenger receptors, and production of inflammatory cytokines, proteinases, reactive oxygen species (ROS), and free radicals. These molecules have been implicated in the pathogenesis and progression of several neurodegenerative disorders including Alzheimer disease (AD).
Objective: We compared patterns of microglial innate immune responses elicited by nonfibrillar amyloid β peptide (nfAβ1-42) to those elicited by lipopolysaccharide (LPS).
Methods: Murine BV-2 microglial cells were exposed to either nfAβ1-42 or LPS for 12 h. Then, total RNA from each condition was isolated and expression levels of Toll-like receptor (TLR)-4, scavenger receptor class A (SRMARCO) and class B (SR-BI), CD36, and matrix metalloproteinase (MMP)-9 were determined by reverse transcription-quantitative real-time polymerase chain reaction. The amount of hydrogen peroxide (H2O2) and nitric oxide (NO) in the cell-free supernatant at 24 h were determined using 10-acetyl-3,7-dihydroxyphenoxazine (Amplex Red) and Griess reagent, respectively.
Results: nfAβ1-42 and LPS significantly increased expression of TLR-4, SR-MARCO, CD36, and MMP-9 and production of H2O2 and NO in BV-2 microglial cells compared with that of unstimulated cells. However, expression of SR-BI was significantly induced only when the cells were exposed to nfAβ1-42.
Conclusion: These findings indicate that pattern of microglial innate immune responses elicited by nfAβ1-42 overlap with that elicited by LPS and suggest a specific role of microglial SR-BI expression in AD pathogenesis.
Collapse
Affiliation(s)
- Yingrak Boondam
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Poonlarp Cheepsunthorn
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
39
|
Modulation of Neuroinflammation in the Central Nervous System: Role of Chemokines and Sphingolipids. Adv Ther 2017; 34:396-420. [PMID: 28054310 DOI: 10.1007/s12325-016-0474-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 12/16/2022]
Abstract
Neuroinflammation is a process involved in the pathogenesis of different disorders, both autoimmune, such as neuropsychiatric systemic lupus erythematosus, and degenerative, such as Alzheimer's and Parkinson's disease. In the central nervous system, the local milieu is tightly regulated by different mediators, among which are chemoattractant cytokines, also known as chemokines. These small molecules are able to modulate trafficking of immune cells in the course of nervous system development or in response to tissue damage, and different patterns of chemokine molecule and receptor expression have been described in several neuroinflammatory disorders. In recent years, a number of studies have highlighted a pivotal role of sphingolipids in regulating neuroinflammation. Sphingolipids have different functions, among which are the control of leukocyte egress from lymphonodes into inflamed tissues, the expression of various mediators of inflammation and a direct effect on the cells of the central nervous system as regulators of neuroinflammation. In the future, a better knowledge of these two groups of mediators could provide insight into the pathogenesis of neuroinflammatory disorders and could help develop novel diagnostic tools and therapeutic strategies.
Collapse
|
40
|
Simonaro CM. Lysosomes, Lysosomal Storage Diseases, and Inflammation. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2016. [DOI: 10.1177/2326409816650465] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Calogera M. Simonaro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
41
|
Haslund-Vinding J, McBean G, Jaquet V, Vilhardt F. NADPH oxidases in oxidant production by microglia: activating receptors, pharmacology and association with disease. Br J Pharmacol 2016; 174:1733-1749. [PMID: 26750203 DOI: 10.1111/bph.13425] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/15/2015] [Accepted: 01/07/2016] [Indexed: 12/26/2022] Open
Abstract
Microglia are the resident immune cells of the CNS and constitute a self-sustaining population of CNS-adapted tissue macrophages. As mononuclear phagocytic cells, they express high levels of superoxide-producing NADPH oxidases (NOX). The sole function of the members of the NOX family is to generate reactive oxygen species (ROS) that are believed to be important in CNS host defence and in the redox signalling circuits that shape the different activation phenotypes of microglia. NOX are also important in pathological conditions, where over-generation of ROS contributes to neuronal loss via direct oxidative tissue damage or disruption of redox signalling circuits. In this review, we assess the evidence for involvement of NOX in CNS physiopathology, with particular emphasis on the most important surface receptors that lead to generation of NOX-derived ROS. We evaluate the potential significance of the subcellular distribution of NOX isoforms for redox signalling or release of ROS to the extracellular medium. Inhibitory mechanisms that have been reported to restrain NOX activity in microglia and macrophages in vivo are also discussed. We provide a critical appraisal of frequently used and recently developed NOX inhibitors. Finally, we review the recent literature on NOX and other sources of ROS that are involved in activation of the inflammasome and discuss the potential influence of microglia-derived oxidants on neurogenesis, neural differentiation and culling of surplus progenitor cells. The degree to which excessive, badly timed or misplaced NOX activation in microglia may affect neuronal homeostasis in physiological or pathological conditions certainly merits further investigation. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- J Haslund-Vinding
- Institute of Cellular and Molecular Medicine, Copenhagen University, Copenhagen, Denmark.,Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - G McBean
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Ireland
| | - V Jaquet
- Department of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - F Vilhardt
- Institute of Cellular and Molecular Medicine, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
42
|
García Bueno B, Caso JR, Madrigal JLM, Leza JC. Innate immune receptor Toll-like receptor 4 signalling in neuropsychiatric diseases. Neurosci Biobehav Rev 2016; 64:134-47. [PMID: 26905767 DOI: 10.1016/j.neubiorev.2016.02.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/27/2015] [Accepted: 02/12/2016] [Indexed: 02/08/2023]
Abstract
The innate immunity is a stereotyped first line of defense against pathogens and unspecified damage signals. One of main actors of innate immunity are the Toll-like receptors (TLRs), and one of the better characterized members of this family is TLR-4, that it is mainly activated by Gram-negative bacteria lipopolysaccharide. In brain, TLR-4 organizes innate immune responses against infections or cellular damage, but also possesses other physiological functions. In the last years, some evidences suggest a role of TLR-4 in stress and stress-related neuropsychiatric diseases. Peripheral and brain TLR-4 activation triggers sickness behavior, and its expression is a risk factor of depression. Some elements of the TLR-4 signaling pathway are up-regulated in peripheral samples and brain post-mortem tissue from depressed and suicidal patients. The "leaky gut" hypothesis of neuropsychiatric diseases is based on the existence of an increase of the intestinal permeability which results in bacterial translocation able to activate TLR-4. Enhanced peripheral TLR-4 expression/activity has been described in subjects diagnosed with schizophrenia, bipolar disorder and in autistic children. A role for TLR-4 in drugs abuse has been also proposed. The therapeutic potential of pharmacological/genetic modulation of TLRs signaling pathways in neuropsychiatry is promising, but a great preclinical/clinical scientific effort is still needed.
Collapse
Affiliation(s)
- B García Bueno
- Department of Pharmacology, School of Medicine, Complutense University, CIBERSAM, Instituto de Investigación Hospital 12 de Octubre (Imas12), 28040 Madrid, Spain.
| | - J R Caso
- Department of Pharmacology, School of Medicine, Complutense University, CIBERSAM, Instituto de Investigación Hospital 12 de Octubre (Imas12), 28040 Madrid, Spain.
| | - J L M Madrigal
- Department of Pharmacology, School of Medicine, Complutense University, CIBERSAM, Instituto de Investigación Hospital 12 de Octubre (Imas12), 28040 Madrid, Spain.
| | - J C Leza
- Department of Pharmacology, School of Medicine, Complutense University, CIBERSAM, Instituto de Investigación Hospital 12 de Octubre (Imas12), 28040 Madrid, Spain.
| |
Collapse
|
43
|
Lonez C, Irvine KL, Pizzuto M, Schmidt BI, Gay NJ, Ruysschaert JM, Gangloff M, Bryant CE. Critical residues involved in Toll-like receptor 4 activation by cationic lipid nanocarriers are not located at the lipopolysaccharide-binding interface. Cell Mol Life Sci 2015; 72:3971-82. [PMID: 25956320 PMCID: PMC4575701 DOI: 10.1007/s00018-015-1915-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/31/2015] [Accepted: 04/23/2015] [Indexed: 12/05/2022]
Abstract
DiC14-amidine is a cationic lipid that was originally designed as a lipid nanocarrier for nucleic acid transport, and turned out to be a Toll-like receptor 4 (TLR4) agonist as well. We found that while E. coli lipopolysaccharide (LPS) is a TLR4 agonist in all species, diC14-amidine nanoliposomes are full agonists for human, mouse and cat receptors but weak horse agonists. Taking advantage of this unusual species specificity, we used chimeric constructs based on the human and horse sequences and identified two regions in the human TLR4 that modulate the agonist activity of diC14-amidine. Interestingly, these regions lie outside the known LPS-binding domain. Competition experiments also support our hypothesis that diC14-amidine interacts primarily with TLR4 hydrophobic crevices located at the edges of the TLR4/TLR4* dimerization interface. We have characterized potential binding modes using molecular docking analysis and suggest that diC14-amidine nanoliposomes activate TLR4 by facilitating its dimerization in a process that is myeloid differentiation 2 (MD-2)-dependent and cluster of differentiation 14 (CD14)-independent. Our data suggest that TLR4 may be activated through binding at different anchoring points, expanding the repertoire of TLR4 ligands to non-MD-2-binding lipids.
Collapse
Affiliation(s)
- Caroline Lonez
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Brussels, Belgium.
| | - Kate L Irvine
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Malvina Pizzuto
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Brussels, Belgium
| | - Boris I Schmidt
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Brussels, Belgium
| | - Nick J Gay
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jean-Marie Ruysschaert
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Brussels, Belgium
| | - Monique Gangloff
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
44
|
Wang Y, Cui Y, Cao F, Qin Y, Li W, Zhang J. Ganglioside GD1a suppresses LPS-induced pro-inflammatory cytokines in RAW264.7 macrophages by reducing MAPKs and NF-κB signaling pathways through TLR4. Int Immunopharmacol 2015; 28:136-45. [PMID: 26054879 DOI: 10.1016/j.intimp.2015.05.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 11/27/2022]
Abstract
Gangliosides, sialic acid-containing glycosphingolipids, have been considered to be involved in the development, differentiation, and function of nervous systems in vertebrates. However, the mechanisms for anti-inflammation caused by gangliosides are not clear. In this paper, we investigated the anti-inflammation effects of ganglioside GD1a by using RAW264.7 macrophages. Our data demonstrated that treatment of macrophages with lipopolysaccharide significantly increased the production of NO and pro-inflammatory cytokines. GD1a suppressed the induction of iNOS and COX-2 mRNA and protein expression and secretory pro-inflammatory cytokines in culture medium, such as TNFα, IL-1α and IL-1β. In addition, LPS-induced phosphorylation of mitogen-activating protein kinases and IκBα degradation followed by translocation of the NF-κB from the cytoplasm to the nucleus were attenuated after GD1a treatment. Furthermore, GD1a probably inhibited LPS binding to macrophages and LPS-induced accumulation between TLR4 and MyD88. Taken together, the results demonstrated that ganglioside GD1a inhibited LPS-induced inflammation in RAW 264.7 macrophages by suppressing phosphorylation of mitogen-activating protein kinases and activation of NF-κB through repressing the Toll-like receptor 4 signaling pathway.
Collapse
Affiliation(s)
- Yiren Wang
- School of Life Science, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Yuting Cui
- School of Life Science, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Fayang Cao
- School of Life Science, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Yiyang Qin
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Wenjing Li
- School of Pharmacy, Shenyang Pharmaceutical University, 110016 Shenyang, PR China
| | - Jinghai Zhang
- School of Medical Devices, Shenyang Pharmaceutical University, 117004 Benxi, PR China.
| |
Collapse
|
45
|
Son MY, Kwak JE, Seol B, Lee DY, Jeon H, Cho YS. A novel human model of the neurodegenerative disease GM1 gangliosidosis using induced pluripotent stem cells demonstrates inflammasome activation. J Pathol 2015; 237:98-110. [PMID: 25925601 DOI: 10.1002/path.4551] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/16/2015] [Accepted: 04/17/2015] [Indexed: 12/22/2022]
Abstract
GM1 gangliosidosis (GM1) is an inherited neurodegenerative disorder caused by mutations in the lysosomal β-galactosidase (β-gal) gene. Insufficient β-gal activity leads to abnormal accumulation of GM1 gangliosides in tissues, particularly in the central nervous system, resulting in progressive neurodegeneration. Here, we report an in vitro human GM1 model, based on induced pluripotent stem cell (iPSC) technology. Neural progenitor cells differentiated from GM1 patient-derived iPSCs (GM1-NPCs) recapitulated the biochemical and molecular phenotypes of GM1, including defective β-gal activity and increased lysosomes. Importantly, the characterization of GM1-NPCs established that GM1 is significantly associated with the activation of inflammasomes, which play a critical role in the pathogenesis of various neurodegenerative diseases. Specific inflammasome inhibitors potently alleviated the disease-related phenotypes of GM1-NPCs in vitro and in vivo. Our data demonstrate that GM1-NPCs are a valuable in vitro human GM1 model and suggest that inflammasome activation is a novel target pathway for GM1 drug development.
Collapse
Affiliation(s)
- Mi-Young Son
- Stem Cell Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Jae Eun Kwak
- Stem Cell Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Binna Seol
- Stem Cell Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Da Yong Lee
- Stem Cell Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Hyejin Jeon
- Stem Cell Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yee Sook Cho
- Stem Cell Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
46
|
Absence of toll-like receptor 4 (TLR4) extends survival in the hSOD1 G93A mouse model of amyotrophic lateral sclerosis. J Neuroinflammation 2015; 12:90. [PMID: 25962427 PMCID: PMC4431460 DOI: 10.1186/s12974-015-0310-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/28/2015] [Indexed: 12/13/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a devastating late onset neurodegenerative disorder that is characterised by the progressive loss of upper and lower motor neurons. The mechanisms underlying ALS pathogenesis are unclear; however, there is emerging evidence the innate immune system, including components of the toll-like receptor (TLR) system, may drive disease progression. For example, toll-like receptor 4 (TLR4) antagonism in a spontaneous ‘wobbler mouse’ model of ALS increased motor function, associated with a decrease in microglial activation. This study therefore aimed to extend from these findings and determine the expression and function of TLR4 signalling in hSOD1G93A mice, the most widely established preclinical model of ALS. Findings TLR4 and one of its major endogenous ligands, high-mobility group box 1 (HMGB1), were increased during disease progression in hSOD1G93A mice, with TLR4 and HMGB1 expressed by activated microglia and astrocytes. hSOD1G93A mice lacking TLR4 showed transient improvements in hind-limb grip strength and significantly extended survival when compared to TLR4-sufficient hSOD1G93A mice. Conclusion These results suggest that enhanced glial TLR4 signalling during disease progression contributes to end-stage ALS pathology in hSOD1G93A mice.
Collapse
|
47
|
Yoon HJ, Jeon SB, Koh HS, Song JY, Kim SS, Kim IH, Park EJ. Distinctive responses of brain tumor cells to TLR2 ligands. Glia 2015; 63:894-905. [PMID: 25628091 DOI: 10.1002/glia.22791] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 12/30/2014] [Indexed: 12/31/2022]
Abstract
Malignant brain tumor mass contains significant numbers of infiltrating glial cells that may intimately interact with tumor cells and influence cancer treatments. Understanding of characteristic discrepancies between normal GLIA and tumor cells would, therefore, be valuable for improving anticancer therapeutics. Here, we report distinct differences in toll-like receptors (TLR)-2-mediated responses between normal glia and primary brain tumor cell lines. We found that tyrosine phosphorylation of STAT1 by TLR2 ligands and its downstream events did not occur in mouse, rat, or human brain tumor cell lines, but were markedly induced in normal primary microglia and astrocytes. Using TLR2-deficient, interferon (IFN)-γ-deficient, and IFNγ-receptor-1-deficient mice, we revealed that the impaired phosphorylation of STAT1 might be linked with defective TLR2 system in tumor cells, and that a TLR2-dependent pathway, not IFNγ-receptor machinery, might be critical for tyrosine STAT1 phosphorylation by TLR2 ligands. We also found that TLR2 and its heterodimeric partners, TLR1 and 6, on brain tumor cells failed to properly respond to TLR2 ligands, and representative TLR2-dependent cellular events, such as inflammatory responses and cell death, were not detected in brain tumor cells. Similar results were obtained in in vitro and in vivo experiments using orthotopic mouse and rat brain tumor models. Collectively, these results suggest that primary brain tumor cells may exhibit a distinctive dysfunction of TLR2-associated responses, resulting in abnormal signaling and cellular events. Careful targeting of this distinctive property could serve as the basis for effective therapeutic approaches against primary brain tumors.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Brain Neoplasms/pathology
- Cell Line, Tumor
- Cells, Cultured
- Cerebral Cortex/cytology
- Disease Models, Animal
- Interferon-gamma
- Ligands
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Neuroblastoma/pathology
- Neuroglia/metabolism
- Phosphorylation
- Rats
- Rats, Sprague-Dawley
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Toll-Like Receptor 2/genetics
- Toll-Like Receptor 2/metabolism
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Hee Jung Yoon
- Cancer Immunology Branch, National Cancer Center, Goyang, Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Ruysschaert JM, Lonez C. Role of lipid microdomains in TLR-mediated signalling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1860-7. [PMID: 25797518 DOI: 10.1016/j.bbamem.2015.03.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 12/13/2022]
Abstract
Over the last twenty years, evidence has been provided that the plasma membrane is partitioned with microdomains, laterally mobile in the bilayer, providing the necessary microenvironment to specific membrane proteins for signalling pathways to be initiated. We discuss here the importance of such microdomains for Toll-like receptors (TLR) localization and function. First, lipid microdomains favour recruitment and clustering of the TLR machinery partners, i.e. receptors and co-receptors previously identified to be required for ligand recognition and signal transmission. Further, the presence of the so-called Cholesterol Recognition Amino-Acid Consensus (CRAC) sequences in the intracellular juxtamembrane domain of several Toll-like receptors suggests a direct role of cholesterol in the activation process. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Jean-Marie Ruysschaert
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Caroline Lonez
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium; Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom.
| |
Collapse
|
49
|
Le OTT, Nguyen TTN, Lee SY. Phosphoinositide turnover in Toll-like receptor signaling and trafficking. BMB Rep 2015; 47:361-8. [PMID: 24856829 PMCID: PMC4163850 DOI: 10.5483/bmbrep.2014.47.7.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Indexed: 12/29/2022] Open
Abstract
Lipid components in biological membranes are essential for maintaining cellular function. Phosphoinositides, the phosphorylated derivatives of phosphatidylinositol (PI), regulate many critical cell processes involving membrane signaling, trafficking, and reorganization. Multiple metabolic pathways including phosphoinositide kinases and phosphatases and phospholipases tightly control spatio-temporal concentration of membrane phosphoinositides. Metabolizing enzymes responsible for PI 4,5-bisphosphate (PI(4,5)P2) production or degradation play a regulatory role in Toll-like receptor (TLR) signaling and trafficking. These enzymes include PI 4-phosphate 5-kinase, phosphatase and tensin homolog, PI 3-kinase, and phospholipase C. PI(4,5)P2 mediates the interaction with target cytosolic proteins to induce their membrane translocation, regulate vesicular trafficking, and serve as a precursor for other signaling lipids. TLR activation is important for the innate immune response and is implicated in diverse pathophysiological disorders. TLR signaling is controlled by specific interactions with distinct signaling and sorting adaptors. Importantly, TLR signaling machinery is differentially formed depending on a specific membrane compartment during signaling cascades. Although detailed mechanisms remain to be fully clarified, phosphoinositide metabolism is promising for a better understanding of such spatio-temporal regulation of TLR signaling and trafficking. [BMB Reports 2014; 47(7): 361-368]
Collapse
Affiliation(s)
- Oanh Thi Tu Le
- Neuroscience Graduate Program, Department of Biomedical Sciences, and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Gyeonggi 443-721, Korea
| | - Tu Thi Ngoc Nguyen
- Neuroscience Graduate Program, Department of Biomedical Sciences, and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Gyeonggi 443-721, Korea
| | - Sang Yoon Lee
- Neuroscience Graduate Program, Department of Biomedical Sciences, and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Gyeonggi 443-721, Korea
| |
Collapse
|
50
|
Mauhin W, Lidove O, Masat E, Mingozzi F, Mariampillai K, Ziza JM, Benveniste O. Innate and Adaptive Immune Response in Fabry Disease. JIMD Rep 2015; 22:1-10. [PMID: 25690728 PMCID: PMC4486269 DOI: 10.1007/8904_2014_371] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/18/2014] [Accepted: 09/30/2014] [Indexed: 12/22/2022] Open
Abstract
Fabry disease is an X-linked lysosomal storage disease in which mutations of the gene (GLA) cause a deficiency of the lysosomal hydrolase α-galactosidase A (α-Gal). This defect results in an accumulation of glycosphingolipids, primarily globotriaosylceramide (Gb3) which causes a multisystemic vasculopathy. Available since 2001 in Europe, enzyme replacement therapy consists in the administration of agalsidase, a recombinant form of α-galactosidase A. Enzyme replacement therapy was shown to improve the global prognosis but allowed partial success in preventing critical events such as strokes and cardiac arrests. As in most lysosomal storage diseases, frequent immune reactions have been described in naive Fabry disease patients. Humoral immune responses following enzyme replacement therapy have also been described, with unclear consequences on the progression of the disease. While cost-effectiveness of enzyme replacement therapy in Fabry disease begins to be questioned and new therapeutic strategies arise such as chaperone or gene therapy, it appears necessary to better understand the immune responses observed in the treatment of naive patients and during enzyme replacement therapy with agalsidase. We propose a comprehensive review of the available literature concerning both innate and adaptive responses observed in Fabry disease. We particularly highlight the probable role of the toll-like receptor 4 (TLR4) and CD1d pathways triggered by Gb3 accumulation in the development of local and systemic inflammation that could lead to irreversible organ damages. We propose an immunological point of view of Fabry disease pathogenesis involving immune cells notably the invariant natural killer T cells. We finally review anti-agalsidase antibodies, their development and impact on outcomes.
Collapse
Affiliation(s)
- Wladimir Mauhin
- />Internal Medicine Department, La Pitié-Salpêtrière Hospital, 47-83 boulevard de l’hôpital, 75013 Paris, France
- />Inserm UMRS 974, University Pierre and Marie Curie, 47-83 boulevard de l’hôpital, 75013 Paris, France
| | - Olivier Lidove
- />Internal Medicine and Rheumatology Department, La Croix Saint Simon Hospital, 125 rue d’Avron, 75020 Paris, France
- />Inserm UMRS 974, University Pierre and Marie Curie, 47-83 boulevard de l’hôpital, 75013 Paris, France
| | - Elisa Masat
- />Inserm UMRS 974, University Pierre and Marie Curie, 47-83 boulevard de l’hôpital, 75013 Paris, France
| | - Federico Mingozzi
- />Inserm UMRS 974, University Pierre and Marie Curie, 47-83 boulevard de l’hôpital, 75013 Paris, France
| | - Kuberaka Mariampillai
- />Inserm UMRS 974, University Pierre and Marie Curie, 47-83 boulevard de l’hôpital, 75013 Paris, France
| | - Jean-Marc Ziza
- />Internal Medicine and Rheumatology Department, La Croix Saint Simon Hospital, 125 rue d’Avron, 75020 Paris, France
| | - Olivier Benveniste
- />Internal Medicine Department, La Pitié-Salpêtrière Hospital, 47-83 boulevard de l’hôpital, 75013 Paris, France
- />Inserm UMRS 974, University Pierre and Marie Curie, 47-83 boulevard de l’hôpital, 75013 Paris, France
| |
Collapse
|