1
|
Turan YB. The role of proadrenomedullin, interleukin 6 and CD64 in the diagnosis and prognosis of septic shock. BMC Anesthesiol 2023; 23:278. [PMID: 37592204 PMCID: PMC10433549 DOI: 10.1186/s12871-023-02237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
INTRODUCTION Sepsis and septic shock are disorders of tissue perfusion and microcirculation associated with increased mortality. The role of biomarkers such as proadrenomedullin (PRO-ADM), interleukin 6 (IL-6) and neutrophil CD64 (CD64) in the diagnosis and prognosis of septic shock has been studied. METHODS GCS, SOFA score, APACHE 2 score, lactate, CRP, procalcitonin, PRO-ADM, IL-6, CD64 level and 28-day mortality were evaluated in patients with septic shock followed-up in the intensive care unit of Marmara University Hospital between July 2021 and December 2021. The study was planned as prospective, non-drug clinical research Committee. RESULTS There were no statistically significant differences between patient groups in gender, BMI, and presence of comorbidities (p > 0.05). The alive patient group had significantly higher GCS values and lower SOFA, APACHE 2, lactate and CD64 values than the dead patient group (p < 0.01). The cut-off values of laboratory parameters were determined using ROC analysis to predict mortality, SOFA and CD64 had high AUC. This is also a good indicator for mortality.The multivariate logistic regression model was estimated using the backward selection method. The mortality of ICU patients was predicted by a SOFA-value ≥ 12 (OR (95%CI) = 56.13 (5.44-578.64)), CD64 value ≥ 28.54 (OR (95% CI) = 23.78 (2.61-216.85)), and ADM-value ≥ 86.79 (OR (95% CI) = 15.86 (1.02-246.49)) (p < 0.05) . CONCLUSION In conclusion, serum CD64 level, PRO-ADM level, and SOFA score proved to be effective parameters for predicting prognosis and mortality in septic shock. However, IL-6 proved to be a weak biomarker and failed to predict mortality. CD64, which is easier and more practical to use, can be used instead of the SOFA score.
Collapse
Affiliation(s)
- Yasemin Bozkurt Turan
- Department of Critical Care, Faculty of Medicine, Marmara University, Istanbul, 34899, Turkey.
| |
Collapse
|
2
|
Wang N, Liu L, He W, Shang N, Li J, Qin Z, Du X. Circulating mid-regional proadrenomedullin is a predictor of mortality in patients with COVID-19: a systematic review and meta-analysis. BMC Infect Dis 2023; 23:305. [PMID: 37158819 PMCID: PMC10165584 DOI: 10.1186/s12879-023-08275-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Although there is increasing understanding of the changes in the laboratory parameters of Coronavirus disease 2019 (COVID-19), the correlation between circulating Mid-regional Proadrenomedullin (MR-proADM) and mortality of patients with COVID-19 is not fully understood. In this study, we conducted a systematic review and meta-analysis to evaluate the prognostic value of MR-proADM in patients with COVID-19. METHODS The PubMed, Embase, Web of Science, Cochrane Library, Wanfang, SinoMed and Chinese National Knowledge Infrastructure (CNKI) databases were searched from 1 January 2020 to 20 March 2022 for relevant literature. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) was used to assess quality bias, STATA was employed to pool the effect size by a random effects model, and potential publication bias and sensitivity analyses were performed. RESULTS 14 studies comprising 1822 patients with COVID-19 met the inclusion criteria, there were 1145 (62.8%) males and 677 (31.2%) females, and the mean age was 63.8 ± 16.1 years. The concentration of MR-proADM was compared between the survivors and non-survivors in 9 studies and the difference was significant (P < 0.01), I2 = 46%. The combined sensitivity was 0.86 [0.73-0.92], and the combined specificity was 0.78 [0.68-0.86]. We drew the summary receiver operating characteristic (SROC) curve and calculated the area under curve (AUC) = 0.90 [0.87-0.92]. An increase of 1 nmol/L of MR-proADM was independently associated with a more than threefold increase in mortality (odds ratio (OR) 3.03, 95% confidence interval (CI) 2.26-4.06, I2 = 0.0%, P = 0.633). The predictive value of MR-proADM for mortality was better than many other biomarkers. CONCLUSION MR-proADM had a very good predictive value for the poor prognosis of COVID-19 patients. Increased levels of MR-proADM were independently associated with mortality in COVID-19 patients and may allow a better risk stratification.
Collapse
Affiliation(s)
- Na Wang
- Emergency department of China Rehabilitation Research Center, Capital Medical University, no.10 Jiaomen north Street, Fengtai District, Beijing, 100068, China
| | - Lushan Liu
- Emergency department of China Rehabilitation Research Center, Capital Medical University, no.10 Jiaomen north Street, Fengtai District, Beijing, 100068, China
| | - Wei He
- Emergency department of China Rehabilitation Research Center, Capital Medical University, no.10 Jiaomen north Street, Fengtai District, Beijing, 100068, China
| | - Na Shang
- Emergency department of China Rehabilitation Research Center, Capital Medical University, no.10 Jiaomen north Street, Fengtai District, Beijing, 100068, China
| | - Junyu Li
- Emergency department of China Rehabilitation Research Center, Capital Medical University, no.10 Jiaomen north Street, Fengtai District, Beijing, 100068, China
| | - Zhou Qin
- Emergency department of China Rehabilitation Research Center, Capital Medical University, no.10 Jiaomen north Street, Fengtai District, Beijing, 100068, China
| | - Xiaoxia Du
- Department of neurorehabilitation of China Rehabilitation Research Center, Capital Medical University, no.10 Jiaomen north Street, Fengtai District, Beijing, 100068, China.
| |
Collapse
|
3
|
Heuer JG, Meyer CM, Baker HE, Geiser A, Lucchesi J, Xu D, Hamang M, Martin JA, Hu C, Roth KD, Thirunavukkarasu K, Alsina-Fernandez J, Ma YL. Pharmacological Evaluation of a Pegylated Urocortin-1 Peptide in Experimental Autoimmune Disease Models. J Pharmacol Exp Ther 2022; 382:287-298. [PMID: 35688476 DOI: 10.1124/jpet.122.001151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022] Open
Abstract
Urocortin-1 (UCN1) is a member of the corticotropin releasing hormone (CRH) family of peptides that acts through CRH-receptor 1 (CRHR1) and CRH-receptor 2 (CRHR2). UCN1 can induce the adrenocorticotropin hormone and downstream glucocorticoids through CRHR1 and promote beneficial metabolic effects through CRHR2. UCN1 has a short half-life and has been shown to improve experimental autoimmune disease. A pegylated UCN1 peptide (PEG-hUCN1) was generated to extend half-life and was tested in multiple experimental autoimmune disease models and in healthy mice to determine effects on corticosterone induction, autoimmune disease, and glucocorticoid induced adverse effects. Cardiovascular effects were also assessed by telemetry. PEG-hUCN1 demonstrated a dose dependent 4-6-fold elevation of serum corticosterone and significantly improved autoimmune disease comparable to prednisolone in several experimental models. In healthy mice, PEG-hUCN1 showed less adverse effects compared with corticosterone treatment. PEG-hUCN1 peptide induced an initial 30% reduction in blood pressure that was followed by a gradual and sustained 30% increase in blood pressure at the highest dose. Additionally, an adeno-associated viral 8 (AAV8) UCN1 was used to assess adverse effects of chronic elevation of UCN1 in wild type and CRHR2 knockout mice. Chronic UCN1 expression by an AAV8 approach in wild type and CRHR2 knockout mice demonstrated an important role of CRHR2 in countering the adverse metabolic effects of elevated corticosterone from UCN1. Our findings demonstrate that PEG-hUCN1 shows profound effects in treating autoimmune disease with an improved safety profile relative to corticosterone and that CRHR2 activity is important in metabolic regulation. SIGNIFICANCE STATEMENT: This study reports the generation and characterization of a pegylated UCN1 peptide and the role of CRHR2 in UCN1-induced metabolic effects. The potency/selectivity, pharmacokinetic properties, pharmacodynamic effects, and efficacy in four autoimmune models and safety profiles are presented. This pegylated UCN1 shows potential for treating autoimmune diseases with reduced adverse effects compared to corticosterone treatment. Continuous exposure to UCN1 through an AAV8 approach demonstrates some glucocorticoid mediated adverse metabolic effects that are exacerbated in the absence of the CRHR2 receptor.
Collapse
Affiliation(s)
- Josef G Heuer
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Catalina M Meyer
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Hana E Baker
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Andrea Geiser
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Jonathan Lucchesi
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Daniel Xu
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Matthew Hamang
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Jennifer A Martin
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Charlie Hu
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Kenneth D Roth
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Kannan Thirunavukkarasu
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Jorge Alsina-Fernandez
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| | - Yanfei L Ma
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana
| |
Collapse
|
4
|
Dai HB, Wang HY, Wang FZ, Qian P, Gao Q, Zhou H, Zhou YB. Adrenomedullin ameliorates palmitic acid-induced insulin resistance through PI3K/Akt pathway in adipocytes. Acta Diabetol 2022; 59:661-673. [PMID: 34978596 DOI: 10.1007/s00592-021-01840-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
AIMS White adipose tissue (WAT) dysfunction has been associated with adipose tissue low-grade inflammation and oxidative stress leading to insulin resistance (IR). Adrenomedullin (ADM), an endogenous active peptide considered as an adipokine, is associated with adipocytes function. METHODS We evaluated the protective effects of ADM against IR in 3T3-L1 adipocytes treated by palmitic acid (PA) and in visceral white adipose tissue (vWAT) of obese rats fed with high-fat diet. RESULTS We found that endogenous protein expressions of ADM and its receptor in PA-treated adipocytes were markedly increased. PA significantly induced impaired insulin signaling by affecting phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) axis and glucose transporter-4 (GLUT-4) levels, whereas ADM pretreatment enhanced insulin signaling PI3K/Akt and GLUT-4 membrane protein levels, decreased pro-inflammatory cytokines tumor necrosis factor α (TNFα), interleukin-1β (IL-1β) and IL-6 levels, and improved oxidative stress accompanied with reduced reactive oxygen species (ROS) levels and increased anti-oxidant enzymes manganese superoxide dismutase 2 (SOD2), glutathione peroxidase (GPx1) and catalase (CAT) protein expressions. Furthermore, ADM treatment not only improved IR in obese rats, but also effectively restored insulin signaling, and reduced inflammation and oxidative stress in vWAT of obese rats. CONCLUSIONS This study demonstrates a prevention potential of ADM against obesity-related metabolic disorders, due to its protective effects against IR, inflammation and oxidative stress in adipocytes.
Collapse
Affiliation(s)
- Hang-Bing Dai
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Hong-Yu Wang
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Fang-Zheng Wang
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Pei Qian
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Qing Gao
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Hong Zhou
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China
| | - Ye-Bo Zhou
- Department of Physiology, Nanjing Medical University, 101 Longmian Road, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
5
|
Pereira G, Gillies H, Chanda S, Corbett M, Vernon SD, Milani T, Bateman L. Acute Corticotropin-Releasing Factor Receptor Type 2 Agonism Results in Sustained Symptom Improvement in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Syst Neurosci 2021; 15:698240. [PMID: 34539356 PMCID: PMC8441022 DOI: 10.3389/fnsys.2021.698240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex multi-symptom disease with widespread evidence of disrupted systems. The authors hypothesize that it is caused by the upregulation of the corticotropin-releasing factor receptor type 2 (CRFR2) in the raphé nuclei and limbic system, which impairs the ability to maintain homeostasis. The authors propose utilizing agonist-mediated receptor endocytosis to downregulate CRFR2. Materials and Methods This open-label trial tested the safety, tolerability and efficacy of an acute dose of CT38s (a short-lived, CRFR2-selective agonist, with no known off-target activity) in 14 ME/CFS patients. CT38s was subcutaneously-infused at one of four dose-levels (i.e., infusion rates of 0.01, 0.03, 0.06, and 0.20 μg/kg/h), for a maximum of 10.5 h. Effect was measured as the pre-/post-treatment change in the mean 28-day total daily symptom score (TDSS), which aggregated 13 individual patient-reported symptoms. Results ME/CFS patients were significantly more sensitive to the transient hemodynamic effects of CRFR2 stimulation than healthy subjects in a prior trial, supporting the hypothesized CRFR2 upregulation. Adverse events were generally mild, resolved without intervention, and difficult to distinguish from ME/CFS symptoms, supporting a CRFR2 role in the disease. The acute dose of CT38s was associated with an improvement in mean TDSS that was sustained (over at least 28 days post-treatment) and correlated with both total exposure and pre-treatment symptom severity. At an infusion rate of 0.03 μg/kg/h, mean TDSS improved by -7.5 ± 1.9 (or -25.7%, p = 0.009), with all monitored symptoms improving. Conclusion The trial supports the hypothesis that CRFR2 is upregulated in ME/CFS, and that acute CRFR2 agonism may be a viable treatment approach warranting further study. Clinical Trial Registration ClinicalTrials.gov, identifier NCT03613129.
Collapse
Affiliation(s)
| | | | | | | | | | - Tina Milani
- Bateman Horne Center, Salt Lake City, UT, United States
| | | |
Collapse
|
6
|
Barriga M, Benitez R, Ferraz-de-Paula V, Garcia-Frutos M, Caro M, Robledo G, O'Valle F, Campos-Salinas J, Delgado M. Protective role of cortistatin in pulmonary inflammation and fibrosis. Br J Pharmacol 2021; 178:4368-4388. [PMID: 34237151 DOI: 10.1111/bph.15615] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Acute lung injury (ALI), acute respiratory distress syndrome (ARDS) and pulmonary fibrosis remain major causes of morbidity, mortality and a healthcare burden in critically ill patient. There is an urgent need to identify factors causing susceptibility and for the design of new therapeutic agents. Here, we evaluate the effectiveness of the immunomodulatory neuropeptide cortistatin to regulate pulmonary inflammation and fibrosis in vivo. EXPERIMENTAL APPROACH ALI/ARDS and pulmonary fibrosis were induced experimentally in wild-type and cortistatin-deficient mice by pulmonary infusion of the bacterial endotoxin LPS or the chemotherapeutic drug bleomycin, and the histopathological signs, pulmonary leukocyte infiltration and cytokines, and fibrotic markers were evaluated. KEY RESULTS Partially deficient mice in cortistatin showed exacerbated pulmonary damage, pulmonary inflammation, alveolar oedema and fibrosis, and subsequent increased respiratory failure and mortality when challenged to LPS or bleomycin, even at low doses. Treatment with cortistatin reversed these aggravated phenotypes and protected from progression to severe ARDS and fibrosis, after high exposure to both injury agents. Moreover, cortistatin-deficient pulmonary macrophages and fibroblasts showed exaggerated ex vivo inflammatory and fibrotic responses, and treatment with cortistatin impaired their activation. Finally, the protective effects of cortistatin in ALI and pulmonary fibrosis were partially inhibited by specific antagonists for somatostatin and ghrelin receptors. CONCLUSION AND IMPLICATIONS We identified cortistatin as an endogenous inhibitor of pulmonary inflammation and fibrosis. Deficiency in cortistatin could be a marker of poor prognosis in inflammatory/fibrotic pulmonary disorders. Cortistatin-based therapies could emerge as attractive candidates to treat severe ALI/ARDS, including SARS-CoV-2-associated ARDS.
Collapse
Affiliation(s)
- Margarita Barriga
- Department of Immunology and Cell Biology, Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| | - Raquel Benitez
- Department of Immunology and Cell Biology, Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| | - Viviane Ferraz-de-Paula
- Department of Immunology and Cell Biology, Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain.,Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marina Garcia-Frutos
- Department of Immunology and Cell Biology, Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| | - Marta Caro
- Department of Immunology and Cell Biology, Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| | - Gema Robledo
- Department of Immunology and Cell Biology, Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| | - Francisco O'Valle
- Pathology Department, School of Medicine, IBIMER, CIBM, University of Granada and Biosanitary Research Institute IBS-Granada, Granada, Spain
| | - Jenny Campos-Salinas
- Department of Immunology and Cell Biology, Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| | - Mario Delgado
- Department of Immunology and Cell Biology, Institute of Parasitology and Biomedicine Lopez-Neyra IPBLN-CSIC, Granada, Spain
| |
Collapse
|
7
|
Thiele C, Simon TP, Szymanski J, Daniel C, Golias C, Hartmann O, Struck J, Martin L, Marx G, Schuerholz T. Effects of the Non-Neutralizing Humanized Monoclonal Anti-Adrenomedullin Antibody Adrecizumab on Hemodynamic and Renal Injury in a Porcine Two-Hit Model. Shock 2020; 54:810-818. [PMID: 32554994 DOI: 10.1097/shk.0000000000001587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adrenomedullin is a vasoactive peptide that improves endothelial barrier function in sepsis, but may also cause hypotension and organ failure. Treatment with a non-neutralizing monoclonal anti-adrenomedullin antibody showed improvement in murine sepsis models. We tested the effects of the humanized monoclonal anti-adrenomedullin antibody Adrecizumab in a porcine two-hit model of hemorrhagic and septic shock.In this randomized, blinded study 12 German Landrace pigs were bled to half of baseline mean arterial pressure for 45 min. Sepsis was induced using an Escherichia coli clot placed into the abdominal cavity 6 h after hemorrhagic shock. Animals received either 2 mg/kg BW anti-adrenomedullin antibody or vehicle solution immediately after sepsis induction. After 4 h, resuscitation was initiated using balanced crystalloids and noradrenalin to maintain a central venous pressure of 8 to 12 mm Hg, a mean arterial pressure ≥ 65 mm Hg, and a ScvO2 ≥70% for another 8 h. Hemodynamic parameters, laboratory parameters, and kidney histology were assessed.The amount of volume resuscitation was significantly lower and significantly less animals developed a septic shock in the antibody-treated group, compared with the vehicle group. Kidney histology showed significantly lower granulocytes in both cortex and medulla in antibody-treated animals, while the remaining four kidney measures (serum creatinine and urine output and cortical and medullary injury in histopathology) did not reach the significance levels. After induction of sepsis, plasma adrenomedullin increased immediately in both the groups, but increased quicker and more pronounced in the antibody group.In this two-hit shock model, treatment with an anti-adrenomedullin antibody significantly increased plasma adrenomedullin levels, while significantly less animals developed septic shock and renal granulocyte extravasation was significantly reduced. Thus, therapy with Adrecizumab may provide benefit in sepsis, and clinical investigation of this drug candidate is warranted.
Collapse
Affiliation(s)
- Christoph Thiele
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Tim-Philipp Simon
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Jeanine Szymanski
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christos Golias
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | | | | | - Lukas Martin
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Gernot Marx
- Department of Intensive Care and Intermediate Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Tobias Schuerholz
- Department of Anesthesia and Intensive Care, University Hospital Rostock, Rostock, Germany
| |
Collapse
|
8
|
Wei Y, Lin D, Xu Z, Gao X, Zeng C, Ye H. A Possible Role of Crustacean Cardioactive Peptide in Regulating Immune Response in Hepatopancreas of Mud Crab. Front Immunol 2020; 11:711. [PMID: 32425935 PMCID: PMC7204942 DOI: 10.3389/fimmu.2020.00711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/29/2022] Open
Abstract
Crustacean cardioactive peptide (CCAP), a cyclic amidated non-apeptide, is widely found in arthropods. The functions of CCAP have been revealed to include regulation of heart rate, intestinal peristalsis, molting, and osmotic pressure. However, to date, there has not been any report on the possible involvement of CCAP in immunoregulation in crustaceans. In this study, a CCAP precursor (designated as Sp-CCAP) was identified in the commercially important mud crab Scylla paramamosain, which could be processed into four CCAP-associated peptides and one mature peptide (PFCNAFTGC-NH2). Bioinformatics analysis indicated that Sp-CCAP was highly conserved in crustaceans. RT-PCR results revealed that Sp-CCAP was expressed in nerve tissues and gonads, whereas the Sp-CCAP receptor gene (Sp-CCAPR) was expressed in 12 tissues of S. paramamosain, including hepatopancreas. In situ hybridization further showed that an Sp-CCAPR-positive signal is mainly localized in the F-cells of hepatopancreas. Moreover, the mRNA expression level of Sp-CCAPR in the hepatopancreas was significantly up-regulated after lipopolysaccharide (LPS) or polyriboinosinic polyribocytidylic acid [Poly (I:C)] challenge. Meanwhile, the mRNA expression level of Sp-CCAPR, nuclear transcription factor NF-κB homologs (Sp-Dorsal and Sp-Relish), member of mitogen-activated protein kinase (MAPK) signaling pathway (Sp-P38), pro-inflammatory cytokines factor (Sp-TNFSF and Sp-IL16), and antimicrobial peptide (Sp-Lysozyme, Sp-ALF, Sp-ALF4, and Sp-ALF5) in the hepatopancreas were all up-regulated after the administration of synthetic Sp-CCAP mature peptide both in vivo and in vitro. The addition of synthetic Sp-CCAP mature peptide in vitro also led to an increase in nitric oxide (NO) concentration and an improved bacterial clearance ability in the hepatopancreas culture medium. The present study suggested that Sp-CCAP signaling system might be involved in the immune responses of S. paramamosain by activating immune molecules on the hepatopancreas. Collectively, our findings shed new light on neuroendocrine-immune regulatory system in arthropods and could potentially provide a new strategy for disease prevention and control for mud crab aquaculture.
Collapse
Affiliation(s)
- Yujie Wei
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Dongdong Lin
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhanning Xu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiaoman Gao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Chaoshu Zeng
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Baritaki S, de Bree E, Chatzaki E, Pothoulakis C. Chronic Stress, Inflammation, and Colon Cancer: A CRH System-Driven Molecular Crosstalk. J Clin Med 2019; 8:E1669. [PMID: 31614860 PMCID: PMC6833069 DOI: 10.3390/jcm8101669] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic stress is thought to be involved in the occurrence and progression of multiple diseases, via mechanisms that still remain largely unknown. Interestingly, key regulators of the stress response, such as members of the corticotropin-releasing-hormone (CRH) family of neuropeptides and receptors, are now known to be implicated in the regulation of chronic inflammation, one of the predisposing factors for oncogenesis and disease progression. However, an interrelationship between stress, inflammation, and malignancy, at least at the molecular level, still remains unclear. Here, we attempt to summarize the current knowledge that supports the inseparable link between chronic stress, inflammation, and colorectal cancer (CRC), by modulation of a cascade of molecular signaling pathways, which are under the regulation of CRH-family members expressed in the brain and periphery. The understanding of the molecular basis of the link among these processes may provide a step forward towards personalized medicine in terms of CRC diagnosis, prognosis and therapeutic targeting.
Collapse
Affiliation(s)
- Stavroula Baritaki
- Division of Surgery, School of Medicine, University of Crete, Heraklion, 71500 Crete, Greece.
| | - Eelco de Bree
- Division of Surgery, School of Medicine, University of Crete, Heraklion, 71500 Crete, Greece.
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Charalabos Pothoulakis
- IBD Center, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA 10833, USA.
| |
Collapse
|
10
|
Corsetti G, Yuan Z, Romano C, Chen-Scarabelli C, Fanzani A, Pasini E, Dioguardi FS, Onorati F, Linardi D, Knight R, Patel H, Faggian G, Saravolatz L, Scarabelli TM. Urocortin Induces Phosphorylation of Distinct Residues of Signal Transducer and Activator of Transcription 3 (STAT3) via Different Signaling Pathways. Med Sci Monit Basic Res 2019; 25:139-152. [PMID: 31073117 PMCID: PMC6532558 DOI: 10.12659/msmbr.914611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Urocortin (Ucn) is a member of the hypothalamic corticotrophin-releasing factor family and has been shown to reduce cell death in the heart caused by ischemia/reperfusion (I/R) injury. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor known to function as a pro-survival and anti-apoptotic factor, whose activation depends on a variety of cytokines, including IL-6. A recent study demonstrated that urocortin induced IL-6 release from cardiomyocytes in a CRF-R2-dependent manner, suggesting a possible link between CRF-R2 stimulation and STAT3 activation. MATERIAL AND METHODS Experimental work was carried out in HL-1 cardiac myocytes exposed to serum starvation for 16-24 h. RESULTS Ucn stimulation led to IL-6 expression and release from mouse atrial HL-1 cardiomyocytes. Ucn treatment led to rapid phosphorylation of JAK2, which was blocked by the protein synthesis inhibitor cycloheximide or the JAK inhibitor AG490. Urocortin treatment induced STAT3 phosphorylation at Y705 and S727 through transactivation of JAK2 in an IL-6-dependent manner, but had no effect on STAT1 activity. Kinase inhibition experiments revealed that urocortin induces STAT3 S727 phosphorylation through ERK1/2 and Y705 phosphorylation through Src tyrosine kinase. In line with this finding, urocortin failed to induce phosphorylation of Y705 residue in SYF cells bearing null mutation of Src, while phosphorylation of S727 residue was unchanged. CONCLUSIONS Here, we have shown that Ucn induces activation of STAT3 through diverging signaling pathways. Full understanding of these signaling pathways will help fully exploit the cardioprotective properties of endogenous and exogenous Ucn.
Collapse
Affiliation(s)
- Giovanni Corsetti
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Zhaokan Yuan
- Center for Heart and Vessel Preclinical Studies, Department of Internal Medicine, St. John Hospital and Medical Center, Wayne State University, Detroit, MI, USA
| | - Claudia Romano
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Carol Chen-Scarabelli
- Center for Heart and Vessel Preclinical Studies, Department of Internal Medicine, St. John Hospital and Medical Center, Wayne State University, Detroit, MI, USA
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Evasio Pasini
- Scientific Clinical Institutes Maugeri, Cardiac Rehabilitation Lumezzane Institute, Brescia, Italy
| | | | - Francesco Onorati
- Division of Cardiovascular Surgery, Verona University Hospital, Verona, Italy
| | - Daniele Linardi
- Division of Cardiovascular Surgery, Verona University Hospital, Verona, Italy
| | - Richard Knight
- Medical Research Council (MRC) Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Hemang Patel
- Department of Internal Medicine, General Medical Education, Ascension St. John Hospital, Detroit, MI, USA.,Department of Internal Medicine, Wayne State University - School of Medicine, Detroit, MI, USA
| | - Giuseppe Faggian
- Division of Cardiovascular Surgery, Verona University Hospital, Verona, Italy
| | - Louis Saravolatz
- Department of Medicine, Ascension St John Hospital and Wayne State University School of Medicine, Detroit, MI, USA
| | - Tiziano M Scarabelli
- Center for Heart and Vessel Preclinical Studies, Department of Internal Medicine, St. John Hospital and Medical Center, Wayne State University, Detroit, MI, USA
| |
Collapse
|
11
|
Elke G, Bloos F, Wilson DC, Brunkhorst FM, Briegel J, Reinhart K, Loeffler M, Kluge S, Nierhaus A, Jaschinski U, Moerer O, Weyland A, Meybohm P. The use of mid-regional proadrenomedullin to identify disease severity and treatment response to sepsis - a secondary analysis of a large randomised controlled trial. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:79. [PMID: 29562917 PMCID: PMC5863464 DOI: 10.1186/s13054-018-2001-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/19/2018] [Indexed: 02/08/2023]
Abstract
Background This study assessed the ability of mid-regional proadrenomedullin (MR-proADM) in comparison to conventional biomarkers (procalcitonin (PCT), lactate, C-reactive protein) and clinical scores to identify disease severity in patients with sepsis. Methods This is a secondary analysis of a randomised controlled trial in patients with severe sepsis or septic shock across 33 German intensive care units. The association between biomarkers and clinical scores with mortality was assessed by Cox regression analysis, area under the receiver operating characteristic and Kaplan-Meier curves. Patients were stratified into three severity groups (low, intermediate, high) for all biomarkers and scores based on cutoffs with either a 90% sensitivity or specificity. Results 1089 patients with a 28-day mortality rate of 26.9% were analysed. According to the Sepsis-3 definition, 41.2% and 58.8% fulfilled the criteria for sepsis and septic shock, with respective mortality rates of 20.0% and 32.1%. MR-proADM had the strongest association with mortality across all Sepsis-1 and Sepsis-3 subgroups and could facilitate a more accurate classification of low (e.g. MR-proADM vs. SOFA: N = 265 vs. 232; 9.8% vs. 13.8% mortality) and high (e.g. MR-proADM vs. SOFA: N = 161 vs. 155; 55.9% vs. 41.3% mortality) disease severity. Patients with decreasing PCT concentrations of either ≥ 20% (baseline to day 1) or ≥ 50% (baseline to day 4) but continuously high MR-proADM concentrations had a significantly increased mortality risk (HR (95% CI): 19.1 (8.0–45.9) and 43.1 (10.1–184.0)). Conclusions MR-proADM identifies disease severity and treatment response more accurately than established biomarkers and scores, adding additional information to facilitate rapid clinical decision-making and improve personalised sepsis treatment. Electronic supplementary material The online version of this article (10.1186/s13054-018-2001-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gunnar Elke
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3 Haus 12, 24105, Kiel, Germany.
| | - Frank Bloos
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Center for Sepsis Control & Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | | | - Frank Martin Brunkhorst
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Center for Sepsis Control & Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Josef Briegel
- Department of Anaesthesiology, University Hospital Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Konrad Reinhart
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Center for Sepsis Control & Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Markus Loeffler
- Clinical Trial Centre Leipzig, University of Leipzig, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Axel Nierhaus
- Department of Intensive Care Medicine, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ulrich Jaschinski
- Department of Anaesthesiology and Surgical Intensive Care Medicine, Hospital Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Onnen Moerer
- Department of Anaesthesiology, University Hospital Göttingen, Robert-Koch-Str. 40, 37099, Göttingen, Germany
| | - Andreas Weyland
- University Department for Anesthesia, Intensive and Emergency Medicine and Pain Management, Hospital Oldenburg, Rahel-Straus-Str. 10, 26133, Oldenburg, Germany
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | | |
Collapse
|
12
|
Rademaker MT, Richards AM. Urocortins: Actions in health and heart failure. Clin Chim Acta 2017; 474:76-87. [DOI: 10.1016/j.cca.2017.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/04/2017] [Indexed: 01/21/2023]
|
13
|
Hong-Min F, Chun-Rong H, Rui Z, Li-Na S, Ya-Jun W, Li L. CGRP 8-37 enhances lipopolysaccharide-induced acute lung injury and regulating aquaporin 1 and 5 expressions in rats. J Physiol Biochem 2017; 73:381-386. [PMID: 28470555 DOI: 10.1007/s13105-017-0563-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/24/2017] [Indexed: 12/12/2022]
Abstract
Calcitonin gene-related peptide (CGRP) has been shown to play important roles in biological functions. However, there is very little evidence on the value of CGRP in lipopolysaccharide (LPS)-induced acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Therefore, this study aimed to investigate the role of CGRP in LPS-induced ALI in rats. In the experiment, Sprague-Dawley (SD) rats were randomized into control, an antagonist of α-calcitonin gene-related peptide receptor (CGRP8-37), LPS groups, and CGRP8-37 + LPS groups. ALI model was prepared through retrograde injection of LPS (10 mg/kg). At 6 and 12 h, bronchoalveolar lavage was performed and used to assess total cell count and levels of tumor necrosis factor-α, interleukin-1β, -6, and -10 by enzyme-linked immunosorbent assay (ELISA). Lung tissue was collected for assessing wet-to-dry (W/D) ratio, hematoxylin and eosin staining. Aquaporin (AQP)-1 and -5 expressions in lung tissues were detected by quantitative PCR and Western blot. The results showed that histological injury, total cell count, and W/D ratio significantly reduced in LPS group after 6 h. The levels of inflammatory cytokines in CGRP8-37 + LPS-treated rats were higher than that in LPS-treated rats (all, P < 0.001). Real-time RT-PCR analysis showed that levels of AQP-1 in rats from CGRP8-37 + LPS group was lower than that in LPS-treated rats (P = 0.005 and P < 0.001). Western blotting analysis showed that AQP-1 protein levels at 6 h significantly decreased in CGRP8-37 + LPS rats. Together, our data suggest that CGRP antagonists, CGRP8-37 could enhance ALI induced by LPS in the rat model, and regulate the expression levels of AQP-1 and AQP-5 by affecting inflammatory cytokines. Thereby, regulating endogenous CGRP may be a potential treatment for ALI/ARDS.
Collapse
Affiliation(s)
- Fu Hong-Min
- Comprehensive Pediatric Internal Department, Children's Hospital, Kunming Medical University, Kunming, 6500032, People's Republic of China
| | - Huangfu Chun-Rong
- Department of Pediatrics, The first people's hospital of Yunnan province, Kunming, China
| | - Zheng Rui
- Department of Pediatrics, The first people's hospital of Yunnan province, Kunming, China
| | - Su Li-Na
- Department of Pediatrics, The first people's hospital of Yunnan province, Kunming, China
| | - Wang Ya-Jun
- Department of Pediatrics, The first people's hospital of Yunnan province, Kunming, China
| | - Li Li
- Department of Pediatrics, The first people's hospital of Yunnan province, Kunming, China.
| |
Collapse
|
14
|
Vitale SG, Laganà AS, Rapisarda AMC, Scarale MG, Corrado F, Cignini P, Butticè S, Rossetti D. Role of urocortin in pregnancy: An update and future perspectives. World J Clin Cases 2016; 4:165-171. [PMID: 27458591 PMCID: PMC4945586 DOI: 10.12998/wjcc.v4.i7.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/09/2016] [Accepted: 05/27/2016] [Indexed: 02/05/2023] Open
Abstract
The activities of corticotropin-releasing factor (CRF) and related peptides are mediated a number of receptors with seven transmembrane domains that are coupled to the Gs and Gq proteins. These receptors are known as CRF-Rs. In vitro studies have evidenced that urocortin (UCN) and CRF provoke an increase in the contractility of the uterus which is induced by endometrial prostaglandin F2a. Furthermore, through trophoblasts, it stimulates the secretion of adrenocorticotropic hormone (ACTH) and prostaglandin PGE2 and has a vasodilatory effect on the placenta. While it is well known that the placenta produces considerable quantities of CRF, several studies have, however, excluded that the placenta can generate significant quantities of UCN. In the short term, the human fetal adrenal gland produces more cortisol and dehydroepiandrosterone sulfate. The gestational tissues express UCN3 and UCN2 mRNA in cytotrophoblast and syncytiotrophoblast cells, while UCN2 is only to be found in the maternal and fetal vessels and amniotic cells. Nevertheless, gestational tissues express UCN2 and UCN3 differentially and do not stimulate placental ACTH secretion. In term pregnancies, maternal plasma levels of CRF and UCN are lower than at the beginning of pregnancy and are correlated to labor onset. Conversely, they do not decrease in post-term pregnancies. This evidence would seem to indicate that the fine-regulated expression of these neuropeptides is important in determining the duration of human gestation. In this scenario, low concentrations of UCN in the amniotic fluid at mid-term may be considered a sign of predisposition to preterm birth.
Collapse
|
15
|
Müller-Redetzky H, Lienau J, Suttorp N, Witzenrath M. Therapeutic strategies in pneumonia: going beyond antibiotics. Eur Respir Rev 2016; 24:516-24. [PMID: 26324814 DOI: 10.1183/16000617.0034-2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dysregulation of the innate immune system drives lung injury and its systemic sequelae due to breakdown of vascular barrier function, harmful hyperinflammation and microcirculatory failure, which contribute to the unfavourable outcome of patients with severe pneumonia. A variety of promising therapeutic targets have been identified and numerous innovative therapeutic approaches demonstrated to improve lung injury in experimental preclinical studies. However, at present specific preventive or curative strategies for the treatment of lung failure in pneumonia in addition to antibiotics are still missing. The aim of this mini-review is to give a short overview of some, but not all, adjuvant therapeutic strategies for pneumonia and its most important complications, sepsis and acute respiratory distress syndrome, and briefly discuss future perspectives.
Collapse
Affiliation(s)
- Holger Müller-Redetzky
- Dept of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jasmin Lienau
- Dept of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Norbert Suttorp
- Dept of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Witzenrath
- Dept of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
16
|
Yuan PQ, Wu SV, Pothoulakis C, Taché Y. Urocortins and CRF receptor type 2 variants in the male rat colon: gene expression and regulation by endotoxin and anti-inflammatory effect. Am J Physiol Gastrointest Liver Physiol 2016; 310:G387-98. [PMID: 26744472 PMCID: PMC4796293 DOI: 10.1152/ajpgi.00337.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/30/2015] [Indexed: 01/31/2023]
Abstract
Urocortins (Ucns) 1, 2, and 3 and corticotropin-releasing factor receptor 2 (CRF2) mRNA are prominently expressed in various layers of the upper gut. We tested whether Ucns and CRF2 variants are also expressed in the different layers of the rat colon, regulated by LPS (100 μg/kg ip) and play a modulatory role in the colonic immune response to LPS. Transcripts of Ucns and CRF2b, the most common isoform in the periphery, were detected in all laser microdissected layers, including myenteric neurons. LPS increased the mRNA level of Ucn 1, Ucn 2, and Ucn 3 and decreased that of CRF2b in both the colonic mucosa and submucosa + muscle (S+M) layers at 2, 6, and 9 h after injection with a return to basal at 24 h. In addition, CRF2a, another variant more prominent in the brain, and a novel truncated splice variant CRF2a-3 mRNA were detected in all segments of the large intestine. LPS reciprocally regulated the colonic expression of these CRF2 variants by decreasing both CRF2a and CRF2b, while increasing CRF2a-3 in the mucosa and S+M. The CRF2 antagonist astressin2-B further enhanced LPS-induced increase of mRNA level of interleukin (IL)-1β, TNF-α, and inducible nitric oxide synthase in S+M layers and IL-1β in the mucosa and evoked TNF-α expression in the mucosa. These data indicate that Ucns/CRF2 variants are widely expressed in all colonic layers and reciprocally regulated by LPS. CRF2 signaling dampens the CD14/TLR4-mediated acute inflammatory response to Gram-negative bacteria in the colon.
Collapse
Affiliation(s)
- Pu-Qing Yuan
- Center for Neurobiology of Stress, Inflammatory Bowel Disease Center, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine and Brain Research Institute, University of California, Los Angeles, California
| | - S Vincent Wu
- Center for Neurobiology of Stress, Inflammatory Bowel Disease Center, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine and Brain Research Institute, University of California, Los Angeles, California
| | - Charalabos Pothoulakis
- Center for Neurobiology of Stress, Inflammatory Bowel Disease Center, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine and Brain Research Institute, University of California, Los Angeles, California
| | - Yvette Taché
- Center for Neurobiology of Stress, Inflammatory Bowel Disease Center, CURE: Digestive Diseases Research Center, Digestive Diseases Division, Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine and Brain Research Institute, University of California, Los Angeles, California
| |
Collapse
|
17
|
Wu RSC, Wu KC, Huang CC, Chiang YY, Chen CC, Liao CL, Chu CN, Chung JG. Different cellular responses of dexmedetomidine at infected site and peripheral blood of emdotoxemic BALB/c mice. ENVIRONMENTAL TOXICOLOGY 2015; 30:1416-1422. [PMID: 24910415 DOI: 10.1002/tox.22011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 05/21/2014] [Accepted: 05/27/2014] [Indexed: 06/03/2023]
Abstract
Various sedative agents, including dexmedetomidine (dex), induce immunosuppression, and enhance infection progression. However, there was no information on how anesthetic affects local and systemic cellular immune function. We conducted this study to examine the impact of dex on the differentiation and function of immune cells at site of inflammation and in peripheral blood during endotoxemia of mice. In BALB/c mice with and without endotoxemia, we evaluated the influence of two dosages of 5 and 50 mcg/kg/h intravenous dex on immune cells: including number of T cells (CD3), B cells (CD19), natural killer cells (CD8a), monocytes (CD11b), and macrophages (Mac-3) in peripheral blood, the activities of macrophages in peripheral blood and in peritoneal lavage, and proliferation of B and T cells and of natural killer cells activity in the spleen. Endotoxemia increased the number of CD3 T cells, CD 19 B cells and macrophages in the peripheral blood, augmented macrophage activity in the peritoneum, and increased T cell proliferation and natural killer cell activity in the spleen. Further administration of 5 mcg/kg/h dex attenuated systemic increase in number of T cells, B cells, and macrophages during endotoxemia and 50 mcg/kg/h dex significantly attenuated the increase in activity of macrophages in the peripheral blood during endotoxemia. In the peritoneum, however, 5 mcg/kg/h dex preserved and 50 mcg/kg/h dexmedetomidine enhanced the activity of macrophages during endotoxemia. Increased in proliferation of T cells in spleen during endotoxemia was attenuated by both doses of dex. Last, 50 mcg/kg/h dex enhanced natural killer cells activity during endotoxemia. While preserving the effects of endotoxemia on macrophage's activity in the infection site and natural killer cell's activity in the spleen, dex decreased systemic fulminant immune reaction in endotoxemia, by attenuating the augmented response in the number of T cells, B cells and macrophages, activity of macrophages in the peripheral blood, and proliferation of T cells in spleen during endotoxemia.
Collapse
Affiliation(s)
- Rick Sai-Chuen Wu
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - King-Chuen Wu
- Department of Anesthesia, E-da Hospital / I-Shou University, Kaohsiung, Taiwan, Republic of China
| | - Chiu-Chen Huang
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Yi-Ying Chiang
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Chia-Chen Chen
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Ching-Lung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Chin-Nan Chu
- Department of Radiation Oncology, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, Republic of China
- Department of Biotechnology, Asia University, Taichung, Taiwan, Republic of China
| |
Collapse
|
18
|
D S, Mani I, Ravikumar G, Avadhany ST. Effect of Curcumin in Experimental Peritonitis. Indian J Surg 2015; 77:502-7. [PMID: 26884658 DOI: 10.1007/s12262-015-1303-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 06/09/2015] [Indexed: 02/01/2023] Open
Abstract
Despite medical advancements, the inflammatory cascade and oxidative stress worsen the prognosis in most cases of peritonitis. Curcumin has emerged as a potential antioxidant and anti-inflammatory agent in few of the acute inflammatory and infective conditions. We examined the effect of intraperitoneal injection of curcumin in endotoxin-induced peritonitis in rats. The blood and peritoneal fluid samples were collected at 3 and 24 h following the induction of peritonitis. Animals were sacrificed at 24 h and the organs preserved. The histopathological report of lung, liver, and intestines in the curcumin-treated rats showed maintenance of tissue architecture to a large extent compared to the control group which showed massive congestion, hemorrhage, and necrosis. The blood and peritoneal fluid total count and differential neutrophil counts were significantly higher at 24 h of induction of peritonitis. Serum amyloid assay and lipid peroxidation were significantly lower, and myeloperoxidase assay was higher in the curcumin-treated group at the end of 24 h; thus, curcumin probably demonstrated a neutrophil-mediated immunopotentiation and anti-inflammatory action thereby protecting the animal from endotoxemia-induced multi-organ damage.
Collapse
Affiliation(s)
- Savitha D
- Department of Physiology, St. John's Medical College, John Nagar, Bangalore, 560034 Karnataka India
| | - Indu Mani
- St Johns Research Institute, Karnataka, India
| | - Gayatri Ravikumar
- Department of Pathology, St. John's Medical College, Karnataka, India
| | | |
Collapse
|
19
|
Im E. Multi-facets of Corticotropin-releasing Factor in Modulating Inflammation and Angiogenesis. J Neurogastroenterol Motil 2015; 21:25-32. [PMID: 25540945 PMCID: PMC4288099 DOI: 10.5056/jnm14076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/02/2014] [Accepted: 10/04/2014] [Indexed: 12/20/2022] Open
Abstract
The family of corticotropin-releasing factor (CRF) composed of 4 ligands including CRF, urocortin (Ucn) 1, Ucn2, and Ucn3 is expressed both in the central nervous system and the periphery including the gastrointestinal tract. Two different forms of G protein coupled receptors, CRF1 and CRF2, differentially recognize CRF family members, mediating various biological functions. A large body of evidence suggests that the CRF family plays an important role in regulating inflammation and angiogenesis. Of particular interest is a contrasting role of the CRF family during inflammatory processes. The CRF family can exert both pro-and anti-inflammatory functions depending on the type of receptors, the tissues, and the disease phases. In addition, there has been a growing interest in a possible role of the CRF family in angiogenesis. Regulation of angiogenesis by the CRF family has been shown to modulate endogenous blood vessel formation, inflammatory neovascularization and cardiovascular function. This review outlines the effect of the CRF family and its receptors on 2 major biological events: inflammation and angiogenesis, and provides a possibility of their application for the treatment of inflammatory vascular diseases.
Collapse
Affiliation(s)
- Eunok Im
- College of Pharmacy, Pusan National University, Busan, Korea
| |
Collapse
|
20
|
Müller-Redetzky HC, Lienau J, Witzenrath M. The Lung Endothelial Barrier in Acute Inflammation. THE VERTEBRATE BLOOD-GAS BARRIER IN HEALTH AND DISEASE 2015. [PMCID: PMC7123850 DOI: 10.1007/978-3-319-18392-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Tavares E, Maldonado R, Miñano FJ. Immunoneutralization of Endogenous Aminoprocalcitonin Attenuates Sepsis-Induced Acute Lung Injury and Mortality in Rats. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3069-83. [DOI: 10.1016/j.ajpath.2014.07.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 05/28/2014] [Accepted: 07/07/2014] [Indexed: 12/22/2022]
|
22
|
Pettengill MA, van Haren SD, Levy O. Soluble mediators regulating immunity in early life. Front Immunol 2014; 5:457. [PMID: 25309541 PMCID: PMC4173950 DOI: 10.3389/fimmu.2014.00457] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/08/2014] [Indexed: 12/15/2022] Open
Abstract
Soluble factors in blood plasma have a substantial impact on both the innate and adaptive immune responses. The complement system, antibodies, and anti-microbial proteins and peptides can directly interact with potential pathogens, protecting against systemic infection. Levels of these innate effector proteins are generally lower in neonatal circulation at term delivery than in adults, and lower still at preterm delivery. The extracellular environment also has a critical influence on immune cell maturation, activation, and effector functions, and many of the factors in plasma, including hormones, vitamins, and purines, have been shown to influence these processes for leukocytes of both the innate and adaptive immune systems. The ontogeny of plasma factors can be viewed in the context of a lower effectiveness of immune responses to infection and immunization in early life, which may be influenced by the striking neonatal deficiency of complement system proteins or enhanced neonatal production of the anti-inflammatory cytokine IL-10, among other ontogenic differences. Accordingly, we survey here a number of soluble mediators in plasma for which age-dependent differences in abundance may influence the ontogeny of immune function, particularly direct innate interaction and skewing of adaptive lymphocyte activity in response to infectious microorganisms and adjuvanted vaccines.
Collapse
Affiliation(s)
- Matthew Aaron Pettengill
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital , Boston, MA , USA ; Harvard Medical School , Boston, MA , USA
| | - Simon Daniël van Haren
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital , Boston, MA , USA ; Harvard Medical School , Boston, MA , USA
| | - Ofer Levy
- Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital , Boston, MA , USA ; Harvard Medical School , Boston, MA , USA
| |
Collapse
|
23
|
Müller-Redetzky HC, Will D, Hellwig K, Kummer W, Tschernig T, Pfeil U, Paddenberg R, Menger MD, Kershaw O, Gruber AD, Weissmann N, Hippenstiel S, Suttorp N, Witzenrath M. Mechanical ventilation drives pneumococcal pneumonia into lung injury and sepsis in mice: protection by adrenomedullin. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:R73. [PMID: 24731244 PMCID: PMC4056010 DOI: 10.1186/cc13830] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 04/03/2014] [Indexed: 01/04/2023]
Abstract
Introduction Ventilator-induced lung injury (VILI) contributes to morbidity and mortality in acute respiratory distress syndrome (ARDS). Particularly pre-injured lungs are susceptible to VILI despite protective ventilation. In a previous study, the endogenous peptide adrenomedullin (AM) protected murine lungs from VILI. We hypothesized that mechanical ventilation (MV) contributes to lung injury and sepsis in pneumonia, and that AM may reduce lung injury and multiple organ failure in ventilated mice with pneumococcal pneumonia. Methods We analyzed in mice the impact of MV in established pneumonia on lung injury, inflammation, bacterial burden, hemodynamics and extrapulmonary organ injury, and assessed the therapeutic potential of AM by starting treatment at intubation. Results In pneumococcal pneumonia, MV increased lung permeability, and worsened lung mechanics and oxygenation failure. MV dramatically increased lung and blood cytokines but not lung leukocyte counts in pneumonia. MV induced systemic leukocytopenia and liver, gut and kidney injury in mice with pneumonia. Lung and blood bacterial burden was not affected by MV pneumonia and MV increased lung AM expression, whereas receptor activity modifying protein (RAMP) 1–3 expression was increased in pneumonia and reduced by MV. Infusion of AM protected against MV-induced lung injury (66% reduction of pulmonary permeability p < 0.01; prevention of pulmonary restriction) and against VILI-induced liver and gut injury in pneumonia (91% reduction of AST levels p < 0.05, 96% reduction of alanine aminotransaminase (ALT) levels p < 0.05, abrogation of histopathological changes and parenchymal apoptosis in liver and gut). Conclusions MV paved the way for the progression of pneumonia towards ARDS and sepsis by aggravating lung injury and systemic hyperinflammation leading to liver, kidney and gut injury. AM may be a promising therapeutic option to protect against development of lung injury, sepsis and extrapulmonary organ injury in mechanically ventilated individuals with severe pneumonia.
Collapse
|
24
|
Dynamics of pulmonary endothelial barrier function in acute inflammation: mechanisms and therapeutic perspectives. Cell Tissue Res 2014; 355:657-73. [PMID: 24599335 PMCID: PMC7102256 DOI: 10.1007/s00441-014-1821-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/16/2014] [Indexed: 12/11/2022]
Abstract
The lungs provide a large inner surface to guarantee respiration. In lung alveoli, a delicate membrane formed by endo- and epithelial cells with their fused basal lamina ensures rapid and effective gas exchange between alveolar and vascular compartments while concurrently forming a robust barrier against inhaled particles and microbes. However, upon infectious or sterile inflammatory stimulation, tightly regulated endothelial barrier leakiness is required for leukocyte transmigration. Further, endothelial barrier disruption may result in uncontrolled extravasation of protein-rich fluids. This brief review summarizes some important mechanisms of pulmonary endothelial barrier regulation and disruption, focusing on the role of specific cell populations, coagulation and complement cascades and mediators including angiopoietins, specific sphingolipids, adrenomedullin and reactive oxygen and nitrogen species for the regulation of pulmonary endothelial barrier function. Further, current therapeutic perspectives against development of lung injury are discussed.
Collapse
|
25
|
Pedreño M, Morell M, Robledo G, Souza-Moreira L, Forte-Lago I, Caro M, O'Valle F, Ganea D, Gonzalez-Rey E. Adrenomedullin protects from experimental autoimmune encephalomyelitis at multiple levels. Brain Behav Immun 2014; 37:152-63. [PMID: 24321213 PMCID: PMC3951662 DOI: 10.1016/j.bbi.2013.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/22/2013] [Accepted: 11/29/2013] [Indexed: 12/22/2022] Open
Abstract
Adrenomedullin is a neuropeptide known for its cardiovascular activities and anti-inflammatory effects. Here, we investigated the effect of adrenomedullin in a model of experimental autoimmune encephalomyelitis (EAE) that mirrors chronic progressive multiple sclerosis. A short-term systemic treatment with adrenomedullin reduced clinical severity and incidence of EAE, the appearance of inflammatory infiltrates in spinal cord and the subsequent demyelination and axonal damage. This effect was exerted at multiple levels affecting both early and late events of the disease. Adrenomedullin decreased the presence/activation of encephalitogenic Th1 and Th17 cells and down-regulated several inflammatory mediators in peripheral lymphoid organs and central nervous system. Noteworthy, adrenomedullin inhibited the production by encephalitogenic cells of osteopontin and of Granulocyte Macrophage Colony-Stimulating Factor (GM-CSF), two critical cytokines in the development of EAE. At the same time, adrenomedullin increased the number of IL-10-producing regulatory T cells with suppressive effects on the progression of EAE. Furthermore, adrenomedullin generated dendritic cells with a semi-mature phenotype that impaired encephalitogenic responses in vitro and in vivo. Finally, adrenomedullin regulated glial activity and favored an active program of neuroprotection/regeneration. Therefore, the use of adrenomedullin emerges as a novel multimodal therapeutic approach to treat chronic progressive multiple sclerosis.
Collapse
Affiliation(s)
- Marta Pedreño
- Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, Spain
| | - Maria Morell
- Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, Spain
| | - Gema Robledo
- Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, Spain
| | | | - Irene Forte-Lago
- Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, Spain
| | - Marta Caro
- Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, Spain
| | - Francisco O'Valle
- Dept. Pathological Anatomy, Granada University School of Medicine, Granada, Spain
| | - Doina Ganea
- Dept. Immunology and Microbiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Elena Gonzalez-Rey
- Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, Spain.
| |
Collapse
|
26
|
Sato T, Takahashi M, Fujita D, Oba S, Nishimatsu H, Nagano T, Suzuki E. Adipose-Derived Stem Cells Stimulate Reendothelialization in Stented Rat Abdominal Aorta. Circ J 2014; 78:1762-9. [DOI: 10.1253/circj.cj-13-1579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tomohiko Sato
- Department of Internal Medicine, Faculty of Medicine, University of Tokyo
| | - Masao Takahashi
- Department of Internal Medicine, Faculty of Medicine, University of Tokyo
| | - Daishi Fujita
- Department of Internal Medicine, Faculty of Medicine, University of Tokyo
| | - Shigeyoshi Oba
- Department of Internal Medicine, Faculty of Medicine, University of Tokyo
| | | | - Tetsuo Nagano
- Graduate School of Pharmaceutical Sciences, University of Tokyo
| | | |
Collapse
|
27
|
Campos-Salinas J, Caro M, Cavazzuti A, Forte-Lago I, Beverley SM, O'Valle F, Gonzalez-Rey E. Protective role of the neuropeptide urocortin II against experimental sepsis and leishmaniasis by direct killing of pathogens. THE JOURNAL OF IMMUNOLOGY 2013; 191:6040-51. [PMID: 24249730 DOI: 10.4049/jimmunol.1301921] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We currently face an alarming resurgence in infectious diseases characterized by antimicrobial resistance and therapeutic failure. This has generated the urgent need of developing new therapeutic approaches that include agents with nontraditional modes of action. A recent interest focused on approaches based on our natural immune defenses, especially on peptides that combine innate antimicrobial activity against diverse pathogens and immunoregulatory functions. In this study, to our knowledge, we describe for the first time the antimicrobial activity of the neuropeptide urocortin II (UCNII) against a panel of Gram-positive and Gram-negative bacteria and tropical parasites of the genus Leishmania. Importantly, this cytotoxicity was selective for pathogens, because UCNII did not affect mammalian cell viability. Structurally, UCNII has a cationic and amphipathic design that resembles antimicrobial peptides. Using mutants and UCNII fragments, we determined the structural requirements for the interaction between the peptide and the surface of pathogen. Following its binding to pathogen, UCNII caused cell death through different membrane-disrupting mechanisms that involve aggregation and membrane depolarization in bacteria and pore formation in Leishmania. Noteworthily, UCNII killed the infective form of Leishmania major even inside the infected macrophages. Consequently, UCNII prevented mortality caused by polymicrobial sepsis and ameliorated pathological signs of cutaneous leishmaniasis. Besides its presence in body physical and mucosal barriers, we found that innate immune cells produce UCNII in response to infections. Therefore, UCNII could be considered as an ancient highly-conserved host peptide involved in the natural antimicrobial defense and emerge as an attractive alternative to current treatments for microbial disorders with associated drug resistances.
Collapse
Affiliation(s)
- Jenny Campos-Salinas
- Institute of Parasitology and Biomedicine "López-Neyra," Spanish National Research Council, Granada 18016, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Struck J, Hein F, Karasch S, Bergmann A. Epitope specificity of anti-Adrenomedullin antibodies determines efficacy of mortality reduction in a cecal ligation and puncture mouse model. Intensive Care Med Exp 2013; 1:22. [PMID: 26266791 PMCID: PMC4796695 DOI: 10.1186/2197-425x-1-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 01/22/2023] Open
Abstract
Introduction Adrenomedullin (ADM), a circulating vasodilatory peptide, plays an important role in the development of sepsis-associated hemodynamic and microcirculatory disorders. While administration of exogenous ADM had beneficial effects in several septic animal models, elevated ADM concentrations are associated with a bad outcome. This prompted us to test the effect of various anti-ADM antibodies in a cecal ligation and puncture (CLP) mouse model. Methods To gain new potential compounds for the treatment or prevention of septic shock we followed an alternative strategy to influence the ADM system: High-affinity anti-ADM antibodies with different epitope specificities were developed and their antagonist activity in vitro and their ability to reduce mortality in a CLP mouse model were assessed. Results An anti-ADM antibody directed against the N-terminus substantially increased the survival of mice in a CLP model (HR = 0.077 (CI = 0.0189 to 0.315), p = 0.0004), whereas other antibodies with similar affinities but different epitope specificities were much less potent. The efficacious antibody, in contrast to an anti-C-terminal antibody, only partially inhibited ADM agonist activity in vitro. Healthy mice were not negatively affected by the N-terminal antibody. Conclusions An anti-N-terminal ADM antibody, as opposed to antibodies with other epitope specificities, strongly reduces mortality in CLP mice. Electronic supplementary material The online version of this article (doi:10.1186/2197-425X-1-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joachim Struck
- AdrenoMed AG, Neuendorfstr. 15a, Hennigsdorf, 16761, Germany,
| | | | | | | |
Collapse
|
29
|
Augustyniak D, Nowak J, Lundy FT. Direct and indirect antimicrobial activities of neuropeptides and their therapeutic potential. Curr Protein Pept Sci 2013; 13:723-38. [PMID: 23305360 PMCID: PMC3601409 DOI: 10.2174/138920312804871139] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/07/2012] [Accepted: 09/15/2012] [Indexed: 02/07/2023]
Abstract
As global resistance to conventional antibiotics rises we need to develop new strategies to develop future novel therapeutics. In our quest to design novel anti-infectives and antimicrobials it is of interest to investigate host-pathogen interactions and learn from the complexity of host defense strategies that have evolved over millennia. A myriad of host defense molecules are now known to play a role in protection against human infection. However, the interaction between host and pathogen is recognized to be a multifaceted one, involving countless host proteins, including several families of peptides. The regulation of infection and inflammation by multiple peptide families may represent an evolutionary failsafe in terms of functional degeneracy and emphasizes the significance of host defense in survival. One such family is the neuropeptides (NPs), which are conventionally defined as peptide neurotransmitters but have recently been shown to be pleiotropic molecules that are integral components of the nervous and immune systems. In this review we address the antimicrobial and anti-infective effects of NPs both in vitro and in vivo and discuss their potential therapeutic usefulness in overcoming infectious diseases. With improved understanding of the efficacy of NPs, these molecules could become an important part of our arsenal of weapons in the treatment of infection and inflammation. It is envisaged that targeted therapy approaches that selectively exploit the anti-infective, antimicrobial and immunomodulatory properties of NPs could become useful adjuncts to our current therapeutic modalities.
Collapse
Affiliation(s)
- Daria Augustyniak
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | | | | |
Collapse
|
30
|
Kach J, Sandbo N, Sethakorn N, Williams J, Reed EB, La J, Tian X, Brain SD, Rajendran K, Krishnan R, Sperling AI, Birukov K, Dulin NO. Regulation of myofibroblast differentiation and bleomycin-induced pulmonary fibrosis by adrenomedullin. Am J Physiol Lung Cell Mol Physiol 2013; 304:L757-64. [PMID: 23585227 DOI: 10.1152/ajplung.00262.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Myofibroblast differentiation induced by transforming growth factor-β (TGF-β) is characterized by the expression of smooth muscle α-actin (SMA) and extracellular matrix proteins. We and others have previously shown that these changes are regulated by protein kinase A (PKA). Adrenomedullin (ADM) is a vasodilator peptide that activates cAMP/PKA signaling through the calcitonin-receptor-like receptor (CRLR) and receptor-activity-modifying proteins (RAMP). In this study, we found that recombinant ADM had little effect on cAMP/PKA in quiescent human pulmonary fibroblasts, whereas it induced a profound activation of cAMP/PKA signaling in differentiated (by TGF-β) myofibroblasts. In contrast, the prostacyclin agonist iloprost was equally effective at activating PKA in both quiescent fibroblasts and differentiated myofibroblasts. TGF-β stimulated a profound expression of CRLR with a time course that mirrored the increased PKA responses to ADM. The TGF-β receptor kinase inhibitor SB431542 abolished expression of CRLR and attenuated the PKA responses of cells to ADM but not to iloprost. CRLR expression was also dramatically increased in lungs from bleomycin-treated mice. Functionally, ADM did not affect initial differentiation of quiescent fibroblasts in response to TGF-β but significantly attenuated the expression of SMA, collagen-1, and fibronectin in pre-differentiated myofibroblasts, which was accompanied by decreased contractility of myofibroblasts. Finally, sensitization of ADM signaling by transgenic overexpression of RAMP2 in myofibroblasts resulted in enhanced survival and reduced pulmonary fibrosis in the bleomycin model of the disease. In conclusion, differentiated pulmonary myofibroblasts gain responsiveness to ADM via increased CRLR expression, suggesting the possibility of using ADM for targeting pathological myofibroblasts without affecting normal fibroblasts.
Collapse
Affiliation(s)
- Jacob Kach
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Aziz M, Jacob A, Yang WL, Matsuda A, Wang P. Current trends in inflammatory and immunomodulatory mediators in sepsis. J Leukoc Biol 2013; 93:329-42. [PMID: 23136259 PMCID: PMC3579020 DOI: 10.1189/jlb.0912437] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/09/2012] [Accepted: 10/16/2012] [Indexed: 12/22/2022] Open
Abstract
Sepsis refers to severe systemic inflammation in response to invading pathogens. An overwhelming immune response, as mediated by the release of various inflammatory mediators, can lead to shock, multiple organ damage, and even death. Cytokines, proteases, lipid mediators, gaseous substances, vasoactive peptides, and cell stress markers play key roles in sepsis pathophysiology. Various adhesion molecules and chemokines sequester and activate neutrophils into the target organs, further augmenting inflammation and tissue damage. Although the anti-inflammatory substances counterbalance proinflammatory mediators, prolonged immune modulation may cause host susceptibility to concurrent infections, thus reflecting enormous challenge toward developing effective clinical therapy against sepsis. To understand the complex interplay between pro- and anti-inflammatory phenomenon in sepsis, there is still an unmet need to study newly characterized mediators. In addition, revealing the current trends of novel mediators will upgrade our understanding on their signal transduction, cross-talk, and synergistic and immunomodulating roles during sepsis. This review highlights the latest discoveries of the mediators in sepsis linking to innate and adaptive immune systems, which may lead to resolution of many unexplored queries.
Collapse
Affiliation(s)
- Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, and Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, USA
| | - Asha Jacob
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, and Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, USA
| | - Weng-Lang Yang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, and Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, USA
| | - Akihisa Matsuda
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, and Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, and Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, New York, USA
| |
Collapse
|
32
|
Hagner S, Welz H, Kicic A, Alrifai M, Marsh LM, Sutanto EN, Ling KM, Stick SM, Müller B, Weissmann N, Renz H. Suppression of adrenomedullin contributes to vascular leakage and altered epithelial repair during asthma. Allergy 2012; 67:998-1006. [PMID: 22686590 DOI: 10.1111/j.1398-9995.2012.02851.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND The anti-inflammatory peptide, adrenomedullin (AM), and its cognate receptor are expressed in lung tissue, but its pathophysiological significance in airway inflammation is unknown. OBJECTIVES This study investigated whether allergen-induced airway inflammation involves an impaired local AM response. METHODS Airway AM expression was measured in acute and chronically sensitized mice following allergen inhalation and in airway epithelial cells of asthmatic and nonasthmatic patients. The effects of AM on experimental allergen-induced airway inflammation and of AM on lung epithelial repair in vitro were investigated. RESULTS Adrenomedullin mRNA levels were significantly (P < 0.05) reduced in acute ovalbumin (OVA)-sensitized mice after OVA challenge, by over 60% at 24 h and for up to 6 days. Similarly, reduced AM expression was observed in two models of chronic allergen-induced inflammation, OVA- and house dust mite-sensitized mice. The reduced AM expression was restricted to airway epithelial and endothelial cells, while AM expression in alveolar macrophages was unaltered. Intranasal AM completely attenuated the OVA-induced airway hyperresponsiveness and mucosal plasma leakage but had no effect on inflammatory cells or cytokines. The effects of inhaled AM were reversed by pre-inhalation of the putative AM receptor antagonist, AM ((22-52)) . AM mRNA levels were significantly (P < 0.05) lower in human asthmatic airway epithelial samples than in nonasthmatic controls. In vitro, AM dose-dependently (10(-11) -10(-7) M) accelerated experimental wound healing in human and mouse lung epithelial cell monolayers and stimulated epithelial cell migration. CONCLUSION Adrenomedullin suppression in T(H) 2-related inflammation is of pathophysiological significance and represents loss of a factor that maintains tissue integrity during inflammation.
Collapse
Affiliation(s)
- S. Hagner
- Institute of Laboratory Medicine; Medical Faculty - Philipps University of Marburg; Biomedical Research Center (BMFZ); Marburg; Germany
| | - H. Welz
- Institute of Laboratory Medicine; Medical Faculty - Philipps University of Marburg; Biomedical Research Center (BMFZ); Marburg; Germany
| | | | - M. Alrifai
- Institute of Laboratory Medicine; Medical Faculty - Philipps University of Marburg; Biomedical Research Center (BMFZ); Marburg; Germany
| | - L. M. Marsh
- Institute of Laboratory Medicine; Medical Faculty - Philipps University of Marburg; Biomedical Research Center (BMFZ); Marburg; Germany
| | | | - K.-M. Ling
- Telethon Institute for Child Health Research; Centre for Health Research; The University of Western Australia; Nedlands; WA; Australia
| | | | - B. Müller
- Laboratory of Respiratory Cell Biology; Department of Internal Medicine; Medical Faculty - Philipps University of Marburg; Marburg; Germany
| | - N. Weissmann
- University of Giessen Lung Center; Giessen; Germany
| | - H. Renz
- Institute of Laboratory Medicine; Medical Faculty - Philipps University of Marburg; Biomedical Research Center (BMFZ); Marburg; Germany
| |
Collapse
|
33
|
Liverani E, McLeod JD, Paul C. Adrenomedullin receptors on human T cells are glucocorticoid-sensitive. Int Immunopharmacol 2012; 14:75-81. [PMID: 22732685 DOI: 10.1016/j.intimp.2012.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/15/2012] [Accepted: 06/12/2012] [Indexed: 12/12/2022]
Abstract
Adrenomedullin (AM) is a novel vasodilatatory peptide which acts primarily through the calcitonin receptor-like receptor (CLR) in combination with either receptor-activity-modifying-protein (RAMP) 2 or 3 (forming receptors, AM(1) and AM(2) respectively). AM plays an important role during inflammation, with its expression increasing following cytokine treatment, promoting macrophage action in situ and high expression by T cells during hypoxic conditions. Examination of T cell AM receptor expression has previously been incomplete, hence we here consider the presentation of AM receptors and their responsiveness to AM and glucocorticoids (GC). AM receptor expression was examined by PCR and flow cytometry in primary human T cells, revealing that RAMP2, 3 and CLR are physiologically expressed in unstimulated T cells, both intracellularly and on the cell surface. PHA stimulation decreased receptor proteins, significantly so for CLR and RAMP3. Incubation with AM elicited limited receptor alterations however, GC treatment (10(-6) M; 24 h) markedly affected cell surface expression, significantly increasing receptor components in unstimulated cells and significantly decreasing the same in stimulated T cells. Our findings indicate that human T cells utilize both AM(1) and AM(2) receptors, which are GC-sensitive in an activation-state dependent manner.
Collapse
Affiliation(s)
- Elisabetta Liverani
- Faculty of Health and Life Sciences, Centre for Research in Biosciences, University of the West of England, Frenchay, Bristol, UK.
| | | | | |
Collapse
|
34
|
Anti-inflammatory effects of adrenomedullin on acute lung injury induced by Carrageenan in mice. Mediators Inflamm 2012; 2012:717851. [PMID: 22685374 PMCID: PMC3364017 DOI: 10.1155/2012/717851] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/08/2012] [Accepted: 03/19/2012] [Indexed: 12/17/2022] Open
Abstract
Adrenomedullin (AM) is a 52 amino acid peptide that has shown predominant anti-inflammatory activities. In the present study, we evaluated the possible therapeutic effect of this peptide in an experimental model of acute inflammation, the carrageenan- (CAR-) induced pleurisy. Pleurisy was induced by injection of CAR into the pleural cavity of mice. AM (200 ng/kg) was administered by intraperitoneal route 1 h after CAR, and the animals were sacrificed 4 h after that. AM treatment attenuated the recruitment of leucocytes in the lung tissue and the generation and/or the expression of the proinflammatory cytokines as well as the expression of the intercellular cell adhesion molecules. Moreover, AM inhibited the induction of inducible nitric oxide synthase (iNOS), thereby abating the generation of nitric oxide (NO) and prevented the oxidative and nitroxidative lung tissue injury, as shown by the reduction of nitrotyrosine, malondialdehyde (MDA), and poly (ADP-ribose) polymerase (PARP) levels. Finally, we demonstrated that these anti-inflammatory effects of AM were associated with the inhibition of nuclear factor-κB (NF-κB) activation. All these parameters were markedly increased by intrapleural CAR in the absence of any treatment. We report that treatment with AM significantly reduces the development of acute lung injury by downregulating a broad spectrum of inflammatory factors.
Collapse
|
35
|
Müller-Redetzky HC, Kummer W, Pfeil U, Hellwig K, Will D, Paddenberg R, Tabeling C, Hippenstiel S, Suttorp N, Witzenrath M. Intermedin stabilized endothelial barrier function and attenuated ventilator-induced lung injury in mice. PLoS One 2012; 7:e35832. [PMID: 22563471 PMCID: PMC3341380 DOI: 10.1371/journal.pone.0035832] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 03/22/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Even protective ventilation may aggravate or induce lung failure, particularly in preinjured lungs. Thus, new adjuvant pharmacologic strategies are needed to minimize ventilator-induced lung injury (VILI). Intermedin/Adrenomedullin-2 (IMD) stabilized pulmonary endothelial barrier function in vitro. We hypothesized that IMD may attenuate VILI-associated lung permeability in vivo. METHODOLOGY/PRINCIPAL FINDINGS Human pulmonary microvascular endothelial cell (HPMVEC) monolayers were incubated with IMD, and transcellular electrical resistance was measured to quantify endothelial barrier function. Expression and localization of endogenous pulmonary IMD, and its receptor complexes composed of calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMPs) 1-3 were analyzed by qRT-PCR and immunofluorescence in non ventilated mouse lungs and in lungs ventilated for 6 h. In untreated and IMD treated mice, lung permeability, pulmonary leukocyte recruitment and cytokine levels were assessed after mechanical ventilation. Further, the impact of IMD on pulmonary vasoconstriction was investigated in precision cut lung slices (PCLS) and in isolated perfused and ventilated mouse lungs. IMD stabilized endothelial barrier function in HPMVECs. Mechanical ventilation reduced the expression of RAMP3, but not of IMD, CRLR, and RAMP1 and 2. Mechanical ventilation induced lung hyperpermeability, which was ameliorated by IMD treatment. Oxygenation was not improved by IMD, which may be attributed to impaired hypoxic vasoconstriction due to IMD treatment. IMD had minor impact on pulmonary leukocyte recruitment and did not reduce cytokine levels in VILI. CONCLUSIONS/SIGNIFICANCE IMD may possibly provide a new approach to attenuate VILI.
Collapse
Affiliation(s)
| | - Wolfgang Kummer
- Institute for Anatomy and Cell Biology, Universities of Giessen and Marburg Lung Center, Justus-Liebig-University Giessen, Germany
| | - Uwe Pfeil
- Institute for Anatomy and Cell Biology, Universities of Giessen and Marburg Lung Center, Justus-Liebig-University Giessen, Germany
| | - Katharina Hellwig
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Germany
| | - Daniel Will
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Germany
| | - Renate Paddenberg
- Institute for Anatomy and Cell Biology, Universities of Giessen and Marburg Lung Center, Justus-Liebig-University Giessen, Germany
| | - Christoph Tabeling
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Germany
- * E-mail:
| |
Collapse
|
36
|
Talero E, Alvarez de Sotomayor M, Sánchez-Fidalgo S, Motilva V. Vascular contribution of adrenomedullin to microcirculatory improvement in experimental colitis. Eur J Pharmacol 2011; 670:601-7. [PMID: 21958875 DOI: 10.1016/j.ejphar.2011.09.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 09/07/2011] [Accepted: 09/11/2011] [Indexed: 01/14/2023]
Abstract
The effect of adrenomedullin (AM), a peptide that has demonstrated vasodilatory activity, was studied in the colon and small mesenteric arteries of rats in a chronic model of inflammatory bowel disease. AM (50 ng/kg/day) was administered i.p. daily, starting 24h after trinitrobenzensulfonic acid (TNBS, 30 mg) instillation. After 14 days, rats were sacrificed, colons were macroscopically analyzed and biochemical parameters (myeloperoxidase activity, cytokines, cyclooxygenase-2 (COX-2) as well as inducible nitric oxide synthase (iNOS) expression) were determined. Vascular function of small mesenteric arteries was assessed by addition of phenylephrine (10⁻⁸ to 10⁻⁴ mol/L) and participation of COX and NOS pathways was also evaluated by using different inhibitors: indomethacin, NS-398, L-NNA, and 1400 w. Chronic AM treatment significantly reduced colonic macroscopic damage and inflammation markers. TNBS instillation induced COX-2 and iNOS expressions in colon and small mesenteric arteries; AM treatment decreased COX-2 expression only in microvessels from rats with colitis. An attenuation of phenylephrine-induced contraction was detected in small mesenteric arteries from both TNBS and AM-treated rats. COX and NOS inhibitors altered the contractile ability of phenylephrine in small mesenteric arteries from TNBS rats, suggesting the involvement of COX-2 and iNOS derived factors in the deleterious effect of TNBS on vascular reactivity; AM administration was able to reduce such alteration. Finally, treatment with the peptide significantly reduced colonic nitric oxide (NO) levels, without affecting plasma concentration. In conclusion, AM showed beneficial effects in the restoration of vascular function through the regulation of vasoactive products derived from COX-2 and iNOS.
Collapse
Affiliation(s)
- Elena Talero
- Department of Pharmacology, School of Pharmacy, University of Seville, Spain.
| | | | | | | |
Collapse
|
37
|
Lin Z, Li H, Luo H, Zhang Y, Luo W. Benzylamine and methylamine, substrates of semicarbazide-sensitive amine oxidase, attenuate inflammatory response induced by lipopolysaccharide. Int Immunopharmacol 2011; 11:1079-89. [PMID: 21414430 DOI: 10.1016/j.intimp.2011.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/17/2011] [Accepted: 03/01/2011] [Indexed: 02/05/2023]
Abstract
Current evidence indicates that semicarbazide-sensitive amine oxidase (SSAO) substrates possess insulin-mimic effect, which was thought to play an anti-inflammatory role. The purpose of the present study was to determine whether SSAO substrates benzylamine (BZA) and methylamine (MA) attenuate inflammatory response induced by lipopolysaccharide (LPS). BALB/c mice peritoneal macrophages (PMs) that express SSAO and RAW264.7 mouse macrophages that do not express SSAO were used in vitro studies. Experimental mice were given BZA or MA through intraperitoneal injection before LPS challenge. The results showed that BZA or MA treatment significantly reduced LPS-induced pro-inflammatory mediators (nitric oxide, TNF-α) production, the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and glucose consumption in murine PMs, but not in RAW264.7 cell line. The metabolites of BZA or MA catalyzed by SSAO, hydrogen peroxide, formaldehyde, and benzaldehyde could also significantly decrease LPS-induced nitric oxide and TNF-α production, iNOS and COX-2 expression, and glucose consumption in vitro. In addition, BZA or MA administration could significantly decrease plasma pro-inflammatory mediators and the expression of iNOS and COX-2 in liver and lung, and could also attenuate LPS-induced transient hyperglycemia and chronic hypoglycemia. These findings indicated that substrates of SSAO might be involved in the anti-inflammatory effects. The metabolites of BZA and MA catalyzed by SSAO might be responsible for the anti-inflammatory effects. Moreover, BZA or MA administration could be useful for normalization of glucose disposal during endotoxemia.
Collapse
Affiliation(s)
- Zhexuan Lin
- Bio-analytical Laboratory, Shantou University Medical College, Shantou, PR China
| | | | | | | | | |
Collapse
|
38
|
Chaung WW, Wu R, Ji Y, Wang Z, Dong W, Cheyuo C, Qi L, Qiang X, Wang H, Wang P. Peripheral administration of human adrenomedullin and its binding protein attenuates stroke-induced apoptosis and brain injury in rats. Mol Med 2011; 17:1075-83. [PMID: 21695352 DOI: 10.2119/molmed.2010.00104] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 06/16/2011] [Indexed: 11/06/2022] Open
Abstract
Stroke is a leading cause of death and the primary medical cause of acquired adult disability worldwide. The progressive brain injury after acute stroke is partly mediated by ischemia-elicited inflammatory responses. The vasoactive hormone adrenomedullin (AM), upregulated under various inflammatory conditions, counterbalances inflammatory responses. However, regulation of AM activity in ischemic stroke remains largely unknown. Recent studies have demonstrated the presence of a specific AM binding protein (that is, AMBP-1) in mammalian blood. AMBP-1 potentiates AM biological activities. Using a rat model of focal cerebral ischemia induced by permanent middle cerebral artery occlusion (MCAO), we found that plasma levels of AM increased significantly, whereas plasma levels of AMBP-1 decreased significantly after stroke. When given peripherally early after MCAO, exogenous human AM in combination with human AMBP-1 reduced brain infarct volume 24 and 72 h after MCAO, an effect not observed after the treatment by human AM or human AMBP-1 alone. Furthermore, treatment of human AM/AMBP-1 reduced neuron apoptosis and morphological damage, inhibited neutrophil infiltration in the brain and decreased serum levels of S100B and lactate. Thus, human AM/AMBP-1 has the ability to reduce stroke-induced brain injury in rats. AM/AMBP-1 can be developed as a novel therapeutic agent for patients with ischemic stroke.
Collapse
Affiliation(s)
- Wayne W Chaung
- The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chang J, Adams MR, Clifton MS, Liao M, Brooks JH, Hasdemir B, Bhargava A. Urocortin 1 modulates immunosignaling in a rat model of colitis via corticotropin-releasing factor receptor 2. Am J Physiol Gastrointest Liver Physiol 2011; 300:G884-94. [PMID: 21330446 PMCID: PMC3094137 DOI: 10.1152/ajpgi.00319.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Urocortins (UCNs) and their receptors are potent immunoregulators in the gastrointestinal (GI) tract, where they can exert both pro- and anti-inflammatory effects. We examined the contribution of Ucn1 and its receptors to the pathogenesis, progression, and resolution of colitis. Trinitrobenzene sulfonic acid was used to induce colitis in rats. Ucn1 mRNA and immunoreactivity (IR) were ubiquitously expressed throughout the GI tract under basal conditions. During colitis, Ucn1 mRNA levels fell below basal levels on day 1 then increased again by day 6, in association with an increase in the number of Ucn1-IR inflammatory cells. Ucn1-IR cells were also numerous in proliferating granulation tissue. In contrast to Ucn1 expression, average phosphorylated ERK1/2 (pERK1/2) expression rose above controls levels on day 1 and was very low on day 6 of colitis. Knockdown of corticotropin-releasing factor 2 (CRF(2)) but not CRF(1) by RNA interference during colitis significantly decreased the macroscopic lateral spread of ulceration compared with uninjected controls or animals with CRF(1) knockdown. After knockdown of CRF(2), but not of CRF(1) during colitis, edema resolution assessed microscopically was slowed, and myeloperoxidase activity remained elevated even at day 6. Ucn1 and TNF-α mRNA peaked earlier, whereas pERK1/2 activation was attenuated after CRF(2) knockdown. Thus we conclude that local CRF(2) and pERK1/2 activation is pivotal for macroscopic spread of colitis and resolution of edema. Elimination of CRF(2), but not CRF(1), results in uncoordinated immune and pERK1/2 signaling responses.
Collapse
Affiliation(s)
- Jen Chang
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Melanie R. Adams
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Matthew S. Clifton
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Min Liao
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Julia H. Brooks
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Burcu Hasdemir
- Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Aditi Bhargava
- Department of Surgery, University of California, San Francisco, San Francisco, California
| |
Collapse
|
40
|
Buckinx R, Adriaensen D, Nassauw LV, Timmermans JP. Corticotrophin-releasing factor, related peptides, and receptors in the normal and inflamed gastrointestinal tract. Front Neurosci 2011; 5:54. [PMID: 21541251 PMCID: PMC3082851 DOI: 10.3389/fnins.2011.00054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 04/01/2011] [Indexed: 12/13/2022] Open
Abstract
Corticotrophin-releasing factor (CRF) is mainly known for its role in the stress response in the hypothalamic–pituitary–adrenal axis. However, increasing evidence has revealed that CRF receptor signaling has additional peripheral effects. For instance, activation of CRF receptors in the gastrointestinal tract influences intestinal permeability and motility. These receptors, CRF1 and CRF2, do not only bind CRF, but are also activated by urocortins. Most interestingly, CRF-related signaling also assumes an important role in inflammatory bowel diseases in that it influences inflammatory processes, such as cytokine secretion and immune cell activation. These effects are characterized by an often contrasting function of CRF1 and CRF2. We will review the current data on the expression of CRF and related peptides in the different regions of the gastrointestinal tract, both in normal and inflamed conditions. We next discuss the possible functional roles of CRF signaling in inflammation. The available data clearly indicate that CRF signaling significantly influences inflammatory processes although there are important species and inflammation model differences. Although further research is necessary to elucidate this apparently delicately balanced system, it can be concluded that CRF-related peptides and receptors are (certainly) important candidates in the modulation of gastrointestinal inflammation.
Collapse
Affiliation(s)
- Roeland Buckinx
- Laboratory of Cell Biology and Histology, University of Antwerp Antwerp, Belgium
| | | | | | | |
Collapse
|
41
|
Souza-Moreira L, Campos-Salinas J, Caro M, Gonzalez-Rey E. Neuropeptides as pleiotropic modulators of the immune response. Neuroendocrinology 2011; 94:89-100. [PMID: 21734355 DOI: 10.1159/000328636] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 04/17/2011] [Indexed: 01/14/2023]
Abstract
Although necessary to eliminate pathogens, inflammation can lead to serious deleterious effects in the host if left unchecked. During the inflammatory response, further damage may arise from potential autoimmune responses occurring when the immune cells and molecules that respond to pathogen-derived antigens also react to self-antigens. In this sense, the identification of endogenous factors that control exacerbated immune responses is a key goal for the development of new therapeutic approaches for inflammatory and autoimmune diseases. Some neuropeptides that are produced during the ongoing inflammatory response have emerged as endogenous anti-inflammatory agents that could collaborate in tuning the balanced steady state of the immune system. These neuropeptides participate in maintaining immune tolerance through two distinct mechanisms: by regulating the balance between pro-inflammatory and anti-inflammatory factors, and by inducing the emergence of regulatory T cells with suppressive activity against autoreactive T cell effectors. Indeed, a functioning neuropeptide system contributes to general health, and alterations in the levels of these neuropeptides and/or their receptors lead to changes in susceptibility to inflammatory and autoimmune diseases. Recently, we found that some neuropeptides also have antimicrobial and antiparasitic actions, suggesting that they could act as primary mediators of innate defense, even in the most primitive organisms. In this review, we use the vasoactive intestinal peptide as example of an immunomodulatory neuropeptide to summarize the most relevant data found for other neuropeptides with similar characteristics, including adrenomedullin, urocortin, cortistatin and ghrelin.
Collapse
Affiliation(s)
- Luciana Souza-Moreira
- Instituto de Parasitologia y Biomedicina Lopez-Neyra, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | | | | | | |
Collapse
|
42
|
Abstract
Borrelia burgdorferi stimulates a strong inflammatory response during infection of a mammalian host. To understand the mechanisms of immune regulation employed by the host to control this inflammatory response, we focused our studies on adrenomedullin, a peptide produced in response to bacterial stimuli that exhibits antimicrobial activity and regulates inflammatory responses by modulating the expression of inflammatory cytokines. Specifically, we investigated the effect of B. burgdorferi on the expression of adrenomedullin as well as the ability of adrenomedullin to dampen host inflammatory responses to the spirochete. The concentration of adrenomedullin in the synovial fluid of untreated Lyme arthritis patients was elevated compared with that in control osteoarthritis patient samples. In addition, coculture with B. burgdorferi significantly increased the expression of adrenomedullin in RAW264.7 macrophages through MyD88-, phosphatidylinositol 3-kinase (PI3-K)-, and p38-dependent signaling cascades. Furthermore, the addition of exogenous adrenomedullin to B. burgdorferi-stimulated RAW264.7 macrophages resulted in a significant decrease in the induction of proinflammatory cytokines. Taken together, these results suggest that B. burgdorferi increases the production of adrenomedullin, which in turn negatively regulates the B. burgdorferi-stimulated inflammatory response.
Collapse
|
43
|
Yang J, Wu R, Zhou M, Wang P. Human adrenomedullin and its binding protein ameliorate sepsis-induced organ injury and mortality in jaundiced rats. Peptides 2010; 31:872-7. [PMID: 20132852 PMCID: PMC2854200 DOI: 10.1016/j.peptides.2010.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 01/21/2010] [Accepted: 01/22/2010] [Indexed: 01/11/2023]
Abstract
Sepsis is a serious complication for patients with obstructive jaundice. Although administration of adrenomedullin (AM) in combination with its binding protein (AMBP-1) is protective after injury, it remains unknown whether AM/AMBP-1 ameliorates sepsis-induced organ injury and mortality in the setting of biliary obstruction. The aim of this study is, therefore, to test the efficacy of human AM/AMBP-1 in a rat model of obstructive jaundice and polymicrobial sepsis. To study this, obstructive jaundice was induced in male adult rats (275-325g) by common bile duct ligation (BDL). One week after BDL, the rats were subjected to sepsis by cecal ligation and puncture (CLP). Plasma levels of AM and AMBP-1 were measured at 20h after CLP. In additional groups of BDL+CLP rats, human AM/AMBP-1 (24/80microg/kg body weight (BW)) or vehicle (i.e., human albumin) was administered intravenously at 5h after CLP. Blood and tissue samples were collected at 20h after CLP for various measurements. To determine the long-term effect of human AM/AMBP-1 after BDL+CLP, the gangrenous cecum was removed at 20h after CLP and 7-day survival was recorded. Our results showed that plasma levels of AM were significantly increased while AMBP-1 levels were markedly decreased after BDL+CLP (n=8, P<0.05). Administration of human AM/AMBP-1 attenuated tissue injury and inflammatory responses after BDL+CLP. Moreover, human AM/AMBP-1 significantly increased the survival rate from 21% (n=14) to 53% (n=15). Thus, human AM/AMBP-1 ameliorates sepsis-induced organ injury and mortality in jaundiced rats. Human AM/AMBP-1 can be further developed as a novel treatment for sepsis in jaundiced patients.
Collapse
Affiliation(s)
- Juntao Yang
- Department of Surgery, North Shore University Hospital and Long Island Jewish Medical Center, Manhasset, NY 11030, United States
| | | | | | | |
Collapse
|
44
|
Shah KG, Rajan D, Jacob A, Wu R, Krishnasastry K, Nicastro J, Molmenti EP, Coppa GF, Wang P. Attenuation of renal ischemia and reperfusion injury by human adrenomedullin and its binding protein. J Surg Res 2010; 163:110-7. [PMID: 20538296 DOI: 10.1016/j.jss.2010.03.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/15/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Acute renal failure secondary to ischemia and reperfusion (I/R) injury poses a significant burden on both surgeons and patients. It carries a high morbidity and mortality rate and no specific treatment currently exists. Major causes of renal I/R injury include trauma, sepsis, hypoperfusion, and various surgical procedures. We have demonstrated that adrenomedullin (AM), a novel vasoactive peptide, combined with AM binding protein-1 (AMBP-1), which augments the activity of AM, is beneficial in various disease conditions. However, it remains unknown whether human AM/AMBP-1 provides any beneficial effects in renal I/R injury. The objective of our study therefore was to determine whether administration of human AM/AMBP-1 can prevent and/or minimize damage in a rat model of renal I/R injury. METHODS Male adult rats were subjected to renal I/R injury by bilateral renal pedicle clamping with microvascular clips for 60 min followed by reperfusion. Human AM (12 microg/kg BW) and human AMBP-1 (40 microg/kg BW) or vehicle (52 microg/kg BW human albumin) were given intravenously over 30 min immediately following the clip removal (i.e., reperfusion). Rats were allowed to recover for 24 h post-treatment, and blood and renal tissue samples were collected. Plasma levels of AM were measured using a radioimmunoassay specific for rat AM. Plasma AMBP-1 was measured by Western analysis. Renal water content and serum levels of systemic markers of tissue injury were measured. Serum and renal TNF-alpha levels were also assessed. RESULTS At 24 h after renal I/R injury, plasma levels of AM were significantly increased while plasma AMBP-1 was markedly decreased. Renal water content and systemic markers of tissue injury (e.g., creatinine, BUN, AST, and ALT) were significantly increased following renal I/R injury. Serum and renal TNF-alpha levels were also increased post injury. Administration of human AM/AMBP-1 decreased renal water content, and plasma levels of creatinine, BUN, AST, and ALT. Serum and renal TNF-alpha levels were also significantly decreased after AM/AMBP-1 treatment. CONCLUSION Treatment with human AM/AMBP-1 in renal I/R injury significantly attenuated organ injury and the inflammatory response. Thus, human AM combined with human AMBP-1 may be developed as a novel treatment for patients with acute renal I/R injury.
Collapse
Affiliation(s)
- Kavin G Shah
- Department of Surgery, North Shore University Hospital and Long Island Jewish Medical Center, Manhasset, New York 11030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cureton EL, Ereso AQ, Victorino GP, Curran B, Poole DP, Liao M, Harken AH, Bhargava A. Local secretion of urocortin 1 promotes microvascular permeability during lipopolysaccharide-induced inflammation. Endocrinology 2009; 150:5428-37. [PMID: 19819946 PMCID: PMC2795720 DOI: 10.1210/en.2009-0489] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Urocortin 1 (Ucn1) is a neuropeptide that regulates vascular tone and is implicated in both the vascular and immune cell-mediated responses to inflammation. The role of Ucn1 in regulating microvascular permeability has not been determined. We hypothesized that local Ucn1 release promotes microvascular permeability and that this effect augments the local gastrointestinal vascular response to lipopolysaccharide (LPS)-induced systemic inflammation. We measured hydraulic (L(p)) and macromolecule permeability in mesenteric venules. We show that a continuous infusion of 10(-7) m Ucn1 in a postcapillary venule increased L(p) 2-fold over baseline, as did LPS-induced inflammation. However, simultaneous infusion of Ucn1 and LPS markedly increased L(p) by 7-fold. After local knockdown of Ucn1 using RNA interference, infusion of Ucn1 with LPS resulted in return to 2-fold increase, confirming that Ucn1 synergistically augments hydraulic permeability during inflammation. LPS and Ucn1 treatment also resulted in increased numbers of interstitial microspheres, which colocalized with CD31(+) immune cells. Ucn1 activity is mediated through two receptor subtypes, CRH-R(1) and CRH-R(2). CRH-R(1) receptor blockade exacerbated, whereas CRH-R(2) receptor blockade decreased the LPS-induced increase in L(p). Finally, treatment with the c-JUN N-terminal kinase (JNK) antagonist SP600125 during infusion of LPS, but not Ucn1, decreased L(p). These findings suggest that Ucn1 increases microvascular permeability and acts synergistically with LPS to increase fluid and macromolecule losses during inflammation. Knockdown of endogenous Ucn1 during inflammation attenuates synergistic increases in L(p). Ucn1's effect on L(p) is partially mediated by the CRH-R(2) receptor and acts independently of the c-JUN N-terminal kinase signal transduction pathway.
Collapse
Affiliation(s)
- Elizabeth L Cureton
- Department of Surgery, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- Sean M Davidson
- Division of Medicine, Royal Free and University College Medical School, The Hatter Cardiovascular Institute, London WC1E 6HX, United Kingdom.
| | | |
Collapse
|
47
|
Kumar P, Williams JN, Durkin KL, Heckels JE, Friedmann PS, Healy E, Christodoulides M. Neuropeptide alpha-MSH exerts pro-inflammatory effects on Neisseria meningitidis infection in vitro. Inflamm Res 2009; 59:105-13. [PMID: 19685205 DOI: 10.1007/s00011-009-0076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 06/30/2009] [Accepted: 07/27/2009] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE AND DESIGN alpha-Melanoycte stimulating hormone (alpha-MSH), a neuropeptide hormone with reported anti-microbial and immuno-modulatory properties in vitro, has previously been detected in the cerebrospinal fluid of children with bacterial meningitis. We investigated the therapeutic effects of alpha-MSH administration on Neisseria meningitidis infection of human meningeal cell cultures in vitro. MATERIALS AND METHODS Meningeal cell lines (n = 2) were infected with meningococci (10(2)-10(8) cfu/monolayer), isolated bacterial outer membranes (OM; 1 microg/ml) or lipo-oligosaccharide (LOS; 1 microg/ml) with and without alpha-MSH (10(-5)-10 microM). Bacterial adherence was quantified at 6 h, and cytokine production and microbicidal activity of alpha-MSH for meningococci were assessed at 24 h. RESULTS Compared with infection by meningococci alone, alpha-MSH (10 microM) up-regulated secretion of IL-6 and IL-8 (mean values increased from approximately 33 to 60 ng/ml), RANTES (mean values increased from approximately 26 to 105 ng/ml) and GM-CSF (mean values increased from approximately 0.3 to 1 ng/ml; P < 0.05). Upregulated secretion correlated with a neuropeptide-mediated rapid and >5-fold increase (P < 0.05) in bacterial adherence to cells and was dependent on OM components including LOS acting synergistically with alpha-MSH. Meningococci were resistant to the anti-microbial activity of alpha-MSH at all concentrations tested. CONCLUSIONS Our study demonstrates that a potentially therapeutic neuropeptide exerts pro-inflammatory effects during meningococcal infection in vitro and its use in the treatment of meningitis is contra-indicated.
Collapse
Affiliation(s)
- Pawan Kumar
- Division of Infection, Inflammation and Immunity, Department of Dermatopharmacology, University of Southampton Medical School, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Kroeger I, Erhardt A, Abt D, Fischer M, Biburger M, Rau T, Neuhuber WL, Tiegs G. The neuropeptide calcitonin gene-related peptide (CGRP) prevents inflammatory liver injury in mice. J Hepatol 2009; 51:342-53. [PMID: 19464067 DOI: 10.1016/j.jhep.2009.03.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 03/11/2009] [Accepted: 03/26/2009] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS Calcitonin gene-related peptide (CGRP) is a potent vasodilator and supposed to be responsible for neurogenic inflammation involved in migraine. Its role in inflammatory diseases of other organs is controversial and poorly investigated regarding liver inflammation, although the organ is innervated by CGRP containing primary sensory nerve fibers. METHODS Male Balb/c and IL-10(-/-) mice were pretreated with either alphaCGRP or the CGRP receptor antagonists CGRP(8-37) or BIBN4096BS. Immune-mediated liver injury was induced by administration of lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNFalpha) to galactosamine (GalN)-sensitized mice and evaluated by serum transaminase activities and cytokine levels. Furthermore, intrahepatic CGRP receptor expression and hepatic CGRP concentrations were examined. RESULTS CGRP receptor 1 was expressed by immune cells and hepatocytes in human and murine liver. During liver injury CGRP receptor expression was increased whereas hepatic CGRP concentrations concomitantly decreased. While CGRP receptor antagonists failed to affect liver damage, pretreatment with alphaCGRP protected mice from GalN/LPS-induced liver injury by suppression of the pro-inflammatory cytokine response independently from IL-10 but related to the induction of the transcriptional repressor inducible cAMP early repressor (ICER). In contrast, alphaCGRP failed to protect against GalN/TNFalpha-induced liver failure. CONCLUSION In the liver, CGRP exerts anti-inflammatory properties, which are characterized by a reduced production of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Irena Kroeger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Temmesfeld-Wollbrück B, Brell B, zu Dohna C, Dorenberg M, Hocke AC, Martens H, Klar J, Suttorp N, Hippenstiel S. Adrenomedullin reduces intestinal epithelial permeability in vivo and in vitro. Am J Physiol Gastrointest Liver Physiol 2009; 297:G43-51. [PMID: 19423749 DOI: 10.1152/ajpgi.90532.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Leakage of the gut mucosal barrier in the critically ill patient may allow translocation of bacteria and their virulence factors, thereby perpetuating sepsis and inflammation. Present evidence suggests that adrenomedullin (AM) improves endothelial barrier function and stabilizes circulatory function in systemic inflammation. We tested the hypothesis that exogenously applied AM stabilizes gut epithelial barrier function. Infusion of Staphylococcus aureus alpha-toxin induced septic shock in rats. AM infusion in a therapeutic setting reduced translocation of labeled dextran from the gut into the systemic circulation in this model. AM also reduced alpha-toxin and hydrogen peroxide (H2O2)-related barrier disruption in Caco-2 cells in vitro and reduced H2O2-related rat colon barrier malfunction in Ussing chamber experiments. AM was shown to protect endothelial barrier function via cAMP elevation, but AM failed to induce cAMP accumulation in Caco-2 cells. cAMP is degraded via phosphodiesterases (PDE), and Caco-2 cells showed high activity of cAMP-degrading PDE3 and 4. However, AM failed to induce cAMP accumulation in Caco-2 cells even in the presence of sufficient PDE3/4 inhibition, whereas adenylyl cyclase activator forskolin induced strong cAMP elevation. Furthermore, PDE3/4 inhibition neither amplified AM-induced epithelial barrier stabilization nor affected AM cAMP-related rat colon short-circuit current, furthermore indicating that AM may act independently of cAMP in Caco-2 cells. Finally, experiments using chemical inhibitors indicated that PKC, phosphatidylinositide 3-kinase, p38, and ERK did not contribute to AM-related stabilization of barrier function in Caco-2 cells. In summary, during severe inflammation, elevated AM levels may substantially contribute to the stabilization of gut barrier function.
Collapse
Affiliation(s)
- Bettina Temmesfeld-Wollbrück
- Departments of Internal Medicine and Infectious Diseases, Charité-Universitätsmedizin Berlin, Berlin 13353, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mitomycin C-treated antigen-presenting cells as a tool for control of allograft rejection and autoimmunity: from bench to bedside. Hum Immunol 2009; 70:506-12. [PMID: 19393276 DOI: 10.1016/j.humimm.2009.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 04/15/2009] [Indexed: 01/09/2023]
Abstract
Cells have been previously used in experimental models for tolerance induction in organ transplantation and autoimmune diseases. One problem with the therapeutic use of cells is standardization of their preparation. We discuss an immunosuppressive strategy relying on cells irreversibly transformed by a chemotherapeutic drug. Dendritic cells (DCs) of transplant donors pretreated with mitomycin C (MMC) strongly prolonged rat heart allograft survival when injected into recipients before transplantation. Likewise, MMC-DCs loaded with myelin basic protein suppressed autoreactive T cells of MS patients in vitro and prevented experimental autoimmune encephalitis in mice. Comprehensive gene microarray analysis identified genes that possibly make up the suppressive phenotype, comprising glucocorticoid leucine zipper, immunoglobulin-like transcript 3, CD80, CD83, CD86, and apoptotic genes. Based on these findings, a hypothetical model of tolerance induction by MMC-treated DCs is delineated. Finally, we describe the first clinical application of MMC-treated monocyte-enriched donor cells in an attempt to control the rejection of a haploidentical stem cell transplant in a sensitized recipient and discuss the pros and cons of using MMC-treated antigen-presenting cells for tolerance induction. Although many questions remain, MMC-treated cells are a promising clinical tool for controlling allograft rejection and deleterious immune responses in autoimmune diseases.
Collapse
|