1
|
Monnens L. Weibel-Palade bodies: function and role in thrombotic thrombocytopenic purpura and in diarrhea phase of STEC-hemolytic uremic syndrome. Pediatr Nephrol 2025; 40:5-13. [PMID: 38967838 PMCID: PMC11584422 DOI: 10.1007/s00467-024-06440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/01/2024] [Accepted: 06/12/2024] [Indexed: 07/06/2024]
Abstract
Vascular endothelial cells are equipped with numerous specialized granules called Weibel-Palade bodies (WPBs). They contain a cocktail of proteins that can be rapidly secreted (3-5 min) into the vascular lumen after an appropriate stimulus such as thrombin. These proteins are ready without synthesis. Von Willebrand factor (VWF) and P-selectin are the main constituents of WPBs. Upon stimulation, release of ultralarge VWF multimers occurs and assembles into VWF strings on the apical side of endothelium. The VWF A1 domain becomes exposed in a shear-dependent manner recruiting and activating platelets. VWF is able to recruit leukocytes via direct leukocyte binding or via the activated platelets promoting NETosis. Ultralarge VWF strings are ultimately cleaved into smaller pieces by the protease ADAMTS-13 preventing excessive platelet adhesion. Under carefully performed flowing conditions and adequate dose of Shiga toxins, the toxin induces the release of ultralarge VWF multimers from cultured endothelial cells. This basic information allows insight into the pathogenesis of thrombotic thrombocytopenic purpura (TTP) and of STEC-HUS in the diarrhea phase. In TTP, ADAMTS-13 activity is deficient and systemic aggregation of platelets will occur after a second trigger. In STEC-HUS, stimulated release of WPB components in the diarrhea phase of the disease can be presumed to be the first hit in the damage of Gb3 positive endothelial cells.
Collapse
Affiliation(s)
- Leo Monnens
- Department of Physiology, Radboud University Centre, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Avdonin PP, Blinova MS, Generalova GA, Emirova KM, Avdonin PV. The Role of the Complement System in the Pathogenesis of Infectious Forms of Hemolytic Uremic Syndrome. Biomolecules 2023; 14:39. [PMID: 38254639 PMCID: PMC10813406 DOI: 10.3390/biom14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Hemolytic uremic syndrome (HUS) is an acute disease and the most common cause of childhood acute renal failure. HUS is characterized by a triad of symptoms: microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. In most of the cases, HUS occurs as a result of infection caused by Shiga toxin-producing microbes: hemorrhagic Escherichia coli and Shigella dysenteriae type 1. They account for up to 90% of all cases of HUS. The remaining 10% of cases grouped under the general term atypical HUS represent a heterogeneous group of diseases with similar clinical signs. Emerging evidence suggests that in addition to E. coli and S. dysenteriae type 1, a variety of bacterial and viral infections can cause the development of HUS. In particular, infectious diseases act as the main cause of aHUS recurrence. The pathogenesis of most cases of atypical HUS is based on congenital or acquired defects of complement system. This review presents summarized data from recent studies, suggesting that complement dysregulation is a key pathogenetic factor in various types of infection-induced HUS. Separate links in the complement system are considered, the damage of which during bacterial and viral infections can lead to complement hyperactivation following by microvascular endothelial injury and development of acute renal failure.
Collapse
Affiliation(s)
- Piotr P. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Maria S. Blinova
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Galina A. Generalova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Khadizha M. Emirova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| |
Collapse
|
3
|
Chung EYM, Badve SV, Heerspink HJL, Wong MG. Endothelin receptor antagonists in kidney protection for diabetic kidney disease and beyond? Nephrology (Carlton) 2023; 28:97-108. [PMID: 36350038 PMCID: PMC10100079 DOI: 10.1111/nep.14130] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
Abstract
The burden of chronic kidney disease is increasing worldwide, largely due to the increasing global prevalence of diabetes mellitus and hypertension. While renin angiotensin system inhibitors and sodium-glucose cotransporter two inhibitors are the management cornerstone for reducing kidney and cardiovascular complications in patients with diabetic and non-diabetic kidney disease (DKD), they are partially effective and further treatments are needed to prevent the progression to kidney failure. Endothelin receptor antagonism represent a potential additional therapeutic option due to its beneficial effect on pathophysiological processes involved in progressive kidney disease including proteinuria, which are independently associated with progression of kidney disease. This review discusses the biological mechanisms of endothelin receptor antagonists (ERA) in kidney protection, the efficacy and safety of ERA in randomised controlled trials reporting on kidney outcomes, and its potential future use in both diabetic and non-DKDs.
Collapse
Affiliation(s)
- Edmund Y M Chung
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Sunil V Badve
- Renal and Metabolic Division, The George Institute for Global Health, University of New South Wales, Newtown, New South Wales, Australia.,Department of Renal Medicine, St George Hospital, Kogarah, New South Wales, Australia
| | - Hiddo J L Heerspink
- Renal and Metabolic Division, The George Institute for Global Health, University of New South Wales, Newtown, New South Wales, Australia.,Department of Clinical Pharmacoy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Muh Geot Wong
- Department of Renal Medicine, Concord Repatriation General Hospital, University of Sydney, Concord, New South Wales, Australia
| |
Collapse
|
4
|
Buelli S, Locatelli M, Carminati CE, Corna D, Cerullo D, Imberti B, Perico L, Brigotti M, Abbate M, Zoja C, Benigni A, Remuzzi G, Morigi M. Shiga Toxin 2 Triggers C3a-Dependent Glomerular and Tubular Injury through Mitochondrial Dysfunction in Hemolytic Uremic Syndrome. Cells 2022; 11:cells11111755. [PMID: 35681450 PMCID: PMC9179250 DOI: 10.3390/cells11111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli is the predominant offending agent of post-diarrheal hemolytic uremic syndrome (HUS), a rare disorder of microvascular thrombosis and acute kidney injury possibly leading to long-term renal sequelae. We previously showed that C3a has a critical role in the development of glomerular damage in experimental HUS. Based on the evidence that activation of C3a/C3a receptor (C3aR) signaling induces mitochondrial dysregulation and cell injury, here we investigated whether C3a caused podocyte and tubular injury through induction of mitochondrial dysfunction in a mouse model of HUS. Mice coinjected with Stx2/LPS exhibited glomerular podocyte and tubular C3 deposits and C3aR overexpression associated with cell damage, which were limited by C3aR antagonist treatment. C3a promoted renal injury by affecting mitochondrial wellness as demonstrated by data showing that C3aR blockade reduced mitochondrial ultrastructural abnormalities and preserved mitochondrial mass and energy production. In cultured podocytes and tubular cells, C3a caused altered mitochondrial fragmentation and distribution, and reduced anti-oxidant SOD2 activity. Stx2 potentiated the responsiveness of renal cells to the detrimental effects of C3a through increased C3aR protein expression. These results indicate that C3aR may represent a novel target in Stx-associated HUS for the preservation of renal cell integrity through the maintenance of mitochondrial function.
Collapse
Affiliation(s)
- Simona Buelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy; (M.L.); (C.E.C.); (D.C.); (D.C.); (B.I.); (L.P.); (M.A.); (C.Z.); (A.B.); (G.R.); (M.M.)
- Correspondence: ; Tel.: +39-035-42131; Fax: +39-035-319-331
| | - Monica Locatelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy; (M.L.); (C.E.C.); (D.C.); (D.C.); (B.I.); (L.P.); (M.A.); (C.Z.); (A.B.); (G.R.); (M.M.)
| | - Claudia Elisa Carminati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy; (M.L.); (C.E.C.); (D.C.); (D.C.); (B.I.); (L.P.); (M.A.); (C.Z.); (A.B.); (G.R.); (M.M.)
| | - Daniela Corna
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy; (M.L.); (C.E.C.); (D.C.); (D.C.); (B.I.); (L.P.); (M.A.); (C.Z.); (A.B.); (G.R.); (M.M.)
| | - Domenico Cerullo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy; (M.L.); (C.E.C.); (D.C.); (D.C.); (B.I.); (L.P.); (M.A.); (C.Z.); (A.B.); (G.R.); (M.M.)
| | - Barbara Imberti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy; (M.L.); (C.E.C.); (D.C.); (D.C.); (B.I.); (L.P.); (M.A.); (C.Z.); (A.B.); (G.R.); (M.M.)
| | - Luca Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy; (M.L.); (C.E.C.); (D.C.); (D.C.); (B.I.); (L.P.); (M.A.); (C.Z.); (A.B.); (G.R.); (M.M.)
| | - Maurizio Brigotti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy;
| | - Mauro Abbate
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy; (M.L.); (C.E.C.); (D.C.); (D.C.); (B.I.); (L.P.); (M.A.); (C.Z.); (A.B.); (G.R.); (M.M.)
| | - Carlamaria Zoja
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy; (M.L.); (C.E.C.); (D.C.); (D.C.); (B.I.); (L.P.); (M.A.); (C.Z.); (A.B.); (G.R.); (M.M.)
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy; (M.L.); (C.E.C.); (D.C.); (D.C.); (B.I.); (L.P.); (M.A.); (C.Z.); (A.B.); (G.R.); (M.M.)
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy; (M.L.); (C.E.C.); (D.C.); (D.C.); (B.I.); (L.P.); (M.A.); (C.Z.); (A.B.); (G.R.); (M.M.)
| | - Marina Morigi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Via Stezzano 87, 24126 Bergamo, Italy; (M.L.); (C.E.C.); (D.C.); (D.C.); (B.I.); (L.P.); (M.A.); (C.Z.); (A.B.); (G.R.); (M.M.)
| |
Collapse
|
5
|
Obata F, Ozuru R, Tsuji T, Matsuba T, Fujii J. Stx2 Induces Differential Gene Expression and Disturbs Circadian Rhythm Genes in the Proximal Tubule. Toxins (Basel) 2022; 14:toxins14020069. [PMID: 35202097 PMCID: PMC8874938 DOI: 10.3390/toxins14020069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) causes proximal tubular defects in the kidney. However, factors altered by Shiga toxin (Stx) within the proximal tubules are yet to be shown. We determined Stx receptor Gb3 in murine and human kidneys and confirmed the receptor expression in the proximal tubules. Stx2-injected mouse kidney tissues and Stx2-treated human primary renal proximal tubular epithelial cell (RPTEC) were collected and microarray analysis was performed. We compared murine kidney and RPTEC arrays and selected common 58 genes that are differentially expressed vs. control (0 h, no toxin-treated). We found that the most highly expressed gene was GDF15, which may be involved in Stx2-induced weight loss. Genes associated with previously reported Stx2 activities such as src kinase Yes phosphorylation pathway activation, unfolded protein response (UPR) and ribotoxic stress response (RSR) showed differential expressions. Moreover, circadian clock genes were differentially expressed, suggesting Stx2-induced renal circadian rhythm disturbance. Circadian rhythm-regulated proximal tubular Na+-glucose transporter SGLT1 (SLC5A1) was down-regulated, indicating proximal tubular functional deterioration, and mice developed glucosuria confirming proximal tubular dysfunction. Stx2 alters gene expression in murine and human proximal tubules through known activities and newly investigated circadian rhythm disturbance, which may result in proximal tubular dysfunctions.
Collapse
Affiliation(s)
- Fumiko Obata
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago 683-8503, Japan; (T.T.); (J.F.)
- Correspondence:
| | - Ryo Ozuru
- Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan;
| | - Takahiro Tsuji
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago 683-8503, Japan; (T.T.); (J.F.)
| | - Takashi Matsuba
- Division of Infectious Disease Control and Prevention, Department of Animal Pharmaceutical Science, School of Pharmaceutical Science, Kyusyu University of Health and Welfare, 1714-1 Yoshino-machi, Nobeoka 882-8508, Japan;
| | - Jun Fujii
- Division of Bacteriology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, 86 Nishicho, Yonago 683-8503, Japan; (T.T.); (J.F.)
| |
Collapse
|
6
|
Mirabito Colafella KM, Neves KB, Montezano AC, Garrelds IM, van Veghel R, de Vries R, Uijl E, Baelde HJ, van den Meiracker AH, Touyz RM, Danser AHJ, Versmissen J. Selective ETA vs. dual ETA/B receptor blockade for the prevention of sunitinib-induced hypertension and albuminuria in WKY rats. Cardiovasc Res 2021; 116:1779-1790. [PMID: 31593221 DOI: 10.1093/cvr/cvz260] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/23/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
AIMS Although effective in preventing tumour growth, angiogenesis inhibitors cause off-target effects including cardiovascular toxicity and renal injury, most likely via endothelin (ET)-1 up-regulation. ET-1 via stimulation of the ETA receptor has pro-hypertensive actions whereas stimulation of the ETB receptor can elicit both pro- or anti-hypertensive effects. In this study, our aim was to determine the efficacy of selective ETA vs. dual ETA/B receptor blockade for the prevention of angiogenesis inhibitor-induced hypertension and albuminuria. METHODS AND RESULTS Male Wistar Kyoto (WKY) rats were treated with vehicle, sunitinib (angiogenesis inhibitor; 14 mg/kg/day) alone or in combination with macitentan (ETA/B receptor antagonist; 30 mg/kg/day) or sitaxentan (selective ETA receptor antagonist; 30 or 100 mg/kg/day) for 8 days. Compared with vehicle, sunitinib treatment caused a rapid and sustained increase in mean arterial pressure of ∼25 mmHg. Co-treatment with macitentan or sitaxentan abolished the pressor response to sunitinib. Sunitinib did not induce endothelial dysfunction. However, it was associated with increased aortic, mesenteric, and renal oxidative stress, an effect that was absent in mesenteric arteries of the macitentan and sitaxentan co-treated groups. Albuminuria was greater in the sunitinib- than vehicle-treated group. Co-treatment with sitaxentan, but not macitentan, prevented this increase in albuminuria. Sunitinib treatment increased circulating and urinary prostacyclin levels and had no effect on thromboxane levels. These increases in prostacyclin were blunted by co-treatment with sitaxentan. CONCLUSIONS Our results demonstrate that both selective ETA and dual ETA/B receptor antagonism prevents sunitinib-induced hypertension, whereas sunitinib-induced albuminuria was only prevented by selective ETA receptor antagonism. In addition, our results uncover a role for prostacyclin in the development of these effects. In conclusion, selective ETA receptor antagonism is sufficient for the prevention of sunitinib-induced hypertension and renal injury.
Collapse
Affiliation(s)
- Katrina M Mirabito Colafella
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Melbourne, VIC 3800, Australia
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Karla B Neves
- Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Augusto C Montezano
- Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Ingrid M Garrelds
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Melbourne, VIC 3800, Australia
| | - Richard van Veghel
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Melbourne, VIC 3800, Australia
| | - René de Vries
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Melbourne, VIC 3800, Australia
| | - Estrellita Uijl
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Melbourne, VIC 3800, Australia
| | - Hans J Baelde
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Anton H van den Meiracker
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Rhian M Touyz
- Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Jorie Versmissen
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Daehn IS, Duffield JS. The glomerular filtration barrier: a structural target for novel kidney therapies. Nat Rev Drug Discov 2021; 20:770-788. [PMID: 34262140 PMCID: PMC8278373 DOI: 10.1038/s41573-021-00242-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
Loss of normal kidney function affects more than 10% of the population and contributes to morbidity and mortality. Kidney diseases are currently treated with immunosuppressive agents, antihypertensives and diuretics with partial but limited success. Most kidney disease is characterized by breakdown of the glomerular filtration barrier (GFB). Specialized podocyte cells maintain the GFB, and structure-function experiments and studies of intercellular communication between the podocytes and other GFB cells, combined with advances from genetics and genomics, have laid the groundwork for a new generation of therapies that directly intervene at the GFB. These include inhibitors of apolipoprotein L1 (APOL1), short transient receptor potential channels (TRPCs), soluble fms-like tyrosine kinase 1 (sFLT1; also known as soluble vascular endothelial growth factor receptor 1), roundabout homologue 2 (ROBO2), endothelin receptor A, soluble urokinase plasminogen activator surface receptor (suPAR) and substrate intermediates for coenzyme Q10 (CoQ10). These molecular targets converge on two key components of GFB biology: mitochondrial function and the actin-myosin contractile machinery. This Review discusses therapies and developments focused on maintaining GFB integrity, and the emerging questions in this evolving field.
Collapse
Affiliation(s)
- Ilse S Daehn
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jeremy S Duffield
- Research and Development, Prime Medicine, Cambridge, MA, USA. .,Department of Medicine, University of Washington, Seattle, WA, USA. .,Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
8
|
Endothelin-targeted new treatments for proteinuric and inflammatory glomerular diseases: focus on the added value to anti-renin-angiotensin system inhibition. Pediatr Nephrol 2021; 36:763-775. [PMID: 32185491 DOI: 10.1007/s00467-020-04518-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is the main cause of end-stage renal disease worldwide arising as a frequent complication of diabetes, obesity, and hypertension. Current therapeutic options, mainly based of inhibition of the renin-angiotensin system (RAS), provide imperfect renoprotection if started at an advanced phase of the disease, and treatments that show or even reverse the progression of CKD are needed. The endothelin (ET) system contributes to the normal renal physiology; however, robust evidence suggests a key role of ET-1 and its cognate receptors, in the progression of CKD. The effectiveness of ET receptor antagonists in ameliorating renal hemodynamics and fibrosis has been largely demonstrated in different experimental models. A significant antiproteinuric effect of ET receptor antagonists has been found in diabetic and non-diabetic CKD patients even on top of RAS blockade, and emerging evidence from ongoing clinical trials highlights their beneficial effects on a wide range of kidney disorders.
Collapse
|
9
|
Gil CL, Hooker E, Larrivée B. Diabetic Kidney Disease, Endothelial Damage, and Podocyte-Endothelial Crosstalk. Kidney Med 2021; 3:105-115. [PMID: 33604542 PMCID: PMC7873832 DOI: 10.1016/j.xkme.2020.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Diabetes-related complications are a significant source of morbidity and mortality worldwide. Diabetic kidney disease is a frequent microvascular complication and a primary cause of kidney failure in patients with diabetes. The glomerular filtration barrier is composed of 3 layers: the endothelium, glomerular basement membrane, and podocytes. Podocytes and the endothelium communicate through molecular crosstalk to maintain filtration at the glomerular filtration barrier. Chronic hyperglycemia affects all 3 layers of the glomerular filtration barrier, as well as the molecular crosstalk that occurs between the 2 cellular layers. One of the earliest events following chronic hyperglycemia is endothelial cell dysfunction. Early endothelial damage is associated with progression of diabetic kidney disease. However, current therapies are based in controlling glycemia and arterial blood pressure without targeting endothelial dysfunction. Disruption of the endothelial cell layer also alters the molecular crosstalk that occurs between the endothelium and podocytes. This review discusses both the physiologic and pathologic communication that occurs at the glomerular filtration barrier. It examines how these signaling components contribute to podocyte foot effacement, podocyte detachment, and the progression of diabetic kidney disease.
Collapse
Affiliation(s)
- Cindy Lora Gil
- Department of Biomedical Sciences, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montréal, QC, Canada
| | - Erika Hooker
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montréal, QC, Canada
| | - Bruno Larrivée
- Department of Ophtalmology, University of Montreal, Montréal, QC, Canada
| |
Collapse
|
10
|
Shimizu M. Pathogenic functions and diagnostic utility of cytokines/chemokines in EHEC-HUS. Pediatr Int 2020; 62:308-315. [PMID: 31742829 DOI: 10.1111/ped.14053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/07/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022]
Abstract
Hemolytic - uremic syndrome (HUS) is a severe complication of infection by Shiga toxin (STx)-producing enterohemorrhagic Escherichia coli. Hemolytic - uremic syndrome is defined clinically as a triad of non-immune microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injuries. Neurologic complications such as acute encephalopathy are also observed. In humans, endothelial cells, proximal tubular epithelial cells, mesangial cells, podocytes, intestinal epithelial cells, and monocytes / macrophages are susceptible to STx-mediated injury. Shiga toxin induces the secretion of inflammatory cytokines and chemokines from susceptible cells, including tumor necrosis factor-α interleukin (IL)-1, IL-6, and IL-8. These cytokines and chemokines contribute to the pathogenesis of HUS and encephalopathy by enhancing STx-induced cytotoxicity and inducing inflammatory cell infiltration. Serum cytokine/chemokine levels are therefore useful as indicators of disease activity and predictors of progression from acute kidney injury to chronic kidney disease. Anti-inflammation therapy combined with apheresis to remove excessive cytokines / chemokines and methylprednisolone pulse therapy to suppress cytokine/chemokine production may be an effective treatment regimen for severe E. coli-associated HUS. However, this regimen requires careful monitoring of potential side effects, such as infections, thrombus formation, and hypertension.
Collapse
Affiliation(s)
- Masaki Shimizu
- Department of Pediatrics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
11
|
Ahmed HM, Morgan DS, Doudar NA, Naguib MS. High Serum Endothelin-1 Level is Associated with Poor Response to Steroid Therapy in Childhood-Onset Nephrotic Syndrome. SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION 2020; 30:769-774. [PMID: 31464232 DOI: 10.4103/1319-2442.265451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Nephrotic syndrome (NS) is one of the most common kidney diseases seen in children. It is a disorder characterized by severe proteinuria, hypoproteinemia, hyperlipidemia, and generalized edema resulting from alterations of permeability at the glomerular capillary wall. Endothelin-1 (ET1) has a central role in the pathogenesis of proteinuria and glomerulosclerosis and has a role in assessment of the clinical course of NS in children. This study aims to investigate the relationship between ET1 serum level and the response to steroid therapy in children with primary NS. Serum ET1 levels were evaluated in 55 children with NS. They were classified into two groups: 30 patients with steroid-sensitive NS (SSNS) and 25 patients with steroid-resistant NS (SRNS). The SSNS group was further divided into infrequent-relapsing NS (IFRNS) and steroid-dependent NS (SDNS), while the SRNS group was subdivided into two groups according to renal pathology. ET1 levels were significantly higher in the SRNS group (52.5 ± 45.8 pg/dL) compared to the SSNS group (18.3 ± 17 pg/dL) (P <0.001). Furthermore, ET1 levels were significantly higher in SDNS (54.3 ± 18.6) compared to IFRNS (11.9 ± 7.8, P = 0.001). There was no statistically significant difference in ET1 levels between minimal change disease group and focal segmental glomerulosclerosis group, (P = 0.28). Serum ET1 can be considered as a predictor for response to steroid therapy.
Collapse
Affiliation(s)
- Heba Mostafa Ahmed
- Department of Pediatrics, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Dalia S Morgan
- Department of Pediatrics, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Noha A Doudar
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Mariam S Naguib
- Department of Pediatrics, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
12
|
Kasztan M, Pollock DM. Impact of ET-1 and sex in glomerular hyperfiltration in humanized sickle cell mice. Clin Sci (Lond) 2019; 133:1475-1486. [PMID: 31273050 DOI: 10.1042/cs20190215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
Abstract
Hyperfiltration, highly prevalent early in sickle cell disease (SCD), is in part driven by an increase in ultrafiltration coefficient (Kf). The increase in Kf may be due to enlarged filtration surface area and/or increased glomerular permeability (Palb). Previous studies have demonstrated that endothelin-1 (ET-1) contributes to Palb changes in models of diabetes and SCD. Thus, we performed longitudinal studies of renal function to determine the relationship between ET-1 and glomerular size and Palb that may contribute to hyperfiltration in humanized sickle cell (HbSS) and control (HbAA) mice at 8-32 weeks of age. HbSS mice were characterized by significant increases in plasma and glomerular ET-1 expression in both sexes although this increase was significantly greater in males. HbSS glomeruli of both males and females presented with a progressive and significant increase in glomerular size, volume, and Kf During the onset of hyperfiltration, plasma and glomerular ET-1 expression were associated with a greater increase in glomerular size and Kf in HbSS mice, regardless of sex. The pattern of Palb augmentation during the hyperfiltration was also associated with an increase in glomerular ET-1 expression, in both male and female HbSS mice. However, the increase in Palb was significantly greater in males and delayed in time in females. Additionally, selective endothelin A receptor (ETA) antagonist prevented hyperfiltration in HbSS, regardless of sex. These results suggest that marked sex disparity in glomerular hyperfiltration may be driven, in part, by ET-1-dependent ultra-structural changes in filtration barrier components contributing to glomerular hyperfiltration in HbSS mice.
Collapse
Affiliation(s)
- Malgorzata Kasztan
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, U.S.A.
| |
Collapse
|
13
|
Tam SW, Feng R, Lau WKW, Law ACK, Yeung PKK, Chung SK. Endothelin type B receptor promotes cofilin rod formation and dendritic loss in neurons by inducing oxidative stress and cofilin activation. J Biol Chem 2019; 294:12495-12506. [PMID: 31248984 DOI: 10.1074/jbc.ra118.005155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Endothelin-1 (ET-1) is a neuroactive peptide produced by neurons, reactive astrocytes, and endothelial cells in the brain. Elevated levels of ET-1 have been detected in the post-mortem brains of individuals with Alzheimer's disease (AD). We have previously demonstrated that overexpression of astrocytic ET-1 exacerbates memory deficits in aged mice or in APPK670/M671 mutant mice. However, the effects of ET-1 on neuronal dysfunction remain elusive. ET-1 has been reported to mediate superoxide formation in the vascular system via NADPH oxidase (NOX) and to regulate the actin cytoskeleton of cancer cell lines via the cofilin pathway. Interestingly, oxidative stress and cofilin activation were both reported to mediate one of the AD histopathologies, cofilin rod formation in neurons. This raises the possibility that ET-1 mediates neurodegeneration via oxidative stress- or cofilin activation-driven cofilin rod formation. Here, we demonstrate that exposure to 100 nm ET-1 or to a selective ET type B receptor (ETB) agonist (IRL1620) induces cofilin rod formation in dendrites of primary hippocampal neurons, accompanied by a loss of distal dendrites and a reduction in dendritic length. The 100 nm IRL1620 exposure induced superoxide formation and cofilin activation, which were abolished by pretreatment with a NOX inhibitor (5 μm VAS2870). Moreover, IRL1620-induced cofilin rod formation was partially abolished by pretreatment with a calcineurin inhibitor (100 nm FK506), which suppressed cofilin activation. In conclusion, our findings suggest a role for ETB in neurodegeneration by promoting cofilin rod formation and dendritic loss via NOX-driven superoxide formation and cofilin activation.
Collapse
Affiliation(s)
- Sze-Wah Tam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China; Department of Psychiatry, The University of Hong Kong, Hong Kong, China.
| | - Rui Feng
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Way Kwok-Wai Lau
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China; Department of Special Education and Counseling, The Education University of Hong Kong, Hong Kong, China
| | - Andrew Chi-Kin Law
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China; Department of Psychiatry, Royal College of Surgeons in Ireland at Perdana University, Selangor, Malaysia
| | | | - Sookja Kim Chung
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Research Center of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
Zoja C, Buelli S, Morigi M. Shiga toxin triggers endothelial and podocyte injury: the role of complement activation. Pediatr Nephrol 2019; 34:379-388. [PMID: 29214442 DOI: 10.1007/s00467-017-3850-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/12/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) is the offending agent in post-diarrhea-associated hemolytic uremic syndrome (HUS), a disorder characterized by thrombocytopenia, microangiopathic hemolytic anemia, and acute kidney failure, with thrombi occluding the renal microvasculature. Endothelial dysfunction has been recognized as the trigger event in the development of microangiopathic processes. Glomerular endothelial cells are susceptible to the toxic effects of Stxs that, via nuclear factor kappa B (NF-κB) activation, induce the expression of genes encoding for adhesion molecules and chemokines, culminating in leukocyte adhesion and platelet thrombus formation on the activated endothelium. Complement activation via the alternative pathway has been seen in patients during the acute phase of STEC-associated HUS. Experimental evidence has highlighted the role of complement proteins in driving glomerular endothelium toward a thrombogenic phenotype. At the glomerular level, podocytes are also an important target of Stx-induced complement activation. Glomerular injury as a consequence of podocyte dysfunction and loss is thus a mechanism that might affect long-term renal outcomes in the disease. New approaches to targeting the complement system may be useful therapeutic options for patients with STEC-HUS.
Collapse
Affiliation(s)
- Carlamaria Zoja
- Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via Stezzano, 87, 24126, Bergamo, Italy.
| | - Simona Buelli
- Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via Stezzano, 87, 24126, Bergamo, Italy
| | - Marina Morigi
- Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Via Stezzano, 87, 24126, Bergamo, Italy
| |
Collapse
|
15
|
Yuan M, Tan Y, Wang Y, Wang SX, Yu F, Zhao MH. The associations of endothelial and podocyte injury in proliferative lupus nephritis: from observational analysis to in vitro study. Lupus 2019; 28:347-358. [PMID: 30755145 DOI: 10.1177/0961203319828509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Our study aims to evaluate the endothelial cell-podocyte crosstalk in proliferative lupus nephritis (LN). The semi-quantification scores of glomerular endothelial cell injury and the foot process width (FPW) were processed in 110 proliferative LN patients. Podocytes were stimulated with LN-derived IgG. Glomerular endothelial cells were treated with podocyte-conditioned medium (PCM), and then podocytes were incubated with endothelial cell-conditioned medium (ECM). The levels of vascular endothelial growth factor-A (VEGF-A) in PCM and endothelin-1 in ECM were analyzed, and the injury of podocyte and glomerular endothelial cells were further evaluated. The pathological score of glomerular endothelial cell injury was correlated with FPW in LN complicated with thrombotic microangiopathy. In vitro study showed the following: 1. Stimulation of podocytes by IgG from LN led to decline in the expression of nephrin with cytoskeleton rearrangement, and reduction of VEGF-A levels. 2. Exposure of glomerular endothelial cells to PCM incubated with LN-derived IgG (PCM-LN) induced more endothelin-1 secretion and disruption of intercellular tight junction. 3. Exposure of podocytes to ECM stimulated with PCM-LN could induce cytoskeleton redistribution with decrease of nephrin. In conclusion, the pathological glomerular endothelial cell lesions were associated with FPW and the VEGF-endothelin-1 system might play a critical role in the endothelial cell-podocyte crosstalk in LN.
Collapse
Affiliation(s)
- M Yuan
- 1 Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China.,2 Institute of Nephrology, Peking University, Beijing, People's Republic of China.,3 Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China.,4 Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China
| | - Y Tan
- 1 Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China.,2 Institute of Nephrology, Peking University, Beijing, People's Republic of China.,3 Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China.,4 Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China
| | - Y Wang
- 1 Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China.,2 Institute of Nephrology, Peking University, Beijing, People's Republic of China.,3 Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China.,4 Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China
| | - S X Wang
- 1 Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China.,2 Institute of Nephrology, Peking University, Beijing, People's Republic of China.,3 Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China.,4 Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China
| | - F Yu
- 1 Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China.,2 Institute of Nephrology, Peking University, Beijing, People's Republic of China.,3 Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China.,4 Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China.,5 Department of Nephrology, Peking University International Hospital, Beijing, People's Republic of China
| | - M H Zhao
- 1 Renal Division, Department of Medicine, Peking University First Hospital, Beijing, People's Republic of China.,2 Institute of Nephrology, Peking University, Beijing, People's Republic of China.,3 Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People's Republic of China.,4 Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Ministry of Education of China, Beijing, People's Republic of China.,6 Peking-Tsinghua Center for Life Sciences, Beijing, People's Republic of China
| |
Collapse
|
16
|
Buelli S, Zoja C, Remuzzi G, Morigi M. Complement Activation Contributes to the Pathophysiology of Shiga Toxin-Associated Hemolytic Uremic Syndrome. Microorganisms 2019; 7:microorganisms7010015. [PMID: 30634669 PMCID: PMC6352217 DOI: 10.3390/microorganisms7010015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) infections have become a threat to public health globally because of the severe illnesses that they can trigger, such as hemorrhagic colitis and the post-diarrheal hemolytic uremic syndrome (HUS), characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney failure. Glomerular endothelial cells are primary targets of Stx which, after binding to its specific receptor globotriaosylceramide, upregulates proinflammatory proteins involved both in the recruitment and adhesion of leukocytes and thrombus formation at the site of endothelial injury. In this review, we discuss the role of complement activation in promoting glomerular microvascular dysfunction, providing evidence from experimental models and patients with STEC-HUS. Within the glomerulus, an important target for Stx-induced complement activation is the podocyte, a cell type that is in close contact with endothelial cells and participates in maintaining the filtration barrier. Recently, podocyte injury and loss have been indicated as potential risk factors for long-term renal sequelae in patients with STEC-HUS. Therapeutic approaches targeting the complement system, that may be useful options for patients with STEC-HUS, will also be discussed.
Collapse
Affiliation(s)
- Simona Buelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy.
| | - Carlamaria Zoja
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy.
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy.
- L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy.
| | - Marina Morigi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy.
| |
Collapse
|
17
|
Exeni RA, Fernandez-Brando RJ, Santiago AP, Fiorentino GA, Exeni AM, Ramos MV, Palermo MS. Pathogenic role of inflammatory response during Shiga toxin-associated hemolytic uremic syndrome (HUS). Pediatr Nephrol 2018; 33:2057-2071. [PMID: 29372302 DOI: 10.1007/s00467-017-3876-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/01/2017] [Accepted: 12/07/2017] [Indexed: 01/22/2023]
Abstract
Hemolytic uremic syndrome (HUS) is defined as a triad of noninmune microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. The most frequent presentation is secondary to Shiga toxin (Stx)-producing Escherichia coli (STEC) infections, which is termed postdiarrheal, epidemiologic or Stx-HUS, considering that Stx is the necessary etiological factor. After ingestion, STEC colonize the intestine and produce Stx, which translocates across the intestinal epithelium. Once Stx enters the bloodstream, it interacts with renal endothelial and epithelial cells, and leukocytes. This review summarizes the current evidence about the involvement of inflammatory components as central pathogenic factors that could determine outcome of STEC infections. Intestinal inflammation may favor epithelial leakage and subsequent passage of Stx to the systemic circulation. Vascular damage triggered by Stx promotes not only release of thrombin and increased fibrin concentration but also production of cytokines and chemokines by endothelial cells. Recent evidence from animal models and patients strongly indicate that several immune cells types may participate in HUS physiopathology: neutrophils, through release of proteases and reactive oxygen species (ROS); monocytes/macrophages through secretion of cytokines and chemokines. In addition, high levels of Bb factor and soluble C5b-9 (sC5b-9) in plasma as well as complement factors adhered to platelet-leukocyte complexes, microparticles and microvesicles, suggest activation of the alternative pathway of complement. Thus, acute immune response secondary to STEC infection, the Stx stimulatory effect on different immune cells, and inflammatory stimulus secondary to endothelial damage all together converge to define a strong inflammatory status that worsens Stx toxicity and disease.
Collapse
Affiliation(s)
- Ramon Alfonso Exeni
- Departamento de Nefrología, Hospital Municipal del Niño, San Justo, Provincia de Buenos Aires, Argentina
| | - Romina Jimena Fernandez-Brando
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental Medicine (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Adriana Patricia Santiago
- Departamento de Nefrología, Hospital Municipal del Niño, San Justo, Provincia de Buenos Aires, Argentina
| | - Gabriela Alejandra Fiorentino
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental Medicine (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
- Laboratorio, Hospital Municipal del Niño, San Justo, Provincia de Buenos Aires, Argentina
| | - Andrea Mariana Exeni
- Servicio de Nefrología, Hospital Austral, Pilar, Provincia de Buenos Aires, Argentina
| | - Maria Victoria Ramos
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental Medicine (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Marina Sandra Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental Medicine (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Liu X, Cao W, Qi J, Li Q, Zhao M, Chen Z, Zhu J, Huang Z, Wu L, Zhang B, Yuan Y, Xing C. Leonurine ameliorates adriamycin-induced podocyte injury via suppression of oxidative stress. Free Radic Res 2018; 52:952-960. [PMID: 30334481 DOI: 10.1080/10715762.2018.1500021] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Leonurine, a major bioactive component from Herba Leonuri, shows therapeutic potential in several diseases, including diabetes, cardiovascular disease, bovine mastitis and depression. In kidney, it was reported that leonurine was performing a protective effect in both acute kidney injury and renal fibrosis mice models. The aim of this study is to investigate the effect of leonurine in podocyte injury. In the mice model of adriamycin (ADR) -induced nephropathy, the application of leonurine significantly prevented early kidney damage, macrophage infiltration and proteinuria. Meanwhile, leonurine suppressed ADR-induced podocyte injury and reactive oxygen species (ROS) production. Consistent to in vivo results, leonurine prevented ADR-induced podocyte injury and ROS production in cultured human podocytes. All these results suggested that leonurine might suppress ADR-induced podocyte injury via inhibiting oxidative stress. Leonurine might be a novel therapeutic drug for prevention of glomerular diseases.
Collapse
Affiliation(s)
- Xi Liu
- a Department of Nephrology , the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University , Nanjing , China
| | - Wei Cao
- a Department of Nephrology , the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University , Nanjing , China
| | - Jia Qi
- b Department of Pharmacy , Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Qing Li
- a Department of Nephrology , the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University , Nanjing , China
| | - Min Zhao
- c Department of Nephrology , Affiliated Nanjing Drum Tower Hospital, Nanjing University School of Medicine , Nanjing , China
| | - Zhuyun Chen
- a Department of Nephrology , the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University , Nanjing , China
| | - Jingfeng Zhu
- a Department of Nephrology , the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University , Nanjing , China
| | - Zhimin Huang
- a Department of Nephrology , the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University , Nanjing , China
| | - Lin Wu
- a Department of Nephrology , the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University , Nanjing , China
| | - Bo Zhang
- a Department of Nephrology , the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University , Nanjing , China
| | - Yanggang Yuan
- a Department of Nephrology , the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University , Nanjing , China
| | - Changying Xing
- a Department of Nephrology , the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University , Nanjing , China
| |
Collapse
|
19
|
Caster DJ, Korte EA, Tan M, Barati MT, Tandon S, Creed TM, Salant DJ, Hata JL, Epstein PN, Huang H, Powell DW, McLeish KR. Neutrophil exocytosis induces podocyte cytoskeletal reorganization and proteinuria in experimental glomerulonephritis. Am J Physiol Renal Physiol 2018; 315:F595-F606. [PMID: 29790391 DOI: 10.1152/ajprenal.00039.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acute glomerulonephritis is characterized by rapid glomerular neutrophil recruitment, proteinuria, and glomerular hypercellularity. The current study tested the hypothesis that the release of neutrophil granule contents plays a role in both the loss of filtration barrier leading to proteinuria and the increase in glomerular cells. Inhibition of neutrophil exocytosis with a peptide inhibitor prevented proteinuria and attenuated podocyte and endothelial cell injury but had no effect on glomerular hypercellularity in an experimental acute glomerulonephritis model in mice. Cultivation of podocytes with neutrophil granule contents disrupted cytoskeletal organization, an in vitro model for podocyte effacement and loss of filtration barrier. Activated, cultured podocytes released cytokines that stimulated neutrophil chemotaxis, primed respiratory burst activity, and stimulated neutrophil exocytosis. We conclude that crosstalk between podocytes and neutrophils contributes to disruption of the glomerular filtration barrier in acute glomerulonephritis. Neutrophil granule products induce podocyte injury but do not participate in the proliferative response of intrinsic glomerular cells.
Collapse
Affiliation(s)
- Dawn J Caster
- Department of Medicine, University of Louisville , Louisville, Kentucky.,Robley Rex Veterans Affairs Medical Center , Louisville, Kentucky
| | - Erik A Korte
- Department of Biochemistry and Molecular Genetics, University of Louisville , Louisville, Kentucky
| | - Min Tan
- Department of Medicine, University of Louisville , Louisville, Kentucky
| | - Michelle T Barati
- Department of Medicine, University of Louisville , Louisville, Kentucky
| | - Shweta Tandon
- Department of Medicine, University of Louisville , Louisville, Kentucky
| | - T Michael Creed
- Department of Medicine, University of Louisville , Louisville, Kentucky
| | - David J Salant
- Department of Medicine, Boston University School of Medicine , Boston, Massachusetts
| | - Jessica L Hata
- Pathology Department, Norton Children's Hospital , Louisville, Kentucky
| | - Paul N Epstein
- Pediatric Research Institute in the Department of Pediatrics, University of Louisville , Louisville, Kentucky
| | - Hui Huang
- Pediatric Research Institute in the Department of Pediatrics, University of Louisville , Louisville, Kentucky.,Department of Endocrinology, Metabolism, and Genetics, Jiangxi Provincial Children's Hospital , Nanchang , China
| | - David W Powell
- Department of Medicine, University of Louisville , Louisville, Kentucky
| | - Kenneth R McLeish
- Department of Medicine, University of Louisville , Louisville, Kentucky.,Robley Rex Veterans Affairs Medical Center , Louisville, Kentucky
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Despite optimal therapy of diabetic nephropathy with agents blocking the renin-angiotensin-aldosterone system, the residual risk of nephropathy progression to end-stage renal disease (ESRD) remains high. The purpose of this review is to discuss the potential role of endothelin antagonism as a therapeutic tool to reduce residual proteinuria and delay kidney injury progression among patients with diabetic nephropathy. RECENT FINDINGS Preclinical studies have shown that endothelin receptor antagonists (ERAs) exert proteinuria lowering and nephroprotective actions in experimental models of diabetic nephropathy. ERAs reduce proteinuria in phase 2 trials that included therapy with renin-angiotensin-aldosterone system blockers. Safety of these agents and protection from ESRD needs to be demonstrated in phase 3 trials. Excess risk of fluid retention and heart failure risk remains. SUMMARY The hypothesis that the antiproteinuric effect of endothelin antagonism may be translated into a slower progression of diabetic nephropathy to ESRD is investigated in ongoing randomized trials assessing 'hard' renal endpoints. ERAs may represent a promising tool toward renoprotection in diabetic nephropathy by individualizing therapy and mitigating the risk of heart failure, if these trials are positive.
Collapse
|
21
|
Korte EA, Caster DJ, Barati MT, Tan M, Zheng S, Berthier CC, Brosius FC, Vieyra MB, Sheehan RM, Kosiewicz M, Wysoczynski M, Gaffney PM, Salant DJ, McLeish KR, Powell DW. ABIN1 Determines Severity of Glomerulonephritis via Activation of Intrinsic Glomerular Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2799-2810. [PMID: 28935578 PMCID: PMC5718094 DOI: 10.1016/j.ajpath.2017.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/15/2017] [Accepted: 08/17/2017] [Indexed: 10/24/2022]
Abstract
Transcription factor NF-κB regulates expression of numerous genes that control inflammation and is activated in glomerular cells in glomerulonephritis (GN). We previously identified genetic variants for a NF-κB regulatory, ubiquitin-binding protein ABIN1 as risk factors for GN in systemic autoimmunity. The goal was to define glomerular inflammatory events controlled by ABIN1 function in GN. Nephrotoxic serum nephritis was induced in wild-type (WT) and ubiquitin-binding deficient ABIN1[D485N] mice, and renal pathophysiology and glomerular inflammatory phenotypes were assessed. Proteinuria was also measured in ABIN1[D485N] mice transplanted with WT mouse bone marrow. Inflammatory activation of ABIN1[D472N] (D485N homolog) cultured human-derived podocytes, and interaction with primary human neutrophils were also assessed. Disruption of ABIN1 function exacerbated proteinuria, podocyte injury, glomerular NF-κB activity, glomerular expression of inflammatory mediators, and glomerular recruitment and retention of neutrophils in antibody-mediated nephritis. Transplantation of WT bone marrow did not prevent the increased proteinuria in ABIN1[D845N] mice. Tumor necrosis factor-stimulated enhanced expression and secretion of NF-κB-targeted proinflammatory mediators in ABIN1[D472N] cultured podocytes compared with WT cells. Supernatants from ABIN1[D472N] podocytes accelerated chemotaxis of human neutrophils, and ABIN1[D472N] podocytes displayed a greater susceptibility to injurious morphologic findings induced by neutrophil granule contents. These studies define a novel role for ABIN1 dysfunction and NF-κB in mediating GN through proinflammatory activation of podocytes.
Collapse
Affiliation(s)
- Erik A Korte
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Dawn J Caster
- Department of Medicine University of Louisville, Louisville, Kentucky; Robley Rex VA Medical Center, Louisville, Kentucky
| | - Michelle T Barati
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Min Tan
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Shirong Zheng
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Celine C Berthier
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Frank C Brosius
- Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan
| | - Mark B Vieyra
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Ryan M Sheehan
- Department of Medicine University of Louisville, Louisville, Kentucky
| | - Michele Kosiewicz
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | | | - Patrick M Gaffney
- Arthritis and Clinical Immunology Program and Clinical Pharmacology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - David J Salant
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Kenneth R McLeish
- Department of Medicine University of Louisville, Louisville, Kentucky; Department of Internal Medicine-Nephrology, University of Michigan, Ann Arbor, Michigan
| | - David W Powell
- Department of Medicine University of Louisville, Louisville, Kentucky.
| |
Collapse
|
22
|
Chen Z, An X, Liu X, Qi J, Ding D, Zhao M, Duan S, Huang Z, Zhang C, Wu L, Zhang B, Zhang A, Yuan Y, Xing C. Hyperoside alleviates adriamycin-induced podocyte injury via inhibiting mitochondrial fission. Oncotarget 2017; 8:88792-88803. [PMID: 29179476 PMCID: PMC5687646 DOI: 10.18632/oncotarget.21287] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/27/2017] [Indexed: 01/07/2023] Open
Abstract
Podocyte injury underlies many forms of glomerular diseases. Our previous study showed that hyperoside, a naturally occurring flavonoid, could decrease albuminuria at the early stage of diabetic nephropathy by ameliorating renal damage and podocyte injury. However, its protective mechanism against podocyte injury is unknown. A previous study demonstrated that hyperoside might inhibit amyloid β-protein-induced neurotoxicity by suppressing mitochondrial dysfunction. Both mitochondrial dysfunction and its upstream determinant mitochondrial fission were closely related to podocyte injury. Thus, in the current study, we tested the effect of hyperoside on mitochondrial dysfunction and mitochondrial fission in adriamycin (ADR)-induced podocyte injury. In the mice model of ADR-induced nephropathy, hyperoside treatment inhibited ADR-induced albuminuria and podocyte injury. Meanwhile, hyperoside also blocked ADR-induced mitochondrial dysfunction and mitochondrial fission. Consistently, in cultured human podocytes, hyperoside suppressed ADR-induced podocyte injury, mitochondrial dysfunction and mitochondrial fission. All these results indicated that hyperoside might inhibit ADR-induced mitochondrial dysfunction and podocyte injury through suppressing mitochondrial fission both in vivo and in vitro. The underlying mechanisms which we revealed support the therapeutic effects of hyperoside for a broad range of glomerular diseases.
Collapse
Affiliation(s)
- Zhuyun Chen
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiaofei An
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi Liu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jia Qi
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dafa Ding
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Min Zhao
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China
| | - Suyan Duan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zhimin Huang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Chengning Zhang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Lin Wu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Bo Zhang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China
| | - Yanggang Yuan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Changying Xing
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Kasztan M, Fox BM, Speed JS, De Miguel C, Gohar EY, Townes TM, Kutlar A, Pollock JS, Pollock DM. Long-Term Endothelin-A Receptor Antagonism Provides Robust Renal Protection in Humanized Sickle Cell Disease Mice. J Am Soc Nephrol 2017; 28:2443-2458. [PMID: 28348063 DOI: 10.1681/asn.2016070711] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 02/13/2017] [Indexed: 11/03/2022] Open
Abstract
Sickle cell disease (SCD)-associated nephropathy is a major source of morbidity and mortality in patients because of the lack of efficacious treatments targeting renal manifestations of the disease. Here, we describe a long-term treatment strategy with the selective endothelin-A receptor (ETA) antagonist, ambrisentan, designed to interfere with the development of nephropathy in a humanized mouse model of SCD. Ambrisentan preserved GFR at the level of nondisease controls and prevented the development of proteinuria, albuminuria, and nephrinuria. Microscopy studies demonstrated prevention of podocyte loss and structural alterations, the absence of vascular congestion, and attenuation of glomerulosclerosis in treated mice. Studies in isolated glomeruli showed that treatment reduced inflammation and oxidative stress. At the level of renal tubules, ambrisentan treatment prevented the increased excretion of urinary tubular injury biomarkers. Additionally, the treatment strategy prevented tubular brush border loss, diminished tubular iron deposition, blocked the development of interstitial fibrosis, and prevented immune cell infiltration. Furthermore, the prevention of albuminuria in treated mice was associated with preservation of cortical megalin expression. In a separate series of identical experiments, combined ETA and ETB receptor antagonism provided only some of the protection observed with ambrisentan, highlighting the importance of exclusively targeting the ETA receptor in SCD. Our results demonstrate that ambrisentan treatment provides robust protection from diverse renal pathologies in SCD mice, and suggest that long-term ETA receptor antagonism may provide a strategy for the prevention of renal complications of SCD.
Collapse
Affiliation(s)
| | - Brandon M Fox
- Cardio-Renal Physiology and Medicine, Department of Medicine, and
| | - Joshua S Speed
- Cardio-Renal Physiology and Medicine, Department of Medicine, and
| | - Carmen De Miguel
- Cardio-Renal Physiology and Medicine, Department of Medicine, and
| | - Eman Y Gohar
- Cardio-Renal Physiology and Medicine, Department of Medicine, and
| | - Tim M Townes
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama; and
| | | | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine, Department of Medicine, and.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Department of Medicine, and .,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
24
|
Role of the endothelin system in sexual dimorphism in cardiovascular and renal diseases. Life Sci 2016; 159:20-29. [PMID: 26939577 DOI: 10.1016/j.lfs.2016.02.093] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/05/2016] [Accepted: 02/26/2016] [Indexed: 02/08/2023]
Abstract
Epidemiological studies of blood pressure in men and women and in experimental animal models point to substantial sex differences in the occurrence of arterial hypertension as well as in the various manifestations of arterial hypertension, including myocardial infarction, stroke, retinopathy, chronic kidney failure, as well as hypertension-associated diseases (e.g. diabetes mellitus). Increasing evidence demonstrates that the endothelin (ET) system is a major player in the genesis of sex differences in cardiovascular and renal physiology and diseases. Sex differences in the ET system have been described in the vasculature, heart and kidney of humans and experimental animals. In the current review, we briefly describe the role of the ET system in the cardiovascular and renal systems. We also update information on sex differences at different levels of the ET system including synthesis, circulating and tissue levels, receptors, signaling pathways, ET actions, and responses to antagonists in different organs that contribute to blood pressure regulation. Knowledge of the mechanisms underlying sex differences in arterial hypertension can impact therapeutic strategies. Sex-targeted and/or sex-tailored approaches may improve treatment of cardiovascular and renal diseases.
Collapse
|
25
|
Harvey TW, Engel JE, Chade AR. Vascular Endothelial Growth Factor and Podocyte Protection in Chronic Hypoxia: Effects of Endothelin-A Receptor Antagonism. Am J Nephrol 2016; 43:74-84. [PMID: 26930122 DOI: 10.1159/000444719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/12/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Podocytes are major components of the filtration barrier and a renal source of vascular endothelial growth factor (VEGF). Chronic renovascular disease (RVD) progressively degrades the renal function, accompanied by podocyte damage and a progressive reduction in VEGF. We showed that the endothelin (ET) pathway contributes to this pathological process and ET-A (but not ET-B) receptor antagonism protects the kidney in RVD. We hypothesize that ET-A-induced renoprotection is largely driven by the protection of podocyte integrity and function. METHODS To mimic the renal environment of chronic RVD, human podocytes were incubated under chronic hypoxia for 96 h and divided in untreated or treated with an ET-A or ET-B receptor antagonist. Cells were quantified after 96 h. Cell homogenates and media were obtained after 1, 24 and 96 h to quantify production of VEGF, anti-VEGF soluble receptor s-Flt1, and the expression of apoptotic mediators. A separate set of similar experiments was performed after addition of a VEGF-neutralizing antibody (VEGF-NA). RESULTS Hypoxia decreased podocyte number, which was exacerbated by ET-B but improved after ET-A antagonism. Production of VEGF was preserved by ET-A antagonism, whereas s-Flt1 increased in hypoxic cells after ET-B antagonism only, accompanied by a greater expression of pro-apoptotic mediators. On the other hand, treatment with VEGF-NA diminished ET-A-induced protection of podocytes. CONCLUSION ET-A antagonism preserves podocyte viability and integrity under chronic hypoxia, whereas ET-B antagonism exacerbates podocyte dysfunction and death. Enhanced bioavailability of VEGF after ET-A antagonism could be a pivotal mechanism of podocyte protection that significantly contributes to ET-A receptor blockade-induced renal recovery in chronic RVD.
Collapse
Affiliation(s)
- Taylor W Harvey
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Miss., USA
| | | | | |
Collapse
|
26
|
Abstract
The incidence of progressive kidney disease associated with diabetes continues to increase worldwide. Only partial renoprotection is achieved by current standard therapy with angiotensin-converting enzyme inhibitors and/or angiotensin-receptor blockers, increasing the need for novel therapeutic approaches. Experimental studies have provided evidence of a pathogenic role for endothelin-1 (ET-1) and its cognate receptors in the development and progression of diabetic nephropathy. ET-1, mainly through the activation of ETA receptor, contributes to renal cell injury, inflammation, and fibrosis. In animal models of type 1 and type 2 diabetes, ETA-selective antagonists have been shown to provide renoprotective effects, supplying the rationale for clinical trials in patients with diabetic nephropathy with ETA-receptor antagonists administered in addition to renin-angiotensin system blockade.
Collapse
Affiliation(s)
- Elena Gagliardini
- Unit of Advanced Microscopy, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Carlamaria Zoja
- Laboratory of Pathophysiology of Experimental Renal Disease and Interaction With Other Organ Systems, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | - Ariela Benigni
- Department of Molecular Medicine, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy.
| |
Collapse
|
27
|
Culshaw GJ, MacIntyre IM, Dhaun N, Webb DJ. Endothelin in nondiabetic chronic kidney disease: preclinical and clinical studies. Semin Nephrol 2016; 35:176-87. [PMID: 25966349 DOI: 10.1016/j.semnephrol.2015.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The incidence and prevalence of chronic kidney disease (CKD) is increasing. Despite current therapies, many patients with CKD have suboptimal blood pressure, ongoing proteinuria, and develop progressive renal dysfunction. Further therapeutic options therefore are required. Over the past 20 years the endothelin (ET) system has become a prime target. Experimental models have shown that ET-1, acting primarily via the endothelin-A receptor, plays an important role in the development of proteinuria, glomerular injury, fibrosis, and inflammation. Subsequent animal and early clinical studies using ET-receptor antagonists have suggested that theses therapies may slow renal disease progression primarily through blood pressure and proteinuria reduction. This review examines the current literature regarding the ET system in nondiabetic CKD.
Collapse
Affiliation(s)
- Geoff J Culshaw
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK.
| | - Iain M MacIntyre
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - Neeraj Dhaun
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| | - David J Webb
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, Scotland, UK
| |
Collapse
|
28
|
Abstract
Endothelin-1 (ET-1) is a 21-amino acid peptide with mitogenic and powerful vasoconstricting properties. Under healthy conditions, ET-1 is expressed constitutively in all cells of the glomerulus and participates in homeostasis of glomerular structure and filtration function. Under disease conditions, increases in ET-1 are critically involved in initiating and maintaining glomerular inflammation, glomerular basement membrane hypertrophy, and injury of podocytes (visceral epithelial cells), thereby promoting proteinuria and glomerulosclerosis. Here, we review the role of ET-1 in the function of glomerular endothelial cells, visceral (podocytes) and parietal epithelial cells, mesangial cells, the glomerular basement membrane, stromal cells, inflammatory cells, and mesenchymal stem cells. We also discuss molecular mechanisms by which ET-1, predominantly through activation of the ETA receptor, contributes to injury to glomerular cells, and review preclinical and clinical evidence supporting its pathogenic role in glomerular injury in chronic renal disease. Finally, the therapeutic rationale for endothelin antagonists as a new class of antiproteinuric drugs is discussed.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zurich, Zurich, Switzerland.
| | - Andrey Sorokin
- Department of Medicine, Kidney Disease Center, Division of Nephrology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
29
|
Abstract
Podocytes are highly specialized cells of the kidney glomerulus that wrap around capillaries and that neighbor cells of the Bowman’s capsule. When it comes to glomerular filtration, podocytes play an active role in preventing plasma proteins from entering the urinary ultrafiltrate by providing a barrier comprising filtration slits between foot processes, which in aggregate represent a dynamic network of cellular extensions. Foot processes interdigitate with foot processes from adjacent podocytes and form a network of narrow and rather uniform gaps. The fenestrated endothelial cells retain blood cells but permit passage of small solutes and an overlying basement membrane less permeable to macromolecules, in particular to albumin. The cytoskeletal dynamics and structural plasticity of podocytes as well as the signaling between each of these distinct layers are essential for an efficient glomerular filtration and thus for proper renal function. The genetic or acquired impairment of podocytes may lead to foot process effacement (podocyte fusion or retraction), a morphological hallmark of proteinuric renal diseases. Here, we briefly discuss aspects of a contemporary view of podocytes in glomerular filtration, the patterns of structural changes in podocytes associated with common glomerular diseases, and the current state of basic and clinical research.
Collapse
Affiliation(s)
- Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Mehmet M Altintas
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
30
|
Sun HB, Ren X, Liu J, Guo XW, Jiang XP, Zhang DX, Huang YS, Zhang JP. HSP27 phosphorylation protects against endothelial barrier dysfunction under burn serum challenge. Biochem Biophys Res Commun 2015; 463:377-83. [DOI: 10.1016/j.bbrc.2015.04.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/24/2015] [Indexed: 11/26/2022]
|
31
|
Tobe S, Kohan DE, Singarayer R. Endothelin Receptor Antagonists: New Hope for Renal Protection? Curr Hypertens Rep 2015; 17:57. [DOI: 10.1007/s11906-015-0568-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Abstract
Diabetic kidney disease (DKD) remains the most common cause of chronic kidney disease and multiple therapeutic agents, primarily targeted at the renin-angiotensin system, have been assessed. Their only partial effectiveness in slowing down progression to end-stage renal disease, points out an evident need for additional effective therapies. In the context of diabetes, endothelin-1 (ET-1) has been implicated in vasoconstriction, renal injury, mesangial proliferation, glomerulosclerosis, fibrosis and inflammation, largely through activation of its endothelin A (ETA) receptor. Therefore, endothelin receptor antagonists have been proposed as potential drug targets. In experimental models of DKD, endothelin receptor antagonists have been described to improve renal injury and fibrosis, whereas clinical trials in DKD patients have shown an antiproteinuric effect. Currently, its renoprotective effect in a long-time clinical trial is being tested. This review focuses on the localization of endothelin receptors (ETA and ETB) within the kidney, as well as the ET-1 functions through them. In addition, we summarize the therapeutic benefit of endothelin receptor antagonists in experimental and human studies and the adverse effects that have been described.
Collapse
|
33
|
ZHANG HONGXIA, MAO XING, SUN YU, HU RUIMIN, LUO WEILI, ZHAO ZHONGHUA, CHEN QI, ZHANG ZHIGANG. NF-κB upregulates ubiquitin C-terminal hydrolase 1 in diseased podocytes in glomerulonephritis. Mol Med Rep 2015; 12:2893-901. [DOI: 10.3892/mmr.2015.3780] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 04/10/2015] [Indexed: 11/05/2022] Open
|
34
|
Obata F, Subrahmanyam PB, Vozenilek AE, Hippler LM, Jeffers T, Tongsuk M, Tiper I, Saha P, Jandhyala DM, Kolling GL, Latinovic O, Webb TJ. Natural killer T (NKT) cells accelerate Shiga toxin type 2 (Stx2) pathology in mice. Front Microbiol 2015; 6:262. [PMID: 25904903 PMCID: PMC4389548 DOI: 10.3389/fmicb.2015.00262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/16/2015] [Indexed: 01/08/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a leading cause of childhood renal disease Hemolytic Uremic Syndrome (HUS). The involvement of renal cytokines and chemokines is suspected to play a critical role in disease progression. In current article, we tested the hypothesis that NKT cells are involved in Stx2-induced pathology in vivo. To address this hypothesis we compared Stx2 toxicity in WT and CD1 knockout (KO) mice. In CD1KO mice, which lack natural killer T (NKT) cells, Stx2-induced pathologies such as weight loss, renal failure, and death were delayed. In WT mice, Stx2-specific selective increase in urinary albumin occurs in later time points, and this was also delayed in NKT cell deficient mice. NKT cell-associated cytokines such as IL-2, IL-4, IFN-γ, and IL-17 were detected in kidney lysates of Stx2-injected WT mice with the peak around 36 h after Stx2 injection. In CD1KO, there was a delay in the kinetics, and increases in these cytokines were observed 60 h post Stx2 injection. These data suggest that NKT cells accelerate Stx2-induced pathology in mouse kidneys. To determine the mechanism by which NKT cells promote Stx2-associated disease, in vitro studies were performed using murine renal cells. We found that murine glomerular endothelial cells and podocytes express functional CD1d molecules and can present exogenous antigen to NKT cells. Moreover, we observed the direct interaction between Stx2 and the receptor Gb3 on the surface of mouse renal cells by 3D STORM-TIRF which provides single molecule imaging. Collectively, these data suggest that Stx2 binds to Gb3 on renal cells and leads to aberrant CD1d-mediated NKT cell activation. Therefore, strategies targeting NKT cells could have a significant impact on Stx2-associated renal pathology in STEC disease.
Collapse
Affiliation(s)
- Fumiko Obata
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA ; Department of Molecular Pathology, University of Yamanashi Graduate School of Medicine Chuo, Japan
| | - Priyanka B Subrahmanyam
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Aimee E Vozenilek
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Lauren M Hippler
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Tynae Jeffers
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Methinee Tongsuk
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Irina Tiper
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Progyaparamita Saha
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Dakshina M Jandhyala
- Department of Molecular Biology and Microbiology, Tufts University Boston, MA, USA
| | - Glynis L Kolling
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Charlottesville, VA, USA
| | - Olga Latinovic
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA ; Institute of Human Virology, University of Maryland School of Medicine Baltimore, MD, USA
| | - Tonya J Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|
35
|
Schneider MP, Mann JF. Endothelin antagonism for patients with chronic kidney disease: still a hope for the future. Nephrol Dial Transplant 2014; 29 Suppl 1:i69-i73. [PMID: 24493872 DOI: 10.1093/ndt/gft339] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Endothelin is tightly involved in the regulation of vascular and renal function in health and in disease. In a variety of animal models of kidney disease, endothelin promotes renal injury through effects on inflammation and fibrosis. Furthermore, experimental data strongly suggest that blocking the actions of endothelin should be beneficial in patients with chronic kidney disease. However, despite encouraging pre-clinical and clinical evidence, endothelin antagonists are not yet an established treatment option in patients with chronic kidney disease. This article reviews key physiological and pathophysiological aspects of the endothelin system in the vasculature and the kidney, as well as results of pre-clinical and clinical studies on the use of endothelin antagonists in chronic kidney disease. We will also provide an outlook on the future of endothelin antagonism in this area, and issues to be resolved before endothelin antagonists are to become a reality for patients with chronic kidney disease.
Collapse
Affiliation(s)
- Markus P Schneider
- Department of Nephrology and Hypertension, University of Erlangen-Nuremberg and Nuremberg General Hospital, Erlangen, Germany
| | | |
Collapse
|
36
|
Kohan DE, Barton M. Endothelin and endothelin antagonists in chronic kidney disease. Kidney Int 2014; 86:896-904. [PMID: 24805108 PMCID: PMC4216619 DOI: 10.1038/ki.2014.143] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 01/31/2014] [Accepted: 02/06/2014] [Indexed: 01/10/2023]
Abstract
The incidence and prevalence of chronic kidney disease (CKD), with diabetes and hypertension accounting for the majority of cases, is on the rise, with up to 160 million individuals worldwide predicted to be affected by 2020. Given that current treatment options, primarily targeted at the renin-angiotensin system, only modestly slow down progression to end-stage renal disease, the urgent need for additional effective therapeutics is evident. Endothelin-1 (ET-1), largely through activation of endothelin A receptors, has been strongly implicated in renal cell injury, proteinuria, inflammation, and fibrosis leading to CKD. Endothelin receptor antagonists (ERAs) have been demonstrated to ameliorate or even reverse renal injury and/or fibrosis in experimental models of CKD, whereas clinical trials indicate a substantial antiproteinuric effect of ERAs in diabetic and nondiabetic CKD patients even on top of maximal renin-angiotensin system blockade. This review summarizes the role of ET in CKD pathogenesis and discusses the potential therapeutic benefit of targeting the ET system in CKD, with attention to the risks and benefits of such an approach.
Collapse
Affiliation(s)
- Donald E. Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, UT
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
37
|
Porubsky S, Federico G, Müthing J, Jennemann R, Gretz N, Büttner S, Obermüller N, Jung O, Hauser IA, Gröne E, Geiger H, Gröne HJ, Betz C. Direct acute tubular damage contributes to Shigatoxin-mediated kidney failure. J Pathol 2014; 234:120-33. [PMID: 24909663 PMCID: PMC4282478 DOI: 10.1002/path.4388] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/29/2014] [Accepted: 06/04/2014] [Indexed: 01/11/2023]
Abstract
The pathogenesis and therapy of Shigatoxin 2 (Stx2)-mediated kidney failure remain controversial. Our aim was to test whether, during an infection with Stx2-producing E. coli (STEC), Stx2 exerts direct effects on renal tubular epithelium and thereby possibly contributes to acute renal failure. Mice represent a suitable model because they, like humans, express the Stx2-receptor Gb3 in the tubular epithelium but, in contrast to humans, not in glomerular endothelia, and are thus free of glomerular thrombotic microangiopathy (TMA). In wild-type mice, Stx2 caused acute tubular dysfunction with consequent electrolyte disturbance, which was most likely the cause of death. Tubule-specific depletion of Gb3 protected the mice from acute renal failure. In vitro, Stx2 induced secretion of proinflammatory cytokines and apoptosis in human tubular epithelial cells, thus implicating a direct effect of Stx2 on the tubular epithelium. To correlate these results to human disease, kidney biopsies and outcome were analysed in patients with Stx2-associated kidney failure (n = 11, aged 22–44 years). The majority of kidney biopsies showed different stages of an ongoing TMA; however, no glomerular complement activation could be demonstrated. All biopsies, including those without TMA, showed severe acute tubular damage. Due to these findings, patients were treated with supportive therapy without complement-inhibiting antibodies (eculizumab) or immunoadsorption. Despite the severity of the initial disease [creatinine 6.34 (1.31–17.60) mg/dl, lactate dehydrogenase 1944 (753–2792) U/l, platelets 33 (19–124)/nl and haemoglobin 6.2 (5.2–7.8) g/dl; median (range)], all patients were discharged after 33 (range 19–43) days with no neurological symptoms and no dialysis requirement [creatinine 1.39 (range 0.84–2.86) mg/dl]. The creatinine decreased further to 0.90 (range 0.66–1.27) mg/dl after 24 months. Based on these data, one may surmise that acute tubular damage represents a separate pathophysiological mechanism, importantly contributing to Stx2-mediated acute kidney failure. Specifically in young adults, an excellent outcome can be achieved by supportive therapy only. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Stefan Porubsky
- Department of Cellular and Molecular Pathology, German Cancer Research Centre, Heidelberg, Germany; Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lenoir O, Milon M, Virsolvy A, Hénique C, Schmitt A, Massé JM, Kotelevtsev Y, Yanagisawa M, Webb DJ, Richard S, Tharaux PL. Direct action of endothelin-1 on podocytes promotes diabetic glomerulosclerosis. J Am Soc Nephrol 2014; 25:1050-62. [PMID: 24722437 DOI: 10.1681/asn.2013020195] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The endothelin system has emerged as a novel target for the treatment of diabetic nephropathy. Endothelin-1 promotes mesangial cell proliferation and sclerosis. However, no direct pathogenic effect of endothelin-1 on podocytes has been shown in vivo and endothelin-1 signaling in podocytes has not been investigated. This study investigated endothelin effects in podocytes during experimental diabetic nephropathy. Stimulation of primary mouse podocytes with endothelin-1 elicited rapid calcium transients mediated by endothelin type A receptors (ETARs) and endothelin type B receptors (ETBRs). We then generated mice with a podocyte-specific double deletion of ETAR and ETBR (NPHS2-Cre×Ednra(lox/lox)×Ednrb(lox/lox) [Pod-ETRKO]). In vitro, treatment with endothelin-1 increased total β-catenin and phospho-NF-κB expression in wild-type glomeruli, but this effect was attenuated in Pod-ETRKO glomeruli. After streptozotocin injection to induce diabetes, wild-type mice developed mild diabetic nephropathy with microalbuminuria, mesangial matrix expansion, glomerular basement membrane thickening, and podocyte loss, whereas Pod-ETRKO mice presented less albuminuria and were completely protected from glomerulosclerosis and podocyte loss, even when uninephrectomized. Moreover, glomeruli from normal and diabetic Pod-ETRKO mice expressed substantially less total β-catenin and phospho-NF-κB compared with glomeruli from counterpart wild-type mice. This evidence suggests that endothelin-1 drives development of glomerulosclerosis and podocyte loss through direct activation of endothelin receptors and NF-κB and β-catenin pathways in podocytes. Notably, both the expression and function of the ETBR subtype were found to be important. Furthermore, these results indicate that activation of the endothelin-1 pathways selectively in podocytes mediates pathophysiologic crosstalk that influences mesangial architecture and sclerosis.
Collapse
Affiliation(s)
- Olivia Lenoir
- Paris Cardiovascular Research Centre, Institut National de la Santé et de la Recherche Médicale, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marine Milon
- Paris Cardiovascular Research Centre, Institut National de la Santé et de la Recherche Médicale, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Virsolvy
- Physiologie et Médecine expérimentale du Cœur et des Muscles, Institut National de la Santé et de la Recherche Médicale U1046, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Carole Hénique
- Paris Cardiovascular Research Centre, Institut National de la Santé et de la Recherche Médicale, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Alain Schmitt
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Transmission Electron Microscopy Platform, Institut National de la Santé et de la Recherche Médicale U1016, Cochin Institut, Paris, France; Centre National de la Recherche Scientifique UMR81044, Paris, France
| | - Jean-Marc Massé
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Transmission Electron Microscopy Platform, Institut National de la Santé et de la Recherche Médicale U1016, Cochin Institut, Paris, France; Centre National de la Recherche Scientifique UMR81044, Paris, France
| | - Yuri Kotelevtsev
- The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; Pushchino State Institute for Natural Sciences, Pushchino, Moscow Region, Russian Federation
| | | | - David J Webb
- The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Sylvain Richard
- Physiologie et Médecine expérimentale du Cœur et des Muscles, Institut National de la Santé et de la Recherche Médicale U1046, Université Montpellier 1, Université Montpellier 2, Montpellier, France
| | - Pierre-Louis Tharaux
- Paris Cardiovascular Research Centre, Institut National de la Santé et de la Recherche Médicale, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Nephrology Service, Georges Pompidou European Hospital, Assistance Publique Hopitaux de Paris, Paris, France
| |
Collapse
|
39
|
Locatelli M, Buelli S, Pezzotta A, Corna D, Perico L, Tomasoni S, Rottoli D, Rizzo P, Conti D, Thurman JM, Remuzzi G, Zoja C, Morigi M. Shiga toxin promotes podocyte injury in experimental hemolytic uremic syndrome via activation of the alternative pathway of complement. J Am Soc Nephrol 2014; 25:1786-98. [PMID: 24578132 DOI: 10.1681/asn.2013050450] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli is the offending agent of postdiarrhea-associated hemolytic uremic syndrome (HUS), a disorder of glomerular ischemic damage and widespread microvascular thrombosis. We previously documented that Stx induces glomerular complement activation, generating C3a responsible for microvascular thrombosis in experimental HUS. Here, we show that the presence of C3 deposits on podocytes is associated with podocyte damage and loss in HUS mice generated by the coinjection of Stx2 and LPS. Because podocyte adhesion to the glomerular basement membrane is mediated by integrins, the relevance of integrin-linked kinase (ILK) signals in podocyte dysfunction was evaluated. Podocyte expression of ILK increased after the injection of Stx2/LPS and preceded the upregulation of Snail and downregulation of nephrin and α-actinin-4. Factor B deficiency or pretreatment with an inhibitory antibody to factor B protected mice against Stx2/LPS-induced podocyte dysregulation. Similarly, pretreatment with a C3a receptor antagonist limited podocyte loss and changes in ILK, Snail, and α-actinin-4 expression. In cultured podocytes, treatment with C3a reduced α-actinin-4 expression and promoted ILK-dependent nuclear expression of Snail and cell motility. These results suggest that Stx-induced activation of the alternative pathway of complement and generation of C3a promotes ILK signaling, leading to podocyte dysfunction and loss in Stx-HUS.
Collapse
Affiliation(s)
- Monica Locatelli
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy
| | - Simona Buelli
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy
| | - Anna Pezzotta
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy
| | - Daniela Corna
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy
| | - Luca Perico
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy
| | - Susanna Tomasoni
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy
| | - Daniela Rottoli
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy
| | - Paola Rizzo
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy
| | - Debora Conti
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy
| | - Joshua M Thurman
- Division of Nephrology and Hypertension, University of Colorado Denver School of Medicine, Aurora, Colorado; and
| | - Giuseppe Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy; Unit of Nephrology and Dialysis, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Carlamaria Zoja
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy
| | - Marina Morigi
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy;
| |
Collapse
|
40
|
Protection of human podocytes from shiga toxin 2-induced phosphorylation of mitogen-activated protein kinases and apoptosis by human serum amyloid P component. Infect Immun 2014; 82:1872-9. [PMID: 24566618 DOI: 10.1128/iai.01591-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hemolytic uremic syndrome (HUS) is mainly induced by Shiga toxin 2 (Stx2)-producing Escherichia coli. Proteinuria can occur in the early phase of the disease, and its persistence determines the renal prognosis. Stx2 may injure podocytes and induce proteinuria. Human serum amyloid P component (SAP), a member of the pentraxin family, has been shown to protect against Stx2-induced lethality in mice in vivo, presumably by specific binding to the toxin. We therefore tested the hypothesis that SAP can protect against Stx2-induced injury of human podocytes. To elucidate the mechanisms underlying podocyte injury in HUS-associated proteinuria, we assessed Stx2-induced activation of mitogen-activated protein kinases (MAPKs) and apoptosis in immortalized human podocytes and evaluated the impact of SAP on Stx2-induced damage. Human podocytes express Stx2-binding globotriaosylceramide 3. Stx2 applied to cultured podocytes was internalized and then activated p38α MAPK and c-Jun N-terminal kinase (JNK), important signaling steps in cell differentiation and apoptosis. Stx2 also activated caspase 3, resulting in an increased level of apoptosis. Coincubation of podocytes with SAP and Stx2 mitigated the effects of Stx2 and induced upregulation of antiapoptotic Bcl2. These data suggest that podocytes are a target of Stx2 and that SAP protects podocytes against Stx2-induced injury. SAP may therefore be a useful therapeutic option.
Collapse
|
41
|
The profibrotic role of endothelin-1: is the door still open for the treatment of fibrotic diseases? Life Sci 2013; 118:156-64. [PMID: 24378671 DOI: 10.1016/j.lfs.2013.12.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/06/2013] [Accepted: 12/16/2013] [Indexed: 01/07/2023]
Abstract
The endothelin (ET) system consists of two G-protein-coupled receptors (ETA and ETB), three peptide ligands (ET-1, ET-2 and ET-3), and two activating peptidases (endothelin-converting enzyme-, ECE-1 and ECE-2). While initially described as a vasoregulatory factor, shown to influence several cardiovascular diseases, from hypertension to heart failure, ET-1, the predominant form in most cells and tissues, has expanded its pathophysiological relevance by recent evidences implicating this factor in the regulation of fibrosis. In this article, we review the current knowledge of the role of ET-1 in the development of fibrosis, with particular focus on the regulation of its biosynthesis and the molecular mechanisms involved in its profibrotic actions. We summarize also the contribution of ET-1 to fibrotic disorders in several organs and tissues. The development and availability of specific ET receptor antagonists have greatly stimulated a number of clinical trials in these pathologies that unfortunately have so far given negative or inconclusive results. This review finally discusses the circumstances underlying these disappointing results, as well as provides basic and clinical researchers with arguments to keep exploring the complex physiology of ET-1 and its therapeutic potential in the process of fibrosis.
Collapse
|
42
|
Buelli S, Rosanò L, Gagliardini E, Corna D, Longaretti L, Pezzotta A, Perico L, Conti S, Rizzo P, Novelli R, Morigi M, Zoja C, Remuzzi G, Bagnato A, Benigni A. β-arrestin-1 drives endothelin-1-mediated podocyte activation and sustains renal injury. J Am Soc Nephrol 2013; 25:523-33. [PMID: 24371298 DOI: 10.1681/asn.2013040362] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Activation of endothelin-A receptor (ET(A)R) by endothelin-1 (ET-1) drives epithelial-to-mesenchymal transition in ovarian tumor cells through β-arrestin signaling. Here, we investigated whether this pathogenetic pathway could affect podocyte phenotype in proliferative glomerular disorders. In cultured mouse podocytes, ET-1 caused loss of the podocyte differentiation marker synaptopodin and acquisition of the mesenchymal marker α-smooth muscle actin. ET-1 promoted podocyte migration via ET(A)R activation and increased β-arrestin-1 expression. Activated ET(A)R recruited β-arrestin-1 to form a trimeric complex with Src leading to epithelial growth factor receptor (EGFR) transactivation and β-catenin phosphorylation, which promoted gene transcription of Snail. Increased Snail expression fostered ET-1-induced migration as confirmed by Snail knockdown experiments. Silencing of β-arrestin-1 prevented podocyte phenotypic changes and motility and inhibited ET(A)R-driven signaling. In vitro findings were confirmed in doxorubicin (Adriamycin)-induced nephropathy. Mice receiving Adriamycin developed renal injury with loss of podocytes and hyperplastic lesion formation; β-arrestin-1 expression increased in visceral podocytes and in podocytes entrapped in pseudo-crescents. Administration of the selective ET(A)R antagonist sitaxsentan prevented podocyte loss, formation of the hyperplastic lesions, and normalized expression of glomerular β-arrestin-1 and Snail. Increased β-arrestin-1 levels in podocytes retrieved from crescents of patients with proliferative glomerulopathies confirmed the translational relevance of these findings and suggest the therapeutic potential of ET(A)R antagonism for a group of diseases still needing a specific treatment.
Collapse
Affiliation(s)
- Simona Buelli
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Centro Anna Maria Astori, Bergamo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kittikulsuth W, Sullivan JC, Pollock DM. ET-1 actions in the kidney: evidence for sex differences. Br J Pharmacol 2013; 168:318-26. [PMID: 22372527 DOI: 10.1111/j.1476-5381.2012.01922.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hypertension and chronic kidney disease are more common in men than in premenopausal women at the same age. In animal models, females are relatively protected against genetic or pharmacological procedures that produce high blood pressure and renal injury. Overactivation or dysfunction of the endothelin (ET) system modulates the progression of hypertension or kidney diseases with the ET(A) receptor primarily mediating vasoconstriction, injury and anti-natriuresis, and ET(B) receptors having opposite effects. The purpose of this review is to examine the role of the ET system in the kidney with a focus on the inequality between the sexes associated with the susceptibility to and progression of hypertension and kidney diseases. In most animal models, males have higher renal ET-1 mRNA expression, greater ET(A) -mediated responses, including renal medullary vasoconstriction, and increased renal injury. These differences are reduced following gonadectomy suggesting a role for sex hormones, mainly testosterone. In contrast, females are relatively protected from high blood pressure and kidney damage via increased ET(B) versus ET(A) receptor function. Furthermore, ET(A) receptors may have a favourable effect on sodium excretion and reducing renal damage in females. In human studies, the genetic polymorphisms of the ET system are more associated with hypertension and renal injury in women. However, the knowledge of sex differences in the efficacy or adverse events of ET(A) antagonists in the treatment of hypertension and kidney disease is poorly described. Increased understanding how the ET system acts differently in the kidneys between sexes, especially with regard to receptor subtype function, could lead to better treatments for hypertension and renal disease. LINKED ARTICLES This article is part of a themed section on Endothelin. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.168.issue-1.
Collapse
Affiliation(s)
- W Kittikulsuth
- Experimental Medicine, Department of Medicine, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | |
Collapse
|
44
|
Zhang H, Sun Y, Hu R, Luo W, Mao X, Zhao Z, Chen Q, Zhang Z. The regulation of the UCH-L1 gene by transcription factor NF-κB in podocytes. Cell Signal 2013; 25:1574-85. [PMID: 23567262 DOI: 10.1016/j.cellsig.2013.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/23/2013] [Accepted: 03/28/2013] [Indexed: 11/19/2022]
Abstract
In kidney, the ubiquitin carboxy-terminal hydrolase 1 (UCH-L1) is involved in podocyte injury and proteinuria but details of the mechanism underlying its regulation are not known. Activation of NF-κB is thought to be the predominant risk factor for kidney disease; therefore, it is postulated that UCH-L1 may be one of the NF-κB target genes. In this study, we investigated the involvement of NF-κB activation in the regulation of UCH-L1 expression and the function of murine podocytes. Stimulation of podocytes with the cytokines TNF-α and IL-1β up-regulated UCH-L1 expression rapidly at the mRNA and protein levels and the NF-κB-specific inhibitor pyrrolidine dithiocarbamate resulted in down-regulation. NF-κB up-regulates UCH-L1 via binding the --300 bp and --109 bp sites of its promoter, which was confirmed by the electrophoretic mobility shift assay of DNA-nuclear protein binding. In the renal biopsy from lupus nephritis patients, the expressions of NF-κB and UCH-L1 increased in immunohistochestry staining and were positively correlated. Activation of NF-κB up-regulates UCH-L1 expression following changing of other podocytes molecules, such as nephrin and snail. These results suggest that activation of the NF-κB signaling pathway could be the major pathogenesis to up-regulate UCH-L1 in podocyte injury, followed by the turnover of other molecules, which might result in morphological changes and dysfunction of podocytes. This work help us to understand the effect of NF-κB on specific target molecules of podocytes, and suggest that targeting the NF-κB-UCH-L1 interaction could be a novel therapeutic strategy for the treatment of podocyte lesions and proteinuria.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Pathology and Key Laboratory of Molecular Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Since its discovery over 20 years ago endothelin-1 (ET-1) has been implicated in a number of physiological and pathophysiological processes. Its role in the development and progression of chronic kidney disease (CKD) is well established and is an area of ongoing intense research. There are now available a number of ET receptor antagonists many of which have been used in trials with CKD patients and shown to reduce BP and proteinuria. However, ET-1 has a number of BP-independent effects. Importantly, and in relation to the kidney, ET-1 has clear roles to play in cell proliferation, podocyte dysfunction, inflammation and fibrosis, and arguably, these actions of ET-1 may be more significant in the progression of CKD than its prohypertensive actions. This review will focus on the potential role of ET-1 in renal disease with an emphasis on its BP-independent actions.
Collapse
Affiliation(s)
- Neeraj Dhaun
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
46
|
Saleh MA, Sandoval RM, Rhodes GJ, Campos-Bilderback SB, Molitoris BA, Pollock DM. Chronic endothelin-1 infusion elevates glomerular sieving coefficient and proximal tubular albumin reuptake in the rat. Life Sci 2012; 91:634-7. [PMID: 22727794 PMCID: PMC3728660 DOI: 10.1016/j.lfs.2012.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 05/31/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
Abstract
AIM We have previously found that chronic endothelin-1 (ET-1) infusion in Sprague-Dawley rats increases glomerular permeability to albumin (P(alb)) as assessed in vitro independent of blood pressure with no observed albuminuria. In this study, we hypothesized that ET-1 increases glomerular albumin filtration with accompanied increase in albumin uptake via the proximal tubule, which masks the expected increase in urinary albumin excretion. MAIN METHODS Nonfasting Munich-Wistar Fromter rats were surgically prepared for in vivo imaging (n=6). Rats were placed on the microscope stage with the exposed kidney placed in a cover slip-bottomed dish bathed in warm isotonic saline. Rats were then injected i.v. with rat serum albumin conjugated to Texas Red that was observed to enter capillary loops of superficial glomeruli, move into Bowman's space, bind to the proximal tubular cell brush border and reabsorbed across the apical membrane. Glomerular sieving coefficient (GSC) was calculated as the ratio of conjugated albumin within the glomerular capillary versus that in Bowman's space. Rats were again studied after 2 weeks of chronic ET-1 (2 pmol/kg/min; i.v. osmotic minipump). KEY FINDINGS Glomerular sieving coefficient was significantly increased in rats following chronic ET-1 infusion (0.025 ± 0.005 vs. 0.017 ± 0.003, p<0.05). Mean fluorescence intensity for conjugated albumin within proximal tubules was increased by ET-1 infusion: 118.40 ± 6.34 vs. 74.27 ± 4.45 pixel intensity (p<0.01). SIGNIFICANCE These data provide in vivo evidence that ET-1 directly increases glomerular permeability to albumin and that albuminuria is prevented by increased PT albumin uptake in the rat.
Collapse
Affiliation(s)
- Mohamed A. Saleh
- Department of Pharmacology and Toxicology, Georgia Health Sciences University, Augusta, GA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Ruben M. Sandoval
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - George J. Rhodes
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | | | - Bruce A. Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - David M. Pollock
- Section of Experimental Medicine, Department of Medicine, Georgia Health Sciences University, Augusta, GA
| |
Collapse
|
47
|
Abstract
1. Endothelin (ET)-1, which was originally found to be secreted by the vascular endothelium, is highly expressed in the kidney, particularly in the renal medulla. 2. Recent studies using genetic models have provided significant breakthroughs in the role of ET-1 in the kidney. For example, ET-1 in the medullary collecting duct physiologically regulates water and salt reabsorption, thereby controlling blood pressure. Surprisingly, to explain the blood pressure regulation both ET(A) and ET(B) receptors are necessary in collecting duct. In fact, we recently revealed that ET(A) receptor stimulation in the renal medulla was natriuretic and diuretic. 3. The expression and secretion of ET-1 in the renal medulla are regulated by multiple mechanisms, such as changes in osmolality, exaggerated renin-angiotensin system activity and hypoxia. The changes in the renal medullary ET system are likely to work as compensatory 'protective' natriuretic factors in response to high sodium exposure in the kidney. 4. In the present review, we focus on recent publications that describe our current knowledge of the functional role of renal medullary ET-1, including the recently characterized actions of ET(A) receptors, the second messenger systems, mechanisms of stimulating ET-1 production and how the ET system is involved in the development of hypertension.
Collapse
Affiliation(s)
- Daisuke Nakano
- Department of Pharmacology, Kagawa University Medical School, Kagawa, Japan.
| | | |
Collapse
|
48
|
Abstract
Shiga toxins and ricin are potent inhibitors of protein synthesis. In addition to causing inhibition of protein synthesis, these toxins activate proinflammatory signaling cascades that may contribute to the severe diseases associated with toxin exposure. Treatment of cells with Shiga toxins and ricin have been shown to activate a number of signaling pathways including those associated with the ribotoxic stress response, Nuclear factor kappa B activation, inflammasome activation, the unfolded protein response, mTOR signaling, hemostasis, and retrograde trafficking. In this chapter, we review our current understanding of these signaling pathways as they pertain to intoxication by Shiga toxins and ricin.
Collapse
|
49
|
Abstract
In the past decade, research has advanced our understanding how endothelin contributes to proteinuria and glomerulosclerosis. Data from pre-clinical and clinical studies now provide evidence that proteinuric diseases such as focal segmental glomerulosclerosis and diabetic nephropathy as well as hypertension nephropathy are sensitive to treatment with endothelin receptor antagonists (ERAs). Like blockade of the renin-angiotensin system, ERA treatment-under certain conditions-may even cause disease regression, effects that could be achieved on top of renin-angiotensin-aldosterone system blockade, suggesting independent therapeutic mechanisms by which ERAs convey nephroprotection. Beneficial effects of ERAs on podocyte function, which is essential to maintain the glomerular filtration barrier, have been identified as one of the key mechanisms by which inhibition of the endothelin ETA receptor ameliorates renal structure and function. In this article, we will review pre-clinical studies demonstrating a causal role for endothelin in proteinuric chronic kidney disease (with a particular focus on functional and structural integrity of podocytes in vitro and in vivo). We will also review the evidence suggesting a therapeutic benefit of ERA treatment on the functional integrity of podocytes in humans.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland
| | - Pierre-Louis Tharaux
- INSERM and Université Paris Descartes, Sorbonne Paris Cité, Paris Cardiovascular Centre, Paris, France
| |
Collapse
|
50
|
Abstract
The kidneys are the major organs affected in diarrhea-associated hemolytic uremic syndrome (D(+)HUS). The pathophysiology of renal disease in D(+)HUS is largely the result of the interaction between bacterial virulence factors such as Shiga toxin and lipopolysaccharide and host cells in the kidney and in the blood circulation. This chapter describes in detail the current knowledge of how these bacterial toxins may lead to kidney disease and renal failure. The toxin receptors expressed by specific blood and resident renal cell types are also discussed as are the actions of the toxins on these cells.
Collapse
|