1
|
Kelm N, Kespohl M, Smagurauskaite G, Vales S, Karuppanan K, Mburu P, Thiele A, Pinkert S, Bukur T, Mülleder M, Berndt N, Klingel K, Gaida MM, Bhattacharya S, Beling A. Assessing customized multivalent chemokine-binding peptide treatment in a murine model of coxsackievirus B3 myocarditis. Basic Res Cardiol 2025; 120:393-422. [PMID: 40009121 PMCID: PMC11976344 DOI: 10.1007/s00395-025-01098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
Myocarditis, an inflammatory disease of the heart muscle, is often triggered by viral infections. This inflammation, which can lead to severe cardiac dysfunction and adverse outcomes, is mediated by various CC and CXC chemokines that interact with receptors in a "one-to-many" fashion. Ticks have evolved chemokine-binding salivary proteins known as Evasins, which efficiently suppress inflammation. This study explores a tailored Evasin-derived CC chemokine-targeting strategy using a 17-mer synthetic dimeric peptide, BK1.3. This peptide inhibits the inflammatory chemokines CCL2, CCL3, CCL7, and CCL8 in murine Coxsackievirus B3 (CVB3) infection, a viral trigger of myocarditis. Administered at a dose of 5 mg/kg twice daily, BK1.3 effectively maintains virus control without exacerbating CVB3-induced morbidity markers, such as hemodynamic compromise, multiorgan failure with hepatitis and pancreatitis, hypothermia, hypoglycemia, and weight loss. Metabolic profiling combined with proteomics reveals preserved reprogramming of lipid storage and gluconeogenesis capacity in the liver, alongside sustained energy production in the injured heart muscle. In survivors of acute CVB3 infection exhibiting manifestations of the subacute phase, BK1.3 enhances virus control, reduces myeloid cell infiltration in the heart and liver, improves markers of liver injury, and alleviates cardiac dysfunction, as evidenced by echocardiographic global longitudinal strain analysis. These findings affirm the safety profile of BK1.3 peptide therapeutics in a preclinical mouse model of acute CVB3 infection and emphasize its potential for therapeutic advancement in addressing virus-induced inflammation in the heart.
Collapse
Affiliation(s)
- Nicolas Kelm
- Institute of Biochemistry, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Meike Kespohl
- Institute of Biochemistry, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Deutsches Zentrum Für Herz-Kreislauf-Forschung, Partner Site Berlin, 10117, Berlin, Germany
| | - Gintare Smagurauskaite
- Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Serena Vales
- Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Kalimuthu Karuppanan
- Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Philomena Mburu
- Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Arne Thiele
- Deutsches Zentrum Für Herz-Kreislauf-Forschung, Partner Site Berlin, 10117, Berlin, Germany
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité, Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sandra Pinkert
- Institute of Biochemistry, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Thomas Bukur
- TRON, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael Mülleder
- Core Facility High-Throughput Mass Spectrometry, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nikolaus Berndt
- Deutsches Herzzentrum der Charité, Institute of Computer-Assisted Cardiovascular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Karin Klingel
- Institute for Pathology and Neuropathology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Matthias M Gaida
- TRON, Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Pathology, University Medical Center Mainz, Johannes-Gutenberg-Universität Mainz, 55131, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Johannes-Gutenberg-Universität Mainz, 55131, Mainz, Germany
| | - Shoumo Bhattacharya
- Centre for Human Genetics and RDM Cardiovascular Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Antje Beling
- Institute of Biochemistry, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
- Deutsches Zentrum Für Herz-Kreislauf-Forschung, Partner Site Berlin, 10117, Berlin, Germany.
| |
Collapse
|
2
|
Tabatabaei FS, Shafeghat M, Azimi A, Akrami A, Rezaei N. Endosomal Toll-Like Receptors intermediate negative impacts of viral diseases, autoimmune diseases, and inflammatory immune responses on the cardiovascular system. Expert Rev Clin Immunol 2025; 21:195-207. [PMID: 39137281 DOI: 10.1080/1744666x.2024.2392815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Cardiovascular disease (CVD) is the leading cause of morbidity globally, with chronic inflammation as a key modifiable risk factor. Toll-like receptors (TLRs), pivotal components of the innate immune system, including TLR-3, -7, -8, and -9 within endosomes, trigger intracellular cascades, leading to inflammatory cytokine production by various cell types, contributing to systemic inflammation and atherosclerosis. Recent research highlights the role of endosomal TLRs in recognizing self-derived nucleic acids during sterile inflammation, implicated in autoimmune conditions like myocarditis. AREAS COVERED This review explores the impact of endosomal TLRs on viral infections, autoimmunity, and inflammatory responses, shedding light on their intricate involvement in cardiovascular health and disease by examining literature on TLR-mediated mechanisms and their roles in CVD pathophysiology. EXPERT OPINION Removal of endosomal TLRs mitigates myocardial damage and immune reactions, applicable in myocardial injury. Targeting TLRs with agonists enhances innate immunity against fatal viruses, lowering viral loads and mortality. Prophylactic TLR agonist administration upregulates TLRs, protecting against fatal viruses and improving survival. TLRs play a complex role in CVDs like atherosclerosis and myocarditis, with therapeutic potential in modulating TLR reactions for cardiovascular health.
Collapse
Affiliation(s)
- Fatemeh Sadat Tabatabaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Melika Shafeghat
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirali Azimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashley Akrami
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
3
|
Guan X, Li H, Zhang L, Zhi H. Mechanisms of mitochondrial damage-associated molecular patterns associated with inflammatory response in cardiovascular diseases. Inflamm Res 2025; 74:18. [PMID: 39806203 DOI: 10.1007/s00011-025-01993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Cardiovascular diseases (CVDs) continue to be a substantial global healthcare burden despite considerable progress in therapies. The inflammatory response during the progression of CVD has attracted considerable attention. Mitochondria serve as the principal energy source for the heart. In cardiovascular illnesses, mitochondrial homeostasis is disrupted, accompanied by structural and functional impairments. During mitochondrial stress or injury, mitochondrial damage-associated molecular patterns (mtDAMPs), such as mitochondrial DNA, cardiolipin, N-formyl peptide, and adenosine triphosphate, are released to activate pattern recognition receptors and trigger immunological responses. Inflammatory responses mediated by mtDAMPs substantially contribute to the pathophysiology of cardiovascular illnesses. In this review, we discuss the molecular mechanisms by which different mtDAMPs control the inflammatory response, address the pathological consequences of mtDAMPs in inducing or exacerbating the inflammatory response in CVDs, and summarize potential therapeutic targets in relevant experimental studies. Preventing or reducing mtDAMP release may play a role in CVD progression by alleviating the inflammatory response.
Collapse
Affiliation(s)
- Xiuju Guan
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Haitao Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China
| | - Lijuan Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China.
| | - Hongwei Zhi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Ji M, Ran X, Zuo H, Zhang Q. Novel Insights into the Kallikrein-Kinin System in Fulminant Myocarditis: Physiological Basis and Potential Therapeutic Advances. J Inflamm Res 2024; 17:7347-7360. [PMID: 39429854 PMCID: PMC11490248 DOI: 10.2147/jir.s488237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Fulminant myocarditis (FM) is characterized by rapid cardiac deterioration often instigated by an inflammatory cytokine storm. The kallikrein-kinin system (KKS) is a metabolic cascade known for releasing vasoactive kinins, such as bradykinin-related peptides, possessing diverse pharmacological activities that include inflammation, regulation of vascular permeability, endothelial barrier dysfunction, and blood pressure modulation. The type 1 and type 2 bradykinin receptors (B1R and B2R), integral components of the KKS system, mediate the primary biological effects of kinin peptides. This review aims to offer a comprehensive overview of the primary mechanisms of the KKS in FM, including an examination of the structural components, regulatory activation, and downstream signaling pathways of the KKS. Furthermore, it explores the involvement of the tissue kallikrein/B1R/inducible nitric oxide synthase (TK/B1R/iNOS) pathway in myocyte dysfunction, modulation of the immune response, and preservation of endothelial barrier integrity. The potential therapeutic advances targeting the inhibition of the KKS in managing FM will be discussed, providing valuable insights for the development of clinical treatment strategies.
Collapse
Affiliation(s)
- Mengmeng Ji
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xiao Ran
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Houjuan Zuo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Qin Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
5
|
Chen B, Guo J, Ye H, Wang X, Feng Y. Role and molecular mechanisms of SGLT2 inhibitors in pathological cardiac remodeling (Review). Mol Med Rep 2024; 29:73. [PMID: 38488029 PMCID: PMC10955520 DOI: 10.3892/mmr.2024.13197] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/07/2024] [Indexed: 03/19/2024] Open
Abstract
Cardiovascular diseases are caused by pathological cardiac remodeling, which involves fibrosis, inflammation and cell dysfunction. This includes autophagy, apoptosis, oxidative stress, mitochondrial dysfunction, changes in energy metabolism, angiogenesis and dysregulation of signaling pathways. These changes in heart structure and/or function ultimately result in heart failure. In an effort to prevent this, multiple cardiovascular outcome trials have demonstrated the cardiac benefits of sodium‑glucose cotransporter type 2 inhibitors (SGLT2is), hypoglycemic drugs initially designed to treat type 2 diabetes mellitus. SGLT2is include empagliflozin and dapagliflozin, which are listed as guideline drugs in the 2021 European Guidelines for Heart Failure and the 2022 American Heart Association/American College of Cardiology/Heart Failure Society of America Guidelines for Heart Failure Management. In recent years, multiple studies using animal models have explored the mechanisms by which SGLT2is prevent cardiac remodeling. This article reviews the role of SGLT2is in cardiac remodeling induced by different etiologies to provide a guideline for further evaluation of the mechanisms underlying the inhibition of pathological cardiac remodeling by SGLT2is, as well as the development of novel drug targets.
Collapse
Affiliation(s)
- Bixian Chen
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, P.R. China
- Faculty of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Jing Guo
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Hongmei Ye
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, P.R. China
- Faculty of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Xinyu Wang
- Department of Pharmacy, Peking University People's Hospital, Beijing 100044, P.R. China
- Faculty of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yufei Feng
- Clinical Trial Institution, Peking University People's Hospital, Beijing 100044, P.R. China
| |
Collapse
|
6
|
Wang R, Zong K, Song J, Song Q, Xia D, Liu M, Du H, Xia Z, Yao H, Han J. Inhibitor of CD147 Suppresses T Cell Activation and Recruitment in CVB3-Induced Acute Viral Myocarditis. Viruses 2023; 15:v15051137. [PMID: 37243223 DOI: 10.3390/v15051137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Viral myocarditis (VMC) is a common disease characterized by cardiac inflammation. AC-73, an inhibitor of CD147, disrupts the dimerization of CD147, which participates in the regulation of inflammation. To explore whether AC-73 could alleviate cardiac inflammation induced by CVB3, mice were injected intraperitoneally with AC-73 on the fourth day post-infection (dpi) and sacrificed on the seventh dpi. Pathological changes in the myocardium, T cell activation or differentiation, and expression of cytokines were analyzed using H&E staining, flow cytometry, fluorescence staining and multiplex immunoassay. The results showed that AC-73 alleviated cardiac pathological injury and downregulated the percentage of CD45+CD3+ T cells in the CVB3-infected mice. The administration of AC-73 reduced the percentage of activated CD4+ and CD8+ T cells (CD69+ and/or CD38+) in the spleen, while the percentage of CD4+ T cell subsets in the spleen was not changed in the CVB3-infected mice. In addition, the infiltration of activated T cells (CD69+) and macrophages (F4/80+) in the myocardium also decreased after the AC-73 treatment. The results also showed that AC-73 inhibited the release of many cytokines and chemokines in the plasma of the CVB3-infected mice. In conclusion, AC-73 mitigated CVB3-induced myocarditis by inhibiting the activation of T cells and the recruitment of immune cells to the heart. Thus, CD147 may be a therapeutic target for virus-induced cardiac inflammation.
Collapse
Affiliation(s)
- Ruifang Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd., Beijing 102206, China
| | - Kexin Zong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd., Beijing 102206, China
| | - Juan Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd., Beijing 102206, China
| | - Qinqin Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd., Beijing 102206, China
| | - Dong Xia
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd., Beijing 102206, China
| | - Mi Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd., Beijing 102206, China
| | - Haijun Du
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd., Beijing 102206, China
| | - Zhiqiang Xia
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd., Beijing 102206, China
| | - Hailan Yao
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Rd., Beijing 100020, China
| | - Jun Han
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd., Beijing 102206, China
| |
Collapse
|
7
|
Yip F, Lai B, Yang D. Role of Coxsackievirus B3-Induced Immune Responses in the Transition from Myocarditis to Dilated Cardiomyopathy and Heart Failure. Int J Mol Sci 2023; 24:ijms24097717. [PMID: 37175422 PMCID: PMC10178405 DOI: 10.3390/ijms24097717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a cardiac disease marked by the stretching and thinning of the heart muscle and impaired left ventricular contractile function. While most patients do not develop significant cardiac diseases from myocarditis, disparate immune responses can affect pathological outcomes, including DCM progression. These altered immune responses, which may be caused by genetic variance, can prolong cytotoxicity, induce direct cleavage of host protein, or encourage atypical wound healing responses that result in tissue scarring and impaired mechanical and electrical heart function. However, it is unclear which alterations within host immune profiles are crucial to dictating the outcomes of myocarditis. Coxsackievirus B3 (CVB3) is a well-studied virus that has been identified as a causal agent of myocarditis in various models, along with other viruses such as adenovirus, parvovirus B19, and SARS-CoV-2. This paper takes CVB3 as a pathogenic example to review the recent advances in understanding virus-induced immune responses and differential gene expression that regulates iron, lipid, and glucose metabolic remodeling, the severity of cardiac tissue damage, and the development of DCM and heart failure.
Collapse
Affiliation(s)
- Fione Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
- The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Brian Lai
- The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Decheng Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
- The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
8
|
Yang W, He X, Wang Z, Lu L, Zhou G, Cheng J, Hao X. Research focus and theme trend on fulminant myocarditis: A bibliometric analysis. Front Cardiovasc Med 2022; 9:935073. [PMID: 36187003 PMCID: PMC9515361 DOI: 10.3389/fcvm.2022.935073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
AimsThis study intends to explore the research focus and trends of fulminant myocarditis (FM) to have a better understanding of the topic.Materials and methodsThe data were downloaded from the Web of Science (WoS) database using the topic (TS) advanced search strategy. Many instruments were used to extract, analyze, and visualize the data, such as Microsoft Excel, HistCite Pro, GunnMap, BibExcel, and VOSviewer.ResultsFrom 1985 to 2022, 726 documents were indexed in the WoS. The United States and Columbia University were the most productive country and institutions. Keywords co-occurrence was carried out and four research themes were identified. In addition, the top three prolific authors, the first three highly cited authors, and the core authors of the author co-citation network were identified. The topics that they kept an eye on were analyzed, and the research areas of key authors were similar to the results of keyword co-occurrence. The hot topics of FM were related to the mechanical circulatory support, etiology, diagnosis, and the disease or therapy associated with FM.ConclusionThis study carried out a systematic analysis of the documents related to FM from 1985 to 2022, which can provide a guideline for researchers to understand the theme trend to promote future research to be carried out.
Collapse
Affiliation(s)
- Weimei Yang
- Department of Cardiovascular Diseases, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xifei He
- Department of Cardiovascular Diseases, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xifei He,
| | - Zhaozhao Wang
- Department of Cardiovascular Diseases, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Zhaozhao Wang,
| | - Lijuan Lu
- Department of Cardiovascular Diseases, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ge Zhou
- Department of Cardiovascular Diseases, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Cheng
- Department of Cardiovascular Diseases, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinying Hao
- School of Humanities and Social Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
9
|
Lu J, Cen Z, Tang Q, Dong J, Qin L, Wu W. The absence of B cells disrupts splenic and myocardial Treg homeostasis in coxsackievirus B3-induced myocarditis. Clin Exp Immunol 2022; 208:1-11. [PMID: 35262174 PMCID: PMC9113299 DOI: 10.1093/cei/uxac015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 01/27/2022] [Accepted: 02/05/2022] [Indexed: 01/12/2023] Open
Abstract
Although B cells are essential for humoral immunity and show noteworthy immunomodulatory activity through antibody-independent functions, the role of B cells in regulating Treg cell responses remains controversial. Tregs (CD4+CD25+Foxp3+) are considered to play an immunoprotective role in viral myocarditis (VMC) by controlling autoimmune effector T cells. Here, we proved that B-cell knockout can not only lead to significant reductions in Tregs in the spleen, blood, and heart of VMC mice but also decrease the activation and immune function of splenic Tregs, which was reversed by adoptive transfer of B cells; the transcription levels of TGF-β and Foxp3 in the myocardium were also significantly reduced. B-cell depletion by anti-CD20 impaired the anti-inflammatory function of splenic Tregs and the homeostasis of myocardial Tregs population. Moreover, B cells can convert CD4+CD25- T cells into Foxp3+ and Foxp3-, two functionally suppressive Treg subgroups. Although the reduction in myocardial inflammation in BKO mice indicates that B cells may play a proinflammatory role, the beneficial side of B cells cannot be ignored, that is, to control autoimmunity by maintaining Treg numbers. The results observed in the animal model of VMC highlight the potential harm of rituximab in the nonselective depletion of B cells in clinical applications.
Collapse
Affiliation(s)
- Jing Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, Peoples Republic of China
| | - Zhihong Cen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, Peoples Republic of China
| | - Quan Tang
- Coronary Care Unit, Nanning First People”s Hospital. Qixing Road 89, Nanning, Guangxi Zhuang Autonomous Region 530021, Peoples Republic of China
| | - Jingwei Dong
- Department of nuclear medicine, Liuzhou People’s Hospital, Wenchang Road 8, Liuzhou, Guangxi Zhuang Autonomous Region 530021, Peoples Republic of China
| | - Lin Qin
- Coronary Care Unit, Nanning First People”s Hospital. Qixing Road 89, Nanning, Guangxi Zhuang Autonomous Region 530021, Peoples Republic of China
| | - Weifeng Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, Peoples Republic of China
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Center for Translational Medicine, Guangxi Medical University, Shuangyong Road 22, Nanning, Guangxi Zhuang Autonomous Region 530021, Peoples Republic of China
| |
Collapse
|
10
|
Mt10-CVB3 Vaccine Virus Protects against CVB4 Infection by Inducing Cross-Reactive, Antigen-Specific Immune Responses. Microorganisms 2021; 9:microorganisms9112323. [PMID: 34835449 PMCID: PMC8622534 DOI: 10.3390/microorganisms9112323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/29/2022] Open
Abstract
Group B coxsackieviruses (CVB) containing six serotypes, B1–B6, affect various organs, and multiple serotypes can induce similar diseases such as myocarditis and pancreatitis. Yet, no vaccines are currently available to prevent these infections. Translationally, the derivation of vaccines that offer protection against multiple serotypes is highly desired. In that direction, we recently reported the generation of an attenuated strain of CVB3, termed Mt10, which completely protects against both myocarditis and pancreatitis induced by the homologous wild-type CVB3 strain. Here, we report that the Mt10 vaccine can induce cross-protection against multiple CVB serotypes as demonstrated with CVB4. We note that the Mt10 vaccine could induce cross-reactive neutralizing antibodies (nABs) against both CVB1 and CVB4. In challenge studies with CVB4, the efficacy of the Mt10 vaccine was found to be 92%, as determined by histological evaluation of the heart and pancreas. Antibody responses induced in Mt10/CVB4 challenged animals indicated the persistence of cross-reactive nABs against CVB1, CVB3, and CVB4. Evaluation of antigen-specific immune responses revealed viral protein 1 (VP1)-reactive antibodies, predominantly IgG2a, IgG2b, IgG3, and IgG1. Similarly, by using major histocompatibility complex class II tetramers, we noted induction of VP1-specific CD4 T cells capable of producing multiple T cell cytokines, with interferon-γ being predominant. Finally, none of the vaccine recipients challenged with CVB4 revealed the presence of viral nucleic acid in the heart or pancreas. Taken together, our data suggest that the Mt10 vaccine can prevent infections caused by multiple CVB serotypes, paving the way for the development of monovalent CVB vaccines to prevent heart and pancreatic diseases of enteroviral origin.
Collapse
|
11
|
Goswami SK, Ranjan P, Dutta RK, Verma SK. Management of inflammation in cardiovascular diseases. Pharmacol Res 2021; 173:105912. [PMID: 34562603 DOI: 10.1016/j.phrs.2021.105912] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality world-wide. Recently, the role of inflammation in the progression of diseases has significantly attracted considerable attention. In addition, various comorbidities, including diabetes, obesity, etc. exacerbate inflammation in the cardiovascular system, which ultimately leads to heart failure. Furthermore, cytokines released from specialized immune cells are key mediators of cardiac inflammation. Here, in this review article, we focused on the role of selected immune cells and cytokines (both pro-inflammatory and anti-inflammatory) in the regulation of cardiac inflammation and ultimately in cardiovascular diseases. While IL-1β, IL-6, TNFα, and IFNγ are associated with cardiac inflammation; IL-10, TGFβ, etc. are associated with resolution of inflammation and cardiac repair. IL-10 reduces cardiovascular inflammation and protects the cardiovascular system via interaction with SMAD2, p53, HuR, miR-375 and miR-21 pathway. In addition, we also highlighted recent advancements in the management of cardiac inflammation, including clinical trials of anti-inflammatory molecules to alleviate cardiovascular diseases.
Collapse
Affiliation(s)
- Sumanta Kumar Goswami
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Prabhat Ranjan
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Roshan Kumar Dutta
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Suresh Kumar Verma
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
12
|
Pinkert S, Pryshliak M, Pappritz K, Knoch K, Hazini A, Dieringer B, Schaar K, Dong F, Hinze L, Lin J, Lassner D, Klopfleisch R, Solimena M, Tschöpe C, Kaya Z, El-Shafeey M, Beling A, Kurreck J, Van Linthout S, Klingel K, Fechner H. Development of a new mouse model for coxsackievirus-induced myocarditis by attenuating coxsackievirus B3 virulence in the pancreas. Cardiovasc Res 2021; 116:1756-1766. [PMID: 31598635 DOI: 10.1093/cvr/cvz259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/29/2019] [Accepted: 10/04/2019] [Indexed: 12/21/2022] Open
Abstract
AIMS The coxsackievirus B3 (CVB3) mouse myocarditis model is the standard model for investigation of virus-induced myocarditis but the pancreas, rather than the heart, is the most susceptible organ in mouse. The aim of this study was to develop a CVB3 mouse myocarditis model in which animals develop myocarditis while attenuating viral infection of the pancreas and the development of severe pancreatitis. METHODS AND RESULTS We developed the recombinant CVB3 variant H3N-375TS by inserting target sites (TS) of miR-375, which is specifically expressed in the pancreas, into the 3'UTR of the genome of the pancreo- and cardiotropic CVB3 variant H3. In vitro evaluation showed that H3N-375TS was suppressed in pancreatic miR-375-expressing EndoC-βH1 cells >5 log10, whereas its replication was not suppressed in isolated primary embryonic mouse cardiomyocytes. In vivo, intraperitoneal (i.p.) administration of H3N-375TS to NMRI mice did not result in pancreatic or cardiac infection. In contrast, intravenous (i.v.) administration of H3N-375TS to NMRI and Balb/C mice resulted in myocardial infection and acute and chronic myocarditis, whereas the virus was not detected in the pancreas and the pancreatic tissue was not damaged. Acute myocarditis was characterized by myocardial injury, inflammation with mononuclear cells, induction of proinflammatory cytokines, and detection of replicating H3N-375TS in the heart. Mice with chronic myocarditis showed myocardial fibrosis and persistence of H3N-375TS genomic RNA but no replicating virus in the heart. Moreover, H3N-375TS infected mice showed distinctly less suffering compared with mice that developed pancreatitis and myocarditis after i.p. or i.v application of control virus. CONCLUSION In this study, we demonstrate that by use of the miR-375-sensitive CVB3 variant H3N-375TS, CVB3 myocarditis can be established without the animals developing severe systemic infection and pancreatitis. As the H3N-375TS myocarditis model depends on pancreas-attenuated H3N-375TS, it can easily be used in different mouse strains and for various applications.
Collapse
Affiliation(s)
- Sandra Pinkert
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Virchowweg 6, 10117 Berlin, Germany
| | - Markian Pryshliak
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany
| | - Kathleen Pappritz
- Berlin-Brandenburger Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Föhrer Str. 15, 13353 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin-Charité, Oudenarder Straße 16, 13316 Berlin, Germany
| | - Klaus Knoch
- Faculty of Medicine, Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Ahmet Hazini
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany
| | - Babette Dieringer
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany
| | - Katrin Schaar
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany
| | - Fengquan Dong
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin-Charité, Oudenarder Straße 16, 13316 Berlin, Germany
| | - Luisa Hinze
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany
| | - Jie Lin
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin-Charité, Oudenarder Straße 16, 13316 Berlin, Germany
| | - Dirk Lassner
- Institut Kardiale Diagnostik und Therapie (IKDT), Moltkestraße 31, 12203 Berlin, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Kaiserswerther Str. 16-18, 14195 Berlin, Germany
| | - Michele Solimena
- Faculty of Medicine, Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Carsten Tschöpe
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Charitéplatz 1, 10117 Berlin, Germany
| | - Ziya Kaya
- Department of Medicine III, University of Heidelberg, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, 69120 Heidelberg, Germany
| | - Muhammad El-Shafeey
- Berlin-Brandenburger Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Föhrer Str. 15, 13353 Berlin, Germany.,Medical Biotechnology Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Antje Beling
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Virchowweg 6, 10117 Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany
| | - Sophie Van Linthout
- Berlin-Brandenburger Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Föhrer Str. 15, 13353 Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin-Charité, Oudenarder Straße 16, 13316 Berlin, Germany.,Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Charitéplatz 1, 10117 Berlin, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen, Liebermeisterstr. 8, 72076 Tübingen, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 15533 Berlin, Germany
| |
Collapse
|
13
|
Favere K, Bosman M, Klingel K, Heymans S, Van Linthout S, Delputte PL, De Sutter J, Heidbuchel H, Guns PJ. Toll-Like Receptors: Are They Taking a Toll on the Heart in Viral Myocarditis? Viruses 2021; 13:v13061003. [PMID: 34072044 PMCID: PMC8227433 DOI: 10.3390/v13061003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/30/2022] Open
Abstract
Myocarditis is an inflammatory disease of the heart with viral infections being the most common aetiology. Its complex biology remains poorly understood and its clinical management is one of the most challenging in the field of cardiology. Toll-like receptors (TLRs), a family of evolutionarily conserved pattern recognition receptors, are increasingly known to be implicated in the pathophysiology of viral myocarditis. Their central role in innate and adaptive immune responses, and in the inflammatory reaction that ensues, indeed makes them prime candidates to profoundly affect every stage of the disease process. This review describes the pathogenesis and pathophysiology of viral myocarditis, and scrutinises the role of TLRs in every phase. We conclude with directions for future research in this field.
Collapse
Affiliation(s)
- Kasper Favere
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium; (M.B.); (P.-J.G.)
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610 Antwerp, Belgium;
- Department of Cardiology, Antwerp University Hospital, 2650 Antwerp, Belgium
- Department of Internal Medicine, Ghent University, 9000 Ghent, Belgium;
- Correspondence:
| | - Matthias Bosman
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium; (M.B.); (P.-J.G.)
| | - Karin Klingel
- Cardiopathology, Institute for Pathology, University Hospital Tuebingen, 72076 Tuebingen, Germany;
| | - Stephane Heymans
- Department of Cardiology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Sophie Van Linthout
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité, Universitätsmedizin Berlin, 10117 Berlin, Germany;
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
| | - Peter L. Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, 2610 Antwerp, Belgium;
| | - Johan De Sutter
- Department of Internal Medicine, Ghent University, 9000 Ghent, Belgium;
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2610 Antwerp, Belgium;
- Department of Cardiology, Antwerp University Hospital, 2650 Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, 2610 Antwerp, Belgium; (M.B.); (P.-J.G.)
| |
Collapse
|
14
|
Müller I, Janson L, Sauter M, Pappritz K, Linthout SV, Tschöpe C, Klingel K. Myeloid-Derived Suppressor Cells Restrain Natural Killer Cell Activity in Acute Coxsackievirus B3-Induced Myocarditis. Viruses 2021; 13:v13050889. [PMID: 34065891 PMCID: PMC8151145 DOI: 10.3390/v13050889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Murine models of coxsackievirus B3 (CVB3)-induced myocarditis well represent the different outcomes of this inflammatory heart disease. Previously, we found that CVB3-infected A.BY/SnJ mice, susceptible for severe acute and chronic myocarditis, have lower natural killer (NK) cell levels than C57BL/6 mice, with mild acute myocarditis. There is evidence that myeloid-derived suppressor cells (MDSC) may inhibit NK cells, influencing the course of myocarditis. To investigate the MDSC/NK interrelationship in acute myocarditis, we used CVB3-infected A.BY/SnJ mice. Compared to non-infected mice, we found increased cell numbers of MDSC in the spleen and heart of CVB3-infected A.BY/SnJ mice. In parallel, S100A8 and S100A9 were increased in the heart, spleen, and especially in splenic MDSC cells compared to non-infected mice. In vitro experiments provided evidence that MDSC disrupt cytotoxic NK cell function upon co-culturing with MDSC. MDSC-specific depletion by an anti-Ly6G antibody led to a significant reduction in the virus load and injury in hearts of infected animals. The decreased cardiac damage in MDSC-depleted mice was associated with fewer Mac3+ macrophages and CD3+ T lymphocytes and a reduced cardiac expression of S100A8, S100A9, IL-1β, IL-6, and TNF-α. In conclusion, impairment of functional NK cells by MDSC promotes the development of chronic CVB3 myocarditis in A.BY/SnJ mice.
Collapse
Affiliation(s)
- Irene Müller
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10017 Berlin, Germany; (I.M.); (K.P.); (S.V.L.); (C.T.)
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10017 Berlin, Germany
| | - Lisa Janson
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany; (L.J.); (M.S.)
| | - Martina Sauter
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany; (L.J.); (M.S.)
| | - Kathleen Pappritz
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10017 Berlin, Germany; (I.M.); (K.P.); (S.V.L.); (C.T.)
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10017 Berlin, Germany
| | - Sophie Van Linthout
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10017 Berlin, Germany; (I.M.); (K.P.); (S.V.L.); (C.T.)
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10017 Berlin, Germany
| | - Carsten Tschöpe
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10017 Berlin, Germany; (I.M.); (K.P.); (S.V.L.); (C.T.)
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10017 Berlin, Germany
- Department of Cardiology, Campus Virchow Clinic, Charité-Universitätsmedizin Berlin, 10017 Berlin, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany; (L.J.); (M.S.)
- Correspondence: ; Tel.: +49-7071-2980205
| |
Collapse
|
15
|
Huang YQ, Jin HF, Zhang H, Tang CS, Du JB. Interaction among Hydrogen Sulfide and Other Gasotransmitters in Mammalian Physiology and Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:205-236. [PMID: 34302694 DOI: 10.1007/978-981-16-0991-6_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide (H2S), nitric oxide (NO), carbon monoxide (CO), and sulfur dioxide (SO2) were previously considered as toxic gases, but now they are found to be members of mammalian gasotransmitters family. Both H2S and SO2 are endogenously produced in sulfur-containing amino acid metabolic pathway in vivo. The enzymes catalyzing the formation of H2S are mainly CBS, CSE, and 3-MST, and the key enzymes for SO2 production are AAT1 and AAT2. Endogenous NO is produced from L-arginine under catalysis of three isoforms of NOS (eNOS, iNOS, and nNOS). HO-mediated heme catabolism is the main source of endogenous CO. These four gasotransmitters play important physiological and pathophysiological roles in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The similarity among these four gasotransmitters can be seen from the same and/or shared signals. With many studies on the biological effects of gasotransmitters on multiple systems, the interaction among H2S and other gasotransmitters has been gradually explored. H2S not only interacts with NO to form nitroxyl (HNO), but also regulates the HO/CO and AAT/SO2 pathways. Here, we review the biosynthesis and metabolism of the gasotransmitters in mammals, as well as the known complicated interactions among H2S and other gasotransmitters (NO, CO, and SO2) and their effects on various aspects of cardiovascular physiology and pathophysiology, such as vascular tension, angiogenesis, heart contractility, and cardiac protection.
Collapse
Affiliation(s)
- Ya-Qian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hong-Fang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| | - Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Chao-Shu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing, China
| | - Jun-Bao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.
| |
Collapse
|
16
|
Lasrado N, Reddy J. An overview of the immune mechanisms of viral myocarditis. Rev Med Virol 2020; 30:1-14. [PMID: 32720461 DOI: 10.1002/rmv.2131] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022]
Abstract
Viral myocarditis has been identified as a major cause of dilated cardiomyopathy (DCM) that can lead to heart failure. Historically, Coxsackieviruses and adenoviruses have been commonly suspected in myocarditis/DCM patients in North America and Europe. However, this notion is changing as other viruses such as Parvovirus B19 and human herpesvirus-6 are increasingly reported as causes of myocarditis in the United States, with the most recent example being the severe acute respiratory syndrome coronavirus 2, causing the Coronavirus Disease-19. The mouse model of Coxsackievirus B3 (CVB3)-induced myocarditis, which may involve mediation of autoimmunity, is routinely used in the study of immune pathogenesis of viral infections as triggers of DCM. In this review, we discuss the immune mechanisms underlying the development of viral myocarditis with an emphasis on autoimmunity in the development of post-infectious myocarditis induced with CVB3.
Collapse
Affiliation(s)
- Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
17
|
Kraft L, Erdenesukh T, Sauter M, Tschöpe C, Klingel K. Blocking the IL-1β signalling pathway prevents chronic viral myocarditis and cardiac remodeling. Basic Res Cardiol 2019; 114:11. [DOI: 10.1007/s00395-019-0719-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/16/2019] [Indexed: 12/18/2022]
|
18
|
Beling A, Kespohl M. Proteasomal Protein Degradation: Adaptation of Cellular Proteolysis With Impact on Virus-and Cytokine-Mediated Damage of Heart Tissue During Myocarditis. Front Immunol 2018; 9:2620. [PMID: 30546359 PMCID: PMC6279938 DOI: 10.3389/fimmu.2018.02620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 12/26/2022] Open
Abstract
Viral myocarditis is an inflammation of the heart muscle triggered by direct virus-induced cytolysis and immune response mechanisms with most severe consequences during early childhood. Acute and long-term manifestation of damaged heart tissue and disturbances of cardiac performance involve virus-triggered adverse activation of the immune response and both immunopathology, as well as, autoimmunity account for such immune-destructive processes. It is a matter of ongoing debate to what extent subclinical virus infection contributes to the debilitating sequela of the acute disease. In this review, we conceptualize the many functions of the proteasome in viral myocarditis and discuss the adaptation of this multi-catalytic protease complex together with its implications on the course of disease. Inhibition of proteasome function is already highly relevant as a strategy in treating various malignancies. However, cardiotoxicity and immune-related adverse effects have proven significant hurdles, representative of the target's wide-ranging functions. Thus, we further discuss the molecular details of proteasome-mediated activity of the immune response for virus-mediated inflammatory heart disease. We summarize how the spatiotemporal flexibility of the proteasome might be tackled for therapeutic purposes aiming to mitigate virus-mediated adverse activation of the immune response in the heart.
Collapse
Affiliation(s)
- Antje Beling
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Partner Site Berlin, Berlin, Germany
| | - Meike Kespohl
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
19
|
Meyer IS, Goetzke CC, Kespohl M, Sauter M, Heuser A, Eckstein V, Vornlocher HP, Anderson DG, Haas J, Meder B, Katus HA, Klingel K, Beling A, Leuschner F. Silencing the CSF-1 Axis Using Nanoparticle Encapsulated siRNA Mitigates Viral and Autoimmune Myocarditis. Front Immunol 2018; 9:2303. [PMID: 30349538 PMCID: PMC6186826 DOI: 10.3389/fimmu.2018.02303] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
Myocarditis is an inflammatory disease of the heart muscle most commonly caused by viral infection and often maintained by autoimmunity. Virus-induced tissue damage triggers chemokine production and, subsequently, immune cell infiltration with pro-inflammatory and pro-fibrotic cytokine production follows. In patients, the overall inflammatory burden determines the disease outcome. Following the aim to define specific molecules that drive both immunopathology and/or autoimmunity in inflammatory heart disease, here we report on increased expression of colony stimulating factor 1 (CSF-1) in patients with myocarditis. CSF-1 controls monocytes originating from hematopoietic stem cells and subsequent progenitor stages. Both, monocytes and macrophages are centrally involved in mediating tissue damage and fibrotic scarring in the heart. CSF-1 influences monocytes via engagement of CSF-1 receptor, and it is also produced by cells of the mononuclear phagocyte system themselves. Based on this, we sought to modulate the virus-triggered inflammatory response in an experimental model of Coxsackievirus B3-induced myocarditis by silencing the CSF-1 axis in myeloid cells using nanoparticle-encapsulated siRNA. siCSF-1 inverted virus-mediated immunopathology as reflected by lower troponin T levels, a reduction of accumulating myeloid cells in heart tissue and improved cardiac function. Importantly, pathogen control was maintained and the virus was efficiently cleared from heart tissue. Since viral heart disease triggers heart-directed autoimmunity, in a second approach we investigated the influence of CSF-1 upon manifestation of heart tissue inflammation during experimental autoimmune myocarditis (EAM). EAM was induced in Balb/c mice by immunization with a myocarditogenic myosin-heavy chain-derived peptide dissolved in complete Freund's adjuvant. siCSF-1 treatment initiated upon established disease inhibited monocyte infiltration into heart tissue and this suppressed cardiac injury as reflected by diminished cardiac fibrosis and improved cardiac function at later states. Mechanistically, we found that suppression of CSF-1 production arrested both differentiation and maturation of monocytes and their precursors in the bone marrow. In conclusion, during viral and autoimmune myocarditis silencing of the myeloid CSF-1 axis by nanoparticle-encapsulated siRNA is beneficial for preventing inflammatory tissue damage in the heart and preserving cardiac function without compromising innate immunity's critical defense mechanisms.
Collapse
Affiliation(s)
- Ingmar Sören Meyer
- Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Heidelberg, Germany
| | - Carl Christoph Goetzke
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Meike Kespohl
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Martina Sauter
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Arnd Heuser
- Max-Delbrueck-Center for Molecular Medicine Berlin, Berlin, Germany
| | - Volker Eckstein
- Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, United States
| | - Jan Haas
- Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Heidelberg, Germany
| | - Benjamin Meder
- Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Heidelberg, Germany
| | - Hugo Albert Katus
- Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Heidelberg, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen, Tuebingen, Germany
| | - Antje Beling
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Florian Leuschner
- Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg-Mannheim, Heidelberg, Germany
| |
Collapse
|
20
|
Interaction of Hydrogen Sulfide with Nitric Oxide in the Cardiovascular System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:6904327. [PMID: 26640616 PMCID: PMC4657111 DOI: 10.1155/2016/6904327] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 06/21/2015] [Indexed: 01/07/2023]
Abstract
Historically acknowledged as toxic gases, hydrogen sulfide (H2S) and nitric oxide (NO) are now recognized as the predominant members of a new family of signaling molecules, “gasotransmitters” in mammals. While H2S is biosynthesized by three constitutively expressed enzymes (CBS, CSE, and 3-MST) from L-cysteine and homocysteine, NO is generated endogenously from L-arginine by the action of various isoforms of NOS. Both gases have been transpired as the key and independent regulators of many physiological functions in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The analogy between these two gasotransmitters is evident not only from their paracrine mode of signaling, but also from the identical and/or shared signaling transduction pathways. With the plethora of research in the pathophysiological role of gasotransmitters in various systems, the existence of interplay between these gases is being widely accepted. Chemical interaction between NO and H2S may generate nitroxyl (HNO), which plays a specific effective role within the cardiovascular system. In this review article, we have attempted to provide current understanding of the individual and interactive roles of H2S and NO signaling in mammalian cardiovascular system, focusing particularly on heart contractility, cardioprotection, vascular tone, angiogenesis, and oxidative stress.
Collapse
|
21
|
Mueller KAL, Mueller II, Eppler D, Zuern CS, Seizer P, Kramer U, Koetter I, Roecken M, Kandolf R, Gawaz M, Geisler T, Henes JC, Klingel K. Clinical and histopathological features of patients with systemic sclerosis undergoing endomyocardial biopsy. PLoS One 2015; 10:e0126707. [PMID: 25966025 PMCID: PMC4428754 DOI: 10.1371/journal.pone.0126707] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 04/06/2015] [Indexed: 12/22/2022] Open
Abstract
Background Cardiac involvement in systemic sclerosis (SSc) is associated with a variable phenotype including heart failure, arrhythmias and pulmonary hypertension. The aim of the present study was to evaluate clinical characteristics, histopathological findings and outcome of patients with SSc and a clinical phenotype suggesting cardiac involvement. Methods and Results 25 patients with SSc and clinical signs of cardiac involvement were included between June 2007 and December 2010. They underwent routine clinical work-up including laboratory testing, echocardiography, left and right heart catheterization, holter recordings and endomyocardial biopsy. Primary endpoint (EP) was defined as the combination of cardiovascular death, arrhythmic endpoints (defined as appropriate discharge of implantable cardioverter defibrillator (ICD)) or rehospitalization due to heart failure. The majority of patients presented with slightly impaired left ventricular function (mean LVEF 54.1±9.0%, determined by echocardiography). Endomyocardial biopsies detected cardiac fibrosis in all patients with a variable area percentage of 8% to 32%. Cardiac inflammation was diagnosed as follows: No inflammation in 3.8%, isolated inflammatory cells in 38.5%, a few foci of inflammation in 30.8%, several foci of inflammation in 15.4%, and pronounced inflammation in 7.7% of patients. During follow up (FU) (22.5 months), seven (28%) patients reached the primary EP. Patients with subsequent events showed a higher degree of fibrosis and inflammation in the myocardium by trend. While patients with an inflammation grade 0 or 1 showed an event rate of 18.2%, the subgroup of patients with an inflammation grade 2 presented with an event rate of 25% versus an event rate of 50% in the subgroup of patients with an inflammation grade 3 and 4, respectively (p=0.193). Furthermore, the subgroup of patients with fibrosis grade 1 showed an event rate of 11%, patients with fibrosis grade 2 and 3 presented with an event rate of 33% and 42% respectively (p = 0.160). Conclusions Patients with SSc and clinical signs of cardiac involvement presented with mildly impaired LVEF. Prognosis was poor with an event rate of 28% within 22.5 months FU and was associated with the degree of cardiac inflammation and fibrosis.
Collapse
Affiliation(s)
- Karin A. L. Mueller
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard Karls Universitaetsklinikum Tuebingen, Tuebingen, Germany
| | - Iris I. Mueller
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard Karls Universitaetsklinikum Tuebingen, Tuebingen, Germany
| | - David Eppler
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard Karls Universitaetsklinikum Tuebingen, Tuebingen, Germany
| | - Christine S. Zuern
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard Karls Universitaetsklinikum Tuebingen, Tuebingen, Germany
| | - Peter Seizer
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard Karls Universitaetsklinikum Tuebingen, Tuebingen, Germany
| | - Ulrich Kramer
- Institut für Radiologie, Eberhard Karls Universitaetsklinikum Tuebingen, Tuebingen, Germany
| | - Ina Koetter
- Centre for Interdisciplinary Clinical Immunology, Rheumatology and Autoimmune Diseases – INDRA and Department of Internal Medicine II (Oncology, Haematology, Immunology, Rheumatology, Pulmonology), Eberhard Karls University Hospital Tuebingen, Germany
| | - Martin Roecken
- Hautklinik, Eberhard Karls Universitaetsklinikum Tuebingen, Tuebingen, Germany
| | - Reinhard Kandolf
- Abteilung für Molekulare Pathologie, Eberhard Karls Universitaetsklinikum Tuebingen, Tuebingen, Germany
| | - Meinrad Gawaz
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard Karls Universitaetsklinikum Tuebingen, Tuebingen, Germany
| | - Tobias Geisler
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard Karls Universitaetsklinikum Tuebingen, Tuebingen, Germany
- * E-mail:
| | - Joerg C. Henes
- Centre for Interdisciplinary Clinical Immunology, Rheumatology and Autoimmune Diseases – INDRA and Department of Internal Medicine II (Oncology, Haematology, Immunology, Rheumatology, Pulmonology), Eberhard Karls University Hospital Tuebingen, Germany
| | - Karin Klingel
- Abteilung für Molekulare Pathologie, Eberhard Karls Universitaetsklinikum Tuebingen, Tuebingen, Germany
| |
Collapse
|
22
|
Stein EA, Pinkert S, Becher PM, Geisler A, Zeichhardt H, Klopfleisch R, Poller W, Tschöpe C, Lassner D, Fechner H, Kurreck J. Combination of RNA Interference and Virus Receptor Trap Exerts Additive Antiviral Activity in Coxsackievirus B3-induced Myocarditis in Mice. J Infect Dis 2014; 211:613-22. [DOI: 10.1093/infdis/jiu504] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
23
|
Klingel K, Fabritius C, Sauter M, Göldner K, Stauch D, Kandolf R, Ettischer N, Gahlen S, Schönberger T, Ebner S, Makrigiannis AP, Bélanger S, Diefenbach A, Polić B, Pratschke J, Kotsch K. The activating receptor NKG2D of natural killer cells promotes resistance against enterovirus-mediated inflammatory cardiomyopathy. J Pathol 2014; 234:164-77. [PMID: 24797160 DOI: 10.1002/path.4369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 04/08/2014] [Accepted: 04/23/2014] [Indexed: 12/30/2022]
Abstract
In enterovirus-induced cardiomyopathy, information regarding the detailed impact of natural killer (NK) cells on the outcome of the disease is limited. We therefore hypothesized that NK cells and certain NK cell receptors determine the different outcome of coxsackievirus B3 (CVB3) myocarditis. Here, we demonstrate in murine models that resistance to chronic CVB3 myocarditis in immunocompetent C57BL/6 mice is characterized by significantly more mature CD11b(high) NK cells, the presence of NKG2D on NK cells, and enhanced NKG2D-dependent cytotoxicity compared to CVB3-susceptible A.BY/SnJ mice. The highly protective role of NKG2D in myocarditis was further proven by in vivo neutralization of NKG2D as well as in NKG2D-deficient mice but was shown to be independent of CD8(+) T-cell-dependent immunity. Moreover, the adoptive transfer of immunocompetent C57BL/6 NK cells pre- (day -1) as well as post-infectionem (day +2) displayed the potential to prevent permissive A.BY/SnJ mice from a progressive outcome of CVB3 myocarditis reflected by significantly improved cardiopathology and heart function. Altogether, our results provide firm evidence for a protective role of NKG2D-activated NK cells in CVB3 myocarditis leading to an effective virus clearance, thus offering novel therapeutic options in the treatment of virus-induced myocarditis.
Collapse
Affiliation(s)
- Karin Klingel
- Department of Molecular Pathology, University Hospital Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Interspecies differences in virus uptake versus cardiac function of the coxsackievirus and adenovirus receptor. J Virol 2014; 88:7345-56. [PMID: 24741103 DOI: 10.1128/jvi.00104-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED The coxsackievirus and adenovirus receptor (CAR) is a cell contact protein with an important role in virus uptake. Its extracellular immunoglobulin domains mediate the binding to coxsackievirus and adenovirus as well as homophilic and heterophilic interactions between cells. The cytoplasmic tail links CAR to the cytoskeleton and intracellular signaling cascades. In the heart, CAR is crucial for embryonic development, electrophysiology, and coxsackievirus B infection. Noncardiac functions are less well understood, in part due to the lack of suitable animal models. Here, we generated a transgenic mouse that rescued the otherwise embryonic-lethal CAR knockout (KO) phenotype by expressing chicken CAR exclusively in the heart. Using this rescue model, we addressed interspecies differences in coxsackievirus uptake and noncardiac functions of CAR. Survival of the noncardiac CAR KO (ncKO) mouse indicates an essential role for CAR in the developing heart but not in other tissues. In adult animals, cardiac activity was normal, suggesting that chicken CAR can replace the physiological functions of mouse CAR in the cardiomyocyte. However, chicken CAR did not mediate virus entry in vivo, so that hearts expressing chicken instead of mouse CAR were protected from infection and myocarditis. Comparison of sequence homology and modeling of the D1 domain indicate differences between mammalian and chicken CAR that relate to the sites important for virus binding but not those involved in homodimerization. Thus, CAR-directed anticoxsackievirus therapy with only minor adverse effects in noncardiac tissue could be further improved by selectively targeting the virus-host interaction while maintaining cardiac function. IMPORTANCE Coxsackievirus B3 (CVB3) is one of the most common human pathogens causing myocarditis. Its receptor, the coxsackievirus and adenovirus receptor (CAR), not only mediates virus uptake but also relates to cytoskeletal organization and intracellular signaling. Animals without CAR die prenatally with major cardiac malformations. In the adult heart, CAR is important for virus entry and electrical conduction, but its nonmuscle functions are largely unknown. Here, we show that chicken CAR expression exclusively in the heart can rescue the otherwise embryonic-lethal CAR knockout phenotype but does not support CVB3 infection of adult cardiomyocytes. Our findings have implications for the evolution of virus-host versus physiological interactions involving CAR and could help to improve future coxsackievirus-directed therapies inhibiting virus replication while maintaining CAR's cellular functions.
Collapse
|
25
|
Ghigo A, Franco I, Morello F, Hirsch E. Myocyte signalling in leucocyte recruitment to the heart. Cardiovasc Res 2014; 102:270-80. [PMID: 24501328 DOI: 10.1093/cvr/cvu030] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Myocardial damage, by different noxious causes, triggers an inflammatory reaction driving post-injury repair mechanisms and chronic remodelling processes that are largely detrimental to cardiac function. Cardiomyocytes have recently emerged as key players in orchestrating this inflammatory response. Injured cardiomyocytes release damage-associated molecular pattern molecules, such as high-mobility group box 1 (HMGB1), DNA fragments, heat shock proteins, and matricellular proteins, which instruct surrounding healthy cadiomyocytes to produce inflammatory mediators. These mediators, mainly interleukin (IL)-1β, IL-6, macrophage chemoattractant protein (MCP)-1, and tumour necrosis factor α (TNF-α), in turn activate versatile signalling networks within surviving cardiomyocytes and trigger leucocyte activation and recruitment. In this review, we will focus on recently characterized signalling pathways activated in cardiomyocytes that mediate inflammatory responses during myocardial infarction, hypertensive heart disease, and myocarditis.
Collapse
Affiliation(s)
- Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, Torino, Italy
| | | | | | | |
Collapse
|
26
|
Gutierrez FRS, Sesti-Costa R, Silva GK, Trujillo ML, Guedes PMM, Silva JS. Regulation of the immune response during infectious myocarditis. Expert Rev Cardiovasc Ther 2014; 12:187-200. [DOI: 10.1586/14779072.2014.879824] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Abstract
Cardiotropic viruses have been implicated as major pathogenetic agents in acute and chronic forms of myocarditis. By the introduction of molecular tools, such as (RT-) polymerase chain reaction ((RT-) PCR) and in situ hybridization in the diagnosis of inflammatory heart disease, genomes of various RNA and DNA viruses comprising enteroviruses, adenoviruses, parvovirus B19 (B19V) and herpesviruses (EBV, HHV6, HCMV) were detected in endomyocardial biopsies of patients with myocarditis and dilated cardiomyopathy. Meanwhile, it is known that the outcome of a virus infection in the heart resulting in myocarditis is determined by genetic host factors as well as by the viral pathogenicity which considerably varies in the different virus infections. A considerable portion of our knowledge about the etiopathogenetic mechanisms in viral heart disease is derived from animal studies. Whereas the evolvement of cardiac inflammation in enterovirus infections is guided by viral cytotoxicity and virus persistence, in herpesvirus infections, the pathophysiology is rather determined by primary immune-mediated pathogenicity. By investigation of immunocompetent and gene-targeted mice, valuable new insights into host and virus factors relevant for the control of cardiac viral infection and inflammation were gained which are reviewed in this paper.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/pathogenicity
- Animals
- Biopsy, Needle
- DNA, Viral/analysis
- Disease Models, Animal
- Enterovirus/genetics
- Enterovirus/pathogenicity
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/pathogenicity
- Herpesvirus 6, Human/genetics
- Herpesvirus 6, Human/pathogenicity
- Humans
- Immunohistochemistry
- Mice
- Mice, Transgenic
- Molecular Diagnostic Techniques/methods
- Myocarditis/genetics
- Myocarditis/pathology
- Myocarditis/virology
- Parvovirus B19, Human/genetics
- Parvovirus B19, Human/pathogenicity
- RNA, Viral/analysis
- Real-Time Polymerase Chain Reaction/methods
- Sensitivity and Specificity
Collapse
Affiliation(s)
- Sabine Pankuweit
- Department of Cardiology, University Hospital Gießen & Marburg, 35043, Marburg, Germany,
| | | |
Collapse
|
28
|
Hua W, Chen Q, Gong F, Xie C, Zhou S, Gao L. Cardioprotection of H2S by downregulating iNOS and upregulating HO-1 expression in mice with CVB3-induced myocarditis. Life Sci 2013; 93:949-54. [PMID: 24140888 DOI: 10.1016/j.lfs.2013.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/18/2013] [Accepted: 10/07/2013] [Indexed: 11/26/2022]
Abstract
AIMS To explore the effects and potential mechanisms of hydrogen sulfide (H2S) in CVB3-induced mice with myocarditis. MAIN METHODS A total of 75 six-week-old inbred male Balb/c mice were divided randomly into four groups (N, C, P and S). Group N was the negative control. The others were inoculated intraperitoneally (i.p.) with CVB3. Subsequently, groups P and S were injected i.p. once a day with DL-Proparglygylcine (PAG) and NaHS respectively. Group C was the positive control. Inducible nitric oxide synthase (iNOS) and heme oxygenase-1(HO-1) expression on cardiac tissues were evaluated by histopathological examination, immunohistochemistry, RT-PCR and Western blot. KEY FINDINGS The heart-weight to body-weight (HW/BW) ratio, the histologic scores and the iNOS mRNA and protein expression levels were higher, and the HO-1 mRNA and protein expression levels were lower in mice treated with PAG than those mice solely inoculated with CVB3. Mice in group S had a significant decreased in the HW/BW ratio, the histologic scores and the iNOS mRNA and protein expression levels, and had a significant increased in the HO-1 mRNA and protein expression levels compared to the mice in group C. H2S can attenuate inflammatory cell infiltration, alleviate cardiac edema, and limit myocardial lesions. SIGNIFICANCE Our data support that H2S can inhibit iNOS overexpression and induce HO-1 expression, both of which contribute to the cardioprotection of H2S in CVB3-induced mice myocarditis.
Collapse
Affiliation(s)
- Wang Hua
- Department of Cardiology, Children's Hospital, Zhejiang University School of Medicine, PR China; The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, PR China
| | | | | | | | | | | |
Collapse
|
29
|
Brunner S, Theiss HD, Leiss M, Grabmaier U, Grabmeier J, Huber B, Vallaster M, Clevert DA, Sauter M, Kandolf R, Rimmbach C, David R, Klingel K, Franz WM. Enhanced stem cell migration mediated by VCAM-1/VLA-4 interaction improves cardiac function in virus-induced dilated cardiomyopathy. Basic Res Cardiol 2013; 108:388. [PMID: 24065117 DOI: 10.1007/s00395-013-0388-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 08/14/2013] [Accepted: 09/15/2013] [Indexed: 12/17/2022]
Abstract
Endogenous circulation of bone marrow-derived cells (BMCs) was observed in patients with dilated cardiomyopathy (DCM) who showed cardiac upregulation of Vascular Cell Adhesion Protein-1 (VCAM-1). However, the underlying pathophysiology is currently unknown. Thus, we aimed to analyze circulation, migration and G-CSF-based mobilization of BMCs in a murine model of virus-induced DCM. Mice with coxsackievirus B3 (CVB3) induced DCM and healthy controls were analyzed regarding their myocardial homing factors by PCR. To determine cardiac VCAM-1 expression ELISA and immunohistochemistry were applied. Flow cytometry was performed to analyze BMCs. Cardiac diameters and function were evaluated by echocardiography before and 4 weeks after G-CSF treatment. In murine CVB3-induced DCM an increase of BMCs in peripheral blood and a decrease of BMCs in bone marrow was observed. We found an enhanced migration of Very Late Antigen-4 (VLA-4⁺) BMCs to the diseased heart overexpressing VCAM-1 and higher numbers of CD45⁻CD34⁻Sca-1⁺ and CD45⁻CD34⁻c-kit⁺ cells. Mobilization of BMCs by G-CSF boosted migration along the VCAM-1/VLA-4 axis and reduced apoptosis of cardiomyocytes. Significant improvement of cardiac function was detected by echocardiography in G-CSF-treated mice. Blocking VCAM-1 by a neutralizing antibody reduced the G-CSF-dependent effects on stem cell migration and cardiac function. This is the first study showing that in virus-induced DCM VCAM-1/VLA-4 interaction is crucial for recruitment of circulating BMCs leading to beneficial anti-apoptotic effects resulting in improved cardiac function after G-CSF-induced mobilization.
Collapse
Affiliation(s)
- Stefan Brunner
- Medical Department I, Klinikum Grosshadern, Ludwig-Maximilians-University, Marchioninistr. 15, 81377, Munich, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gautam R, Chandrasekar B, Deobagkar-Lele M, Rakshit S, Kumar B. N. V, Umapathy S, Nandi D. Identification of early biomarkers during acetaminophen-induced hepatotoxicity by fourier transform infrared microspectroscopy. PLoS One 2012; 7:e45521. [PMID: 23029070 PMCID: PMC3446881 DOI: 10.1371/journal.pone.0045521] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/20/2012] [Indexed: 01/15/2023] Open
Abstract
Acetaminophen is a widely prescribed drug used to relieve pain and fever; however, it is a leading cause of drug-induced liver injury and a burden on public healthcare. In this study, hepatotoxicity in mice post oral dosing of acetaminophen was investigated using liver and sera samples with Fourier Transform Infrared microspectroscopy. The infrared spectra of acetaminophen treated livers in BALB/c mice show decrease in glycogen, increase in amounts of cholesteryl esters and DNA respectively. Rescue experiments using L-methionine demonstrate that depletion in glycogen and increase in DNA are abrogated with pre-treatment, but not post-treatment, with L-methionine. This indicates that changes in glycogen and DNA are more sensitive to the rapid depletion of glutathione. Importantly, analysis of sera identified lowering of glycogen and increase in DNA and chlolesteryl esters earlier than increase in alanine aminotransferase, which is routinely used to diagnose liver damage. In addition, these changes are also observed in C57BL/6 and Nos2−/− mice. There is no difference in the kinetics of expression of these three molecules in both strains of mice, the extent of damage is similar and corroborated with ALT and histological analysis. Quantification of cytokines in sera showed increase upon APAP treatment. Although the levels of Tnfα and Ifnγ in sera are not significantly affected, Nos2−/− mice display lower Il6 but higher Il10 levels during this acute model of hepatotoxicity. Overall, this study reinforces the growing potential of Fourier Transform Infrared microspectroscopy as a fast, highly sensitive and label-free technique for non-invasive diagnosis of liver damage. The combination of Fourier Transform Infrared microspectroscopy and cytokine analysis is a powerful tool to identify multiple biomarkers, understand differential host responses and evaluate therapeutic regimens during liver damage and, possibly, other diseases.
Collapse
Affiliation(s)
- Rekha Gautam
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | | | | | - Srabanti Rakshit
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Vinay Kumar B. N.
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Siva Umapathy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
- * E-mail: (DN); (SU)
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
- * E-mail: (DN); (SU)
| |
Collapse
|
31
|
Brunner S, Todica A, Böning G, Nekolla SG, Wildgruber M, Lehner S, Sauter M, Ubleis C, Klingel K, Cumming P, Franz WM, Hacker M. Left ventricular functional assessment in murine models of ischemic and dilated cardiomyopathy using [18 F]FDG-PET: comparison with cardiac MRI and monitoring erythropoietin therapy. EJNMMI Res 2012; 2:43. [PMID: 22863174 PMCID: PMC3441325 DOI: 10.1186/2191-219x-2-43] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We performed an initial evaluation of non-invasive ECG-gated [18 F]FDG-positron emission tomography (FDG-PET) for serial measurements of left ventricular volumes and function in murine models of dilated (DCM) and ischemic cardiomyopathy (ICM), and then tested the effect of erythropoietin (EPO) treatment on DCM mice in a preliminary FDG-PET therapy monitoring study. METHODS Mice developed DCM 8 weeks after injection with Coxsackievirus B3 (CVB3), whereas ICM was induced by ligation of the left anterior descending artery. LV volumes (EDV and ESV) and the ejection fraction (LVEF) of DCM, ICM and healthy control mice were measured by FDG-PET and compared with reference standard results obtained with 1.5 T magnetic resonance imaging (MRI). In the subsequent monitoring study, LVEF of DCM mice was evaluated by FDG-PET at baseline, and after 4 weeks of treatment, with EPO or saline. RESULTS LV volumes and the LVEF as measured by FDG-PET correlated significantly with the MRI results. These correlations were higher in healthy and DCM mice than in ICM mice, in which LVEF measurements were somewhat compromised by absence of FDG uptake in the area of infarction. LV volumes (EDV and ESV) were systematically underestimated by FDG-PET, with net bias such that LVEF measurements in both models of heart disease exceeded by 15% to 20% results obtained by MRI. In our subsequent monitoring study of DCM mice, we found a significant decrease of LVEF in the EPO group, but not in the saline-treated mice. Moreover, LVEF in the EPO and saline mice significantly correlated with histological scores of fibrosis. CONCLUSIONS LVEF estimated by ECG-gated FDG-PET significantly correlated with the reference standard MRI, most notably in healthy mice and mice with DCM. FDG-PET served for longitudinal monitoring of effects of EPO treatment in DCM mice.
Collapse
Affiliation(s)
- Stefan Brunner
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Klinikum Grosshadern, Marchioninistr 15, Munich, 81377, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gruhle S, Sauter M, Szalay G, Ettischer N, Kandolf R, Klingel K. The prostacyclin agonist iloprost aggravates fibrosis and enhances viral replication in enteroviral myocarditis by modulation of ERK signaling and increase of iNOS expression. Basic Res Cardiol 2012; 107:287. [PMID: 22836587 DOI: 10.1007/s00395-012-0287-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/06/2012] [Accepted: 07/13/2012] [Indexed: 12/19/2022]
Abstract
Enteroviruses, such as coxsackieviruses of group B (CVB), are able to induce a chronic inflammation of the myocardium, which may finally lead to the loss of functional tissue, remodeling processes and the development of fibrosis, thus affecting the proper contractile function of the heart. In other fibrotic diseases like scleroderma, the prostacyclin agonist iloprost was found to inhibit the extracellular signal-regulated kinase (ERK, p44/42 MAPK), a mitogen-activated protein kinase, and consecutively, the expression of the profibrotic cytokine connective tissue growth factor (CTGF), thereby preventing the development of fibrosis. As CTGF was found to mediate fibrosis in chronic CVB3 myocarditis as well, we evaluated whether the in vivo application of iloprost is capable to reduce the development of ERK/CTGF-mediated fibrosis in enteroviral myocarditis. Unexpectedly, the application of iloprost resulted in a prolonged myocardial inflammation and an aggravated fibrosis and failed to reduce activation of ERK and expression of CTGF at later stages of the disease. In addition, viral replication was found to be increased in iloprost-treated mice. Notably, the expression of cardiac inducible nitric oxide synthase (iNOS), which is known to aggravate myocardial damage in CVB3-infected mice, was strongly enhanced by iloprost. Using cultivated bone marrow macrophages (BMM), we confirmed these results, proving that iloprost potentiates the expression of iNOS mRNA and protein in CVB3-infected and IFN-gamma stimulated BMM. In conclusion, these results suggest a critical reflection of the clinical use of iloprost, especially in patients possibly suffering from an enteroviral myocarditis.
Collapse
Affiliation(s)
- Stefan Gruhle
- Department of Molecular Pathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Liebermeisterstrasse 8, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Mesenchymal stromal cells but not cardiac fibroblasts exert beneficial systemic immunomodulatory effects in experimental myocarditis. PLoS One 2012; 7:e41047. [PMID: 22815907 PMCID: PMC3398879 DOI: 10.1371/journal.pone.0041047] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 06/21/2012] [Indexed: 12/17/2022] Open
Abstract
Systemic application of mesenchymal stromal cells (MSCs) in inflammatory cardiomyopathy exerts cardiobeneficial effects. The mode of action is unclear since a sufficient and long-acting cardiac homing of MSCs is unlikely. We therefore investigated the regulation of the immune response in coxsackievirus B3 (CVB3)-induced acute myocarditis after intravenous application of MSCs. Wildtype mice were infected with CVB3 and treated with either PBS, human MSCs or human cardiac fibroblasts intravenously 1 day after infection. Seven days after infection, MSCs could be detected in the spleen, heart, pancreas, liver, lung and kidney, whereby the highest presence was observed in the lung. MSCs increased significantly the myocardial expression of HGF and decreased the expression of the proinflammatory cytokines TNFα, IL1β and IL6 as well as the severity of myocarditis and ameliorated the left ventricular dysfunction measured by conductance catheter. MSCs upregulated the production of IFNγ in CD4+ and CD8+ cells, the number of IL10-producing regulatory T cells and the apoptosis rate of T cells in the spleen. An increased number of CD4+CD25+FoxP3 could be found in the spleen as well as in the circulation. In contrast, application of human cardiac fibroblasts had no effect on the severity of myocarditis and the systemic immune response observed after MSCs-administration. In conclusion, modulation of the immune response in extracardiac organs is associated with cardiobeneficial effects in experimental inflammatory cardiomyopathy after systemic application of MSCs.
Collapse
|
34
|
Corsten MF, Schroen B, Heymans S. Inflammation in viral myocarditis: friend or foe? Trends Mol Med 2012; 18:426-37. [DOI: 10.1016/j.molmed.2012.05.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/08/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
|
35
|
Wang YC, Yi TY, Lin KH. In VitroActivity ofParis polyphyllaSmith Against Enterovirus 71 and Coxsackievirus B3 and Its Immune Modulation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 39:1219-34. [DOI: 10.1142/s0192415x11009512] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enterovirus 71 (EV71) and coxsackievirus B3 (CVB3) have resulted in severe pathogenesis caused by the host's immune response, including the cytokine cascade. Paris polyphylla Smith is a folk medicinal plant in Asia traditionally prescribed for the reduction of pain and elimination of poisoning. In this study, we investigated the anti-EV71 and CVB3 activity of P. polyphylla Smith as well as its immune modulation. The IC50for the P. polyphylla Smith 95% ethanol extract against EV71 and CVB3 were 12.5–23% and 99–156% of that of ribavirin, a positive control. Prevention of viral infection, viral inactivation, and anti-viral replication effects against both EV71 and CVB3 were demonstrated by the extract, the anti-viral replication effect being dominant. The extract significantly increased IL-6 production in both EV71- and CVB3-infected cells. A high correlation was possibly demonstrated between the high amounts of IL-6 induction in the EV71 and CVB3-infected cells and the anti-viral replication activity of the extract. In conclusion, good anti-EV71 and CVB3 activity was observed in the P. polyphylla Smith 95% ethanol extract. The high amounts of IL-6 induction in the virus-infected cells played a key role in the anti-viral activity of the extract.
Collapse
Affiliation(s)
- Yuan-Chuen Wang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Tsu-Yi Yi
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Kuei-Hsiang Lin
- Department of Clinical Laboratory, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
36
|
Seizer P, Klingel K, Sauter M, Westermann D, Ochmann C, Schönberger T, Schleicher R, Stellos K, Schmidt EM, Borst O, Bigalke B, Kandolf R, Langer H, Gawaz M, May AE. Cyclophilin A affects inflammation, virus elimination and myocardial fibrosis in coxsackievirus B3-induced myocarditis. J Mol Cell Cardiol 2012; 53:6-14. [PMID: 22446162 DOI: 10.1016/j.yjmcc.2012.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 03/04/2012] [Accepted: 03/08/2012] [Indexed: 01/19/2023]
Abstract
Extracellular cyclophilin A (CyPA) and its receptor Extracellular Matrix Metalloproteinase Inducer (EMMPRIN, CD147) modulate inflammatory processes beyond metalloproteinase (MMP) activity. Recently, we have shown that CyPA and CD147 are upregulated in patients with inflammatory cardiomyopathy. Here we investigate the role of CyPA and CD147 in murine coxsackievirus B3 (CVB3)-induced myocarditis. CVB3-infected CyPA(-/-) mice (129S6/SvEv) revealed a significantly reduced T-cell and macrophage recruitment at 8 days p.i. compared to wild-type mice. In A.BY/SnJ mice, treatment with the cyclophilin-inhibitor NIM811 was associated with a reduction of inflammatory lesions and MMP-9 expression but with enhanced virus replication 8 days p.i. At 28 days p.i. the extent of lesion areas was not affected bei NIM811, whereas the collagen content was reduced. Initiation of NIM811-treatment on day 12 (after an effective virus defense) resulted in an even more pronounced reduction of myocardial fibrosis. In conclusion, in CVB3-induced myocarditis CyPA is important for macrophage and T cell recruitment and effective virus defense and may represent a pharmacological target to modulate myocardial remodeling in myocarditis.
Collapse
Affiliation(s)
- Peter Seizer
- Medizinische Klinik III, Kardiologie und Kreislauferkrankungen, Eberhard Karls-Universität Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dynamics of molecular responses to coxsackievirus B4 infection differentiate between resolution and progression of acute pancreatitis. Virology 2012; 427:135-43. [PMID: 22414343 DOI: 10.1016/j.virol.2012.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/23/2011] [Accepted: 02/13/2012] [Indexed: 02/06/2023]
Abstract
A coxsackievirus B4 induces acute pancreatitis with different outcomes. The study utilized a systems biology approach to identify molecular immune responses that differentiate between disease resolution and disease progression. The data establish a temporal pattern of host responses that differentiate the resolution of acute pancreatitis from the progression to chronic pancreatitis. A group of twenty-five genes exhibited characteristic expression profiles that were observed during the development of chronic pancreatitis but not during the resolution of disease. We postulate that the temporal dynamics of the twenty-five genes influence the development of pathogenic immune responses associated with chronic pancreatitis. Furthermore, a subset of eleven genes exhibited increased expression as viral titers waned. Of the eleven gene products, five are secreted molecules, TNF-α, IFN-γ, CXCL10, IL-10, and IL-22b, and represent novel potential therapeutic targets since they can be readily modulated with antibodies against the specific cytokine/chemokine or with antibodies against the corresponding receptors.
Collapse
|
38
|
Opitz E, Koch A, Klingel K, Schmidt F, Prokop S, Rahnefeld A, Sauter M, Heppner FL, Völker U, Kandolf R, Kuckelkorn U, Stangl K, Krüger E, Kloetzel PM, Voigt A. Impairment of immunoproteasome function by β5i/LMP7 subunit deficiency results in severe enterovirus myocarditis. PLoS Pathog 2011; 7:e1002233. [PMID: 21909276 PMCID: PMC3164653 DOI: 10.1371/journal.ppat.1002233] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 07/07/2011] [Indexed: 12/18/2022] Open
Abstract
Proteasomes recognize and degrade poly-ubiquitinylated proteins. In infectious disease, cells activated by interferons (IFNs) express three unique catalytic subunits β1i/LMP2, β2i/MECL-1 and β5i/LMP7 forming an alternative proteasome isoform, the immunoproteasome (IP). The in vivo function of IPs in pathogen-induced inflammation is still a matter of controversy. IPs were mainly associated with MHC class I antigen processing. However, recent findings pointed to a more general function of IPs in response to cytokine stress. Here, we report on the role of IPs in acute coxsackievirus B3 (CVB3) myocarditis reflecting one of the most common viral disease entities among young people. Despite identical viral load in both control and IP-deficient mice, IP-deficiency was associated with severe acute heart muscle injury reflected by large foci of inflammatory lesions and severe myocardial tissue damage. Exacerbation of acute heart muscle injury in this host was ascribed to disequilibrium in protein homeostasis in viral heart disease as indicated by the detection of increased proteotoxic stress in cytokine-challenged cardiomyocytes and inflammatory cells from IP-deficient mice. In fact, due to IP-dependent removal of poly-ubiquitinylated protein aggregates in the injured myocardium IPs protected CVB3-challenged mice from oxidant-protein damage. Impaired NFκB activation in IP-deficient cardiomyocytes and inflammatory cells and proteotoxic stress in combination with severe inflammation in CVB3-challenged hearts from IP-deficient mice potentiated apoptotic cell death in this host, thus exacerbating acute tissue damage. Adoptive T cell transfer studies in IP-deficient mice are in agreement with data pointing towards an effective CD8 T cell immune. This study therefore demonstrates that IP formation primarily protects the target organ of CVB3 infection from excessive inflammatory tissue damage in a virus-induced proinflammatory cytokine milieu.
Collapse
Affiliation(s)
- Elisa Opitz
- Medizinische Klinik für Kardiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Annett Koch
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karin Klingel
- Abteilung Molekulare Pathologie, Institut für Pathologie und Neuropathologie, Eberhard-Karls-Universität, Tuebingen, Germany
| | - Frank Schmidt
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Stefan Prokop
- Institut für Neuropathologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Rahnefeld
- Medizinische Klinik für Kardiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Sauter
- Abteilung Molekulare Pathologie, Institut für Pathologie und Neuropathologie, Eberhard-Karls-Universität, Tuebingen, Germany
| | - Frank L. Heppner
- Institut für Neuropathologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Völker
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Reinhard Kandolf
- Abteilung Molekulare Pathologie, Institut für Pathologie und Neuropathologie, Eberhard-Karls-Universität, Tuebingen, Germany
| | - Ulrike Kuckelkorn
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karl Stangl
- Medizinische Klinik für Kardiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elke Krüger
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter M. Kloetzel
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Antje Voigt
- Medizinische Klinik für Kardiologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
39
|
Belguendouz H, Messaoudène D, Lahmar K, Ahmedi L, Medjeber O, Hartani D, Lahlou-Boukoffa O, Touil-Boukoffa C. Interferon-γ and nitric oxide production during Behçet uveitis: immunomodulatory effect of interleukin-10. J Interferon Cytokine Res 2011; 31:643-51. [PMID: 21510811 DOI: 10.1089/jir.2010.0148] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Uveitis is one of the major manifestations of Behçet Disease, a systemic inflammatory vasculitis. Our aim is to investigate in vivo and in vitro production of interferon (IFN)-γ and nitric oxide (NO) during Behçet uveitis (BU). Moreover, we evaluated the implication of IFN-γ and interleukin (IL)-10 in the regulation of NO production in vitro. Cytokines' concentrations were measured by ELISA, and NO levels were assessed by modified Griess's method. Our results showed that patients with active disease had significant elevation of IFN-γ and NO concentrations in both plasma and peripheral blood mononuclear cell culture supernatants compared with controls (P<0.01) or to patients with inactive disease (P<0.05). Further, IFN-γ induced significantly higher production of NO in cell culture supernatants, whereas IL-10 significantly reduced it (P<0.05). In conclusion, the elevated levels of IFN-γ in vivo and in vitro in patients with BU reflect the implication of this cytokine in the disease physiopathology. These results suggest that IFN-γ, through the induction of NO synthase 2 and the production of NO, is implicated in the genesis of the inflammatory process during active BU; whereas IL-10 seems to have protective properties.
Collapse
Affiliation(s)
- Houda Belguendouz
- Laboratoire de Biologie Cellulaire et Moléculaire, FSB-USTHB, Université Bab-Ezzouar, Algiers, Algeria
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Shi Y, Fukuoka M, Li G, Liu Y, Chen M, Konviser M, Chen X, Opavsky MA, Liu PP. Regulatory T cells protect mice against coxsackievirus-induced myocarditis through the transforming growth factor beta-coxsackie-adenovirus receptor pathway. Circulation 2010; 121:2624-34. [PMID: 20530002 DOI: 10.1161/circulationaha.109.893248] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Coxsackievirus B3 infection is an excellent model of human myocarditis and dilated cardiomyopathy. Cardiac injury is caused either by a direct cytopathic effect of the virus or through immune-mediated mechanisms. Regulatory T cells (Tregs) play an important role in the negative modulation of host immune responses and set the threshold of autoimmune activation. This study was designed to test the protective effects of Tregs and to determine the underlying mechanisms. METHODS AND RESULTS Carboxyfluorescein diacetate succinimidyl ester-labeled Tregs or naïve CD4(+) T cells were injected intravenously once every 2 weeks 3 times into mice. The mice were then challenged with intraperitoneal coxsackievirus B3 immediately after the last cell transfer. Transfer of Tregs showed higher survival rates than transfer of CD4(+) T cells (P=0.0136) but not compared with the PBS injection group (P=0.0589). Interestingly, Tregs also significantly decreased virus titers and inflammatory scores in the heart. Transforming growth factor-beta and phosphorylated AKT were upregulated in Tregs-transferred mice and coxsackie-adenovirus receptor expression was decreased in the heart compared with control groups. Transforming growth factor-beta decreased coxsackie-adenovirus receptor expression and inhibited coxsackievirus B3 infection in HL-1 cells and neonatal cardiac myocytes. Splenocytes collected from Treg-, CD4(+) T-cell-, and PBS-treated mice proliferated equally when stimulated with heat-inactivated virus, whereas in the Treg group, the proliferation rate was reduced significantly when stimulated with noninfected heart tissue homogenate. CONCLUSIONS Adoptive transfer of Tregs protected mice from coxsackievirus B3-induced myocarditis through the transforming growth factor beta-coxsackie-adenovirus receptor pathway and thus suppresses the immune response to cardiac tissue, maintaining the antiviral immune response.
Collapse
Affiliation(s)
- Yu Shi
- Division of Cardiology, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Myocarditis is an uncommon, potentially life-threatening disease that presents with a wide range of symptoms in children and adults. Viral infection is the most common cause of myocarditis in developed countries, but other etiologies include bacterial and protozoal infections, toxins, drug reactions, autoimmune diseases, giant cell myocarditis, and sarcoidosis. Acute injury leads to myocyte damage, which in turn activates the innate and humeral immune system, leading to severe inflammation. In most patients, the immune reaction is eventually down-regulated and the myocardium recovers. In select cases, however, persistent myocardial inflammation leads to ongoing myocyte damage and relentless symptomatic heart failure or even death. The diagnosis is usually made based on clinical presentation and noninvasive imaging findings. Most patients respond well to standard heart failure therapy, although in severe cases, mechanical circulatory support or heart transplantation is indicated. Prognosis in acute myocarditis is generally good except in patients with giant cell myocarditis. Persistent, chronic myocarditis usually has a progressive course but may respond to immunosuppression.
Collapse
Affiliation(s)
- Lori A Blauwet
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
42
|
Voigt A, Bartel K, Egerer K, Trimpert C, Feist E, Gericke C, Kandolf R, Klingel K, Kuckelkorn U, Stangl K, Felix SB, Baumann G, Kloetzel PM, Staudt A. Humoral anti-proteasomal autoimmunity in dilated cardiomyopathy. Basic Res Cardiol 2009; 105:9-18. [DOI: 10.1007/s00395-009-0061-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/31/2009] [Accepted: 09/02/2009] [Indexed: 11/28/2022]
|
43
|
Johannes T, Mik EG, Klingel K, Goedhart PT, Zanke C, Nohé B, Dieterich HJ, Unertl KE, Ince C. EFFECTS OF 1400W AND/OR NITROGLYCERIN ON RENAL OXYGENATION AND KIDNEY FUNCTION DURING ENDOTOXAEMIA IN ANAESTHETIZED RATS. Clin Exp Pharmacol Physiol 2009; 36:870-9. [DOI: 10.1111/j.1440-1681.2009.05204.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Jäkel S, Kuckelkorn U, Szalay G, Plötz M, Textoris-Taube K, Opitz E, Klingel K, Stevanovic S, Kandolf R, Kotsch K, Stangl K, Kloetzel PM, Voigt A. Differential interferon responses enhance viral epitope generation by myocardial immunoproteasomes in murine enterovirus myocarditis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:510-8. [PMID: 19590042 DOI: 10.2353/ajpath.2009.090033] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Murine models of coxsackievirus B3 (CVB3)-induced myocarditis mimic the divergent human disease course of cardiotropic viral infection, with host-specific outcomes ranging from complete recovery in resistant mice to chronic disease in susceptible hosts. To identify susceptibility factors that modulate the course of viral myocarditis, we show that type-I interferon (IFN) responses are considerably impaired in acute CVB3-induced myocarditis in susceptible mice, which have been linked to immunoproteasome (IP) formation. Here we report that in concurrence with distinctive type-I IFN kinetics, myocardial IP formation peaked early after infection in resistant mice and was postponed with maximum IP expression concomitant to massive inflammation and predominant type-II IFN responses in susceptible mice. IP activity is linked to a strong enhancement of antigenic viral peptide presentation. To investigate the impact of myocardial IPs in CVB3-induced myocarditis, we identified two novel CVB3 T cell epitopes, virus capsid protein 2 [285-293] and polymerase 3D [2170-2177]. Analysis of myocardial IPs in CVB3-induced myocarditis revealed that myocardial IP expression resulted in efficient epitope generation. As opposed to the susceptible host, myocardial IP expression at early stages of disease corresponded to enhanced CVB3 epitope generation in the hearts of resistant mice. We propose that this process may precondition the infected heart for adaptive immune responses. In conclusion, type-I IFN-induced myocardial IP activity at early stages coincides with less severe disease manifestation in CVB3-induced myocarditis.
Collapse
Affiliation(s)
- Sandra Jäkel
- Charité-Universitätsmedizin Berlin, Institut für Biochemie CC2, Monbijoustrasse 2, D-10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Low-dose dexamethasone-supplemented fluid resuscitation reverses endotoxin-induced acute renal failure and prevents cortical microvascular hypoxia. Shock 2009; 31:521-8. [PMID: 18827749 DOI: 10.1097/shk.0b013e318188d198] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There is growing evidence that impairment in intrarenal oxygenation and hypoxic injury might contribute to the pathogenesis of septic renal failure. An important molecule known to act on the renal microvascular tone and therefore consequently being involved in the regulation of intrarenal oxygen supply is NO. The main production of NO under septic conditions derives from iNOS, an enzyme that can be blocked by dexamethasone (DEX). In an animal model of endotoxin-induced renal failure, we tested the hypothesis that inhibition of iNOS by low-dose DEX would improve an impaired intrarenal oxygenation and kidney function. Twenty-two male Wistar rats received a 30-min intravenous infusion of LPS (2.5 mg/kg) and consecutively developed endotoxemic shock. Two hours later, in 12 animals, fluid resuscitation was initiated. Six rats did not receive resuscitation; four animals served as time control. In addition to the fluid, six animals received a bolus of low-dose DEX (0.1 mg/kg). In these animals, the renal iNOS mRNA expression was significantly suppressed 3 h later. Dexamethasone prevented the appearance of cortical microcirculatory hypoxic areas, improved renal oxygen delivery, and significantly restored oxygen consumption. Besides a significant increase in MAP and renal blood flow, DEX restored kidney function and tubular sodium reabsorption to baseline values. In conclusion, treatment with low-dose DEX in addition to fluid resuscitation reversed endotoxin-induced renal failure associated by an improvement in intrarenal microvascular oxygenation. Therefore, low-dose DEX might have potential application in the prevention of septic acute renal failure.
Collapse
|
46
|
Iloprost preserves renal oxygenation and restores kidney function in endotoxemia-related acute renal failure in the rat. Crit Care Med 2009; 37:1423-32. [DOI: 10.1097/ccm.0b013e31819b5f4e] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Szalay G, Sauter M, Haberland M, Zuegel U, Steinmeyer A, Kandolf R, Klingel K. Osteopontin: a fibrosis-related marker molecule in cardiac remodeling of enterovirus myocarditis in the susceptible host. Circ Res 2009; 104:851-9. [PMID: 19246678 DOI: 10.1161/circresaha.109.193805] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The characteristics of dilated cardiomyopathy (DCM) resulting from chronic viral myocarditis are remodeling processes of the extracellular matrix. Based on our findings of enhanced osteopontin (OPN) expression in inflamed human hearts, we further investigated in the murine model of acute and chronic coxsackievirus (CV)B3-myocarditis the role of OPN regarding its involvement in resolution of cardiac virus infection and fibrosis. In hearts of A.BY/SnJ mice susceptible to chronic CVB3-myocarditis, a pronounced increase of OPN expression levels was detected by microarray analysis and quantitative RT-PCR during acute stages of myocarditis. Combined immunohistochemistry and in situ hybridization identified infiltrating macrophages as main OPN producers. In contrast to resistant C57BL/6 and OPN gene-deficient mice, transcription levels of matrix metalloproteinase-3, TIMP1 (tissue inhibitor of metalloproteinases-1), uPA (urokinase-type plasminogen activator), and transforming growth factor beta1 were elevated in susceptible mice, and as a consequence, procollagen-1alpha mRNA expression and fibrosis was considerably enhanced. Treatment of infected susceptible mice with the vitamin D analog ZK 191784 led to decreased myocardial expression levels of OPN, metalloproteinase-3, TIMP1, uPA, and procollagen-1alpha and subsequently to reduced fibrosis. Concurrently, the fibrosis-relevant signaling molecules pERK (phosphorylated extracellular signal-regulated kinase) and pAkt (phosphorylated Akt), increased in A.BY/SnJ mice, were diminished in ZK 191784-treated mice. Here, we show that high expression levels of OPN in acute myocarditis are associated with consecutive development of extensive fibrosis that can be reduced by treatment with a vitamin D analog. Thus, OPN may serve as a diagnostic tool as well as a potential therapeutic target to limit cardiac remodeling in chronic myocarditis.
Collapse
Affiliation(s)
- Gudrun Szalay
- Department of Molecular Pathology, Institute for Pathology, University Hospital, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Effective chemokine secretion by dendritic cells and expansion of cross-presenting CD4-/CD8+ dendritic cells define a protective phenotype in the mouse model of coxsackievirus myocarditis. J Virol 2008; 82:8149-60. [PMID: 18550677 DOI: 10.1128/jvi.00047-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Enteroviruses such as coxsackievirus B3 (CVB3) are able to induce lethal acute and chronic myocarditis. In resistant C57BL/6 mice, CVB3 myocarditis is abrogated by T-cell-dependent mechanisms, whereas major histocompatibility complex (MHC)-matched permissive A.BY/SnJ mice develop chronic myocarditis based on virus persistence. To define the role of T-cell-priming dendritic cells (DCs) in the outcome of CVB3 myocarditis, DCs were analyzed in this animal model in the course of CVB3 infection. In both mouse strains, DCs were found to be infectible with CVB3; however, formation of infectious virions was impaired. In DCs derived from C57BL/6 mice, significantly higher quantities of interleukin-10 (IL-10) and the proinflammatory cytokines IL-6 and tumor necrosis factor alpha were measured compared to those from A.BY/SnJ mice. Additionally, the chemokines interferon-inducible protein 10 (IP-10) and RANTES were secreted by DCs from resistant C57BL/6 mice earlier in infection and at significantly higher levels. The protective role of IP-10 in CVB3 myocarditis was confirmed in IP-10(-/-) mice, which had increased myocardial injury compared to the immunocompetent control animals. Also, major differences in resistant and permissive mice were found in DC subsets, with C57BL/6 mice harboring more cross-priming CD4(-) CD8(+) DCs. As CD4(-) CD8(+) DCs are known to express 10 times more Toll-like receptor 3 (TLR3) than other DC subsets, we followed the course of CVB3 infection in TLR3(-/-) mice. These mice developed a fulminant acute myocarditis and secreted sustained low amounts of type I interferons; secretion of IP-10 and RANTES was nearly abrogated in DCs. We conclude that MHC-independent genetic factors involving DC-related IP-10 secretion and TLR3 expression are beneficial in the prevention of chronic coxsackievirus myocarditis.
Collapse
|