1
|
Liu S, Zhao H, Jiang T, Wan G, Yan C, Zhang C, Yang X, Chen Z. The Angiogenic Repertoire of Stem Cell Extracellular Vesicles: Demystifying the Molecular Underpinnings for Wound Healing Applications. Stem Cell Rev Rep 2024; 20:1795-1812. [PMID: 39001965 DOI: 10.1007/s12015-024-10762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Stem cells-derived extracellular vesicles (SC-EVs) have emerged as promising therapeutic agents for wound repair, recapitulating the biological effects of parent cells while mitigating immunogenic and tumorigenic risks. These EVs orchestrate wound healing processes, notably through modulating angiogenesis-a critical event in tissue revascularization and regeneration. This study provides a comprehensive overview of the multifaceted mechanisms underpinning the pro-angiogenic capacity of EVs from various stem cell sources within the wound microenvironment. By elucidating the molecular intricacies governing their angiogenic prowess, we aim to unravel the mechanistic repertoire underlying their remarkable potential to accelerate wound healing. Additionally, methods to enhance the angiogenic effects of SC-EVs, current limitations, and future perspectives are highlighted, emphasizing the significant potential of this rapidly advancing field in revolutionizing wound healing strategies.
Collapse
Affiliation(s)
- Shuoyuan Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huayuan Zhao
- Department of Urology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gui Wan
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chi Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Bah TM, Davis CM, Allen EM, Borkar RN, Perez R, Grafe MR, Raber J, Pike MM, Alkayed NJ. Soluble epoxide hydrolase inhibition reverses cognitive dysfunction in a mouse model of metabolic syndrome by modulating inflammation. Prostaglandins Other Lipid Mediat 2024; 173:106850. [PMID: 38735559 PMCID: PMC11218661 DOI: 10.1016/j.prostaglandins.2024.106850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Midlife metabolic syndrome (MetS) is associated with cognitive impairment in late life. The mechanism of delayed MetS-related cognitive dysfunction (MetSCD) is not clear, but it has been linked to systemic inflammation and chronic cerebral microangiopathy. Currently there is no treatment for late life MetSCD other than early risk factor modification. We investigated the effect of soluble epoxide hydrolase (sEH) inhibitor 4-[[trans-4-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]cyclohexyl]oxy]-benzoic acid (t-AUCB) on cognitive performance, cerebral blood flow (CBF), and central and peripheral inflammation in the high-fat diet (HFD) model of MetS in mice. At 6 weeks of age, male mice were randomly assigned to receive either HFD or standard chow (STD) for 6 months. Mice received either t-AUCB or vehicle for 4 weeks. Cognitive performance was evaluated, followed by CBF measurement using magnetic resonance imaging (MRI). At the end of the study, blood was collected for measurement of eicosanoids and inflammatory cytokines. The brains were then analyzed by immunohistochemistry for glial activation markers. The HFD caused a significant impairment in novel object recognition. Treatment with t-AUCB increased plasma levels of 14,15-EET, prevented this cognitive impairment and modified hippocampal glial activation and plasma cytokine levels, without affecting CBF in mice on HFD. In conclusion, sEH inhibition for four weeks prevents cognitive deficits in mice on chronic HFD by modulating inflammatory processes without affecting CBF.
Collapse
Affiliation(s)
- Thierno M Bah
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Catherine M Davis
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Elyse M Allen
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Rohan N Borkar
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Ruby Perez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Marjorie R Grafe
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA; Departments of Neurology and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA
| | - Martin M Pike
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Nabil J Alkayed
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
3
|
Alnakli AAA, Mohamedali A, Heng B, Chan C, Shin JS, Solomon M, Chapuis P, Guillemin GJ, Baker MS, Ahn SB. Protein prognostic biomarkers in stage II colorectal cancer: implications for post-operative management. BJC REPORTS 2024; 2:13. [PMID: 39516345 PMCID: PMC11523985 DOI: 10.1038/s44276-024-00043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 11/16/2024]
Abstract
Colorectal cancer (CRC) poses a significant threat to many human lives worldwide and survival following resection is predominantly stage dependent. For early-stage cancer, patients are not routinely advised to undergo additional post-operative adjuvant chemotherapy. Acceptable clinical management guidelines are well established for patients in pTNM stages I, III and IV. However, recommendations for managing CRC stage II patients remain controversial and many studies have been conducted to segregate stage II patients into low- and high-risk of recurrence using genomic, transcriptomic and proteomic molecular markers. As proteins provide valuable insights into cellular functions and disease state and have a relatively easy translation to the clinic, this review aims to discuss potential prognostic protein biomarkers proposed for predicting tumour relapse in early-stage II CRC. It is suggested that a panel of markers may be more effective than a single marker and further evaluation is required to translate these into clinical practice.
Collapse
Affiliation(s)
- Aziz A A Alnakli
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Abidali Mohamedali
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Charles Chan
- Department of Anatomical Pathology, NSW Health Pathology, Concord Hospital, Sydney, NSW, Australia
- Concord Institute of Academic Surgery, Concord Clinical School, Faculty of Medicine and Health, Concord Hospital, University of Sydney, Sydney, NSW, Australia
| | - Joo-Shik Shin
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, Sydney, NSW, Australia
| | - Michael Solomon
- Department of Colorectal Surgery RPAH & Institute of Academic Surgery at Sydney Medical School, University of Sydney, Sydney, Australia
| | - Pierre Chapuis
- Concord Institute of Academic Surgery, Concord Clinical School, Faculty of Medicine and Health, Concord Hospital, University of Sydney, Sydney, NSW, Australia
| | | | - Mark S Baker
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Seong Beom Ahn
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Shaw P, Sharma AK, Kalonia A, Shukla A, Kumar R, Kirti, Shukla SK. Early cutaneous inflammatory response at different degree of burn and its significance for clinical diagnosis and management. J Tissue Viability 2023; 32:550-563. [PMID: 37414707 DOI: 10.1016/j.jtv.2023.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/24/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
A complete characterization of the burn wound based on cutaneous architectural changes and inflammatory response is extremely important to provide evidence for progressive changes in the burn wound. Burn wounds are highly susceptible to conversion into deeper wounds, which need special care and attention; thereby, the complete characterization of burn wound type and their subsequent inflammatory status in the cutaneous system at the earliest is of paramount importance. Inflammatory markers at different degrees will help clinicians devise better and more specific treatment strategies for each burn type. The present study is carried out to profile pro-inflammatory gene expression along with immune cell quantification, vascular perfusion, and histopathological assessment in the cutaneous system of murine models. The study revealed that burn injury caused an immediate increase in vascular perfusion in superficial and partial-thickness burns, whereas there was a decrease in vascular perfusion in full-thickness burns. An influx of lymphocytes at the edges of burn wounds in each type of burn injury was well-orchestrated with the event of vascular perfusion. Further, pro-inflammatory gene expression profiling revealed significant upregulation vis-à-vis upregulation of TNF-α and MCP-1 genes, with an increase in the number of neutrophils following 72 h of injury that evidently cemented the conversion of superficial burn into partial-thickness burn. The molecular findings were profoundly supported by the histopathological changes. Thus, our foundational studies show distinct characteristic cutaneous changes correlated with the expression of key pro-inflammatory genes in three different types of burn injuries. Characterization of these cutaneous inflammatory responses provides a promising future for medical interventions involved with different degrees of burn injury, and it will also help in the pre-clinical testing of therapies for burn injury.
Collapse
Affiliation(s)
- Priyanka Shaw
- Molecular and Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi, 110054, India
| | - Ajay Kumar Sharma
- Molecular and Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi, 110054, India
| | - Aman Kalonia
- Molecular and Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi, 110054, India
| | - Amit Shukla
- Department of Pharmacology and Toxicology, College of Veterinary Science and Animal Husbandry, UP Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Rishav Kumar
- Molecular and Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi, 110054, India
| | - Kirti
- Molecular and Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi, 110054, India
| | - Sandeep Kumar Shukla
- Molecular and Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi, 110054, India.
| |
Collapse
|
5
|
Richmond JM, Patel D, Watanabe T, Chen HW, Martyanov V, Werner G, Garg M, Haddadi NS, Refat MA, Mahmoud BH, Wong LD, Dresser K, Deng A, Zhu JL, McAlpine W, Hosler GA, Feghali-Bostwick CA, Whitfield ML, Harris JE, Torok KS, Jacobe HT. CXCL9 Links Skin Inflammation and Fibrosis through CXCR3-Dependent Upregulation of Col1a1 in Fibroblasts. J Invest Dermatol 2023; 143:1138-1146.e12. [PMID: 36708947 DOI: 10.1016/j.jid.2022.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 01/27/2023]
Abstract
Morphea is characterized by initial inflammation followed by fibrosis of the skin and soft tissue. Despite its substantial morbidity, the pathogenesis of morphea is poorly studied. Previous work showed that CXCR3 ligands CXCL9 and CXCL10 are highly upregulated in the sera and lesional skin of patients with morphea. We found that an early inflammatory subcutaneous bleomycin mouse model of dermal fibrosis mirrors the clinical, histological, and immune dysregulation observed in human morphea. We used this model to examine the role of the CXCR3 chemokine axis in the pathogenesis of cutaneous fibrosis. Using the REX3 (Reporting the Expression of CXCR3 ligands) mice, we characterized which cells produce CXCR3 ligands over time. We found that fibroblasts contribute the bulk of CXCL9-RFP and CXCL10-BFP by percentage, whereas macrophages produce high amounts on a per-cell basis. To determine whether these chemokines are mechanistically involved in pathogenesis, we treated Cxcl9-, Cxcl10-, or Cxcr3-deficient mice with bleomycin and found that fibrosis is dependent on CXCL9 and CXCR3. Addition of recombinant CXCL9 but not CXCL10 to cultured mouse fibroblasts induced Col1a1 mRNA expression, indicating that the chemokine itself contributes to fibrosis. Taken together, our studies provide evidence that CXCL9 and its receptor CXCR3 are functionally required for inflammatory fibrosis.
Collapse
Affiliation(s)
- Jillian M Richmond
- Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Dhrumil Patel
- Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Tomoya Watanabe
- Division of Rheumatology & Immunology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Dermatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Henry W Chen
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Viktor Martyanov
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Giffin Werner
- Department of Medicine, University of Pittsburg School of Medicine, Pittsburg, Pennsylvania, USA
| | - Madhuri Garg
- Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Nazgol-Sadat Haddadi
- Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Maggi Ahmed Refat
- Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Bassel H Mahmoud
- Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Lance D Wong
- Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Karen Dresser
- Department of Pathology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - April Deng
- Department of Pathology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Jane L Zhu
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - William McAlpine
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | - Carol A Feghali-Bostwick
- Division of Rheumatology & Immunology, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Michael L Whitfield
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA; Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - John E Harris
- Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - Kathryn S Torok
- Department of Medicine, University of Pittsburg School of Medicine, Pittsburg, Pennsylvania, USA
| | - Heidi T Jacobe
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
6
|
Shi S, Dong H, Chen X, Xu S, Song Y, Li M, Yan Z, Wang X, Niu M, Zhang M, Liao C. Sustained release of alginate hydrogel containing antimicrobial peptide Chol-37(F34-R) in vitro and its effect on wound healing in murine model of Pseudomonas aeruginosa infection. J Vet Sci 2023; 24:e44. [PMID: 37271512 PMCID: PMC10244133 DOI: 10.4142/jvs.22319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/09/2023] [Accepted: 04/25/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Antibiotic resistance is a significant public health concern around the globe. Antimicrobial peptides exhibit broad-spectrum and efficient antibacterial activity with an added advantage of low drug resistance. The higher water content and 3D network structure of the hydrogels are beneficial for maintaining antimicrobial peptide activity and help to prevent degradation. The antimicrobial peptide released from hydrogels also hasten the local wound healing by promoting epithelial tissue regeneration and granulation tissue formation. OBJECTIVE This study aimed at developing sodium alginate based hydrogel loaded with a novel antimicrobial peptide Chol-37(F34-R) and to investigate the characteristics in vitro and in vivo as an alternative antibacterial wound dressing to treat infectious wounds. METHODS Hydrogels were developed and optimized by varying the concentrations of crosslinkers and subjected to various characterization tests like cross-sectional morphology, swelling index, percent water contents, water retention ratio, drug release and antibacterial activity in vitro, and Pseudomonas aeruginosa infected wound mice model in vivo. RESULTS The results indicated that the hydrogel C proved superior in terms of cross-sectional morphology having uniformly sized interconnected pores, a good swelling index, with the capacity to retain a higher quantity of water. Furthermore, the optimized hydrogel has been found to exert a significant antimicrobial activity against bacteria and was also found to prevent bacterial infiltration into the wound site due to forming an impermeable barrier between the wound bed and external environment. The optimized hydrogel was found to significantly hasten skin regeneration in animal models when compared to other treatments in addition to strong inhibitory effect on the release of pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-α). CONCLUSIONS Our results suggest that sodium alginate -based hydrogels loaded with Chol-37(F34-R) hold the potential to be used as an alternative to conventional antibiotics in treating infectious skin wounds.
Collapse
Affiliation(s)
- Shuaibing Shi
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang 471023, China
| | - Hefan Dong
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang 471023, China
- College of Animal Science and Technology /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaoyou Chen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang 471023, China
- College of Animal Science and Technology /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471023, China
| | - Siqi Xu
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang 471023, China
- College of Animal Science and Technology /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471023, China
| | - Yue Song
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang 471023, China
- College of Animal Science and Technology /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471023, China
| | - Meiting Li
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang 471023, China
- College of Animal Science and Technology /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhiling Yan
- Jiaozuo Center for Animal Disease Prevention and Control, Jiaozuo 454003, China
| | - Xiaoli Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, China
| | - Mingfu Niu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Min Zhang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang 471023, China.
| | - Chengshui Liao
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang 471023, China
- College of Animal Science and Technology /Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
7
|
Mony MP, Harmon KA, Hess R, Dorafshar AH, Shafikhani SH. An Updated Review of Hypertrophic Scarring. Cells 2023; 12:cells12050678. [PMID: 36899815 PMCID: PMC10000648 DOI: 10.3390/cells12050678] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Hypertrophic scarring (HTS) is an aberrant form of wound healing that is associated with excessive deposition of extracellular matrix and connective tissue at the site of injury. In this review article, we provide an overview of normal (acute) wound healing phases (hemostasis, inflammation, proliferation, and remodeling). We next discuss the dysregulated and/or impaired mechanisms in wound healing phases that are associated with HTS development. We next discuss the animal models of HTS and their limitations, and review the current and emerging treatments of HTS.
Collapse
Affiliation(s)
- Manjula P. Mony
- Department of Surgery, Division of Plastic & Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kelly A. Harmon
- Department of Surgery, Division of Plastic & Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ryan Hess
- Department of Surgery, Division of Plastic & Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Amir H. Dorafshar
- Department of Surgery, Division of Plastic & Reconstructive Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sasha H. Shafikhani
- Department of Medicine, Division of Hematology and Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL 60612, USA
- Cancer Center, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
8
|
Sylakowski K, Hwang P, Justin A, Shao H, Whaley D, Wang Y, Wells A. Matricellular protein Tenascin-C enhances mesenchymal stem cell angiogenic and wound healing efficacy under ischemic conditions. J Tissue Eng Regen Med 2022; 16:1249-1260. [PMID: 36346015 DOI: 10.1002/term.3367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022]
Abstract
Human mesenchymal stem cells/multipotent stromal cells (MSCs) hold great promise in aiding wound healing through their ability to modulate all phases of repair and regeneration, most notably their secretion of pro-regenerative paracrine factors. However, MSC clinical utility is hindered by poor survival rates post-transplantation due to the harsh microenvironment in injured tissue. Previous work has shown that the matricellular protein Tenascin-C (TNC) provides survival signaling to MSCs via the epidermal growth factor receptor by restricting its activation at the plasma membrane, resulting in enhanced prosurvival signals. Herein, we investigate how TNC influences MSC survival and MSC-mediated promotion of the wound healing process. This study examined the survival and angiogenic potential of MSCs cultured on TNC-coated surfaces under ischemic duress in vitro. We also assessed the angiogenic and wound healing outcomes of MSC + TNC in vivo using a CXCR3-/- mouse model that exhibits a delayed healing phenotype within the tissue replacement phase of repair. We found that MSCs in the presence of TNC exhibit higher levels of angiogenic-promoting processes, collagen maturation, and an overall better wound healing outcome than MSCs administered alone. This was seen in vitro in terms of enhanced tube formation. In vivo, the MSCs in the presence of TNC stabilized with a coacervate delivery system resulted in more regenerative wounds with accelerated maturation of the dermis. These findings suggest the coupling of TNC to MSCs as a promising tool for future MSC-ECM combinatorial therapies for wound healing applications.
Collapse
Affiliation(s)
- Kyle Sylakowski
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,R&D Service, Pittsburgh, VA Health System, Pittsburgh, Pennsylvania, USA
| | - Peter Hwang
- Department of Bioengineering, Cornell University, Ithaca, New York, USA
| | - Amritha Justin
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hanshuang Shao
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,R&D Service, Pittsburgh, VA Health System, Pittsburgh, Pennsylvania, USA
| | - Diana Whaley
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,R&D Service, Pittsburgh, VA Health System, Pittsburgh, Pennsylvania, USA
| | - Yadong Wang
- Department of Bioengineering, Cornell University, Ithaca, New York, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,R&D Service, Pittsburgh, VA Health System, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Wells A. Role of CXCR3 in fibrotic tissue responses. Int J Biochem Cell Biol 2022; 152:106311. [PMID: 36195287 DOI: 10.1016/j.biocel.2022.106311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022]
Abstract
Development of fibrosis leads to end stage diseases that defy treatments across all organs. This ensues as chronic inflammation is not dampened by physiologic processes that issue in the resolution phase of wound healing. Thus, these conditions can be considered diseases of "failure to heal". In the absence of broadly viable treatments, it is proposed to examine key switches in wound healing resolution to seek insights into novel approaches. Signaling through the GPCR CXCR3 has been shown to be one such critical player in this physiologic transition that limits and even reverses early fibrosis. As such, a number of investigators and early stage technology companies have posited that triggering this signaling network would limit fibrosis. While there are some conflicting results, a consensus is emerging that pharmacologic interventions that promote signaling through this pathway represent innovative ways to limit fibrotic diseases.
Collapse
Affiliation(s)
- Alan Wells
- Departments of Pathology, Bioengineering, and Computational & Systems Biology, and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; R&D Service, Pittsburgh VA Health System, Pittsburgh, PA 15213, USA.
| |
Collapse
|
10
|
Satarkar D, Patra C. Evolution, Expression and Functional Analysis of CXCR3 in Neuronal and Cardiovascular Diseases: A Narrative Review. Front Cell Dev Biol 2022; 10:882017. [PMID: 35794867 PMCID: PMC9252580 DOI: 10.3389/fcell.2022.882017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Chemokines form a sophisticated communication network wherein they maneuver the spatiotemporal migration of immune cells across a system. These chemical messengers are recognized by chemokine receptors, which can trigger a cascade of reactions upon binding to its respective ligand. CXC chemokine receptor 3 (CXCR3) is a transmembrane G protein-coupled receptor, which can selectively bind to CXCL9, CXCL10, and CXCL11. CXCR3 is predominantly expressed on immune cells, including activated T lymphocytes and natural killer cells. It thus plays a crucial role in immunological processes like homing of effector cells to infection sites and for pathogen clearance. Additionally, it is expressed on several cell types of the central nervous system and cardiovascular system, due to which it has been implicated in several central nervous system disorders, including Alzheimer's disease, multiple sclerosis, dengue viral disease, and glioblastoma, as well as cardiovascular diseases like atherosclerosis, Chronic Chagas cardiomyopathy, and hypertension. This review provides a narrative description of the evolution, structure, function, and expression of CXCR3 and its corresponding ligands in mammals and zebrafish and the association of CXCR3 receptors with cardiovascular and neuronal disorders. Unraveling the mechanisms underlying the connection of CXCR3 and disease could help researchers investigate the potential of CXCR3 as a biomarker for early diagnosis and as a therapeutic target for pharmacological intervention, along with developing robust zebrafish disease models.
Collapse
Affiliation(s)
- Devi Satarkar
- Department of Developmental Biology, Agharkar Research Institute, Pune, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, Pune, India
- SP Phule University, Pune, India
| |
Collapse
|
11
|
Sylakowski K, Hwang MP, Justin A, Whaley D, Wang Y, Wells A. The matricellular protein decorin delivered intradermally with coacervate improves wound resolution in the CXCR3-deficient mouse model of hypertrophic scarring. Wound Repair Regen 2022; 30:436-447. [PMID: 35470921 DOI: 10.1111/wrr.13017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/17/2022] [Accepted: 04/14/2022] [Indexed: 01/26/2023]
Abstract
Cutaneous wound healing is an intricate orchestration of three overlapping phases of repair that encompass numerous cell types, signalling cascades, and microenvironment modifications to reach a successful resolution. Disruption of any of these steps will create an abnormal healing response resulting in either ulceration or excessive scarring. It has become evident that the extracellular matrix and its associated components are key orchestrators during this process. One of these essential matrix proteins is decorin, a small leucine-rich proteoglycan (SLRP) that acts as a regulator of collagen fibrillogenesis and a non-competitive inhibitor of multiple growth factors signalling cascades. Decorin is a necessary shut-off switch for the pro-reparative mechanism of the tissue replacement phase and limits the occurrence of hypertrophic scarring by preventing excessive repair. We investigated the use of decorin as a therapeutic by administering the matrix protein anchored in a slow-release coacervate in a hypertrophic scarring mouse model. The results show that early wound healing phase measurements exhibit little difference in performance compared to our coacervate-only baseline or HB-EGF-treated control mice. However, during the resolution phase of wound healing, the decorin-treatment significantly reduces cutaneous thickness, enhances collagen alignment, and improves overall wound scoring in the mice. Thus, mice treated with decorin display better healing outcomes and could limit the hypertrophic scarring phenotype in the coacervate only, and HB-EGF controls. These results suggest that decorin may be a promising tool and alternative therapy for patients who suffer from over-exuberant matrix deposition during wound healing.
Collapse
Affiliation(s)
- Kyle Sylakowski
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,R&D Service, Pittsburgh, VA Health System, Pittsburgh, Pennsylvania, USA
| | - Mintai Peter Hwang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Amritha Justin
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Diana Whaley
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,R&D Service, Pittsburgh, VA Health System, Pittsburgh, Pennsylvania, USA
| | - Yadong Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,R&D Service, Pittsburgh, VA Health System, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Singh M, Akkaya S, Preuß M, Rademacher F, Tohidnezhad M, Kubo Y, Behrendt P, Weitkamp JT, Wedel T, Lucius R, Gläser R, Harder J, Bayer A. Platelet-Released Growth Factors Influence Wound Healing-Associated Genes in Human Keratinocytes and Ex Vivo Skin Explants. Int J Mol Sci 2022; 23:ijms23052827. [PMID: 35269967 PMCID: PMC8911300 DOI: 10.3390/ijms23052827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Platelet-released growth factors (PRGFs) or other thrombocyte concentrate products, e.g., Platelet-Rich Fibrin (PRF), have become efficient tools of regenerative medicine in many medical disciplines. In the context of wound healing, it has been demonstrated that treatment of chronic or complicated wounds with PRGF or PRF improves wound healing in the majority of treated patients. Nevertheless, the underlying cellular and molecular mechanism are still poorly understood. Therefore, we aimed to analyze if PRGF-treatment of human keratinocytes caused the induction of genes encoding paracrine factors associated with successful wound healing. The investigated genes were Semaphorin 7A (SEMA7A), Angiopoietin-like 4 (ANGPLT4), Fibroblast Growth Factor-2 (FGF-2), Interleukin-32 (IL-32), the CC-chemokine-ligand 20 (CCL20), the matrix-metalloproteinase-2 (MMP-2), the chemokine C-X-C motif chemokine ligand 10 (CXCL10) and the subunit B of the Platelet-Derived Growth Factor (PDGFB). We observed a significant gene induction of SEMA7A, ANGPLT4, FGF-2, IL-32, MMP-2 and PDGFB in human keratinocytes after PRGF treatment. The CCL20- and CXCL10 gene expressions were significantly inhibited by PRGF therapy. Signal transduction analyses revealed that the PRGF-mediated gene induction of SEMA7A, ANGPLT4, IL-32 and MMP-2 in human keratinocytes was transduced via the IL-6 receptor pathway. In contrast, EGF receptor signaling was not involved in the PRGF-mediated gene expression of analyzed genes in human keratinocytes. Additionally, treatment of ex vivo skin explants with PRGF confirmed a significant gene induction of SEMA7A, ANGPLT4, MMP-2 and PDGFB. Taken together, these results describe a new mechanism that could be responsible for the beneficial wound healing properties of PRGF or related thrombocytes concentrate products such as PRF.
Collapse
Affiliation(s)
- Michael Singh
- Institute of Anatomy, Kiel University, 24098 Kiel, Germany; (M.S.); (S.A.); (T.W.); (R.L.)
| | - Serhat Akkaya
- Institute of Anatomy, Kiel University, 24098 Kiel, Germany; (M.S.); (S.A.); (T.W.); (R.L.)
| | - Mark Preuß
- Department for Vascular Medicine, Heart and Vascular Center, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Franziska Rademacher
- Department of Dermatology, Venerology and Allergology, Kiel University, 24105 Kiel, Germany; (F.R.); (R.G.); (J.H.)
| | - Mersedeh Tohidnezhad
- Department of Anatomy and Cell Biology, RWTH Aachen University, 52074 Aachen, Germany; (M.T.); (Y.K.)
| | - Yusuke Kubo
- Department of Anatomy and Cell Biology, RWTH Aachen University, 52074 Aachen, Germany; (M.T.); (Y.K.)
| | - Peter Behrendt
- Department of Trauma Surgery, University Medical Center of Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany;
| | - Jan-Tobias Weitkamp
- Department of Oral and Maxillofacial Surgery, University Medical Center of Schleswig-Holstein, Campus Kiel, 24015 Kiel, Germany;
| | - Thilo Wedel
- Institute of Anatomy, Kiel University, 24098 Kiel, Germany; (M.S.); (S.A.); (T.W.); (R.L.)
| | - Ralph Lucius
- Institute of Anatomy, Kiel University, 24098 Kiel, Germany; (M.S.); (S.A.); (T.W.); (R.L.)
| | - Regine Gläser
- Department of Dermatology, Venerology and Allergology, Kiel University, 24105 Kiel, Germany; (F.R.); (R.G.); (J.H.)
| | - Jürgen Harder
- Department of Dermatology, Venerology and Allergology, Kiel University, 24105 Kiel, Germany; (F.R.); (R.G.); (J.H.)
| | - Andreas Bayer
- Institute of Anatomy, Kiel University, 24098 Kiel, Germany; (M.S.); (S.A.); (T.W.); (R.L.)
- Correspondence:
| |
Collapse
|
13
|
Swogger J, Conner IP, Happ-Smith C, Kemmerer MC, Julian DR, Davis R, Wells A, Schuman JS, Yates CC. Novel combination therapy reduces subconjunctival fibrosis after glaucoma filtration surgery in the rabbit model. Clin Exp Ophthalmol 2021; 49:60-69. [PMID: 33426793 DOI: 10.1111/ceo.13884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/08/2020] [Accepted: 11/06/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND Glaucoma filtration surgery (GFS) is limited by subconjunctival, episcleral and scleral fibrosis sealing the trabeculectomy and scarring the filtering bleb. Mitomycin-C (MMC) is commonly applied intraoperatively to the subconjunctival and/or intrascleral space to reduce scarring and promotes GFS success but is associated with postoperative scleral melting and bleb leaks. IP-10 peptide (IP-10p), an ELR-negative CXC chemokine mimetic and inhibitor of fibroblast function, may be an alternative or adjunct to current postoperative GFS treatments. This study sought to determine if IP-10p produces histological changes in tissue remodelling, vascularity and fibrosis that enhance bleb survival after GFS. METHODS Rabbits underwent tube-assisted filtration surgery on the right eye with either: (a) IP-10p injected into bleb at time of surgery and postoperative days 2, 4 and 7, (b) intraoperative MMC or (c) intraoperative MMC plus IP-10p injected into bleb at time of surgery and postoperative days 2, 4 and 7. Left contralateral eyes were treated with balanced salt solution (BSS). RESULTS IP-10p-treated blebs demonstrated reduced collagen deposition, cellularity and overall reduction of scar formation compared to BSS-control. Bleb vascularity was reduced compared to BSS-control and MMC treatment groups. Additionally, IP-10p/MMC treated eyes demonstrated an increased number of conjunctival goblet cells in bleb histology compared to the dramatic loss seen with MMC treatment alone. CONCLUSIONS This study demonstrates that IP-10p significantly reduces histological scarring compared to BSS or MMC alone, does not damage the conjunctiva to the extent of current standards, and may be an alternative or adjunct to MMC for those undergoing GFS.
Collapse
Affiliation(s)
- John Swogger
- Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ian P Conner
- Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carrie Happ-Smith
- Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Megan C Kemmerer
- Department of Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, Pennsylvania, USA
| | - Dana R Julian
- Department of Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, Pennsylvania, USA
| | - Rachel Davis
- Department of Ophthalmology, UNM Eye Center, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Alan Wells
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joel S Schuman
- Department of Ophthalmology, UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,New York University (NYU) Langone Eye Center, NYU Langone Medical Center, Department of Ophthalmology, NYU School of Medicine, New York, New York, USA
| | - Cecelia C Yates
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Cheikhi AM, Johnson ZI, Julian DR, Wheeler S, Feghali-Bostwick C, Conley YP, Lyons-Weiler J, Yates CC. Prediction of severity and subtype of fibrosing disease using model informed by inflammation and extracellular matrix gene index. PLoS One 2020; 15:e0240986. [PMID: 33095822 PMCID: PMC7584227 DOI: 10.1371/journal.pone.0240986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/06/2020] [Indexed: 11/19/2022] Open
Abstract
Fibrosis is a chronic disease with heterogeneous clinical presentation, rate of progression, and occurrence of comorbidities. Systemic sclerosis (scleroderma, SSc) is a rare rheumatic autoimmune disease that encompasses several aspects of fibrosis, including highly variable fibrotic manifestation and rate of progression. The development of effective treatments is limited by these variabilities. The fibrotic response is characterized by both chronic inflammation and extracellular remodeling. Therefore, there is a need for improved understanding of which inflammation-related genes contribute to the ongoing turnover of extracellular matrix that accompanies disease. We have developed a multi-tiered method using Naïve Bayes modeling that is capable of predicting level of disease and clinical assessment of patients based on expression of a curated 60-gene panel that profiles inflammation and extracellular matrix production in the fibrotic disease state. Our novel modeling design, incorporating global and parametric-based methods, was highly accurate in distinguishing between severity groups, highlighting the importance of these genes in disease. We refined this gene set to a 12-gene index that can accurately identify SSc patient disease state subsets and informs knowledge of the central regulatory pathways in disease progression.
Collapse
Affiliation(s)
- Amin M. Cheikhi
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States of America
| | - Zariel I. Johnson
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States of America
| | - Dana R. Julian
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States of America
- Department of Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, PA, United States of America
| | - Sarah Wheeler
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Carol Feghali-Bostwick
- Department of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC, United States of America
| | - Yvette P. Conley
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States of America
| | - James Lyons-Weiler
- Genomic and Proteomic Core Laboratories, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Cecelia C. Yates
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States of America
- Department of Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, PA, United States of America
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
15
|
Worrell JC, Walsh SM, Fabre A, Kane R, Hinz B, Keane MP. CXCR3A promotes the secretion of the antifibrotic decoy receptor sIL-13Rα2 by pulmonary fibroblasts. Am J Physiol Cell Physiol 2020; 319:C1059-C1069. [PMID: 33026833 DOI: 10.1152/ajpcell.00076.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CXC chemokine receptor 3 (CXCR3) A and its IFN-inducible ligands CXCL9 and CXCL10 regulate vascular remodeling and fibroblast motility. IL-13 is a profibrotic cytokine implicated in the pathogenesis of inflammatory and fibroproliferative conditions. Previous work from our laboratory has shown that CXCR3A is negatively regulated by IL-13 and is necessary for the basal regulation of the IL-13 receptor subunit IL-13Rα2. This study investigates the regulation of fibroblast phenotype, function, and downstream IL-13 signaling by CXCR3A in vitro. CXCR3A was overexpressed via transient transfection. CXCR3A-/- lung fibroblasts were isolated for functional analysis. Additionally, the contribution of CXCR3A to tissue remodeling following acute lung injury was assessed in vivo with wild-type (WT) and CXCR3-/- mice challenged with IL-13. CXCR3 and IL-13Rα2 displayed a reciprocal relationship after stimulation with either IL-13 or CXCR3 ligands. CXCR3A reduced expression of fibroblast activation makers, soluble collagen production, and proliferation. CXCR3A enhanced the basal expression of pERK1/2 while inducing IL-13-mediated downregulation of NF-κB-p65. CXCR3A-/- pulmonary fibroblasts were increasingly proliferative and displayed reduced contractility and α-smooth muscle actin expression. IL-13 challenge regulated expression of the CXCR3 ligands and soluble IL-13Rα2 levels in lungs and bronchoalveolar lavage fluid (BALF) of WT mice; this response was absent in CXCR3-/- mice. Alveolar macrophage accumulation and expression of genes involved in lung remodeling was increased in CXCR3-/- mice. We conclude that CXCR3A is a central antifibrotic factor in pulmonary fibroblasts, limiting fibroblast activation and reducing extracellular matrix (ECM) production. Therefore, targeting of CXCR3A may be a novel approach to regulating fibroblast activity in lung fibrosis and remodeling.
Collapse
Affiliation(s)
- Julie C Worrell
- St. Vincent's University Hospital and School of Medicine, University College Dublin and UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - Sinead M Walsh
- St. Vincent's University Hospital and School of Medicine, University College Dublin and UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Aurélie Fabre
- St. Vincent's University Hospital and School of Medicine, University College Dublin and UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.,UCD Conway Research Pathology Core Technology, University College Dublin, Dublin, Ireland
| | - Rosemary Kane
- St. Vincent's University Hospital and School of Medicine, University College Dublin and UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Michael P Keane
- St. Vincent's University Hospital and School of Medicine, University College Dublin and UCD Conway Institute of Biomolecular and Biomedical Research, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Groover MK, Richmond JM. Potential therapeutic manipulations of the CXCR3 chemokine axis for the treatment of inflammatory fibrosing diseases. F1000Res 2020; 9:1197. [PMID: 33145014 PMCID: PMC7590900 DOI: 10.12688/f1000research.26728.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Chemokines play important roles in homeostasis and inflammatory processes. While their roles in leukocyte recruitment are well-appreciated, chemokines play additional roles in the body, including mediating or regulating angiogenesis, tumor metastasis and wound healing. In this opinion article, we focus on the role of CXCR3 and its ligands in fibrotic processes. We emphasize differences of the effects of each ligand, CXCL9, CXCL10 and CXCL11, on fibroblasts in different tissues of the body. We include discussions of differences in signaling pathways that may account for protective or pro-fibrotic effects of each ligand in different experimental models and ex vivo analysis of human tissues. Our goal is to highlight potential reasons why there are disparate findings in different models, and to suggest ways in which this chemokine axis could be manipulated for the treatment of fibrosis.
Collapse
Affiliation(s)
- Morgan K. Groover
- Department of Dermatology, University of Massachussetts Medical School, Worcester, MA, 01605, USA
| | - Jillian M. Richmond
- Department of Dermatology, University of Massachussetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
17
|
Groblewska M, Litman-Zawadzka A, Mroczko B. The Role of Selected Chemokines and Their Receptors in the Development of Gliomas. Int J Mol Sci 2020; 21:ijms21103704. [PMID: 32456359 PMCID: PMC7279280 DOI: 10.3390/ijms21103704] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Among heterogeneous primary tumors of the central nervous system (CNS), gliomas are the most frequent type, with glioblastoma multiforme (GBM) characterized with the worst prognosis. In their development, certain chemokine/receptor axes play important roles and promote proliferation, survival, metastasis, and neoangiogenesis. However, little is known about the significance of atypical receptors for chemokines (ACKRs) in these tumors. The objective of the study was to present the role of chemokines and their conventional and atypical receptors in CNS tumors. Therefore, we performed a thorough search for literature concerning our investigation via the PubMed database. We describe biological functions of chemokines/chemokine receptors from various groups and their significance in carcinogenesis, cancer-related inflammation, neo-angiogenesis, tumor growth, and metastasis. Furthermore, we discuss the role of chemokines in glioma development, with particular regard to their function in the transition from low-grade to high-grade tumors and angiogenic switch. We also depict various chemokine/receptor axes, such as CXCL8-CXCR1/2, CXCL12-CXCR4, CXCL16-CXCR6, CX3CL1-CX3CR1, CCL2-CCR2, and CCL5-CCR5 of special importance in gliomas, as well as atypical chemokine receptors ACKR1-4, CCRL2, and PITPMN3. Additionally, the diagnostic significance and usefulness of the measurement of some chemokines and their receptors in the blood and cerebrospinal fluid (CSF) of glioma patients is also presented.
Collapse
Affiliation(s)
- Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
| | - Ala Litman-Zawadzka
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland;
- Correspondence: ; Tel.: +48-85-831-8785
| |
Collapse
|
18
|
Michalczyk ER, Chen L, Maia MB, DiPietro LA. A Role for Low-Density Lipoprotein Receptor-Related Protein 6 in Blood Vessel Regression in Wound Healing. Adv Wound Care (New Rochelle) 2020; 9:1-8. [PMID: 31871825 PMCID: PMC6918844 DOI: 10.1089/wound.2019.1019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/25/2019] [Indexed: 01/22/2023] Open
Abstract
Objective: The healing of skin wounds is typified by a pattern of robust angiogenesis followed by vascular regression. Pigment epithelium-derived factor (PEDF), a recognized endogenous antiangiogenic protein, regulates vascular regression in resolving wounds through an unknown receptor. Among the multiple receptors for PEDF that have been identified, low-density lipoprotein receptor-related protein 6 (Lrp6) has been described as a regulator of angiogenesis in multiple systems. The purpose of the current study was to determine if the Lrp6 receptor plays a role in vessel regression in wounds. Approach: Excisional skin wounds were prepared on C57BL/6 mice. RT-PCR and immunoblots were performed to measure Lrp6 expression over a time course of wound healing. Immunohistochemistry was performed to localize Lrp6 in both recombinant PEDF (rPEDF)-treated and control wounds. To examine whether Lrp6 is critical to the regulation of capillary regression in vivo, wounds were treated with Lrp6 siRNA to minimize its presence in wounds. Immunohistochemistry for CD31 was performed to quantify blood vessel density. Results: PCR and immunoblots revealed significant increases in Lrp6 expression during the vascular regression phase of wound healing. Lrp6 was found to colocalize with CD31+ endothelial cells in wounds. The addition of rPEDF to wounds caused an increase in Lrp6-CD31+ endothelial cell colocalization. Inhibition of Lrp6 by siRNA impeded the vascular regression phase of healing. Innovation: This study is the first to demonstrate an association between Lrp6 and vessel regression in wound healing. Conclusion: Lrp6 is expressed in wounds in a temporal and spatial manner that suggests it may be a receptor for PEDF during vascular regression. PEDF increases Lrp6 expression in the wound vasculature, and inhibition of Lrp6 blocked vascular regression in wounds. The results suggest that Lrp6 is important to vascular regression in wounds, possibly through direct interaction with PEDF.
Collapse
Affiliation(s)
- Elizabeth R. Michalczyk
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Mariana B. Maia
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
19
|
Swamynathan SK, Wells A. Conjunctival goblet cells: Ocular surface functions, disorders that affect them, and the potential for their regeneration. Ocul Surf 2020; 18:19-26. [PMID: 31734511 PMCID: PMC7004882 DOI: 10.1016/j.jtos.2019.11.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/15/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
Conjunctival goblet cells (CGCs) are specialized cells that produce and secrete soluble mucins to the tear film that bathes the ocular surface. CGC numbers and functions are affected in various ocular surface diseases including dry eye disease with diverse etiologies. In this review we will (i) summarize the important functions of CGCs in ocular surface health, (ii) describe the ocular surface diseases that affect CGC numbers and function, (iii) provide an update on recent research outcomes that elucidate CGC differentiation, gene expression and functions, and (iv) present evidence in support of the prediction that restoring CGC numbers and/or functions is a viable strategy for alleviating ocular surface disorders that impact the CGCs.
Collapse
Affiliation(s)
- Shivalingappa K Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Alan Wells
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA; Pittsburgh Veterans Affairs Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Mizutani Y, Kanbe A, Ito H, Seishima M. Activation of STING signaling accelerates skin wound healing. J Dermatol Sci 2019; 97:21-29. [PMID: 31813660 DOI: 10.1016/j.jdermsci.2019.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/01/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The process of repair after skin injury is precisely regulated by a variety of mediators such as cytokines and chemokines. Recent reports demonstrated that cytoplasmic DNA-sensor cyclic GMP-AMP synthase (cGAS) activates the stimulator of interferon genes (STING) via production of cyclic GMP-AMP (cGAMP) and subsequently induces inflammatory cytokines, including type I interferon (IFN). OBJECTIVE We examined whether activation of the STING pathway by cGAMP affects the process of skin wound repair. METHODS The skin wound repair model was established using wild-type (WT) mice. Two full-thickness skin biopsies were taken from the right and left subscapular regions. One site was treated with ointment containing cGAMP, and the other was treated with a control ointment. Changes in wound size over time were calculated using photography. RESULTS Treatment with cGAMP significantly accelerated skin wound healing up to day 6. Biochemical analyses showed that topical treatment with cGAMP on wound sites promoted STING signaling pathway and enhanced the expression of IFN-β, CXCL10 and CCL2 in the wound sites treated with cGAMP markedly compared with the control. The scratch assay also revealed that cGAMP treatment accelerated wound closure in mouse embryonic fibroblasts. The acceleration of skin wound repair by cGAMP in WT mouse was impaired by administration of anti-IFNR antibody and anti-CXCR3 antibody respectively. CONCLUSION These results revealed that topical treatment with cGAMP accelerates skin wound healing by inducing type I IFN and CXCL10/CXCR3. Topical administration of cGAMP might contribute to new effective treatments for accelerating skin wound healing.
Collapse
Affiliation(s)
- Yuki Mizutani
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Ayumu Kanbe
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyasu Ito
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Mariko Seishima
- Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
21
|
Caccuri F, Bugatti A, Corbellini S, Roversi S, Zani A, Mazzuca P, Marsico S, Caruso A, Giagulli C. The Synthetic Dipeptide Pidotimod Shows a Chemokine-Like Activity through CXC Chemokine Receptor 3 (CXCR3). Int J Mol Sci 2019; 20:ijms20215287. [PMID: 31653015 PMCID: PMC6862300 DOI: 10.3390/ijms20215287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
In recent years immunomodulators have gained a strong interest and represent nowadays an active expanding area of research for the control of microbial diseases and for their therapeutic potential in preventing, treating and reducing the morbidity and mortality of different diseases. Pidotimod (3-L-pyroglutamyl-L-thiaziolidine-4carboxylic acid, PDT) is a synthetic dipeptide, which possesses immunomodulatory properties and exerts a well-defined pharmacological activity against infections, but its real mechanism of action is still undefined. Here, we show that PDT is capable of activating tyrosine phosphorylation-based cell signaling in human primary monocytes and triggering rapid adhesion and chemotaxis. PDT-induced monocyte migration requires the activation of the PI3K/Akt signaling pathway and chemokine receptor CXCR3. Indeed, a mAb to CXCR3 and a specific receptor inhibitor suppressed significantly PDT-dependent chemotaxis, and CXCR3-silenced primary monocytes lost responsiveness to PDT chemoattraction. Moreover, our results highlighted that the PDT-induced migratory activity is sustained by the CXCR3A isoform, since CXCR3-transfected L1.2 cells acquired responsiveness to PDT stimulation. Finally, we show that PDT, as CXCR3 ligands, is also able to direct the migration of IL-2 activated T cells, which express the highest levels of CXCR3 among CXCR3-expressing cells. In conclusion, our study defines a chemokine-like activity for PDT through CXCR3A and points on the possible role that this synthetic dipeptide may play in leukocyte trafficking and function. Since recent studies have highlighted diverse therapeutic roles for molecules which activates CXCR3, our findings call for an exploration of using this dipeptide in different pathological processes.
Collapse
Affiliation(s)
- Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Silvia Corbellini
- Laboratory of Microbiology and Virology, Azienda Socio Sanitaria Territoriale Spedali Civili, 25123 Brescia, Italy.
| | - Sara Roversi
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Pietro Mazzuca
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy.
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Cinzia Giagulli
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
22
|
Sauter A, Yi DH, Li Y, Roersma S, Appel S. The Culture Dish Surface Influences the Phenotype and Cytokine Production of Human Monocyte-Derived Dendritic Cells. Front Immunol 2019; 10:2352. [PMID: 31632415 PMCID: PMC6783514 DOI: 10.3389/fimmu.2019.02352] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Monocyte-derived dendritic cells (moDC) are an important scientific and clinical source of functional dendritic cells (DC). However, the optimization of the generation process has to date mainly been limited to the variation of soluble factors. In this study, we investigated the impact of the cell culture dish surface on phenotype and cytokine profile. We compared a standard cell culture dish to a non-adherent culture dish for two immunogenic maturation conditions, two tolerogenic conditions, and an unstimulated control. Phenotype, cytokine profile and T cell stimulatory capacity were determined after a 3-day culture. Light microscopy revealed an increase in homotypic cluster formation correlated with the use of non-adherent surfaces, which could be reduced by using blocking antibodies against CD18. All surface markers analyzed showed moderate to strong differences depending on the culture dish surface, including significantly decreased expression of key maturation markers such as CD80, CD86, and CCR7 as well as PD-L1 on cells stimulated with the Jonuleit cytokine cocktail cultured on a non-adherent surface. Significant differences in the secretion of many cytokines were observed, especially for cells stimulated with LPS, with over 10-fold decreased secretion of IL-10, IL12-p40, and TNF-α from the cells cultured on the non-adherent surface. All immunogenic moDC populations showed similar capacity to induce antigen-specific T cells. These results provide evidence that the DC phenotype depends on the surface used during moDC generation. This has important implications for the optimization of DC-based immunotherapy development and underlines that the local surrounding can interfere with the final DC population beyond the soluble factors.
Collapse
Affiliation(s)
| | - Dag Heiro Yi
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Yayan Li
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Sabine Roersma
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Silke Appel
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
23
|
Kobayashi S, Sakurai T, So T, Shiota Y, Asao A, Phung HT, Tanaka R, Kawabe T, Maruyama T, Kanno E, Kawakami K, Owada Y, Ishii N. TNF Receptor-Associated Factor 5 Limits Function of Plasmacytoid Dendritic Cells by Controlling IFN Regulatory Factor 5 Expression. THE JOURNAL OF IMMUNOLOGY 2019; 203:1447-1456. [PMID: 31420465 DOI: 10.4049/jimmunol.1900188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022]
Abstract
The physiological functions of TNF receptor-associated factor 5 (TRAF5) in the skin inflammation and wound healing process are not well characterized. We found that Traf5 -/- mice exhibited an accelerated skin wound healing as compared with wild-type counterparts. The augmented wound closure in Traf5 -/- mice was associated with a massive accumulation of plasmacytoid dendritic cells (pDCs) into skin wounds and an enhanced expression of genes related to wound repair at skin sites. In accordance with this result, adoptive transfer of Traf5 -/- pDCs, but not wild-type pDCs, into the injured skin area in wild-type recipient mice significantly promoted skin wound healing. The expression of skin-tropic chemokine receptor CXCR3 was significantly upregulated in Traf5-/- pDCs, and treatment with a CXCR3 inhibitor cancelled the promoted wound healing in Traf5-/- mice, suggesting a pivotal role of CXCR3 in pDC-dependent wound healing. Traf5 -/- pDCs displayed significantly higher expression of IFN regulatory factor 5 (IRF5), which correlated with greater induction of proinflammatory cytokine genes and CXCR3 protein after stimulation with TLR ligands. Consistently, transduction of exogeneous TRAF5 in Traf5-/- pDCs normalized the levels of abnormally elevated proinflammatory molecules, including IRF5 and CXCR3. Furthermore, knockdown of IRF5 also rescued the abnormal phenotypes of Traf5-/- pDCs. Therefore, the higher expression and induction of IRF5 in Traf5-/- pDCs causes proinflammatory and skin-tropic characteristics of the pDCs, which may accelerate skin wound healing responses. Collectively, our results uncover a novel role of TRAF5 in skin wound healing that is mediated by IRF5-dependent function of pDCs.
Collapse
Affiliation(s)
- Shuhei Kobayashi
- Department of Microbiology and Immunology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Tsuyoshi Sakurai
- Department of Microbiology and Immunology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Takanori So
- Department of Microbiology and Immunology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan.,Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yuka Shiota
- Department of Microbiology and Immunology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Atsuko Asao
- Department of Microbiology and Immunology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Hai The Phung
- Department of Microbiology and Immunology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Riou Tanaka
- Department of Microbiology and Immunology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Takeshi Kawabe
- Department of Microbiology and Immunology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Takashi Maruyama
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, Akita University, Akita 010-8543, Japan
| | - Emi Kanno
- Department of Science of Nursing Practice, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan; and
| | - Yuji Owada
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Naoto Ishii
- Department of Microbiology and Immunology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan;
| |
Collapse
|
24
|
Kitanaka N, Nakano R, Sugiura K, Kitanaka T, Namba S, Konno T, Nakayama T, Sugiya H. Interleukin-1β promotes interleulin-6 expression via ERK1/2 signaling pathway in canine dermal fibroblasts. PLoS One 2019; 14:e0220262. [PMID: 31344106 PMCID: PMC6658082 DOI: 10.1371/journal.pone.0220262] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/11/2019] [Indexed: 12/18/2022] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine involved in the regulation of the immune response and inflammation. In this study, we investigated effect of the proinflammatory cytokine interleukin-1β (IL-1β) on IL-6 expression in canine dermal fibroblasts. IL-1β induced IL-6 mRNA expression and protein release in a time- and dose-dependent manner. When cells were treated with inhibitors of mitogen-activated protein kinases (MAPKs), the extracellular signal-regulated kinase (ERK) inhibitor FR180240 inhibited IL-1β-induced IL-6 mRNA expression, but not SP600125 or SKF86002, which are c-Jun N-terminal kinase (JNK) and p38 MAPK inhibitors, respectively. In cells treated with U0126, an inhibitor of MAPK/ERK kinase (MEK), which activates ERK, IL-1β-induced IL-6 mRNA expression was also inhibited. IL-1β stimulated ERK1/2 phosphorylation. In cells transfected with ERK1 and ERK2 isoform siRNAs, IL-1β-induced IL-6 mRNA expression was reduced. These observations suggest that IL-1β induces IL-6 expression via ERK1/2 signaling pathway in canine dermal fibroblasts.
Collapse
Affiliation(s)
- Nanako Kitanaka
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Rei Nakano
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Kanae Sugiura
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Taku Kitanaka
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Shinichi Namba
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Tadayoshi Konno
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Tomohiro Nakayama
- Laboratory of Veterinary Radiotherapy, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| | - Hiroshi Sugiya
- Laboratory of Veterinary Biochemistry, Nihon University College of Bioresource Sciences, Kameino, Fujisawa, Kanagawa, Japan
| |
Collapse
|
25
|
Richmond JM, Strassner JP, Essien KI, Harris JE. T-cell positioning by chemokines in autoimmune skin diseases. Immunol Rev 2019; 289:186-204. [PMID: 30977191 PMCID: PMC6553463 DOI: 10.1111/imr.12762] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/18/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
Abstract
Autoimmune skin diseases are complex processes in which autoreactive cells must navigate through the skin tissue to find their targets. Regulatory T cells in the skin help to mitigate autoimmune inflammation and may in fact be responsible for the patchy nature of these conditions. In this review, we will discuss chemokines that are important for global recruitment of T cell populations to the skin during disease, as well as signals that fine-tune their localization and function. We will describe prototypical disease responses and chemokine families that mediate these responses. Lastly, we will include an overview of chemokine-targeting drugs that have been tested as new treatment strategies for autoimmune skin diseases.
Collapse
Affiliation(s)
- Jillian M Richmond
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| | - James P Strassner
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| | - Kingsley I Essien
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| | - John E Harris
- Department of Dermatology, UMass Medical School, Worcester, Massachusetts
| |
Collapse
|
26
|
Ngwenyama N, Salvador AM, Velázquez F, Nevers T, Levy A, Aronovitz M, Luster AD, Huggins GS, Alcaide P. CXCR3 regulates CD4+ T cell cardiotropism in pressure overload-induced cardiac dysfunction. JCI Insight 2019; 4:125527. [PMID: 30779709 DOI: 10.1172/jci.insight.125527] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
Heart failure (HF) is associated in humans and mice with increased circulating levels of CXCL9 and CXCL10, chemokine ligands of the CXCR3 receptor, predominantly expressed on CD4+ Th1 cells. Chemokine engagement of receptors is required for T cell integrin activation and recruitment to sites of inflammation. Th1 cells drive adverse cardiac remodeling in pressure overload-induced cardiac dysfunction, and mice lacking the integrin ligand ICAM-1 show defective T cell recruitment to the heart. Here, we show that CXCR3+ T cells infiltrate the heart in humans and mice with pressure overload-induced cardiac dysfunction. Genetic deletion of CXCR3 disrupts CD4+ T cell heart infiltration and prevents adverse cardiac remodeling. We demonstrate that cardiac fibroblasts and cardiac myeloid cells that include resident and infiltrated macrophages are the source of CXCL9 and CXCL10, which mechanistically promote Th1 cell adhesion to ICAM-1 under shear conditions in a CXCR3-dependent manner. To our knowledge, our findings identify a previously unrecognized role for CXCR3 in Th1 cell recruitment into the heart in pressure overload-induced cardiac dysfunction.
Collapse
Affiliation(s)
| | | | | | | | - Alexander Levy
- Molecular Cardiology Research Institute Tufts University, Boston, Massachusetts, USA
| | - Mark Aronovitz
- Molecular Cardiology Research Institute Tufts University, Boston, Massachusetts, USA
| | - Andrew D Luster
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gordon S Huggins
- Molecular Cardiology Research Institute Tufts University, Boston, Massachusetts, USA
| | | |
Collapse
|
27
|
Oryan A, Jalili M, Kamali A, Nikahval B. The concurrent use of probiotic microorganism and collagen hydrogel/scaffold enhances burn wound healing: An in vivo evaluation. Burns 2018; 44:1775-1786. [DOI: 10.1016/j.burns.2018.05.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/16/2018] [Accepted: 05/16/2018] [Indexed: 01/24/2023]
|
28
|
Evaluation of collagen type I scaffolds including gelatin-collagen microparticles and Aloe vera in a model of full-thickness skin wound. Drug Deliv Transl Res 2018; 9:25-36. [DOI: 10.1007/s13346-018-00595-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Ridiandries A, Tan JTM, Bursill CA. The Role of Chemokines in Wound Healing. Int J Mol Sci 2018; 19:ijms19103217. [PMID: 30340330 PMCID: PMC6214117 DOI: 10.3390/ijms19103217] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022] Open
Abstract
Wound healing is a multistep process with four overlapping but distinct stages: hemostasis, inflammation, proliferation, and remodeling. An alteration at any stage may lead to the development of chronic non-healing wounds or excessive scar formation. Impaired wound healing presents a significant health and economic burden to millions of individuals worldwide, with diabetes mellitus and aging being major risk factors. Ongoing understanding of the mechanisms that underly wound healing is required for the development of new and improved therapies that increase repair. Chemokines are key regulators of the wound healing process. They are involved in the promotion and inhibition of angiogenesis and the recruitment of inflammatory cells, which release growth factors and cytokines to facilitate the wound healing process. Preclinical research studies in mice show that the administration of CCL2, CCL21, CXCL12, and a CXCR4 antagonist as well as broad-spectrum inhibition of the CC-chemokine class improve the wound healing process. The focus of this review is to highlight the contributions of chemokines during each stage of wound healing and to discuss the related molecular pathologies in complex and chronic non-healing wounds. We explore the therapeutic potential of targeting chemokines as a novel approach to overcome the debilitating effects of impaired wound healing.
Collapse
Affiliation(s)
- Anisyah Ridiandries
- Department of Cardiology, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW 2065, Australia.
- Sydney Medical School Northern, University of Sydney, Sydney, NSW 2006, Australia.
| | - Joanne T M Tan
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
- Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| | - Christina A Bursill
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
- Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
30
|
Kuo PT, Zeng Z, Salim N, Mattarollo S, Wells JW, Leggatt GR. The Role of CXCR3 and Its Chemokine Ligands in Skin Disease and Cancer. Front Med (Lausanne) 2018; 5:271. [PMID: 30320116 PMCID: PMC6167486 DOI: 10.3389/fmed.2018.00271] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
Chemokines and their receptors play an important role in the recruitment, activation and differentiation of immune cells. The chemokine receptor, CXCR3, and its ligands, CXCL9, CXCL10, and CXCL11 are key immune chemoattractants during interferon-induced inflammatory responses. Inflammation of the skin resulting from infections or autoimmune disease drives expression of CXCL9/10/11 and the subsequent recruitment of effector, CXCR3+ T cells from the circulation. The relative contributions of the different CXCR3 chemokines and the three variant isoforms of CXCR3 (CXCR3A, CXCR3B, CXCR3alt) to the inflammatory process in human skin requires further investigation. In skin cancers, the CXCR3 receptor can play a dual role whereby expression on tumor cells can lead to cancer metastasis to systemic sites while receptor expression on immune cells can frequently promote anti-tumor immune responses. This review will discuss the biology of CXCR3 and its associated ligands with particular emphasis on the skin during inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Paula T Kuo
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Zhen Zeng
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Nazhifah Salim
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Stephen Mattarollo
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - James W Wells
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Graham R Leggatt
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
31
|
Maymon E, Romero R, Bhatti G, Chaemsaithong P, Gomez-Lopez N, Panaitescu B, Chaiyasit N, Pacora P, Dong Z, Hassan SS, Erez O. Chronic inflammatory lesions of the placenta are associated with an up-regulation of amniotic fluid CXCR3: A marker of allograft rejection. J Perinat Med 2018; 46:123-137. [PMID: 28829757 PMCID: PMC5797487 DOI: 10.1515/jpm-2017-0042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/19/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The objective of this study is to determine whether the amniotic fluid (AF) concentration of soluble CXCR3 and its ligands CXCL9 and CXCL10 changes in patients whose placentas show evidence of chronic chorioamnionitis or other placental lesions consistent with maternal anti-fetal rejection. METHODS This retrospective case-control study included 425 women with (1) preterm delivery (n=92); (2) term in labor (n=68); and (3) term not in labor (n=265). Amniotic fluid CXCR3, CXCL9 and CXCL10 concentrations were determined by ELISA. RESULTS (1) Amniotic fluid concentrations of CXCR3 and its ligands CXCL9 and CXCL10 are higher in patients with preterm labor and maternal anti-fetal rejection lesions than in those without these lesions [CXCR3: preterm labor and delivery with maternal anti-fetal rejection placental lesions (median, 17.24 ng/mL; IQR, 6.79-26.68) vs. preterm labor and delivery without these placental lesions (median 8.79 ng/mL; IQR, 4.98-14.7; P=0.028)]; (2) patients with preterm labor and chronic chorioamnionitis had higher AF concentrations of CXCL9 and CXCL10, but not CXCR3, than those without this lesion [CXCR3: preterm labor with chronic chorioamnionitis (median, 17.02 ng/mL; IQR, 5.57-26.68) vs. preterm labor without chronic chorioamnionitis (median, 10.37 ng/mL; IQR 5.01-17.81; P=0.283)]; (3) patients with preterm labor had a significantly higher AF concentration of CXCR3 than those in labor at term regardless of the presence or absence of placental lesions. CONCLUSION Our findings support a role for maternal anti-fetal rejection in a subset of patients with preterm labor.
Collapse
Affiliation(s)
- Eli Maymon
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Block E East Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin New Territories, Hong Kong
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Noppadol Chaiyasit
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Percy Pacora
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhong Dong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, USA, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
32
|
Yates CC, Rodrigues M, Nuschke A, Johnson ZI, Whaley D, Stolz D, Newsome J, Wells A. Multipotent stromal cells/mesenchymal stem cells and fibroblasts combine to minimize skin hypertrophic scarring. Stem Cell Res Ther 2017; 8:193. [PMID: 28874184 PMCID: PMC5585998 DOI: 10.1186/s13287-017-0644-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/20/2017] [Accepted: 08/08/2017] [Indexed: 12/31/2022] Open
Abstract
Background Transplantation of mesenchymal stem cells (MSC) has been proposed to improve wound healing. However, as these cells only transiently survive in the implantation site, the mechanisms underlying this beneficial healing response are associated with restorative paracrine effects of MSC matricellular factors on resident stromal cells. However, this requires that the recipient has a robust reservoir of viable cells. Here, we examine the influence of MSCs on the behavior of cotransplanted fibroblasts, in a manner to provide augmented cellular reserve to debilitated individuals, specifically focusing on matrix remodeling following in-vivo wounding. Methods Using a Hylan-A dermal filler hydrogel containing collagen I and tenascin-C for delivery and increased survival of transplanted cells, we find that cotransplantation of MSCs with fibroblasts reduces scarring. Results Transplanted xenogeneic MSCs augmented fibroblast proliferation, migration, and extracellular matrix deposition critical for wound closure, and reduced inflammation following wounding. MSCs also corrected matrix remodeling by CXCR3-deficient fibroblasts which otherwise led to hypertrophic scarring. This effect was superior to MSC or fibroblast transplantation alone. Conclusions Taken together, these data suggest that MSCs, even if eventually rejected, transplanted with fibroblasts normalize matrix regeneration during healing. The current study provides insight into cellular therapies as a viable method for antifibrotic treatment and demonstrates that even transiently engrafted cells can have a long-term impact via matrix modulation and education of other tissue cells.
Collapse
Affiliation(s)
- Cecelia C Yates
- Department of Pathology, University of Pittsburgh, 3550 Terrace St., Scaife Hall, S-713, Pittsburgh, PA, 15261, USA. .,Department of Health Promotion and Development, University of Pittsburgh School of Nursing, Pittsburgh, PA, USA. .,Pittsburgh VAMC, Pittsburgh, PA, USA. .,McGowan Institute of Regenerative Medicine, Pittsburgh, PA, USA. .,University of Pittsburgh, School of Nursing, 3500 Victoria Street, Victoria Bldg. 458A, Pittsburgh, PA, 15261, USA.
| | - Melanie Rodrigues
- Department of Plastic Surgery, Stanford University, Stanford, CA, USA
| | - Austin Nuschke
- Department of Pathology, University of Pittsburgh, 3550 Terrace St., Scaife Hall, S-713, Pittsburgh, PA, 15261, USA
| | - Zariel I Johnson
- Department of Pathology, University of Pittsburgh, 3550 Terrace St., Scaife Hall, S-713, Pittsburgh, PA, 15261, USA
| | | | - Donna Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joseph Newsome
- Department of Pathology, University of Pittsburgh, 3550 Terrace St., Scaife Hall, S-713, Pittsburgh, PA, 15261, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, 3550 Terrace St., Scaife Hall, S-713, Pittsburgh, PA, 15261, USA. .,Pittsburgh VAMC, Pittsburgh, PA, USA. .,McGowan Institute of Regenerative Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
33
|
Loss of epidermal AP1 transcription factor function reduces filaggrin level, alters chemokine expression and produces an ichthyosis-related phenotype. Cell Death Dis 2017; 8:e2840. [PMID: 28569792 PMCID: PMC5520897 DOI: 10.1038/cddis.2017.238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/21/2017] [Accepted: 04/26/2017] [Indexed: 02/07/2023]
Abstract
AP1 transcription factors are important controllers of epidermal differentiation. Multiple family members are expressed in the epidermis in a differentiation-dependent manner, where they function to regulate gene expression. To study the role of AP1 factor signaling, TAM67 (dominant-negative c-jun) was inducibly expressed in the suprabasal epidermis. The TAM67-positive epidermis displays keratinocyte hyperproliferation, hyperkeratosis and parakeratosis, delayed differentiation, extensive subdermal vasodilation, nuclear loricrin localization, tail and digit pseudoainhum and reduced filaggrin level. These changes are associated with increased levels of IFNγ, CCL3, CCL5, CXCL9, CXCL10, and CXCL11 (Th1-associated chemokines), and CCL1, CCL2, CCL5 and CCL11 (Th2-associated chemokines) in the epidermis and serum. S100A8 and S100A9 protein levels are also markedly elevated. These changes in epidermal chemokine level are associated with increased levels of the corresponding chemokine mRNA. The largest increases were observed for CXCL9, CXCL10, CXCL11, and S100A8 and S100A9. To assess the role of CXCL9, CXCL10, CXCL11, which bind to CXCR3, on phenotype development, we expressed TAM67 in CXCR3 knockout mice. Using a similar strategy, we examine the role of S100A8 and S100A9. Surprisingly, loss of CXCR3 or S100A8/A9 did not attenuate phenotype development. These studies suggest that interfering with epidermal AP1 factor signaling initiates a loss of barrier function leading to enhanced epidermal chemokine production, but that CXCR3 and S100A8/A9 do not mediate the phenotypic response.
Collapse
|
34
|
Abstract
BACKGROUND Keloid and hypertrophic scars represent an aberrant response to the wound healing process. These scars are characterized by dysregulated growth with excessive collagen formation, and can be cosmetically and functionally disruptive to patients. OBJECTIVE Objectives are to describe the pathophysiology of keloid and hypertrophic scar, and to compare differences with the normal wound healing process. The classification of keloids and hypertrophic scars are then discussed. Finally, various treatment options including prevention, conventional therapies, surgical therapies, and adjuvant therapies are described in detail. MATERIALS AND METHODS Literature review was performed identifying relevant publications pertaining to the pathophysiology, classification, and treatment of keloid and hypertrophic scars. RESULTS Though the pathophysiology of keloid and hypertrophic scars is not completely known, various cytokines have been implicated, including interleukin (IL)-6, IL-8, and IL-10, as well as various growth factors including transforming growth factor-beta and platelet-derived growth factor. Numerous treatments have been studied for keloid and hypertrophic scars,which include conventional therapies such as occlusive dressings, compression therapy, and steroids; surgical therapies such as excision and cryosurgery; and adjuvant and emerging therapies including radiation therapy, interferon, 5-fluorouracil, imiquimod, tacrolimus, sirolimus, bleomycin, doxorubicin, transforming growth factor-beta, epidermal growth factor, verapamil, retinoic acid, tamoxifen, botulinum toxin A, onion extract, silicone-based camouflage, hydrogel scaffold, and skin tension offloading device. CONCLUSION Keloid and hypertrophic scars remain a challenging condition, with potential cosmetic and functional consequences to patients. Several therapies exist which function through different mechanisms. Better understanding into the pathogenesis will allow for development of newer and more targeted therapies in the future.
Collapse
|
35
|
Huen AC, Marathi A, Nam PK, Wells A. CXCL11 Expression by Keratinocytes Occurs Transiently Between Reaching Confluence and Cellular Compaction. Adv Wound Care (New Rochelle) 2016; 5:517-526. [PMID: 28078185 DOI: 10.1089/wound.2015.0680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/01/2016] [Indexed: 12/31/2022] Open
Abstract
Objective: To investigate whether differentiation or cellular confluence is responsible for CXCL11 expression patterns in re-epithelialization. Approach:In vitro model systems of re-epithelialization using the HaCaT keratinocyte cell line were utilized in monitoring expression of differentiation markers, including desmoplakin and various cytokeratins while evaluating for an association with chemokine CXCL11 expression. Results: CXCL11 expression was elevated in sparse culture with peak expression near the time of confluence. This somewhat followed the accumulation of desmoplakin in detergent-insoluble pool of proteins. However, in postconfluent, despite continued accumulation of desmoplakin within cells, CXCL11 expression decreased to baseline levels. This biphasic pattern was also seen in low calcium culture, an environment that inhibits keratinocyte differentiation and accumulation of desmosomal proteins. Highest CXCL11-expressing areas best correlated with newly confluent areas within culture expressing basal keratin 14, but also activated keratin 6. Innovation: Achievement of a threshold cellular density induces cell signaling cascade through CXCR3 that, in addition to other undiscovered pathways, can progress cutaneous wounds from the proliferative into the remodeling phases of cutaneous wound healing. Conclusion: These results suggest that the achievement of confluence with increased cellular density by migrating keratinocytes at the wound edge triggers expression of CXCL11. Since CXCR3 stimulation in endothelial cells results in apoptosis and causes neovascular pruning, whereas stimulation of CXCR3 in fibroblasts results decreased motility and cellular contraction, we speculate that CXCL11 expression by epidermal cells upon achieving cellular confluence could be the source of CXCR3 stimulation in the dermis ushering a transition from proliferative to remodeling phases of wound healing.
Collapse
Affiliation(s)
- Arthur C. Huen
- Department of Dermatology, McGowan Institute for Regenerative Medicine, VA Pittsburgh Health System, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Archana Marathi
- Department of Dermatology, McGowan Institute for Regenerative Medicine, VA Pittsburgh Health System, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Peter K. Nam
- Department of Dermatology, McGowan Institute for Regenerative Medicine, VA Pittsburgh Health System, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alan Wells
- Department of Pathology, McGowan Institute for Regenerative Medicine, VA Pittsburgh Health System, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
36
|
Satish L, Gallo PH, Johnson S, Yates CC, Kathju S. Local Probiotic Therapy with Lactobacillus plantarum Mitigates Scar Formation in Rabbits after Burn Injury and Infection. Surg Infect (Larchmt) 2016; 18:119-127. [PMID: 27788042 DOI: 10.1089/sur.2016.090] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Infection is the most common complication in burn-injured patients and is believed to contribute to the hypertrophic scarring frequently observed in such injury. Pseudomonas aeruginosa is a common pathogen in burn wound infection. We examined the effect of local probiotic therapy with Lactobacillus plantarum on the severity of the scarring following burn wounding and infection with P. aeruginosa in a rabbit model. METHODS Full-thickness burn wounds were inoculated with control vehicle or L. plantarum; wounds were then challenged with bioluminescent P. aeruginosa. The time course of the ensuing infection was monitored by quantification of the emitted light. After allowing wounds to contract to near completion, they were harvested and analyzed for markers of scar formation. RESULTS Application of L. plantarum curtailed both the severity and the length of the pseudomonal infection. Probiotic therapy significantly reduced both Type I collagen mRNA concentrations and total collagen protein accumulation in infected wounds, consistent with reduced scarring. Surprisingly, the probiotic showed a nearly equivalent effect in uninfected wounds. Masson's trichrome staining confirmed these findings histologically. CONCLUSIONS Lactobacillus plantarum shows exciting potential as a therapeutic agent to both counteract burn wound infection and to alleviate scarring even in the absence of infection.
Collapse
Affiliation(s)
- Latha Satish
- 1 McGowan Institute for Regenerative Medicine , Pittsburgh, Pennsylvania.,2 Department of Plastic and Reconstructive Surgery, University of Pittsburgh , Pittsburgh
| | - Phillip H Gallo
- 2 Department of Plastic and Reconstructive Surgery, University of Pittsburgh , Pittsburgh
| | - Sandra Johnson
- 2 Department of Plastic and Reconstructive Surgery, University of Pittsburgh , Pittsburgh
| | - Cecelia C Yates
- 1 McGowan Institute for Regenerative Medicine , Pittsburgh, Pennsylvania.,3 Department of Health Promotion and Development, School of Nursing, University of Pittsburgh , Pittsburgh.,4 Department of Pathology, School of Medicine, University of Pittsburgh , Pittsburgh
| | - Sandeep Kathju
- 1 McGowan Institute for Regenerative Medicine , Pittsburgh, Pennsylvania.,2 Department of Plastic and Reconstructive Surgery, University of Pittsburgh , Pittsburgh
| |
Collapse
|
37
|
Hisadome M, Ohnishi T, Kakimoto K, Kusuyama J, Bandow K, Kanekura T, Matsuguchi T. Hepatocyte growth factor reduces CXCL10 expression in keratinocytes. FEBS Lett 2016; 590:3595-3605. [DOI: 10.1002/1873-3468.12452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Mitsuhiro Hisadome
- Department of Dermatology; Kagoshima University Graduate School of Medical and Dental Sciences; Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry; Kagoshima University Graduate School of Medical and Dental Sciences; Japan
| | - Kyoko Kakimoto
- Department of Oral Biochemistry; Kagoshima University Graduate School of Medical and Dental Sciences; Japan
| | - Joji Kusuyama
- Department of Oral Biochemistry; Kagoshima University Graduate School of Medical and Dental Sciences; Japan
| | - Kenjiro Bandow
- Department of Oral Biochemistry; Kagoshima University Graduate School of Medical and Dental Sciences; Japan
| | - Takuro Kanekura
- Department of Dermatology; Kagoshima University Graduate School of Medical and Dental Sciences; Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry; Kagoshima University Graduate School of Medical and Dental Sciences; Japan
| |
Collapse
|
38
|
Yates CC, Nuschke A, Rodrigues M, Whaley D, Dechant JJ, Taylor DP, Wells A. Improved Transplanted Stem Cell Survival in a Polymer Gel Supplemented With Tenascin C Accelerates Healing and Reduces Scarring of Murine Skin Wounds. Cell Transplant 2016; 26:103-113. [PMID: 27452449 DOI: 10.3727/096368916x692249] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stem cells (MSCs) remain of great interest in regenerative medicine because of their ability to home to sites of injury, differentiate into a variety of relevant lineages, and modulate inflammation and angiogenesis through paracrine activity. Many studies have found that despite the promise of MSC therapy, cell survival upon implant is highly limited and greatly reduces the therapeutic utility of MSCs. The matrikine tenascin C, a protein expressed often at the edges of a healing wound, contains unique EGF-like repeats that are able to bind EGFR at low affinities and induce downstream prosurvival signaling without inducing receptor internalization. In this study, we utilized tenascin C in a collagen/GAG-based polymer (TPolymer) that has been shown to be beneficial for skin wound healing, incorporating human MSCs into the polymer prior to application to mouse punch biopsy wound beds. We found that the TPolymer was able to promote MSC survival for 21 days in vivo, leading to associated improvements in wound healing such as dermal maturation and collagen content. This was most marked in a model of hypertrophic scarring, in which the scar formation was limited. This approach also reduced the inflammatory response in the wound bed, limiting CD3e+ cell invasion by approximately 50% in the early wound-healing process, while increasing the numbers of endothelial cells during the first week of wound healing as well. Ultimately, this matrikine-based approach to improving MSC survival may be of great use across a variety of cell therapies utilizing matrices as delivery vehicles for cells.
Collapse
|
39
|
RIPK4 activates an IRF6-mediated proinflammatory cytokine response in keratinocytes. Cytokine 2016; 83:19-26. [DOI: 10.1016/j.cyto.2016.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 12/12/2022]
|
40
|
Bodnar RJ, Satish L, Yates CC, Wells A. Pericytes: A newly recognized player in wound healing. Wound Repair Regen 2016; 24:204-14. [PMID: 26969517 DOI: 10.1111/wrr.12415] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/28/2016] [Indexed: 12/26/2022]
Abstract
Pericytes have generally been considered in the context of stabilizing vessels, ensuring the blood barriers, and regulating the flow through capillaries. However, new reports suggest that pericytes may function at critical times to either drive healing with minimal scarring or, perversely, contribute to fibrosis and ongoing scar formation. Beneficially, pericytes probably drive much of the vascular involution that occurs during the transition from the regenerative to the resolution phases of healing. Pathologically, pericytes can assume a fibrotic phenotype and promote scarring. This perspective will discuss pericyte involvement in wound repair and the relationship pericytes form with the parenchymal cells of the skin. We will further evaluate the role pericytes may have in disease progression in relation to chronic wounds and fibrosis.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Veterans Affairs Medical Center, Pittsburgh, Pennsylvania
| | - Latha Satish
- McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cecelia C Yates
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Veterans Affairs Medical Center, Pittsburgh, Pennsylvania.,Department of Health Promotions and Development, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania.,Veterans Affairs Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
41
|
Ding J, Tredget EE. The Role of Chemokines in Fibrotic Wound Healing. Adv Wound Care (New Rochelle) 2015; 4:673-686. [PMID: 26543681 DOI: 10.1089/wound.2014.0550] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Significance: Main dermal forms of fibroproliferative disorders are hypertrophic scars (HTS) and keloids. They often occur after cutaneous wound healing after skin injury, or keloids even form spontaneously in the absence of any known injury. HTS and keloids are different in clinical performance, morphology, and histology, but they all lead to physical and psychological problems for survivors. Recent Advances: Although the mechanism of wound healing at cellular and tissue levels has been well described, the molecular pathways involved in wound healing, especially fibrotic healing, is incompletely understood. Critical Issues: Abnormal scars not only lead to increased health-care costs but also cause significant psychological problems for survivors. A plethora of therapeutic strategies have been used to prevent or attenuate excessive scar formation; however, most therapeutic approaches remain clinically unsatisfactory. Future Directions: Effective care depends on an improved understanding of the mechanisms that cause abnormal scars in patients. A thorough understanding of the roles of chemokines in cutaneous wound healing and abnormal scar formation will help provide more effective preventive and therapeutic strategies for dermal fibrosis as well as for other proliferative disorders.
Collapse
Affiliation(s)
- Jie Ding
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Edward E. Tredget
- Wound Healing Research Group, Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Division of Critical Care Medicine, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
42
|
Rees PA, Greaves NS, Baguneid M, Bayat A. Chemokines in Wound Healing and as Potential Therapeutic Targets for Reducing Cutaneous Scarring. Adv Wound Care (New Rochelle) 2015; 4:687-703. [PMID: 26543682 DOI: 10.1089/wound.2014.0568] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: Cutaneous scarring is an almost inevitable end point of adult human wound healing. It is associated with significant morbidity, both physical and psychological. Pathological scarring, including hypertrophic and keloid scars, can be particularly debilitating. Manipulation of the chemokine system may lead to effective therapies for problematic lesions. Recent Advances: Rapid advancement in the understanding of chemokines and their receptors has led to exciting developments in the world of therapeutics. Modulation of their function has led to clinically effective treatments for conditions as diverse as human immunodeficiency virus and inflammatory bowel disease. Potential methods of targeting chemokines include monoclonal antibodies, small-molecule antagonists, interference with glycosaminoglycan binding and the use of synthetic truncated chemokines. Early work has shown promising results on scar development and appearance when the chemokine system is manipulated. Critical Issues: Chemokines are implicated in all stages of wound healing leading to the development of a cutaneous scar. An understanding of entirely regenerative wound healing in the developing fetus and how the expression of chemokines and their receptors change during the transition to the adult phenotype is central to addressing pathological scarring in adults. Future Directions: As our understanding of chemokine/receptor interactions and scar formation evolves it has become apparent that effective therapies will need to mirror the complexities in these diverse biological processes. It is likely that sophisticated treatments that sequentially influence multiple ligand/receptor interactions throughout all stages of wound healing will be required to deliver viable treatment options.
Collapse
Affiliation(s)
- Peter Adam Rees
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, United Kingdom
- University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Nicholas Stuart Greaves
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, United Kingdom
- University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Mohamed Baguneid
- University Hospital of South Manchester NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
43
|
Bodnar RJ. Chemokine Regulation of Angiogenesis During Wound Healing. Adv Wound Care (New Rochelle) 2015; 4:641-650. [PMID: 26543678 DOI: 10.1089/wound.2014.0594] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Significance: Angiogenesis plays a critical role in wound healing. A defect in the formation of a neovasculature induces ulcer formation. One of the challenges faced by the clinician when devising strategies to promote healing of chronic wounds is the initiation of angiogenesis and the formation of a stable vasculature to support tissue regeneration. Understanding the molecular factors regulating angiogenesis during wound healing will lead to better therapies for healing chronic wounds. Recent Advances: Classically, chronic wounds are treated with debridement to remove inhibitory molecules to reestablish angiogenesis and normal wound healing. The addition of platelet-derived growth factor (PDGF, becaplermin) has shown some promise as an adjunctive therapy, but better therapies are still needed. Current treatment strategies include investigating the outcome of augmenting cytokines locally to reduce the inflammatory response and promote angiogenesis. Critical Issues: The failure of wounds to form a new vasculature results in the inability of the wound to fully heal, and thus may develop into a chronic ulcer if left untreated. Inhibition of neovascularization commonly results from an overactive inflammatory response that includes an excessive chemokine response. Therefore, understanding how the chemokine response regulates neoangiogenesis will enhance our ability to develop new treatment strategies to improve neovascularization and wound healing. Future Directions: The ability to regulate the chemokine environment in chronic wounds may enhance the development of the neovasculature to reduce invasive treatments and enhance wound healing. Either inhibiting chemokines that promote a chronic inflammatory response or increasing the levels of proangiogenic chemokines may enhance angiogenesis in chronic wounds.
Collapse
Affiliation(s)
- Richard J. Bodnar
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Veterans Administration Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
44
|
Bodnar RJ, Wells A. Differential regulation of pericyte function by the CXC receptor 3. Wound Repair Regen 2015. [PMID: 26207932 DOI: 10.1111/wrr.12346] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pericytes are mural cell that have been found to play important roles in promoting blood vessel development and regulating blood flow. The signals that attract pericytes to maturing vessels during the resolution phase of wound healing are unknown. In this study, we examine the role of the chemokine receptor CXC receptor 3 (CXCR3) ligands, as they are produced by maturing endothelial cells. Pericytes isolated from muscle and retina were found to by and large only express the B-isoform of CXCR3 (CXCR3B), with expression being independent of the mitotic state of the cells. Pericyte stimulation with the CXCR3 ligands Mig (CXCL9), IP-9/I-TAC (CXCL11), or IP-10 (CXCL10) resulted in the activation of ERK but not AKT. Treatment with Mig or IP-9, but not IP-10, enhanced p38(MAPK) phosphorylation. Interestingly, while cyclic adenosine monophosphate is generated downstream of CXCR3B in other cells, protein kinase A activation was not observed in these pericytes when treated with these three CXCR3 ligands. The increase in ERK activity resulted in a slight increase in cell transmigration, with the inhibition of ERK leading to a decrease in CXCR3B mediated migration and inhibition of p38(MAPK) reducing transmigration through small pores. These ligands did not affect proliferation. These data are the first to characterize CXCR3B as the predominant isoform expressed on pericytes, and was found on these diverse cells isolated from both muscle and eye. We also show that CXCR3B signaling stimulates transmigration of barrier pores in pericytes as opposed to its inhibitory affects on endothelial cells and fibroblasts. These findings characterize a novel role for the CXCR3B in regulating cellular function. Taken together these data show a role for CXCR3B in regulating pericyte function.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Veterans Affairs Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
45
|
Wells A, Nuschke A, Yates CC. Skin tissue repair: Matrix microenvironmental influences. Matrix Biol 2015; 49:25-36. [PMID: 26278492 DOI: 10.1016/j.matbio.2015.08.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/31/2022]
Abstract
The process of repair of wounded skin involves intricate orchestration not only between the epidermal and dermal compartments but also between the resident and immigrant cells and the local microenvironment. Only now are we beginning to appreciate the complex roles played by the matrix in directing the outcome of the repair processes, and how this impacts the signals from the various cells. Recent findings speak of dynamic and reciprocal interactions that occurs among the matrix, growth factors, and cells that underlies this integrated process. Further confounding this integration are the physiologic and pathologic situations that directly alter the matrix to impart at least part of the dysrepair that occurs. These topics will be discussed with a call for innovative model systems of direct relevance to the human situation.
Collapse
Affiliation(s)
- Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213 USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213 USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA.
| | - Austin Nuschke
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213 USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Cecelia C Yates
- Department of Health Development and Promotion, University of Pittsburgh, Pittsburgh, PA 15213 USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
| |
Collapse
|
46
|
Hickman HD, Reynoso GV, Ngudiankama BF, Cush SS, Gibbs J, Bennink JR, Yewdell JW. CXCR3 chemokine receptor enables local CD8(+) T cell migration for the destruction of virus-infected cells. Immunity 2015; 42:524-37. [PMID: 25769612 DOI: 10.1016/j.immuni.2015.02.009] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/08/2015] [Accepted: 02/20/2015] [Indexed: 12/16/2022]
Abstract
CD8(+) T cells play a critical role in limiting peripheral virus replication, yet how they locate virus-infected cells within tissues is unknown. Here, we have examined the environmental signals that CD8(+) T cells use to localize and eliminate virus-infected skin cells. Epicutaneous vaccinia virus (VV) infection, mimicking human smallpox vaccination, greatly increased expression of the CXCR3 chemokine receptor ligands CXCL9 and CXCL10 in VV-infected skin. Despite normal T cell numbers in the skin, Cxcr3(-/-) mice exhibited dramatically impaired CD8(+)-T-cell-dependent virus clearance. Intravital microscopy revealed that Cxcr3(-/-) T cells were markedly deficient in locating, engaging, and killing virus-infected cells. Further, transfer of wild-type CD8(+) T cells restored viral clearance in Cxcr3(-/-) animals. These findings demonstrate a function for CXCR3 in enhancing the ability of tissue-localized CD8(+) T cells to locate virus-infected cells and thereby exert anti-viral effector functions.
Collapse
Affiliation(s)
- Heather D Hickman
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Glennys V Reynoso
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Barbara F Ngudiankama
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Stephanie S Cush
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - James Gibbs
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Jack R Bennink
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Jonathan W Yewdell
- Cell Biology and Viral Immunology Sections, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
47
|
Liu G, Zhang W, Xiao Y, Lu P. Critical Role of IP-10 on Reducing Experimental Corneal Neovascularization. Curr Eye Res 2014; 40:891-901. [PMID: 25309995 DOI: 10.3109/02713683.2014.968934] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM AND SCOPE To address the role of interferon-induced protein of 10 kDa (IP-10) in the course of corneal neovascularization (CrNV) in a mouse model of experimental corneal neovascularization. MATERIAL AND METHOD BALB/c mice that were 7- to 8-week-old male were included in the study. Corneal injury was induced by NaOH. Mice were randomly divided into 2 groups of IP-10 and vehicle. The alkali-treated eyes received 5 μl of 5 μg/ml IP-10 dissolved in 0.2% sodium hyaluronate for IP-10-treated group, or 5 μl of 0.2% sodium hyaluronate for vehicle-treated group twice a day for 7 days immediately after the alkali injury. 2 weeks after alkali injury, corneas were removed and used for whole mount CD31 staining. The percentages of neovascularization on corneal photographs were examined with digital image analysis. In other experiments, at indicated time intervals, the corneas were removed. Angiogenic factor expression in the early phase after injury was quantified by real-time PCR and western blot. The VEGF expression in macrophages infiltrating into burned corneas was examined by Flow cytometry (FCM) and immunofluorescence. Tube formation and cell proliferation of human retinal endothelial cells (HRECs) were detected after being stimulated with IP-10 in vitro. RESULTS The mRNA and protein expression of IP-10 and C-X-C motif chemokine receptor 3 (CXCR3) was augmented after the alkali injury (p < 0.05). Compared with vehicle-treated mice, IP-10-treated mice exhibited reduced CrNV 2 weeks after injury, as evidenced by diminished CD31-positive areas (p < 0.05). Concomitantly, the intracorneal mRNA and protein expression enhancement of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) was lower in IP-10-treated mice than in vehicle-treated mice after injury (p < 0.05). Moreover, IP-10 inhibited HREC tube formation and proliferation in vitro. CONCLUSION IP-10-treated mice exhibited reduced alkali-induced CrNV through decreasing intracorneal VEGF and bFGF expression, and inhibiting endothelial cell proliferation and tube formation.
Collapse
Affiliation(s)
- Gaoqin Liu
- Department of Ophthalmology, the First Affiliated Hospital of Soochow University , Suzhou , China and
| | | | | | | |
Collapse
|
48
|
Lundvig DMS, Scharstuhl A, Cremers NAJ, Pennings SWC, te Paske J, van Rheden R, van Run-van Breda C, Regan RF, Russel FGM, Carels CE, Maltha JC, Wagener FADTG. Delayed cutaneous wound closure in HO-2 deficient mice despite normal HO-1 expression. J Cell Mol Med 2014; 18:2488-98. [PMID: 25224969 PMCID: PMC4302653 DOI: 10.1111/jcmm.12389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/30/2014] [Indexed: 01/09/2023] Open
Abstract
Impaired wound healing can lead to scarring, and aesthetical and functional problems. The cytoprotective haem oxygenase (HO) enzymes degrade haem into iron, biliverdin and carbon monoxide. HO-1 deficient mice suffer from chronic inflammatory stress and delayed cutaneous wound healing, while corneal wound healing in HO-2 deficient mice is impaired with exorbitant inflammation and absence of HO-1 expression. This study addresses the role of HO-2 in cutaneous excisional wound healing using HO-2 knockout (KO) mice. Here, we show that HO-2 deficiency also delays cutaneous wound closure compared to WT controls. In addition, we detected reduced collagen deposition and vessel density in the wounds of HO-2 KO mice compared to WT controls. Surprisingly, wound closure in HO-2 KO mice was accompanied by an inflammatory response comparable to WT mice. HO-1 induction in HO-2 deficient skin was also similar to WT controls and may explain this protection against exaggerated cutaneous inflammation but not the delayed wound closure. Proliferation and myofibroblast differentiation were similar in both two genotypes. Next, we screened for candidate genes to explain the observed delayed wound closure, and detected delayed gene and protein expression profiles of the chemokine (C-X-C) ligand-11 (CXCL-11) in wounds of HO-2 KO mice. Abnormal regulation of CXCL-11 has been linked to delayed wound healing and disturbed angiogenesis. However, whether aberrant CXCL-11 expression in HO-2 KO mice is caused by or is causing delayed wound healing needs to be further investigated.
Collapse
Affiliation(s)
- Ditte M S Lundvig
- Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yates CC, Hebda P, Wells A. Skin wound healing and scarring: fetal wounds and regenerative restitution. ACTA ACUST UNITED AC 2014; 96:325-33. [PMID: 24203921 DOI: 10.1002/bdrc.21024] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 11/12/2012] [Indexed: 12/31/2022]
Abstract
The adverse physiological and psychological effects of scars formation after healing of wounds are broad and a major medical problem for patients. In utero, fetal wounds heal in a regenerative manner, though the mechanisms are unknown. Differences in fetal scarless regeneration and adult repair can provide key insight into reduction of scarring therapy. Understanding the cellular and extracellular matrix alterations in excessive adult scarring in comparison to fetal scarless healing may have important implications. Herein, we propose that matrix can be controlled via cellular therapy to resemble a fetal-like matrix that will result in reduced scarring.
Collapse
Affiliation(s)
- Cecelia C Yates
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
50
|
Saxena A, Bujak M, Frunza O, Dobaczewski M, Gonzalez-Quesada C, Lu B, Gerard C, Frangogiannis NG. CXCR3-independent actions of the CXC chemokine CXCL10 in the infarcted myocardium and in isolated cardiac fibroblasts are mediated through proteoglycans. Cardiovasc Res 2014; 103:217-27. [PMID: 24891401 DOI: 10.1093/cvr/cvu138] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIMS The CXC chemokine CXCL10 is up-regulated in the infarcted myocardium and limits cardiac fibrosis by inhibiting growth factor-mediated fibroblast migration. CXCL10 signals by binding to its receptor CXCR3; however, recently CXCR3-independent CXCL10 actions have been suggested. Our study explores the role of CXCR3 signalling in myocardial infarction and investigates its involvement in mediating the anti-fibrotic effects of CXCL10. METHODS AND RESULTS Wild-type and CXCR3 null mice underwent reperfused infarction protocols. CXCL10 was markedly induced in the infarct; in contrast, expression of the other two CXCR3 ligands, CXCL9 and CXCL11 was extremely low. CXCR3 loss did not affect scar size, geometric ventricular remodelling, collagen deposition, and systolic dysfunction of the infarcted heart. CXCR3 null mice had increased peak neutrophil recruitment and delayed myofibroblast infiltration in the infarcted heart, but exhibited comparable myocardial expression of pro-inflammatory cytokines and chemokines. In vitro, CXCL10 did not modulate Transforming Growth Factor (TGF)-β signalling, but inhibited basic fibroblast growth factor (bFGF)-induced cardiac fibroblast migration in both wild-type and CXCR3 null cells. Treatment of fibroblasts with heparinase and chondroitinase to cleave glycosaminoglycan chains abrogated the inhibitory effects of CXCL10 on cell migration. CONCLUSION CXCR3 signalling does not critically regulate cardiac remodelling and dysfunction following myocardial infarction. The anti-fibrotic effects of CXCL10 in the healing infarct and in isolated cardiac fibroblasts are CXCR3-independent and may be mediated through proteoglycan signalling. Thus, administration of CXCR3-defective forms of CXCL10 may be an effective anti-fibrotic strategy in the remodelling myocardium without activating a potentially injurious, CXCR3-driven T cell response.
Collapse
Affiliation(s)
- Amit Saxena
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Marcin Bujak
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Olga Frunza
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| | - Marcin Dobaczewski
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Carlos Gonzalez-Quesada
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Bao Lu
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Craig Gerard
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|