1
|
Møller MW, Nortvig MJ, Andersen MS, Poulsen FR. DNA Methylation in Pituitary Adenomas: A Scoping Review. Int J Mol Sci 2025; 26:531. [PMID: 39859246 PMCID: PMC11765255 DOI: 10.3390/ijms26020531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Pituitary adenomas are a diverse group of neoplasms with variable clinical behavior. Despite advances in genetic analysis, understanding the role of epigenetic modifications, particularly DNA methylation, remains an area under investigation. This scoping review aimed to update and synthesize the current body of literature on DNA methylation in pituitary adenomas, focusing on methodological advancements and clinical correlations. A systematic search conducted across multiple databases, including Embase, Scopus, MEDLINE, and CENTRAL, identified 107 eligible studies. Early methods, such as methylation-restricted digestion and methylation-specific PCR (MSP), have evolved into more comprehensive approaches, such as chip-based DNA methylation analysis. Key findings suggest that genes like POMC, SOCS-1, and RASSF1A show a significant association between methylation and clinical behavior. However, methylation patterns alone are insufficient to fully explain tumorigenesis. Emerging data suggest that DNA methylation might serve as a prognostic marker for invasive growth and recurrence, but further longitudinal studies are needed. This review highlights the need for future research to explore the methylome more thoroughly and to better define the clinical impact of epigenetic modifications in pituitary adenomas.
Collapse
Affiliation(s)
- Morten Winkler Møller
- Department of Neurosurgery, Odense University Hospital, DK-5000 Odense, Denmark; (M.J.N.); (M.S.A.); (F.R.P.)
- Department of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark
- BRIDGE (Brain Research-Inter Disciplinary Guided Excellence), University of Southern Denmark, DK-5000 Odense, Denmark
| | - Mathias Just Nortvig
- Department of Neurosurgery, Odense University Hospital, DK-5000 Odense, Denmark; (M.J.N.); (M.S.A.); (F.R.P.)
- Department of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark
- BRIDGE (Brain Research-Inter Disciplinary Guided Excellence), University of Southern Denmark, DK-5000 Odense, Denmark
| | - Mikkel Schou Andersen
- Department of Neurosurgery, Odense University Hospital, DK-5000 Odense, Denmark; (M.J.N.); (M.S.A.); (F.R.P.)
- Department of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark
- BRIDGE (Brain Research-Inter Disciplinary Guided Excellence), University of Southern Denmark, DK-5000 Odense, Denmark
| | - Frantz Rom Poulsen
- Department of Neurosurgery, Odense University Hospital, DK-5000 Odense, Denmark; (M.J.N.); (M.S.A.); (F.R.P.)
- Department of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark
- BRIDGE (Brain Research-Inter Disciplinary Guided Excellence), University of Southern Denmark, DK-5000 Odense, Denmark
| |
Collapse
|
2
|
Zhang P, Yue L, Leng Q, Chang C, Gan C, Ye T, Cao D. Targeting FGFR for cancer therapy. J Hematol Oncol 2024; 17:39. [PMID: 38831455 PMCID: PMC11149307 DOI: 10.1186/s13045-024-01558-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The FGFR signaling pathway is integral to cellular activities, including proliferation, differentiation, and survival. Dysregulation of this pathway is implicated in numerous human cancers, positioning FGFR as a prominent therapeutic target. Here, we conduct a comprehensive review of the function, signaling pathways and abnormal alterations of FGFR, as well as its role in tumorigenesis and development. Additionally, we provide an in-depth analysis of pivotal phase 2 and 3 clinical trials evaluating the performance and safety of FGFR inhibitors in oncology, thereby shedding light on the current state of clinical research in this field. Then, we highlight four drugs that have been approved for marketing by the FDA, offering insights into their molecular mechanisms and clinical achievements. Our discussion encompasses the intricate landscape of FGFR-driven tumorigenesis, current techniques for pinpointing FGFR anomalies, and clinical experiences with FGFR inhibitor regimens. Furthermore, we discuss the inherent challenges of targeting the FGFR pathway, encompassing resistance mechanisms such as activation by gatekeeper mutations, alternative pathways, and potential adverse reactions. By synthesizing the current evidence, we underscore the potential of FGFR-centric therapies to enhance patient prognosis, while emphasizing the imperative need for continued research to surmount resistance and optimize treatment modalities.
Collapse
Affiliation(s)
- Pei Zhang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Lin Yue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - QingQing Leng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Chen Chang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Cailing Gan
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Dan Cao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Stangis MM, Colah AN, McLean DT, Halberg RB, Collier LS, Ricke WA. Potential roles of FGF5 as a candidate therapeutic target in prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:452-466. [PMID: 38148937 PMCID: PMC10749387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/13/2023] [Indexed: 12/28/2023]
Abstract
Fibroblast growth factor (FGF) is a secreted ligand that is widely expressed in embryonic tissues but its expression decreases with age. In the developing prostate, FGF5 has been proposed to interact with the Hedgehog (Hh) signaling pathway to guide mitogenic processes. In the adult prostate, the FGF/FGFR signaling axis has been implicated in prostate carcinogenesis, but focused studies on FGF5 functions in the prostate are limited. Functional studies completed in other cancer models point towards FGF5 overexpression as an oncogenic driver associated with stemness, metastatic potential, proliferative capacity, and increased tumor grade. In this review, we explore the significance of FGF5 as a therapeutic target in prostate cancer (PCa) and other malignancies; and we introduce a potential route of investigation to link FGF5 to benign prostatic hyperplasia (BPH). PCa and BPH are two primary contributors to the disease burden of the aging male population and have severe implications on quality of life, psychological wellbeing, and survival. The development of new FGF5 inhibitors could potentially alleviate the health burden of PCa and BPH in the aging male population.
Collapse
Affiliation(s)
- Mary M Stangis
- Department of Urology, University of Wisconsin-MadisonMadison, WI, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public HealthMadison, WI, USA
| | - Avan N Colah
- Department of Urology, University of Wisconsin-MadisonMadison, WI, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-MadisonMadison, WI, USA
| | - Dalton T McLean
- Department of Urology, University of Wisconsin-MadisonMadison, WI, USA
| | - Richard B Halberg
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public HealthMadison, WI, USA
- Carbone Cancer Center, University of Wisconsin-MadisonMadison, WI, USA
| | - Lara S Collier
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-MadisonMadison, WI, USA
| | - William A Ricke
- Department of Urology, University of Wisconsin-MadisonMadison, WI, USA
- Carbone Cancer Center, University of Wisconsin-MadisonMadison, WI, USA
| |
Collapse
|
4
|
Pan D, Su M, Xu D, Wang Y, Gao H, Smith JD, Sun J, Wang X, Yan Q, Song G, Lu Y, Feng W, Wang S, Sun G. Exploring the Interplay Between Vitamin B 12-related Biomarkers, DNA Methylation, and Gene-Nutrition Interaction in Esophageal Precancerous Lesions. Arch Med Res 2023; 54:102889. [PMID: 37738887 DOI: 10.1016/j.arcmed.2023.102889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/29/2023] [Accepted: 08/31/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Vitamin B12 depletion has been suggested to be associated with esophageal precancerous lesions (EPL). However, the potential mechanisms remain unclear. AIMS This study aims to evaluate the role of vitamin B12 and its regulated epigenetic modification in EPL and provide preliminary information on the identification of potential molecular biomarkers for the early prediction of EPL. METHODS We collected information and samples from the Early Diagnosis and Early Treatment Project of Esophageal Cancer database from 200 EPL cases and 200 matched controls. Vitamin B12, one-carbon metabolism biomarkers, genetic polymorphism of TCN2 C776G, and DNA methylation were compared. Preliminarily identified candidate promoters of differentially methylated CpG positions were further verified by targeted bisulfite sequencing. RESULTS EPL cases had significantly lower serum levels of vitamin B12 and transcobalamin II, and higher serum levels of homocysteine and 5-methyltetrahydrofolate than controls. The TCN2 C776G polymorphism was found to be associated with susceptibility to EPL and may interact with vitamin B12 nutritional status to influence the risk of EPL in male subjects. In addition, global hypomethylation related to vitamin B12 depletion was observed in EPL cases, along with region-specific hypermethylation of UGT2B15 and FGFR2 promoters. CONCLUSIONS This study suggests that vitamin B12 depletion may be associated with aberrant DNA methylation and increased risk of EPL through the one-carbon metabolism pathway, presents that the TCN2 C776G polymorphism may interact with vitamin B12 nutritional status to affect EPL risk in males, and also identifies specific locations in the UGT2B15 and FGFR2 promoters with potential as promising molecular biomarkers.
Collapse
Affiliation(s)
- Da Pan
- Key Laboratory of Environmental Medicine and Engineering of the Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, PR China
| | - Ming Su
- Huai'an District Center for Disease Control and Prevention, Huai'an, PR China
| | - Dengfeng Xu
- Key Laboratory of Environmental Medicine and Engineering of the Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, PR China
| | - Yuanyuan Wang
- Key Laboratory of Environmental Medicine and Engineering of the Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, PR China
| | - Han Gao
- Department of Biomedical Engineering, University Medical Center Groningen/University of Groningen, The Netherlands; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - Jihan Sun
- Key Laboratory of Environmental Medicine and Engineering of the Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, PR China
| | - Xin Wang
- Huai'an District Center for Disease Control and Prevention, Huai'an, PR China
| | - Qingyang Yan
- Huai'an District Center for Disease Control and Prevention, Huai'an, PR China
| | - Guang Song
- Huai'an District Center for Disease Control and Prevention, Huai'an, PR China
| | - Yifei Lu
- Key Laboratory of Environmental Medicine and Engineering of the Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, PR China
| | - Wuqiong Feng
- Huai'an District Center for Disease Control and Prevention, Huai'an, PR China
| | - Shaokang Wang
- Key Laboratory of Environmental Medicine and Engineering of the Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, PR China; School of Medicine, Xizang Minzu University, Xianyang, PR China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of the Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, PR China.
| |
Collapse
|
5
|
Zheng AC, Wang EJ, Aghi MK. Recent advancements in the molecular biology of pituitary adenomas. Expert Rev Endocrinol Metab 2022; 17:293-304. [PMID: 35702013 DOI: 10.1080/17446651.2022.2082942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Pituitary adenomas are a common and diverse group of intracranial tumors arising from the anterior pituitary that are usually slow-growing and benign, but still pose a significant healthcare burden to patients. Additionally, they are increasing in both incidence and prevalence, leading to a need for better understanding of molecular changes in the development of these tumors. AREAS COVERED A PubMed literature search was conducted using the terms 'pituitary adenoma' in combination with keywords related to secretory subtype: lactotroph, somatotroph, corticotroph, gonadotroph and null cell, in addition to their transcription factor expression: PIT1, TPIT, and SF-1. Articles resulting from this search were analyzed, as well as relevant articles cited as their references. In this review, we highlight recent advances in the genetic and epigenetic characterization of individual pituitary adenoma subtypes and the effect it may have on guiding future clinical treatment of these tumors. EXPERT OPINION Understanding the molecular biology of pituitary adenomas is a fundamental step toward advancing the treatment of these tumors. Yet crucial knowledge gaps exist in our understanding of the underlying molecular biology of pituitary adenomas which can potentially be addressed by turning to differentially activated molecular pathways in tumor relative to normal gland.
Collapse
Affiliation(s)
- Allison C Zheng
- Department of Neurosurgery; University of California at San Francisco (UCSF) San Francisco, CA, USA
| | - Elaina J Wang
- Department of Neurosurgery; Warren Alpert Medical School of Brown University Providence, RI, USA
| | - Manish K Aghi
- Department of Neurosurgery; University of California at San Francisco (UCSF) San Francisco, CA, USA
| |
Collapse
|
6
|
Coit P, Schollaert KL, Mirizio EM, Torok KS, Sawalha AH. DNA methylation patterns in juvenile systemic sclerosis and localized scleroderma. Clin Immunol 2021; 228:108756. [PMID: 33992755 DOI: 10.1016/j.clim.2021.108756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022]
Abstract
Scleroderma refers to a group of chronic fibrotic immune-mediated diseases of unknown etiology. Characterizing epigenetic changes in childhood-onset scleroderma, systemic sclerosis or localized scleroderma, has not been previously performed. The aim of this study was to assess DNA methylation differences and similarities between juvenile systemic sclerosis (jSSc) and juvenile localized scleroderma (jLS) compared to matched healthy controls. Genome-wide DNA methylation changes in peripheral blood mononuclear cell samples were assessed using the MethylationEPIC array followed by bioinformatic analysis and limited functional assessment. We identified a total of 105 and 144 differentially methylated sites compared to healthy controls in jSSc and jLS, respectively. The majority of differentially methylated sites and genes represented were unique to either jSSc or jLS suggesting a different underlying epigenetic pattern in both diseases. Among shared differentially methylated genes, methylation levels in a CpG site in FGFR2 can distinguish between LS and healthy PBMCs with a high accuracy. Canonical pathway analysis revealed that inflammatory pathways were enriched in genes differentially methylated in jSSc, including STAT3, NF-κB, and IL-15 pathways. In contrast, the HIPPO signaling pathway was enriched in jLS. Our data also suggest a potential role for NOTCH3 in both jSSc and jLS, and revealed a number of transcription factors unique to each of the two diseases. In summary, our data revealed important insights into jSSc and jLS and suggest a potentially novel epigenetic diagnostic biomarker for LS.
Collapse
Affiliation(s)
- Patrick Coit
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Kaila L Schollaert
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily M Mirizio
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathryn S Torok
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA; University of Pittsburgh Systemic Sclerosis Center of Research Translation, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Epstein RJ, Tian LJ, Gu YF. 2b or Not 2b: How Opposing FGF Receptor Splice Variants Are Blocking Progress in Precision Oncology. JOURNAL OF ONCOLOGY 2021; 2021:9955456. [PMID: 34007277 PMCID: PMC8110382 DOI: 10.1155/2021/9955456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 01/16/2023]
Abstract
More than ten thousand peer-reviewed studies have assessed the role of fibroblast growth factors (FGFs) and their receptors (FGFRs) in cancer, but few patients have yet benefited from drugs targeting this molecular family. Strategizing how best to use FGFR-targeted drugs is complicated by multiple variables, including RNA splicing events that alter the affinity of ligands for FGFRs and hence change the outcomes of stromal-epithelial interactions. The effects of splicing are most relevant to FGFR2; expression of the FGFR2b splice isoform can restore apoptotic sensitivity to cancer cells, whereas switching to FGFR2c may drive tumor progression by triggering epithelial-mesenchymal transition. The differentiating and regulatory actions of wild-type FGFR2b contrast with the proliferative actions of FGFR1 and FGFR3, and may be converted to mitogenicity either by splice switching or by silencing of tumor suppressor genes such as CDH1 or PTEN. Exclusive use of small-molecule pan-FGFR inhibitors may thus cause nonselective blockade of FGFR2 isoforms with opposing actions, undermining the rationale of FGFR2 drug targeting. This splice-dependent ability of FGFR2 to switch between tumor-suppressing and -driving functions highlights an unmet oncologic need for isoform-specific drug targeting, e.g., by antibody inhibition of ligand-FGFR2c binding, as well as for more nuanced molecular pathology prediction of FGFR2 actions in different stromal-tumor contexts.
Collapse
Affiliation(s)
- Richard J. Epstein
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
- Garvan Institute of Medical Research and UNSW Clinical School, 84 Victoria St, Darlinghurst 2010 Sydney, Australia
| | - Li Jun Tian
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
| | - Yan Fei Gu
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
| |
Collapse
|
8
|
Ghatnatti V, Vastrad B, Patil S, Vastrad C, Kotturshetti I. Identification of potential and novel target genes in pituitary prolactinoma by bioinformatics analysis. AIMS Neurosci 2021; 8:254-283. [PMID: 33709028 PMCID: PMC7940115 DOI: 10.3934/neuroscience.2021014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
Pituitary prolactinoma is one of the most complicated and fatally pathogenic pituitary adenomas. Therefore, there is an urgent need to improve our understanding of the underlying molecular mechanism that drives the initiation, progression, and metastasis of pituitary prolactinoma. The aim of the present study was to identify the key genes and signaling pathways associated with pituitary prolactinoma using bioinformatics analysis. Transcriptome microarray dataset GSE119063 was downloaded from Gene Expression Omnibus (GEO) database. Limma package in R software was used to screen DEGs. Pathway and Gene ontology (GO) enrichment analysis were conducted to identify the biological role of DEGs. A protein-protein interaction (PPI) network was constructed and analyzed by using HIPPIE database and Cytoscape software. Module analyses was performed. In addition, a target gene-miRNA regulatory network and target gene-TF regulatory network were constructed by using NetworkAnalyst and Cytoscape software. Finally, validation of hub genes by receiver operating characteristic (ROC) curve analysis. A total of 989 DEGs were identified, including 461 up regulated genes and 528 down regulated genes. Pathway enrichment analysis showed that the DEGs were significantly enriched in the retinoate biosynthesis II, signaling pathways regulating pluripotency of stem cells, ALK2 signaling events, vitamin D3 biosynthesis, cell cycle and aurora B signaling. Gene Ontology (GO) enrichment analysis showed that the DEGs were significantly enriched in the sensory organ morphogenesis, extracellular matrix, hormone activity, nuclear division, condensed chromosome and microtubule binding. In the PPI network and modules, SOX2, PRSS45, CLTC, PLK1, B4GALT6, RUNX1 and GTSE1 were considered as hub genes. In the target gene-miRNA regulatory network and target gene-TF regulatory network, LINC00598, SOX4, IRX1 and UNC13A were considered as hub genes. Using integrated bioinformatics analysis, we identified candidate genes in pituitary prolactinoma, which might improve our understanding of the molecular mechanisms of pituitary prolactinoma.
Collapse
Affiliation(s)
- Vikrant Ghatnatti
- Department of Endocrinology, J N Medical College, Belagavi and KLE Academy of Higher Education & Research 590010, Karnataka, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India
| | - Swetha Patil
- Department of Obstetrics and Gynaecology, J N Medical College, Belagavi and KLE Academy of Higher Education & Research 590010, Karnataka, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India
| | - Iranna Kotturshetti
- Department of Ayurveda, Rajiv Gandhi Education Society's Ayurvedic Medical College, Ron 562209, Karanataka, India
| |
Collapse
|
9
|
Asa SL, Mete O, Ezzat S. Genomics and Epigenomics of Pituitary Tumors: What Do Pathologists Need to Know? Endocr Pathol 2021; 32:3-16. [PMID: 33433883 DOI: 10.1007/s12022-021-09663-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 12/11/2022]
Abstract
Molecular pathology has advanced our understanding of many tumors and offers opportunities to identify novel therapies. In the pituitary, the field has uncovered several genetic mutations that predispose to pituitary neuroendocrine tumor (PitNET) development, including MEN1, CDKN1B, PRKRIα, AIP, GPR101, and other more rare events; however, these genes are only rarely mutated in sporadic PitNETs. Recurrent genetic events in sporadic PitNETs include GNAS mutations in a subset of somatotroph tumors and ubiquitin-specific peptidase mutations (e.g., USP8, USP48) in some corticotroph tumors; to date, neither of these has resulted in altered management, and instead, the prognosis and management of PitNETs still rely more on cell type and subtype as well as local growth that determines surgical resectability. In contrast, craniopharyngiomas have either CTNNB1 or BRAFV600E mutations that correlate with adamantinomatous or papillary morphology, respectively; the latter offers the opportunity for targeted therapy. DICER1 mutations are found in patients with pituitary blastoma. Epigenetic changes are implicated in the pathogenesis of the more common sporadic pituitary neoplasms including the majority of PitNETs and tumors of pituicytes.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA.
- Department of Pathology, University Health Network, Toronto, ON, Canada.
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Shereen Ezzat
- Department of Medicine, University Health Network and University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Zhang X, Sun W, He L, Wang L, Qiu K, Yin J. Global DNA methylation pattern involved in the modulation of differentiation potential of adipogenic and myogenic precursors in skeletal muscle of pigs. Stem Cell Res Ther 2020; 11:536. [PMID: 33308295 PMCID: PMC7731745 DOI: 10.1186/s13287-020-02053-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Background Skeletal muscle is a complex and heterogeneous tissue accounting for approximately 40% of body weight. Excessive ectopic lipid accumulation in the muscle fascicle would undermine the integrity of skeletal muscle in humans but endow muscle with marbling-related characteristics in farm animals. Therefore, the balance of myogenesis and adipogenesis is of great significance for skeletal muscle homeostasis. Significant DNA methylation occurs during myogenesis and adipogenesis; however, DNA methylation pattern of myogenic and adipogenic precursors derived from skeletal muscle remains unknown yet. Methods In this study, reduced representation bisulfite sequencing was performed to analyze genome-wide DNA methylation of adipogenic and myogenic precursors derived from the skeletal muscle of neonatal pigs. Integrated analysis of DNA methylation and transcription profiles was further conducted. Based on the results of pathway enrichment analysis, myogenic precursors were transfected with CACNA2D2-overexpression plasmids to explore the function of CACNA2D2 in myogenic differentiation. Results As a result, 11,361 differentially methylated regions mainly located in intergenic region and introns were identified. Furthermore, 153 genes with different DNA methylation and gene expression level between adipogenic and myogenic precursors were characterized. Subsequently, pathway enrichment analysis revealed that DNA methylation programing was involved in the regulation of adipogenic and myogenic differentiation potential through mediating the crosstalk among pathways including focal adhesion, regulation of actin cytoskeleton, MAPK signaling pathway, and calcium signaling pathway. In particular, we characterized a new role of CACNA2D2 in inhibiting myogenic differentiation by suppressing JNK/MAPK signaling pathway. Conclusions This study depicted a comprehensive landmark of DNA methylome of skeletal muscle-derived myogenic and adipogenic precursors, highlighted the critical role of CACNA2D2 in regulating myogenic differentiation, and illustrated the possible regulatory ways of DNA methylation on cell fate commitment and skeletal muscle homeostasis. Supplementary information The online version contains supplementary material available at 10.1186/s13287-020-02053-3.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenjuan Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Linjuan He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Liqi Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kai Qiu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jingdong Yin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, Ni Z, Zhang B, Zhang D, Luo F, Chen H, Sun X, Feng JQ, Qi H, Chen L. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther 2020; 5:181. [PMID: 32879300 PMCID: PMC7468161 DOI: 10.1038/s41392-020-00222-7] [Citation(s) in RCA: 474] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Growing evidences suggest that the fibroblast growth factor/FGF receptor (FGF/FGFR) signaling has crucial roles in a multitude of processes during embryonic development and adult homeostasis by regulating cellular lineage commitment, differentiation, proliferation, and apoptosis of various types of cells. In this review, we provide a comprehensive overview of the current understanding of FGF signaling and its roles in organ development, injury repair, and the pathophysiology of spectrum of diseases, which is a consequence of FGF signaling dysregulation, including cancers and chronic kidney disease (CKD). In this context, the agonists and antagonists for FGF-FGFRs might have therapeutic benefits in multiple systems.
Collapse
Affiliation(s)
- Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Nan Su
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiaoyan Tan
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Shuo Huang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Min Jin
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhong Ni
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Dali Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengtao Luo
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xianding Sun
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Huabing Qi
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
12
|
Lamb LS, Sim HW, McCormack AI. Exploring the Role of Novel Medical Therapies for Aggressive Pituitary Tumors: A Review of the Literature-"Are We There Yet?". Cancers (Basel) 2020; 12:cancers12020308. [PMID: 32012988 PMCID: PMC7072681 DOI: 10.3390/cancers12020308] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Aggressive pituitary tumors account for up to 10% of pituitary tumors and are characterized by resistance to medical treatment and multiple recurrences despite standard therapies, including surgery, radiotherapy, and chemotherapy. They are associated with increased morbidity and mortality, particularly pituitary carcinomas, which have mortality rates of up to 66% at 1 year after diagnosis. Novel targeted therapies under investigation include mammalian target of rapamycin (mTOR), tyrosine kinase, and vascular endothelial growth factor (VEGF) inhibitors. More recently, immune checkpoint inhibitors have been proposed as a potential treatment option for pituitary tumors. An increased understanding of the molecular pathogenesis of aggressive pituitary tumors is required to identify potential biomarkers and therapeutic targets. This review discusses novel approaches to the management of aggressive pituitary tumors and the role of molecular profiling.
Collapse
Affiliation(s)
- Lydia S. Lamb
- Department of Endocrinology, St Vincent’s Hospital, Sydney, NSW 2010, Australia;
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia;
| | - Hao-Wen Sim
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia;
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
- Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
| | - Ann I. McCormack
- Department of Endocrinology, St Vincent’s Hospital, Sydney, NSW 2010, Australia;
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia;
- St Vincent’s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
- Correspondence: ; Tel.: +61-2-9295-8489
| |
Collapse
|
13
|
Chang M, Yang C, Bao X, Wang R. Genetic and Epigenetic Causes of Pituitary Adenomas. Front Endocrinol (Lausanne) 2020; 11:596554. [PMID: 33574795 PMCID: PMC7870789 DOI: 10.3389/fendo.2020.596554] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/23/2020] [Indexed: 01/30/2023] Open
Abstract
Pituitary adenomas (PAs) can be classified as non-secreting adenomas, somatotroph adenomas, corticotroph adenomas, lactotroph adenomas, and thyrotroph adenomas. Substantial advances have been made in our knowledge of the pathobiology of PAs. To obtain a comprehensive understanding of the molecular biological characteristics of different types of PAs, we reviewed the important advances that have been made involving genetic and epigenetic variation, comprising genetic mutations, chromosome number variations, DNA methylation, microRNA regulation, and transcription factor regulation. Classical tumor predisposition syndromes include multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4) syndromes, Carney complex, and X-LAG syndromes. PAs have also been described in association with succinate dehydrogenase-related familial PA, neurofibromatosis type 1, and von Hippel-Lindau, DICER1, and Lynch syndromes. Patients with aryl hydrocarbon receptor-interacting protein (AIP) mutations often present with pituitary gigantism, either in familial or sporadic adenomas. In contrast, guanine nucleotide-binding protein G(s) subunit alpha (GNAS) and G protein-coupled receptor 101 (GPR101) mutations can lead to excess growth hormone. Moreover, the deubiquitinase gene USP8, USP48, and BRAF mutations are associated with adrenocorticotropic hormone production. In this review, we describe the genetic and epigenetic landscape of PAs and summarize novel insights into the regulation of pituitary tumorigenesis.
Collapse
Affiliation(s)
| | | | - Xinjie Bao
- *Correspondence: Xinjie Bao, ; Renzhi Wang,
| | | |
Collapse
|
14
|
The Genetics of Pituitary Adenomas. J Clin Med 2019; 9:jcm9010030. [PMID: 31877737 PMCID: PMC7019860 DOI: 10.3390/jcm9010030] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 12/16/2022] Open
Abstract
The genetic landscape of pituitary adenomas (PAs) is diverse and many of the identified cases remain of unclear pathogenetic mechanism. Germline genetic defects account for a small percentage of all patients and may present in the context of relevant family history. Defects in AIP (mutated in Familial Isolated Pituitary Adenoma syndrome or FIPA), MEN1 (coding for menin, mutated in Multiple Endocrine Neoplasia type 1 or MEN 1), PRKAR1A (mutated in Carney complex), GPR101 (involved in X-Linked Acrogigantism or X-LAG), and SDHx (mutated in the so called "3 P association" of PAs with pheochromocytomas and paragangliomas or 3PAs) account for the most common familial syndromes associated with PAs. Tumor genetic defects in USP8, GNAS, USP48 and BRAF are some of the commonly encountered tissue-specific changes and may explain a larger percentage of the developed tumors. Somatic (at the tumor level) genomic changes, copy number variations (CNVs), epigenetic modifications, and differential expression of miRNAs, add to the variable genetic background of PAs.
Collapse
|
15
|
Shariq OA, Lines KE. Epigenetic dysregulation in pituitary tumors. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2019. [DOI: 10.2217/ije-2019-0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Pituitary tumors are common intracranial neoplasms associated with significant morbidity due to hormonal dysregulation and neurologic symptoms. Somatic mutations are uncommon in sporadic pituitary adenomas, and only few monogenic conditions are associated with pituitary tumors. However, increasing evidence suggests that aberrant epigenetic modifications are found in pituitary tumors. In this review, we describe these mechanisms, including DNA methylation, histone modification and microRNA expression, and the evidence supporting their dysregulation in pituitary tumors, as well as their regulation of pro-tumorigenic genes. In addition, we provide an overview of findings from preclinical studies investigating the use of histone deacetylase inhibitors to treat pituitary adenomas and the need for further studies involving epigenetic drugs and functional characterization of epigenetic dysregulation.
Collapse
Affiliation(s)
- Omair A Shariq
- OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Kate E Lines
- OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| |
Collapse
|
16
|
Hauser BM, Lau A, Gupta S, Bi WL, Dunn IF. The Epigenomics of Pituitary Adenoma. Front Endocrinol (Lausanne) 2019; 10:290. [PMID: 31139150 PMCID: PMC6527758 DOI: 10.3389/fendo.2019.00290] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Background: The vast majority of pituitary tumors are benign and behave accordingly; however, a fraction are invasive and are more aggressive, with a very small fraction being frankly malignant. The cellular pathways that drive transformation in pituitary neoplasms are poorly characterized, and current classification methods are not reliable correlates of clinical behavior. Novel techniques in epigenetics, the study of alterations in gene expression without changes to the genetic code, provide a new dimension to characterize tumors, and may hold implications for prognostication and management. Methods: We conducted a review of primary epigenetic studies of pituitary tumors with a focus on histone modification, DNA methylation, and transcript modification. Results: High levels of methylation have been identified in invasive and large pituitary tumors. DNA methyltransferase overexpression has been detected in pituitary tumors, especially in macroadenomas. Methylation differences at CpG sites in promoter regions may distinguish several types of tumors from normal pituitary tissue. Histone modifications have been linked to increased p53 expression and longer progression-free survival in pituitary tumors; sirtuins are expressed at higher values in GH-expressing compared to nonfunctional adenomas and correlate inversely with size in somatotrophs. Upregulation in citrullinating enzymes may be an early pathogenic marker of prolactinomas. Numerous genes involved with cell growth and signaling show altered methylation status for pituitary tumors, including cell cycle regulators, components of signal transduction pathways, apoptotic regulators, and pituitary developmental signals. Conclusions: The limited clinical predictive capacity of the current pituitary tumor classification system suggests that tumor subclasses likely remain to be discovered. Ongoing epigenetic studies could provide a basis for adding methylation and/or acetylation screening to standard pituitary tumor workups. Identifying robust correlations between tumor epigenetics and corresponding histological, radiographic, and clinical course information could ultimately inform clinical decision-making.
Collapse
Affiliation(s)
- Blake M. Hauser
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ashley Lau
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Saksham Gupta
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Wenya Linda Bi
- Center for Skull Base and Pituitary Surgery, Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- *Correspondence: Wenya Linda Bi
| | - Ian F. Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Ian F. Dunn
| |
Collapse
|
17
|
Da Ros S, Aresu L, Ferraresso S, Zorzan E, Gaudio E, Bertoni F, Dacasto M, Giantin M. Validation of epigenetic mechanisms regulating gene expression in canine B-cell lymphoma: An in vitro and in vivo approach. PLoS One 2018; 13:e0208709. [PMID: 30533020 PMCID: PMC6289462 DOI: 10.1371/journal.pone.0208709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/21/2018] [Indexed: 01/26/2023] Open
MESH Headings
- Animals
- Cell Line, Tumor
- Dog Diseases/genetics
- Dog Diseases/metabolism
- Dogs
- Epigenesis, Genetic/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/physiology
- Histone Deacetylase Inhibitors/pharmacology
- Lymph Nodes
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/veterinary
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Silvia Da Ros
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Eleonora Zorzan
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Eugenio Gaudio
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Francesco Bertoni
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
- * E-mail:
| |
Collapse
|
18
|
Kober P, Boresowicz J, Rusetska N, Maksymowicz M, Goryca K, Kunicki J, Bonicki W, Siedlecki JA, Bujko M. DNA methylation profiling in nonfunctioning pituitary adenomas. Mol Cell Endocrinol 2018; 473:194-204. [PMID: 29410024 DOI: 10.1016/j.mce.2018.01.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/21/2017] [Accepted: 01/29/2018] [Indexed: 01/08/2023]
Abstract
Nonfunctioning pituitary adenomas (NFPAs) are among the most frequent intracranial tumors but their molecular background, including changes in epigenetic regulation, remains poorly understood. We performed genome-wide DNA methylation profiling of 34 NFPAs and normal pituitary samples. Methylation status of the selected genomic regions and expression level of corresponding genes were assessed in a group of 75 patients. NFPAs exhibited distinct global methylation profile as compared to normal pituitary. Aberrant DNA methylation appears to contribute to deregulation of the cancer-related pathways as shown by preliminary functional analysis. Promoter hypermethylation and decreased expression level of SFN, STAT5A, DUSP1, PTPRE and FGFR2 was confirmed in the enlarged group of NFPAs. Difference in the methylation profiles between invasive and non-invasive NFPAs is very slight. Nevertheless, invasiveness-related aberrant epigenetic deregulation of the particular genes was found including upregulation of ITPKB and downregulation CNKSR1 in invasive tumors.
Collapse
Affiliation(s)
- Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Joanna Boresowicz
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland; Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland; Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Nataliia Rusetska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Maria Maksymowicz
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Krzysztof Goryca
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Jacek Kunicki
- Department of Neurosurgery, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Wiesław Bonicki
- Department of Neurosurgery, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Janusz Aleksander Siedlecki
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| |
Collapse
|
19
|
Ma HS, Wang EL, Xu WF, Yamada S, Yoshimoto K, Qian ZR, Shi L, Liu LL, Li XH. Overexpression of DNA (Cytosine-5)-Methyltransferase 1 (DNMT1) And DNA (Cytosine-5)-Methyltransferase 3A (DNMT3A) Is Associated with Aggressive Behavior and Hypermethylation of Tumor Suppressor Genes in Human Pituitary Adenomas. Med Sci Monit 2018; 24:4841-4850. [PMID: 30002361 PMCID: PMC6069575 DOI: 10.12659/msm.910608] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Alteration of DNA methylation of tumor suppressor genes (TSGs) is one of the most consistent epigenetic changes in human cancers. DNMTs play several important roles in DNA methylation and development of cancers. Regarding DNMTs protein expressions, little is known about the clinical significance and correlation with promoter methylation status of TSGs in human pituitary adenomas. Material/Methods We analyzed the protein expression of 3 DNMTs using immunohistochemistry and assessed DNA hypermethylation of RASSF1A, CDH13, CDH1, and CDKN2A (p16) in 63 pituitary adenomas. We examined associations between DNMTs expression and clinicopathological features or promoter methylation status of TSGs. Results Overexpression of DNMTs was detected in pituitary adenomas. Frequencies of DNMT1 overexpression were significantly higher in macroadenomas, invasive tumors, and grade III and IV tumors. DNMT3A was frequently detected in invasive tumors and grade IV tumors. In addition, DNMT1 and DNMT3A were frequently detected in high-methylation tumors. Furthermore, in multivariate logistic regression, the significant association between DNMT1 or DNMT3A and high-methylation status persisted after adjusting for clinicopathological features. Conclusions Our findings suggested that tumor overexpression of DNMT1 and DNMT3A is associated with tumor aggressive behavior and high-methylation status in pituitary adenomas. Our data support a possible role of DNMT1 and DNMT3A in TSG promoter methylation leading to pituitary adenoma invasion and suggest that inhibition of DNMTs has the potential to become a new therapeutic approach for invasive pituitary adenoma.
Collapse
Affiliation(s)
- Hou-Shi Ma
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China (mainland).,Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, China (mainland)
| | - Elaine Lu Wang
- Department of Human Pathology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima City, Tokushima, Japan.,Department of Legal Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Wen-Fei Xu
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiangb, China (mainland)
| | - Shozo Yamada
- Department of Neurosurgery, Toranomon Hospital, Tokyo, Japan
| | - Katsuhiko Yoshimoto
- Department of Medical Pharmacology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima City, Tokushima, Japan
| | - Zhi Rong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Long Shi
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, China (mainland)
| | - Li-Li Liu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China (mainland)
| | - Xu-Hui Li
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, China (mainland)
| |
Collapse
|
20
|
Asa SL, Ezzat S. Gonadotrope Tumors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:187-210. [PMID: 27697203 DOI: 10.1016/bs.pmbts.2016.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gonadotrope tumors arise from the gonadotropes of the adenohypophysis. These cells rarely give rise to hyperplasia, usually only in the setting of long-standing premature gonadal failure. In contrast, gonadotrope tumors represent one of the most frequent types of pituitary tumors. Despite their relatively common occurrence, the pathogenesis of gonadotrope tumors remains unknown. Effective nonsurgical therapies remain out of reach. We review the pituitary gonadotrope from the morphologic and functional perspectives to better understand its involvement as the cell of origin of a frequent type of pituitary tumor.
Collapse
Affiliation(s)
- S L Asa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Pathology, Laboratory Medicine Program, University Health Network, Toronto, ON, Canada.
| | - S Ezzat
- Department of Medicine, University of Toronto, Endocrine Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
21
|
Lines KE, Stevenson M, Thakker RV. Animal models of pituitary neoplasia. Mol Cell Endocrinol 2016; 421:68-81. [PMID: 26320859 PMCID: PMC4721536 DOI: 10.1016/j.mce.2015.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 01/21/2023]
Abstract
Pituitary neoplasias can occur as part of a complex inherited disorder, or more commonly as sporadic (non-familial) disease. Studies of the molecular and genetic mechanisms causing such pituitary tumours have identified dysregulation of >35 genes, with many revealed by studies in mice, rats and zebrafish. Strategies used to generate these animal models have included gene knockout, gene knockin and transgenic over-expression, as well as chemical mutagenesis and drug induction. These animal models provide an important resource for investigation of tissue-specific tumourigenic mechanisms, and evaluations of novel therapies, illustrated by studies into multiple endocrine neoplasia type 1 (MEN1), a hereditary syndrome in which ∼ 30% of patients develop pituitary adenomas. This review describes animal models of pituitary neoplasia that have been generated, together with some recent advances in gene editing technologies, and an illustration of the use of the Men1 mouse as a pre clinical model for evaluating novel therapies.
Collapse
Affiliation(s)
- K E Lines
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - M Stevenson
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | - R V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford OX3 7LJ, UK.
| |
Collapse
|
22
|
Köchling M, Ewelt C, Fürtjes G, Peetz-Dienhart S, Koos B, Hasselblatt M, Paulus W, Stummer W, Brokinkel B. hTERT promoter methylation in pituitary adenomas. Brain Tumor Pathol 2015; 33:27-34. [PMID: 26390879 DOI: 10.1007/s10014-015-0230-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
Abstract
Telomerase reverse transcriptase (TERT) expression is a hallmark in tumorigenesis and upregulated due to mutations and methylation of the human (h)TERT promoter. As mutations are rare but methylation is common in pituitary adenomas (PA), we determined promoter methylation and its clinical impact in 85 primary and 15 recurrent PA by methylation-specific PCR. 40 females (47%) and 45 males (53%) with a median age of 53 years harboring micro-, macro-, and giant adenomas in 12, 82, and 6% were included (prolactinomas, corticotroph, somatotroph, gonadotroph, thyreotroph, plurihormonal, and null cell adenomas in 11, 18, 10, 29, 1, 10, and 21%, respectively). In primary diagnosed tumors, methylation rate was 27% and higher in males than in females (40 vs. 13%, p = 0.001) after uni- and multivariate analyses. Methylation differed among PA subtypes (0-42%, p = n.s.) and was not significantly correlated with tumor size, cavernous sinus invasion, or serum hormone levels. Ki67 labeling index and recurrence (N = 16, 19%) were independent of methylation. In recurrent tumors, methylation was similar to primary PA (N = 5/15, 33%) and remained unchanged along follow-up. Thus, while being commonly observed in PA, hTERT promoter methylation is stable along follow-up and independent of most clinical variables, PA subtype, proliferation, and without prognostic value.
Collapse
Affiliation(s)
- Michaela Köchling
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Christian Ewelt
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Gina Fürtjes
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Susanne Peetz-Dienhart
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149, Münster, Germany
| | - Björn Koos
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149, Münster, Germany
| | - Werner Paulus
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Benjamin Brokinkel
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany.
| |
Collapse
|
23
|
Schult D, Hölsken A, Buchfelder M, Schlaffer SM, Siegel S, Kreitschmann-Andermahr I, Fahlbusch R, Buslei R. Expression pattern of neuronal intermediate filament α-internexin in anterior pituitary gland and related tumors. Pituitary 2015; 18:465-73. [PMID: 25236435 DOI: 10.1007/s11102-014-0597-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE α-Internexin (INA) is a class IV neuronal intermediate filament protein that maintains the morphogenesis of neurons. It is expressed in developing neuroblasts and represents the major component of the cytoskeleton in cerebellar granule cells of adult central nervous system tissue. Data concerning INA expression in the human frontal pituitary lobe and related adenomas (PA) is missing. METHODS Using immunohistochemistry we examined the distribution pattern of INA in a large cohort of 152 PA, 11 atypical PA, 4 pituitary carcinomas and 20 normal pituitaries (overall n = 187). Quantity of INA protein expression was semi-quantitatively evaluated and grouped into five categories (0 = 0%; 1 = >0-5%; 2 = >5-35%; 3 = >35-80%; 4 = >80% of cells). RESULTS Cellular staining intensity of INA appeared significantly higher in gonadotropinomas (Go, n = 62), null cell adenomas (NC, n = 7) and thyrotropinomas (TSHomas, n = 7) compared to the other tumor subtypes (p ≤ 0.001). Furthermore, Go and NC showed a peculiar pseudorosette-like staining pattern surrounding blood vessels in 85.5% (59/69) of cases. Interestingly, areas exhibiting homogenous INA staining were often associated with oncocytic cell changes and decreased immunohistochemically detectable hormone expression. Only 8.5% (8/94) of other PA showed a comparable INA distribution (p ≤ 0.001). CONCLUSION Go, NC as well as TSHomas exhibit high levels of intracellular INA protein indicating neuronal transdifferentiation. A possible impact on pathogenesis and endocrine activity needs further investigation.
Collapse
Affiliation(s)
- D Schult
- Department of Neuropathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Liang X, Zeng J, Wang L, Shen L, Li S, Ma L, Ci X, Yu J, Jia M, Sun Y, Liu Z, Liu S, Li W, Yu H, Chen C, Jia J. Histone demethylase RBP2 induced by Helicobactor Pylori CagA participates in the malignant transformation of gastric epithelial cells. Oncotarget 2015; 5:5798-807. [PMID: 25015565 PMCID: PMC4170602 DOI: 10.18632/oncotarget.2185] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gastric epithelial cell malignant transformation induced by Helicobactor Pylori contributes to tumor development, but the underlying mechanisms for this remain unclear. Here we demonstrate that RBP2, a newly identified histone demethylase, can be induced by CagA via PI3K/AKT-Sp1 pathway depending on AKT phosphorylation. Sp1 directly binds to RBP2 promoter and enhances its expression then the upregulated RBP2 significantly increases Cyclin D1 transcription, which contributes to gastric epithelial cell malignant transformation. Further data indicate that knockdown of endogenous RBP2 dominantly inhibits gastric cancer (GC) development both in vitro and in vivo. In conclusion, this CagA- PI3K/AKT-Sp1-RBP2-Cyclin D1 pathway may serve as a novel mechanism for gastric epithelial cell malignant transformation and then gastric cancer (GC). Therefore, RBP2 may link chronic inflammation to tumor development and its inhibition may have potential therapeutic advantages.
Collapse
Affiliation(s)
- Xiuming Liang
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, PR China
| | - Jiping Zeng
- Department of Biochemistry, School of Medicine, Shandong University, Jinan, PR China
| | - Lixiang Wang
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, PR China
| | - Li Shen
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, PR China
| | - Shuyan Li
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, PR China
| | - Lin Ma
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, PR China
| | - Xinyu Ci
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, PR China
| | - Jingya Yu
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, PR China
| | - Mutian Jia
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, PR China
| | - Yundong Sun
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, PR China
| | - Zhifang Liu
- Department of Biochemistry, School of Medicine, Shandong University, Jinan, PR China
| | - Shili Liu
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, PR China
| | - Wenjuan Li
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, PR China
| | - Han Yu
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, PR China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital, Shandong University, No.107,Wenhua Xi Road, Jinan 250012, Shandong, P. R. China
| | - Jihui Jia
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, PR China
| |
Collapse
|
25
|
Abstract
Pituitary adenomas are a heterogeneous group of tumors that may occur as part of a complex syndrome or as an isolated endocrinopathy and both forms can be familial or non-familial. Studies of syndromic and non-syndromic pituitary adenomas have yielded important insights about the molecular mechanisms underlying tumorigenesis. Thus, syndromic forms, including multiple endocrine neoplasia type 1 (MEN1), MEN4, Carney Complex and McCune Albright syndrome, have been shown to be due to mutations of the tumor-suppressor protein menin, a cyclin-dependent kinase inhibitor (p27Kip1), the protein kinase A regulatory subunit 1-α, and the G-protein α-stimulatory subunit (Gsα), respectively. Non-syndromic forms, which include familial isolated pituitary adenoma (FIPA) and sporadic tumors, have been shown to be due to abnormalities of: the aryl hydrocarbon receptor-interacting protein; Gsα; signal transducers; cell cycle regulators; transcriptional modulators and miRNAs. The roles of these molecular abnormalities and epigenetic mechanisms in pituitary tumorigenesis, and their therapeutic implications are reviewed.
Collapse
Affiliation(s)
- Christopher J Yates
- a 1 Academic Endocrine Unit, Radcliffe Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Oxford, Oxfordshire, OX3 7LJ, UK
- b 2 Department of Diabetes and Endocrinology, Melbourne Health, The Royal Melbourne Hospital, Grattan Street, Parkville, Vic 3050, Australia
| | - Kate E Lines
- a 1 Academic Endocrine Unit, Radcliffe Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Oxford, Oxfordshire, OX3 7LJ, UK
| | - Rajesh V Thakker
- a 1 Academic Endocrine Unit, Radcliffe Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Oxford, Oxfordshire, OX3 7LJ, UK
| |
Collapse
|
26
|
Association of physical activity and polymorphisms in FGFR2 and DNA methylation related genes with breast cancer risk. Cancer Epidemiol 2014; 38:708-14. [DOI: 10.1016/j.canep.2014.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/31/2014] [Accepted: 09/07/2014] [Indexed: 11/21/2022]
|
27
|
Cano DA, Soto-Moreno A, Leal-Cerro A. Genetically engineered mouse models of pituitary tumors. Front Oncol 2014; 4:203. [PMID: 25136513 PMCID: PMC4117927 DOI: 10.3389/fonc.2014.00203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/15/2014] [Indexed: 12/28/2022] Open
Abstract
Animal models constitute valuable tools for investigating the pathogenesis of cancer as well as for preclinical testing of novel therapeutics approaches. However, the pathogenic mechanisms of pituitary-tumor formation remain poorly understood, particularly in sporadic adenomas, thus, making it a challenge to model pituitary tumors in mice. Nevertheless, genetically engineered mouse models (GEMMs) of pituitary tumors have provided important insight into pituitary tumor biology. In this paper, we review various GEMMs of pituitary tumors, highlighting their contributions and limitations, and discuss opportunities for research in the field.
Collapse
Affiliation(s)
- David A Cano
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío , Seville , Spain ; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla , Seville , Spain
| | - Alfonso Soto-Moreno
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Universitario Virgen del Rocío , Seville , Spain ; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla , Seville , Spain
| | - Alfonso Leal-Cerro
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla , Seville , Spain
| |
Collapse
|
28
|
Rodríguez-Rodero S, Delgado-Álvarez E, Fernández AF, Fernández-Morera JL, Menéndez-Torre E, Fraga MF. Epigenetic alterations in endocrine-related cancer. Endocr Relat Cancer 2014; 21:R319-30. [PMID: 24898948 DOI: 10.1530/erc-13-0070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aberrant epigenetics is a hallmark of cancer, and endocrine-related tumors are no exception. Recent research has been identifying an ever-growing number of epigenetic alterations in both genomic DNA methylation and histone post-translational modification in tumors of the endocrine system. Novel microarray and ultra-deep sequencing technologies have allowed the identification of genome-wide epigenetic patterns in some tumor types such as adrenocortical, parathyroid, and breast carcinomas. However, in other cancer types, such as the multiple endocrine neoplasia syndromes and thyroid cancer, tumor information is limited to candidate genes alone. Future research should fill this gap and deepen our understanding of the functional role of these alterations in cancer, as well as defining their possible clinical uses.
Collapse
Affiliation(s)
- Sandra Rodríguez-Rodero
- Endocrinology and Nutrition ServiceHospital Universitario Central de Asturias, Av. Julian Clavería s/n, 33006 Oviedo, SpainCancer Epigenetics LaboratoryInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, SpainDepartment of Immunology and OncologyNational Center for Biotechnology, CNB-CSIC, Cantoblanco, Madrid E-28049, SpainEndocrinology and Nutrition ServiceHospital Universitario Central de Asturias, Av. Julian Clavería s/n, 33006 Oviedo, SpainCancer Epigenetics LaboratoryInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, SpainDepartment of Immunology and OncologyNational Center for Biotechnology, CNB-CSIC, Cantoblanco, Madrid E-28049, Spain
| | - Elías Delgado-Álvarez
- Endocrinology and Nutrition ServiceHospital Universitario Central de Asturias, Av. Julian Clavería s/n, 33006 Oviedo, SpainCancer Epigenetics LaboratoryInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, SpainDepartment of Immunology and OncologyNational Center for Biotechnology, CNB-CSIC, Cantoblanco, Madrid E-28049, Spain
| | - Agustín F Fernández
- Endocrinology and Nutrition ServiceHospital Universitario Central de Asturias, Av. Julian Clavería s/n, 33006 Oviedo, SpainCancer Epigenetics LaboratoryInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, SpainDepartment of Immunology and OncologyNational Center for Biotechnology, CNB-CSIC, Cantoblanco, Madrid E-28049, Spain
| | - Juan L Fernández-Morera
- Endocrinology and Nutrition ServiceHospital Universitario Central de Asturias, Av. Julian Clavería s/n, 33006 Oviedo, SpainCancer Epigenetics LaboratoryInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, SpainDepartment of Immunology and OncologyNational Center for Biotechnology, CNB-CSIC, Cantoblanco, Madrid E-28049, Spain
| | - Edelmiro Menéndez-Torre
- Endocrinology and Nutrition ServiceHospital Universitario Central de Asturias, Av. Julian Clavería s/n, 33006 Oviedo, SpainCancer Epigenetics LaboratoryInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, SpainDepartment of Immunology and OncologyNational Center for Biotechnology, CNB-CSIC, Cantoblanco, Madrid E-28049, Spain
| | - Mario F Fraga
- Endocrinology and Nutrition ServiceHospital Universitario Central de Asturias, Av. Julian Clavería s/n, 33006 Oviedo, SpainCancer Epigenetics LaboratoryInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, SpainDepartment of Immunology and OncologyNational Center for Biotechnology, CNB-CSIC, Cantoblanco, Madrid E-28049, SpainEndocrinology and Nutrition ServiceHospital Universitario Central de Asturias, Av. Julian Clavería s/n, 33006 Oviedo, SpainCancer Epigenetics LaboratoryInstituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, SpainDepartment of Immunology and OncologyNational Center for Biotechnology, CNB-CSIC, Cantoblanco, Madrid E-28049, Spain
| |
Collapse
|
29
|
Nguyen HT, Tian G, Murph MM. Molecular epigenetics in the management of ovarian cancer: are we investigating a rational clinical promise? Front Oncol 2014; 4:71. [PMID: 24782983 PMCID: PMC3986558 DOI: 10.3389/fonc.2014.00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/20/2014] [Indexed: 12/21/2022] Open
Abstract
Epigenetics is essentially a phenotypical change in gene expression without any alteration of the DNA sequence; the emergence of epigenetics in cancer research and mainstream oncology is fueling new hope. However, it is not yet known whether this knowledge will translate to improved clinical management of ovarian cancer. In this malignancy, women are still undergoing chemotherapy similar to what was approved in 1978, which to this day represents one of the biggest breakthroughs for treating ovarian cancer. Although liquid tumors are benefiting from epigenetically related therapies, solid tumors like ovarian cancer are not (yet?). Herein, we will review the science of molecular epigenetics, especially DNA methylation, histone modifications and microRNA, but also include transcription factors since they, too, are important in ovarian cancer. Pre-clinical and clinical research on the role of epigenetic modifications is also summarized. Unfortunately, ovarian cancer remains an idiopathic disease, for the most part, and there are many areas of patient management, which could benefit from improved technology. This review will also highlight the evidence suggesting that epigenetics may have pre-clinical utility in pharmacology and clinical applications for prognosis and diagnosis. Finally, drugs currently in clinical trials (i.e., histone deacetylase inhibitors) are discussed along with the promise for epigenetics in the exploitation of chemoresistance. Whether epigenetics will ultimately be the answer to better management in ovarian cancer is currently unknown; but we hope so in the future.
Collapse
Affiliation(s)
- Ha T Nguyen
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy , Athens, GA , USA
| | - Geng Tian
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy , Athens, GA , USA ; Department of Obstetrics and Gynecology, The Second Hospital of Jilin University , Changchun , China
| | - Mandi M Murph
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy , Athens, GA , USA
| |
Collapse
|
30
|
Zhou Y, Zhang X, Klibanski A. Genetic and epigenetic mutations of tumor suppressive genes in sporadic pituitary adenoma. Mol Cell Endocrinol 2014; 386:16-33. [PMID: 24035864 PMCID: PMC3943596 DOI: 10.1016/j.mce.2013.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/03/2013] [Indexed: 12/28/2022]
Abstract
Human pituitary adenomas are the most common intracranial neoplasms. Approximately 5% of them are familial adenomas. Patients with familial tumors carry germline mutations in predisposition genes, including AIP, MEN1 and PRKAR1A. These mutations are extremely rare in sporadic pituitary adenomas, which therefore are caused by different mechanisms. Multiple tumor suppressive genes linked to sporadic tumors have been identified. Their inactivation is caused by epigenetic mechanisms, mainly promoter hypermethylation, and can be placed into two groups based on their functional interaction with tumor suppressors RB or p53. The RB group includes CDKN2A, CDKN2B, CDKN2C, RB1, BMP4, CDH1, CDH13, GADD45B and GADD45G; AIP and MEN1 genes also belong to this group. The p53 group includes MEG3, MGMT, PLAGL1, RASSF1, RASSF3 and SOCS1. We propose that the tumor suppression function of these genes is mainly mediated by the RB and p53 pathways. We also discuss possible tumor suppression mechanisms for individual genes.
Collapse
Affiliation(s)
- Yunli Zhou
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Xun Zhang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States.
| |
Collapse
|
31
|
Mechanisms of pituitary tumorigenesis. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
32
|
Pease M, Ling C, Mack WJ, Wang K, Zada G. The role of epigenetic modification in tumorigenesis and progression of pituitary adenomas: a systematic review of the literature. PLoS One 2013; 8:e82619. [PMID: 24367530 PMCID: PMC3867353 DOI: 10.1371/journal.pone.0082619] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/25/2013] [Indexed: 01/10/2023] Open
Abstract
Background Pituitary adenomas (PAs) are commonly occurring neoplasms with diverse endocrine and neurological effects. Although somatic gene mutations are uncommon in sporadic PAs, recent studies lend support to epigenetic modification as a potential cause of tumorigenesis and tumor progression. Methods A systematic literature review of the PubMed and Google Scholar databases was conducted to identify abstracts (n=1,082) pertaining to key targets and mechanisms implicated in epigenetic dysregulation of PAs published between 1993-2013. Data regarding histopathological subtype, target genes, mode of epigenetic modification, and clinical correlation were recorded and analyzed. Results Of the 47 that studies met inclusion criteria and focused on epigenomic assessment of PAs, only 2 were genome-scale analyses. Current evidence supports epigenetic alteration in at least 24 PA genes, which were categorized into four groups based on function and epigenetic alteration: 1) Sixteen tumor suppressor genes silenced via DNA methylation; 2) Two oncogenes overexpressed via histone acetylation and hypomethylation; 3) Three imprinted genes with selective allelic silencing; and 4) One epigenome writer inducing abnormal genome-scale activity and 5) Two transcription regulators indirectly modifying the genome. Of these, 5 genes (CDKN2A, GADD45y, FGFR2, caspase-8, and PTAG) showed particular susceptibility to epigenetic modification, with abnormal DNA methylation in >50% of PA samples. Several genes displayed correlations between epigenetic modification and clinically relevant parameters, including invasiveness (CDKN2A; DAPK; Rb1), sex (MAGE-A3), tumor size (GNAS1), and histopathological subtype (CDKN2A; MEG3; p27; RASSF1A; Rb1). Conclusions Epigenetic modification of selected PA genes may play a key role in tumorigenesis and progression, which may translate into important diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Matthew Pease
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Chao Ling
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - William J. Mack
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kai Wang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Gabriel Zada
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Tanase C, Codrici E, Popescu ID, Cruceru ML, Enciu AM, Albulescu R, Ciubotaru V, Arsene D. Angiogenic markers: molecular targets for personalized medicine in pituitary adenoma. Per Med 2013; 10:539-548. [PMID: 29776197 DOI: 10.2217/pme.13.61] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIM Pituitary adenomas are typically slow-growing and histologically benign tumors that can occasionally behave in a malignant-like manner, invading adjacent structures or recurring after treatment. Using protein analysis methods and multiplex xMAP assays, we aimed to find out if these particular types of tumors express angiogenic markers VEGF and basic FGF (bFGF), which are associated with tumor growth and invasiveness, and quantify them in order to establish their usefulness as biomarkers. MATERIALS & METHODS We have analysed the expression of angiogenic markers VEGF and bFGF in serum and tissue specimens from 66 pituitary adenomas (43 invasive and 23 noninvasive). For serum analysis, we used xMAP and ELISA, and for tissue analysis, we performed histopathology and immunohistochemistry. RESULTS & CONCLUSION We measured the serum angiogenic factors in pituitary adenomas. The quantification methods revealed significant differences between pituitary adenoma patients and controls, for both VEGF (212.4 vs 112.5 pg/ml in controls) and bFGF (mean value of 12.6 vs 10.8 pg/ml in controls), and also differentiated between invasive and noninvasive adenomas (p < 0.05). The tissue expression of VEGF and bFGF strongly correlated with their serum level increase. Our findings can be further developed into methods for selection of patients suitable for personalized, antiangiogenic therapy.
Collapse
Affiliation(s)
- Cristiana Tanase
- Victor Babes National Institute of Pathology, 99-101 Spl. Independentei, 050096, Bucharest, Romania.
| | - Elena Codrici
- Victor Babes National Institute of Pathology, 99-101 Spl. Independentei, 050096, Bucharest, Romania
| | - Ionela Daniela Popescu
- Victor Babes National Institute of Pathology, 99-101 Spl. Independentei, 050096, Bucharest, Romania
| | | | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, 99-101 Spl. Independentei, 050096, Bucharest, Romania
- Carol Davila University of Medicine, Bucharest, Romania
| | - Radu Albulescu
- Victor Babes National Institute of Pathology, 99-101 Spl. Independentei, 050096, Bucharest, Romania
- National Institute for Chemical-Pharmaceutical R&D, Bucharest, Romania
| | - Vasile Ciubotaru
- Bagdasar Arseni Hospital, Neurosurgery Department, Bucharest, Romania
| | - Dorel Arsene
- Victor Babes National Institute of Pathology, 99-101 Spl. Independentei, 050096, Bucharest, Romania
| |
Collapse
|
34
|
Silencing of RASSF3 by DNA hypermethylation is associated with tumorigenesis in somatotroph adenomas. PLoS One 2013; 8:e59024. [PMID: 23555615 PMCID: PMC3610897 DOI: 10.1371/journal.pone.0059024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/08/2013] [Indexed: 12/03/2022] Open
Abstract
The pathogenic mechanisms underlying pituitary somatotroph adenoma formation, progression are poorly understood. To identify candidate tumor suppressor genes involved in pituitary somatotroph adenoma tumorigenesis, we used HG18 CpG plus Promoter Microarray in 27 human somatotroph adenomas and 4 normal human adenohypophyses. RASSF3 was found with frequent methylation of CpG island in its promoter region in somatotroph adenomas but rarely in adenohypophyses. This result was confirmed by pyrosequencing analysis. We also found that RASSF3 mRNA level correlated negatively to its gene promoter methylation level. RASSF3 hypermethylation and downregulation was also observed in rat GH3 and mouse GT1.1 somatotroph adenoma cell lines. 5-Aza-2′ deoxycytidine and trichostatin-A treatment induced RASSF3 promoter demethylation, and restored its expression in GH3 and GT1.1 cell lines. RASSF3 overexpression in GH3 and GT1.1 cells inhibited proliferation, induced apoptosis accompanied by increased Bax, p53, and caspase-3 protein and decreased Bcl-2 protein expression. We also found that the antitumor effect of RASSF3 was p53 dependent, and p53 knockdown blocked RASSF3-induced apoptosis and growth inhibition. Taken together, our results suggest that hypermethylation-induced RASSF3 silencing plays an important role in the tumorigenesis of pituitary somatotroph adenomas.
Collapse
|
35
|
Moon SM, Kim SA, Yoon JH, Ahn SG. HOXC6 is deregulated in human head and neck squamous cell carcinoma and modulates Bcl-2 expression. J Biol Chem 2012; 287:35678-35688. [PMID: 22896703 DOI: 10.1074/jbc.m112.361675] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Homeobox C6 (HOXC6) genes belong to the homeoprotein family of transcription factors, which play an important role in morphogenesis and cellular differentiation during embryonic development. The aim of this study was to explore the role of HOXC6 in the regulation of Bcl-2 in human head and neck squamous cell carcinoma (HNSCC). The HOXC6 and Bcl-2 gene were identified as being overexpressed in HNSCC tissue and cell lines. Transfection assays demonstrated that HOXC6 increased the levels of Bcl-2 mRNA and protein. A luciferase reporter assay suggested that HOXC6 induced activity of the Bcl-2 promoter. A series of Bcl-2 promoter deletion mutants were examined and the minimal HOXC6-responsive region was identified to be in the TAAT motif (-420 bp) of the Bcl-2 promoter. Interestingly, the inhibition of HOXC6 using siRNA led to the repression of Bcl-2 expression and induced caspase-3-dependent apoptosis; overexpression of HOXC6 in HNSCC cells increased the resistance to paclitaxel-induced apoptosis. Together, our findings suggest that HOXC6 is an important mechanism of the anti-apoptotic pathway via regulation of Bcl-2 expression.
Collapse
Affiliation(s)
- Sung-Min Moon
- Department of Pathology, College of Dentistry, Chosun University, Gwangju, 501-759
| | - Soo-A Kim
- Department of Biochemistry, Oriental Medicine, Dongguk University, Gyeongju, 780-714, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Oral Pathology, Daejeon Dental Hospital, Wonkwang University, Daejeon, Republic of Korea, 302-120
| | - Sang-Gun Ahn
- Department of Pathology, College of Dentistry, Chosun University, Gwangju, 501-759.
| |
Collapse
|
36
|
Yacqub-Usman K, Richardson A, Duong CV, Clayton RN, Farrell WE. The pituitary tumour epigenome: aberrations and prospects for targeted therapy. Nat Rev Endocrinol 2012; 8:486-94. [PMID: 22525730 DOI: 10.1038/nrendo.2012.54] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Global and gene-specific changes in the epigenome are hallmarks of most tumour types, including those of pituitary origin. In contrast to genetic mutations, epigenetic changes (aberrant DNA methylation and histone modifications) are potentially reversible. Drugs that specifically target or inhibit DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) can be used to restore the expression of epigenetically silenced genes. These drugs can potentially increase the sensitivity of tumour cells to conventional treatment modalities, such as chemotherapy and radiotherapy. Drug-induced reversal of transcriptional silencing can also be used to restore dopamine-D(2)-receptor-negative, hormone-refractory tumours to their previous receptor-positive, hormone-responsive status. Synergy between HDAC and DNMT inhibitors makes these pharmacological agents more therapeutically effective when administered in combination than when used alone. Studies in pituitary tumour cell lines show that drug-induced re-expression of the epigenetically silenced dopamine D(2) receptor leads to an increase in apoptosis mediated by a receptor agonist. Collectively, the use of drugs to directly or indirectly reverse gene-specific epigenetic changes, in combination with conventional therapeutic interventions, has potential for the clinical management of multiple tumour types-including those of pituitary origin. Furthermore, these drugs can be used to identify epigenetically regulated genes that could be novel, tumour-specific therapeutic targets.
Collapse
Affiliation(s)
- Kiren Yacqub-Usman
- Human Disease and Genomics Group, Institute of Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK
| | | | | | | | | |
Collapse
|
37
|
Moore JP, Yang RQ, Winters SJ. Targeted pituitary overexpression of pituitary adenylate-cyclase activating polypeptide alters postnatal sexual maturation in male mice. Endocrinology 2012; 153:1421-34. [PMID: 22315445 PMCID: PMC3281528 DOI: 10.1210/en.2011-1115] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 12/28/2011] [Indexed: 11/19/2022]
Abstract
The neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) is present in high concentrations within the hypothalamus, suggesting that it may be a hypophysiotropic factor, whereas pituitary expression suggests a paracrine function. PACAP stimulates gonadotropin secretion and enhances GnRH responsiveness. PACAP increases gonadotropin α-subunit (αGSU), lengthens LHβ, but reduces FSHβ mRNA levels in adult pituitary cell cultures in part by increasing follistatin. PACAP stimulates LH secretion in rats; however, acceptance of PACAP as a regulator of reproduction has been limited by a paucity of in vivo studies. We created a transgenic mouse model of pituitary PACAP overexpression using the αGSU subunit promoter. Real-time PCR was used to evaluate PACAP, follistatin, GnRH receptor, and the gonadotropin subunit mRNA in male transgenic and wild-type mice of various ages. Transgenic mice had greater than 1000-fold higher levels of pituitary PACAP mRNA; and immunocytochemistry, Western blot, and ELISA analyses confirmed high peptide levels. FSH, LH, and testosterone levels were significantly suppressed, and the timing of puberty was substantially delayed in PACAP transgenic mice in which gonadotropin subunit and GnRH receptor mRNA levels were reduced and pituitary follistatin expression was increased. Microarray analyses revealed 1229 of 45102 probes were significantly (P < 0.01) different in pituitaries from PACAP transgenic mice, of which 83 genes were at least 2-fold different. Genes involved in small molecule biochemistry, cancer, and reproductive system diseases were the top associated networks. The GnRH signaling pathway was the top canonical pathway affected by pituitary PACAP excess. These experiments provide the first evidence that PACAP affects gonadotropin expression and sexual maturation in vivo.
Collapse
Affiliation(s)
- Joseph P Moore
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky 40292, USA.
| | | | | |
Collapse
|
38
|
Guo M, Liu W, Serra S, Asa SL, Ezzat S. FGFR2 isoforms support epithelial-stromal interactions in thyroid cancer progression. Cancer Res 2012; 72:2017-27. [PMID: 22345151 DOI: 10.1158/0008-5472.can-11-3985] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alternate splicing yields two distinct isoforms of the fibroblast growth factor (FGF) receptor FGFR2-IIIb and FGFR2-IIIc varying their extracellular structure in human thyroid cancer, in which FGFR expression is commonly dysregulated. In this study, we characterized the function of these variants in modulating thyroid cancer behavior. Enforced expression of either FGFR2-IIIb or FGFR2-IIIc in thyroid epithelial cancer cells reduced expression of fibronectin, MAGE-A3 and MMP9, while increasing p21 and enhancing Rb dephosphorylation. Consistent with these tumor-suppressive properties, FGFR2-IIIb and FGFR2-IIIc each diminished invasive behavior in vitro and reduced tumor growth and metastasis in vivo. Notably, these effects contrasted with those produced by expression of these FGFR isoforms in fibroblasts, in which they both stimulated cell growth. Moreover, in xenograft tumors generated by coimplantation of epithelial and fibroblast cells expressing that same isoform, there was no significant effect on tumor progression. Conversely, FGFR2-IIIb expression in epithelial cells yielded higher FGF4/FGF7 expression that, in the presence of FGFR2-IIIc-expressing fibroblasts, enhanced tumor progression. Together, our findings highlight the importance of cellular context in assigning growth properties to growth factor receptor isoforms. More specifically, they show how alternative splicing of FGFR2 yields heteroisoforms critical to the growth-promoting actions of FGFs that exert distinct epithelial-stromal effects in thyroid cancer.
Collapse
Affiliation(s)
- Miao Guo
- The Ontario Cancer Institute, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
39
|
Alternative Splicing of Fibroblast Growth Factor Receptor IgIII Loops in Cancer. J Nucleic Acids 2011; 2012:950508. [PMID: 22203889 PMCID: PMC3238399 DOI: 10.1155/2012/950508] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/27/2011] [Accepted: 08/07/2011] [Indexed: 02/06/2023] Open
Abstract
Alternative splicing
of the IgIII loop of fibroblast growth factor
receptors (FGFRs) 1–3 produces b- and
c-variants of the receptors with distinctly
different biological impact based on their
distinct ligand-binding spectrum. Tissue-specific expression of these splice variants
regulates interactions in embryonic development,
tissue maintenance and repair, and cancer.
Alterations in FGFR2 splicing are involved in
epithelial mesenchymal transition that produces
invasive, metastatic features during tumor
progression.
Recent research has elucidated regulatory factors that determine
the splice choice both on the level of exogenous signaling events
and on the RNA-protein interaction level. Moreover, methodology
has been developed that will enable the in depth analysis of
splicing events during tumorigenesis and provide further insight on
the role of FGFR 1–3 IIIb and IIIc in the pathophysiology of
various malignancies. This paper aims to summarize expression
patterns in various tumor types and outlines possibilities for
further analysis and application.
Collapse
|
40
|
Laffaire J, Everhard S, Idbaih A, Crinière E, Marie Y, de Reyniès A, Schiappa R, Mokhtari K, Hoang-Xuan K, Sanson M, Delattre JY, Thillet J, Ducray F. Methylation profiling identifies 2 groups of gliomas according to their tumorigenesis. Neuro Oncol 2010; 13:84-98. [PMID: 20926426 DOI: 10.1093/neuonc/noq110] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Extensive genomic and gene expression studies have been performed in gliomas, but the epigenetic alterations that characterize different subtypes of gliomas remain largely unknown. Here, we analyzed the methylation patterns of 807 genes (1536 CpGs) in a series of 33 low-grade gliomas (LGGs), 36 glioblastomas (GBMs), 8 paired initial and recurrent gliomas, and 9 controls. This analysis was performed with Illumina's Golden Gate Bead methylation arrays and was correlated with clinical, histological, genomic, gene expression, and genotyping data, including IDH1 mutations. Unsupervised hierarchical clustering resulted in 2 groups of gliomas: a group corresponding to de novo GBMs and a group consisting of LGGs, recurrent anaplastic gliomas, and secondary GBMs. When compared with de novo GBMs and controls, this latter group was characterized by a very high frequency of IDH1 mutations and by a hypermethylated profile similar to the recently described glioma CpG island methylator phenotype. MGMT methylation was more frequent in this group. Among the LGG cluster, 1p19q codeleted LGG displayed a distinct methylation profile. A study of paired initial and recurrent gliomas demonstrated that methylation profiles were remarkably stable across glioma evolution, even during anaplastic transformation, suggesting that epigenetic alterations occur early during gliomagenesis. Using the Cancer Genome Atlas data set, we demonstrated that GBM samples that had an LGG-like hypermethylated profile had a high rate of IDH1 mutations and a better outcome. Finally, we identified several hypermethylated and downregulated genes that may be associated with LGG and GBM oncogenesis, LGG oncogenesis, 1p19q codeleted LGG oncogenesis, and GBM oncogenesis.
Collapse
Affiliation(s)
- Julien Laffaire
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moëlle épinière (CRICM) UMR-S975, 75013 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhang X, Zhou Y, Klibanski A. Isolation and characterization of novel pituitary tumor related genes: a cDNA representational difference approach. Mol Cell Endocrinol 2010; 326:40-7. [PMID: 20211686 PMCID: PMC2904873 DOI: 10.1016/j.mce.2010.02.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/25/2010] [Accepted: 02/28/2010] [Indexed: 12/24/2022]
Abstract
Recently, progress has been made in understanding human pituitary tumor pathogenesis by the investigation of differences in gene expression between normal pituitary tissue and pituitary tumors. A number of approaches, including differential display (DD), representational difference analysis (RDA), and microarray analysis have been used and several molecular targets potentially associated with pituitary tumor development and invasion have been identified. We have used RDA to compare gene expression patterns between normal human pituitary and clinically non-functioning pituitary adenomas, and identified genes with growth suppression function which are expressed in the normal pituitary but not in pituitary tumors. In particular, we have focused on an imprinted gene, Maternally Expressed Gene 3 (MEG3), which is specifically associated with clinically non-functioning pituitary adenomas of a gonadotroph lineage. MEG3 functions to suppress tumor cell growth, increase protein expression of the tumor suppressor p53, and selectively activate p53 target genes. Interestingly, MEG3 does not encode a protein but a non-coding RNA. Therefore, these studies have revealed novel mechanisms for the function of a non-coding RNA in pituitary physiology and tumorigenesis.
Collapse
Affiliation(s)
- Xun Zhang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
42
|
Vandeva S, Jaffrain-Rea ML, Daly AF, Tichomirowa M, Zacharieva S, Beckers A. The genetics of pituitary adenomas. Best Pract Res Clin Endocrinol Metab 2010; 24:461-76. [PMID: 20833337 DOI: 10.1016/j.beem.2010.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pituitary adenomas are one of the most frequent intracranial tumors with a prevalence of clinically-apparent tumors close to 1:1000 of the general population. They are clinically significant because of hormone overproduction and/or tumor mass effects in addition to the need for neurosurgery, medical therapies and radiotherapy. The majority of pituitary adenomas have a sporadic origin with recognized genetic mutations seldom being found; somatotropinomas are an exception, presenting frequent somatic GNAS mutations. In this and other phenotypes, tumorigenesis could possibly be explained by altered function of genes implicated in cell cycle regulation, growth factors or their receptors, cell-signaling pathways, specific hormonal factors or other molecules with still unclear mechanisms of action. Genetic changes, such as allelic loss or gene amplification, and epigenetic changes, usually by promoter methylation, have been implicated in abnormal gene expression, but alternative mechanisms may be present. Familial cases of pituitary adenomas represent 5% of all pituitary tumors. MEN1 mutations cause multiple endocrine neoplasia type 1 (MEN1), while the Carney complex (CNC) is characterized by mutations in the protein kinase A regulatory subunit-1alpha (PRKAR1A) gene or changes in a locus at 2p16. Recently, a MEN1-like condition, MEN4, was found to be related to mutations in the CDKN1B gene. The clinical entity of familial isolated pituitary adenomas (FIPA) is characterized by genetic defects in the aryl hydrocarbon receptor interacting protein (AIP) gene in about 15% of all kindreds and 50% of homogenous somatotropinoma families. Identification of familial cases of pituitary adenomas is important as these tumors may be more aggressive than their sporadic counterparts.
Collapse
Affiliation(s)
- Silvia Vandeva
- Department of Endocrinology, University of Liège, Domaine Universitaire du Sart-Tilman, 4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
43
|
Zhu X, Asa SL, Ezzat S. Genetic and epigenetic mechanisms down-regulate FGF receptor 2 to induce melanoma-associated antigen A in breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2333-43. [PMID: 20348248 DOI: 10.2353/ajpath.2010.091049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent genome-wide association studies have identified single nucleotide polymorphisms (SNPs) in the gene encoding fibroblast growth factor receptor 2 (FGFR2) as a risk factor for breast cancer. We examined the relationship between these intron 2 SNPs and gene expression in breast carcinomas. Primary breast tissue showed a common occurrence of these SNPs accompanied by FGFR2 expression in normal ductal epithelium. Unexpectedly, we found that FGFR2 mRNA and protein levels were reduced in microdissected cancer cells when compared with paired normal breast epithelium. FGFR2 down-regulation was associated with DNA methylation and loss-of-heterozygosity. Where FGFR2-IIIb was expressed in tumor cells, it was accompanied by up-regulation of the RNA-binding proteins ESRP1/2, consistent with splicing of this isoform. Reduction in FGFR2 was associated with re-expression of its putative target melanoma-associated antigen (MAGE-A) in primary carcinoma cells. Conversely, forced expression or activation of FGFR2-IIIb resulted in MAGE-A silencing. These data provide the first evidence for FGFR2 down-regulation in breast carcinomas harboring intron 2 SNPs. Our findings underscore the significance of epigenetic and somatic changes that can potentially modify the effects of germline polymorphisms in determining FGFR2 gene expression.
Collapse
Affiliation(s)
- Xuegong Zhu
- Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
44
|
Zhu X, Asa SL, Ezzat S. Histone-acetylated control of fibroblast growth factor receptor 2 intron 2 polymorphisms and isoform splicing in breast cancer. Mol Endocrinol 2009; 23:1397-405. [PMID: 19497954 DOI: 10.1210/me.2009-0071] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent genome-wide association studies have identified fibroblast growth factor receptor (FGFR)2 as one of a few candidate genes linked with breast cancer susceptibility. In particular, the disease-predisposing allele of FGFR2 is inherited as a 7.5-kb region within intron 2 that harbors eight single nucleotide polymorphisms. The relationship between these single nucleotide polymorphisms and FGFR2 gene expression remains unclear. Here we show the common occurrence of polymorphisms within the intron 2 region in a panel of 10 breast cancer cell lines. High FGFR2-expressing cell lines such as MCF-7 cells displayed polymorphic sequences with constitutive histone acetylation at multiple intron 2 sequences harboring putative transcription binding sites. Knockdown of Runx2 or CCAAT enhancer binding protein beta in these cells resulted in diminished endogenous FGFR2 gene expression. In contrast FGFR2-negative MDA-231 cells were wild type and showed evidence of histone 3/4 deacetylation at the rs2981578, rs10736303, and rs7895676 disease-associated alleles that harbor binding sites for Runx2, estrogen receptor, and CCAAT enhancer binding protein beta, respectively. Histone deacetylation inhibition with trichostatin A resulted in enhanced acetylation at these intron 2 sites, an effect associated with robust FGFR2 reexpression. Isoform analysis proved reexpression of the FGFR2-IIIc variant the splicing of which was positively influenced by trichostatin A-mediated recruitment of the Fas-activated serine/threonine phosphoprotein survival protein. Our findings highlight the potential role of histone acetylation in modulating access to selected polymorphic sites within intron 2 as well as downstream splicing sites in generating variable FGFR2 levels and isoforms in breast cancer.
Collapse
Affiliation(s)
- Xuegong Zhu
- Department of Medicine, and the Endocrine Oncology Site Group, Princess Margaret Hospital, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | | | | |
Collapse
|
45
|
Asa SL, Ezzat S. The pathogenesis of pituitary tumors. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2009; 4:97-126. [PMID: 19400692 DOI: 10.1146/annurev.pathol.4.110807.092259] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recently there has been significant progress in our understanding of pituitary development, physiology, and pathology. New information has helped to clarify the classification of pituitary tumors. Epidemiologic analyses have identified a much higher incidence of pituitary tumors than previously thought. We review the pathogenetic factors that have been implicated in pituitary tumorigenesis and the application of novel targeted therapies that underscore the increasingly important role of the pathologist in determining accurate diagnoses and facilitating appropriate treatment of patients with these disorders.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, University Health Network and Ontario Cancer Institute, Toronto, Ontario, Canada.
| | | |
Collapse
|
46
|
Brinkmeier ML, Davis SW, Carninci P, MacDonald JW, Kawai J, Ghosh D, Hayashizaki Y, Lyons RH, Camper SA. Discovery of transcriptional regulators and signaling pathways in the developing pituitary gland by bioinformatic and genomic approaches. Genomics 2009; 93:449-60. [PMID: 19121383 PMCID: PMC2935795 DOI: 10.1016/j.ygeno.2008.11.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 11/13/2008] [Accepted: 11/24/2008] [Indexed: 01/15/2023]
Abstract
We report a catalog of the mouse embryonic pituitary gland transcriptome consisting of five cDNA libraries including wild type tissue from E12.5 and E14.5, Prop1(df/df) mutant at E14.5, and two cDNA subtractions: E14.5 WT-E14.5 Prop1(df/df) and E14.5 WT-E12.5 WT. DNA sequence information is assembled into a searchable database with gene ontology terms representing 12,009 expressed genes. We validated coverage of the libraries by detecting most known homeobox gene transcription factor cDNAs. A total of 45 homeobox genes were detected as part of the pituitary transcriptome, representing most expected ones, which validated library coverage, and many novel ones, underscoring the utility of this resource as a discovery tool. We took a similar approach for signaling-pathway members with novel pituitary expression and found 157 genes related to the BMP, FGF, WNT, SHH and NOTCH pathways. These genes are exciting candidates for regulators of pituitary development and function.
Collapse
Affiliation(s)
- Michelle L. Brinkmeier
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-0618, USA
| | - Shannon W. Davis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-0618, USA
| | - Piero Carninci
- Omics Science Center, RIKEN Yokohama Institute, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - James W. MacDonald
- Affymetrix and cDNA Microarray Core Facility, University of Michigan Cancer Center, Ann Arbor, MI 48109-0946, USA
| | - Jun Kawai
- Omics Science Center, RIKEN Yokohama Institute, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Debashis Ghosh
- Department of Biostatistics, School of Public Health, University of Michigan
| | - Yoshihide Hayashizaki
- Omics Science Center, RIKEN Yokohama Institute, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Robert H. Lyons
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109-0638, USA
| | - Sally A. Camper
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-0618, USA
| |
Collapse
|
47
|
Abstract
Epigenetically-mediated gene dysregulation is a common feature associated with human pituitary tumorigenesis. The mechanisms leading to these changes, however, remain largely unknown. In this review, we examine changes responsible for DNA and histone modifications as independent, butpotentially interrlated modes of communication effecting chromatin remodeling. The dynamic properties of the enzymes involved in these reactions is highlighted. We use the fibroblast growth factor receptor 2 (FGFR2) as a model through which the p53-regulating melanoma-associated antigen (MAGE) system is governing in pituitary cells. The pathogenetic and potential therapeutic implications are discussed.
Collapse
Affiliation(s)
- Shereen Ezzat
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Yuan Y, Qian ZR, Sano T, Asa SL, Yamada S, Kagawa N, Kudo E. Reduction of GSTP1 expression by DNA methylation correlates with clinicopathological features in pituitary adenomas. Mod Pathol 2008; 21:856-65. [PMID: 18425080 DOI: 10.1038/modpathol.2008.60] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Pi-class glutathione-S-transferase (GSTP1) located on chromosome 11q13 encodes a phase II metabolic enzyme that detoxifies reactive electrophilic intermediates. GSTP1 plays an important role in the protecting cells from cytotoxic and carcinogenic agents and is expressed in normal tissues at variable levels in different cell types. Altered GSTP1 activity and expression have been reported in many tumors and this is largely due to GSTP1 DNA hypermethylation. The role of GSTP1 in pituitary tumorigenesis has not been investigated. In this study, we evaluated the GSTP1 expression level and GSTP1 DNA methylation status in a series of pituitary adenomas. Using immunohistochemistry, we identified expression of GSTP1 in all of the various normal hormone-producing adenohypophysial cell types. In pituitary adenomas, loss or reduced expression of GSTP1 was detected in 27 of 53 tumors (50.9%). Expression of GSTP1 was significantly lower in invasive adenomas than in noninvasive adenomas (P<0.05). Using methylation-specific polymerase chain reaction (MS-PCR), GSTP1 DNA promoter hypermethylation was detected in adenomas (38 of 53, 71.7%) but not in normal tissues. GSTP1 methylation was more frequent in grade II, III, and IV tumors (66.7, 85, and 83%, respectively) than in grade I tumors (33%, P<0.05). In addition, the frequency of GSTP1 methylation was higher in invasive tumors (85%) than in noninvasive tumors (59%; P<0.05). Methylation status correlated with significant downregulation of GSTP1 expression; the frequency of GSTP1 methylation was higher in tumors with reduced-GSTP1 expression (85%) than in tumors with normal or high GSTP1 expression (54%; P<0.05). These data indicate that GSTP1 inactivation through CpG hypermethylation is common in pituitary adenomas and may contribute to aggressive pituitary tumor behavior.
Collapse
Affiliation(s)
- YunFeng Yuan
- Department of Pathology, University of Tokushima School of Medicine, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Zhu X, Asa SL, Ezzat S. Fibroblast growth factor 2 and estrogen control the balance of histone 3 modifications targeting MAGE-A3 in pituitary neoplasia. Clin Cancer Res 2008; 14:1984-96. [PMID: 18381936 DOI: 10.1158/1078-0432.ccr-07-2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Four members of the fibroblast growth factor receptor (FGFR) family transduce signals of a diverse group of FGF ligands. The FGFR2-IIIb isoform is abundantly present in the normal pituitary gland with contrasting down-regulation in neoplastic pituitary cells. cDNA profiling identified the cancer-testis antigen melanoma-associated antigen A3 (MAGE-A3) as a putative target negatively regulated by FGFR2. EXPERIMENTAL DESIGN Comparisons were made between normal and neoplastic human and mouse pituitary cells. Gene expression was examined by reverse transcription-PCR, DNA methylation was determined by methylation-specific PCR and combined bisulfite restriction analysis, and histone modification marks were identified by chromatin immunoprecipitation. RESULTS Normal human pituitary tissue that expresses FGFR2-IIIb does not express MAGE-A3; in contrast, pituitary tumors that are FGFR2 negative show abundant MAGE-A3 mRNA expression. MAGE-A3 expression correlates with the presence and extent of DNA promoter methylation; more frequent and higher-degree methylation is present in the normal gland compared with pituitary tumors. Conversely, pituitary tumors are hypomethylated, particularly in females where MAGE-A3 expression is nearly thrice higher than in males. Estradiol treatment induces MAGE-A3 through enhanced histone 3 acetylation and diminished methylation. The effects of estradiol are directly opposed by FGF7/FGFR2-IIIb. Down-regulation of MAGE-A3 results in p53 transcriptional induction, also through reciprocal histone acetylation and methylation modifications. CONCLUSIONS These findings highlight MAGE-A3 as a target of FGFR2-IIIb and estrogen action and provide evidence for a common histone-modifying network in the control of the balance between opposing signals.
Collapse
Affiliation(s)
- Xuegong Zhu
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
50
|
Loeper S, Asa SL, Ezzat S. Ikaros modulates cholesterol uptake: a link between tumor suppression and differentiation. Cancer Res 2008; 68:3715-23. [PMID: 18483254 DOI: 10.1158/0008-5472.can-08-0103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ikaros is a transcription factor that directs lymphoid lineage commitment and pituitary neuroendocrine cell expansion and function. Here, we show that Ikaros regulates the low-density lipoprotein receptor (LDL-R) to alter metabolism in pituitary corticotroph cells. The DNA-binding Ikaros isoform Ik1 binds and enhances activity of the LDL-R promoter. Ik1 decreases methylation and increases acetylation of histone H3 (Lys(9)) at the LDL-R promoter. Confocal microscopy and quantitative fluorometry show enhanced LDL endocytosis in Ik1-transfected cells that exhibit abundant endoplasmic reticulum, large Golgi complexes, and prominent secretory granule formation, consistent with more robust cholesterol incorporation into functionally relevant membrane-rich organelles. Consistent with these data, LDL-R(-/-) mice, like Ik(-/-) mice, have decreased circulating levels of adrenocorticotropic hormone. These findings expand the repertoire of Ikaros actions to include regulation of the cholesterol uptake metabolic pathway with therapeutic implications for lipid-modifying drugs in Ikaros-associated cancers.
Collapse
Affiliation(s)
- Siobhan Loeper
- Departments of Medicine and Pathology, University Health Network, Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | | |
Collapse
|