1
|
Xu F, Jansakun C, Li G, Biswas U, Poschet G, Staffer S, Tuma-Kellner S, Nakchbandi I, Merle U, Chamulitrat W. Myeloid-specific deficiency of group VIA calcium-independent phospholipase A2 preconditions myeloid cells for injury resolution after acetaminophen exposure. Biomed Pharmacother 2025; 187:118146. [PMID: 40344700 DOI: 10.1016/j.biopha.2025.118146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025] Open
Abstract
Genetic PLA2G6 variants are associated with C-reactive protein in humans. Myeloid-specific PLA2G6-deficient (Pla2g6M-/-) mice show increased hepatic myeloperoxidase and recruitment of granulocytes in response to lipopolysaccharide (LPS). We hypothesized that Pla2g6M-/- mice could be protected from acetaminophen (APAP) hepatotoxicity whereby neutrophils, eosinophils, and alternatively activated macrophages are reportedly protective. Herein, Pla2g6M-/- mice treated with 300 mg/kg APAP for 24 h showed attenuated hepatic necrosis and plasma cytokines, and with elevated levels of Ly6Clo in peripheral blood mononuclear cells and plasma lipoxin A4. Remarkably, bone-marrow-derived macrophages (BMDMs) from untreated Pla2g6M-/- mice exhibited elevated baseline expression of cPLA2α, NOX2, Rac1, Arg-1, phospho-MLKL, and iNOS protein, which was exacerbated by LPS in vitro. APAP administration preconditioned Pla2g6M-/- BMDMs for further activation of enzymes involving in phagocytosis (Rac1 and phospho-MLKL) and eicosanoids (COX2 and A15LOXB). Pla2g6M-/- BMDMs showed an increased release of pro-resolution lipid mediators lipoxin A4, PGE2, and 15d-PGJ2, which was further elevated by LPS in vitro or APAP in vivo. Phagocytic gene signatures (myeloperoxidase and NOX2) were also upregulated in livers of untreated and APAP-treated Pla2g6M-/- mice. APAP protection in Pla2g6M-/- mice was associated with increased proportion of neutrophils (Ly6G), eosinophils (eosinophilic cationic protein), and M2 macrophages (CD206) in/at the portal tract and central vein as determined by immunohistochemistry. Thus, myeloid-specific PLA2G6 deficiency preconditioned macrophages for eicosanoid and phagocytic pathways rendering protection against APAP hepatotoxicity. Our results may be applicable to patients with PLA2G6 mutations, and PLA2G6 inhibition specifically in myeloid cells may represent a new strategy to alleviate APAP poisoning.
Collapse
Affiliation(s)
- Feng Xu
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany; Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, PR China
| | - Chutima Jansakun
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany; School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Gang Li
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Uddipta Biswas
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, University of Heidelberg, Heidelberg 69120, Germany
| | - Simone Staffer
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Sabine Tuma-Kellner
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Inaam Nakchbandi
- Max-Planck Institute of Biochemistry and University of Heidelberg, Im Neuenheimer Feld 305, Heidelberg 69120, Germany
| | - Uta Merle
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany
| | - Walee Chamulitrat
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, Heidelberg 69120, Germany.
| |
Collapse
|
2
|
Cahill R, Blaber EA, Juran CM, Cheng-Campbell M, Alwood JS, Shirazi-Fard Y, Almeida EAC. 37-Day microgravity exposure in 16-Week female C57BL/6J mice is associated with bone loss specific to weight-bearing skeletal sites. PLoS One 2025; 20:e0317307. [PMID: 40138271 PMCID: PMC11940681 DOI: 10.1371/journal.pone.0317307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/24/2024] [Indexed: 03/29/2025] Open
Abstract
Exposure to weightlessness in microgravity and elevated space radiation are associated with rapid bone loss in mammals, but questions remain about their mechanisms of action and relative importance. In this study, we tested the hypothesis that bone loss during spaceflight in Low Earth Orbit is primarily associated with site-specific microgravity unloading of weight-bearing sites in the skeleton. Microcomputed tomography and histological analyses of bones from mice space flown on ISS for 37 days in the NASA Rodent Research-1 experiment show significant site-specific cancellous and cortical bone loss occurring in the femur, but not in L2 vertebrae. The lack of bone degenerative effects in the spine in combination with same-animal paired losses in the femur suggests that space radiation levels in Low Earth Orbit or other systemic stresses are not likely to significantly contribute to the observed bone loss. Remarkably, spaceflight is also associated with accelerated progression of femoral head endochondral ossification. This suggests the microgravity environment promotes premature progression of secondary ossification during late stages of skeletal maturation at 21 weeks. Furthermore, mice housed in the NASA ISS Rodent Habitat during 1g ground controls maintained or gained bone relative to mice housed in standard vivarium cages that showed significant bone mass declines. These findings suggest that housing in the Rodent Habitat with greater topological enrichment from 3D wire-mesh surfaces may promote increased mechanical loading of weight-bearing bones and maintenance of bone mass. In summary, our results indicate that in female mice approaching skeletal maturity, mechanical unloading of weight-bearing sites is the major cause of bone loss in microgravity, while sites loaded predominantly by muscle activity, such as the spine, appear unaffected. Additionally, we identified early-onset of femoral head epiphyseal plate secondary ossification as a novel spaceflight skeletal unloading effect that may lead to premature long bone growth arrest in microgravity.
Collapse
Affiliation(s)
- Rukmani Cahill
- Blue Marble Space Institute of Science, Seattle, Washington, United States of America
| | - Elizabeth A. Blaber
- Blue Marble Space Institute of Science, Seattle, Washington, United States of America
- Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Cassandra M. Juran
- Blue Marble Space Institute of Science, Seattle, Washington, United States of America
- Human Factors and Behavioral Neurobiology Department, Embry-Riddle Aeronautical University, Daytona Beach, Florida, United States of America
| | | | - Joshua S. Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Yasaman Shirazi-Fard
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Eduardo A. C. Almeida
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, California, United States of America
| |
Collapse
|
3
|
Ding Z, Ma G, Zhou B, Cheng S, Tang W, Han Y, Chen L, Pang W, Chen Y, Yang D, Cao H. Targeting miR-29 mitigates skeletal senescence and bolsters therapeutic potential of mesenchymal stromal cells. Cell Rep Med 2024; 5:101665. [PMID: 39168101 PMCID: PMC11384963 DOI: 10.1016/j.xcrm.2024.101665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024]
Abstract
Mesenchymal stromal cell (MSC) senescence is a key factor in skeletal aging, affecting the potential of MSC applications. Identifying targets to prevent MSC and skeletal senescence is crucial. Here, we report increased miR-29 expression in bone tissues of aged mice, osteoporotic patients, and senescent MSCs. Genetic overexpression of miR-29 in Prx1-positive MSCs significantly accelerates skeletal senescence, reducing cortical bone thickness and trabecular bone mass, while increasing femur cross-sectional area, bone marrow adiposity, p53, and senescence-associated secretory phenotype (SASP) levels. Mechanistically, miR-29 promotes senescence by upregulating p53 via targeting Kindlin-2 mRNA. miR-29 knockdown in BMSCs impedes skeletal senescence, enhances bone mass, and accelerates calvarial defect regeneration, also reducing lipopolysaccharide (LPS)-induced organ injuries and mortality. Thus, our findings underscore miR-29 as a promising therapeutic target for senescence-related skeletal diseases and acute inflammation-induced organ damage.
Collapse
Affiliation(s)
- Zhen Ding
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guixing Ma
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Bo Zhou
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyuan Cheng
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wanze Tang
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yingying Han
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Litong Chen
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Pang
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yangshan Chen
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dazhi Yang
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
4
|
Klement L, Jansakun C, Yan B, Staffer S, Tuma-Kellner S, Altamura S, Muckenthaler M, Merle U, Chamulitrat W. Myeloid-specific deletion of group VIA calcium-independent phospholipase A2 induces pro-inflammatory LPS response predominantly in male mice via MIP-1α activation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167016. [PMID: 38198970 DOI: 10.1016/j.bbadis.2024.167016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/15/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Polymorphisms of group VIA calcium-independent phospholipase A2 (PLA2G6) are associated with blood C-reactive protein suggesting its role in inflammation. We showed that myeloid-specific Pla2g6-deficiency in Pla2g6M-/- mice led to exaggerated inflammation and fibrosis in a lean fatty liver model. We here investigated whether these mutants display alteration in immune response after treatment with E. coli lipopolysaccharides (LPS) under acute (a single dose) and persistent (four doses) conditions. Without LPS treatment, male Pla2g6M-/- (but not Flox) mice at 12 months of age exhibited splenomegaly and hepatic necrosis, and ~ 30 % of them exhibited autoimmune hepatitis showing lymphoplasma cells with CD3(+) and CD45R(+) staining. Under acute LPS, male mutants showed an elevation of plasma MIP-1α and immunoglobulinA as well as upregulation of hepatic apoptosis and fibrosis PARP-1, Bax, MCP-1, α-SMA, and collagen I proteins. Their bone-marrow-derived macrophages also showed an elevation of MIP-1α release upon LPS stimulation in vitro. Female mutants under acute LPS showed a moderate increase in plasma KC/CXCL1, MCP-1, and IL10, and they showed no remarkable increase in hepatic fibrosis under acute or persistent LPS. Male mutants under persistent LPS displayed an elevation of aspartate aminotransferase, blood eosinophils, and hepatic apoptosis. Moreover, ~30 % of these mutants exhibited eosinophilic sclerosing portal hepatitis associated with an upregulated protein expression of hepatic CD8α, CD68, eosinophilic cationic protein, and Ly6G. Thus, myeloid-PLA2G6 deficiency led to an autoimmune and LPS-induced inflammatory liver disease via MIP-1α in a male-predominant manner. Our results may be applicable to patients with PLA2G6 mutations who undergo bacterial infection and sepsis.
Collapse
Affiliation(s)
- Lukas Klement
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Chutima Jansakun
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Bin Yan
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Simone Staffer
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - Martina Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), German Centre for Cardiovascular Research, Partner Site, University of Heidelberg, Germany
| | - Uta Merle
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Walee Chamulitrat
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
5
|
Fujii J, Yamada KI. Defense systems to avoid ferroptosis caused by lipid peroxidation-mediated membrane damage. Free Radic Res 2023; 57:353-372. [PMID: 37551716 DOI: 10.1080/10715762.2023.2244155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
The presence of hydrogen peroxide along with ferrous iron produces hydroxyl radicals that preferably oxidize polyunsaturated fatty acids (PUFA) to alkyl radicals (L•). The reaction of L• with an oxygen molecule produces lipid peroxyl radical (LOO•) that collectively trigger chain reactions, which results in the accumulation of lipid peroxidation products (LOOH). Oxygenase enzymes, such as lipoxygenase, also stimulate the peroxidation of PUFA. The production of phospholipid hydroperoxides (P-LOOH) can result in the destruction of the architecture of cell membranes and ultimate cell death. This iron-dependent regulated cell death is generally referred to as ferroptosis. Radical scavengers, which include tocopherol and nitric oxide (•NO), react with lipid radicals and terminate the chain reaction. When tocopherol reductively detoxifies lipid radicals, the resultant tocopherol radicals are recycled via reduction by coenzyme Q or ascorbate. CoQ radicals are reduced back by the anti-ferroptotic enzyme FSP1. •NO reacts with lipid radicals and produces less reactive nitroso compounds. The resulting P-LOOH is reductively detoxified by the action of glutathione peroxidase 4 (GPX4) or peroxiredoxin 6 (PRDX6). The hydrolytic removal of LOOH from P-LOOH by calcium-independent phospholipase A2 leads the preservation of membrane structure. While the expression of such protective genes or the presence of these anti-oxidant compounds serve to maintain a healthy condition, tumor cells employ them to make themselves resistant to anti-tumor treatments. Thus, these defense mechanisms against ferroptosis are protective in ordinary cells but are also potential targets for cancer treatment.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Ken-Ichi Yamada
- Faculty of Pharmaceutical Sciences, Physical Chemistry for Life Science Laboratory, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Jansakun C, Chunglok W, Altamura S, Muckenthaler M, Staffer S, Tuma-Kellner S, Merle U, Chamulitrat W. Myeloid- and hepatocyte-specific deletion of group VIA calcium-independent phospholipase A2 leads to dichotomous opposing phenotypes during MCD diet-induced NASH. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166590. [PMID: 36334837 DOI: 10.1016/j.bbadis.2022.166590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
Polymorphisms of phospholipase A2VIA (iPLA2β or PLA2G6) are associated with body weights and blood C-reactive protein. The role of iPLA2β/PLA2G6 in non-alcoholic steatohepatitis (NASH) is still elusive because female iPla2β-null mice showed attenuated hepatic steatosis but exacerbated hepatic fibrosis after feeding with methionine- and choline-deficient diet (MCDD). Herein, female mice with myeloid- (MPla2g6-/-) and hepatocyte- (LPla2g6-/-) specific PLA2G6 deletion were generated and phenotyped after MCDD feeding. Without any effects on hepatic steatosis, MCDD-fed MPla2g6-/- mice showed further exaggeration of liver inflammation and fibrosis as well as elevation of plasma TNFα, CCL2, and circulating monocytes. Bone-marrow-derived macrophages (BMDMs) from MPla2g6-/- mice displayed upregulation of PPARγ and CEBPα proteins, and elevated release of IL6 and CXCL1 under LPS stimulation. LPS-stimulated BMDMs from MCDD-fed MPla2g6-/- mice showed suppressed expression of M1 Tnfa and Il6, but marked upregulation of M2 Arg1, Chil3, IL10, and IL13 as well as chemokine receptors Ccr2 and Ccr5. This in vitro shift was associated with exaggeration of hepatic M1/M2 cytokines, chemokines/chemokine receptors, and fibrosis genes. Contrarily, MCDD-fed LPla2g6-/- mice showed a complete protection which was associated with upregulation of Ppara/PPARα and attenuated expression of Pparg/PPARγ, fatty-acid uptake, triglyceride synthesis, and de novo lipogenesis genes. Interestingly, LPla2g6-/- mice fed with chow or MCDD displayed an attenuation of blood monocytes and elevation of anti-inflammatory lipoxin A4 in plasma and liver. Thus, PLA2G6 inactivation specifically in myeloid cells and hepatocytes led to opposing phenotypes in female mice undergoing NASH. Hepatocyte-specific PLA2G6 inhibitors may be further developed for treatment of this disease.
Collapse
Affiliation(s)
- Chutima Jansakun
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Warangkana Chunglok
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Sandro Altamura
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
| | - Martina Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), German Centre for Cardiovascular Research, Partner Site, University of Heidelberg, Germany
| | - Simone Staffer
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Uta Merle
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Walee Chamulitrat
- Internal Medicine IV, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
7
|
Abstract
Bone is a living organ that exhibits active metabolic processes, presenting constant bone formation and resorption. The bone cells that maintain local homeostasis are osteoblasts, osteoclasts, osteocytes and bone marrow stem cells, their progenitor cells. Osteoblasts are the main cells that govern bone formation, osteoclasts are involved in bone resorption, and osteocytes, the most abundant bone cells, also participate in bone remodeling. All these cells have active metabolic activities, are interconnected and influence each other, having both autocrine and paracrine effects. Ageing is associated with multiple and complex bone metabolic changes, some of which are currently incompletely elucidated. Ageing causes important functional changes in bone metabolism, influencing all resident cells, including the mineralization process of the extracellular matrix. With advancing age, a decrease in bone mass, the appearance of specific changes in the local microarchitecture, a reduction in mineralized components and in load-bearing capacity, as well as the appearance of an abnormal response to different humoral molecules have been observed. The present review points out the most important data regarding the formation, activation, functioning, and interconnection of these bone cells, as well as data on the metabolic changes that occur due to ageing.
Collapse
Affiliation(s)
- Anca Cardoneanu
- Department of Rheumatology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, 1st Rheumatology Clinic, Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- IIIrd Medical Clinic, "Saint Spiridon" Clinic Emergency County Hospital, Iasi, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania.
| | - Elena Rezus
- Department of Rheumatology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, 1st Rheumatology Clinic, Iasi, Romania
| |
Collapse
|
8
|
Cui J, Shibata Y, Zhu T, Zhou J, Zhang J. Osteocytes in bone aging: Advances, challenges, and future perspectives. Ageing Res Rev 2022; 77:101608. [PMID: 35283289 DOI: 10.1016/j.arr.2022.101608] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
Osteocytes play a critical role in maintaining bone homeostasis and in regulating skeletal response to hormones and mechanical loading. Substantial evidence have demonstrated that osteocytes and their lacunae exhibit morphological changes in aged bone, indicating the underlying involvement of osteocytes in bone aging. Notably, recent studies have deciphered aged osteocytes to have characteristics such as impaired mechanosensitivity, accumulated cellular senescence, dysfunctional perilacunar/canalicular remodeling, and degenerated lacuna-canalicular network. However, detailed molecular mechanisms of osteocytes remain unclear. Nonetheless, osteocyte transcriptomes analyzed via advanced RNA sequencing (RNA-seq) techniques have identified several bone aging-related genes and signaling pathways, such as Wnt, Bmp/TGF, and Jak-STAT. Moreover, inflammation, immune dysfunction, energy shortage, and impaired hormone responses possibly affect osteocytes in age-related bone deterioration. In this review, we summarize the hallmarks of aging bone and osteocytes and discuss osteocytic mechanisms in age-related bone loss and impaired bone quality. Furthermore, we provide insights into the challenges faced and their possible solutions when investigating osteocyte transcriptomes. We also highlight that single-cell RNA-seq can decode transcriptomic messages in aged osteocytes; therefore, this technique can promote novel single cell-based investigations in osteocytes once a well-established standardized protocol specific for osteocytes is developed. Interestingly, improved understanding of osteocytic mechanisms have helped identify promising targets and effective therapies for aging-related osteoporosis and fragile fractures.
Collapse
|
9
|
Hancock WD, Lei X, Clines GA, Tusing YG, Nozell SE, Ramanadham S. Ca 2+-independent phospholipase A 2β-derived PGE 2 contributes to osteogenesis. Prostaglandins Other Lipid Mediat 2022; 158:106605. [PMID: 34923151 PMCID: PMC8753754 DOI: 10.1016/j.prostaglandins.2021.106605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023]
Abstract
Bone modeling can be modulated by lipid signals such as arachidonic acid (AA) and its cyclooxygenase 2 (COX2) metabolite, prostaglandin E2 (PGE2), which are recognized mediators of optimal bone formation. Hydrolysis of AA from membrane glycerophospholipids is catalyzed by phospholipases A2 (PLA2s). We reported that mice deficient in the Ca2+- independent PLA2beta (iPLA2β), encoded by Pla2g6, exhibit a low bone phenotype, but the cause for this remains to be identified. Here, we examined the mechanistic and molecular roles of iPLA2β in bone formation using bone marrow stromal cells and calvarial osteoblasts from WT and iPLA2β-deficient mice, and the MC3T3-E1 osteoblast precursor cell line. Our data reveal that transcription of osteogenic factors (Bmp2, Alpl, and Runx2) and osteogenesis are decreased with iPLA2β-deficiency. These outcomes are corroborated and recapitulated in WT cells treated with a selective inhibitor of iPLA2 β (10 μM S-BEL), and rescued in iPLA2β-deficient cells by additions of 10 μM PGE2. Further, under osteogenic conditions we find that PGE2 production is through iPLA2β activity and that this leads to induction of Runx2 and iPLA2β transcription. These findings reveal a strong link between osteogenesis and iPLA2β-derived lipids and raise the intriguing possibility that iPLA2β-derived PGE2 participates in osteogenesis and in the regulation of Runx2 and also iPLA2β.
Collapse
Affiliation(s)
- William D Hancock
- Department of Biochemistry and Molecular Biology Virginia Commonwealth University, Richmond, VA, USA
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory A Clines
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ying G Tusing
- Department of Cell, Developmental, and Integrative Biology, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Susan E Nozell
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
10
|
Cheng YH, Liu SF, Dong JC, Bian Q. Transcriptomic alterations underline aging of osteogenic bone marrow stromal cells. World J Stem Cells 2021; 13:128-138. [PMID: 33584984 PMCID: PMC7859986 DOI: 10.4252/wjsc.v13.i1.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/01/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multipotent bone marrow stromal cells (BMSCs) are adult stem cells that form functional osteoblasts and play a critical role in bone remodeling. During aging, an increase in bone loss and reduction in structural integrity lead to osteoporosis and result in an increased risk of fracture. We examined age-dependent histological changes in murine vertebrae and uncovered that bone loss begins as early as the age of 1 mo. AIM To identify the functional alterations and transcriptomic dynamics of BMSCs during early bone loss. METHODS We collected BMSCs from mice at early to middle ages and compared their self-renewal and differentiation potential. Subsequently, we obtained the transcriptomic profiles of BMSCs at 1 mo, 3 mo, and 7 mo. RESULTS The colony-forming and osteogenic commitment capacity showed a comparable finding that decreased at the age of 1 mo. The transcriptomic analysis showed the enrichment of osteoblastic regulation genes at 1 mo and loss of osteogenic features at 3 mo. The BMSCs at 7 mo showed enrichment of adipogenic and DNA repair features. Moreover, we demonstrated that the WNT and MAPK signaling pathways were upregulated at 1 mo, followed by increased pro-inflammatory and apoptotic features. CONCLUSION Our study uncovered the cellular and molecular dynamics of bone aging in mice and demonstrated the contribution of BMSCs to the early stage of age-related bone loss.
Collapse
Affiliation(s)
- Yu-Hao Cheng
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Shu-Fen Liu
- Institute of Spine, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Jing-Cheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qin Bian
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
11
|
Yu X, Zeng Y, Bao M, Wen J, Zhu G, Cao C, He X, Li L. Low‐magnitude vibration induces osteogenic differentiation of bone marrow mesenchymal stem cells via miR‐378a‐3p/Grb2 pathway to promote bone formation in a rat model of age‐related bone loss. FASEB J 2020; 34:11754-11771. [PMID: 32652777 DOI: 10.1096/fj.201902830rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaoqin Yu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine Sichuan University Chengdu China
| | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine Sichuan University Chengdu China
| | - Mingyue Bao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine Sichuan University Chengdu China
| | - Jirui Wen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine Sichuan University Chengdu China
| | - Guangguang Zhu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine Sichuan University Chengdu China
| | - Chengjian Cao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine Sichuan University Chengdu China
| | - Xueling He
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine Sichuan University Chengdu China
- Laboratory Animal Center Sichuan University Chengdu China
| | - Liang Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine Sichuan University Chengdu China
| |
Collapse
|
12
|
Dillon S, Staines KA, Millán JL, Farquharson C. How To Build a Bone: PHOSPHO1, Biomineralization, and Beyond. JBMR Plus 2019; 3:e10202. [PMID: 31372594 PMCID: PMC6659447 DOI: 10.1002/jbm4.10202] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/15/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022] Open
Abstract
Since its characterization two decades ago, the phosphatase PHOSPHO1 has been the subject of an increasing focus of research. This work has elucidated PHOSPHO1's central role in the biomineralization of bone and other hard tissues, but has also implicated the enzyme in other biological processes in health and disease. During mineralization PHOSPHO1 liberates inorganic phosphate (Pi) to be incorporated into the mineral phase through hydrolysis of its substrates phosphocholine (PCho) and phosphoethanolamine (PEA). Localization of PHOSPHO1 within matrix vesicles allows accumulation of Pi within a protected environment where mineral crystals may nucleate and subsequently invade the organic collagenous scaffold. Here, we examine the evidence for this process, first discussing the discovery and characterization of PHOSPHO1, before considering experimental evidence for its canonical role in matrix vesicle–mediated biomineralization. We also contemplate roles for PHOSPHO1 in disorders of dysregulated mineralization such as vascular calcification, along with emerging evidence of its activity in other systems including choline synthesis and homeostasis, and energy metabolism. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Scott Dillon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush Midlothian UK
| | | | - José Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA USA
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies University of Edinburgh, Easter Bush Midlothian UK
| |
Collapse
|
13
|
Jiao L, Gan-Schreier H, Zhu X, Wei W, Tuma-Kellner S, Liebisch G, Stremmel W, Chamulitrat W. Ageing sensitized by iPLA 2β deficiency induces liver fibrosis and intestinal atrophy involving suppression of homeostatic genes and alteration of intestinal lipids and bile acids. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1520-1533. [PMID: 28888832 DOI: 10.1016/j.bbalip.2017.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/28/2017] [Accepted: 09/05/2017] [Indexed: 01/06/2023]
Abstract
Ageing is a major risk factor for various forms of liver and gastrointestinal (GI) disease and genetic background may contribute to the pathogenesis of these diseases. Group VIA phospholipase A2 or iPLA2β is a homeostatic PLA2 by playing a role in phospholipid metabolism and remodeling. Global iPLA2β-/- mice exhibit aged-dependent phenotypes with body weight loss and abnormalities in the bone and brain. We have previously reported the abnormalities in these mutant mice showing susceptibility for chemical-induced liver injury and colitis. We hypothesize that iPLA2β deficiency may sensitize with ageing for an induction of GI injury. Male wild-type and iPLA2β-/- mice at 4 and 20-22months of age were studied. Aged, but not young, iPLA2β-/-mice showed increased hepatic fibrosis and biliary ductular expansion as well as severe intestinal atrophy associated with increased apoptosis, pro-inflammation, disrupted tight junction, and reduced number of mucin-containing globlet cells. This damage was associated with decreased expression of intestinal endoplasmic stress XBP1 and its regulator HNF1α, FATP4, ACSL5, bile-acid transport genes as well as nuclear receptors LXRα and FXR. By LC/MS-MS profiling, iPLA2β deficiency in aged mice caused an increase of intestinal arachidonate-containing phospholipids concomitant with a decrease in ceramides. By the suppression of intestinal FXR/FGF-15 signaling, hepatic bile-acid synthesis gene expression was increased leading to an elevation of secondary and hydrophobic bile acids in liver, bile, and intestine. In conclusions, ageing sensitized by iPLA2β deficiency caused a decline of key intestinal homeostatic genes resulting in the development of GI disease in a gut-to-liver manner.
Collapse
Affiliation(s)
- Li Jiao
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany; Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China
| | - Hongying Gan-Schreier
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany
| | - Xingya Zhu
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany
| | - Wang Wei
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany.
| |
Collapse
|
14
|
Stewart AJ, Leong DTK, Farquharson C. PLA 2 and ENPP6 may act in concert to generate phosphocholine from the matrix vesicle membrane during skeletal mineralization. FASEB J 2017; 32:20-25. [PMID: 28864658 DOI: 10.1096/fj.201700521r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/21/2017] [Indexed: 01/08/2023]
Abstract
Mineralization is a key process in the formation of bone and cartilage in vertebrates, involving the deposition of calcium- and phosphate-containing hydroxyapatite (HA) mineral within a collagenous matrix. Inorganic phosphate (Pi) accumulation within matrix vesicles (MVs) is a fundamental stage in the precipitation of HA, with PHOSPHO1 being identified as the principal enzyme acting to produce Pi PHOSPHO1 is a dual-specific phosphocholine/phosphoethanolamine phosphatase enriched in mineralizing cells and within MVs. However, the source and mechanism by which PHOSPHO1 substrates are formed before mineralization have not been determined. Here, we propose that 2 enzymes-phospholipase A2 (PLA2) and ectonucleotide pyrophophatase/phosphodiesterase 6 (ENPP6)-act in sequence upon phosphatidylcholine found in MV membranes to produce phosphocholine, which PHOSPHO1 can hydrolyze to liberate Pi This hypothesis is supported by evidence that both enzymes are expressed in mineralizing cells and data showing that phosphatidylcholine is broken down in MVs during mineralization. Therefore, PLA2 and ENPP6 activities may represent a key step in the mineralization process. Further functional studies are urgently required to examine their specific roles in the initiation of skeletal mineralization.-Stewart, A. J., Leong, D. T. K., Farquharson, C. PLA2 and ENPP6 may act in concert to generate phosphocholine from the matrix vesicle membrane during skeletal mineralization.
Collapse
Affiliation(s)
- Alan J Stewart
- School of Medicine, University of St Andrews, Fife, United Kingdom;
| | - Darren T K Leong
- School of Medicine, University of St Andrews, Fife, United Kingdom
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
15
|
MURAKAMI M. Lipoquality control by phospholipase A 2 enzymes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:677-702. [PMID: 29129849 PMCID: PMC5743847 DOI: 10.2183/pjab.93.043] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The phospholipase A2 (PLA2) family comprises a group of lipolytic enzymes that typically hydrolyze the sn-2 position of glycerophospholipids to give rise to fatty acids and lysophospholipids. The mammalian genome encodes more than 50 PLA2s or related enzymes, which are classified into several subfamilies on the basis of their structures and functions. From a general viewpoint, the PLA2 family has mainly been implicated in signal transduction, producing bioactive lipid mediators derived from fatty acids and lysophospholipids. Recent evidence indicates that PLA2s also contribute to phospholipid remodeling for membrane homeostasis or energy production for fatty acid β-oxidation. Accordingly, PLA2 enzymes can be regarded as one of the key regulators of the quality of lipids, which I herein refer to as lipoquality. Disturbance of PLA2-regulated lipoquality hampers tissue and cellular homeostasis and can be linked to various diseases. Here I overview the current state of understanding of the classification, enzymatic properties, and physiological functions of the PLA2 family.
Collapse
Affiliation(s)
- Makoto MURAKAMI
- Laboratory of Environmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
- Correspondence should be addressed: M. Murakami, Laboratory of Environmental and Metabolic Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan (e-mail: )
| |
Collapse
|
16
|
Inhoffen J, Tuma-Kellner S, Straub B, Stremmel W, Chamulitrat W. Deficiency of iPLA₂β Primes Immune Cells for Proinflammation: Potential Involvement in Age-Related Mesenteric Lymph Node Lymphoma. Cancers (Basel) 2015; 7:2427-42. [PMID: 26690222 PMCID: PMC4695901 DOI: 10.3390/cancers7040901] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022] Open
Abstract
Proinflammation can predispose the body to autoimmunity and cancer. We have reported that iPLA2β−/− mice are susceptible to autoimmune hepatitis and colitis. Here we determined whether cytokine release by immune cells could be affected by iPLA2β deficiency alone or combined with CD95/FasL-antibody treatment in vivo. We also determined whether cancer risk could be increased in aged mutant mice. Immune cells were isolated from 3-month old male WT and iPLA2β−/− mice, and some were injected with anti-CD95/FasL antibody for 6 h. Kupffer cells (KC) or splenocytes and liver lymphocytes were stimulated in vitro by lipopolysaccharide or concanavalinA, respectively. Whole-body iPLA2β deficiency caused increased apoptosis in liver, spleen, and mesenteric lymph node (MLN). KC from mutant mice showed suppressed release of TNFα and IL-6, while their splenocytes secreted increased levels of IFNγ and IL-17a. Upon CD95/FasL activation, the mutant KC in turn showed exaggerated cytokine release, this was accompanied by an increased release of IFNγ and IL-17a by liver lymphocytes. Aged iPLA2β−/− mice did not show follicular MLN lymphoma commonly seen in aged C57/BL6 mice. Thus, iPLA2β deficiency renders M1- and Th1/Th17-proinflammation potentially leading to a reduction in age-related MLN lymphoma during aging.
Collapse
Affiliation(s)
- Johannes Inhoffen
- Department of Internal Medicine IV, University Heidelberg Hospital, 69120 Heidelberg, Germany.
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, University Heidelberg Hospital, 69120 Heidelberg, Germany.
| | - Beate Straub
- Pathology Institute of Medical Faculty Heidelberg, 69120 Heidelberg, Germany.
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, University Heidelberg Hospital, 69120 Heidelberg, Germany.
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University Heidelberg Hospital, 69120 Heidelberg, Germany.
| |
Collapse
|
17
|
Deficiency of Group VIA Phospholipase A2 (iPLA2β) Renders Susceptibility for Chemical-Induced Colitis. Dig Dis Sci 2015; 60:3590-602. [PMID: 26182903 DOI: 10.1007/s10620-015-3807-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Inflammatory bowel disease results from a combination of dysfunction of intestinal epithelial barrier and dysregulation of mucosal immune system. iPLA2β has multiple homeostatic functions and shown to play a role in membrane remodeling, cell proliferation, monocyte chemotaxis, and apoptosis. The latter may render chronic inflammation and susceptibility for acute injury. AIMS We aim to evaluate whether an inactivation of iPLA2β would enhance the pathogenesis of experimental colitis induced by dextran sodium sulfate. METHODS iPLA2β-null male mice were administered dextran sodium sulfate in drinking water for 7 days followed by normal water for 3 days. At day 10, mice were killed, and harvested colon and ileum were subjected for evaluation by histology, immunohistochemistry, and quantitative RT-PCR. RESULTS Dextran sodium sulfate administration caused a significant increase in histological scores and cleaved caspase 3 (+) apoptosis concomitant with a decrease in colon length and crypt cell Ki67 (+) proliferation in iPLA2β-null mice in a greater extent than in control littermates. This sensitization by iPLA2β deficiency was associated with an increase in accumulation of F4/80 (+) macrophages, and expression of proinflammatory cytokines and chemokines, while the number of mucin-containing goblet cells and mucus layer thickness was decreased. Some of these abnormalities were also observed in the ileum. CONCLUSIONS An inactivation of iPLA2β exacerbated pathogenesis of experimental colitis by promoting intestinal epithelial cell apoptosis, inhibiting crypt cell regeneration, and causing damage to mucus barrier allowing an activation of innate immune response. Thus, iPLA2β may represent a susceptible gene for the development of inflammatory bowel disease.
Collapse
|
18
|
Leis HJ, Windischhofer W. Calcium-independent phospholipases A2 in murine osteoblastic cells and their inhibition by bromoenol lactone: impact on arachidonate dynamics and prostaglandin synthesis. J Enzyme Inhib Med Chem 2015; 31:1203-13. [PMID: 26609885 DOI: 10.3109/14756366.2015.1114929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT Bromoenol lactone (BEL) is an inhibitor of group VI phospholipases (iPLA2s), but has been shown to have severe side effects. OBJECTIVE iPLA2 characterization in osteoblasts and effect of BEL on prostaglandin (PG) E2 formation. METHODS iPLA2 expression: RT-PCR, Western Blotting. PGE2 formation: GC-MS after stimulation, treatment with inhibitors or gene silencing. Arachidonate (AA) reacylation into phospholipids, inhibitor reaction products, PGHS-1 modification proteomic analysis: HR-LC-MS/MS. AA accumulation: (14)C-AA. RESULTS iPLA2ß and iPLA2γ were expressed and functionally active. BEL inhibition up to 20 μM caused AA accumulation and enhanced PGE2 formation, followed by a decrease at higher concentrations. BEL reacted with intracellular cysteine and GSH leading to GSH depletion and oxidative stress. DISCUSSION Initial PGE2 enhancement after BEL inhibition is due to iPLA2-independent accumulation of AA. GSH depletion caused by high BEL concentrations is responsible for the decrease in PGE2 production. CONCLUSION BEL must be used with caution in a cellular environment due to conditions of extreme oxidative stress.
Collapse
Affiliation(s)
- Hans Jörg Leis
- a University Hospital of Youth and Adolescence Medicine, Medical University of Graz, Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism , Graz , Austria
| | - Werner Windischhofer
- a University Hospital of Youth and Adolescence Medicine, Medical University of Graz, Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism , Graz , Austria
| |
Collapse
|
19
|
Pritchard ZJ, Cary RL, Yang C, Novack DV, Voor MJ, Sankar U. Inhibition of CaMKK2 reverses age-associated decline in bone mass. Bone 2015; 75:120-7. [PMID: 25724145 PMCID: PMC4737584 DOI: 10.1016/j.bone.2015.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 02/07/2023]
Abstract
Decline in bone formation is a major contributing factor to the loss of bone mass associated with aging. We previously showed that the genetic ablation of the tissue-restricted and multifunctional Ca(2+)/calmodulin (CaM)-dependent protein kinase kinase 2 (CaMKK2) stimulates trabecular bone mass accrual, mainly by promoting anabolic pathways and inhibiting catabolic pathways of bone remodeling. In this study, we investigated whether inhibition of this kinase using its selective cell-permeable inhibitor STO-609 will stimulate bone formation in 32 week old male WT mice and reverse age-associated of decline in bone volume and strength. Tri-weekly intraperitoneal injections of saline or STO-609 (10 μM) were performed for six weeks followed by metabolic labeling with calcein and alizarin red. New bone formation was assessed by dynamic histomorphometry whereas micro-computed tomography was employed to measure trabecular bone volume, microarchitecture and femoral mid-shaft geometry. Cortical and trabecular bone biomechanical properties were assessed using three-point bending and punch compression methods respectively. Our results reveal that as they progress from 12 to 32 weeks of age, WT mice sustain a significant decline in trabecular bone volume, microarchitecture and strength as well as cortical bone strength. However, treatment of the 32 week old WT mice with STO-609 stimulated apposition of new bone and completely reversed the age-associated decrease in bone volume, quality, as well as trabecular and cortical bone strength. We also observed that regardless of age, male Camkk2(-/-) mice possessed significantly elevated trabecular bone volume, microarchitecture and compressive strength as well as cortical bone strength compared to age-matched WT mice, implying that the chronic loss of this kinase attenuates age-associated decline in bone mass. Further, whereas STO-609 treatment and/or the absence of CaMKK2 significantly enhanced the femoral mid-shaft geometry, the mid-shaft cortical wall thickness and material bending stress remained similar among the cohorts, implying that regardless of treatment, the material properties of the bone remain similar. Thus, our cumulative results provide evidence for the pharmacological inhibition of CaMKK2 as a bone anabolic strategy in combating age-associated osteoporosis.
Collapse
Affiliation(s)
- Zachary J Pritchard
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Rachel L Cary
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Chang Yang
- Department of Medicine and Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Deborah V Novack
- Department of Medicine and Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael J Voor
- Department of Orthopaedic Surgery, University of Louisville School of Medicine, Louisville, KY, USA; Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY, USA.
| | - Uma Sankar
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
20
|
Ramanadham S, Ali T, Ashley JW, Bone RN, Hancock WD, Lei X. Calcium-independent phospholipases A2 and their roles in biological processes and diseases. J Lipid Res 2015; 56:1643-68. [PMID: 26023050 DOI: 10.1194/jlr.r058701] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 12/24/2022] Open
Abstract
Among the family of phospholipases A2 (PLA2s) are the Ca(2+)-independent PLA2s (iPLA2s) and they are designated group VI iPLA2s. In relation to secretory and cytosolic PLA2s, the iPLA2s are more recently described and details of their expression and roles in biological functions are rapidly emerging. The iPLA2s or patatin-like phospholipases (PNPLAs) are intracellular enzymes that do not require Ca(2+) for activity, and contain lipase (GXSXG) and nucleotide-binding (GXGXXG) consensus sequences. Though nine PNPLAs have been recognized, PNPLA8 (membrane-associated iPLA2γ) and PNPLA9 (cytosol-associated iPLA2β) are the most widely studied and understood. The iPLA2s manifest a variety of activities in addition to phospholipase, are ubiquitously expressed, and participate in a multitude of biological processes, including fat catabolism, cell differentiation, maintenance of mitochondrial integrity, phospholipid remodeling, cell proliferation, signal transduction, and cell death. As might be expected, increased or decreased expression of iPLA2s can have profound effects on the metabolic state, CNS function, cardiovascular performance, and cell survival; therefore, dysregulation of iPLA2s can be a critical factor in the development of many diseases. This review is aimed at providing a general framework of the current understanding of the iPLA2s and discussion of the potential mechanisms of action of the iPLA2s and related involved lipid mediators.
Collapse
Affiliation(s)
- Sasanka Ramanadham
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Tomader Ali
- Undergraduate Research Office, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jason W Ashley
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert N Bone
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - William D Hancock
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xiaoyong Lei
- Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
21
|
Jiao L, Gan-Schreier H, Tuma-Kellner S, Stremmel W, Chamulitrat W. Sensitization to autoimmune hepatitis in group VIA calcium-independent phospholipase A2-null mice led to duodenal villous atrophy with apoptosis, goblet cell hyperplasia and leaked bile acids. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1646-57. [PMID: 25957555 DOI: 10.1016/j.bbadis.2015.04.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 12/12/2022]
Abstract
Chronic bowel disease can co-exist with severe autoimmune hepatitis (AIH) in an absence of primary sclerosing cholangitis. Genetic background may contribute to this overlap syndrome. We previously have shown that the deficiency of iPLA2β causes an accumulation of hepatocyte apoptosis, and renders susceptibility for acute liver injury. We here tested whether AIH induction in iPLA2β-null mice could result in intestinal injury, and whether bile acid metabolism was altered. Control wild-type (WT) and female iPLA2β-null (iPLA2β(-/-)) mice were intravenously injected with 10mg/kg concanavalinA (ConA) or saline for 24h. ConA treatment of iPLA2β(-/-) mice caused massive liver injury with increased liver enzymes, fibrosis, and necrosis. While not affecting WT mice, ConA treatment of iPLA2β(-/-) mice caused severe duodenal villous atrophy concomitant with increased apoptosis, cell proliferation, globlet cell hyperplasia, and endotoxin leakage into portal vein indicating a disruption of intestinal barrier. With the greater extent than in WT mice, ConA treatment of iPLA2β(-/-) mice increased jejunal expression of innate response cytokines CD14, TNF-α, IL-6, and SOCS3 as well as chemokines CCL2 and the CCL3 receptor CCR5. iPLA2β deficiency in response to ConA-induced AIH caused a significant decrease in hepatic and biliary bile acids, and this was associated with suppression of hepatic Cyp7A1, Ntcp and ABCB11/Bsep and upregulation of intestinal FXR/FGF15 mRNA expression. The suppression of hepatic Ntcp expression together with the loss of intestinal barrier could account for the observed bile acid leakage into peripheral blood. Thus, enteropathy may result from acute AIH in a susceptible host such as iPLA2β deficiency.
Collapse
Affiliation(s)
- Li Jiao
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany; Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Hongying Gan-Schreier
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany
| | - Wolfgang Stremmel
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University of Heidelberg Hospital, Heidelberg, Germany.
| |
Collapse
|
22
|
Zhang L, Zhong S, Li Y, Ji G, Sundaram M, Yao Z. Global Inactivation of the Pla2g6 Gene in Mice Does Not Cause Dyslipidemia under Chow or High-fat Diet Conditions. J Cancer Prev 2014; 18:235-48. [PMID: 25337551 PMCID: PMC4189460 DOI: 10.15430/jcp.2013.18.3.235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 01/30/2023] Open
Abstract
Background: Genome-wide association studies suggest that plasma triacylglyceride (TAG) in humans was associated with variation in the PLA2G6 locus, a gene that encodes calcium-independent phospholipase A2 (iPLA2β). The objective of the present study is to understand the impact of genetic inactivation of iPLA2β on hepatic TAG metabolism in C57BL/6 mice. Methods: Male iPLA2β+/− mice were backcrossed with female iPLA2β−/− mice for up to 10 generations prior to experiments. Lipid and lipoprotein metabolism from plasma, hepatocytes, thigh subcutaneous adipose and thigh skeletal muscle tissues of the mice were determined under various experimental conditions. Results: The iPLA2β−/− mice, either male or female as compared with iPLA2β+/+ littermates, showed no change in fasted or postprandial plasma TAG or total cholesterol at young (12–15 weeks) or old (40–44 weeks) ages under chow diet or high-fat diet (HFD) conditions. However, fractionation of plasma lipoproteins showed that under HFD conditions, there was a significant increase (by 40%) in apoB-100 association with VLDL1 fractions in iPLA2β−/− mice as compared with iPLA2β+/+ littermates. There was no significant difference in triglyceride or cholesterol contents in the liver, muscle, or adipose tissue between iPLA2β−/− and iPLA2β+/+ littermates. Metabolic labeling experiments with cultured primary hepatocytes isolated from iPLA2β−/− mice also showed 2-fold increase in the secretion of [35S]methionine-labeled apoB-100 in VLDL1 fractions as compared with that from iPLA2β+/+ hepatocytes. Likewise, secretion of [3H]palmitate-labeled TAG from the iPLA2β−/− hepatocytes was increased by 2-fold. Conclusions: Although iPLA2β may play a role in TAG-rich VLDL1 production from cultured hepatocytes, there is no evidence that inactivation of iPLA2β would lead to dyslipidemia in mice in vivo.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shumei Zhong
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Ying Li
- College of Life Science, Chongqing Normal University, Chongqing, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meenakshi Sundaram
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
23
|
Zhang G, Li J, Purkayastha S, Tang Y, Zhang H, Yin Y, Li B, Liu G, Cai D. Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 2013; 497:211-216. [PMID: 23636330 PMCID: PMC3756938 DOI: 10.1038/nature12143] [Citation(s) in RCA: 652] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 04/02/2013] [Indexed: 01/02/2023]
Abstract
Ageing is a result of gradual and overall functional deteriorations across the body; however, it is unknown whether an individual tissue primarily works to mediate the ageing progress and control lifespan. Here we show that the hypothalamus is important for the development of whole-body ageing in mice, and that the underlying basis involves hypothalamic immunity mediated by IκB kinase-β (IKK-β), nuclear factor κB (NF-κB) and related microglia-neuron immune crosstalk. Several interventional models were developed showing that ageing retardation and lifespan extension are achieved in mice by preventing ageing-related hypothalamic or brain IKK-β and NF-κB activation. Mechanistic studies further revealed that IKK-β and NF-κB inhibit gonadotropin-releasing hormone (GnRH) to mediate ageing-related hypothalamic GnRH decline, and GnRH treatment amends ageing-impaired neurogenesis and decelerates ageing. In conclusion, the hypothalamus has a programmatic role in ageing development via immune-neuroendocrine integration, and immune inhibition or GnRH restoration in the hypothalamus/brain represent two potential strategies for optimizing lifespan and combating ageing-related health problems.
Collapse
Affiliation(s)
- Guo Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Juxue Li
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Sudarshana Purkayastha
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Yizhe Tang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Hai Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Ye Yin
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Bo Li
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Gang Liu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461
- Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461
- Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
24
|
Phospholipases of mineralization competent cells and matrix vesicles: roles in physiological and pathological mineralizations. Int J Mol Sci 2013; 14:5036-129. [PMID: 23455471 PMCID: PMC3634480 DOI: 10.3390/ijms14035036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/08/2023] Open
Abstract
The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in hydrolysis of ECM. The biological functions of phospholipases are discussed from the perspective of animal and cellular knockout models, as well as disease implications, development of potent inhibitors and therapeutic interventions.
Collapse
|
25
|
Hardwick JP, Eckman K, Lee YK, Abdelmegeed MA, Esterle A, Chilian WM, Chiang JY, Song BJ. Eicosanoids in metabolic syndrome. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 66:157-266. [PMID: 23433458 DOI: 10.1016/b978-0-12-404717-4.00005-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic persistent inflammation plays a significant role in disease pathology of cancer, cardiovascular disease, and metabolic syndrome (MetS). MetS is a constellation of diseases that include obesity, diabetes, hypertension, dyslipidemia, hypertriglyceridemia, and hypercholesterolemia. Nonalcoholic fatty liver disease (NAFLD) is associated with many of the MetS diseases. These metabolic derangements trigger a persistent inflammatory cascade, which includes production of lipid autacoids (eicosanoids) that recruit immune cells to the site of injury and subsequent expression of cytokines and chemokines that amplify the inflammatory response. In acute inflammation, the transcellular synthesis of antiinflammatory eicosanoids resolve inflammation, while persistent activation of the autacoid-cytokine-chemokine cascade in metabolic disease leads to chronic inflammation and accompanying tissue pathology. Many drugs targeting the eicosanoid pathways have been shown to be effective in the treatment of MetS, suggesting a common linkage between inflammation, MetS and drug metabolism. The cross-talk between inflammation and MetS seems apparent because of the growing evidence linking immune cell activation and metabolic disorders such as insulin resistance, dyslipidemia, and hypertriglyceridemia. Thus modulation of lipid metabolism through either dietary adjustment or selective drugs may become a new paradigm in the treatment of metabolic disorders. This review focuses on the mechanisms linking eicosanoid metabolism to persistent inflammation and altered lipid and carbohydrate metabolism in MetS.
Collapse
Affiliation(s)
- James P Hardwick
- Biochemistry and Molecular Pathology, Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Potent and selective 2-oxoamide inhibitors of phospholipases A2 as novel medicinal agents for the treatment of inflammatory diseases. PURE APPL CHEM 2012. [DOI: 10.1351/pac-con-11-10-32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phospholipases A2 (PLA2s) are enzymes that are capable of catalyzing the hydrolysis of the sn-2 ester bond of glycerophospholipids, releasing free fatty acids, including arachidonic acid (AA), and lysophospholipids. Both products are precursor signaling molecules involved in inflammation. Among the various PLA2s, cytosolic GIVA cPLA2 is considered a major target for inflammatory diseases, while secreted GIIA sPLA2 is involved in cardiovascular diseases. We have developed lipophilic 2-oxoamides based on (S)-γ- or δ-amino acids as potent and selective inhibitors of GIVA cPLA2, which present interesting in vivo anti-inflammatory activity. 2-Oxoamides based on natural α-amino acids are selective inhibitors of GIIA sPLA2. The mode of binding of 2-oxoamides with either GIVA cPLA2 or GIIA sPLA2 has been studied by various techniques.
Collapse
|
27
|
Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:703538. [PMID: 22110477 PMCID: PMC3216264 DOI: 10.1155/2012/703538] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/03/2011] [Indexed: 01/09/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is the most common human endocrine disease and is characterized by peripheral insulin resistance and pancreatic islet β-cell failure. Accumulating evidence indicates that mitochondrial dysfunction is a central contributor to β-cell failure in the evolution of T2DM. As reviewed elsewhere, reactive oxygen species (ROS) produced by β-cell mitochondria as a result of metabolic stress activate several stress-response pathways. This paper focuses on mechanisms whereby ROS affect mitochondrial structure and function and lead to β-cell failure. ROS activate UCP2, which results in proton leak across the mitochondrial inner membrane, and this leads to reduced β-cell ATP synthesis and content, which is a critical parameter in regulating glucose-stimulated insulin secretion. In addition, ROS oxidize polyunsaturated fatty acids in mitochondrial cardiolipin and other phospholipids, and this impairs membrane integrity and leads to cytochrome c release into cytosol and apoptosis. Group VIA phospholipase A2 (iPLA2β) appears to be a component of a mechanism for repairing mitochondrial phospholipids that contain oxidized fatty acid substituents, and genetic or acquired iPLA2β-deficiency increases β-cell mitochondrial susceptibility to injury from ROS and predisposes to developing T2DM. Interventions that attenuate ROS effects on β-cell mitochondrial phospholipids might prevent or retard development of T2DM.
Collapse
|
28
|
Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 2011; 111:6130-85. [PMID: 21910409 PMCID: PMC3196595 DOI: 10.1021/cr200085w] [Citation(s) in RCA: 864] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Edward A. Dennis
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Jian Cao
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Yuan-Hao Hsu
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093-0601
| | - Victoria Magrioti
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Athens 15771, Greece
| |
Collapse
|
29
|
Neuroaxonal dystrophy in calcium-independent phospholipase A2β deficiency results from insufficient remodeling and degeneration of mitochondrial and presynaptic membranes. J Neurosci 2011; 31:11411-20. [PMID: 21813701 DOI: 10.1523/jneurosci.0345-11.2011] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Infantile neuroaxonal dystrophy (INAD) is a fatal neurodegenerative disease characterized by the widespread presence of axonal swellings (spheroids) in the CNS and PNS and is caused by gene abnormality in PLA2G6 [calcium-independent phospholipase A(2)β (iPLA(2)β)], which is essential for remodeling of membrane phospholipids. To clarify the pathomechanism of INAD, we pathologically analyzed the spinal cords and sciatic nerves of iPLA(2)β knock-out (KO) mice, a model of INAD. At 15 weeks (preclinical stage), periodic acid-Schiff (PAS)-positive granules were frequently observed in proximal axons and the perinuclear space of large neurons, and these were strongly positive for a marker of the mitochondrial outer membrane and negative for a marker of the inner membrane. By 100 weeks (late clinical stage), PAS-positive granules and spheroids had increased significantly in the distal parts of axons, and ultrastructural examination revealed that these granules were, in fact, mitochondria with degenerative inner membranes. Collapse of mitochondria in axons was accompanied by focal disappearance of the cytoskeleton. Partial membrane loss at axon terminals was also evident, accompanied by degenerative membranes in the same areas. Imaging mass spectrometry showed a prominent increase of docosahexaenoic acid-containing phosphatidylcholine in the gray matter, suggesting insufficient membrane remodeling in the presence of iPLA(2)β deficiency. Prominent axonal degeneration in neuroaxonal dystrophy might be explained by the collapse of abnormal mitochondria after axonal transportation. Insufficient remodeling and degeneration of mitochondrial inner membranes and presynaptic membranes appear to be the cause of the neuroaxonal dystrophy in iPLA(2)β-KO mice.
Collapse
|
30
|
Nguyen N, Judd LM, Kalantzis A, Whittle B, Giraud AS, van Driel IR. Random mutagenesis of the mouse genome: a strategy for discovering gene function and the molecular basis of disease. Am J Physiol Gastrointest Liver Physiol 2011; 300:G1-11. [PMID: 20947703 PMCID: PMC3774088 DOI: 10.1152/ajpgi.00343.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mutagenesis of mice with N-ethyl-N-nitrosourea (ENU) is a phenotype-driven approach to unravel gene function and discover new biological pathways. Phenotype-driven approaches have the advantage of making no assumptions about the function of genes and their products and have been successfully applied to the discovery of novel gene-phenotype relationships in many physiological systems. ENU mutagenesis of mice is used in many large-scale and more focused projects to generate and identify novel mouse models for the study of gene functions and human disease. This review examines the strategies and tools used in ENU mutagenesis screens to efficiently generate and identify functional mutations.
Collapse
Affiliation(s)
- Nhung Nguyen
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne;
| | - Louise M. Judd
- 2Gastrointestinal Research in Inflammation and Pathology Laboratory, Murdoch Children's Research Institute, Melbourne; and
| | - Anastasia Kalantzis
- 2Gastrointestinal Research in Inflammation and Pathology Laboratory, Murdoch Children's Research Institute, Melbourne; and
| | - Belinda Whittle
- 3Australian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Andrew S. Giraud
- 2Gastrointestinal Research in Inflammation and Pathology Laboratory, Murdoch Children's Research Institute, Melbourne; and
| | - Ian R. van Driel
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne;
| |
Collapse
|
31
|
Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T, Yamamoto K. Recent progress in phospholipase A₂ research: from cells to animals to humans. Prog Lipid Res 2010; 50:152-92. [PMID: 21185866 DOI: 10.1016/j.plipres.2010.12.001] [Citation(s) in RCA: 389] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian genomes encode genes for more than 30 phospholipase A₂s (PLA₂s) or related enzymes, which are subdivided into several classes including low-molecular-weight secreted PLA₂s (sPLA₂s), Ca²+-dependent cytosolic PLA₂s (cPLA₂s), Ca²+-independent PLA₂s (iPLA₂s), platelet-activating factor acetylhydrolases (PAF-AHs), lysosomal PLA₂s, and a recently identified adipose-specific PLA. Of these, the intracellular cPLA₂ and iPLA₂ families and the extracellular sPLA₂ family are recognized as the "big three". From a general viewpoint, cPLA₂α (the prototypic cPLA₂ plays a major role in the initiation of arachidonic acid metabolism, the iPLA₂ family contributes to membrane homeostasis and energy metabolism, and the sPLA₂ family affects various biological events by modulating the extracellular phospholipid milieus. The cPLA₂ family evolved along with eicosanoid receptors when vertebrates first appeared, whereas the diverse branching of the iPLA₂ and sPLA₂ families during earlier eukaryote development suggests that they play fundamental roles in life-related processes. During the past decade, data concerning the unexplored roles of various PLA₂ enzymes in pathophysiology have emerged on the basis of studies using knockout and transgenic mice, the use of specific inhibitors, and information obtained from analysis of human diseases caused by mutations in PLA₂ genes. This review focuses on current understanding of the emerging biological functions of PLA₂s and related enzymes.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Bones provide mechanical and protective function, while also serving as housing for marrow and a site for regulation of calcium ion homeostasis. The properties of bones do not remain constant with age; rather, they change throughout life, in some cases improving in function, but in others, function deteriorates. Here we review the modifications in the mechanical function and shape of bones, the bone cells, the matrix they produce, and the mineral that is deposited on this matrix, while presenting recent theories about the factors leading to these changes.
Collapse
Affiliation(s)
- A L Boskey
- Hospital for Special Surgery, 535 E. 70th Street, New York, NY 10021, USA.
| | | |
Collapse
|
33
|
Li H, Zhao Z, Wei G, Yan L, Wang D, Zhang H, Sandusky GE, Turk J, Xu Y. Group VIA phospholipase A2 in both host and tumor cells is involved in ovarian cancer development. FASEB J 2010; 24:4103-16. [PMID: 20530749 PMCID: PMC2996900 DOI: 10.1096/fj.10-161356] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 05/20/2010] [Indexed: 11/11/2022]
Abstract
Host-tumor cell interactions are recognized to be critical in tumor development. We have shown that group VIA phospholipase A(2) [calcium-independent phospholipase A(2)β (iPLA(2)β)] is important in regulating extracellular lysophosphatidic acid (LPA) levels around human epithelial ovarian cancer (EOC) cells. To explore the role of iPLA(2)β in host-tumor cell interactions, we have used immunocompetent iPLA(2)β knockout (iPLA(2)β(-/-)) mice and the mouse EOC cell line ID8. Tumorigenesis and ascites formation were reduced in iPLA(2)β(-/-) mice compared with wild-type (WT) mice by more >50% and were reduced further when ID8 cell iPLA(2)β levels were lowered (by>95%) with shRNA. LPA and lysophosphatidylcholine (LPC) levels in the tumor microenvironment were reduced to ∼80% of WT levels in iPLA(2)β(-/-) mice. LPA, but not LPC, stimulated ID8 cell migration and invasion with cells in which iPLA(2)β expression had been down-regulated in vitro. LPA, but not LPC, also enhanced in vivo ascites formation (by ∼5-fold) and tumorigenesis in iPLA(2)β(-/-) mice. This is the first demonstration of a role for host cell iPLA(2)β in cancer, and these findings suggest that iPLA(2)β is a potential target for developing novel antineoplastic therapeutic strategies.
Collapse
Affiliation(s)
- Hui Li
- Department of Obstetrics and Gynecology and
| | | | - Gang Wei
- Department of Obstetrics and Gynecology and
| | - Libo Yan
- Department of Obstetrics and Gynecology and
| | | | - Hong Zhang
- Department of Obstetrics and Gynecology and
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana, USA
- Department of General Surgery, Second Hospital of Jilin University, Changchun, Jilin, China; and
| | - George Earl Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana, USA
- Department of General Surgery, Second Hospital of Jilin University, Changchun, Jilin, China; and
| | - John Turk
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yan Xu
- Department of Obstetrics and Gynecology and
| |
Collapse
|
34
|
Basselin M, Rosa AO, Ramadan E, Cheon Y, Chang L, Chen M, Greenstein D, Wohltmann M, Turk J, Rapoport SI. Imaging decreased brain docosahexaenoic acid metabolism and signaling in iPLA(2)β (VIA)-deficient mice. J Lipid Res 2010; 51:3166-73. [PMID: 20686114 DOI: 10.1194/jlr.m008334] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ca(2+)-independent phospholipase A(2)β (iPLA(2)β) selectively hydrolyzes docosahexaenoic acid (DHA, 22:6n-3) in vitro from phospholipid. Mutations in the PLA2G6 gene encoding this enzyme occur in patients with idiopathic neurodegeneration plus brain iron accumulation and dystonia-parkinsonism without iron accumulation, whereas mice lacking PLA2G6 show neurological dysfunction and neuropathology after 13 months. We hypothesized that brain DHA metabolism and signaling would be reduced in 4-month-old iPLA(2)β-deficient mice without overt neuropathology. Saline or the cholinergic muscarinic M(1,3,5) receptor agonist arecoline (30 mg/kg) was administered to unanesthetized iPLA(2)β(-/-), iPLA(2)β(+/-), and iPLA(2)β(+/+) mice, and [1-(14)C]DHA was infused intravenously. DHA incorporation coefficients k* and rates J(in), representing DHA metabolism, were determined using quantitative autoradiography in 81 brain regions. iPLA(2)β(-/-) or iPLA(2)β(+/-) compared with iPLA(2)β(+/+) mice showed widespread and significant baseline reductions in k* and J(in) for DHA. Arecoline increased both parameters in brain regions of iPLA(2)β(+/+) mice but quantitatively less so in iPLA(2)β(-/-) and iPLA(2)β(+/-) mice. Consistent with iPLA(2)β's reported ability to selectively hydrolyze DHA from phospholipid in vitro, iPLA(2)β deficiency reduces brain DHA metabolism and signaling in vivo at baseline and following M(1,3,5) receptor activation. Positron emission tomography might be used to image disturbed brain DHA metabolism in patients with PLA2G6 mutations.
Collapse
Affiliation(s)
- Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yoda E, Hachisu K, Taketomi Y, Yoshida K, Nakamura M, Ikeda K, Taguchi R, Nakatani Y, Kuwata H, Murakami M, Kudo I, Hara S. Mitochondrial dysfunction and reduced prostaglandin synthesis in skeletal muscle of Group VIB Ca2+-independent phospholipase A2gamma-deficient mice. J Lipid Res 2010; 51:3003-15. [PMID: 20625036 DOI: 10.1194/jlr.m008060] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Group VIB Ca(2+)-independent phospholipase A(2)γ (iPLA(2)γ) is a membrane-bound iPLA(2) enzyme with unique features, such as the utilization of distinct translation initiation sites and the presence of mitochondrial and peroxisomal localization signals. Here we investigated the physiological functions of iPLA(2)γ by disrupting its gene in mice. iPLA(2)γ-knockout (KO) mice were born with an expected Mendelian ratio and appeared normal and healthy at the age of one month but began to show growth retardation from the age of two months as well as kyphosis and significant muscle weakness at the age of four months. Electron microscopy revealed swelling and reduced numbers of mitochondria and atrophy of myofilaments in iPLA(2)γ-KO skeletal muscles. Increased lipid peroxidation and the induction of several oxidative stress-related genes were also found in the iPLA(2)γ-KO muscles. These results provide evidence that impairment of iPLA(2)γ causes mitochondrial dysfunction and increased oxidative stress, leading to the loss of skeletal muscle structure and function. We further found that the compositions of cardiolipin and other phospholipid subclasses were altered and that the levels of myoprotective prostanoids were reduced in iPLA(2)γ-KO skeletal muscle. Thus, in addition to maintenance of homeostasis of the mitochondrial membrane, iPLA(2)γ may contribute to modulation of lipid mediator production in vivo.
Collapse
Affiliation(s)
- Emiko Yoda
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sharma J, Turk J, McHowat J. Endothelial cell prostaglandin I(2) and platelet-activating factor production are markedly attenuated in the calcium-independent phospholipase A(2)beta knockout mouse. Biochemistry 2010; 49:5473-81. [PMID: 20521843 PMCID: PMC2938187 DOI: 10.1021/bi100752u] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Damage and activation of lung endothelium can lead to interstitial edema, infiltration of inflammatory cells into the interstitium and airways, and production of inflammatory metabolites, all of which propagate airway inflammation in a variety of diseases. We have previously determined that stimulation of human microvascular endothelial cells from lung (HMVEC-L) results in activation of a calcium-independent phospholipase A(2) (iPLA(2)), and this leads to arachidonic acid release and production of prostaglandin I(2) (PGI(2)) and platelet-activating factor (PAF). We stimulated lung endothelial cells isolated from iPLA(2)beta-knockout (KO) and wild type (WT) mice with thrombin and tryptase to determine the role of iPLA(2)beta in endothelial cell membrane phospholipid hydrolysis. Thrombin or tryptase stimulation of WT lung endothelial cells resulted in increased arachidonic acid release and production of PGI(2) and PAF. Arachidonic acid release and PGI(2) production by stimulated iPLA(2)beta-KO endothelial cells were significantly reduced compared to WT. Measured PLA(2) activity and PGI(2) production by iPLA(2)beta-KO cells were suppressed by pretreatment with (R)-bromoenol lactone (R-BEL), which is a selective inhibitor of iPLA2gamma. In contrast to the increase in PAF production induced by stimulation of WT endothelial cells, none was observed for KO cells, and this suggests that endothelial PAF production is entirely dependent on iPLA(2)beta activity. Because inflammatory cell recruitment involves the interaction of endothelial cell PAF with PAF receptors on circulating cells, these data suggest that iPLA(2)beta may be a suitable therapeutic target for the treatment of inflammatory lung diseases.
Collapse
Affiliation(s)
- Janhavi Sharma
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - John Turk
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jane McHowat
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| |
Collapse
|
37
|
Baulande S, Langlois C. [Proteins sharing PNPLA domain, a new family of enzymes regulating lipid metabolism]. Med Sci (Paris) 2010; 26:177-84. [PMID: 20188050 DOI: 10.1051/medsci/2010262177] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Genome sequencing technologies led to tremendous breakthrough in biology uncovering numerous genes unknown so far and thus opening the field of deep investigations to understand their associated biological functions. As a matter of fact, functional genomics have been progressively replacing sequence genomics with as a main objective to yield insight into cellular physiology. Recently, an emerging group of genes coding for proteins bearing a common domain termed patatin (PNPLA domain) have been discovered. Members of this new enzymatic family displaying lipase and transacylase properties appeared to have major roles in the regulation of lipid metabolism. The aim of this review is to make an overview on the latest discoveries concerning this new family of proteins and their relationship with lipid metabolism, physiology of mammals and their potential involvement in human pathology.
Collapse
Affiliation(s)
- Sylvain Baulande
- Recherche et Développement, Laboratoire PiLeJe, 37, quai de Grenelle, 75015 Paris, France.
| | | |
Collapse
|
38
|
Song H, Wohltmann M, Bao S, Ladenson JH, Semenkovich CF, Turk J. Mice deficient in group VIB phospholipase A2 (iPLA2gamma) exhibit relative resistance to obesity and metabolic abnormalities induced by a Western diet. Am J Physiol Endocrinol Metab 2010; 298:E1097-114. [PMID: 20179248 PMCID: PMC2886524 DOI: 10.1152/ajpendo.00780.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Phospholipases A(2) (PLA(2)) play important roles in metabolic processes, and the Group VI PLA(2) family is comprised of intracellular enzymes that do not require Ca(2+) for catalysis. Mice deficient in Group VIA PLA(2) (iPLA(2)beta) develop more severe glucose intolerance than wild-type (WT) mice in response to dietary stress. Group VIB PLA(2) (iPLA(2)gamma) is a related enzyme distributed in membranous organelles, including mitochondria, and iPLA(2)gamma knockout (KO) mice exhibit altered mitochondrial morphology and function. We have compared metabolic responses of iPLA(2)gamma-KO and WT mice fed a Western diet (WD) with a high fat content. We find that KO mice are resistant to WD-induced increases in body weight and adiposity and in blood levels of cholesterol, glucose, and insulin, even though WT and KO mice exhibit similar food consumption and dietary fat digestion and absorption. KO mice are also relatively resistant to WD-induced insulin resistance, glucose intolerance, and altered patterns of fat vs. carbohydrate fuel utilization. KO skeletal muscle exhibits impaired mitochondrial beta-oxidation of fatty acids, as reflected by accumulation of larger amounts of long-chain acylcarnitine (LCAC) species in KO muscle and liver compared with WT in response to WD feeding. This is associated with increased urinary excretion of LCAC and much reduced deposition of triacylglycerols in liver by WD-fed KO compared with WT mice. The iPLA(2)gamma-deficient genotype thus results in a phenotype characterized by impaired mitochondrial oxidation of fatty acids and relative resistance to the metabolic abnormalities induced by WD.
Collapse
Affiliation(s)
- Haowei Song
- Mass Spectrometry Facility, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
39
|
Song H, Bao S, Lei X, Jin C, Zhang S, Turk J, Ramanadham S. Evidence for proteolytic processing and stimulated organelle redistribution of iPLA(2)beta. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1801:547-58. [PMID: 20132906 PMCID: PMC2848069 DOI: 10.1016/j.bbalip.2010.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 12/24/2009] [Accepted: 01/19/2010] [Indexed: 12/31/2022]
Abstract
Over the past decade, important roles for the 84-88kDa Group VIA Ca(2+)-independent phospholipase A(2) (iPLA(2)beta) in various organs have been described. We demonstrated that iPLA(2)beta participates in insulin secretion, insulinoma cells and native pancreatic islets express full-length and truncated isoforms of iPLA(2)beta, and certain stimuli promote perinuclear localization of iPLA(2)beta. To gain a better understanding of its mobilization, iPLA(2)beta was expressed in INS-1 cells as a fusion protein with EGFP, enabling detection of subcellular localization of iPLA(2)beta by monitoring EGFP fluorescence. Cells stably-transfected with fusion protein expressed nearly 5-fold higher catalytic iPLA(2)beta activity than control cells transfected with EGFP cDNA alone, indicating that co-expression of EGFP does not interfere with manifestation of iPLA(2)beta activity. Dual fluorescence monitoring of EGFP and organelle Trackers combined with immunoblotting analyses revealed expression of truncated iPLA(2)beta isoforms in separate subcellular organelles. Exposure to secretagogues and induction of ER stress are known to activate iPLA(2)beta in beta-cells and we find here that these stimuli promote differential localization of iPLA(2)beta in subcellular organelles. Further, mass spectrometric analyses identified iPLA(2)beta variants from which N-terminal residues were removed. Collectively, these findings provide evidence for endogenous proteolytic processing of iPLA(2)beta and redistribution of iPLA(2)beta variants in subcellular compartments. It might be proposed that in vivo processing of iPLA(2)beta facilitates its participation in multiple biological processes.
Collapse
Affiliation(s)
- Haowei Song
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Shunzhong Bao
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Xiaoyong Lei
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Chun Jin
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Sheng Zhang
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - John Turk
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| | - Sasanka Ramanadham
- Mass Spectrometry Resource, Division of Metabolism, Endocrinology, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, U.S.A
| |
Collapse
|
40
|
Murakami M, Taketomi Y, Girard C, Yamamoto K, Lambeau G. Emerging roles of secreted phospholipase A2 enzymes: Lessons from transgenic and knockout mice. Biochimie 2010; 92:561-82. [PMID: 20347923 DOI: 10.1016/j.biochi.2010.03.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/18/2010] [Indexed: 11/15/2022]
Abstract
Among the emerging phospholipase A(2) (PLA(2)) superfamily, the secreted PLA(2) (sPLA(2)) family consists of low-molecular-mass, Ca(2+)-requiring extracellular enzymes with a His-Asp catalytic dyad. To date, more than 10 sPLA(2) enzymes have been identified in mammals. Individual sPLA(2)s exhibit unique tissue and cellular localizations and enzymatic properties, suggesting their distinct pathophysiological roles. Despite numerous enzymatic and cell biological studies on this enzyme family in the past two decades, their precise in vivo functions still remain largely obscure. Recent studies using transgenic and knockout mice for several sPLA(2) enzymes, in combination with lipidomics approaches, have opened new insights into their distinct contributions to various biological events such as food digestion, host defense, inflammation, asthma and atherosclerosis. In this article, we overview the latest understanding of the pathophysiological functions of individual sPLA(2) isoforms fueled by studies employing transgenic and knockout mice for several sPLA(2)s.
Collapse
Affiliation(s)
- Makoto Murakami
- Biomembrane Signaling Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | |
Collapse
|
41
|
Lei X, Barbour SE, Ramanadham S. Group VIA Ca2+-independent phospholipase A2 (iPLA2beta) and its role in beta-cell programmed cell death. Biochimie 2010; 92:627-37. [PMID: 20083151 DOI: 10.1016/j.biochi.2010.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 01/11/2010] [Indexed: 01/09/2023]
Abstract
Activation of phospholipases A(2) (PLA(2)s) leads to the generation of biologically active lipid mediators that can affect numerous cellular events. The Group VIA Ca(2+)-independent PLA(2), designated iPLA(2)beta, is active in the absence of Ca(2+), activated by ATP, and inhibited by the bromoenol lactone suicide inhibitor (BEL). Over the past 10-15 years, studies using BEL have demonstrated that iPLA(2)beta participates in various biological processes and the recent availability of mice in which iPLA(2)beta expression levels have been genetically-modified are extending these findings. Work in our laboratory suggests that iPLA(2)beta activates a unique signaling cascade that promotes beta-cell apoptosis. This pathway involves iPLA(2)beta dependent induction of neutral sphingomyelinase, production of ceramide, and activation of the intrinsic pathway of apoptosis. There is a growing body of literature supporting beta-cell apoptosis as a major contributor to the loss of beta-cell mass associated with the onset and progression of Type 1 and Type 2 diabetes mellitus. This underscores a need to gain a better understanding of the molecular mechanisms underlying beta-cell apoptosis so that improved treatments can be developed to prevent or delay the onset and progression of diabetes mellitus. Herein, we offer a general review of Group VIA Ca(2+)-independent PLA(2) (iPLA(2)beta) followed by a more focused discussion of its participation in beta-cell apoptosis. We suggest that iPLA(2)beta-derived products trigger pathways which can lead to beta-cell apoptosis during the development of diabetes.
Collapse
Affiliation(s)
- Xiaoyong Lei
- Department of Medicine, Mass Spectrometry Resource and Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
42
|
Kim MS, Yang YM, Son A, Tian YS, Lee SI, Kang SW, Muallem S, Shin DM. RANKL-mediated reactive oxygen species pathway that induces long lasting Ca2+ oscillations essential for osteoclastogenesis. J Biol Chem 2010; 285:6913-21. [PMID: 20048168 DOI: 10.1074/jbc.m109.051557] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
RANKL (receptor activator of NF-kappaB ligand) induces osteoclastogenesis by activating multiple signaling pathways in osteoclast precursor cells, chief among which is induction of long lasting oscillations in the intracellular concentration of Ca(2+) ([Ca(2+)](i)). The [Ca(2+)](i) oscillations activate calcineurin, which activates the transcription factor NFATc1. The pathway by which RANKL induces [Ca(2+)](i) oscillations and osteoclastogenesis is poorly understood. Here we report the discovery of a novel pathway induced by RANKL to cause a long lasting increase in reactive oxygen species (ROS) and [Ca(2+)](i) oscillations that is essential for differentiation of bone marrow-derived monocytes into osteoclasts. The pathway includes RANKL-mediated stimulation of Rac1 to generate ROS, which stimulate phospholipase Cgamma1 to evoke [Ca(2+)](i) oscillations by stimulating Ca(2+) release from the inositol 1,4,5-trisphosphate pool and STIM1-regulated Ca(2+) influx. Induction and activation of the pathway is observed only after 24-h stimulation with RANKL and lasts for at least 3 days. The physiological role of the pathway is demonstrated in mice with deletion of the Peroxiredoxin II gene and results in a mark increase is ROS and, consequently, a decrease in bone density. Moreover, bone marrow-derived monocytes in PrxII(-/-) primary culture show increased ROS and spontaneous [Ca(2+)](i) oscillations. These findings identify the primary RANKL-stimulated pathway to trigger the late stages of osteoclastogenesis and regulate bone resorption.
Collapse
Affiliation(s)
- Min Seuk Kim
- Department of Oral Biology, Brain Korea 21 Project, Oral Science Research Center, Center for Natural Defense System, Yonsei University College of Dentistry, Seoul 120-752, Korea
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Pinto M, Jepsen KJ, Terranova CJ, Buffenstein R. Lack of sexual dimorphism in femora of the eusocial and hypogonadic naked mole-rat: a novel animal model for the study of delayed puberty on the skeletal system. Bone 2010; 46:112-20. [PMID: 19761882 PMCID: PMC4783644 DOI: 10.1016/j.bone.2009.08.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/18/2009] [Accepted: 08/12/2009] [Indexed: 12/22/2022]
Abstract
Sex steroid hormones are major determinants of bone morphology and quality and are responsible for sexually dimorphic skeletal traits. Hypogonadism results in suboptimal skeletal development and may lead to an increased risk of bone fracture later in life. The etiology of delayed puberty and/or hypothalamic amenorrhea is poorly understood, and experimental animal models addressing this issue are predominantly based upon short-term experimental induction of hormonal suppression via gonadotropin releasing hormone antagonists (GnRH-a). This acute change in hormone profile does not necessarily emulate the natural progression of hypogonadic bone disorders. We propose a novel animal model with which to explore the effects of chronic hypogonadism on bone quality, the naked mole-rat (NMR; Heterocephalus glaber). This mouse-size rodent may remain reproductively suppressed throughout its life, if it remains as a subordinate within the eusocial mole-rat colony. NMRs live in large colonies with a single dominant breeding female. She, primarily by using aggressive social contact, naturally suppresses the hypothalamic gonadotropic axis of subordinate NMRs and thereby their reproductive expression. However, should an NMR be separated from the dominant breeder, within less than a week reproductive hormones may become elevated and the animal attains breeding status. We questioned if sexual suppression of subordinates impact upon the development and maintenance of the femora and lead to a sexually indistinct monomorphic skeleton. Femora were obtained from male and female NMRs that were either non-breeders (subordinate) or breeders at the time of sacrifice. Diaphyseal cross-sectional morphology, metaphyseal trabecular micro-architecture and tissue mineral density of the femur were measured using microcomputed tomography and diaphyseal mechanical properties were assessed by four-point bending tests to failure. Subordinates were sexually monomorphic and showed no significant differences in body weight or femoral bone structure and quality between males and females. Femora of subordinate females differed significantly from that of breeding animals, whereas in males, the divergent trend among breeders and non-breeders did not reach statistical significance. Subordinate NMRs, naturally suppressed from entering puberty, may prove to be a useful model to tease apart the relationship between bone morphology and hypogonadism and evaluate skeletal development during pubertal maturation.
Collapse
Affiliation(s)
- M Pinto
- City College of CUNY, New York, NY, USA
| | | | | | | |
Collapse
|
44
|
Magrioti V, Kokotos G. Phospholipase A2inhibitors as potential therapeutic agents for the treatment of inflammatory diseases. Expert Opin Ther Pat 2009; 20:1-18. [DOI: 10.1517/13543770903463905] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Wada H, Yasuda T, Miura I, Watabe K, Sawa C, Kamijuku H, Kojo S, Taniguchi M, Nishino I, Wakana S, Yoshida H, Seino KI. Establishment of an improved mouse model for infantile neuroaxonal dystrophy that shows early disease onset and bears a point mutation in Pla2g6. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2257-63. [PMID: 19893029 DOI: 10.2353/ajpath.2009.090343] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Calcium-independent group VIA phospholipase A(2) (iPLA(2)beta), encoded by PLA2G6, has been shown to be involved in various physiological and pathological processes, including immunity, cell death, and cell membrane homeostasis. Mutations in the PLA2G6 gene have been recently identified in patients with infantile neuroaxonal dystrophy (INAD). Subsequently, it was reported that similar neurological impairment occurs in gene-targeted mice with a null mutation of iPLA(2)beta, whose disease onset became apparent approximately 1 to 2 years after birth. Here, we report the establishment of an improved mouse model for INAD that bears a point mutation in the ankyrin repeat domain of Pla2g6 generated by N-ethyl-N-nitrosourea mutagenesis. These mutant mice developed severe motor dysfunction, including abnormal gait and poor performance in the hanging grip test, as early as 7 to 8 weeks of age, in a manner following Mendelian law. Neuropathological examination revealed widespread formation of spheroids containing tubulovesicular membranes similar to human INAD. Molecular and biochemical analysis revealed that the mutant mice expressed Pla2g6 mRNA and protein, but the mutated Pla2g6 protein had no glycerophospholipid-catalyzing enzyme activity. Because of the significantly early onset of the disease, this mouse mutant (Pla2g6-inad) could be highly useful for further studies of pathogenesis and experimental interventions in INAD and neurodegeneration.
Collapse
Affiliation(s)
- Haruka Wada
- Division of Bioregulation Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki-City, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ohga N, Hida K, Hida Y, Muraki C, Tsuchiya K, Matsuda K, Ohiro Y, Totsuka Y, Shindoh M. Inhibitory effects of epigallocatechin-3 gallate, a polyphenol in green tea, on tumor-associated endothelial cells and endothelial progenitor cells. Cancer Sci 2009; 100:1963-70. [PMID: 19650861 PMCID: PMC11159695 DOI: 10.1111/j.1349-7006.2009.01255.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The polyphenol epigallocatechin-3 gallate (EGCG) in green tea suppresses tumor growth by direct action on tumor cells and by inhibition of angiogenesis, but it is not known whether it specifically inhibits tumor angiogenesis. We examined the anti-angiogenic effect of EGCG on tumor-associated endothelial cells (TEC), endothelial progenitor cells (EPC), and normal endothelial cells (NEC). EGCG suppressed the migration of TEC and EPC but not NEC. EGCG also inhibited the phosphorylation of Akt in TEC but not in NEC. Furthermore, vascular endothelial growth factor-induced mobilization of EPC into circulation was inhibited by EGCG. MMP-9 in the bone marrow plasma plays key roles in EPC mobilization into circulation. We observed that expression of MMP-9 mRNA was downregulated by EGCG in mouse bone marrow stromal cells. In an in vivo model, EGCG suppressed growth of melanoma and reduced microvessel density. Our study showed that EGCG has selective anti-angiogenic effects on TEC and EPC. It is suggested that EGCG could be a promising angiogenesis inhibitor for cancer therapy.
Collapse
Affiliation(s)
- Noritaka Ohga
- Department of Oral Pathology and Biology, Division of Oral Pathological Science, University of Hokkaido, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Jäger M, Zilkens C, Bittersohl B, Krauspe R. Cord blood--an alternative source for bone regeneration. Stem Cell Rev Rep 2009; 5:266-77. [PMID: 19652969 DOI: 10.1007/s12015-009-9083-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 07/20/2009] [Indexed: 12/12/2022]
Abstract
Bone regeneration is one of the best investigated pathways in mesenchymal stromal cell (MSC) biology. Therefore strong efforts have been made to introduce tissue engineering and cell therapeutics as an alternative treatment option for patients with bone defects. This review of the literature gives an overview of MSC biology aiming for clinical application including advantages but also specific challenges and problems which are associated with cord blood derived stromal cell (CB-MSC) as a source for bone regeneration. The use of postnatal CB-MSC is ethically uncomplicated and requires no invasive harvesting procedure. Moreover, most data document a high osteogenic potential of CB-MCS and also low immunoreactivity compared with other MSC types. The expression profile of CB-MSC during osteogenic differentiation shows similarities to that of other MSC types. Within the umbilical cord different MSC types have been characterized which are potent to differentiate into osteoblasts. In contrast to a large number of in vitro investigations there are only few in vivo studies available so far.
Collapse
Affiliation(s)
- Marcus Jäger
- Department of Orthopaedics, Heinrich-Heine University Medical School, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
48
|
Hsu YH, Burke JE, Li S, Woods VL, Dennis EA. Localizing the membrane binding region of Group VIA Ca2+-independent phospholipase A2 using peptide amide hydrogen/deuterium exchange mass spectrometry. J Biol Chem 2009; 284:23652-61. [PMID: 19556238 DOI: 10.1074/jbc.m109.021857] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Group VIA-2 Ca(2+)-independent phospholipase A(2) (GVIA-2 iPLA(2)) is composed of seven consecutive N-terminal ankyrin repeats, a linker region, and a C-terminal phospholipase catalytic domain. No structural information exists for this enzyme, and no information is known about the membrane binding surface. We carried out deuterium exchange experiments with the GVIA-2 iPLA(2) in the presence of both phospholipid substrate and the covalent inhibitor methyl arachidonoyl fluorophosphonate and located regions in the protein that change upon lipid binding. No changes were seen in the presence of only methyl arachidonoyl fluorophosphonate. The region with the greatest change upon lipid binding was region 708-730, which showed a >70% decrease in deuteration levels at numerous time points. No decreases in exchange due to phospholipid binding were seen in the ankyrin repeat domain of the protein. To locate regions with changes in exchange on the enzyme, we constructed a computational homology model based on homologous structures. This model was validated by comparing the deuterium exchange results with the predicted structure. Our model combined with the deuterium exchange results in the presence of lipid substrate have allowed us to propose the first structural model of GVIA-2 iPLA(2) as well as the interfacial lipid binding region.
Collapse
Affiliation(s)
- Yuan-Hao Hsu
- Department of Chemistry, University of California, San Diego, La Jolla, California 92093-0601, USA
| | | | | | | | | |
Collapse
|
49
|
Kienesberger PC, Oberer M, Lass A, Zechner R. Mammalian patatin domain containing proteins: a family with diverse lipolytic activities involved in multiple biological functions. J Lipid Res 2009; 50 Suppl:S63-8. [PMID: 19029121 PMCID: PMC2674697 DOI: 10.1194/jlr.r800082-jlr200] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Indexed: 12/13/2022] Open
Abstract
The human genome expresses nine patatin-like phospholipase domain containing proteins (PNPLA1-9). Members of this family share a protein domain discovered initially in patatin, the most abundant protein of the potato tuber. Patatin is a lipid hydrolase with an unusual folding topology that differs from classical lipases. Mammalian PNPLAs include lipid hydrolases with specificities for diverse substrates such as triacylglycerols, phospholipids, and retinol esters. Analysis of induced mutant mouse models and the clinical phenotype of patients with mutations revealed important insights into the physiological role of several members of the PNPLA family. This review aims to summarize current knowledge of PNPLA proteins and to document their emerging importance in lipid and energy homeostasis.
Collapse
Affiliation(s)
| | | | | | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| |
Collapse
|
50
|
Burke JE, Dennis EA. Phospholipase A2 structure/function, mechanism, and signaling. J Lipid Res 2008; 50 Suppl:S237-42. [PMID: 19011112 DOI: 10.1194/jlr.r800033-jlr200] [Citation(s) in RCA: 644] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tremendous advances in understanding the structure and function of the superfamily of phospholipase A2 (PLA2) enzymes has occurred in the twenty-first century. The superfamily includes 15 groups comprising four main types including the secreted sPLA2, cytosolic cPLA2, calcium-independent iPLA2, and platelet activating factor (PAF) acetyl hydrolase/oxidized lipid lipoprotein associated (Lp)PLA2. We review herein our current understanding of the structure and interaction with substrate phospholipids, which resides in membranes for a representative of each of these main types of PLA2. We will also briefly review the development of inhibitors of these enzymes and their roles in lipid signaling.
Collapse
Affiliation(s)
- John E Burke
- Department of Chemistry, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0601, USA
| | | |
Collapse
|