1
|
Baer B, Lin J, Schaaf KR, Ware LB, Shaver CM, Bastarache JA. Matrix metalloproteinase-7 is dispensable in a mouse model of sepsis-induced acute lung injury. PLoS One 2025; 20:e0321349. [PMID: 40341670 PMCID: PMC12061409 DOI: 10.1371/journal.pone.0321349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/05/2025] [Indexed: 05/10/2025] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening form of acute lung injury whose pathogenesis is characterized by excessive lung inflammation and alveolar-capillary barrier permeability. Matrix metalloproteinase 7 (MMP7) can regulate leukocyte recruitment and the production of pro-inflammatory cytokines, but whether it plays a role in acute lung injury (ALI) is an unanswered question. We hypothesized that global loss of MMP7 would attenuate sepsis-induced ALI and systemic inflammation. To test this, male and female MMP7 knockout (MMP7KO) mice and wild-type (WT) littermates were exposed to a two-hit model of ALI (sepsis+hyperoxia). Sepsis was induced through intraperitoneal injection of cecal slurry (CS; 1.6mg/g) or 5% dextrose (control) followed by exposure to hyperoxia (HO; FiO2=0.95) or room air (control, FiO2=0.21). At 24-hours post-CS+HO, we measured weight loss, illness severity, and body temperature. The mice were then sacrificed, and samples from the lungs, kidneys, spleen, blood, peritoneal wash, and bronchoalveolar lavage (BAL) fluid were collected for analysis. Bacterial burden was assessed in the peritoneum, lung, and spleen. Lung inflammation was assessed by BAL inflammatory cell recruitment and pro-inflammatory cytokine concentrations as well as lung tissue mRNA expression of pro-inflammatory cytokines. Alveolar-capillary barrier disruption was quantified by BAL total protein, BAL immunoglobulin M, and lung wet-to-dry weight ratios. Histologic evidence of lung injury was evaluated using a histological scoring system. Systemic inflammation was measured through plasma pro-inflammatory cytokines and peritoneal inflammatory cells. Kidney function, inflammation, and injury were assessed through plasma urea nitrogen concentrations, as well as tissue levels of pro-inflammatory cytokines, neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule 1 (KIM-1). Relative mRNA expression of MMP-7, MMP-9, and MMP-2 was also quantified in both lung and kidney tissue through qPCR. At 24-hours post-CS+HO all mice developed ALI. Septic mice also had increased systemic inflammation, kidney inflammation, kidney injury, and kidney dysfunction compared to controls. Loss of MMP7 did not affect markers of inflammation, organ injury, or organ dysfunction. Interestingly, septic male mice exhibited more severe illness, systemic and lung inflammation, lung injury, and lung expression of matrix metalloproteinases, while septic female mice exhibited more kidney inflammation, kidney injury, and kidney expression of matrix metalloproteinases. In conclusion, MMP7 is not essential for the development or resolution of sepsis-induced ALI in this model and likely plays a limited role in the condition.
Collapse
Affiliation(s)
- Brandon Baer
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jason Lin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Kaitlyn R. Schaaf
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ciara M. Shaver
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Julie A. Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
2
|
Li S, Zou M, Wang Y, Guo Q, Lv S, Zhao W, Kabir MA, Peng X. Matrix metalloproteinase 7 (MMP7) as a molecular target for Mycoplasma gallisepticum (MG) resistance in chickens. Int J Biol Macromol 2025; 298:140110. [PMID: 39842573 DOI: 10.1016/j.ijbiomac.2025.140110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/12/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Mycoplasma gallisepticum (MG) causes chronic respiratory disease (CRD), posing a significant threat to global poultry production. Current preventive strategies face limitations, emphasizing the need for alternative approaches such as breeding for disease resistance. This study identifies the matrix metalloproteinase 7 (MMP7) gene as a key factor in CRD resistance. Analysis of high-throughput sequencing data revealed MMP7's association with MG infection at tissue and cellular levels. Overexpression of MMP7 in avian type II alveolar epithelial cells (AECII) and macrophages (HD11) inhibited MG adhesion, modulated immune responses, and suppressed MG-induced cell proliferation and apoptosis, though MG replication remained unaffected. Conversely, MMP7 inhibition enhanced MG infection. Experimental infections in commercial (Jingfen Layer No.6, Hy-Line White) and local Chinese chicken breeds (Guangxi Indigenous, Tianlu Partridge, Cyan Shank Partridge) validated Tianlu Partridge chickens' relative resistance and Jingfen Layers' susceptibility. MMP7 expression levels correlated positively with reduced chick weight, air sac damage, tracheal mucosal thickness, and MG lung loads. These findings highlight MMP7 as a molecular target for assessing MG susceptibility and breeding resistant chickens while demonstrating the utility of local Chinese breeds in resistance-focused breeding programs.
Collapse
Affiliation(s)
- Shiying Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengyun Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Institute of animal husbandry and veterinary medicine, Jiangxi Academy of Agricultural Sciences, Jiangxi poultry Engineering Technology Research Center, Jiangxi poultry breeding Engineering Laboratory, Nanchang, Jiangxi, China
| | - Yingjie Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan Province 611130, China
| | - Qiao Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Shan Lv
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenqing Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Md Ahsanul Kabir
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Lialios P, Alimperti S. Role of E-cadherin in epithelial barrier dysfunction: implications for bacterial infection, inflammation, and disease pathogenesis. Front Cell Infect Microbiol 2025; 15:1506636. [PMID: 40007608 PMCID: PMC11850337 DOI: 10.3389/fcimb.2025.1506636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Epithelial barriers serve as critical defense lines against microbial infiltration and maintain tissue homeostasis. E-cadherin, an essential component of adherens junctions, has emerged as a pivotal molecule that secures epithelial homeostasis. Lately, its pleiotropic role beyond barrier function, including its involvement in immune responses, has become more evident. Herein, we delve into the intricate relationship between (dys)regulation of epithelial homeostasis and the versatile functionality of E-cadherin, describing complex mechanisms that underlie barrier integrity and disruption in disease pathogenesis such as bacterial infection and inflammation, among others. Clinical implications of E-cadherin perturbations in host pathophysiology are emphasized; downregulation, proteolytic phenomena, abnormal localization/signaling and aberrant immune reactions are linked with a broad spectrum of pathology beyond infectious diseases. Finally, potential therapeutic interventions that may harness E-cadherin to mitigate barrier-associated tissue damage are explored. Overall, this review highlights the crucial role of E-cadherin in systemic health, offering insights that could pave the way for strategies to reinforce/restore barrier integrity and treat related diseases.
Collapse
Affiliation(s)
- Peter Lialios
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| | - Stella Alimperti
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- Center for Biological and Biomedical Engineering, Georgetown University, Washington, DC, United States
| |
Collapse
|
4
|
Tan RJ, Liu Y. Matrix metalloproteinases in kidney homeostasis and diseases: an update. Am J Physiol Renal Physiol 2024; 327:F967-F984. [PMID: 39361724 PMCID: PMC11687849 DOI: 10.1152/ajprenal.00179.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases with important roles in kidney homeostasis and pathology. While capable of collectively degrading each component of the extracellular matrix, MMPs also degrade nonmatrix substrates to regulate inflammation, epithelial plasticity, proliferation, apoptosis, and angiogenesis. More recently, intriguing mechanisms that directly alter podocyte biology have been described. There is now irrefutable evidence for MMP dysregulation in many types of kidney disease including acute kidney injury, diabetic and hypertensive nephropathy, polycystic kidney disease, and Alport syndrome. This updated review will detail the complex biology of MMPs in kidney disease.
Collapse
Affiliation(s)
- Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Yuan Y. Imbalance of dendritic cell function in pulmonary fibrosis. Cytokine 2024; 181:156687. [PMID: 38963940 DOI: 10.1016/j.cyto.2024.156687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/08/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Pulmonary fibrosis (PF) is a chronic, irreversible interstitial lung disease. The pathogenesis of PF remains unclear, and there are currently no effective treatments or drugs that can completely cure PF. The primary cause of PF is an imbalance of inflammatory response and inappropriate repair following lung injury. Dendritic cells (DCs), as one of the immune cells in the body, play an important role in regulating immune response, immune tolerance, and promoting tissue repair following lung injury. However, the role of DCs in the PF process is ambiguous or even contradictory in the existing literature. On the one hand, DCs can secrete transforming growth factor β(TGF-β), stimulate Th17 cell differentiation, stimulate fibroblast proliferation, and promote the generation of inflammatory factors interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α), thereby promoting PF. On the other hand, DCs suppress PF through mechanisms including the secretion of IL-10 to inhibit effector T cell activity in the lungs and promote the function of regulatory T cells (Tregs), as well as by expressing matrix metalloproteinases (MMPs) which facilitate the degradation of the extracellular matrix (ECM). This article will infer possible reasons for the different roles of DCs in PF and analyze possible reasons for the functional imbalance of DCs in pulmonary fibrosis from the complexity and changes of the pulmonary microenvironment, autophagy defects of DCs, and changes in the pulmonary physical environment.
Collapse
Affiliation(s)
- Yuan Yuan
- Hengyang Medical College, University of South China, Hengyang 421001, Hunan Province, China.
| |
Collapse
|
6
|
Huang C, Liang C, Tong J, Zhong X, Luo L, Liang L, Wen Y, Zhong L, Deng J, Peng M, Wu W, Huang W, Xie A, Huang Y, Chen J. Soluble E-cadherin participates in BLM-induced pulmonary fibrosis by promoting EMT and lung fibroblast migration. ENVIRONMENTAL TOXICOLOGY 2024; 39:435-443. [PMID: 37792543 DOI: 10.1002/tox.23986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Soluble E-cadherin (sE-cad) is an 80 kDa fragment derived from E-cadherin that is shed from the cell surface through proteolytic cleavage and is a biomarker in various cancers that promotes invasion and migration. Alveolar epithelial destruction, aberrant lung fibroblast migration and inflammation contribute to pulmonary fibrosis. Here, we hypothesized that E-cadherin plays an important role in lung fibrosis. In this study, we found that E-cadherin was markedly increased in the bronchoalveolar lavage fluid (BALF) and serum of mice with pulmonary fibrosis and that blocking sE-cad with HECD-1, a neutralizing antibody targeting the ectodomain of E-cadherin, effectively inhibited myofibroblast accumulation and collagen deposition in the lungs after bleomycin (BLM) exposure. Moreover, transforming growth factor-β (TGF-β1) induced the shedding of sE-cad from A549 cells, and treatment with HECD-1 inhibited epithelial-mesenchymal transition (EMT) stimulated by TGF-β1. Fc-E-cadherin (Fc-Ecad), which is an exogenous form of sE-cad, robustly promoted lung fibroblast migration. E-cadherin participates in bleomycin (BLM)-induced lung fibrosis by promoting EMT in the alveolar epithelium and fibroblast activation. E-cadherin may be a novel therapeutic target for lung fibrosis.
Collapse
Affiliation(s)
- Chaowen Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Congmin Liang
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Jinzhai Tong
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Xueying Zhong
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Lishan Luo
- Department of Respiratory and Critical Care Medicine, Huizhou Municipal Central Hospital, Huizhou, Guangdong Province, China
| | - Liping Liang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Yuting Wen
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Liandi Zhong
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Jiongrui Deng
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Ming Peng
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Weiliang Wu
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Weijian Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Anlun Xie
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Yanming Huang
- Department of Pulmonary and Critical Care Medicine, Jiangmen Institute of Respiratory Disease, Jiangmen Central Hospital, Jiangmen, China
| | - Jialong Chen
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong Province, China
| |
Collapse
|
7
|
Lingappan K, Olutoye OO, Cantu A, Cantu Gutierrez ME, Cortes-Santiago N, Hammond JD, Gilley J, Quintero JR, Li H, Polverino F, Gleghorn JP, Keswani SG. Molecular insights using spatial transcriptomics of the distal lung in congenital diaphragmatic hernia. Am J Physiol Lung Cell Mol Physiol 2023; 325:L477-L486. [PMID: 37605849 PMCID: PMC10639013 DOI: 10.1152/ajplung.00154.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/11/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
Abnormal pulmonary vascular development and function in congenital diaphragmatic hernia (CDH) is a significant factor leading to pulmonary hypertension. The lung is a very heterogenous organ and has marked cellular diversity that is differentially responsive to injury and therapeutic agents. Spatial transcriptomics provides the unmatched capability of discerning the differences in the transcriptional signature of these distinct cell subpopulations in the lung with regional specificity. We hypothesized that the distal lung parenchyma (selected as a region of interest) would show a distinct transcriptomic profile in the CDH lung compared with control (normal lung). We subjected lung sections obtained from male and female CDH and control neonates to spatial transcriptomics using the Nanostring GeoMx platform. Spatial transcriptomic analysis of the human CDH and control lung revealed key differences in the gene expression signature. Increased expression of alveolar epithelial-related genes (SFTPA1 and SFTPC) and angiogenesis-related genes (EPAS1 and FHL1) was seen in control lungs compared with CDH lungs. Response to vitamin A was enriched in the control lungs as opposed to abnormality of the coagulation cascade and TNF-alpha signaling via NF-kappa B in the CDH lung parenchyma. In male patients with CDH, higher expression of COL1A1 (ECM remodeling) and CD163 was seen. Increased type 2 alveolar epithelial cells (AT-2) and arterial and lung capillary endothelial cells were seen in control lung samples compared with CDH lung samples. To the best of our knowledge, this is the first use of spatial transcriptomics in patients with CDH that identifies the contribution of different lung cellular subpopulations in CDH pathophysiology and highlights sex-specific differences.NEW & NOTEWORTHY This is the first use of spatial transcriptomics in patients with congenital diaphragmatic hernia (CDH) that identifies the contribution of different lung cellular subpopulations in CDH pathophysiology and highlights sex-specific differences.
Collapse
Affiliation(s)
- Krithika Lingappan
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Oluyinka O Olutoye
- Department of Pediatric Surgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States
| | - Abiud Cantu
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Manuel Eliezer Cantu Gutierrez
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Nahir Cortes-Santiago
- Department of Pathology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States
| | - J D Hammond
- Division of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States
| | - Jamie Gilley
- Division of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States
| | - Joselyn Rojas Quintero
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Hui Li
- Department of Pediatric Surgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States
| | - Francesca Polverino
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States
| | - Sundeep G Keswani
- Department of Pediatric Surgery, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States
| |
Collapse
|
8
|
Inoue R, Yasuma T, Fridman D’Alessandro V, Toda M, Ito T, Tomaru A, D’Alessandro-Gabazza CN, Tsuruga T, Okano T, Takeshita A, Nishihama K, Fujimoto H, Kobayashi T, Gabazza EC. Amelioration of Pulmonary Fibrosis by Matrix Metalloproteinase-2 Overexpression. Int J Mol Sci 2023; 24:ijms24076695. [PMID: 37047672 PMCID: PMC10095307 DOI: 10.3390/ijms24076695] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive and fatal disease with a poor prognosis. Matrix metalloproteinase-2 is involved in the pathogenesis of organ fibrosis. The role of matrix metalloproteinase-2 in lung fibrosis is unclear. This study evaluated whether overexpression of matrix metalloproteinase-2 affects the development of pulmonary fibrosis. Lung fibrosis was induced by bleomycin in wild-type mice and transgenic mice overexpressing human matrix metalloproteinase-2. Mice expressing human matrix metalloproteinase-2 showed significantly decreased infiltration of inflammatory cells and inflammatory and fibrotic cytokines in the lungs compared to wild-type mice after induction of lung injury and fibrosis with bleomycin. The computed tomography score, Ashcroft score of fibrosis, and lung collagen deposition were significantly reduced in human matrix metalloproteinase transgenic mice compared to wild-type mice. The expression of anti-apoptotic genes was significantly increased, while caspase-3 activity was significantly reduced in the lungs of matrix metalloproteinase-2 transgenic mice compared to wild-type mice. Active matrix metalloproteinase-2 significantly decreased bleomycin-induced apoptosis in alveolar epithelial cells. Matrix metalloproteinase-2 appears to protect against pulmonary fibrosis by inhibiting apoptosis of lung epithelial cells.
Collapse
Affiliation(s)
- Ryo Inoue
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Taro Yasuma
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | | | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Toshiyuki Ito
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Atsushi Tomaru
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | | | - Tatsuki Tsuruga
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Tomohito Okano
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Atsuro Takeshita
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Kota Nishihama
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| |
Collapse
|
9
|
Ma H, Wu X, Li Y, Xia Y. Research Progress in the Molecular Mechanisms, Therapeutic Targets, and Drug Development of Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:963054. [PMID: 35935869 PMCID: PMC9349351 DOI: 10.3389/fphar.2022.963054] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease. Recent studies have identified the key role of crosstalk between dysregulated epithelial cells, mesenchymal, immune, and endothelial cells in IPF. In addition, genetic mutations and environmental factors (e.g., smoking) have also been associated with the development of IPF. With the recent development of sequencing technology, epigenetics, as an intermediate link between gene expression and environmental impacts, has also been reported to be implicated in pulmonary fibrosis. Although the etiology of IPF is unknown, many novel therapeutic targets and agents have emerged from clinical trials for IPF treatment in the past years, and the successful launch of pirfenidone and nintedanib has demonstrated the promising future of anti-IPF therapy. Therefore, we aimed to gain an in-depth understanding of the underlying molecular mechanisms and pathogenic factors of IPF, which would be helpful for the diagnosis of IPF, the development of anti-fibrotic drugs, and improving the prognosis of patients with IPF. In this study, we summarized the pathogenic mechanism, therapeutic targets and clinical trials from the perspective of multiple cell types, gene mutations, epigenetic and environmental factors.
Collapse
Affiliation(s)
- Hongbo Ma
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yi Li
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, China
- *Correspondence: Yong Xia,
| |
Collapse
|
10
|
Chuliá-Peris L, Carreres-Rey C, Gabasa M, Alcaraz J, Carretero J, Pereda J. Matrix Metalloproteinases and Their Inhibitors in Pulmonary Fibrosis: EMMPRIN/CD147 Comes into Play. Int J Mol Sci 2022; 23:ijms23136894. [PMID: 35805895 PMCID: PMC9267107 DOI: 10.3390/ijms23136894] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Pulmonary fibrosis (PF) is characterized by aberrant extracellular matrix (ECM) deposition, activation of fibroblasts to myofibroblasts and parenchymal disorganization, which have an impact on the biomechanical traits of the lung. In this context, the balance between matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs) is lost. Interestingly, several MMPs are overexpressed during PF and exhibit a clear profibrotic role (MMP-2, -3, -8, -11, -12 and -28), but a few are antifibrotic (MMP-19), have both profibrotic and antifibrotic capacity (MMP7), or execute an unclear (MMP-1, -9, -10, -13, -14) or unknown function. TIMPs are also overexpressed in PF; hence, the modulation and function of MMPs and TIMP are more complex than expected. EMMPRIN/CD147 (also known as basigin) is a transmembrane glycoprotein from the immunoglobulin superfamily (IgSF) that was first described to induce MMP activity in fibroblasts. It also interacts with other molecules to execute non-related MMP aactions well-described in cancer progression, migration, and invasion. Emerging evidence strongly suggests that CD147 plays a key role in PF not only by MMP induction but also by stimulating fibroblast myofibroblast transition. In this review, we study the structure and function of MMPs, TIMPs and CD147 in PF and their complex crosstalk between them.
Collapse
Affiliation(s)
- Lourdes Chuliá-Peris
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Cristina Carreres-Rey
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain; (M.G.); (J.A.)
- Thoracic Oncology Unit, Hospital Clinic Barcelona, 08036 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
| | - Julián Carretero
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
| | - Javier Pereda
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain; (L.C.-P.); (C.C.-R.); (J.C.)
- Correspondence:
| |
Collapse
|
11
|
Leong E, Bezuhly M, Marshall JS. Distinct Metalloproteinase Expression and Functions in Systemic Sclerosis and Fibrosis: What We Know and the Potential for Intervention. Front Physiol 2021; 12:727451. [PMID: 34512395 PMCID: PMC8432940 DOI: 10.3389/fphys.2021.727451] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic debilitating idiopathic disorder, characterized by deposition of excessive extracellular matrix (ECM) proteins such as collagen which leads to fibrosis of the skin and other internal organs. During normal tissue repair and remodeling, the accumulation and turnover of ECM proteins are tightly regulated by the interaction of matrix metalloproteinases (MMPs) and endogenous tissue inhibitors of metalloproteinases (TIMPs). SSc is associated with dysregulation of the activity of these proteolytic and inhibitory proteins within the tissue microenvironment, tipping the balance toward fibrosis. The resultant ECM accumulation further perpetuates tissue stiffness and decreased function, contributing to poor clinical outcomes. Understanding the expression and function of these endogenous enzymes and inhibitors within specific tissues is therefore critical to the development of therapies for SSc. This brief review describes recent advances in our understanding of the functions and mechanisms of ECM remodeling by metalloproteinases and their inhibitors in the skin and lungs affected in SSc. It highlights recent progress on potential candidates for intervention and therapeutic approaches for treating SSc fibrosis.
Collapse
Affiliation(s)
- Edwin Leong
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Michael Bezuhly
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Jean S Marshall
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
12
|
Gerber A, Goldklang M, Stearns K, Ma X, Xiao R, Zelonina T, D'Armiento J. Attenuation of pulmonary injury by an inhaled MMP inhibitor in the endotoxin lung injury model. Am J Physiol Lung Cell Mol Physiol 2020; 319:L1036-L1047. [PMID: 33026238 DOI: 10.1152/ajplung.00420.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by pulmonary edema and poor gas exchange resulting from severe inflammatory lung injury. Neutrophilic infiltration and increased pulmonary vascular permeability are hallmarks of early ARDS and precipitate a self-perpetuating cascade of inflammatory signaling. The biochemical processes initiating these events remain unclear. Typically associated with extracellular matrix degradation, recent data suggest matrix metalloproteinases (MMPs) are regulators of pulmonary inflammation. To demonstrate that inhalation of a broad MMP inhibitor attenuates LPS induced pulmonary inflammation. Nebulized CGS27023AM (CGS) was administered to LPS-injured mice. Pulmonary CGS levels were examined by mass spectroscopy. Inflammatory scoring of hematoxylin-eosin sections, examination of vascular integrity via lung wet/dry and bronchoalveolar lvage/serum FITC-albumin ratios were performed. Cleaved caspase-3 levels were also assessed. Differential cell counts and pulse-chase labeling were utilized to determine the effects of CGS on neutrophil migration. The effects of CGS on human neutrophil migration and viability were examined using Boyden chambers and MTT assays. Nebulization successfully delivered CGS to the lungs. Treatment decreased pulmonary inflammatory scores, edema, and apoptosis in LPS treated animals. Neutrophil chemotaxis was reduced by CGS treatment, with inhalation causing significant reductions in both the total number and newly produced bromodeoxyuridine-positive cells infiltrating the lung. Mechanistic studies on cells isolated from humans demonstrate that CGS-treated neutrophils exhibit decreased chemotaxis. The protective effect observed following treatment with a nonspecific MMP inhibitor indicates that one or more MMPs mediate the development of pulmonary edema and neutrophil infiltration in response to LPS injury. In accordance with this, inhaled MMP inhibitors warrant further study as a potential new therapeutic avenue for treatment of acute lung injury.
Collapse
Affiliation(s)
- Adam Gerber
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Monica Goldklang
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Kyle Stearns
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Xinran Ma
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Rui Xiao
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Tina Zelonina
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| | - Jeanine D'Armiento
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
13
|
Tan Y, Suarez A, Garza M, Khan AA, Elisseeff J, Coon D. Human fibroblast-macrophage tissue spheroids demonstrate ratio-dependent fibrotic activity for in vitro fibrogenesis model development. Biomater Sci 2020; 8:1951-1960. [PMID: 32057054 DOI: 10.1039/c9bm00900k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibrosis is a pathological accumulation of excessive collagen that underlies many of the most common diseases, representing dysfunction of the essential processes of normal tissue healing. Fibrosis research aims to limit this response without ameliorating the essential role of fibrogenesis in organ function. However, the absence of a realistic in vitro model has hindered investigation into mechanisms and potential interventions because the standard 2D monolayer culture of fibroblasts has limited applicability. We sought to develop and optimize fibrosis spheroids: a scaffold-free three-dimensional human fibroblast-macrophage spheroid system representing an improved benchtop model of human fibrosis. We created, characterized and optimized human fibroblast-only spheroids, demonstrating increased collagen deposition compared to monolayer fibroblasts, while spheroids larger than 300 μm suffered from progressively increasing apoptosis. Next, we improved the spheroid system with the addition of human macrophages to more precisely recapitulate the environment during fibrogenesis, creating a hybrid spheroid system with different ratios of fibroblasts and macrophages ranging from 2 : 1 to 64 : 1. We found that in the hybrid spheroids (particularly the 16 : 1 [F16] ratio) more fibroblasts were activated, with greater macrophage polarization towards a pro-inflammatory M1 phenotype. Hybrid spheroids containing higher ratios of macrophages showed greater macrophage heterogeneity and less fibrogenesis, while low macrophage ratios limited macrophage-induced effects and yielded less collagen deposition. The F16 group also had the highest expression levels of fibrosis-related genes (Col-1a1, Col-3a1 and TGF-β) and inflammation-related genes (TNF, IL1β and IL6). IF staining demonstrated that F16 spheroids had the highest levels of αSMA, collagen-1 and collagen-3 deposition among all groups as well as formation of a dense collagen rim surrounding the spheroid. Future studies exploring the greater fibrotic activity of F16 spheroids may provide new mechanistic insights into diseases involving excessive fibrotic activity. Microtissue fibrosis models capable of achieving greater clinical fidelity have the potential to combine the relevance of animal models with the scale, cost and throughput of in vitro testing.
Collapse
Affiliation(s)
- Yu Tan
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA and Translational Tissue Engineering Center, Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| | - Allister Suarez
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA and Translational Tissue Engineering Center, Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| | - Matthew Garza
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA and Translational Tissue Engineering Center, Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| | - Aadil A Khan
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW3 6JB, UK and Department of Plastic Surgery, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Jennifer Elisseeff
- Translational Tissue Engineering Center, Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| | - Devin Coon
- Department of Plastic & Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA and Translational Tissue Engineering Center, Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Isshiki T, Matsuyama H, Yamaguchi T, Morita T, Ono J, Nunomura S, Izuhara K, Sakamoto S, Homma S, Kishi K. Plasma matrix metalloproteinase 7, CC-chemokine ligand 18, and periostin as markers for pulmonary sarcoidosis. Respir Investig 2020; 58:479-487. [PMID: 32868264 DOI: 10.1016/j.resinv.2020.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/03/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Some patients with sarcoidosis experience worsening of pulmonary lesions. However, no biomarker has been identified that reflects pulmonary disease status in sarcoidosis. We investigated the usefulness of potential markers of pulmonary fibrosis in patients with sarcoidosis. METHODS Plasma matrix metalloproteinase 7 (MMP-7), CC-chemokine ligand 18 (CCL-18), and periostin levels were evaluated in 60 patients with sarcoidosis and 30 healthy controls; bronchoalveolar lavage fluid levels were analyzed in 22 patients with sarcoidosis. To determine the usefulness of these markers, we explored potential correlations between these markers and sarcoidosis clinical characteristics. RESULTS Plasma MMP-7, CCL-18, and periostin concentrations were significantly higher in patients with sarcoidosis than those in healthy controls. MMP-7 concentrations in plasma and bronchoalveolar lavage fluid were higher in patients with sarcoidosis with parenchymal infiltration than in those without lung lesions. Moreover, MMP-7 concentration was negatively correlated with pulmonary function. CONCLUSION Among these novel biomarkers, MMP-7 most precisely reflected pulmonary sarcoidosis disease status and thus, might be useful for diagnosing and evaluating sarcoidosis, particularly in patients with pulmonary parenchymal lesions.
Collapse
Affiliation(s)
- Takuma Isshiki
- Department of Respiratory Medicine, Toho University School of Medicine, Tokyo, Japan.
| | - Hisayo Matsuyama
- Department of Respiratory Medicine, Toho University School of Medicine, Tokyo, Japan.
| | | | - Toshisuke Morita
- Department of Laboratory Medicine, Toho University School of Medicine, Tokyo, Japan.
| | | | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan.
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan.
| | - Susumu Sakamoto
- Department of Respiratory Medicine, Toho University School of Medicine, Tokyo, Japan.
| | - Sakae Homma
- Department of Advanced and Integrated Interstitial Lung Disease Research, School of Medicine, Toho University, Tokyo, Japan.
| | - Kazuma Kishi
- Department of Respiratory Medicine, Toho University School of Medicine, Tokyo, Japan.
| |
Collapse
|
15
|
de Azevedo-Quintanilha IG, Medeiros-de-Moraes IM, Ferreira AC, Reis PA, Vieira-de-Abreu A, Campbell RA, Weyrich AS, Bozza PT, Zimmerman GA, Castro-Faria-Neto HC. Haem oxygenase protects against thrombocytopaenia and malaria-associated lung injury. Malar J 2020; 19:234. [PMID: 32611348 PMCID: PMC7327213 DOI: 10.1186/s12936-020-03305-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/20/2020] [Indexed: 11/10/2022] Open
Abstract
Background Malaria-triggered lung injury can occur in both severe and non-severe cases. Platelets may interact with parasitized erythrocytes, leukocytes and endothelium. These interactions can lead to microvessel obstructions and induce release of inflammatory mediators. Induction of the haem oxygenase enzyme is important in the host’s response to free haem and to several other molecules generated by infectious or non-infectious diseases. In addition, an important role for the haem oxygenase-1 isotype has been demonstrated in experimental cerebral malaria and in clinical cases. Therefore, the present work aims to determine the influence of haem oxygenase in thrombocytopaenia and acute pulmonary injury during infection with Plasmodium berghei strain NK65. Methods C57BL/6 mice were infected with P. berghei and analysed 7-10 days post-infection. For each experiment, Cobalt Protoporphyrin IX/CoPPIX or saline were administered. Bronchoalveolar lavage fluid was used for total and differential leukocyte count and for protein measurement. Lungs were used for histological analyses or for analysis of cytokines and western blotting. The lung permeability was analysed by Evans blue dye concentration. Platelet-leukocyte aggregate formation was assayed using the flow cytometer. Results Plasmodium berghei NK65 infection generated an intense lung injury, with increased levels of inflammatory mediators, oedema, and cell migration into the lung. Plasmodium berghei infection was also accompanied by marked thrombocytopaenia and formation of platelet-leukocyte aggregates in peripheral blood. Treatment with the HO-1 inducer cobalt protoporphyrin IX (CoPPIX) modified the inflammatory response but did not affect the evolution of parasitaemia. Animals treated with CoPPIX showed an improvement in lung injury, with decreased inflammatory infiltrate in the lung parenchyma, oedema and reduced thrombocytopaenia. Conclusion Data here presented suggest that treatment with CoPPIX inducer leads to less severe pulmonary lung injury and thrombocytopaenia during malaria infection, thus increasing animal survival.
Collapse
Affiliation(s)
| | | | - André C Ferreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.,Universidade Iguaçu, Nova Iguaçu, RJ, Brazil
| | - Patrícia A Reis
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Adriana Vieira-de-Abreu
- Division of Endocrinology, Metabolism, and Diabetes, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Robert A Campbell
- Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Andrew S Weyrich
- Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Patricia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Guy A Zimmerman
- Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, UT, USA
| | - Hugo C Castro-Faria-Neto
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
16
|
Roque W, Boni A, Martinez-Manzano J, Romero F. A Tale of Two Proteolytic Machines: Matrix Metalloproteinases and the Ubiquitin-Proteasome System in Pulmonary Fibrosis. Int J Mol Sci 2020; 21:ijms21113878. [PMID: 32485920 PMCID: PMC7312171 DOI: 10.3390/ijms21113878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/19/2023] Open
Abstract
Pulmonary fibrosis is a chronic and progressive lung disease characterized by the activation of fibroblasts and the irreversible deposition of connective tissue matrices that leads to altered pulmonary architecture and physiology. Multiple factors have been implicated in the pathogenesis of lung fibrosis, including genetic and environmental factors that cause abnormal activation of alveolar epithelial cells, leading to the development of complex profibrotic cascade activation and extracellular matrix (ECM) deposition. One class of proteinases that is thought to be important in the regulation of the ECM are the matrix metalloproteinases (MMPs). MMPs can be up- and down- regulated in idiopathic pulmonary fibrosis (IPF) lungs and their role depends upon their location and function. Furthermore, alterations in the ubiquitin-proteosome system (UPS), a major intracellular protein degradation complex, have been described in aging and IPF lungs. UPS alterations could potentially lead to the abnormal accumulation and deposition of ECM. A better understanding of the specific roles MMPs and UPS play in the pathophysiology of pulmonary fibrosis could potentially drive to the development of novel biomarkers that can be as diagnostic and therapeutic targets. In this review, we describe how MMPs and UPS alter ECM composition in IPF lungs and mouse models of pulmonary fibrosis, thereby influencing the alveolar epithelial and mesenchymal cell behavior. Finally, we discuss recent findings that associate MMPs and UPS interplay with the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Willy Roque
- Department of Medicine, Rutgers—New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA; (W.R.); (A.B.)
| | - Alexandra Boni
- Department of Medicine, Rutgers—New Jersey Medical School, 185 S Orange Ave, Newark, NJ 07103, USA; (W.R.); (A.B.)
| | - Jose Martinez-Manzano
- Brigham and Women’s Hospital—Pulmonary and Critical Care Medicine, Boston, MA 02115, USA;
| | - Freddy Romero
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care and the Center for Translational Medicine, The Jane & Leonard Korman Respiratory Institute, Philadelphia, PA 19107, USA
- Correspondence:
| |
Collapse
|
17
|
LaRivière WB, Liao S, McMurtry SA, Oshima K, Han X, Zhang F, Yan S, Haeger SM, Ransom M, Bastarache JA, Linhardt RJ, Schmidt EP, Yang Y. Alveolar heparan sulfate shedding impedes recovery from bleomycin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1198-L1210. [PMID: 32320623 DOI: 10.1152/ajplung.00063.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The pulmonary epithelial glycocalyx, an anionic cell surface layer enriched in glycosaminoglycans such as heparan sulfate and chondroitin sulfate, contributes to the alveolar barrier. Direct injury to the pulmonary epithelium induces shedding of heparan sulfate into the air space; the impact of this shedding on recovery after lung injury is unknown. Using mass spectrometry, we found that heparan sulfate was shed into the air space for up to 3 wk after intratracheal bleomycin-induced lung injury and coincided with induction of matrix metalloproteinases (MMPs), including MMP2. Delayed inhibition of metalloproteinases, beginning 7 days after bleomycin using the nonspecific MMP inhibitor doxycycline, attenuated heparan sulfate shedding and improved lung function, suggesting that heparan sulfate shedding may impair lung recovery. While we also observed an increase in air space heparanase activity after bleomycin, pharmacological and transgenic inhibition of heparanase in vivo failed to attenuate heparan sulfate shedding or protect against bleomycin-induced lung injury. However, experimental augmentation of airway heparanase activity significantly worsened post-bleomycin outcomes, confirming the importance of epithelial glycocalyx integrity to lung recovery. We hypothesized that MMP-associated heparan sulfate shedding contributed to delayed lung recovery, in part, by the release of large, highly sulfated fragments that sequestered lung-reparative growth factors such as hepatocyte growth factor. In vitro, heparan sulfate bound hepatocyte growth factor and attenuated growth factor signaling, suggesting that heparan sulfate shed into the air space after injury may directly impair lung repair. Accordingly, administration of exogenous heparan sulfate to mice after bleomycin injury increased the likelihood of death due to severe lung dysfunction. Together, our findings demonstrate that alveolar epithelial heparan sulfate shedding impedes lung recovery after bleomycin.
Collapse
Affiliation(s)
- W B LaRivière
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - S Liao
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - S A McMurtry
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - K Oshima
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - X Han
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York
| | - F Zhang
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York
| | - S Yan
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.,College of Life Sciences, Henan Normal University, Xinxiang, China
| | - S M Haeger
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - M Ransom
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - J A Bastarache
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - R J Linhardt
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York
| | - E P Schmidt
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine, Denver Health Medical Center, Denver, Colorado
| | - Y Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
18
|
Todd JL, Vinisko R, Liu Y, Neely ML, Overton R, Flaherty KR, Noth I, Newby LK, Lasky JA, Olman MA, Hesslinger C, Leonard TB, Palmer SM, Belperio JA. Circulating matrix metalloproteinases and tissue metalloproteinase inhibitors in patients with idiopathic pulmonary fibrosis in the multicenter IPF-PRO Registry cohort. BMC Pulm Med 2020; 20:64. [PMID: 32171287 PMCID: PMC7071646 DOI: 10.1186/s12890-020-1103-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/28/2020] [Indexed: 11/12/2022] Open
Abstract
Background Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) play important roles in the turnover of extracellular matrix and in the pathogenesis of idiopathic pulmonary fibrosis (IPF). This study aimed to determine the utility of circulating MMPs and TIMPs in distinguishing patients with IPF from controls and to explore associations between MMPs/TIMPs and measures of disease severity in patients with IPF. Methods The IPF cohort (n = 300) came from the IPF-PRO Registry, an observational multicenter registry of patients with IPF that was diagnosed or confirmed at the enrolling center in the past 6 months. Controls (n = 100) without known lung disease came from a population-based registry. Generalized linear models were used to compare circulating concentrations of MMPs 1, 2, 3, 7, 8, 9, 12, and 13 and TIMPs 1, 2, and 4 between patients with IPF and controls, and to investigate associations between circulating levels of these proteins and measures of IPF severity. Multivariable models were fit to identify the MMP/TIMPs that best distinguished patients with IPF from controls. Results All the MMP/TIMPs analyzed were present at significantly higher levels in patients with IPF compared with controls except for TIMP2. Multivariable analyses selected MMP8, MMP9 and TIMP1 as top candidates for distinguishing patients with IPF from controls. Higher concentrations of MMP7, MMP12, MMP13 and TIMP4 were significantly associated with lower diffusion capacity of the lung for carbon monoxide (DLCO) % predicted and higher composite physiologic index (worse disease). MMP9 was associated with the composite physiologic index. No MMP/TIMPs were associated with forced vital capacity % predicted. Conclusions Circulating MMPs and TIMPs were broadly elevated among patients with IPF. Select MMP/TIMPs strongly associated with measures of disease severity. Our results identify potential MMP/TIMP targets for further development as disease-related biomarkers.
Collapse
Affiliation(s)
- Jamie L Todd
- Duke Clinical Research Institute, Durham, NC, USA. .,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Duke University Medical Center, DUMC Box 103002, Durham, NC, 27710, USA.
| | - Richard Vinisko
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Yi Liu
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Megan L Neely
- Duke Clinical Research Institute, Durham, NC, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Duke University Medical Center, DUMC Box 103002, Durham, NC, 27710, USA
| | | | - Kevin R Flaherty
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Imre Noth
- University of Virginia, Charlottesville, VA, USA
| | - L Kristin Newby
- Duke Clinical Research Institute, Durham, NC, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Duke University Medical Center, DUMC Box 103002, Durham, NC, 27710, USA.,Duke Clinical & Translational Science Institute, Durham, NC, USA
| | - Joseph A Lasky
- School of Medicine, Tulane University, New Orleans, LA, USA
| | - Mitchell A Olman
- Department of Inflammation and Immunity and Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - Scott M Palmer
- Duke Clinical Research Institute, Durham, NC, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Duke University Medical Center, DUMC Box 103002, Durham, NC, 27710, USA
| | - John A Belperio
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
19
|
Pulivendala G, Bale S, Godugu C. Honokiol: A polyphenol neolignan ameliorates pulmonary fibrosis by inhibiting TGF-β/Smad signaling, matrix proteins and IL-6/CD44/STAT3 axis both in vitro and in vivo. Toxicol Appl Pharmacol 2020; 391:114913. [PMID: 32032644 DOI: 10.1016/j.taap.2020.114913] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 01/01/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Pulmonary fibrosis (PF) is an epithelial/fibroblastic crosstalk disorder of the lungs with highly complex etiopathogenesis. Limited treatment possibilities are responsible for poor prognosis and mean survival rate of 3 to 5 years of PF patients after definite diagnosis. Once thought to be an irreversible disorder, recent evidences have brought into existence the concept of organ fibrosis reversibility due to plastic nature of fibrotic tissues. These findings have kindled interest among the scientific community and given a new direction for research in the arena of fibrosis for developing new anti-fibrotic therapies. The current study is designed to evaluate the anti-fibrotic effects of Honokiol (HNK), a neolignan active constituent from Magnolia officinalis. This study has been conducted in TGF-β1 induced in vitro model and 21 day in vivo murine model of Bleomycin induced PF. The findings of our study suggest that HNK was able to inhibit fundamental pathways of epithelial to mesenchymal transition (EMT) and TGF-β/Smad signaling both in vitro and in vivo. Additionally, HNK also attenuated collagen deposition and inflammation associated with fibrosis. We also hypothesized that HNK interfered with IL-6/CD44/STAT3 axis. As hypothesized, HNK significantly mitigated IL-6/CD44/STAT3 axis both in vitro and in vivo as evident from outcomes of various protein expression studies like western blotting, immunohistochemistry and ELISA. Taken together, it can be concluded that HNK reversed pulmonary fibrotic changes in both in vitro and in vivo experimental models of PF and exerted anti-fibrotic effects majorly by attenuating EMT, TGF-β/Smad signaling and partly by inhibiting IL-6/CD44/STAT3 signaling axis.
Collapse
Affiliation(s)
- Gauthami Pulivendala
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Swarna Bale
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037, India.
| |
Collapse
|
20
|
Mahalanobish S, Saha S, Dutta S, Sil PC. Matrix metalloproteinase: An upcoming therapeutic approach for idiopathic pulmonary fibrosis. Pharmacol Res 2020; 152:104591. [PMID: 31837390 DOI: 10.1016/j.phrs.2019.104591] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/26/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating condition where excess collagen deposition occurs in the extracellular matrix. At first sight, it is expected that the level of different kinds of matrix metalloproteinases might be downregulated in IPF as it is a matrix degrading collagenase. However, the role of some matrix metalloproteinases (MMPs) is profibrotic where others have anti-fibrotic functions. These profibrotic MMPs effectively promote fibrosis development by stimulating the process of epithelial to mesenchymal transition. These profibrotic groups also induce macrophage polarization and fibrocyte migration. All of these events ultimately disrupt the balance between profibrotic and antifibrotic mediators, resulting aberrant repair process. Therefore, inhibition of these matrix metalloproteinases functions in IPF is a potential therapeutic approach. In addition to the use of synthetic inhibitor, various natural compounds, gene silencing act as potential natural MMP inhibitor to recover IPF.
Collapse
Affiliation(s)
- Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sukanya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
21
|
Tort Tarrés M, Aschenbrenner F, Maus R, Stolper J, Schuette L, Knudsen L, Lopez Rodriguez E, Jonigk D, Kühnel MP, DeLuca D, Prasse A, Welte T, Gauldie J, Kolb MR, Maus UA. The FMS-like tyrosine kinase-3 ligand/lung dendritic cell axis contributes to regulation of pulmonary fibrosis. Thorax 2019; 74:947-957. [PMID: 31076499 DOI: 10.1136/thoraxjnl-2018-212603] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 04/16/2019] [Accepted: 04/21/2019] [Indexed: 11/04/2022]
Abstract
RATIONALE Dendritic cells (DC) accumulate in the lungs of patients with idiopathic lung fibrosis, but their pathogenetic relevance is poorly defined. OBJECTIVES To assess the role of the FMS-like tyrosine kinase-3 ligand (Flt3L)-lung dendritic cell axis in lung fibrosis. MEASUREMENTS AND MAIN RESULTS We demonstrate in a model of adenoviral gene transfer of active TGF-β1 that established lung fibrosis was accompanied by elevated serum Flt3L levels and subsequent accumulation of CD11bpos DC in the lungs of mice. Patients with idiopathic pulmonary fibrosis also demonstrated increased levels of Flt3L protein in serum and lung tissue and accumulation of lung DC in explant subpleural lung tissue specimen. Mice lacking Flt3L showed significantly reduced lung DC along with worsened lung fibrosis and reduced lung function relative to wild-type (WT) mice, which could be inhibited by administration of recombinant Flt3L. Moreover, therapeutic Flt3L increased numbers of CD11bpos DC and improved lung fibrosis in WT mice exposed to AdTGF-β1. In this line, RNA-sequencing analysis of CD11bpos DC revealed significantly enriched differentially expressed genes within extracellular matrix degrading enzyme and matrix metalloprotease gene clusters. In contrast, the CD103pos DC subset did not appear to be involved in pulmonary fibrogenesis. CONCLUSIONS We show that Flt3L protein and numbers of lung DC are upregulated in mice and humans during pulmonary fibrogenesis, and increased mobilisation of lung CD11bpos DC limits the severity of lung fibrosis in mice. The current study helps to inform the development of DC-based immunotherapy as a novel intervention against lung fibrosis in humans.
Collapse
Affiliation(s)
| | | | - Regina Maus
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Jennifer Stolper
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Lisanne Schuette
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, Partner site BREATH (Biomedical research in endstage and obstructive lung disease Hannover), Hannover Medical School, Hannover, Germany
| | - Elena Lopez Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- German Center for Lung Research, Partner site BREATH (Biomedical research in endstage and obstructive lung disease Hannover), Hannover Medical School, Hannover, Germany.,Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | | - David DeLuca
- German Center for Lung Research, Partner site BREATH (Biomedical research in endstage and obstructive lung disease Hannover), Hannover Medical School, Hannover, Germany
| | - Antje Prasse
- Clinic of Pneumology, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- German Center for Lung Research, Partner site BREATH (Biomedical research in endstage and obstructive lung disease Hannover), Hannover Medical School, Hannover, Germany.,Clinic of Pneumology, Hannover Medical School, Hannover, Germany
| | - Jack Gauldie
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | - Martin Rj Kolb
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ulrich A Maus
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany .,German Center for Lung Research, Partner site BREATH (Biomedical research in endstage and obstructive lung disease Hannover), Hannover Medical School, Hannover, Germany
| |
Collapse
|
22
|
Evolving Genomics of Pulmonary Fibrosis. Respir Med 2019. [DOI: 10.1007/978-3-319-99975-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
T T, D D, A A, Y Z, M K, M G, M D, T V. Association of the MMP7 -181A>G Promoter Polymorphism with Early Onset of Chronic Obstructive Pulmonary Disease. Balkan J Med Genet 2018; 20:59-66. [PMID: 29876234 PMCID: PMC5972504 DOI: 10.1515/bjmg-2017-0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by decreased air flow and is associated with abnormal chronic inflammation in the airways and extensive tissue remodeling. Matrix metalloproteinase-7 (MMP7) is produced primarily by the epithelium of many organs, including the lungs. A functional MMP7 -181A>G (rs11568818) promoter polymorphism influences the binding of nuclear regulatory proteins modulating the transcription of the gene. In this study, we genotyped 191 patients with COPD for MMP7 -181A>G single nucleotide polymorphism (SNP) and 215 control subjects using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method and explored the role of that polymorphism as a risk factor for COPD. There were no differences in the genotype and allele distribution of the MMP7 -181A>G SNP between the COPD patients and control groups (p = 0.341 and p = 0.214). However, the carries of the G allele (AG and GG genotypes), appeared to develop COPD significantly earlier than those with the AA genotype (61.01 ± 10.11 vs. 64.87 ± 9.00 years, p = 0.032). When the genotype distribution was studied only in the groups of patients (n = 76) and controls (n = 106) younger than 60 years, we found significantly higher frequency of the carriers of the G allele in COPD patients than in the controls, determining about a 3-fold higher risk for COPD [odds ratio (OR) -3.33, 1.36-8.14, p = 0.008 for GG, and OR = 2.91, 1.38-6.13, p = 0.005 for AG+GG]. Based on our results, the MMP7 -181A>G promoter variant may influence early development of COPD. This effect could be attributed to the increased production of the enzyme resulting in enhanced airway wall protein degradation and injury.
Collapse
Affiliation(s)
- Tacheva T
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| | - Dimov D
- Department of Internal Medicine, Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| | - Anastasov A
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| | - Zhelyazkova Y
- Department of Internal Medicine, Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| | - Kurzawski M
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Gulubova M
- Department of General and Clinical Pathology, Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| | - Drozdzik M
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Vlaykova T
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
24
|
Afratis NA, Klepfish M, Karamanos NK, Sagi I. The apparent competitive action of ECM proteases and cross-linking enzymes during fibrosis: Applications to drug discovery. Adv Drug Deliv Rev 2018; 129:4-15. [PMID: 29627371 DOI: 10.1016/j.addr.2018.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/11/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
Progressive loss of organ function in most organs is associated with fibrosis, a tissue state associated with abnormal matrix buildup. If highly progressive, the fibrotic process eventually leads to organ failure and death. Fibrosis is a basic connective tissue lesion defined by the increase in the amount of fibrillar extracellular matrix (ECM) components in a tissue or organ. In addition, intrinsic changes in important structural cells can induce the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix-producing myofibroblasts. ECM enzymes belonging to the family of matrix metalloproteinases (MMPs) and lysyl oxidases (LOXs) play a crucial role in ECM remodeling and regeneration. MMPs have a catalytic role in degradation of ECM, whereas LOX/LOXLs mediate ECM, especially collagen, cross-linking and stiffening. Importantly, enzymes from both families are elevated during the fibrotic response to tissue injury and its resolution. Yet, the apparent molecular competition or antagonistic activities of these enzyme families during the various stages of fibrosis is often overlooked. In this review, we discuss the diverse roles of MMPs and LOX/LOXL2 in chronic organ fibrosis. Finally, we review contemporary therapeutic strategies for fibrosis treatment, based on neutralization of MMP and LOX activity, as well as the development of novel drug delivery approaches.
Collapse
Affiliation(s)
- Nikolaos A Afratis
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mordehay Klepfish
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26500, Greece
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
25
|
Gharib SA, Manicone AM, Parks WC. Matrix metalloproteinases in emphysema. Matrix Biol 2018; 73:34-51. [PMID: 29406250 DOI: 10.1016/j.matbio.2018.01.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/14/2017] [Accepted: 01/24/2018] [Indexed: 02/07/2023]
Abstract
Several studies have implicated a causative role for specific matrix metalloproteinases (MMPs) in the development and progression of cigarette smoke-induced chronic obstructive pulmonary disease (COPD) and its severe sequela, emphysema. However, the precise function of any given MMP in emphysema remains an unanswered question. Emphysema results from the degradation of alveolar elastin - among other possible mechanisms - a process that is often thought to be caused by elastolytic proteinases made by macrophages. In this article, we discuss the data suggesting, supporting, or refuting causative roles of macrophage-derived MMPs, with a focus on MMPs-7, -9, -10, -12, and 28, in both the human disease and mouse models of emphysema. Findings from experimental models suggest that some MMPs, such as MMP-12, may directly breakdown elastin, whereas others, particularly MMP-10 and MMP-28, promote the development of emphysema by influencing the proteolytic and inflammatory activities of macrophages.
Collapse
Affiliation(s)
- Sina A Gharib
- Center for Lung Biology, University of Washington, Seattle, WA, USA
| | - Anne M Manicone
- Center for Lung Biology, University of Washington, Seattle, WA, USA
| | - William C Parks
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a devastating chronic, progressive and irreversible disease that remains refractory to current therapies. Matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the development of pulmonary fibrosis since decades. Coagulation signalling deregulation, which influences several key inflammatory and fibro-proliferative responses, is also essential in IPF pathogenesis, and a growing body of evidence indicates that Protease-Activated Receptors (PARs) inhibition in IPF may be promising for future evaluation. Therefore, proteases and anti-proteases aroused great biomedical interest over the past years, owing to the identification of their potential roles in lung fibrosis. During these last decades, numerous other proteases and anti-proteases have been studied in lung fibrosis, such as matriptase, Human airway trypsin-like protease (HAT), Hepatocyte growth factor activator (HGFA)/HGFA activator inhibitor (HAI) system, Plasminogen activator inhibitor (PAI)-1, Protease nexine (PN)-1, cathepsins, calpains, and cystatin C. Herein, we provide a general overview of the proteases and anti-proteases unbalance during lung fibrogenesis and explore potential therapeutics for IPF.
Collapse
|
27
|
Chakraborty K, Chatterjee S, Bhattacharyya A. Modulation of CD11c+ lung dendritic cells in respect to TGF-β in experimental pulmonary fibrosis. Cell Biol Int 2017; 41:991-1000. [PMID: 28557137 DOI: 10.1002/cbin.10800] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/25/2017] [Indexed: 12/30/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a deadly, progressive lung disease with very few treatment options till now. Bleomycin-induced pulmonary fibrosis (BIPF) is a commonly used mice model in IPF research. TGF-β1 has been shown to play a key role in pulmonary fibrosis (PF). Dendritic cell (DC) acts as a bridge between innate and adaptive immune systems. The coexistence of chronic inflammation sustained by mature DCs with fibrosis suggests that inflammatory phenomenon has key importance in the pathogenesis of pulmonary fibrosis. Here, we investigated the modulation of DCs phenotypic maturation, accumulation in lung tissue, and expression of other lung DC subsets in respect to TGF-β in PF. First, we established BIPF model in mice and blocked TGF-β expression by the use of inhibitor SB431542. Accumulation of lung CD11c+ DCs is significantly higher in both inflammatory and fibrotic phases of the disease but that percentages got reduced in the absence of TGF-β. TGF-β initiates up-regulation of costimulatory molecules CD86 and CD80 in the inflammatory phases of the disease but not so at fibrotic stage. Expression of lung DC subset CD11c+CD103+ is significantly increased in inflammatory phase and also in fibrotic phase of BIPF. Blocking of TGF-β causes decreased expression of CD11c+CD103+ DCs. Another important lung DC subset CD11c+CD11b+ expression is suppressed by the absence of TGF-β after bleomycin administration. CD11c+CD103+ DCs might have anti-inflammatory as well as anti-fibrotic nature in PF. All these data demonstrate differential modulation of CD11c+ lung DCs by TGF-β in experimental PF.
Collapse
Affiliation(s)
- Kaustav Chakraborty
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Soumya Chatterjee
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| |
Collapse
|
28
|
Hendrix AY, Kheradmand F. The Role of Matrix Metalloproteinases in Development, Repair, and Destruction of the Lungs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:1-29. [PMID: 28662821 DOI: 10.1016/bs.pmbts.2017.04.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Normal gas exchange after birth requires functional lung alveolar units that are lined with epithelial cells, parts of which are intricately fused with microvascular capillaries. A significant phase of alveolar lung development occurs in the perinatal period, continues throughout early stages in life, and requires activation of matrix-remodeling enzymes. Failure to achieve an optimum number of alveoli during lung maturation can cause several untoward medical consequences including disabling obstructive and/or restrictive lung diseases that limit physiological endurance and increase mortality. Several members of the matrix metalloproteinase (MMP) family are critical in lung remodeling before and after birth; however, their resurgence in response to environmental factors, infection, and injury can also compromise lung function. Therefore, temporal expression, regulation, and function of MMPs play key roles in developing and maintaining adequate oxygenation under steady state, as well as in diseased conditions. Broadly, with the exception of MMP2 and MMP14, most deletional mutations of MMPs fail to perturb lung development; however, their individual absence can alter the pathophysiology of respiratory diseases. Specifically, under stressed conditions such as acute respiratory infection and allergic inflammation, MMP2 and MMP9 can play a protective role through bacterial clearance and production of chemotactic gradient, while loss of MMP12 can protect mice from smoke-induced lung disease. Therefore, better understanding of the expression and function of MMPs under normal lung development and their resurgence in response respiratory diseases could provide new therapeutic options in the future.
Collapse
Affiliation(s)
- Amanda Y Hendrix
- Section of Pulmonary and Critical Care, and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Farrah Kheradmand
- Section of Pulmonary and Critical Care, and Immunology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
29
|
Eddy WE, Gong KQ, Bell B, Parks WC, Ziegler SF, Manicone AM. Stat5 Is Required for CD103 + Dendritic Cell and Alveolar Macrophage Development and Protection from Lung Injury. THE JOURNAL OF IMMUNOLOGY 2017; 198:4813-4822. [PMID: 28500076 DOI: 10.4049/jimmunol.1601777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/12/2017] [Indexed: 11/19/2022]
Abstract
We tested the role of Stat5 in dendritic cell and alveolar macrophage (AM) homeostasis in the lung using CD11c-cre mediated deletion (Cre+5f/f). We show that Stat5 is required for CD103+ dendritic cell and AM development. We found that fetal monocyte maturation into AMs was impaired in Cre+5f/f mice, and we also confirmed impaired AM development of progenitor cells using mixed chimera experiments. In the absence of Stat5 signaling in AMs, mice developed alveolar proteinosis with altered lipid homeostasis. In addition, loss of Stat5 in CD11c+ cells was associated with exaggerated LPS-induced inflammatory responses and vascular leak. In Cre+5f/f mice, there was loss of immune-dampening effects on epithelial cells, a key source of CCL2 that serves to recruit monocytes and macrophages. These findings demonstrate the critical importance of Stat5 signaling in maintaining lung homeostasis, and underscore the importance of resident macrophages in moderating tissue damage and excess inflammation.
Collapse
Affiliation(s)
- William E Eddy
- Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA 98109
| | - Ke-Qin Gong
- Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA 98109
| | - Bryan Bell
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101
| | - William C Parks
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; and
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101.,Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109
| | - Anne M Manicone
- Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, WA 98109;
| |
Collapse
|
30
|
Tomos IP, Tzouvelekis A, Aidinis V, Manali ED, Bouros E, Bouros D, Papiris SA. Extracellular matrix remodeling in idiopathic pulmonary fibrosis. It is the 'bed' that counts and not 'the sleepers'. Expert Rev Respir Med 2017; 11:299-309. [PMID: 28274188 DOI: 10.1080/17476348.2017.1300533] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by irreversible fibrosis. Current disease pathogenesis assumes an aberrant wound healing process in response to repetitive injurious stimuli leading to apoptosis of epithelial cells, activation of fibroblasts and accumulation of extracellular matrix (ECM). Particularly, lung ECM is a highly dynamic structure that lies at the core of several physiological and developmental pathways. The scope of this review article is to summarize current knowledge on the role of ECM in the pathogenesis of IPF, unravel novel mechanistic data and identify future more effective therapeutic targets. Areas covered: The exact mechanisms through which lung microenvironment activates fibroblasts and inflammatory cells, regulates profibrotic signaling cascades through growth factors, integrins and degradation enzymes ultimately leading to excessive matrix deposition are discussed. Furthermore, the potential therapeutic usefulness of specific inhibitors of matrix deposition or activators of matrix degradation pathways are also presented. Expert commentary: With a gradually increasing worldwide incidence IPF still present a major challenge in clinical research due to its unknown etiopathogenesis and current ineffective treatment approaches. Today, there is an amenable need for more effective therapeutic targets and ECM components may represent one.
Collapse
Affiliation(s)
- Ioannis P Tomos
- a Respiratory Medicine Department , 'Attikon' University Hospital, Athens Medical School, National and Kapodistrian University of Athens , Athens , Greece
| | - Argyrios Tzouvelekis
- b Division of Immunology , Biomedical Sciences Research Center 'Alexander Fleming,' , Athens , Greece
| | - Vassilis Aidinis
- b Division of Immunology , Biomedical Sciences Research Center 'Alexander Fleming,' , Athens , Greece
| | - Effrosyni D Manali
- a Respiratory Medicine Department , 'Attikon' University Hospital, Athens Medical School, National and Kapodistrian University of Athens , Athens , Greece
| | - Evangelos Bouros
- c First Academic Department of Pneumonology, Hospital for Diseases of the Chest, 'Sotiria,' Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | - Demosthenes Bouros
- c First Academic Department of Pneumonology, Hospital for Diseases of the Chest, 'Sotiria,' Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | - Spyros A Papiris
- a Respiratory Medicine Department , 'Attikon' University Hospital, Athens Medical School, National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
31
|
Smigiel KS, Parks WC. Matrix Metalloproteinases and Leukocyte Activation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:167-195. [PMID: 28413028 DOI: 10.1016/bs.pmbts.2017.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As their name implies, matrix metalloproteinases (MMPs) are thought to degrade extracellular matrix proteins, a function that is indeed performed by some members. However, regardless of their cell source, matrix degradation is not the only function of these enzymes. Rather, individual MMPs have been shown to regulate specific immune processes, such as leukocyte influx and migration, antimicrobial activity, macrophage activation, and restoration of barrier function, typically by processing a range of nonmatrix protein substrates. Indeed, MMP expression is low under steady-state conditions but is markedly induced during inflammatory processes including infection, wound healing, and cancer. Increasing research is showing that MMPs are not just a downstream consequence of a generalized inflammatory process, but rather are critical factors in the overall regulation of the pattern, type, and duration of immune responses. This chapter outlines the role of leukocytes in tissue remodeling and describes recent progress in our understanding of how MMPs alter leukocyte activity.
Collapse
Affiliation(s)
- Kate S Smigiel
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - William C Parks
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
32
|
Ligi D, Mosti G, Croce L, Raffetto JD, Mannello F. Chronic venous disease - Part II: Proteolytic biomarkers in wound healing. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1900-8. [PMID: 27460704 DOI: 10.1016/j.bbadis.2016.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/04/2016] [Accepted: 07/22/2016] [Indexed: 12/14/2022]
Abstract
Venous leg ulcers (VLU) are characterized by sustained proteolytic microenvironment impairing the healing process. Wound fluid (WF) reflect the biomolecular activities occurring within the wound area; however, it is unclear if WF from different healing phases have different proteolytic profiles and how VLU microenvironment affects the wound healing mechanisms. We investigated the proteolytic network of WF from distinct VLU phases, and in WF- and LPS-stimulated THP-1 monocytes treated with glycosaminoglycan sulodexide, a well known therapeutic approach for VLU healing. WF were collected from patients with VLU during inflammatory (Infl) and granulating (Gran) phases. WF and THP-1 supernatants were analyzed for nine matrix metalloproteinases (MMP) and four tissue inhibitors of metalloproteinases (TIMP) by multiplex immunoassays. Our results demonstrated that: 1) WF from Infl VLU contained significantly increased concentrations of MMP-2, MMP-9, MMP-12, TIMP-1, and TIMP-2 compared to Gran WF; 2) WF from Gran VLU showed significantly increased levels of MMP-1, MMP-7, MMP-13, and TIMP-4 compared to Infl WF; 3) LPS- and WF-stimulation of THP-1 cells significantly increased the expression of several MMP compared to untreated cells; 4) Sulodexide treatment of both LPS- and WF-stimulated THP-1 significantly down-regulated the release of several MMPs. Our study provides evidence-based medicine during treatment of patients with VLU. WF from Infl and Gran VLU have different MMP and TIMP signatures, consistent with their clinical state. The modulation of proteolytic pathways in wound microenvironment by glycosaminoglycan sulodexide, provide insights for translating research into clinical practice during VLU therapy.
Collapse
Affiliation(s)
- Daniela Ligi
- Department of Biomolecular Sciences, Section of Clinical Biochemistry and Molecular Genetics, University "Carlo Bo", Urbino, Italy
| | - Giovanni Mosti
- Department of Angiology, Barbantini's Clinic, via del Calcio 2, 55100 Lucca, Italy
| | - Lidia Croce
- Department of Biomolecular Sciences, Section of Clinical Biochemistry and Molecular Genetics, University "Carlo Bo", Urbino, Italy
| | - Joseph D Raffetto
- Vascular Surgery Division, VA Boston Healthcare System, West Roxbury, MA, USA; Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Ferdinando Mannello
- Department of Biomolecular Sciences, Section of Clinical Biochemistry and Molecular Genetics, University "Carlo Bo", Urbino, Italy.
| |
Collapse
|
33
|
Gounder AP, Myers ND, Treuting PM, Bromme BA, Wilson SS, Wiens ME, Lu W, Ouellette AJ, Spindler KR, Parks WC, Smith JG. Defensins Potentiate a Neutralizing Antibody Response to Enteric Viral Infection. PLoS Pathog 2016; 12:e1005474. [PMID: 26933888 PMCID: PMC4774934 DOI: 10.1371/journal.ppat.1005474] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 02/05/2016] [Indexed: 12/18/2022] Open
Abstract
α-defensins are abundant antimicrobial peptides with broad, potent antibacterial, antifungal, and antiviral activities in vitro. Although their contribution to host defense against bacteria in vivo has been demonstrated, comparable studies of their antiviral activity in vivo are lacking. Using a mouse model deficient in activated α-defensins in the small intestine, we show that Paneth cell α-defensins protect mice from oral infection by a pathogenic virus, mouse adenovirus 1 (MAdV-1). Survival differences between mouse genotypes are lost upon parenteral MAdV-1 infection, strongly implicating a role for intestinal defenses in attenuating pathogenesis. Although differences in α-defensin expression impact the composition of the ileal commensal bacterial population, depletion studies using broad-spectrum antibiotics revealed no effect of the microbiota on α-defensin-dependent viral pathogenesis. Moreover, despite the sensitivity of MAdV-1 infection to α-defensin neutralization in cell culture, we observed no barrier effect due to Paneth cell α-defensin activation on the kinetics and magnitude of MAdV-1 dissemination to the brain. Rather, a protective neutralizing antibody response was delayed in the absence of α-defensins. This effect was specific to oral viral infection, because antibody responses to parenteral or mucosal ovalbumin exposure were not affected by α-defensin deficiency. Thus, α-defensins play an important role as adjuvants in antiviral immunity in vivo that is distinct from their direct antiviral activity observed in cell culture.
Collapse
Affiliation(s)
- Anshu P. Gounder
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Nicolle D. Myers
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Piper M. Treuting
- Department of Comparative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Beth A. Bromme
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Sarah S. Wilson
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Mayim E. Wiens
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - André J. Ouellette
- Department of Pathology and Laboratory Medicine, Keck School of Medicine of the University of Southern California, USC Norris Cancer Center, Los Angeles, California, United States of America
| | - Katherine R. Spindler
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - William C. Parks
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Jason G. Smith
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
34
|
Craig VJ, Zhang L, Hagood JS, Owen CA. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2015; 53:585-600. [PMID: 26121236 PMCID: PMC4742954 DOI: 10.1165/rcmb.2015-0020tr] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/29/2015] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a restrictive lung disease that is associated with high morbidity and mortality. Current medical therapies are not fully effective at limiting mortality in patients with IPF, and new therapies are urgently needed. Matrix metalloproteinases (MMPs) are proteinases that, together, can degrade all components of the extracellular matrix and numerous nonmatrix proteins. MMPs and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the pathogenesis of IPF based upon the results of clinical studies reporting elevated levels of MMPs (including MMP-1, MMP-7, MMP-8, and MMP-9) in IPF blood and/or lung samples. Surprisingly, studies of gene-targeted mice in murine models of pulmonary fibrosis (PF) have demonstrated that most MMPs promote (rather than inhibit) the development of PF and have identified diverse mechanisms involved. These mechanisms include MMPs: (1) promoting epithelial-to-mesenchymal transition (MMP-3 and MMP-7); (2) increasing lung levels or activity of profibrotic mediators or reducing lung levels of antifibrotic mediators (MMP-3, MMP-7, and MMP-8); (3) promoting abnormal epithelial cell migration and other aberrant repair processes (MMP-3 and MMP-9); (4) inducing the switching of lung macrophage phenotypes from M1 to M2 types (MMP-10 and MMP-28); and (5) promoting fibrocyte migration (MMP-8). Two MMPs, MMP-13 and MMP-19, have antifibrotic activities in murine models of PF, and two MMPs, MMP-1 and MMP-10, have the potential to limit fibrotic responses to injury. Herein, we review what is known about the contributions of MMPs and TIMPs to the pathogenesis of IPF and discuss their potential as therapeutic targets for IPF.
Collapse
Affiliation(s)
- Vanessa J. Craig
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California–San Diego, La Jolla, California
| | - Li Zhang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
| | - James S. Hagood
- Division of Pediatric Respiratory Medicine, University of California–San Diego, La Jolla, California, and
- Rady Children’s Hospital of San Diego, San Diego, California; and
| | - Caroline A. Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, Massachusetts
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| |
Collapse
|
35
|
Patel BV, Tatham KC, Wilson MR, O'Dea KP, Takata M. In vivo compartmental analysis of leukocytes in mouse lungs. Am J Physiol Lung Cell Mol Physiol 2015; 309:L639-52. [PMID: 26254421 PMCID: PMC4593833 DOI: 10.1152/ajplung.00140.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/04/2015] [Indexed: 12/12/2022] Open
Abstract
The lung has a unique structure consisting of three functionally different compartments (alveolar, interstitial, and vascular) situated in an extreme proximity. Current methods to localize lung leukocytes using bronchoalveolar lavage and/or lung perfusion have significant limitations for determination of location and phenotype of leukocytes. Here we present a novel method using in vivo antibody labeling to enable accurate compartmental localization/quantification and phenotyping of mouse lung leukocytes. Anesthetized C57BL/6 mice received combined in vivo intravenous and intratracheal labeling with fluorophore-conjugated anti-CD45 antibodies, and lung single-cell suspensions were analyzed by flow cytometry. The combined in vivo intravenous and intratracheal CD45 labeling enabled robust separation of the alveolar, interstitial, and vascular compartments of the lung. In naive mice, the alveolar compartment consisted predominantly of resident alveolar macrophages. The interstitial compartment, gated by events negative for both intratracheal and intravenous CD45 staining, showed two conventional dendritic cell populations, as well as a Ly6Clo monocyte population. Expression levels of MHCII on these interstitial monocytes were much higher than on the vascular Ly6Clo monocyte populations. In mice exposed to acid aspiration-induced lung injury, this protocol also clearly distinguished the three lung compartments showing the dynamic trafficking of neutrophils and exudative monocytes across the lung compartments during inflammation and resolution. This simple in vivo dual-labeling technique substantially increases the accuracy and depth of lung flow cytometric analysis, facilitates a more comprehensive examination of lung leukocyte pools, and enables the investigation of previously poorly defined “interstitial” leukocyte populations during models of inflammatory lung diseases.
Collapse
Affiliation(s)
- Brijesh V Patel
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Kate C Tatham
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Michael R Wilson
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Kieran P O'Dea
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Masao Takata
- Section of Anaesthetics, Pain Medicine and Intensive Care, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| |
Collapse
|
36
|
Xu X, Xiao L, Xiao P, Yang S, Chen G, Liu F, Kanwar YS, Sun L. A glimpse of matrix metalloproteinases in diabetic nephropathy. Curr Med Chem 2015; 21:3244-60. [PMID: 25039784 DOI: 10.2174/0929867321666140716092052] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/06/2014] [Accepted: 07/11/2014] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes belonging to the family of zinc-dependent endopeptidases that are capable of degrading almost all the proteinaceous components of the extracellular matrix (ECM). It is known that MMPs play a role in a number of renal diseases, such as, various forms of glomerulonephritis and tubular diseases, including some of the inherited kidney diseases. In this regard, ECM accumulation is considered to be a hallmark morphologic finding of diabetic nephropathy, which not only is related to the excessive synthesis of matrix proteins, but also to their decreased degradation by the MMPs. In recent years, increasing evidence suggest that there is a good correlation between the activity or expression of MMPs and progression of renal disease in patients with diabetic nephropathy and in various experimental animal models. In such a diabetic milieu, the expression of MMPs is modulated by high glucose, advanced glycation end products (AGEs), TGF-β, reactive oxygen species (ROS), transcription factors and some of the microRNAs. In this review, we focused on the structure and functions of MMPs, and their role in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - L Sun
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan 415800, China..
| |
Collapse
|
37
|
Matrix remodeling by MMPs during wound repair. Matrix Biol 2015; 44-46:113-21. [PMID: 25770908 DOI: 10.1016/j.matbio.2015.03.002] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/16/2022]
Abstract
Repair following injury involves a range of processes - such as re-epithelialization, scar formation, angiogenesis, inflammation, and more - that function, often together, to restore tissue architecture. MMPs carry out diverse roles in all of these activities. In this article, we discuss how specific MMPs act on ECM during two critical repair processes: re-epithelialization and resolution of scar tissue. For wound closure, we discuss how two MMPs - MMP1 in human epidermis and MMP7 in mucosal epithelia - facilitate re-epithelialization by cleaving different ECM or ECM-associated proteins to affect similar integrin:matrix adhesion. In scars and fibrotic tissues, we discuss that a variety of MMPs carry out a diverse range of activities that can either promote or limit ECM deposition. However, few of these MMP-driven activities have been demonstrated to be due a direct action on ECM.
Collapse
|
38
|
Giannandrea M, Parks WC. Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech 2014; 7:193-203. [PMID: 24713275 PMCID: PMC3917240 DOI: 10.1242/dmm.012062] [Citation(s) in RCA: 395] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibrosis--a debilitating condition that can occur in most organs - is characterized by excess deposition of a collagen-rich extracellular matrix (ECM). At first sight, the activities of proteinases that can degrade matrix, such as matrix metalloproteinases (MMPs), might be expected to be under-expressed in fibrosis or, if present, could function to resolve the excess matrix. However, as we review here, some MMPs are indeed anti-fibrotic, whereas others can have pro-fibrotic functions. MMPs modulate a range of biological processes, especially processes related to immunity and tissue repair and/or remodeling. Although we do not yet know precisely how MMPs function during fibrosis--that is, the protein substrate or substrates that an individual MMP acts on to effect a specific process--experiments in mouse models demonstrate that MMP-dependent functions during fibrosis are not limited to effects on ECM turnover. Rather, data from diverse models indicate that these proteinases influence cellular activities as varied as proliferation and survival, gene expression, and multiple aspects of inflammation that, in turn, impact outcomes related to fibrosis.
Collapse
|
39
|
Rims CR, McGuire JK. Matrilysin (MMP-7) catalytic activity regulates β-catenin localization and signaling activation in lung epithelial cells. Exp Lung Res 2014; 40:126-36. [PMID: 24624896 DOI: 10.3109/01902148.2014.890681] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Matrix metalloproteinase-7 (matrilysin, MMP-7) expression is increased in epithelium by bacterial infection, inflammation, fibrosis, and in a myriad of carcinomas. It functions to degrade extracellular matrix and other pericellular substrates including the adherens junction protein E-cadherin to promote wound healing and tissue remodeling. β-catenin functions as both a structural component of adherens junctions and as an intracellular signaling molecule. To assess if matrilysin-mediated disassembly of adherens junctions regulates β-catenin function, we assessed effects of matrilysin catalytic activity on β-catenin localization and signaling activity in A549 cells and in bleomycin-induced lung injury in mice. We determined that matrilysin activity releases β-catenin from the cell membrane after which it is degraded in the cytosol. However, in the presence of a β-catenin stabilizing Wnt signal, β-catenin accumulated in the cytosol and activated a β-catenin luciferase promoter. Furthermore, β-catenin nuclear translocation and activation was impaired in matrilysin-null mice when compared to wild-type mice after bleomycin-induced lung injury. These results show identify matrilysin as a regulator of β-catenin function in injured lung epithelium and may link extracellular proteolytic activity to cell junction disassembly and intracellular signaling.
Collapse
Affiliation(s)
- Cliff R Rims
- Department of Pediatrics and Center for Lung Biology, University of Washington , Seattle, Washington , USA
| | | |
Collapse
|
40
|
Tadokera R, Meintjes GA, Wilkinson KA, Skolimowska KH, Walker N, Friedland JS, Maartens G, Elkington PTG, Wilkinson RJ. Matrix metalloproteinases and tissue damage in HIV-tuberculosis immune reconstitution inflammatory syndrome. Eur J Immunol 2014; 44:127-36. [PMID: 24136296 PMCID: PMC3992843 DOI: 10.1002/eji.201343593] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/29/2013] [Accepted: 09/25/2013] [Indexed: 12/18/2022]
Abstract
The HIV-TB-associated immune reconstitution inflammatory syndrome (TB-IRIS) can complicate combined treatments for HIV-1 and TB. Little is known about tissue damage in TB-IRIS. Matrix metalloproteinases (MMPs) degrade components of the extracellular matrix and consequently may play a role in such immunopathology. Here we investigated the involvement of MMPs in TB-IRIS. We determined MMP transcript abundance and secreted protein in Mycobacterium tuberculosis stimulated PBMCs from 22 TB-IRIS patients and 22 non-IRIS controls. We also measured MMP protein levels in corresponding serum and the effect of prednisone--which reduces the duration of symptoms in IRIS patients--or placebo treatment on MMP transcript and circulating MMP protein levels. PBMCs from TB-IRIS had increased MMP-1, -3, -7, and -10 transcript levels when compared with those of controls at either 6 or 24 h. Similarly, MMP-1, -3, -7, and -10 protein secretion in stimulated cultures was higher in TB-IRIS than in controls. Serum MMP-7 concentration was elevated in TB-IRIS and 2 weeks of corticosteroid therapy decreased this level, although not significantly. TB-IRIS is associated with a distinct pattern of MMP gene and protein activation. Modulation of dysregulated MMP activity may represent a novel therapeutic approach to alleviate TB-IRIS in HIV-TB patients undergoing treatment.
Collapse
Affiliation(s)
- Rebecca Tadokera
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
| | - Graeme A Meintjes
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
- Infectious Diseases Unit, GF Jooste HospitalManenberg, South Africa
- Department of Medicine, Imperial College LondonLondon, UK
| | - Katalin A Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
- MRC National Institute for Medical ResearchLondon, UK
| | - Keira H Skolimowska
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
- Department of Medicine, Imperial College LondonLondon, UK
| | - Naomi Walker
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
- Department of Medicine, Imperial College LondonLondon, UK
| | | | - Gary Maartens
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape TownCape Town, South Africa
| | - Paul T G Elkington
- Department of Medicine, Imperial College LondonLondon, UK
- Faculty of Medicine, University of Southampton, Southampton General HospitalSouthampton, UK
| | - Robert J Wilkinson
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
- Infectious Diseases Unit, GF Jooste HospitalManenberg, South Africa
- Department of Medicine, Imperial College LondonLondon, UK
- MRC National Institute for Medical ResearchLondon, UK
| |
Collapse
|
41
|
Hirota JA, Hiebert PR, Gold M, Wu D, Graydon C, Smith JA, Ask K, McNagny K, Granville DJ, Knight DA. Granzyme B deficiency exacerbates lung inflammation in mice after acute lung injury. Am J Respir Cell Mol Biol 2013; 49:453-62. [PMID: 23642129 DOI: 10.1165/rcmb.2012-0512oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Granzyme B (GzmB) is a serine protease with intracellular and extracellular activities capable of regulating inflammation through cytokine processing and the apoptosis of effector cells. We tested the hypothesis that GzmB expression in T regulatory cells (Tregs) is required for the control of inflammatory responses and pathology during acute lung injury. To substantiate the clinical relevance of GzmB during lung injury, we performed GzmB immunohistochemistry on lung tissue from patients with acute respiratory distress syndrome (ARDS) and healthy control subjects. We also performed in vivo experiments with wild-type (WT) C57BL/6 and GzmB(-/-) mice exposed to a single intranasal instillation of bleomycin to model lung injury. Our results demonstrate that the expression of GzmB was elevated in ARDS lung sections, relative to healthy control samples. Bleomycin-exposed GzmB(-/-) mice exhibited greater morbidity and mortality, which was associated with increased numbers of lung lymphocytes. Bleomycin induced an equal increase in CD4(+)/CD25(+)/FoxP3(+) Treg populations in WT and GzmB(-/-) mice. GzmB expression was not significant in Tregs, with the majority of the expression localized to natural killer (NK)-1.1(+) cells. The expression of GzmB in NK cells of bleomycin-exposed WT mice was associated with greater lymphocyte apoptosis, reduced total lymphocyte numbers, and reduced pathology relative to GzmB(-/-) mice. Our data demonstrate that GzmB deficiency results in the exacerbation of lymphocytic inflammation during bleomycin-induced acute lung injury, which is associated with pathology, morbidity, and mortality.
Collapse
Affiliation(s)
- Jeremy A Hirota
- University of British Columbia James Hogg Research Centre, St. Paul's Hospital, 1081 Burrard St., Vancouver, BC, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tocchi A, Parks WC. Functional interactions between matrix metalloproteinases and glycosaminoglycans. FEBS J 2013; 280:2332-41. [PMID: 23421805 DOI: 10.1111/febs.12198] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/03/2013] [Accepted: 02/15/2013] [Indexed: 01/10/2023]
Abstract
Similar to most proteinases, matrix metalloproteinases (MMP) do not recognize a consensus cleavage site. Thus, it is not surprising that, in a defined in vitro reaction, most MMPs can act on a wide range of proteins, including many extracellular matrix proteins. However, the findings obtained from in vivo studies with genetic models have demonstrated that individual MMPs act on just a few extracellular protein substrates, typically not matrix proteins. The limited, precise functions of an MMP imply that mechanisms have evolved to control the specificity of proteinase:substrate interactions. We discuss the possibility that interactions with the glycosaminoglycan chains of proteoglycans may function as allosteric regulators or accessory factors directing MMP catalysis to specific substrates. We propose that understanding how the activity of specific MMPs is confined to discreet compartments and targeted to defined substrates via interactions with other macromolecules may provide a means of blocking potentially deleterious MMP-mediated processes at the same time as sparing any beneficial functions.
Collapse
Affiliation(s)
- Autumn Tocchi
- Department of Medicine (Pulmonary and Critical Care Medicine), Center for Lung Biology, University of Washington, Seattle, WA 98109, USA
| | | |
Collapse
|
43
|
Gharib SA, Altemeier WA, Van Winkle LS, Plopper CG, Schlesinger SY, Buell CA, Brauer R, Lee V, Parks WC, Chen P. Matrix metalloproteinase-7 coordinates airway epithelial injury response and differentiation of ciliated cells. Am J Respir Cell Mol Biol 2012; 48:390-6. [PMID: 23258229 DOI: 10.1165/rcmb.2012-0083oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Matrix metalloproteinase-7 (MMP7) expression is quickly up-regulated after injury, and functions to regulate wound repair and various mucosal immune processes. We evaluated the global transcriptional response of airway epithelial cells from wild-type and Mmp7-null mice cultured at an air-liquid interface. The analysis of differentially expressed genes between genotypes after injury revealed an enrichment of functional categories associated with inflammation, cilia, and differentiation. Because these analyses suggested that MMP7 regulated ciliated cell formation, we evaluated the recovery of the airway epithelium in wild-type and Mmp7-null mice in vivo after naphthalene injury, which revealed augmented ciliated cell formation in the absence of MMP7. Moreover, in vitro studies evaluating cell differentiation in air-liquid interface cultures also showed faster ciliated cell production under Mmp7-null conditions compared with wild-type conditions. These studies identified a new role for MMP7 in attenuating ciliated cell differentiation during wound repair.
Collapse
Affiliation(s)
- Sina A Gharib
- Center for Lung Biology, University of Washington, 850 Republican Street, Seattle, WA 98109, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kang MJ, Han H, Kwon OS, Kim HO, Jung BH. Multireaction monitoring of 12 peptides for lowered immunity screening. Anal Bioanal Chem 2012; 404:2249-58. [DOI: 10.1007/s00216-012-6344-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/03/2012] [Accepted: 08/07/2012] [Indexed: 10/27/2022]
|
45
|
Tan RJ, Liu Y. Matrix metalloproteinases in kidney homeostasis and diseases. Am J Physiol Renal Physiol 2012; 302:F1351-F1361. [PMID: 22492945 PMCID: PMC3774496 DOI: 10.1152/ajprenal.00037.2012] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/03/2012] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that have been increasingly linked to both normal physiology and abnormal pathology in the kidney. Collectively able to degrade all components of the extracellular matrix, MMPs were originally thought to antagonize the development of fibrotic diseases solely through digestion of excessive matrix. However, increasing evidence has shown that MMPs play a wide variety of roles in regulating inflammation, epithelial-mesenchymal transition, cell proliferation, angiogenesis, and apoptosis. We now have robust evidence for MMP dysregulation in a multitude of renal diseases including acute kidney injury, diabetic nephropathy, glomerulonephritis, inherited kidney disease, and chronic allograft nephropathy. The goal of this review is to summarize current findings regarding the role of MMPs in kidney diseases as well as the mechanisms of action of this family of proteases.
Collapse
Affiliation(s)
- Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, 200 Lothrop St., Pittsburgh, PA 15261, USA
| | | |
Collapse
|
46
|
Nold C, Anton L, Brown A, Elovitz M. Inflammation promotes a cytokine response and disrupts the cervical epithelial barrier: a possible mechanism of premature cervical remodeling and preterm birth. Am J Obstet Gynecol 2012; 206:208.e1-7. [PMID: 22285171 DOI: 10.1016/j.ajog.2011.12.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 12/20/2011] [Accepted: 12/27/2011] [Indexed: 01/09/2023]
Abstract
OBJECTIVE An inflammatory challenge disrupts the cervical epithelial barrier and promotes cervical remodeling. STUDY DESIGN Immortalized ectocervical and endocervical cells were treated with lipopolysaccharide (LPS), and interleukin (IL)-6, IL-8, and soluble E-cadherin (SECAD) were assessed. Cells were then pretreated with dexamethasone prior to LPS exposure, and IL-6, IL-8, and SECAD levels were again assessed. The integrity of the epithelial cell barrier was determined using a permeability assay. RESULTS LPS significantly increased IL-6 and IL-8 levels, and SECAD was significantly increased at 24 hours. LPS induced inflammation increased permeability for both cell lines. Dexamethasone pretreatment prior to LPS exposure significantly decreased IL-6 and IL-8 levels in both cell lines. There was no reduction in SECAD levels with dexamethasone pretreatment. Permeability decreased in the presence of dexamethasone for ectocervical cells only. CONCLUSION These studies demonstrate an inflammatory challenge to cervical epithelial cells promotes a cytokine release and functionally alters the cervical epithelial barrier.
Collapse
Affiliation(s)
- Christopher Nold
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
47
|
Zhao Y, Zhou YN, Ran JT, Zou SJ, Li Q, Chen ZF. Clinical significance of serum levels of soluble E-cadherin in patients with gastric carcinoma. Shijie Huaren Xiaohua Zazhi 2011; 19:2668-2672. [DOI: 10.11569/wcjd.v19.i25.2668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To measure serum levels of soluble E-cadherin (sE-cadherin) in patients with gastric cancer and to evaluate the relationship of serum levels of sE-cadherin with tumor clinicopathological features and patient survival.
METHODS: Peripheral blood samples were collected from 127 gastric cancer patients and 31 healthy controls from March 2003 to September 2004. Serum levels of sE-cadherin were measured using double-antibody sandwich enzyme-linked immunosorbent assay. The clinical pathological data and survive data for all patients were recorded.
RESULTS: Serum levels of sE-cadherin were significantly higher in patients with gastric cancer than in healthy controls (43.83 μg/L ± 15.77 μg/L vs 17.17 μg/L ± 5.38 μg/L, P = 0.000, t = 8.34). Serum levels of sE-cadherin were closely associated with tumor differentiation, depth of invasion and lymph node metastasis (all P < 0.05). Patients with lower levels of serum sE-cadherin had significant survival advantage over those with higher levels of serum sE-cadherin (P < 0.001), and such survival advantage was independent of depth of invasion, lymph node metastasis and tumor differentiation.
CONCLUSION: sE-cadherin may serve as a potential biological marker for the diagnosis and prognosis of gastric cancer.
Collapse
|
48
|
Neutrophil transmigration triggers repair of the lung epithelium via beta-catenin signaling. Proc Natl Acad Sci U S A 2011; 108:15990-5. [PMID: 21880956 DOI: 10.1073/pnas.1110144108] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Injury to the epithelium is integral to the pathogenesis of many inflammatory lung diseases, and epithelial repair is a critical determinant of clinical outcome. However, the signaling pathways regulating such repair are incompletely understood. We used in vitro and in vivo models to define these pathways. Human neutrophils were induced to transmigrate across monolayers of human lung epithelial cells in the physiological basolateral-to-apical direction. This allowed study of the neutrophil contribution not only to the initial epithelial injury, but also to its repair, as manifested by restoration of transepithelial resistance and reepithelialization of the denuded epithelium. Microarray analysis of epithelial gene expression revealed that neutrophil transmigration activated β-catenin signaling, and this was verified by real-time PCR, nuclear translocation of β-catenin, and TOPFlash reporter activity. Leukocyte elastase, likely via cleavage of E-cadherin, was required for activation of β-catenin signaling in response to neutrophil transmigration. Knockdown of β-catenin using shRNA delayed epithelial repair. In mice treated with intratracheal LPS or keratinocyte chemokine, neutrophil emigration resulted in activation of β-catenin signaling in alveolar type II epithelial cells, as demonstrated by cyclin D1 expression and/or reporter activity in TOPGAL mice. Attenuation of β-catenin signaling by IQ-1 inhibited alveolar type II epithelial cell proliferation in response to neutrophil migration induced by intratracheal keratinocyte chemokine. We conclude that β-catenin signaling is activated in lung epithelial cells during neutrophil transmigration, likely via elastase-mediated cleavage of E-cadherin, and regulates epithelial repair. This pathway represents a potential therapeutic target to accelerate physiological recovery in inflammatory lung diseases.
Collapse
|
49
|
Villar J, Cabrera NE, Casula M, Valladares F, Flores C, López-Aguilar J, Blanch L, Zhang H, Kacmarek RM, Slutsky AS. WNT/β-catenin signaling is modulated by mechanical ventilation in an experimental model of acute lung injury. Intensive Care Med 2011; 37:1201-9. [PMID: 21567117 DOI: 10.1007/s00134-011-2234-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 03/11/2011] [Indexed: 01/11/2023]
Abstract
PURPOSE The mechanisms involved in lung injury progression during acute lung injury (ALI) are still poorly understood. Because WNT/β-catenin signaling has been shown to be involved in epithelial cell injury and hyperplasia during inflammation and sepsis, we hypothesized that it would be modulated by mechanical ventilation (MV) in an experimental model of sepsis-induced ALI. METHODS This study was a prospective, randomized, controlled animal study performed using adult male Sprague-Dawley rats. Sepsis was induced by cecal ligation and perforation. At 18 h, surviving animals were randomized to spontaneous breathing or two strategies of MV for 4 h: low tidal volume (V (T)) (6 ml/kg) plus 10 cmH2O of positive end-expiratory pressure (PEEP) versus high (20 ml/kg) tidal volume (V (T)) with zero PEEP. Histological evaluation, measurements of WNT5A, total β-catenin, and matrix metalloproteinase-7 (MMP7) protein levels by Western blot, and their immunohistochemical localization in the lungs were analyzed. RESULTS Sepsis and high-V (T) MV caused lung inflammation and perivascular edema with cellular infiltrates and collagen deposition. Protein levels of WNT5A, β-catenin, and MMP7 in the lungs were increased in animals with sepsis-induced ALI. High-V (T) MV was associated with higher levels of WNT5A, β-catenin, and MMP7 protein levels (p < 0.001), compared to healthy control animals. By contrast, low-V (T) MV markedly reduced WNT5A, β-catenin, and MMP7 protein levels (p < 0.001). CONCLUSIONS Our findings demonstrate that the WNT/β-catenin signaling pathway is modulated early during sepsis and ventilator-induced lung injury, suggesting that activation of this pathway could play an important role in both lung injury progression and repair.
Collapse
Affiliation(s)
- Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain, jesus.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Maccaferri S, Vitali B, Klinder A, Brigidi P, Costabile A. Rifaximin modulates the colonic microbiota of patients with Crohn's disease: an in vitro approach using a continuous culture colonic model system--authors' response. J Antimicrob Chemother 2011. [DOI: 10.1093/jac/dkr080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|