1
|
Dhannoon A, Pasha T, Ibrahim A. A simple and effective technique to retrieve a retracted flexor tendon without a palmar incision. J Hand Surg Eur Vol 2025:17531934251324347. [PMID: 40035149 DOI: 10.1177/17531934251324347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
We describe a simple and effective technique to retrieve a retracted flexor tendon without a palmar incision.Level of evidence: V.
Collapse
Affiliation(s)
- Amenah Dhannoon
- Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea SA6 6NL, UK
| | - Terouz Pasha
- Department of Plastic and Reconstructive Surgery, St Thomas' Hospital, London SE1 7EH, UK
| | - Abdulla Ibrahim
- Department of Plastic and Reconstructive Surgery, St Thomas' Hospital, London SE1 7EH, UK
| |
Collapse
|
2
|
Cao X, Li J, Zhai W, Zhou B, Lin H, Wang Y. Inhibiting Friction-Induced Exogenous Adhesion via Robust Lubricative Core-Shell Nanofibers for High-Quality Tendon Repair. Biomacromolecules 2025; 26:1350-1361. [PMID: 39827415 DOI: 10.1021/acs.biomac.4c01729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Friction is the trigger cause for excessive exogenous adhesion, leading to the poor self-repair of the tendon. To address this problem, we developed electrospun dual-functional nanofibers with surface robust superlubricated performance and bioactive agent delivery to regulate healing balance by reducing exogenous adhesion and promoting endogenous healing. Coaxial electrospinning and our previous developed in situ robust nanocoating growth techniques were employed to create the lubricative/repairable core-shell structured nanofibrous membrane (L/R-NM). The L/R-NM shell featured a robust coating of the zwitterionic PMPC polymer for strong hydration lubrication to resist exogenous healing. The core could achieve sustained platelet-rich plasma release to promote endogenous healing. Friction tests and cell experiments confirmed L/R-NM's prominent lubricating properties and antiadhesive performance in vitro. Rat tendon injury model evaluation indicated that L/R-NM effectively promotes high-quality tendon repair by inhibiting friction-induced exogenous adhesion and promoting endogenous healing. Therefore, we believe that L/R-NM will open a unique novel horizon for tendon repair.
Collapse
Affiliation(s)
- Xin Cao
- Department of Hepatobiliary Surgery, Hebei International Joint Research Center for Digital Twin Diagnosis and Treatment of Digestive Tract Tumors, Baoding Key Laboratory of Precision Diagnosis and Treatment of Digestive Tract Tumors, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Jinghua Li
- Department of Hepatobiliary Surgery, Hebei International Joint Research Center for Digital Twin Diagnosis and Treatment of Digestive Tract Tumors, Baoding Key Laboratory of Precision Diagnosis and Treatment of Digestive Tract Tumors, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Weijie Zhai
- Department of Hepatobiliary Surgery, Hebei International Joint Research Center for Digital Twin Diagnosis and Treatment of Digestive Tract Tumors, Baoding Key Laboratory of Precision Diagnosis and Treatment of Digestive Tract Tumors, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Bowen Zhou
- Department of Hepatobiliary Surgery, Hebei International Joint Research Center for Digital Twin Diagnosis and Treatment of Digestive Tract Tumors, Baoding Key Laboratory of Precision Diagnosis and Treatment of Digestive Tract Tumors, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Hao Lin
- Department of Mechanical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yi Wang
- Department of Hepatobiliary Surgery, Hebei International Joint Research Center for Digital Twin Diagnosis and Treatment of Digestive Tract Tumors, Baoding Key Laboratory of Precision Diagnosis and Treatment of Digestive Tract Tumors, Affiliated Hospital of Hebei University, Baoding 071000, China
- Department of Mechanical Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
3
|
Caetano-Silva SP, Marr N, Rawlinson SCF, Pitsillides AA. Using Cell and Organ Culture Models to Analyze Responses of Bone Cells to Mechanical Stimulation. Methods Mol Biol 2025; 2885:159-191. [PMID: 40448761 DOI: 10.1007/978-1-0716-4306-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
The techniques that are useful for applying mechanical strain to bone and bone cells are now more diverse than described in the second edition. Their output has also increased substantially and, perhaps most importantly, their significance is now broadly accepted. This growth in the use of methods for applying mechanical strain to bone and its constituent cells and increased awareness of the importance of the mechanical environment in controlling normal bone cell behavior has indeed heralded new therapeutic approaches. We have expanded the text to include additions and modifications made to the straining apparatus and updated the research cited to support this growing role of cell cultures, including co-culture systems and primary cells, tissue engineering, and organ culture models to analyze responses of bone cells to mechanical stimulation. We understand that there are approaches not covered here and appreciate that alternative strategies have their own value and utility.
Collapse
Affiliation(s)
- Soraia P Caetano-Silva
- Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, University College of London, London, UK
| | - Neil Marr
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| | - Simon C F Rawlinson
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Institute of Dentistry, London, UK
| | - Andrew A Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, London, UK.
| |
Collapse
|
4
|
Adu Y, Harder J, Cox C, Baum G, Hernandez EJ, MacKay BJ. Evaluating the effect of VersaWrap tendon protector on functional outcomes in operative tendon repairs. Front Surg 2024; 11:1447515. [PMID: 39737387 PMCID: PMC11683011 DOI: 10.3389/fsurg.2024.1447515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025] Open
Abstract
Background Tendon repairs often result in adhesion formation which can cause persisting functional deficits. Close proximity of healing tissues increases friction during tendon excursion, often leading to tendon tethering postoperatively. Despite continued improvements in techniques for tendon repairs, there is currently no consensus on the most effective modality to reduce adhesion formation. The VersaWrap Tendon Protector is a bioresorbable hydrogel that is FDA-cleared for use in tendon repair by separating healing tendons from surrounding tissues and improving tendon gliding. We conducted a study to assess the efficacy of VersaWrap in improving clinical outcomes related to adhesions and tethering in tendon repairs involving the hand. Materials & methods Age, sex, injury type, mechanism of injury, visual analogue scale (VAS) pain scores, active and passive range of motion (ROM), percent return to normal function, and patient-reported outcomes forms (QuickDASH) were collected at baseline and routine follow up visits. Functional outcomes were classified according to Strickland and Glogovac grading system. Results 90 patients were included, with an average age of 39.8 years and a 44% female gender. The most common mechanism of injury was sharp laceration, and the majority of repairs involved the extensor mechanism (58.8% extensor, 35.3% flexor, 5.8% both). At a mean follow-up of 4.6 months, the mean active and passive ROM was 88.8% and 94.3%, respectively. Mean percent return of function was 87.7%. Good or Excellent functional outcomes were achieved in 92.3% of patients - 70.5% Excellent, 21.8% Good, 6.4% Fair, 1.3% Poor. The average QuickDASH score was 30.7, and the average final VAS pain score was 1.3. Conclusions Tendon repairs and tenolysis procedures often result in reduced functionality due to impeded tendon gliding, and there is currently no consensus on optimal treatment to prevent tethering to surrounding tissues. The VersaWrap Tendon Protector creates a gelatinous layer between the tendon and surrounding soft tissue to improve gliding resistance, thereby limiting tendon sheath adhesions. Our data suggests that VersaWrap may be a useful adjunct in preventing tendon tethering adhesion post-repair.
Collapse
Affiliation(s)
| | | | | | | | | | - Brendan J. MacKay
- Department of Orthopaedic Hand Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
5
|
Stehr J, Wimbiscus M, Sullivan LE, Torres-Guzman RA, Bhandari P. Vanderbilt University Rehabilitation Approach to Zone 2 Tendon Repairs in the Hand. Ann Plast Surg 2024; 93:S162-S166. [PMID: 39527405 DOI: 10.1097/sap.0000000000004106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
ABSTRACT Zone 2 of the hand, which stretches from the region between the A1 pulley at the distal palmar crease to the insertion of the FDS tendon at the end of the A4 pulley, is notable for its high complication rate following surgery. Many of these complications, such as adhesions, contractures, and tendon rupture, can be avoided through adequate rehabilitation. We document the rehabilitation protocol at Vanderbilt University Medical center, which is characterized by 4 phases. An initial postoperative phase emphasizes shielding the flexor tendons with little motion, a second phase focuses on an orthosis to keep the metacarpophalangeal joints flexed at 45 degrees, a third phase focuses on strengthening exercises, and a fourth phase that focuses on transitioning to normal activities without restriction.
Collapse
Affiliation(s)
- Justin Stehr
- From the Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN
| | | | | | | | | |
Collapse
|
6
|
Jiang F, Zhao H, Zhang P, Bi Y, Zhang H, Sun S, Yao Y, Zhu X, Yang F, Liu Y, Xu S, Yu T, Xiao X. Challenges in tendon-bone healing: emphasizing inflammatory modulation mechanisms and treatment. Front Endocrinol (Lausanne) 2024; 15:1485876. [PMID: 39568806 PMCID: PMC11576169 DOI: 10.3389/fendo.2024.1485876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024] Open
Abstract
Tendons are fibrous connective tissues that transmit force from muscles to bones. Despite their ability to withstand various loads, tendons are susceptible to significant damage. The healing process of tendons and ligaments connected to bone surfaces after injury presents a clinical challenge due to the intricate structure, composition, cellular populations, and mechanics of the interface. Inflammation plays a pivotal role in tendon healing, creating an inflammatory microenvironment through cytokines and immune cells that aid in debris clearance, tendon cell proliferation, and collagen fiber formation. However, uncontrolled inflammation can lead to tissue damage, and adhesions, and impede proper tendon healing, culminating in scar tissue formation. Therefore, precise regulation of inflammation is crucial. This review offers insights into the impact of inflammation on tendon-bone healing and its underlying mechanisms. Understanding the inflammatory microenvironment, cellular interactions, and extracellular matrix dynamics is essential for promoting optimal healing of tendon-bone injuries. The roles of fibroblasts, inflammatory cytokines, chemokines, and growth factors in promoting healing, inhibiting scar formation, and facilitating tissue regeneration are discussed, highlighting the necessity of balancing the suppression of detrimental inflammatory responses with the promotion of beneficial aspects to enhance tendon healing outcomes. Additionally, the review explores the significant implications and translational potential of targeted inflammatory modulation therapies in refining strategies for tendon-bone healing treatments.
Collapse
Affiliation(s)
- Fan Jiang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Haibo Zhao
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Po Zhang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yanchi Bi
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Haoyun Zhang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Shenjie Sun
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yizhi Yao
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xuesai Zhu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Fenghua Yang
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yang Liu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Sicong Xu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Xiao Xiao
- Central Laboratories, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
7
|
Eren G, López-Albors O, Guilabert Segura R, Jordan Montesinos J, Latorre R. Accessory Ligament of the Deep Digital Flexor Tendon of the Horse Forelimb and Its Relationship with the Superficial Digital Flexor Tendon: A Plastination, Histological, and Morphometry Study. Animals (Basel) 2024; 14:2952. [PMID: 39457884 PMCID: PMC11503822 DOI: 10.3390/ani14202952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The accessory ligament of the deep digital flexor tendon (AL-DDFT) plays a crucial role in the stay apparatus of the horse. This study aimed to investigate the anatomical relationship between the AL-DDFT, the superficial digital flexor tendon (SDFT), and other structures in the metacarpal region. Sixteen distal forelimbs from eight horses, aged 1 to 6 years, were evaluated through macroscopic, microscopic, and morphometric analyses, utilizing detailed dissection, E12 plastinated sections, and histological analysis. During lateral dissection, a connection was observed between the AL-DDFT and the SDFT. Histological evaluation revealed that this connection was a fibrous band (FB), extending the common synovial sheath (CSS) to the SDFT, along with associated collagen fibrils of the epiligament and peritenon. Additionally, two distinct forms of the AL-DDFT were identified, Type I and Type II, with Type II showing a greater cross-sectional area (CSA) than Type I. While numerous morphological and morphometric studies have explored the AL-DDFT and related structures, research incorporating plastination-based morphological and histological evaluations remains scarce. The findings provide valuable insights for both the morphological and clinical assessment of structures within the metacarpal region.
Collapse
Affiliation(s)
- Gulsum Eren
- Department of Anatomy and Comparative Pathological Anatomy, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (R.G.S.); (J.J.M.); (R.L.)
- Department of Anatomy, Veterinary Faculty, University of Uludag, Bursa 16059, Türkiye
| | - Octavio López-Albors
- Department of Anatomy and Comparative Pathological Anatomy, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (R.G.S.); (J.J.M.); (R.L.)
| | - Ruth Guilabert Segura
- Department of Anatomy and Comparative Pathological Anatomy, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (R.G.S.); (J.J.M.); (R.L.)
| | - Joana Jordan Montesinos
- Department of Anatomy and Comparative Pathological Anatomy, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (R.G.S.); (J.J.M.); (R.L.)
| | - Rafael Latorre
- Department of Anatomy and Comparative Pathological Anatomy, Veterinary Faculty, University of Murcia, 30100 Murcia, Spain; (R.G.S.); (J.J.M.); (R.L.)
| |
Collapse
|
8
|
Vinitpairot C, Yik JHN, Haudenschild DR, Szabo RM, Bayne CO. Current trends in the prevention of adhesions after zone 2 flexor tendon repair. J Orthop Res 2024; 42:2149-2158. [PMID: 38761143 DOI: 10.1002/jor.25874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 05/20/2024]
Abstract
Treating flexor tendon injuries within the digital flexor sheath (commonly referred to as palmar hand zone 2) presents both technical and logistical challenges. Success hinges on striking a delicate balance between safeguarding the surgical repair for tendon healing and initiating early rehabilitation to mitigate the formation of tendon adhesions. Adhesions between tendon slips and between tendons and the flexor sheath impede tendon movement, leading to postoperative stiffness and functional impairment. While current approaches to flexor tendon repair prioritize maximizing tendon strength for early mobilization and adhesion prevention, factors such as pain, swelling, and patient compliance may impede postoperative rehabilitation efforts. Moreover, premature mobilization could risk repair failure, necessitating additional surgical interventions. Pharmacological agents offer a potential avenue for minimizing inflammation and reducing adhesion formation while still promoting normal tendon healing. Although some systemic and local agents have shown promising results in animal studies, their clinical efficacy remains uncertain. Limitations in these studies include the relevance of chosen animal models to human populations and the adequacy of tools and measurement techniques in accurately assessing the impact of adhesions. This article provides an overview of the clinical challenges associated with flexor tendon injuries, discusses current on- and off-label agents aimed at minimizing adhesion formation, and examines investigational models designed to study adhesion reduction after intra-synovial flexor tendon repair. Understanding the clinical problem and experimental models may serve as a catalyst for future research aimed at addressing intra-synovial tendon adhesions following zone 2 flexor tendon repair.
Collapse
Affiliation(s)
- Chaiyos Vinitpairot
- Department of Orthopaedic Surgery, University of California Davis School of Medicine, Sacramento, California, USA
- Department of Orthopedics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Jasper H N Yik
- Department of Translational Orthopedic Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Dominik R Haudenschild
- Department of Translational Orthopedic Research, Houston Methodist Research Institute, Houston, Texas, USA
| | - Robert M Szabo
- Department of Orthopaedic Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Christopher O Bayne
- Department of Orthopaedic Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
9
|
Pang S, Wu R, Lv W, Zou J, Li Y, Li Y, Zhang P, Ma X, Wang Y, Liu S. Use of a pH-responsive imatinib mesylate sustained-release hydrogel for the treatment of tendon adhesion by inhibiting PDGFRβ/CLDN1 pathway. Bioact Mater 2024; 38:124-136. [PMID: 38699245 PMCID: PMC11063598 DOI: 10.1016/j.bioactmat.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
Adhesion after tendon injury, which can result in limb movement disorders, is a common clinical complication; however, effective treatment methods are lacking. Hyaluronic acid hydrogels are a new biomedical material used to prevent tendon adhesion owing to their good biocompatibility. In addition, potential drugs that inhibit adhesion formation have gradually been discovered. The anti-adhesion effects of a combination of loaded drugs into hydrogels have become an emerging trend. However, current drug delivery systems usually lack specific regulation of drug release, and the effectiveness of drugs for treating tendon adhesions is mostly flawed. In this study, we identified a new drug, imatinib mesylate (IM), that prevents tendon adhesion and explored its related molecular pathways. In addition, we designed a pH-responsive sustained-release hydrogel for delivery. Using the metal-organic framework ZIF-8 as a drug carrier, we achieved controlled drug release to increase the effective drug dose at the peak of adhesion formation to achieve better therapeutic effects. The results showed that IM blocked the formation of peritendon adhesions by inhibiting the PDGFRβ/ERK/STAT3/CLDN1 pathway. Furthermore, the hydrogel with ZIF-8 exhibited better physical properties and drug release curves than the hydrogel loaded only with drugs, showing better prevention and treatment effects on tendon adhesion.
Collapse
Affiliation(s)
- Sa Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Rongpu Wu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Wenxin Lv
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Jian Zou
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Yuange Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Yanhao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Peilin Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Xin Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Yi Wang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd, Shanghai, 200233, PR China
| |
Collapse
|
10
|
Liu J, Chen L, Sun Z, Tao Z, Pavel V, Li Y, Wang F, Cui W, Liu S. Unidirectional gene delivery electrospun fibrous membrane via charge repulsion for tendon repair. Bioact Mater 2024; 37:191-205. [PMID: 38549775 PMCID: PMC10972767 DOI: 10.1016/j.bioactmat.2024.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 11/12/2024] Open
Abstract
Gene therapy is capable of efficiently regulating the expression of abnormal genes in diseased tissues and expected to be a therapeutic option for refractory diseases. However, unidirectional targeting gene therapy is always desired at the tissue interface. In this study, inspired by the principle that like charges repulse each other, a positively charged micro-nano electrospun fibrous membrane with dual-layer structure was developed by electrospinning technology to achieve unidirectional delivery of siRNA-loaded cationic nanocarriers, thus realizing unidirectional gene therapy at the tendon-paratenon interface. Under the charge repulsion of positively charged layer, more cationic COX-2 siRNA nanocarriers were enriched in peritendinous tissue, which not only improved the bioavailability of the gene drug to prevent the peritendinous adhesion formation, but also avoided adverse effects on the fragile endogenous healing of tendon itself. In summary, this study provides an innovative strategy for unidirectional targeting gene therapy of tissue interface diseases by utilizing charge repulsion to facilitate unidirectional delivery of gene drugs.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China
| | - Liang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Zhenyu Sun
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China
| | - Zaijin Tao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Belarusian State Medical University, Minsk 220024, Belarus
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China
| |
Collapse
|
11
|
Spielman AF, Griffin MF, Titan AL, Guardino N, Cotterell AC, Akras D, Wan DC, Longaker MT. Reduction of Tendon Fibrosis Using Galectin-3 Inhibitors. Plast Reconstr Surg 2024; 154:113-121. [PMID: 37344932 DOI: 10.1097/prs.0000000000010880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
BACKGROUND Fibrosis is a complication of both tendon injuries and repairs. The authors aimed to develop a mouse model to assess tendon fibrosis and to identify an antifibrotic agent capable of overcoming it. METHODS The Achilles tendon of adult C57Bl/6 mice was exposed via skin incision, followed by 50% tendon injury and abrasion with sandpaper. Sham operations were conducted on contralateral hindlimbs. Histologic analyses and immunofluorescent staining for fibrotic markers (collagen type 1 [ Col1 ], α-smooth muscle actin [ α-SMA ]) were used to confirm that the model induced tendon fibrosis. A second experiment further examined the role of α-SMA in adhesion formation using α-SMA.mTmG mice (6 to 8 weeks old; n = 3) with the same injury model. Lastly, α-SMA.mTmG mice were randomized to either condition 1 (tendon injury [control group]) or condition 2 (tendon injury with galectin-3 inhibitor [Gal3i] treatment at time of injury [treatment group]). RESULTS Histologic analyses confirmed tendon thickening and collagen deposition after tendon injury and abrasion compared with control. Immunofluorescence showed higher levels of Col1 and α-SMA protein expression after injury compared with sham ( P < 0.05). Real-time quantitative polymerase chain reaction also demonstrated increased gene expression of Col1 and α-SMA after injury compared with sham ( P < 0.05). Gal3 protein expression also increased after injury and colocalized with α-SMA+ fibroblasts surrounding the fibrotic tendon. Gal3i treatment decreased collagen deposition and scarring observed in the treatment group ( P < 0.05). CONCLUSIONS The authors' study provides a reproducible and reliable model to investigate tendon fibrosis. Findings suggest the potential of Gal3i to overcome fibrosis resulting from tendon injuries. CLINICAL RELEVANCE STATEMENT Tendon injuries are common presentations to hand surgeons. Complications include adhesion formation, which results in reduced strength and frequent reinjury. Advancements in management require a better understanding of the mechanisms behind tendon fibrosis in order to identify ways to overcome it.
Collapse
Affiliation(s)
- Amanda F Spielman
- From the Hagey Laboratory for Pediatric Regenerative Medicine and Department of Surgery, Division of Plastic and Reconstructive Surgery
| | - Michelle F Griffin
- From the Hagey Laboratory for Pediatric Regenerative Medicine and Department of Surgery, Division of Plastic and Reconstructive Surgery
| | - Ashley L Titan
- From the Hagey Laboratory for Pediatric Regenerative Medicine and Department of Surgery, Division of Plastic and Reconstructive Surgery
| | - Nicholas Guardino
- From the Hagey Laboratory for Pediatric Regenerative Medicine and Department of Surgery, Division of Plastic and Reconstructive Surgery
| | - Asha C Cotterell
- From the Hagey Laboratory for Pediatric Regenerative Medicine and Department of Surgery, Division of Plastic and Reconstructive Surgery
| | - Deena Akras
- From the Hagey Laboratory for Pediatric Regenerative Medicine and Department of Surgery, Division of Plastic and Reconstructive Surgery
| | - Derrick C Wan
- From the Hagey Laboratory for Pediatric Regenerative Medicine and Department of Surgery, Division of Plastic and Reconstructive Surgery
| | - Michael T Longaker
- From the Hagey Laboratory for Pediatric Regenerative Medicine and Department of Surgery, Division of Plastic and Reconstructive Surgery
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine
| |
Collapse
|
12
|
Xiao Y, Tao Z, Ju Y, Huang X, Zhang X, Liu X, Volotovski PA, Huang C, Chen H, Zhang Y, Liu S. Diamond-Like Carbon Depositing on the Surface of Polylactide Membrane for Prevention of Adhesion Formation During Tendon Repair. NANO-MICRO LETTERS 2024; 16:186. [PMID: 38687411 PMCID: PMC11061095 DOI: 10.1007/s40820-024-01392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/08/2024] [Indexed: 05/02/2024]
Abstract
Post-traumatic peritendinous adhesion presents a significant challenge in clinical medicine. This study proposes the use of diamond-like carbon (DLC) deposited on polylactic acid (PLA) membranes as a biophysical mechanism for anti-adhesion barrier to encase ruptured tendons in tendon-injured rats. The results indicate that PLA/DLC composite membrane exhibits more efficient anti-adhesion effect than PLA membrane, with histological score decreasing from 3.12 ± 0.27 to 2.20 ± 0.22 and anti-adhesion effectiveness increasing from 21.61% to 44.72%. Mechanistically, the abundant C=O bond functional groups on the surface of DLC can reduce reactive oxygen species level effectively; thus, the phosphorylation of NF-κB and M1 polarization of macrophages are inhibited. Consequently, excessive inflammatory response augmented by M1 macrophage-originated cytokines including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) is largely reduced. For biocompatibility evaluation, PLA/DLC membrane is slowly absorbed within tissue and displays prolonged barrier effects compared to traditional PLA membranes. Further studies show the DLC depositing decelerates the release of degradation product lactic acid and its induction of macrophage M2 polarization by interfering esterase and PLA ester bonds, which further delays the fibrosis process. It was found that the PLA/DLC membrane possess an efficient biophysical mechanism for treatment of peritendinous adhesion.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China
| | - Zaijin Tao
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China
| | - Yufeng Ju
- Shanghai Tongji Hospital, 389 Xincun Rd, Shanghai, 200065, People's Republic of China
| | - Xiaolu Huang
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xinshu Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China
| | - Xiaonan Liu
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China
| | - Pavel A Volotovski
- Orthopedic Trauma Department, Belarus Republic Scientific and Practical Center for Traumatology and Orthopedics, Kizhevatova str., 60/4, 220024, Minsk, Belarus
| | - Chao Huang
- Shanghai Haohai Biological Technology Limited Liability Company, 1386 Hongqiao Rd, Shanghai, 200336, People's Republic of China
| | - Hongqi Chen
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China.
| | - Yaozhong Zhang
- Shanghai Key Laboratory for High Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
13
|
DiIorio SE, Young B, Parker JB, Griffin MF, Longaker MT. Understanding Tendon Fibroblast Biology and Heterogeneity. Biomedicines 2024; 12:859. [PMID: 38672213 PMCID: PMC11048404 DOI: 10.3390/biomedicines12040859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Tendon regeneration has emerged as an area of interest due to the challenging healing process of avascular tendon tissue. During tendon healing after injury, the formation of a fibrous scar can limit tendon strength and lead to subsequent complications. The specific biological mechanisms that cause fibrosis across different cellular subtypes within the tendon and across different tendons in the body continue to remain unknown. Herein, we review the current understanding of tendon healing, fibrosis mechanisms, and future directions for treatments. We summarize recent research on the role of fibroblasts throughout tendon healing and describe the functional and cellular heterogeneity of fibroblasts and tendons. The review notes gaps in tendon fibrosis research, with a focus on characterizing distinct fibroblast subpopulations in the tendon. We highlight new techniques in the field that can be used to enhance our understanding of complex tendon pathologies such as fibrosis. Finally, we explore bioengineering tools for tendon regeneration and discuss future areas for innovation. Exploring the heterogeneity of tendon fibroblasts on the cellular level can inform therapeutic strategies for addressing tendon fibrosis and ultimately reduce its clinical burden.
Collapse
Affiliation(s)
- Sarah E. DiIorio
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bill Young
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
| | - Jennifer B. Parker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle F. Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.E.D.); (B.Y.); (J.B.P.); (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Wang Y, Lu X, Lu J, Hernigou P, Jin F. The role of macrophage polarization in tendon healing and therapeutic strategies: Insights from animal models. Front Bioeng Biotechnol 2024; 12:1366398. [PMID: 38486869 PMCID: PMC10937537 DOI: 10.3389/fbioe.2024.1366398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Tendon injuries, a common musculoskeletal issue, usually result in adhesions to the surrounding tissue, that will impact functional recovery. Macrophages, particularly through their M1 and M2 polarizations, play a pivotal role in the inflammatory and healing phases of tendon repair. In this review, we explore the role of macrophage polarization in tendon healing, focusing on insights from animal models. The review delves into the complex interplay of macrophages in tendon pathology, detailing how various macrophage phenotypes contribute to both healing and adhesion formation. It also explores the potential of modulating macrophage activity to enhance tendon repair and minimize adhesions. With advancements in understanding macrophage behavior and the development of innovative biomaterials, this review highlights promising therapeutic strategies for tendon injuries.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Lu
- Shanghai Bio-lu Biomaterials Co., Ltd., Shanghai, China
- Shanghai Technology Innovation Center of Orthopedic Biomaterials, Shanghai, China
| | - Jianxi Lu
- Shanghai Bio-lu Biomaterials Co., Ltd., Shanghai, China
- Shanghai Technology Innovation Center of Orthopedic Biomaterials, Shanghai, China
| | - Philippe Hernigou
- University Paris East, Orthopedic Hospital Geoffroy Saint Hilaire, Paris, France
| | - Fangchun Jin
- Department of Pediatric Orthopedics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Wang MW, Lee WN, Hung CC, Hsieh JH, Chen YH, Ting-Fang Shih T, Wang JH, Yin NH, Wang HK. Validation of the Efficacy of Ultrasound Speckle Tracking in Measuring Tendon Gliding After Finger Flexor Tendon Repair. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2548-2556. [PMID: 37741741 DOI: 10.1016/j.ultrasmedbio.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/31/2023] [Accepted: 08/23/2023] [Indexed: 09/25/2023]
Abstract
OBJECTIVE Restricted tendon gliding is commonly observed in patients after finger flexor tendon (FFT) repair. The study described here was aimed at quantifying the amount of FFT gliding to evaluate the recovery of post-operative tendons using a 2-D radiofrequency (RF)-based ultrasound speckle tracking algorithm (UST). METHODS Ex vivo uniaxial tensile testing of porcine flexor tendons and in vivo isometric testing of human FFT were implemented to verify the efficacy of UST beforehand. The verified UST was then applied to the patients after FFT repair to compare tendon gliding between affected and healthy sides and to investigate its correlation with the joint range of motion (ROM). RESULTS Excellent validity was confirmed with the average R2 value of 0.98, mean absolute error of 0.15 ± 0.08 mm and mean absolute percentage error of 5.19 ± 2.43% between results from UST and ex vivo testing. The test-retest reliability was verified with good agreement of ICC (0.90). The affected side exhibited less gliding (p = 0.001) and smaller active ROM (p = 0.002) than the healthy side. Meanwhile, a significant correlation between tendon gliding and passive ROM was found only on the healthy side (ρ = 0.711, p = 0.009). CONCLUSION The present study provides a promising protocol to evaluate post-operative tendon recovery by quantifying the amount of FFT gliding with a validated UST. FFT gliding in patients with different levels of ROM restriction should be further explored for categorizing the severity of tendon adhesion.
Collapse
Affiliation(s)
- Ming-Wei Wang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan; Center of Physical Therapy, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Ning Lee
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong, China; Medical Engineering Programme, University of Hong Kong, Hong Kong, China
| | - Chih-Chien Hung
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Orthopedic Surgery, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan
| | - Jung-Hsien Hsieh
- Division of Plastic Surgery, Department of Surgery, Medical College and Hospital, National Taiwan University, Taipei, Taiwan
| | - Yueh-Hsia Chen
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan; Center of Physical Therapy, National Taiwan University Hospital, Taipei, Taiwan
| | - Tiffany Ting-Fang Shih
- Department of Medical Imaging and Radiology, Medical College and Hospital, National Taiwan University, Taipei, Taiwan
| | - Jyh-Horng Wang
- Department of Orthopedic Surgery, Medical College and Hospital, National Taiwan University, Taipei, Taiwan
| | - Nai-Hao Yin
- Centre for Human and Applied Physiological Sciences, School of Basic and Biomedical Sciences, King's College London, London, UK
| | - Hsing-Kuo Wang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan; Center of Physical Therapy, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
16
|
Chen J, Tang X, Wang Z, Perez A, Yao B, Huang K, Zhang Y, King MW. Techniques for navigating postsurgical adhesions: Insights into mechanisms and future directions. Bioeng Transl Med 2023; 8:e10565. [PMID: 38023705 PMCID: PMC10658569 DOI: 10.1002/btm2.10565] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 12/01/2023] Open
Abstract
Postsurgical adhesions are a common complication of surgical procedures that can lead to postoperative pain, bowel obstruction, infertility, as well as complications with future procedures. Several agents have been developed to prevent adhesion formation, such as barriers, anti-inflammatory and fibrinolytic agents. The Food and Drug Administration (FDA) has approved the use of physical barrier agents, but they have been associated with conflicting clinical studies and controversy in the clinical utilization of anti-adhesion barriers. In this review, we summarize the human anatomy of the peritoneum, the pathophysiology of adhesion formation, the current prevention agents, as well as the current research progress on adhesion prevention. The early cellular events starting with injured mesothelial cells and incorporating macrophage response have recently been found to be associated with adhesion formation. This may provide the key component for developing future adhesion prevention methods. The current use of physical barriers to separate tissues, such as Seprafilm®, composed of hyaluronic acid and carboxymethylcellulose, can only reduce the risk of adhesion formation at the end stage. Other anti-inflammatory or fibrinolytic agents for preventing adhesions have only been studied within the context of current research models, which is limited by the lack of in-vitro model systems as well as in-depth study of in-vivo models to evaluate the efficiency of anti-adhesion agents. In addition, we explore emerging therapies, such as gene therapy and stem cell-based approaches, that may offer new strategies for preventing adhesion formation. In conclusion, anti-adhesion agents represent a promising approach for reducing the burden of adhesion-related complications in surgical patients. Further research is needed to optimize their use and develop new therapies for this challenging clinical problem.
Collapse
Affiliation(s)
- Jiahui Chen
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Xiaoqi Tang
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Ziyu Wang
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Arielle Perez
- UNC School of Medicine Department of SurgeryUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Benjamin Yao
- Montefiore Medical Center Department of Obstetrics & Gynecology & Women's Health ServicesMontefiore Medical CenterBronxNew YorkUSA
| | - Ke Huang
- Joint Department of Biomedical EngineeringNorth Carolina State University & University of North Carolina at Chapel HillRaleighNorth CarolinaUSA
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNorth CarolinaUnited States
| | - Yang Zhang
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Martin W. King
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
- College of Textiles, Donghua UniversityShanghaiSongjiangChina
| |
Collapse
|
17
|
Wang K, Chen D, Wang Z, Yang J, Liu W. An Injectable and Antifouling Supramolecular Polymer Hydrogel with Microenvironment-Regulatory Function to Prevent Peritendinous Adhesion and Promote Tendon Repair. Macromol Biosci 2023; 23:e2300142. [PMID: 37317041 DOI: 10.1002/mabi.202300142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Indexed: 06/16/2023]
Abstract
The imbalance of extrinsic and intrinsic healing of tendon is thought to be the main cause of peritendinous adhesions. In this work, an injectable supramolecular poly(N-(2-hydroxypropyl) acrylamide) (PHPAm) hydrogel is prepared merely via side chain hydrogen-bonding crosslinks. This PHPAm exhibits good antifouling and self-healing properties. The supramolecular hydrogel simultaneously loaded with Prussian blue (PB) nanoparticles and platelet lysate (PL) is explored as a functional physical barrier, which can significantly resist the adhesion of fibrin and fibroblasts, attenuate the local inflammatory response, and enhance the tenocytes activity, thus balancing extrinsic and intrinsic healing. The PHPAm hydrogel is shown to prevent peritendinous adhesions considerably by inhibiting NF-κB inflammatory pathway and TGF-β1/Smad3-mediated fibrosis pathway, thereby significantly improving tendon repair by releasing bioactive factors to regulate the tenocytes behavior. This work provides a new strategy for developing physical barriers to prevent peritendinous adhesions and promote tissue repair effectively.
Collapse
Affiliation(s)
- Kuan Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Danyang Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Zhuoya Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Jianhai Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
18
|
Little D, Amadio PC, Awad HA, Cone SG, Dyment NA, Fisher MB, Huang AH, Koch DW, Kuntz AF, Madi R, McGilvray K, Schnabel LV, Shetye SS, Thomopoulos S, Zhao C, Soslowsky LJ. Preclinical tendon and ligament models: Beyond the 3Rs (replacement, reduction, and refinement) to 5W1H (why, who, what, where, when, how). J Orthop Res 2023; 41:2133-2162. [PMID: 37573480 PMCID: PMC10561191 DOI: 10.1002/jor.25678] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Several tendon and ligament animal models were presented at the 2022 Orthopaedic Research Society Tendon Section Conference held at the University of Pennsylvania, May 5 to 7, 2022. A key objective of the breakout sessions at this meeting was to develop guidelines for the field, including for preclinical tendon and ligament animal models. This review summarizes the perspectives of experts for eight surgical small and large animal models of rotator cuff tear, flexor tendon transection, anterior cruciate ligament tear, and Achilles tendon injury using the framework: "Why, Who, What, Where, When, and How" (5W1H). A notable conclusion is that the perfect tendon model does not exist; there is no single gold standard animal model that represents the totality of tendon and ligament disease. Each model has advantages and disadvantages and should be carefully considered in light of the specific research question. There are also circumstances when an animal model is not the best approach. The wide variety of tendon and ligament pathologies necessitates choices between small and large animal models, different anatomic sites, and a range of factors associated with each model during the planning phase. Attendees agreed on some guiding principles including: providing clear justification for the model selected, providing animal model details at publication, encouraging sharing of protocols and expertise, improving training of research personnel, and considering greater collaboration with veterinarians. A clear path for translating from animal models to clinical practice was also considered as a critical next step for accelerating progress in the tendon and ligament field.
Collapse
Affiliation(s)
- Dianne Little
- Department of Basic Medical Sciences, The Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Peter C Amadio
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Hani A Awad
- Department of Orthopaedics, Department of Biomedical Engineering, The Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| | - Stephanie G Cone
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Nathaniel A Dyment
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew B Fisher
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University-University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Alice H Huang
- Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Drew W Koch
- Department of Clinical Sciences, College of Veterinary Medicine, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Andrew F Kuntz
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rashad Madi
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kirk McGilvray
- Department of Mechanical Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Snehal S Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Chunfeng Zhao
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Louis J Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Lu J, Li H, Zhang Z, Xu R, Wang J, Jin H. Platelet-rich plasma in the pathologic processes of tendinopathy: a review of basic science studies. Front Bioeng Biotechnol 2023; 11:1187974. [PMID: 37545895 PMCID: PMC10401606 DOI: 10.3389/fbioe.2023.1187974] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Tendinopathy is a medical condition that includes a spectrum of inflammatory and degenerative tendon changes caused by traumatic or overuse injuries. The pathological mechanism of tendinopathy has not been well defined, and no ideal treatment is currently available. Platelet-rich plasma (PRP) is an autologous whole blood derivative containing a variety of cytokines and other protein components. Various basic studies have found that PRP has the therapeutic potential to promote cell proliferation and differentiation, regulate angiogenesis, increase extracellular matrix synthesis, and modulate inflammation in degenerative tendons. Therefore, PRP has been widely used as a promising therapeutic agent for tendinopathy. However, controversies exist over the optimal treatment regimen and efficacy of PRP for tendinopathy. This review focuses on the specific molecular and cellular mechanisms by which PRP manipulates tendon healing to better understand how PRP affects tendinopathy and explore the reason for the differences in clinical trial outcomes. This article has also pointed out the future direction of basic research and clinical application of PRP in the treatment of tendinopathy, which will play a guiding role in the design of PRP treatment protocols for tendinopathy.
Collapse
Affiliation(s)
- Jialin Lu
- Department of Pain, The Second Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Han Li
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Ziyu Zhang
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Rui Xu
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Hui Jin
- Department of Pain, The Second Hospital of Jilin University, Changchun, China
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Li Y, Wang X, Hu B, Sun Q, Wan M, Carr A, Liu S, Cao X. Neutralization of excessive levels of active TGF-β1 reduces MSC recruitment and differentiation to mitigate peritendinous adhesion. Bone Res 2023; 11:24. [PMID: 37156778 PMCID: PMC10167238 DOI: 10.1038/s41413-023-00252-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 05/10/2023] Open
Abstract
Peritendinous adhesion formation (PAF) can substantially limit the range of motion of digits. However, the origin of myofibroblasts in PAF tissues is still unclear. In this study, we found that the concentration of active TGF-β1 and the numbers of macrophages, mesenchymal stromal cells (MSCs), and myofibroblasts in human and mouse adhesion tissues were increased. Furthermore, knockout of TGF-β1 in macrophages or TGF-β1R2 in MSCs inhibited PAF by reducing MSC and myofibroblast infiltration and collagen I and III deposition, respectively. Moreover, we found that MSCs differentiated into myofibroblasts to form adhesion tissues. Systemic injection of the TGF-β-neutralizing antibody 1D11 during the granulation formation stage of PAF significantly reduced the infiltration of MSCs and myofibroblasts and, subsequently, PAF. These results suggest that macrophage-derived TGF-β1 recruits MSCs to form myofibroblasts in peritendinous adhesions. An improved understanding of PAF mechanisms could help identify a potential therapeutic strategy.
Collapse
Affiliation(s)
- YuSheng Li
- Department of Orthopedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xiao Wang
- Department of Orthopedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Bo Hu
- Department of Orthopedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Qi Sun
- Department of Orthopedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mei Wan
- Department of Orthopedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Andrew Carr
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Windmill Road, Oxford, OX3 7LD, UK
| | - Shen Liu
- Department of Orthopedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Xu Cao
- Department of Orthopedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
21
|
Cholok D, Burgess J, Fox PM, Chang J. Tenolysis and Salvage Procedures. Hand Clin 2023; 39:203-214. [PMID: 37080652 DOI: 10.1016/j.hcl.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Complications in flexor tendon repair are common and include tendon rupture, adhesion formation, and joint contracture. Risk factors include preexisting conditions, gross contamination, concurrent fracture, early unplanned loading of the repaired tendon, premature cessation of splinting, and aggressive early active range of motion protocols with insufficient repair strength. Rupture of a repaired tendon should be followed by early operative exploration, debridement, and revision with a four-core strand suture and nonbraided epitendinous suture. Wide-awake flexor tenolysis should be considered when adhesion formation results in the plateaued range of motion, and passive motion exceeds active motion. Two-staged reconstruction is recommended when injury results in excessive scaring, joint contracture, or an incompetent pulley apparatus.
Collapse
Affiliation(s)
- David Cholok
- Division of Plastic and Reconstructive Surgery, Stanford University Medical Center, 770 Welch Road, Suite 400, Palo Alto, CA 94304, USA.
| | - Jordan Burgess
- Division of Plastic and Reconstructive Surgery, Stanford University Medical Center, 770 Welch Road, Suite 400, Palo Alto, CA 94304, USA
| | - Paige M Fox
- Division of Plastic and Reconstructive Surgery, Stanford University Medical Center, 770 Welch Road, Suite 400, Palo Alto, CA 94304, USA; Division of Plastic and Reconstructive Surgery, Chase Hand and Upper Limb Center, Stanford University Medical Center, 770 Welch Road, Suite 400, Palo Alto, CA 94304, USA
| | - James Chang
- Division of Plastic and Reconstructive Surgery, Stanford University Medical Center, 770 Welch Road, Suite 400, Palo Alto, CA 94304, USA; Division of Plastic and Reconstructive Surgery, Chase Hand and Upper Limb Center, Stanford University Medical Center, 770 Welch Road, Suite 400, Palo Alto, CA 94304, USA
| |
Collapse
|
22
|
Zhou Z, Li S, Gong X. Polydopamine Nanoparticles-Based Photothermal Effect Against Adhesion Formation in a Rat Model of Achilles Tendon Laceration Repair. Int J Nanomedicine 2023; 18:1765-1776. [PMID: 37038441 PMCID: PMC10082603 DOI: 10.2147/ijn.s393454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Background Adhesion formation after tendon surgery is a major obstacle to repair of tendon ruptures, and there is still no effective clinical anti-adhesion method. Myofibroblasts expressing α-smooth muscle actin (α-SMA) play a crucial role in adhered fibrous tissue. Heat shock protein (Hsp) 72 can selectively prevent the activation of c-Jun N-terminal kinase (JNK), which mediates the conversion from fibroblasts to myofibroblasts. The purpose of this study was to investigate for the first time whether polydopamine nanoparticles (PDA NPs)-based photothermal effect would attenuate adhesion formation in a rat model of Achilles tendon laceration repair. Materials and Methods Forty-five adult male Sprague-Dawley rats were randomly assigned to the photothermal group, the control group and the PDA NPs group (n = 15 per group). The primary outcome measure was the adhesion scores at two weeks after surgery according to the grading of Tang et al. The secondary outcomes included the expressions of Hsp 72, JNK, phosphorylated JNK and α-SMA, which were measured by immunohistochemistry or Western blot. Results The average adhesion score was significantly lower in the photothermal group (4.25 ± 0.21) than that in the control group (5.29 ± 0.12) (p = 0.005) and the PDA NPs group (5.29 ± 0.20) (p = 0.005). Relative to the control group and PDA NPs group, Hsp 72 in the photothermal group was significantly increased whereas α-SMA and p-JNK was significantly decreased, but JNK was not found to be different across the three groups. Conclusion The photothermal effect produced by PDA NPs could reduce tendon adhesion formation in rats by inhibiting myocyte fibrosis, which may have potential in developing endogenous heating for postsurgical tissue adhesions.
Collapse
Affiliation(s)
- Zekun Zhou
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Shaoyan Li
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Xu Gong
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
- Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
- Correspondence: Xu Gong, Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China, Tel +86 13944099151, Email
| |
Collapse
|
23
|
Hardy M, Feehan L, Savvides G, Wong J. How controlled motion alters the biophysical properties of musculoskeletal tissue architecture. J Hand Ther 2023; 36:269-279. [PMID: 37029054 DOI: 10.1016/j.jht.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 04/09/2023]
Abstract
INTRODUCTION Movement is fundamental to the normal behaviour of the hand, not only for day-to-day activity, but also for fundamental processes like development, tissue homeostasis and repair. Controlled motion is a concept that hand therapists apply to their patients daily for functional gains, yet the scientific understanding of how this works is poorly understood. PURPOSE OF THE ARTICLE To review the biology of the tissues in the hand that respond to movement and provide a basic science understanding of how it can be manipulated to facilitate better functionThe review outlines the concept of controlled motion and actions across the scales of tissue architecture, highlighting the the role of movement forces in tissue development, homeostasis and repair. The biophysical behaviour of mechanosensitve tissues of the hand such as skin, tendon, bone and cartilage are discussed. CONCLUSION Controlled motion during early healing is a form of controlled stress and can be harnessed to generate appropriate reparative tissues. Understanding the temporal and spatial biology of tissue repair allows therapists to tailor therapies that allow optimal recovery based around progressive biophysical stimuli by movement.
Collapse
Affiliation(s)
- Maureen Hardy
- Past Director Rehab Services and Hand Management Center, St. Dominic Hospital, Jackson, MS, USA
| | - Lynne Feehan
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Georgia Savvides
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Manchester Academic Health Science Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jason Wong
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Manchester Academic Health Science Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
24
|
Li S, Gong F, Zhou Z, Gong X. Combined Verapamil-Polydopamine Nanoformulation Inhibits Adhesion Formation in Achilles Tendon Injury Using Rat Model. Int J Nanomedicine 2023; 18:115-126. [PMID: 36636643 PMCID: PMC9831089 DOI: 10.2147/ijn.s377600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Topical verapamil has been demonstrated to reduce the fibroproliferative scar. Therefore, it was hypothesized that topical verapamil could reduce adhesion formation after tendon repair. The current study aimed to examine the effects of verapamil-loaded polydopamine nanoparticles (VP-PDA NPs) on the adhesion formation of Achilles tendon laceration and repair in a rat model. Methods We randomly assigned 72 male Sprague-Dawley rats to the control, the PDA NPs, and the VP-PDA NPs groups (n = 24 per group). The quality of tendon healing was evaluated by the maximal tensile strength four and six weeks after surgery. The degree of tendon adhesion was scored on days 4, 15, 29, and 43 after surgery. The expressions of transforming growth factor-beta 1 (TGF-β1), vimentin, α-smooth muscle actin (α-SMA), and collagens type I and III were detected through Western blotting or immunohistochemistry at four weeks after surgery. Results In vitro release tests revealed that 61.3% of verapamil was released from VP-PDA NPs in four weeks. There was a significant increase in average failure to load in the VP-PDA NPs group (89.27 ± 5.09 N) compared with the PDA NPs group (65.52 ± 2.04 N) (p = 0.003) and the control group (74.52 ± 4.24 N) (p = 0.029). Adhesion scores were significantly reduced in the VP-PDA NPs group at six weeks (3.175 ± 0.08) and four weeks (3.35 ± 0.25) compared with the other groups. Moreover, VP-PDA NPs significantly reduced the expression of vimentin, α-SMA, TGF-β1, and collagens type I and III. Conclusion These data suggest that VP-PDA NPs reduced adhesion formation and enhanced tendon healing during rat tendon injury. Since topical verapamil has been used in clinics without side effects, VP-PDA NPs would have direct translation implications. However, its anti-adhesive effects on intrasynovial tendon injury must be examined.
Collapse
Affiliation(s)
- Shaoyan Li
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China,Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Fengyan Gong
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China,Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Zekun Zhou
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China,Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Xu Gong
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China,Jilin Province Key Laboratory on Tissue Repair, Reconstruction and Regeneration, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China,Correspondence: Xu Gong, Department of Hand and Podiatric Surgery, Orthopedics center, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China, Tel +86-13944099151, Email
| |
Collapse
|
25
|
Lu K, Zhou M, Wang L, Wang Y, Tang H, He G, Wang H, Tang C, He J, Wang W, Tang K, Wang Y, Deng Z. N-Acetyl-L-cysteine facilitates tendon repair and promotes the tenogenic differentiation of tendon stem/progenitor cells by enhancing the integrin α5/β1/PI3K/AKT signaling. BMC Mol Cell Biol 2023; 24:1. [PMID: 36604630 DOI: 10.1186/s12860-022-00463-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Tendon injury is associated with oxidative stress, leading to reactive oxygen species (ROS) production and inflammation. N-acetyl-L-cysteine (NAC) is a potent antioxidant. However, how NAC affects the biological functions of tendon stem/progenitor cells (TSPCs) and tendon repair has not been clarified. METHOD: The impacts of NAC on the viability, ROS production, and differentiation of TSPCs were determined with the cell counting kit-8, fluorescence staining, Western blotting, and immunofluorescence. The effect of NAC on gene transcription in TSPCs was analyzed by transcriptomes and bioinformatics and validated by Western blotting. The potential therapeutic effect of NAC on tendon repair was tested in a rat model of Achilles tendon injury. RESULTS Compared with the untreated control, treatment with 500 µM NAC greatly promoted the proliferation of TSPCs and significantly mitigated hydrogen peroxide-induced ROS production and cytotoxicity in vitro. NAC treatment significantly increased the relative protein expression of collagen type 1 alpha 1 (COL1A1), tenascin C (TNC), scleraxis (SCX), and tenomodulin (TNMD) in TPSCs. Bioinformatics analyses revealed that NAC modulated transcriptomes, particularly in the integrin-related phosphoinositide 3-kinase (PI3K)/AKT signaling, and Western blotting revealed that NAC enhanced integrin α5β1 expression and PI3K/AKT activation in TSPCs. Finally, NAC treatment mitigated the tendon injury, but enhanced the protein expression of SCX, TNC, TNMD, and COLIA1 in the injured tissue regions of the rats. CONCLUSION NAC treatment promoted the survival and differentiation of TSPCs to facilitate tendon repair after tendon injury in rats. Thus, NAC may be valuable for the treatment of tendon injury.
Collapse
Affiliation(s)
- Kang Lu
- Department of Orthopedics-Spine Surgery Center, the Second Affiliated Hospital, Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, China
| | - Mei Zhou
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Army Medical University, Third Military Medical University, No. 29, Yanzheng Street, Gaotan, Shapingba District, Chongqing, China
| | - Liyuan Wang
- Department of Orthopedics-Spine Surgery Center, the Second Affiliated Hospital, Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, China
| | - Yang Wang
- Department of Orthopedics-Spine Surgery Center, the Second Affiliated Hospital, Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, China
| | - Hong Tang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Army Medical University, Third Military Medical University, No. 29, Yanzheng Street, Gaotan, Shapingba District, Chongqing, China
| | - Gang He
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Army Medical University, Third Military Medical University, No. 29, Yanzheng Street, Gaotan, Shapingba District, Chongqing, China
| | - Huan Wang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Army Medical University, Third Military Medical University, No. 29, Yanzheng Street, Gaotan, Shapingba District, Chongqing, China
| | - Chuyue Tang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Army Medical University, Third Military Medical University, No. 29, Yanzheng Street, Gaotan, Shapingba District, Chongqing, China
| | - Jie He
- Department of Orthopedics-Spine Surgery Center, the Second Affiliated Hospital, Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, China
| | - Wei Wang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Army Medical University, Third Military Medical University, No. 29, Yanzheng Street, Gaotan, Shapingba District, Chongqing, China
| | - Kanglai Tang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Army Medical University, Third Military Medical University, No. 29, Yanzheng Street, Gaotan, Shapingba District, Chongqing, China.
| | - Yunjiao Wang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Army Medical University, Third Military Medical University, No. 29, Yanzheng Street, Gaotan, Shapingba District, Chongqing, China.
| | - Zhongliang Deng
- Department of Orthopedics-Spine Surgery Center, the Second Affiliated Hospital, Chongqing Medical University, No. 74 Linjiang Road, Yuzhong District, Chongqing, China.
| |
Collapse
|
26
|
Suryavanshi JR, Cox CT, Osemwengie BO, Domingo-Johnson EL, Jones HB, MacKay BJ. Traumatic Zone II Flexor Tendon Injury Repair Through a Traumatic Dorsal Approach. Orthopedics 2022; 45:e216-e219. [PMID: 35245142 DOI: 10.3928/01477447-20220225-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Zone II flexor tendons present unique challenges for repair because of their complex anatomy in a confined space. The approach for zone II injuries is often dictated by preexisting traumatic skin lacerations, with a midaxial or volar approach being most common. In some injuries, this approach is not viable, and alternative approaches must be considered. A 45-year-old man presented with a traumatic crush injury that caused complete disruption of the skin, tendon, capsule, collateral ligament, and volar plate and laceration of the flexor digitorum profundus in zone II near the proximal interphalangeal joint. Given the large, near-circumferential zone of injury, we used the traumatic dorsal wound for the flexor tendon for repair. There are no reports of this approach in the literature. Postoperatively, the proximal interphalangeal joint was immobilized for 6 weeks with a K-wire. The patient was followed in the clinic and prescribed occupational therapy. At the 4-month postoperative visit, the patient had a healed incision, no signs of infection, and intact median/radial sensations. Functional testing showed a loose composite fist, improved range of motion, and 2-cm tip-to-palm deficiency of the index finger. Grip strength was 85 lb in the right hand and 60 lb in the left hand. Although patients are not always expected to regain full function, their postoperative course may be further complicated by adhesion and the need for tenolysis. Given these historical complications of tendon repair and our patient's ability to return to work with satisfactory functional outcomes, this approach may be a viable option for treating this unique injury pattern. [Orthopedics. 2022;45(4):e216-e219.].
Collapse
|
27
|
Wong J, Murphy M, Wu YF, Murphy R, Frueh FS, Farnebo S. Basic science approaches to common hand surgery problems. J Hand Surg Eur Vol 2022; 47:117-126. [PMID: 34472390 DOI: 10.1177/17531934211042697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The field of hand surgery is constantly evolving to meet challenges of populations with increasing age and higher demands for active living. While our surgical care has improved over the last decades, it seems that future major improvement in outcomes of clinical treatment will come through advances in biologics and the translation of major discoveries in basic science. This article aims to provide an update on where basic science solutions may answer some of the most critical issues in hand surgery, with a focus on augmentation of tissue repair.
Collapse
Affiliation(s)
- Jason Wong
- Blond McIndoe Laboratories, Manchester, UK.,Department of Plastic Surgery, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Matthew Murphy
- Blond McIndoe Laboratories, Manchester, UK.,Department of Plastic Surgery, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Ya Fang Wu
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ralph Murphy
- Blond McIndoe Laboratories, Manchester, UK.,Department of Plastic Surgery, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| | - Florian S Frueh
- Department of Plastic Surgery and Hand Surgery, University of Zurich, Zurich, Switzerland
| | - Simon Farnebo
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Plastic Surgery, Hand Surgery, and Burns, Linköping University, Linköping, Sweden
| |
Collapse
|
28
|
Uyanik O, Pekkoc-Uyanik KC, Findik S, Avci A, Altuntas Z. Prevention of peritendinous adhesions with electrospun poly (lactic acid-co-glycolic acid) (PLGA) bioabsorbable nanofiber: An experimental study. Colloids Surf B Biointerfaces 2022; 209:112181. [PMID: 34742023 DOI: 10.1016/j.colsurfb.2021.112181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/19/2022]
Abstract
In this study, we investigated the application of poly (lactic acid-co-glycolic acid) in the rat Achilles tendon injury model for the prevention or alleviation of peritendinous adhesion and guidance of Achilles tendon regeneration. In the study, 48 rats were used and the rats were randomized by closed envelope method and divided into 4 mating groups in groups of 12. Left Achilles tendons of the non-PLGA-treated control group (groups 1 and 2) were cut and repaired. In the PLGA-treated groups (groups 3 and 4) the left Achilles tendons were cut and repaired, then PLGA bioabsorbable material was wrapped around the repair line. The rats in the 1st and 3rd groups were sacrificed at the end of the 1st month, and the rats in the 2nd and 4th groups at the end of the 2nd month. The degree of tendon adhesion in the Group 3 was lower in comparison with Group 1. Similarly, compared with Group 2, the degree of tendon adhesion in the Group 4 was lower. Inflammatory density, vascularization and fibrosis were higher in the experimental group. When the Group 3 and Group 1, and Group 2 and Group 4 were compared, adhesion length (p = 0.004, p = 0.041), adhesion characteristics (p = 0.049, p = 0.039) and adhesion severity (p = 0.007, p = 0.025) were found have statistically significant tendon healing in the PLGA-treated group, respectively. Significant difference was observed in inflammatory cell density, vascular density and fibrosis for Group 1 and Group 3, (p = 0.027, p = 0.041, p = 0.002), respectively. Similarly, significant difference was observed in inflammatory cell density, vascular density and fibrosis for Group 2 and Group 4, (p = 0.002, p = 0.027, p = 0.011), respectively. As a result, it was considered that poly (lactic acid-co-glycolic acid) material significantly reduces peritendinous adhesions, and this effect could occur with the vascular density, inflammatory density and fibrosis as indicated in histopathological examination. These data suggest that PLGA membrane has good biocompatibility and alleviates tendon adhesion after injury.
Collapse
Affiliation(s)
- Orkun Uyanik
- Department of Plastic, Reconstructive and Aesthetic Surgery, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey; Department of Plastic, Reconstructive and Aesthetic Surgery, University of Health Sciences, Basakşehir Çam ve Sakura City Hospital, Istanbul, Turkey.
| | | | - Siddika Findik
- Department of Patology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ahmet Avci
- Department of Biomedical Engineering, Faculty of Engineering and Architecture, Necmettin Erbakan University, Konya, Turkey
| | - Zeynep Altuntas
- Department of Plastic, Reconstructive and Aesthetic Surgery, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
29
|
Corduneanu‑Luca A, Pasca S, Tamas C, Moraru D, Ciuntu B, Stanescu C, Hreniuc‑Jemnoschi I, Tecuceanu A, Stamate T. Improving flexor tendon gliding by using the combination of carboxymethylcellulose‑polyethylene oxide on murine model. Exp Ther Med 2021; 23:105. [PMID: 34976147 PMCID: PMC8674966 DOI: 10.3892/etm.2021.11028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022] Open
Abstract
The current approach to flexor tendon injuries is complex and is no longer limited to suturing techniques. Strategies for improving hand function currently include rehabilitation protocols, appropriate suturing materials and techniques, changing the gliding surface by using lubricants and providing growth factors. One product, originally used in spinal surgery, has been shown to be effective in preventing postoperative adhesions. It is a combination of carboxymethylcellulose and polyethylene oxide-Dynavisc® (FzioMed, Inc.). The aim of the present study was to test the effect of Dynavisc® on acute injuries of the intrasynovial flexor tendons in the prevention of postoperative adhesions and the improvement of functional results. The study was performed on 20 Wistar rats distributed in two groups. The control group, represented by 10 rats, in which after the reconstruction of the flexor tendon, the peritendinous area was injected with saline solution and the study group, in which the peritendinous area was injected with a single administration of the lubricating gel, Dynavisc® (carboxymethylcellulose and polyethylene oxide). At 4 and 12 weeks, the rats were sacrificed and tissue biopsy consisted of tendon fragments and adjacent tissue. The evaluation of the results was performed by measuring the adhesion score and observing histological parameters. The presence of important adhesions was found in the control group compared with the group treated with Dynavisc®, where a supple and smooth tendon, with significantly fewer adhesions were found. The differences between the two groups were significant, thus indicating the efficiency of the lubricant in preventing adhesions. This study supported the important role of Dynavisc® in the regeneration of the tendon and the peritendinous structures, by limiting aberrant fibrous proliferation in the regeneration process and helping to build a peritendinous space.
Collapse
Affiliation(s)
| | - Sorin Pasca
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, ‘Ion Ionescu de la Brad’ University of Agricultural Sciences and Veterinary Medicine, 700490 Iasi, Romania
| | - Camelia Tamas
- Department of Plastic Surgery, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dan Moraru
- Department of Plastic Surgery, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Bogdan Ciuntu
- Department of General Surgery, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristina Stanescu
- Department of Morphological and Functional Sciences, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800216 Galati, Romania
| | - Irina Hreniuc‑Jemnoschi
- Department of Plastic Surgery, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Angela Tecuceanu
- Department of Plastic Surgery, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Teodor Stamate
- Department of Plastic Surgery, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
30
|
Systemic Immunosuppression for Prevention of Recurrent Tendon Adhesions. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3834. [PMID: 34667696 PMCID: PMC8519255 DOI: 10.1097/gox.0000000000003834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/02/2021] [Indexed: 12/05/2022]
Abstract
Background: The recovery for patients after tendon repair is frequently limited by development of tendon adhesions. This scar tissue formation is dependent on immune system activation. Tacrolimus has unique properties that may contribute to the prevention of overactive scarring by inhibition of inflammatory cytokines. Methods: Herein, we present a case using systemic immunosuppression to prevent recurrent adhesion accumulation in a patient with a prior spaghetti wrist injury. Tacrolimus began 1 week before repeat-secondary tenolysis surgery, and it continued for 3 months postoperative. Dosing was tapered to a serum level between 5 and 8 µg/L. Results: The 27-year-old male patient suffered a volar wrist laceration transecting all flexor tendons and volar wrist nerves. He underwent immediate repair but had a poor outcome despite early range of motion therapy. A primary tenolysis only improved his average arc of finger motion from 72 to 95 degrees. Secondary tenolysis augmented with systemic tacrolimus improved his arc of finger motion from 95 to 202 degrees. Mechanistically, tacrolimus prevents proper function of activated T and B cells. This results in decreased proliferation, angiogenesis, and cytoskeletal organization of fibroblasts on inflammation and integrin adhesions, and it potentially explains the reduced tendon molecule adhesions seen in this patient. Conclusions: Tacrolimus may be effective in reducing motion, limiting tendon adhesions. The novel use of this medication resulted in the return of near-normal hand function in a patient placed on low-dose tacrolimus after primary tenolysis had failed.
Collapse
|
31
|
MSC-derived immunomodulatory extracellular matrix functionalized electrospun fibers for mitigating foreign-body reaction and tendon adhesion. Acta Biomater 2021; 133:280-296. [PMID: 33894349 DOI: 10.1016/j.actbio.2021.04.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/28/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
Adhesion formation during tendon healing remains a severe problem in clinical practice. Multiple factors contribute to postoperative adhesion formation, and macrophage-driven inflammation is thought to be greatly involved in this process. We hypothesize that reducing macrophage-mediated inflammation in the injured tendon by regulating M1 to M2 macrophage polarization may effectively inhibit adhesion formation. Here, we developed an acellular immunomodulatory biomaterial consisting of an electrospun polycaprolactone/silk fibroin (PCL/SF) composite fibrous scaffold functionalized with mesenchymal stem cell (MSC)-derived extracellular matrix (ECM). To enhance the immunoregulatory potential of MSCs, we performed inflammatory licensing with IFN-γ to obtain immunomodulatory ECM (iECM). Proteomic analyses of MSCs and their secreted ECM components from different culture conditions revealed the MSC-ECM molecular signatures and the potential mechanism of ECM immunoregulation. Then, the immunoregulatory potential of the iECM-modified scaffold was evaluated in vitro and in vivo. Relative to the PCL/SF fibrous scaffold, the iECM-functionalized scaffold facilitated M2 macrophage polarization and inhibited the expression of multiple cytokines (IL-1β, IL-6, CXCL11, IL-10, IL-1R2, and TGF-β1) in vitro, strongly suggesting the immunosuppressive ability of iECM derived from inflammatory licensed MSCs. Consistent with the in vitro findings, the results of rat subcutaneous implantation indicated that a markedly lower foreign-body reaction (FBR) was obtained in the PCL/SF-iECM group than in the other groups, as evidenced by thinner fibrotic capsule formation, less type I collagen production and more M2-type macrophage polarization. In the rat Achilles tendon injury model, the PCL/SF-iECM scaffold greatly mitigated tendon adhesion with clear sheath space formation between the tendon and the scaffold. These data highlight the immunomodulatory potential of iECM-functionalized fibrous scaffolds to attenuate FBR by modulating M2 macrophage polarization, thereby preventing tendon adhesion. STATEMENT OF SIGNIFICANCE: Electrospun PCL/SF fibrous scaffolds functionalized with ECM secreted by MSCs stimulated by inflammatory factor IFN-γ was developed that combined physical barrier and immunomodulatory functions to prevent tendon adhesion formation. PCL/SF micro-nanoscale bimodal fibrous scaffolds prepared by emulsion electrospinning possess high porosity and a large pore size beneficial for nutrient transport to promote intrinsic healing; moreover, surface modification with immunomodulatory ECM (iECM) mitigates the FBR of fibrous scaffolds to prevent tendon adhesion. The iECM-functionalized electrospun scaffolds exhibit powerful immunomodulatory potency in vitro and in vivo. Moreover, the iECM-modified scaffolds, as an anti-adhesion physical barrier with immunomodulatory ability, have an excellent performance in a rat Achilles tendon adhesion model. MSC secretome-based therapeutics, as an acellular regenerative medicine strategy, are expected to be applied to other inflammatory diseases due to its strong immunoregulatory potential.
Collapse
|
32
|
Jiang K, Li Y, Xiang C, Xiong Y, Jia J. TGF-β3 regulates adhesion formation through the JNK/c-Jun pathway during flexor tendon healing. BMC Musculoskelet Disord 2021; 22:843. [PMID: 34592976 PMCID: PMC8485513 DOI: 10.1186/s12891-021-04691-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 09/03/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The injured flexor tendon has poor healing ability, which is easy to cause tendon adhesion. It can affect the recovery of tendon function, which is still a long-term and difficult task for surgeons. Transforming growth factor β (TGF-β) has been widely considered to play an important role in flexor tendon repair in recent years. AIM This work was to investigate the anti-adhesion and anti-inflammatory effects of TGF-β3 on flexor digitorum longus (FDL) tendon repair rats. METHOD Anastomosis models of tendon laceration in the flexion toes of rats were delivered with no treatment, vehicle, or TGF-β3 -overexpressed adenovirus vector (ad-TGF-β3) locally to the injured tendon area from day 3 to 8. Subsequently, the expression of TGF-β3, TGF-β1/2, Smad3, Smad7, JNK, phosphorylation (p)-JNK, c-Jun, and phosphorylation (p)-c-Jun were detected by western blot, the expression of Mmp9 and Mmp2 by RT-qPCR, the Range of motion (ROM) and gliding resistance by adhesion formation testing, the mechanical strength of tendon healing by biomechanical testing, the pathologic changes of flexor tendon tissues by HE staining, the expression of collagen type III by immunohistochemical staining, and the levels of IL-6, TNF-α, COX2 and IL-1β in serum by ELISA, respectively. RESULTS Rat models treated with no treatment showed a lower elevation of TGF-β3 and Smad7 expression, and a higher elevation of TGF-β1/2 and Smad3 expression, during day 14 to day 28. Besides, under the treatment of ad-TGF-β3, a significantly increase was reflected in the expression of TGF-β3 and Smad7, ROM, as well as mechanical strength of flexor tendon, whereas significantly reduction was shown in gliding resistance, the content of inflammatory cytokines, the ratio of p-JNK/JNK, p-c-Jun/c-Jun, as well as the expression of TGF-β1/2, Smad3, Mmp9, and Mmp2 genes, as compared to those from vehicle treatment. Meanwhile, TGF-β3 demonstrated a better pathologic recovery process with no obvious necrosis or fracture of collagen fibers. Besides, TGF-β3 revealed a significant reduction of collagen type-III expression in the flexor tendon healing tissues. CONCLUSION These findings suggested that TGF-β3 effectively protected against flexor tendon injury via regulating adhesion formation.
Collapse
Affiliation(s)
- Ke Jiang
- Department of Orthopaedics, Affilliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, Sichuan, 637000, People's Republic of China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, People's Republic of China
| | - Yuling Li
- Department of Orthopaedics, Affilliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, Sichuan, 637000, People's Republic of China.
| | - Chao Xiang
- Department of Orthopaedics, Affilliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Nanchong, Sichuan, 637000, People's Republic of China
| | - Yan Xiong
- Department of Orthopaedics, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Jiameng Jia
- Department of Rehabilitation, Affilliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, People's Republic of China
| |
Collapse
|
33
|
Abstract
Flexor tendon injuries are common and occur mostly by penetrating trauma. Suspected flexor tendon injuries require a thorough clinical assessment and often are not isolated injuries. A detailed understanding of flexor tendon anatomy and spatial relationships is essential, especially when repairing multi-tendon injuries. Principles of flexor tendon repair include a strong suture construct, minimising gap formation between tendon ends, preserving tendon blood supply and providing a smooth repair interface. Moreover, adequate exposure of the zone of injury using full-thickness skin flaps and preservation of neurovascular and pulley structures is essential. In this article an overview of contemporary management strategies is presented. Today's hand surgeons and therapists can choose from a variety of treatment options when managing these important and potentially life-changing injuries.
Collapse
Affiliation(s)
- Oliver Pearce
- Trauma Registrar, Trauma & Orthopaedic Department, Southmead Hospital, Southmead Road, Bristol BS10 5NB, UK
| | - Matthew T Brown
- Fellow in Hand & Wrist Surgery, Lothian Hand Unit, St John's Hospital, Livingston, West Lothian EH54 6PP, UK
| | - Katrina Fraser
- Clinical Specialist Occupational Therapist (Hand Therapy), Lothian Hand Unit, St John's Hospital, Livingston, West Lothian EH54 6PP, UK
| | - Luca Lancerotto
- Consultant Hand & Plastic Surgeon, Lothian Hand Unit, St John's Hospital, Livingston, West Lothian EH54 6PP, UK
| |
Collapse
|
34
|
Markworth JF, Sugg KB, Sarver DC, Maddipati KR, Brooks SV. Local shifts in inflammatory and resolving lipid mediators in response to tendon overuse. FASEB J 2021; 35:e21655. [PMID: 34042218 DOI: 10.1096/fj.202100078r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 01/25/2023]
Abstract
Tendon inflammation has been implicated in both adaptive connective tissue remodeling and overuse-induced tendinopathy. Lipid mediators control both the initiation and resolution of inflammation, but their roles within tendon are largely unknown. Here, we profiled local shifts in intratendinous lipid mediators via liquid chromatography-tandem mass spectrometry in response to synergist ablation-induced plantaris tendon overuse. Sixty-four individual lipid mediators were detected in homogenates of plantaris tendons from ambulatory control rats. This included many bioactive metabolites of the cyclooxygenase (COX), lipoxygenase (LOX), and epoxygenase (CYP) pathways. Synergist ablation induced a robust inflammatory response at day 3 post-surgery characterized by epitenon infiltration of polymorphonuclear leukocytes and monocytes/macrophages (MΦ), heightened expression of inflammation-related genes, and increased intratendinous concentrations of the pro-inflammatory eicosanoids thromboxane B2 and prostaglandin E2 . By day 7, MΦ became the predominant myeloid cell type in tendon and there were further delayed increases in other COX metabolites including prostaglandins D2 , F2α , and I2 . Specialized pro-resolving mediators including protectin D1, resolvin D2 and D6, as well as related pathway markers of D-resolvins (17-hydroxy-docosahexaenoic acid), E-resolvins (18-hydroxy-eicosapentaenoic acid), and lipoxins (15-hydroxy-eicosatetraenoic acid) were also increased locally in response to tendon overuse, as were anti-inflammatory fatty acid epoxides of the CYP pathway (eg, epoxy-eicosatrienoic acids). Nevertheless, intratendinous prostaglandins remained markedly increased even following 28 days of tendon overuse together with a lingering MΦ presence. These data reveal a delayed and prolonged local inflammatory response to tendon overuse characterized by an overwhelming predominance of pro-inflammatory eicosanoids and a relative lack of specialized pro-resolving lipid mediators.
Collapse
Affiliation(s)
- James F Markworth
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kristoffer B Sugg
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Dylan C Sarver
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA.,Department of Cellular & Molecular Physiology, Johns Hopkins University, Baltimore, MD, USA
| | - Krishna Rao Maddipati
- Department of Pathology, Lipidomics Core Facility, Wayne State University, Detroit, MI, USA
| | - Susan V Brooks
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
35
|
Li Y, Wu T, Liu S. Identification and Distinction of Tenocytes and Tendon-Derived Stem Cells. Front Cell Dev Biol 2021; 9:629515. [PMID: 33937230 PMCID: PMC8085586 DOI: 10.3389/fcell.2021.629515] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/29/2021] [Indexed: 01/01/2023] Open
Abstract
Restoring the normal structure and function of injured tendons is one of the biggest challenges in orthopedics and sports medicine department. The discovery of tendon-derived stem cells (TDSCs) provides a novel perspective to treat tendon injuries, which is expected to be an ideal seed cell to promote tendon repair and regeneration. Because of the lack of specific markers, the identification of tenocytes and TDSCs has not been conclusive in the in vitro study of tendons. In addition, the morphology of tendon derived cells is similar, and the comparison and identification of tenocytes and TDSCs are insufficient, which causes some obstacles to the in vitro study of tendon. In this review, the characteristics of tenocytes and TDSCs are summarized and compared based on some existing research results (mainly in terms of biomarkers), and a potential marker selection for identification is suggested. It is of profound significance to further explore the mechanism of biomarkers in vivo and to find more specific markers.
Collapse
Affiliation(s)
- Yuange Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianyi Wu
- Department of Orthopaedics, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Advanced technology-driven therapeutic interventions for prevention of tendon adhesion: Design, intrinsic and extrinsic factor considerations. Acta Biomater 2021; 124:15-32. [PMID: 33508510 DOI: 10.1016/j.actbio.2021.01.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/09/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Tendon adhesion formation describes the development of fibrotic tissue between the tendon and its surrounding tissues, which commonly occurs as a reaction to injury or surgery. Its impact on function and quality of life varies from negligible to severely disabling, depending on the affected area and extent of adhesion formed. Thus far, treatment options remain limited with prophylactic anti-inflammatory medications and revision surgeries constituting the only tools within the doctors' armamentarium - neither of which provides reliable outcomes. In this review, the authors aim to collate the current understanding of the pathophysiological mechanisms underlying tendon adhesion formation, highlighting the significant role ascribed to the inflammatory cascade in accelerating adhesion formation. The bulk of this article will then be dedicated to critically appraising different therapeutic structures like nanoparticles, hydrogels and fibrous membranes fabricated by various cutting-edge technologies for adhesion formation prophylaxis. Emphasis will be placed on the role of the fibrous membranes, their ability to act as drug delivery vehicles as well as the combination with other therapeutic structures (e.g., hydrogel or nanoparticles) or fabrication technologies (e.g., weaving or braiding). Finally, the authors will provide an opinion as to the future direction of the prevention of tendon adhesion formation in view of scaffold structure and function designs.
Collapse
|
37
|
Transcriptome profiling of digital flexor tendons after injury in a chicken model. Biosci Rep 2021; 40:224892. [PMID: 32432656 PMCID: PMC7276521 DOI: 10.1042/bsr20191547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 05/01/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Modulation of tendon healing remains a challenge because of our limited understanding of the tendon repair process. Therefore, we performed the present study to provide a global perspective of the gene expression profiles of tendons after injury and identify the molecular signals driving the tendon repair process. RESULTS The gene expression profiles of flexor digitorum profundus tendons in a chicken model were assayed on day 3, weeks 1, 2, 4, and 6 after injury using the Affymetrix microarray system. Principal component analysis (PCA) and hierarchical cluster analysis of the differentially expressed genes showed three distinct clusters corresponding to different phases of the tendon healing period. Gene ontology (GO) analysis identified regulation of cell proliferation and cell adhesion as the most enriched biological processes. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis revealed that the cytokine-cytokine receptor interaction and extracellular matrix (ECM)-receptor interaction pathways were the most impacted. Weighted gene co-expression network analysis (WGCNA) demonstrated four distinct patterns of gene expressions during tendon healing. Cell adhesion and ECM activities were mainly associated with genes with drastic increase in expression 6 weeks after injury. The protein-protein interaction (PPI) networks were constructed to identify the key signaling pathways and hub genes involved. CONCLUSIONS The comprehensive analysis of the biological functions and interactions of the genes differentially expressed during tendon healing provides a valuable resource to understand the molecular mechanisms underlying tendon healing and to predict regulatory targets for the genetic engineering of tendon repair. Tendon healing, Adhesion, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Weighted Gene Co-expression Network Analysis, Protein-protein Interaction.
Collapse
|
38
|
Akamatsu FE, Teodoro WR, Itezerote AM, da Silveira LKR, Saleh S, Martinez CAR, Ribeiro ML, Pereira JA, Hojaij F, Andrade M, Jacomo AL. Photobiomodulation therapy increases collagen II after tendon experimental injury. Histol Histopathol 2021; 36:663-674. [PMID: 33755188 DOI: 10.14670/hh-18-330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A tendon is a mechanosensitive tissue that transmits muscle-derived forces to bones. Photobiomodulation (PBM), also known as low-level laser therapy (LLLT), has been used in therapeutic approaches in tendon lesions, but uncertainties regarding its mechanisms of action have prevented its widespread use. We investigated the response of PBM therapy in experimental lesions of the Achilles tendon in rats. Thirty adult male Wistar rats weighing 250 to 300 g were surgically submitted to bilateral partial transverse section of the Achilles tendon. The right tendon was treated with PBM, whereas the left tendon served as a control. On the third postoperative day, the rats were divided into three experimental groups consisting of ten rats each, which were treated with PBM (Konf, Aculas - HB 750), 780 nm and 80 mW for 20 seconds, three times/week for 7, 14 and 28 days. The rats were sacrificed at the end of the therapeutic time period. The Sca-1 was examined by immunohistochemistry and histomorphometry, and COLA1, COLA2 and COLA3 gene expression was examined by qRT-PCR. COLA2 gene expression was higher in PBM treated tendons than in the control group. The histomorphometric analysis coincided with increased number of mesenchymal cells, characterized by Sca-1 expression in the lesion region (p<0.001). PBM effectively interferes in tendon tissue repair after injury by stimulating mesenchymal cell proliferation and the synthesis of collagen type II, which is suggested to provide structural support to the interstitial tissues during the healing process of the Achilles tendon. Further studies are needed to confirm the role of PBM in tendon healing.
Collapse
Affiliation(s)
- Flávia Emi Akamatsu
- Department of Surgery, Laboratory of Medical Research - Division of Human Structural Topography, Faculty of Medicine of the University of São Paulo (FMUSP), São Paulo-SP, Brazil.
| | - Walcy Rosolia Teodoro
- Rheumatology Division of the Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo-SP, Brazil.
| | - Ana Maria Itezerote
- Department of Surgery, Laboratory of Medical Research - Division of Human Structural Topography, Faculty of Medicine of the University of São Paulo (FMUSP), São Paulo-SP, Brazil
| | | | - Samir Saleh
- Department of Surgery, Laboratory of Medical Research - Division of Human Structural Topography, Faculty of Medicine of the University of São Paulo (FMUSP), São Paulo-SP, Brazil
| | - Carlos Augusto Real Martinez
- Department of Surgery, Laboratory of Medical Research - Division of Human Structural Topography, Faculty of Medicine of the University of São Paulo (FMUSP), São Paulo-SP, Brazil
| | - Marcelo Lima Ribeiro
- Department of Surgery, Laboratory of Medical Research - Division of Human Structural Topography, Faculty of Medicine of the University of São Paulo (FMUSP), São Paulo-SP, Brazil
| | - José Aires Pereira
- Department of Surgery, Laboratory of Medical Research - Division of Human Structural Topography, Faculty of Medicine of the University of São Paulo (FMUSP), São Paulo-SP, Brazil
| | - Flávio Hojaij
- Department of Surgery, Laboratory of Medical Research - Division of Human Structural Topography, Faculty of Medicine of the University of São Paulo (FMUSP), São Paulo-SP, Brazil
| | - Mauro Andrade
- Department of Surgery, Laboratory of Medical Research - Division of Human Structural Topography, Faculty of Medicine of the University of São Paulo (FMUSP), São Paulo-SP, Brazil
| | - Alfredo Luiz Jacomo
- Department of Surgery, Laboratory of Medical Research - Division of Human Structural Topography, Faculty of Medicine of the University of São Paulo (FMUSP), São Paulo-SP, Brazil
| |
Collapse
|
39
|
Hyaluronic Acid Treatment Improves Healing of the Tenorrhaphy Site by Suppressing Adhesions through Extracellular Matrix Remodeling in a Rat Model. Polymers (Basel) 2021; 13:polym13060928. [PMID: 33802991 PMCID: PMC8002636 DOI: 10.3390/polym13060928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
Due to the limited supply of vessels and nerves, acute or chronic tendon injuries often result in significant and persistent complications, such as pain and sprains, as well as the loss of joint functions. Among these complications, tendon adhesions within the surrounding soft tissue have been shown to significantly impair the range of motion. In this study, to elucidate the effects of a hyaluronic acid (HA) injection at the site of tenorrhaphy on tendon adhesion formation, we used a full transection model of a rat’s Achilles tendon to investigate the anti-adhesive function of HA. Our initial findings showed that significantly lower adhesion scores were observed in the HA-treated experimental group than in the normal saline-treated control group, as determined by macroscopic and histological evaluations. Hematoxylin and eosin, as well as picrosirius red staining, showed denser and irregular collagen fibers, with the larger number of infiltrating inflammatory cells in the control group indicating severe adhesion formation. Furthermore, we observed that the expression of tendon adhesion markers in operated tendon tissue, such as collagen type I, transforming growth factor-β1, and plasminogen activator inhibitor-1, was suppressed at both the gene and protein levels following HA treatment. These results suggest that HA injections could reduce tendon adhesion formation by significantly ameliorating inflammatory-associated reactions.
Collapse
|
40
|
Becerikli M, Kopp A, Kröger N, Bodrova M, Wallner C, Wagner JM, Dadras M, Jettkant B, Pöhl F, Lehnhardt M, Jung O, Behr B. A novel titanium implant surface modification by plasma electrolytic oxidation (PEO) preventing tendon adhesion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112030. [PMID: 33812645 DOI: 10.1016/j.msec.2021.112030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/11/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
Titanium is one of the most commonly used materials for implants in trauma applications due to its low density, high corrosion resistance and biocompatibility. Nevertheless, there is still a need for improved surface modifications of Titanium, in order to change surface properties such as wettability, antibacterial properties or tissue attachment. In this study, different novel plasma electrolytic oxidation (PEO) modifications have been investigated for tendon adhesion to implants commonly used in hand surgery. Titanium samples with four different PEO modifications were prepared by varying the electrolyte composition and analyzed with regards to their surface properties. Unmodified titanium blanks and Dotize® coating served as controls. Samples were examined using scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), contact angle measuring system and analyzed for their biocompatibility and hemocompatibility (according to DIN ISO 10993-5 and 10,993-4). Finally, tendon adhesion of these specific surfaces were investigated by pull-off tests. Our findings show that surface thickness of PEO modifications was about 12-20 μm and had porous morphology. One modification demonstrated hydrophilic behavior accompanied by good biocompatibility without showing cytotoxic properties. Furthermore, no hemolytic effect and no significant influence on hemocompatibility were observed. Pull-off tests revealed a significant reduction of tendon adhesion by 64.3% (35.7% residual adhesion), compared to unmodified titanium (100%). In summary, the novel PEO-based ceramic-like porous modification for titanium surfaces might be considered a good candidate for orthopedic applications supporting a more efficient recovery.
Collapse
Affiliation(s)
- Mustafa Becerikli
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | - Christoph Wallner
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Johannes Maximilian Wagner
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Mehran Dadras
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Birger Jettkant
- Department of General and Trauma Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Fabian Pöhl
- Chair of Materials Technology, Ruhr-University Bochum, Bochum, Germany
| | - Marcus Lehnhardt
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Ole Jung
- Department of Oral and Maxillofacial Surgery, Head- and Neurocenter, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Behr
- Department of Plastic and Reconstructive Surgery, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
41
|
Proceed with Caution: Mouse Deep Digit Flexor Tendon Injury Model. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2021; 9:e3359. [PMID: 33552814 PMCID: PMC7859083 DOI: 10.1097/gox.0000000000003359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/17/2020] [Indexed: 11/26/2022]
Abstract
Supplemental Digital Content is available in the text. The purpose of this study was to determine the feasibility of using mouse models for translational study of flexor tendon repair and reconstruction.
Collapse
|
42
|
Durand S, Christen T, Diot R. Reconstruction using vascularized extensor indicis proprius tendon. HAND SURGERY & REHABILITATION 2021; 40:224-230. [PMID: 33454428 DOI: 10.1016/j.hansur.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/01/2022]
Abstract
The choice of the donor tendon in tendon reconstruction of the hand theoretically influences the results of the surgery because of the interactions of its structure with the healing process. The objective of our study was to specify the surgical bases of vascularized extensor indicis proprius (EIP) in tendon reconstruction of the hand and to present its application from a series of observations. According to our observations, the EIP's vascularization arises from a branch of the 2nd dorsal metacarpal artery, 3-4 cm proximally to the metacarpophalangeal joint (MCP). We demonstrate the feasibility and effectiveness of a vascularized EIP graft for finger flexor tendon reconstruction, for defects of the extensor mechanism at the MCP joint level and for reconstruction of the extensor pollicis longus. Our biomimetic approach in tendon reconstruction has led us to factor in the complexity of the tendon and peritendinous structure. The use of vascularized EIP offers theoretical advantages for the tendon healing process, demonstrates encouraging first results with interesting versatility and very low iatrogenicity.
Collapse
Affiliation(s)
- S Durand
- Department of Hand Surgery, Lausanne University Hospital, Rue du Bugnon 46, 1011 Lausanne, Switzerland.
| | - T Christen
- Department of Hand Surgery, Lausanne University Hospital, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - R Diot
- Department of Hand Surgery, Lausanne University Hospital, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| |
Collapse
|
43
|
Imere A, Ligorio C, O'Brien M, Wong JKF, Domingos M, Cartmell SH. Engineering a cell-hydrogel-fibre composite to mimic the structure and function of the tendon synovial sheath. Acta Biomater 2021; 119:140-154. [PMID: 33189954 DOI: 10.1016/j.actbio.2020.11.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 12/27/2022]
Abstract
The repair of tendon injuries is often compromised by post-operative peritendinous adhesions. Placing a physical barrier at the interface between the tendon and the surrounding tissue could potentially solve this problem by reducing adhesion formation. At present, no such system is available for routine use in clinical practice. Here, we propose the development of a bilayer membrane combining a nanofibrous poly(ε-caprolactone) (PCL) electrospun mesh with a layer of self-assembling peptide hydrogel (SAPH) laden with type-B synoviocytes. This bilayer membrane would act as an anti-adhesion system capable of restoring tendon lubrication, while assisting with synovial sheath regeneration. The PCL mesh showed adequate mechanical properties (Young's modulus=19±4 MPa, ultimate tensile stress=9.6±1.7 MPa, failure load=0.5±0.1 N), indicating that the membrane is easy to handle and capable to withstand the frictional forces generated on the tendon's surface during movement (~0.3 N). Morphological analysis confirmed the generation of a mesh with nanosized PCL fibres and small pores (< 3 μm), which prevented fibroblast infiltration to impede extrinsic healing but still allowing diffusion of nutrients and waste. Rheological tests showed that incorporation of SAPH layer allows good lubrication properties when the membrane is articulated against porcine tendon or hypodermis, suggesting that restoration of tendon gliding is possible upon implantation. Moreover, viability and metabolic activity tests indicated that the SAPH was conducive to rabbit synoviocyte growth and proliferation over 28 days of 3D culture, sustaining cell production of specific matrix components, particularly hyaluronic acid. Synoviocyte-laden peptide hydrogel promoted a sustained endogenous production of hyaluronic acid, providing an anti-friction layer that potentially restores the tendon gliding environment.
Collapse
Affiliation(s)
- Angela Imere
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK.; The Henry Royce Institute, Royce Hub Building, The University of Manchester, Manchester, UK
| | - Cosimo Ligorio
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK.; Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, UK
| | - Marie O'Brien
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK.; The Henry Royce Institute, Royce Hub Building, The University of Manchester, Manchester, UK
| | - Jason K F Wong
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.; Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Marco Domingos
- The Henry Royce Institute, Royce Hub Building, The University of Manchester, Manchester, UK.; Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Sarah H Cartmell
- Department of Materials, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK.; The Henry Royce Institute, Royce Hub Building, The University of Manchester, Manchester, UK..
| |
Collapse
|
44
|
Jackson JE, Kopecki Z, Anderson PJ, Cowin AJ. Increasing the level of cytoskeletal protein Flightless I reduces adhesion formation in a murine digital flexor tendon model. J Orthop Surg Res 2020; 15:362. [PMID: 32854733 PMCID: PMC7450967 DOI: 10.1186/s13018-020-01889-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/13/2020] [Indexed: 12/29/2022] Open
Abstract
Background Surgical repair of tendons is common, but function is often limited due to the formation of flexor tendon adhesions which reduce the mobility and use of the affected digit and hand. The severity of adhesion formation is dependent on numerous cellular processes many of which involve the actin cytoskeleton. Flightless I (Flii) is a highly conserved cytoskeletal protein, which has previously been identified as a potential target for improved healing of tendon injuries. Using human in vitro cell studies in conjunction with a murine model of partial laceration of the digital flexor tendon, we investigated the effect of modulating Flii levels on tenocyte function and formation of adhesions. Methods Human tenocyte proliferation and migration was determined using WST-1 and scratch wound assays following Flii knockdown by siRNA in vitro. Additionally, mice with normal and increased levels of Flii were subjected to a partial laceration of the digital flexor tendon in conjunction with a full tenotomy to immobilise the paw. Resulting adhesions were assessed using histology and immunohistochemistry for collagen I, III, TGF-β1and -β3 Results Flii knockdown significantly reduced human tenocyte proliferation and migration in vitro. Increasing the expression of Flii significantly reduced digital tendon adhesion formation in vivo which was confirmed through significantly smaller adhesion scores based on collagen fibre orientation, thickness, proximity to other fibres and crimping. Reduced adhesion formation was accompanied with significantly decreased deposition of type I collagen and increased expression of TGF-β1 in vivo. Conclusions These findings suggest that increasing the level of Flii in an injured tendon may be beneficial for decreasing tendon adhesion formation.
Collapse
Affiliation(s)
- Jessica E Jackson
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Peter J Anderson
- Faculty of Medicine and Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia.
| |
Collapse
|
45
|
Ermutlu C, Kaleli T, Yalcinkaya U, Cetintas S, Atici T. Efficacy of Single-Dose Radiotherapy in Preventing Posttraumatic Tendon Adhesion. Cureus 2020; 12:e8410. [PMID: 32626625 PMCID: PMC7331782 DOI: 10.7759/cureus.8410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background and Aim Posttraumatic peritendinous adhesion is the greatest obstacle to achieve normal tendon function following lacerations of extrinsic flexor tendons of the hand. In this study, we aimed to evaluate whether single-dose radiotherapy (RT) has the potential to modulate intrasynovial tendon adhesions. Materials and Methods A total of 80 tendons from the third to fourth flexor profundus of both hind paws of 20 adult New Zealand rabbits were used in this study. Rabbits in the RT group received 3 Gy of X-irradiation in a single fraction. Histopathological evaluation of longitudinal sections of tendons was made using the Tang grading system for peritendinous adhesions. Intratendinous quality of the healing tissue in the laceration zone was assessed using a modified Movin scale. Results Adhesion and inflammatory response were greater in the RT group (p˂0.001). Tendon healing in the radiation group was found to be more uniform and organized compared with the control group. However, this difference was not statistically significant. The nuclei of the tenocytes in the radiation group showed a closer resemblance to normal tendon tissue when compared with the control group (p=0.007). Conclusions Despite RT’s certain advantages such as extracorporeal use, anti-inflammatory effect, and homogenous tissue penetration, 3-Gy X-irradiation resulted in increased peritendinous posttraumatic adhesion, possibly due to dose imbalance. Increased roundness in the tenocyte nuclei was present in the RT group. Studies with different dosing regimens and a higher number of subjects are necessary to establish an ideal dose suppressing the synovial response without compromising tendon healing.
Collapse
Affiliation(s)
- Cenk Ermutlu
- Orthopaedics, Bursa Uludag University School of Medicine, Bursa, TUR
| | - Tufan Kaleli
- Orthopaedics and Traumatology, Bursa Uludag University School of Medicine, Bursa, TUR
| | | | - Sibel Cetintas
- Radiation Oncology, Bursa Uludag University School of Medicine, Bursa, TUR
| | - Teoman Atici
- Orthopaedics and Traumatology, Bursa Uludag University School of Medicine, Bursa, TUR
| |
Collapse
|
46
|
Biomechanical analysis of a new 8-strand technique for flexor tendon repair. HAND SURGERY & REHABILITATION 2020; 39:442-447. [PMID: 32450161 DOI: 10.1016/j.hansur.2020.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/25/2020] [Accepted: 05/14/2020] [Indexed: 11/23/2022]
Abstract
We sought to compare the strength and rupture sites of a new 8-strand suture technique with those of an established 6-strand flexor tendon repair through biomechanical analysis. This new 8-strand suture pattern places minimal suture material in the remodeling zone and focuses on protecting the knot, a well-known weak point of the suture construct. The knot was buried within the tendon so as to not interfere with tendon gliding. In a biomechanical simulation, strength and rupture sites were compared with those of the 6-strand repair. We repaired a total of 54 porcine flexor tendons using one of the two techniques (n=27 each). Tensile strength at 2-mm gap formation and ultimate failure load were determined. Afterwards, we dissected the tendons to identify the rupture site of the suture material. The new 8-strand suture had a significant higher ultimate load to failure (87.7N) and 2-mm gap load (71.6N) compared to the 6-strand technique (57.7N and 45.9N) (P<0.001). Whereas the rupture site of the core suture in the 6-strand technique was mainly located next to the knot (81.5%), the suture seemed to fail independently from this weak spot in the 8-strand technique (11.1%). This new 8-strand technique achieves a strong flexor tendon repair in a biomechanical model. Additional cross-locking on either side of the knot seems to contribute to the repair's strength. The resulting higher ultimate failure load and 2-mm gap load may allow more aggressive active motion-based postoperative rehabilitation.
Collapse
|
47
|
Chisari E, Rehak L, Khan WS, Maffulli N. The role of the immune system in tendon healing: a systematic review. Br Med Bull 2020; 133:49-64. [PMID: 32163543 DOI: 10.1093/bmb/ldz040] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The role of the immune system in tendon healing relies on polymorphonucleocytes, mast cells, macrophages and lymphocytes, the 'immune cells' and their cytokine production. This systematic review reports how the immune system affects tendon healing. SOURCES OF DATA We registered our protocol (registration number: CRD42019141838). After searching PubMed, Embase and Cochrane Library databases, we included studies of any level of evidence published in peer-reviewed journals reporting clinical or preclinical results. The PRISMA guidelines were applied, and risk of bias and the methodological quality of the included studies were assessed. We excluded all the articles with high risk of bias and/or low quality after the assessment. We included 62 articles assessed as medium or high quality. AREAS OF AGREEMENT Macrophages are major actors in the promotion of proper wound healing as well as the resolution of inflammation in response to pathogenic challenge or tissue damage. The immune cells secrete cytokines involving both pro-inflammatory and anti-inflammatory factors which could affect both healing and macrophage polarization. AREAS OF CONTROVERSY The role of lymphocytes, mast cells and polymorphonucleocytes is still inconclusive. GROWING POINTS The immune system is a major actor in the complex mechanism behind the healing response occurring in tendons after an injury. A dysregulation of the immune response can ultimately lead to a failed healing response. AREAS TIMELY FOR DEVELOPING RESEARCH Further studies are needed to shed light on therapeutic targets to improve tendon healing and in managing new way to balance immune response.
Collapse
Affiliation(s)
- Emanuele Chisari
- University of Catania, Department of General Surgery and Medical Specialities, Via Santa Sofia 78, Catania 95123, Italy
| | - Laura Rehak
- Athena Biomedical innovations, Viale Europa 139, Florence, 50126, Italy
| | - Wasim S Khan
- Division of Trauma & Orthopaedics, Addenbrooke's Hospital, University of Cambridge, Hills Rd, Cambridge CB2 0QQ, UK
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, Via Salvator Allende 23, Baronissi, 89100 Salerno, Italy.,Clinica Ortopedica, Ospedale San Giovanni di Dio e Ruggi D'Aragona, Largo Città di Ippocrate, Salerno, 84131 Italy.,Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, London E1 4DG, UK.,School of Pharmacy and Bioengineering, Keele University of School of Medicine, Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent, ST4 7QB, UK
| |
Collapse
|
48
|
Jackson JE, Kopecki Z, Anderson PJ, Cowin AJ. In vitro analysis of the effect of Flightless I on murine tenocyte cellular functions. J Orthop Surg Res 2020; 15:170. [PMID: 32398080 PMCID: PMC7216515 DOI: 10.1186/s13018-020-01692-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Healing of tendons after injury involves the proliferation of tenocytes and the production of extracellular matrix; however, their capacity to heal is limited by poor cell density and limited growth factor activity. Flightless I (Flii) has previously been identified as an important regulator of cellular proliferation and migration, and the purpose of this study was to evaluate the effect of differential Flii gene expression on tenocyte function in vitro. METHODS The role of Flii on tenocyte proliferation, migration, and contraction was assessed using established assays. Tenocytes from Flii+/-, wild-type, and Flii overexpressing mice were obtained and the effect of differential Flii expression on migration, proliferation, contraction, and collagen synthesis determined in vitro. Statistical differences were determined using unpaired Student's t test and statistical outliers were identified using the Grubbs' test. RESULTS Flii overexpressing tenocytes showed significantly improved migration and proliferation as well as increased collagen I secretion. Explanted tendons from Flii overexpressing mice also showed significantly elevated tenocyte outgrowth compared to Flii+/- mice. In contrast to its role in dermal wound repair, Flii positively affects cellular processes in tendons. CONCLUSIONS These findings suggest that Flii could be a novel target for modulating tenocyte activity and improving tendon repair. This could have significant clinical implications as novel therapeutic targets for improved healing of tendon injuries are urgently needed.
Collapse
Affiliation(s)
- Jessica E Jackson
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Peter J Anderson
- Faculty of Medicine and Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia.
| |
Collapse
|
49
|
Maruyama M, Wei L, Thio T, Storaci HW, Ueda Y, Yao J. The Effect of Mesenchymal Stem Cell Sheets on Early Healing of the Achilles Tendon in Rats. Tissue Eng Part A 2020; 26:206-213. [DOI: 10.1089/ten.tea.2019.0163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Masahiro Maruyama
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California
| | - Le Wei
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California
| | - Timothy Thio
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California
| | - Hunter W. Storaci
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California
| | - Yusuke Ueda
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California
| | - Jeffrey Yao
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
50
|
Flexor Tendon: Development, Healing, Adhesion Formation, and Contributing Growth Factors. Plast Reconstr Surg 2020; 144:639e-647e. [PMID: 31568303 DOI: 10.1097/prs.0000000000006048] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Management of flexor tendon injuries of the hand remains a major clinical problem. Even with intricate repair, adhesion formation remains a common complication. Significant progress has been made to better understand the mechanisms of healing and adhesion formation. However, there has been slow progress in the clinical prevention and reversal of flexor tendon adhesions. The goal of this article is to discuss recent literature relating to tendon development, tendon healing, and adhesion formation to identify areas in need of further research. Additional research is needed to understand and compare the molecular, cellular, and genetic mechanisms involved in flexor tendon morphogenesis, postoperative healing, and mechanical loading. Such knowledge is critical to determine how to improve repair outcomes and identify new therapeutic strategies to promote tissue regeneration and prevent adhesion formation.
Collapse
|