1
|
Wang H, Li Y, Zhang L, Lu M, Li C, Li Y. Anti-Inflammatory Lipid Mediators from Polyunsaturated Fatty Acids: Insights into their Role in Atherosclerosis Microenvironments. Curr Atheroscler Rep 2025; 27:48. [PMID: 40198469 DOI: 10.1007/s11883-025-01285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2025] [Indexed: 04/10/2025]
Abstract
PURPOSE OF REVIEW Inflammation has become a major residual risk factor for atherosclerotic cardiovascular disease (ASCVD). Certain lipid mediators, known as specialized proresolving mediators (SPMs), are mainly derived from polyunsaturated fatty acids (PUFAs) and can promote inflammation resolution while maintaining host autoimmunity. This review investigates the synthesis and ligand action pathways of these lipid mediators, as well as their regulatory mechanisms in the microenvironment of atherosclerotic plaques. Furthermore, it explores their clinical therapeutic potential, aiming to offer new insights into novel anti-inflammatory drug targets for the treatment of ASCVD. RECENT FINDINGS Reduced levels of SPMs are associated with the progression of atherosclerosis. SPMs inhibit inflammatory responses in the plaque microenvironment by limiting immune cell infiltration, reducing oxidative stress, and promoting the clearance of apoptotic cells, all of which contribute to plaque stabilization. Tyrosine-protein kinase Mer (MerTK), TRIF-related adaptor molecule (TRAM), and high mobility group box 1 (HMGB1) play crucial roles in the modulation of SPM production. Clinical use of ω-3 PUFAs has been shown to reduce the incidence of fatal cardiovascular events. Furthermore, aspirin not only initiates the synthesis of specific SPMs but also extends their activity within the body. The enhanced production of SPMs promotes inflammation resolution in the plaque microenvironment without inducing immunosuppression. This characteristic highlights MerTK, TRAM, and HMGB1 as potential targets for the development of anti-inflammatory drugs. Investigating targets and compounds that enhance the production of SPMs presents a promising strategy for developing future anti-inflammatory agents.
Collapse
Affiliation(s)
- Hongqin Wang
- Post-doctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China
| | - Yuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China
| | - Lei Zhang
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- , Daxue Road No. 4655, Changqing District, Jinan, Shandong Province, People's Republic of China.
| | - Yunlun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
2
|
Wang YF, Zhu XT, Hu ZP. Decreased plasma lipoxin A4, resolvin D1, protectin D1 are correlated with the complexity and prognosis of coronary heart disease: A retrospective cohort study. Prostaglandins Other Lipid Mediat 2025; 178:106990. [PMID: 40164347 DOI: 10.1016/j.prostaglandins.2025.106990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/24/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
This study aimed to assess the predictive capacity of specialized pro-resolving mediators (SPMs) regarding the complexity and prognosis of coronary heart disease (CHD). Total of 602 CHD patients were included in this study and categorized into low-risk, medium-risk, and high-risk groups based on the Synergy Between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) score. Follow-up was conducted for two years, during which patients were dichotomized into poor and good prognosis groups. Additionally, twenty healthy controls were incorporated. Plasma concentrations of lipoxin A4 (LXA4), resolvin D1 (RvD1), protectin D1 (PD1), C-reactive protein (CRP), interleukin-6 (IL-6), and IL-10 were quantified. Plasma LXA4, RvD1, PD1, and the ratios LXA4/IL-6, RvD1/IL-6, PD1/IL-6 exhibited a gradual decrease across control, low-risk, medium-risk, and high-risk groups and exhibited a negative correlation with the SYNTAX score. Spearman's correlation analysis revealed negative correlations between plasma LXA4, RvD1, PD1, and both CRP and IL-6, and positive correlations with IL-10. Multiple linear regression models demonstrated negative associations between plasma LXA4, RvD1, PD1, and SYNTAX score. Moreover, both univariate and multivariate binary logistic regression analyses identified plasma LXA4, RvD1, and PD1 as protective factors against medium/high-risk SYNTAX score categorization. In the poor prognosis group, plasma PD1 was reduced at short-term follow-up, and the ratios LXA4/IL-6, RvD1/IL-6, PD1/IL-6 were reduced at long-term follow-up. Plasma LXA4, RvD1, and PD1 demonstrated negative correlations with CHD complexity and potentially served as protective factors against CHD. Plasma PD1 provided predictive value for short-term prognosis, while the ratios LXA4/IL-6, RvD1/IL-6, PD1/IL-6 were indicative for long-term prognosis.
Collapse
Affiliation(s)
- Yun-Fei Wang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Xue-Tao Zhu
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Ze-Ping Hu
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China.
| |
Collapse
|
3
|
Peh HY, Chen J. Pro-resolving lipid mediators and therapeutic innovations in resolution of inflammation. Pharmacol Ther 2025; 265:108753. [PMID: 39566561 DOI: 10.1016/j.pharmthera.2024.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
This review summarizes findings presented at the 19th World Congress of Basic & Clinical Pharmacology 2023 (Glasgow, Scotland, July 3rd to 7th, 2023) from 8 speakers in the field of resolution of inflammation, resolution pharmacology and resolution biology. It is now accepted that the acute inflammatory response is protective to defend the host against infection or tissue injury. Acute inflammation is self-limited and programmed to be limited in space and time: this is achieved through endogenous resolution processes that ensure return to homeostasis. Resolution is brought about by agonist mediators that include specialized pro-resolving lipid mediators (SPMs) and pro-resolving proteins and peptides such as annexin A1 and angiotensin-(1-7), all acting to initiate anti-inflammatory and pro-resolving processes. If the inflammatory reaction remains unchecked through dysfunctional resolution mechanism, it can become chronic and contribute to a plethora of human diseases, including respiratory, cardiovascular, metabolic, allergic diseases, and arthritis. Herein, we discuss how non-resolving inflammation plays a role in the pathogenesis of these diseases. In addition to SPMs, we highlight the discovery, biosynthesis, biofunctions, and latest research updates on innovative therapeutics (including annexin-A1 peptide-mimetic RTP-026, small molecule FPR2 agonist BM-986235/LAR-1219, biased agonist for FPR1/FPR2 Cmpd17b, lipoxin mimetics AT-01-KG and AT-02-CT, melanocortin receptor agonist AP1189, gold nanoparticles, angiotensin-(1-7), and CD300a) that can promote resolution of inflammation directly or through modulation of SPMs production. Drug development strategies based on the biology of the resolution of inflammation can offer novel therapeutic means and/or add-on therapies for the treatment of chronic diseases.
Collapse
Affiliation(s)
- Hong Yong Peh
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, Department of Pharmacology, Singapore; Immunology Programme and Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore; Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Jianmin Chen
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
4
|
Liu Y, Liu A, Ye RD. Structural Basis for Chemerin Recognition and Signaling Through Its Receptors. Biomedicines 2024; 12:2470. [PMID: 39595036 PMCID: PMC11592271 DOI: 10.3390/biomedicines12112470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Chemerin is a chemotactic adipokine that participates in a multitude of physiological processes, including adipogenesis, leukocyte chemotaxis, and neuroinflammation. Chemerin exerts biological functions through binding to one or more of its G protein-coupled receptors (GPCRs), namely chemokine-like receptor 1 (CMKLR1), G protein-coupled receptor 1 (GPR1), and CC-motif receptor-like 2 (CCRL2). Of these receptors, CMKLR1 and GPR1 have been confirmed as signaling receptors of chemerin, whereas CCRL2 serves as a chemerin-binding protein without transmembrane signaling. High-resolution structures of two chemerin receptors are now available thanks to recent advancements in structure biology. This review focuses on the structural perspectives of the chemerin receptors with an emphasis on the structure-activity correlation, including key components of the two receptors for ligand recognition and conformational changes induced by chemerin and its derivative peptides for G protein activation. There are also comparisons between the two chemerin receptors and selected GPCRs with peptide ligands for better appreciation of the shared and distinct features of the chemerin receptors in ligand recognition and transmembrane signaling, and in the evolution of this subclass of GPCRs.
Collapse
Affiliation(s)
- Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Aijun Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Dongguan Songshan Lake Central Hospital, Dongguan Third People’s Hospital, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523326, China
| | - Richard D. Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen 518048, China
| |
Collapse
|
5
|
Korpak K, Rossi M, Van Meerhaeghe A, Boudjeltia KZ, Compagnie M. Omega-3 long-chain polyunsaturated fatty acids and their bioactive lipids: A strategy to improve resistance to respiratory tract infectious diseases in the elderly? NUTRITION AND HEALTHY AGING 2024; 9:55-76. [DOI: 10.3233/nha-220184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Age-related changes in organ function, immune dysregulation, and the effects of senescence explain in large part the high prevalence of infections, including respiratory tract infections in older persons. Poor nutritional status in many older persons increases susceptibility to infection and worsens prognosis. Interestingly, there is an association between the amount of saturated fats in the diet and the rate of community-acquired pneumonia. Polyunsaturated fatty acids, particularly omega-3 long chain polyunsaturated fatty acids (ω-3 LC-PUFAs) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have well-known anti-inflammatory, immunomodulatory, and antimicrobial effects, which may, in theory, be largely induced by PUFAs-derived lipids such as specialized pro-resolving mediators (SPMs). In adults, preliminary results of studies show that ω-3 LC-PUFAs supplementation can lead to SPM generation. SPMs have a crucial role in the resolution of inflammation, a factor relevant to survival from infection independent of the pathogen’s virulence. Moreover, the immune system of older adults appears to be more sensitive to ω-3 PUFAs. This review explores the effects of ω-3 LC-PUFAs, and PUFA bioactive lipid-derived SPMs in respiratory tract infections and the possible relevance of these data to infectious disease outcomes in the older population. The hypothesis that PUFAs have beneficial effects via SPM generation will need to be confirmed by animal experiments and patient-derived data.
Collapse
Affiliation(s)
- Kéziah Korpak
- Department of Geriatric Medicine, CHU de Charleroi, Université libre de Bruxelles (ULB), Charleroi, Belgium
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
| | - M. Rossi
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
- Department of Urology, CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
| | - A. Van Meerhaeghe
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
| | - K. Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université libre de Bruxelles (ULB), Montigny-le-Tilleul, Belgium
| | - M. Compagnie
- Department of Geriatric Medicine, CHU de Charleroi, Université libre de Bruxelles (ULB), Charleroi, Belgium
| |
Collapse
|
6
|
Yu Y, Cai Y, Yang F, Yang Y, Cui Z, Shi D, Bai R. Vascular smooth muscle cell phenotypic switching in atherosclerosis. Heliyon 2024; 10:e37727. [PMID: 39309965 PMCID: PMC11416558 DOI: 10.1016/j.heliyon.2024.e37727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Atherosclerosis (AS) is a complex pathology process involving intricate interactions among various cells and biological processes. Vascular smooth muscle cells (VSMCs) are the predominant cell type in normal arteries, and under atherosclerotic stimuli, VSMCs respond to altered blood flow and microenvironment changes by downregulating contractile markers and switching their phenotype. This review overviews the diverse phenotypes of VSMCs, including the canonical contractile VSMCs, synthetic VSMCs, and phenotypes resembling macrophages, foam cells, myofibroblasts, osteoblasts/chondrocytes, and mesenchymal stem cells. We summarize their presumed protective and pro-atherosclerotic roles in AS development. Additionally, we underscore the molecular mechanisms and regulatory pathways governing VSMC phenotypic switching, encompassing transcriptional regulation, biochemical factors, plaque microenvironment, epigenetics, miRNAs, and the cytoskeleton, emphasizing their significance in AS development. Finally, we outline probable future research directions targeting VSMCs, offering insights into potential therapeutic strategies for AS management.
Collapse
Affiliation(s)
- Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Yankai Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuorui Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| |
Collapse
|
7
|
Wenderoth T, Feldotto M, Hernandez J, Schäffer J, Leisengang S, Pflieger FJ, Bredehöft J, Mayer K, Kang JX, Bier J, Grimminger F, Paßlack N, Rummel C. Effects of Omega-3 Polyunsaturated Fatty Acids on the Formation of Adipokines, Cytokines, and Oxylipins in Retroperitoneal Adipose Tissue of Mice. Int J Mol Sci 2024; 25:9904. [PMID: 39337391 PMCID: PMC11432517 DOI: 10.3390/ijms25189904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Oxylipins and specialized pro-resolving lipid mediators (SPMs) derived from polyunsaturated fatty acids (PUFAs) are mediators that coordinate an active process of inflammation resolution. While these mediators have potential as circulating biomarkers for several disease states with inflammatory components, the source of plasma oxylipins/SPMs remains a matter of debate but may involve white adipose tissue (WAT). Here, we aimed to investigate to what extent high or low omega (n)-3 PUFA enrichment affects the production of cytokines and adipokines (RT-PCR), as well as oxylipins/SPMs (liquid chromatography-tandem mass spectrometry) in the WAT of mice during lipopolysaccharide (LPS)-induced systemic inflammation (intraperitoneal injection, 2.5 mg/kg, 24 h). For this purpose, n-3 PUFA genetically enriched mice (FAT-1), which endogenously synthesize n-3 PUFAs, were compared to wild-type mice (WT) and combined with n-3 PUFA-sufficient or deficient diets. LPS-induced systemic inflammation resulted in the decreased expression of most adipokines and interleukin-6 in WAT, whereas the n-3-sufficient diet increased them compared to the deficient diet. The n-6 PUFA arachidonic acid was decreased in WAT of FAT-1 mice, while n-3 derived PUFAs (eicosapentaenoic acid, docosahexaenoic acid) and their metabolites (oxylipins/SPMs) were increased in WAT by genetic and nutritional n-3 enrichment. Several oxylipins/SPMs were increased by LPS treatment in WAT compared to PBS-treated controls in genetically n-3 enriched FAT-1 mice. Overall, we show that WAT may significantly contribute to circulating oxylipin production. Moreover, n-3-sufficient or n-3-deficient diets alter adipokine production. The precise interplay between cytokines, adipokines, and oxylipins remains to be further investigated.
Collapse
Affiliation(s)
- Tatjana Wenderoth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Martin Feldotto
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Jessica Hernandez
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Julia Schäffer
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Stephan Leisengang
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
- Center for Mind Brain and Behavior (CMMB), Universities Giessen and Marburg, 34032 Marburg, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University, 35392 Giessen, Germany
| | - Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Janne Bredehöft
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
| | - Konstantin Mayer
- Department of Internal Medicine, Justus Liebig University, 35392 Giessen, Germany;
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical, Charlestown, MA 02129, USA;
| | - Jens Bier
- Cardio-Pulmonary Institute, Justus Liebig University, 35392 Giessen, Germany; (J.B.); (F.G.)
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Friedrich Grimminger
- Cardio-Pulmonary Institute, Justus Liebig University, 35392 Giessen, Germany; (J.B.); (F.G.)
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), 35392 Giessen, Germany
| | - Nadine Paßlack
- Small Animal Clinic, Internal Medicine and Department of Veterinary Clinical Sciences, Justus Liebig University, 35392 Giessen, Germany;
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, 35392 Giessen, Germany; (T.W.); (M.F.); (J.H.); (J.S.); (S.L.); (F.J.P.); (J.B.)
- Center for Mind Brain and Behavior (CMMB), Universities Giessen and Marburg, 34032 Marburg, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University, 35392 Giessen, Germany
| |
Collapse
|
8
|
Zhang J, Liu S, Ding W, Wan J, Qin JJ, Wang M. Resolution of inflammation, an active process to restore the immune microenvironment balance: A novel drug target for treating arterial hypertension. Ageing Res Rev 2024; 99:102352. [PMID: 38857706 DOI: 10.1016/j.arr.2024.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
The resolution of inflammation, the other side of the inflammatory response, is defined as an active and highly coordinated process that promotes the restoration of immune microenvironment balance and tissue repair. Inflammation resolution involves several key processes, including dampening proinflammatory signaling, specialized proresolving lipid mediator (SPM) production, nonlipid proresolving mediator production, efferocytosis and regulatory T-cell (Treg) induction. In recent years, increasing attention has been given to the effects of inflammation resolution on hypertension. Furthermore, our previous studies reported the antihypertensive effects of SPMs. Therefore, in this review, we aim to summarize and discuss the detailed association between arterial hypertension and inflammation resolution. Additional, the association between gut microbe-mediated immune and hypertension is discussed. This findings suggested that accelerating the resolution of inflammation can have beneficial effects on hypertension and its related organ damage. Exploring novel drug targets by focusing on various pathways involved in accelerating inflammation resolution will contribute to the treatment and control of hypertensive diseases in the future.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Siqi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China; Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Cardiology, Renmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
9
|
Kagaya H, Kim AS, Chen M, Lin P, Yin X, Spite M, Conte MS. Dynamic changes in proresolving lipid mediators and their receptors following acute vascular injury in male rats. Physiol Rep 2024; 12:e16178. [PMID: 39128880 PMCID: PMC11317191 DOI: 10.14814/phy2.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/08/2024] [Accepted: 07/28/2024] [Indexed: 08/13/2024] Open
Abstract
Acute vascular injury provokes an inflammatory response, resulting in neointimal hyperplasia (NIH) and downstream pathologies. The resolution of inflammation is an active process in which specialized proresolving lipid mediators (SPM) and their receptors play a central role. We sought to examine the acute phase response of SPM and their receptors in both circulating blood and the arterial wall in a rat angioplasty model. We found that the ratio of proresolving to pro-inflammatory lipid mediators (LM) in plasma decreased sharply 1 day after vascular injury, then increased slightly by day 7, while that in arteries remained depressed. Granulocyte expression of SPM receptors ALX/FPR2 and DRV2/GPR18, and a leukotriene B4 receptor BLT1 increased postinjury, while ERV1/ChemR23 expression was reduced early and then recovered by day 7. Importantly, we show unique arterial expression patterns of SPM receptors in the acute setting, with generally low levels through day 7 that contrasted sharply with that of the pro-inflammatory CCR2 receptor. Overall, these data document acute, time-dependent changes of LM biosynthesis and SPM receptor expression in plasma, leukocytes, and artery walls following acute vascular injury. A biochemical imbalance between inflammation and resolution LM pathways appears persistent 7 days after angioplasty in this model. These findings may help guide therapeutic approaches to accelerate vascular healing and improve the outcomes of vascular interventions for patients with advanced atherosclerosis.
Collapse
Affiliation(s)
- Hideo Kagaya
- Cardiovascular Research Institute and Department of SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Alexander S. Kim
- Cardiovascular Research Institute and Department of SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Mian Chen
- Cardiovascular Research Institute and Department of SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Pei‐Yu Lin
- Cardiovascular Research Institute and Department of SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Xuanzhi Yin
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Matthew Spite
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Michael S. Conte
- Cardiovascular Research Institute and Department of SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
10
|
Nuszkiewicz J, Kukulska-Pawluczuk B, Piec K, Jarek DJ, Motolko K, Szewczyk-Golec K, Woźniak A. Intersecting Pathways: The Role of Metabolic Dysregulation, Gastrointestinal Microbiome, and Inflammation in Acute Ischemic Stroke Pathogenesis and Outcomes. J Clin Med 2024; 13:4258. [PMID: 39064298 PMCID: PMC11278353 DOI: 10.3390/jcm13144258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Acute ischemic stroke (AIS) remains a major cause of mortality and long-term disability worldwide, driven by complex and multifaceted etiological factors. Metabolic dysregulation, gastrointestinal microbiome alterations, and systemic inflammation are emerging as significant contributors to AIS pathogenesis. This review addresses the critical need to understand how these factors interact to influence AIS risk and outcomes. We aim to elucidate the roles of dysregulated adipokines in obesity, the impact of gut microbiota disruptions, and the neuroinflammatory cascade initiated by lipopolysaccharides (LPS) in AIS. Dysregulated adipokines in obesity exacerbate inflammatory responses, increasing AIS risk and severity. Disruptions in the gut microbiota and subsequent LPS-induced neuroinflammation further link systemic inflammation to AIS. Advances in neuroimaging and biomarker development have improved diagnostic precision. Here, we highlight the need for a multifaceted approach to AIS management, integrating metabolic, microbiota, and inflammatory insights. Potential therapeutic strategies targeting these pathways could significantly improve AIS prevention and treatment. Future research should focus on further elucidating these pathways and developing targeted interventions to mitigate the impacts of metabolic dysregulation, microbiome imbalances, and inflammation on AIS.
Collapse
Affiliation(s)
- Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Beata Kukulska-Pawluczuk
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Katarzyna Piec
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Dorian Julian Jarek
- Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Karina Motolko
- Student Research Club of Neurology, Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland;
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| |
Collapse
|
11
|
Babar MU, Nassar AF, Nie X, Zhang T, He J, Yeung J, Norris P, Ogura H, Muldoon A, Chen L, Libreros S. Is Lipid Metabolism of Value in Cancer Research and Treatment? Part II: Role of Specialized Pro-Resolving Mediators in Inflammation, Infections, and Cancer. Metabolites 2024; 14:314. [PMID: 38921449 PMCID: PMC11205484 DOI: 10.3390/metabo14060314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Acute inflammation is the body's first defense in response to pathogens or injury that is partially governed by a novel genus of endogenous lipid mediators that orchestrate the resolution of inflammation, coined specialized pro-resolving mediators (SPMs). SPMs, derived from omega-3-polyunstaturated fatty acids (PUFAs), include the eicosapentaenoic acid-derived and docosahexaenoic acid-derived Resolvins, Protectins, and Maresins. Herein, we review their biosynthesis, structural characteristics, and therapeutic effectiveness in various diseases such as ischemia, viral infections, periodontitis, neuroinflammatory diseases, cystic fibrosis, lung inflammation, herpes virus, and cancer, especially focusing on therapeutic effectiveness in respiratory inflammation and ischemia-related injuries. Resolvins are sub-nanomolar potent agonists that accelerate the resolution of inflammation by reducing excessive neutrophil infiltration, stimulating macrophage functions including phagocytosis, efferocytosis, and tissue repair. In addition to regulating neutrophils and macrophages, Resolvins control dendritic cell migration and T cell responses, and they also reduce the pro-inflammatory cytokines, proliferation, and metastasis of cancer cells. Importantly, several lines of evidence have demonstrated that Resolvins reduce tumor progression in melanoma, oral squamous cell carcinoma, lung cancer, and liver cancer. In addition, Resolvins enhance tumor cell debris clearance by macrophages in the tumor's microenvironment. Resolvins, with their unique stereochemical structure, receptors, and biosynthetic pathways, provide a novel therapeutical approach to activating resolution mechanisms during cancer progression.
Collapse
Affiliation(s)
- Muhammad Usman Babar
- Department of Pathology, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ala F. Nassar
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Xinxin Nie
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Jianwei He
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Jacky Yeung
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Paul Norris
- Sciex, 500 Old Connecticut Path, Framingham, MA 01701, USA
| | - Hideki Ogura
- Department of Microbiology, Hyogo Medical University, Kobe 678-1297, Japan
| | - Anne Muldoon
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Lieping Chen
- Department of Immunobiology, Yale University, West Haven, CT 06520, USA
| | - Stephania Libreros
- Department of Pathology, Yale University, New Haven, CT 06520, USA
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
12
|
Djuricic I, Calder PC. Omega-3 ( n-3) Fatty Acid-Statin Interaction: Evidence for a Novel Therapeutic Strategy for Atherosclerotic Cardiovascular Disease. Nutrients 2024; 16:962. [PMID: 38612996 PMCID: PMC11013773 DOI: 10.3390/nu16070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Managing atherosclerotic cardiovascular disease (ASCVD) often involves a combination of lifestyle modifications and medications aiming to decrease the risk of cardiovascular outcomes, such as myocardial infarction and stroke. The aim of this article is to discuss possible omega-3 (n-3) fatty acid-statin interactions in the prevention and treatment of ASCVD and to provide evidence to consider for clinical practice, highlighting novel insights in this field. Statins and n-3 fatty acids (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) are commonly used to control cardiovascular risk factors in order to treat ASCVD. Statins are an important lipid-lowering therapy, primarily targeting low-density lipoprotein cholesterol (LDL-C) levels, while n-3 fatty acids address triglyceride (TG) concentrations. Both statins and n-3 fatty acids have pleiotropic actions which overlap, including improving endothelial function, modulation of inflammation, and stabilizing atherosclerotic plaques. Thus, both statins and n-3 fatty acids potentially mitigate the residual cardiovascular risk that remains beyond lipid lowering, such as persistent inflammation. EPA and DHA are both substrates for the synthesis of so-called specialized pro-resolving mediators (SPMs), a relatively recently recognized feature of their ability to combat inflammation. Interestingly, statins seem to have the ability to promote the production of some SPMs, suggesting a largely unrecognized interaction between statins and n-3 fatty acids with relevance to the control of inflammation. Although n-3 fatty acids are the major substrates for the production of SPMs, these signaling molecules may have additional therapeutic benefits beyond those provided by the precursor n-3 fatty acids themselves. In this article, we discuss the accumulating evidence that supports SPMs as a novel therapeutic tool and the possible statin-n-3 fatty acid interactions relevant to the prevention and treatment of ASCVD.
Collapse
Affiliation(s)
- Ivana Djuricic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia;
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
13
|
Wei C, Zhang J, Peng S, Liu J, Xu Y, Zhao M, Xu S, Pan W, Yin Z, Zheng Z, Qin JJ, Wan J, Wang M. Resolvin D1 attenuates Ang II-induced hypertension in mice by inhibiting the proliferation, migration and phenotypic transformation of vascular smooth muscle cells by blocking the RhoA/mitogen-activated protein kinase pathway. J Hypertens 2024; 42:420-431. [PMID: 37937508 PMCID: PMC10842678 DOI: 10.1097/hjh.0000000000003610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
The proliferation, migration and phenotypic transformation of vascular smooth muscle cells contribute to vascular remodeling and hypertension. Resolvin D1 (RvD1) is a specialized pro-resolving lipid mediator that has been shown to have anti-inflammatory effects and can protect against different cardiovascular diseases. However, the role and mechanism of RvD1 in hypertension are not clear. The current study investigated the role of RvD1 in Ang II-induced hypertensive mice and Ang II-stimulated rat vascular smooth muscle cells. The results showed that RvD1 treatment significantly attenuated hypertension and vascular remodeling, as indicated by decreases in blood pressure, aortic media thickness and collagen deposition. In addition, RvD1 inhibited the proliferation, migration and phenotypic transformation of vascular smooth muscle cells (VSMCs) in vivo and in vitro . Notably, the protective effects of RvD1 were mediated by the Ras homolog gene family member A (RhoA)/mitogen-activated protein kinase (MAPK) signaling pathway. In conclusion, our findings demonstrated the potential benefits of RvD1 as a promising therapeutic agent in the treatment of vascular remodeling and hypertension.
Collapse
Affiliation(s)
- Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Shanshan Peng
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Juan-Juan Qin
- Department of Geriatrics, Zhongnan Hospital of Wuhan University
- Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, PR China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University
- Cardiovascular Research Institute, Wuhan University
- Hubei Key Laboratory of Cardiology
| |
Collapse
|
14
|
McGowan NG, Zhong JH, Trasande L, Hellmann J, Heffron SP. A randomized, placebo-controlled crossover trial to assess the influence of body weight on aspirin-triggered specialized pro-resolving mediators: Protocol for the DISCOVER Study. INTERNATIONAL JOURNAL OF CLINICAL TRIALS 2024; 11:53-60. [PMID: 38585621 PMCID: PMC10997378 DOI: 10.18203/2349-3259.ijct20240043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Background Low-dose aspirin is ineffective for primary prevention of cardiovascular events in people with body weight greater than 70kg. While the prevalent explanation for this is reduced platelet cyclooxygenase-1 (COX-1) inhibition at higher body weights, supporting data are limited, thereby demanding further investigation of the reason(s) underlying this observation. We propose that aspirin-mediated cyclooxygenase-2 (COX-2) acetylation and the resulting synthesis of 15-epi-lipoxin A4, a specialized pro-resolving mediator, is suboptimal in higher weight individuals, which may contribute to the clinical trial findings. Methods To test this hypothesis, we are conducting a double-blind, placebo-controlled, randomized, mechanistic crossover trial. Healthy men and women exhibiting a wide range of body weights take 81mg aspirin and 325mg aspirin for 3 weeks each, following 3-week placebo run-in and wash-out phases. Our target sample size is 90 subjects, with a minimum of 72 completing all visits estimated to be necessary to achieve power adequate to test our primary hypothesis. Results Our primary endpoint is the difference in change in plasma 15-epi-lipoxin A4 occurring with each dose of aspirin. Secondary endpoints include lipid mediator profiles, serum bioactive lipid profiles, and other endpoints involved in the resolution of vascular inflammation. Conclusions Study enrollment began in November 2021 and is ongoing. The results of this study will improve our understanding of the mechanisms underlying aspirin's role(s) in the prevention of adverse cardiovascular outcomes. They may also lead to additional studies with the potential to inform dosing strategies for patients based on body weight.
Collapse
Affiliation(s)
- Natalie G McGowan
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, 550 1 Ave, New York, NY 10016 USA
- NYU Center for the Prevention of Cardiovascular Disease, NYU Grossman School of Medicine, 550 1 Ave, New York, NY 10016 USA
| | - Judy H Zhong
- Department of Population Health, NYU Grossman School of Medicine, 550 1 Ave, New York, NY 10016 USA
| | - Leonardo Trasande
- Department of Population Health, NYU Grossman School of Medicine, 550 1 Ave, New York, NY 10016 USA
- Department of Pediatrics, NYU Grossman School of Medicine, 550 1 Ave, New York, NY 10016 USA
- Department of Environmental Medicine, NYU Grossman School of Medicine, 550 1 Ave, New York, NY 10016 USA
| | - Jason Hellmann
- Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, Division of Environmental Medicine, University of Louisville School of Medicine, 500 S Preston St, Louisville, KY 40202 USA
| | - Sean P Heffron
- Leon H. Charney Division of Cardiology, NYU Grossman School of Medicine, 550 1 Ave, New York, NY 10016 USA
- NYU Center for the Prevention of Cardiovascular Disease, NYU Grossman School of Medicine, 550 1 Ave, New York, NY 10016 USA
| |
Collapse
|
15
|
Molaie M, Lotfi R, Heidari Moghadam R, Rezaiemanesh A, Karaji AG, Salari F. Imbalanced serum levels of resolvin E1 (RvE1) and leukotriene B4 (LTB4) may contribute to the pathogenesis of atherosclerosis. Prostaglandins Other Lipid Mediat 2023; 169:106781. [PMID: 37704124 DOI: 10.1016/j.prostaglandins.2023.106781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/06/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Persistent and chronic unresolved inflammation exerts a critical role in developing atherosclerosis; however, mechanisms that prevent the resolution of inflammation in atherosclerosis are poorly delineated. This study aims to evaluate the serum levels of inflammatory high-sensitivity C-reactive protein (hsCRP), pro-inflammatory leukotriene B4 (LTB4), besides anti-inflammatory compounds, including eicosapentaenoic acid (EPA) and its derivative resolvin E1 (RvE1) in patients with atherosclerosis. Thirty-four atherosclerosis patients and thirty-two age- and sex-matched healthy individuals were included in this study. The serum levels of hsCRP, LTB4, EPA, and RvE1 were measured using the enzyme-linked immunosorbent assay (ELISA) technique. Our results showed that the hsCRP serum levels in the three-vessel disease (3VD) subgroup of patients are significantly lower than those in the mild and single-vessel disease (SVD) subgroups (P < 0.05). Besides, the serum levels of LTB4 were meaningfully greater in patients with atherosclerosis compared to healthy controls (P < 0.05). Also, the serum EPA and RvE1 levels were significantly higher in patients than in controls (P < 0.01 and P < 0.05, respectively). However, the ratio of RvE1 to LTB4 (RvE1:LTB4) in patients was significantly reduced to that in controls (P < 0.0001). These findings illustrate that imbalanced pro-resolving RvE1 and pro-inflammatory LTB4 might contribute to failing vascular inflammation resolution and subsequent progression toward chronic inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Mohsen Molaie
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran
| | - Ramin Lotfi
- Clinical Research Development Center, Tohid Hospital, Kurdistan University of Medical Sciences, Sanandaj, Islamic Republic of Iran; Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Islamic Republic of Iran
| | - Reza Heidari Moghadam
- Cardiovascular Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran.
| |
Collapse
|
16
|
Zhao M, Zheng Z, Yin Z, Zhang J, Qin J, Wan J, Wang M. Resolvin D2 and its receptor GPR18 in cardiovascular and metabolic diseases: A promising biomarker and therapeutic target. Pharmacol Res 2023; 195:106832. [PMID: 37364787 DOI: 10.1016/j.phrs.2023.106832] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/18/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
Accumulating evidence suggests that inflammation plays an important role in the pathophysiology of the initiation and progression of cardiovascular and metabolic diseases (CVMDs). Anti-inflammation strategies and those that promote inflammation resolution have gradually become potential therapeutic approaches for CVMDs. Resolvin D2 (RvD2), a specialized pro-resolving mediator, exerts anti-inflammatory and pro-resolution effects through its receptor GPR18, a G protein-coupled receptor. Recently, the RvD2/GPR18 axis has received more attention due to its protective role in CVMDs, including atherosclerosis, hypertension, ischaemiareperfusion, and diabetes. Here, we introduce basic information about RvD2 and GPR18, summarize their roles in different immune cells, and review the therapeutic potential of the RvD2/GPR18 axis in CVMDs. In summary, RvD2 and its receptor GPR18 play an important role in the occurrence and development of CVMDs and are potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Juanjuan Qin
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan 430060, China; Center for Healthy Aging, Wuhan University School of Nursing, Wuhan 430060, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
17
|
Serna MF, Mosquera Escudero M, García-Perdomo HA. Lipoxins and their relationship with inflammation-associated diseases. A systematic review. Obes Res Clin Pract 2023; 17:298-307. [PMID: 37316341 DOI: 10.1016/j.orcp.2023.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
AIM To determine the relationship of lipoxin levels with inflammation and disease development in adults and children. METHODS We conducted a systematic review. The search strategy included Medline, Ovid, EMBASE, LILACS, The Cochrane Central Register of Controlled Trials, and Open Gray. We included Clinical trials, cohort studies, case-control studies, and cross-sectional studies. Animal experiments were excluded. RESULTS We included fourteen studies in this review, nine consistently showing decreased lipoxin levels and anti-inflammatory markers or increased pro-inflammatory markers in cardiovascular disease, metabolic syndrome, Alzheimer's disease, periodontitis, or autism. Five studies showed increased lipoxin levels and pro-inflammatory markers in pre-eclampsia, asthma, and coronary disease. On the other hand, one showed increased lipoxin levels and decreased pro-inflammatory marker levels. CONCLUSIONS Decreases in lipoxins are associated with developing pathologies such as cardiovascular and neurological diseases, indicating that lipoxins protect against these pathologies. However, in other pathologies, such as asthma, pre-eclampsia, and periodontitis, which are associated with chronic inflammation despite increased levels of LXA4, the increase in inflammation suggests a possible failure of this regulatory pathway. Therefore, further studies are necessary to evaluate the role of LXA4 in the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Maria Fernanda Serna
- Nutrition Group. School of Basic Sciences. Universidad del Valle, Cali, Colombia
| | | | - Herney Andrés García-Perdomo
- Nutrition Group. School of Basic Sciences. Universidad del Valle, Cali, Colombia; Division of Urology/Urooncology. Department of Surgery. School of Medicine. Universidad del Valle, Cali, Colombia.
| |
Collapse
|
18
|
Thatcher TH, Freeberg MAT, Myo YPA, Sime PJ. Is there a role for specialized pro-resolving mediators in pulmonary fibrosis? Pharmacol Ther 2023; 247:108460. [PMID: 37244406 PMCID: PMC10335230 DOI: 10.1016/j.pharmthera.2023.108460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Pulmonary fibrotic diseases are characterized by proliferation of lung fibroblasts and myofibroblasts and excessive deposition of extracellular matrix proteins. Depending on the specific form of lung fibrosis, there can be progressive scarring of the lung, leading in some cases to respiratory failure and/or death. Recent and ongoing research has demonstrated that resolution of inflammation is an active process regulated by families of small bioactive lipid mediators termed "specialized pro-resolving mediators." While there are many reports of beneficial effects of SPMs in animal and cell culture models of acute and chronic inflammatory and immune diseases, there have been fewer reports investigating SPMs and fibrosis, especially pulmonary fibrosis. Here, we will review evidence that resolution pathways are impaired in interstitial lung disease, and that SPMs and other similar bioactive lipid mediators can inhibit fibroblast proliferation, myofibroblast differentiation, and accumulation of excess extracellular matrix in cell culture and animal models of pulmonary fibrosis, and we will consider future therapeutic implications of SPMs in fibrosis.
Collapse
Affiliation(s)
- Thomas H Thatcher
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Margaret A T Freeberg
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yu Par Aung Myo
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Patricia J Sime
- Division of Pulmonary Care and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
19
|
Bäck M. Icosapent ethyl in cardiovascular prevention: Resolution of inflammation through the eicosapentaenoic acid - resolvin E1 - ChemR23 axis. Pharmacol Ther 2023:108439. [PMID: 37201735 DOI: 10.1016/j.pharmthera.2023.108439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Cardiovascular outcome trials on omega-3 fatty acids have generated contradictory results but indicate a dose-dependent beneficial effect of eicosapentaenoic acid (EPA). Beneficial cardiovascular effects of EPA may in addition to triglyceride lowering be mediated through alternative mechanisms of action. In this review, the link between EPA and a resolution of atherosclerotic inflammation is addressed. EPA is a substrate for the enzymatic metabolism into the lipid mediator resolvin E1 (RvE1), which activates the receptor ChemR23 to transduce an active resolution of inflammation. This has been shown to dampen the immune response and provide atheroprotective responses in different models. The intermediate EPA metabolite 18-HEPE emerges as a biomarker of EPA metabolism towards proresolving mediators in observational studies. Genetic variations within the EPA-RvE1-ChemR23 axis affecting the response to EPA may open up for precision medicine to identify responders and non-responders to EPA and fish oil supplementation. In conclusion, activation of the EPA-RvE1-ChemR23 axis towards a resolution of inflammation may contribute to beneficial effects in cardiovascular prevention.
Collapse
Affiliation(s)
- Magnus Bäck
- Department of Cardiology, Heart and Vascular Center, Karolinska University Hospital, Stockholm, Sweden; Translational Cardiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Université de Lorraine, Inserm, DCAC, Nancy, France; CHRU Nancy, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
20
|
Stotts C, Corrales-Medina VF, Rayner KJ. Pneumonia-Induced Inflammation, Resolution and Cardiovascular Disease: Causes, Consequences and Clinical Opportunities. Circ Res 2023; 132:751-774. [PMID: 36927184 DOI: 10.1161/circresaha.122.321636] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Pneumonia is inflammation in the lungs, which is usually caused by an infection. The symptoms of pneumonia can vary from mild to life-threatening, where severe illness is often observed in vulnerable populations like children, older adults, and those with preexisting health conditions. Vaccines have greatly reduced the burden of some of the most common causes of pneumonia, and the use of antimicrobials has greatly improved the survival to this infection. However, pneumonia survivors do not return to their preinfection health trajectories but instead experience an accelerated health decline with an increased risk of cardiovascular disease. The mechanisms of this association are not well understood, but a persistent dysregulated inflammatory response post-pneumonia appears to play a central role. It is proposed that the inflammatory response during pneumonia is left unregulated and exacerbates atherosclerotic vascular disease, which ultimately leads to adverse cardiac events such as myocardial infarction. For this reason, there is a need to better understand the inflammatory cross talk between the lungs and the heart during and after pneumonia to develop therapeutics that focus on preventing pneumonia-associated cardiovascular events. This review will provide an overview of the known mechanisms of inflammation triggered during pneumonia and their relevance to the increased cardiovascular risk that follows this infection. We will also discuss opportunities for new clinical approaches leveraging strategies to promote inflammatory resolution pathways as a novel therapeutic target to reduce the risk of cardiac events post-pneumonia.
Collapse
Affiliation(s)
- Cameron Stotts
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., K.J.R).,Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., V.F.C.-M.).,University of Ottawa Heart Institute, Ottawa, ON, Canada (C.S., K.J.R)
| | - Vicente F Corrales-Medina
- Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., V.F.C.-M.).,Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (V.F.C-M).,Ottawa Hospital Research Institute, Ottawa, ON, Canada (V.F.C.-M)
| | - Katey J Rayner
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., K.J.R).,University of Ottawa Heart Institute, Ottawa, ON, Canada (C.S., K.J.R)
| |
Collapse
|
21
|
Wang J, Chen G, Liao Q, Lyu W, Liu A, Zhu L, Du Y, Ye RD. Cryo-EM structure of the human chemerin receptor 1-Gi protein complex bound to the C-terminal nonapeptide of chemerin. Proc Natl Acad Sci U S A 2023; 120:e2214324120. [PMID: 36881626 PMCID: PMC10089180 DOI: 10.1073/pnas.2214324120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/27/2023] [Indexed: 03/08/2023] Open
Abstract
Chemerin is a processed protein that acts on G protein-coupled receptors (GPCRs) for its chemotactic and adipokine activities. The biologically active chemerin (chemerin 21-157) results from proteolytic cleavage of prochemerin and uses its C-terminal peptide containing the sequence YFPGQFAFS for receptor activation. Here we report a high-resolution cryo-electron microscopy (cryo-EM) structure of human chemerin receptor 1 (CMKLR1) bound to the C-terminal nonapeptide of chemokine (C9) in complex with Gi proteins. C9 inserts its C terminus into the binding pocket and is stabilized through hydrophobic interactions involving its Y1, F2, F6, and F8, as well as polar interactions between G4, S9, and several amino acids lining the binding pocket of CMKLR1. Microsecond scale molecular dynamics simulations support a balanced force distribution across the whole ligand-receptor interface that enhances thermodynamic stability of the captured binding pose of C9. The C9 interaction with CMKLR1 is drastically different from chemokine recognition by chemokine receptors, which follow a two-site two-step model. In contrast, C9 takes an "S"-shaped pose in the binding pocket of CMKLR1 much like angiotensin II in the AT1 receptor. Our mutagenesis and functional analyses confirmed the cryo-EM structure and key residues in the binding pocket for these interactions. Our findings provide a structural basis for chemerin recognition by CMKLR1 for the established chemotactic and adipokine activities.
Collapse
Affiliation(s)
- Junlin Wang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
| | - Qiwen Liao
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
| | - Wenping Lyu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
| | - Aijun Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong518055, P.R. China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
| | - Richard D. Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong518172, P.R. China
| |
Collapse
|
22
|
Yasmeen N, Selvaraj H, Lakhawat SS, Datta M, Sharma PK, Jain A, Khanna R, Srinivasan J, Kumar V. Possibility of averting cytokine storm in SARS-COV 2 patients using specialized pro-resolving lipid mediators. Biochem Pharmacol 2023; 209:115437. [PMID: 36731803 PMCID: PMC9884647 DOI: 10.1016/j.bcp.2023.115437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Fatal "cytokine storms (CS)" observed in critically ill COVID-19 patients are consequences of dysregulated host immune system and over-exuberant inflammatory response. Acute respiratory distress syndrome (ARDS), multi-system organ failure, and eventual death are distinctive symptoms, attributed to higher morbidity and mortality rates among these patients. Consequent efforts to save critical COVID-19 patients via the usage of several novel therapeutic options are put in force. Strategically, drugs being used in such patients are dexamethasone, remdesivir, hydroxychloroquine, etc. along with the approved vaccines. Moreover, it is certain that activation of the resolution process is important for the prevention of chronic diseases. Until recently Inflammation resolution was considered a passive process, rather it's an active biochemical process that can be achieved by the use of specialized pro-resolving mediators (SPMs). These endogenous mediators are an array of atypical lipid metabolites that include Resolvins, lipoxins, maresins, protectins, considered as immunoresolvents, but their role in COVID-19 is ambiguous. Recent evidence from studies such as the randomized clinical trial, in which omega 3 fatty acid was used as supplement to resolve inflammation in COVID-19, suggests that direct supplementation of SPMs or the use of synthetic SPM mimetics (which are still being explored) could enhance the process of resolution by regulating the aberrant inflammatory process and can be useful in pain relief and tissue remodeling. Here we discussed the biosynthesis of SPMs, & their mechanistic pathways contributing to inflammation resolution along with sequence of events leading to CS in COVID-19, with a focus on therapeutic potential of SPMs.
Collapse
Affiliation(s)
- Nusrath Yasmeen
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Harikrishnan Selvaraj
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Sudarshan S Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Manali Datta
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Pushpender K Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India
| | - Rakhi Khanna
- Rajasthan State Regional Forensic Science Laboratory, Kota, Rajasthan, India
| | | | - Vikram Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan, India.
| |
Collapse
|
23
|
Classes of Lipid Mediators and Their Effects on Vascular Inflammation in Atherosclerosis. Int J Mol Sci 2023; 24:ijms24021637. [PMID: 36675152 PMCID: PMC9863938 DOI: 10.3390/ijms24021637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/18/2023] Open
Abstract
It is commonly believed that the inactivation of inflammation is mainly due to the decay or cessation of inducers. In reality, in connection with the development of atherosclerosis, spontaneous decay of inducers is not observed. It is now known that lipid mediators originating from polyunsaturated fatty acids (PUFAs), which are important constituents of all cell membranes, can act in the inflamed tissue and bring it to resolution. In fact, PUFAs, such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are precursors to both pro-inflammatory and anti-inflammatory compounds. In this review, we describe the lipid mediators of vascular inflammation and resolution, and their biochemical activity. In addition, we highlight data from the literature that often show a worsening of atherosclerotic disease in subjects deficient in lipid mediators of inflammation resolution, and we also report on the anti-proteasic and anti-thrombotic properties of these same lipid mediators. It should be noted that despite promising data observed in both animal and in vitro studies, contradictory clinical results have been observed for omega-3 PUFAs. Many further studies will be required in order to clarify the observed conflicts, although lifestyle habits such as smoking or other biochemical factors may often influence the normal synthesis of lipid mediators of inflammation resolution.
Collapse
|
24
|
Wang W, Liang M, Wang L, Bei W, Rong X, Xu J, Guo J. Role of prostaglandin E2 in macrophage polarization: Insights into atherosclerosis. Biochem Pharmacol 2023; 207:115357. [PMID: 36455672 DOI: 10.1016/j.bcp.2022.115357] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Atherosclerosis, a trigger of cardiovascular disease, poses grave threats to human health. Although atherosclerosis depends on lipid accumulation and vascular wall inflammation, abnormal phenotypic regulation of macrophages is considered the pathological basis of atherosclerosis. Macrophage polarization mainly refers to the transformation of macrophages into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, which has recently become a much-discussed topic. Increasing evidence has shown that M2 macrophage polarization can alleviate atherosclerosis progression. PGE2 is a bioactive lipid that has been observed to be elevated in atherosclerosis and to play a pro-inflammatory role, yet recent studies have reported that PGE2 promotes anti-inflammatory M2 macrophage polarization and mitigates atherosclerosis progression. However, the mechanisms by which PGE2 acts remain unclear. This review summarizes current knowledge of PGE2 and macrophages in atherosclerosis. Additionally, we discuss potential PGE2 mechanisms of macrophage polarization, including CREB, NF-κB, and STAT signaling pathways, which may provide important therapeutic strategies based on targeting PGE2 pathways to modulate macrophage polarization for atherosclerosis treatment.
Collapse
Affiliation(s)
- Weixuan Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Mingjie Liang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Weijian Bei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China
| | - Jianqin Xu
- Department of Endocrinology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi Province, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, Guangdong Province, China.
| |
Collapse
|
25
|
Spite M, Fredman G. Insights into the role of the resolvin D2-GPR18 signaling axis in cardiovascular physiology and disease. ADVANCES IN PHARMACOLOGY 2023; 97:257-281. [DOI: 10.1016/bs.apha.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Chen R, Li J, Zhou J, Wang Y, Zhao X, Li N, Liu W, Liu C, Zhou P, Chen Y, Yan S, Song L, Yan H, Zhao H. Prognostic impacts of Lipoxin A4 in patients with acute myocardial infarction: A prospective cohort study. Pharmacol Res 2023; 187:106618. [PMID: 36549409 DOI: 10.1016/j.phrs.2022.106618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Lipoxin A4 (LXA4) is one of the specialized pro-resolving lipid mediators proved to suppress the progression of atherosclerosis in vivo, but its clinical impacts in atherosclerotic patients is unclear. In this study, we assessed the prognostic impacts of LXA4 in patients with acute myocardial infarction (AMI). A total of 1569 consecutive AMI patients were prospectively recruited from March 2017 to January 2020. Plasma samples of AMI patients were collected, and LXA4 levels were determined using enzyme-linked immunosorbent assay. The primary outcome was major adverse cardiovascular event (MACE), a composite of all-cause death, recurrent MI, ischemic stroke, or ischemia-driven revascularization. Cox regression was used to assess associations between LXA4 and clinical outcomes. Overall, the median level of LXA4 was 5.637 (3.047-9.014) ng/mL for AMI patients. During a median follow-up of 786 (726-1108) days, high LXA4 (≥ 5.637 ng/mL) was associated with lower risk of MACE (hazard ratio [HR]: 0.73, 95% confidence interval [CI]: 0.60-0.89, P = 0.002), which was sustained in propensity score matching (HR: 0.73, 95% CI: 0.60-0.90, P = 0.004) and inverse probability weighting analysis (HR: 0.74, 95% CI: 0.61-0.90, P = 0.002). Combined with pro-inflammatory biomarker, patients with high levels of LXA4 (≥ 5.637 ng/mL) but low levels of high-sensitivity C-reactive protein (< 5.7 mg/L) acquired the lowest risk of MACE (HR: 0.68, 95% CI: 0.51-0.92, P = 0.012). In sum, high levels of LXA4 were associated with lower risk of recurrent ischemic events for AMI patients, which could serve as new therapeutic target to tackle cardiovascular inflammation.
Collapse
Affiliation(s)
- Runzhen Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China; Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiannan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jinying Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxiao Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Weida Liu
- Medical Research Center, Peking Union Medical College Hospital, Beijing, China
| | - Chen Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Shaodi Yan
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Li Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China; Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongbing Yan
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China; Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Hanjun Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
27
|
Díaz Del Campo LS, García-Redondo AB, Rodríguez C, Zaragoza C, Duro-Sánchez S, Palmas F, de Benito-Bueno A, Socuéllamos PG, Peraza DA, Rodrigues-Díez R, Valenzuela C, Dalli J, Salaices M, Briones AM. Resolvin D2 Attenuates Cardiovascular Damage in Angiotensin II-Induced Hypertension. Hypertension 2023; 80:84-96. [PMID: 36337053 DOI: 10.1161/hypertensionaha.122.19448] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Resolution of inflammation is orchestrated by specialized proresolving lipid mediators (SPMs), and this would be impaired in some cardiovascular diseases. Among SPMs, resolvins (Rv) have beneficial effects in cardiovascular pathologies, but little is known about their effect on cardiovascular damage in hypertension. METHODS Aorta, small mesenteric arteries, heart, and peritoneal macrophages were taken from C57BL/6J mice, infused or not with angiotensin II (AngII; 1.44 mg/kg/day, 14 days) in presence or absence of resolvin D2 (RvD2) (100 ng/mice, every second day) starting 1 day before or 7 days after AngII infusion. RESULTS Enzymes and receptors involved in SPMs biosynthesis and signaling were increased in aorta or heart from AngII-infused mice. We also observed a differential regulation of SPMs in heart from these mice. Preventive treatment with RvD2 partially avoided AngII-induced hypertension and protected the heart and large and small vessels against functional and structural alterations induced by AngII. RvD2 increased the availability of vasoprotective factors, modified SPMs profile, decreased cardiovascular fibrosis, and increased the infiltration of pro-resolving macrophages. When administered in hypertensive animals with established cardiovascular damage, RvD2 partially improved cardiovascular function and structure, decreased fibrosis, reduced the infiltration of neutrophils, and shifted macrophage phenotype toward a pro-resolving phenotype. CONCLUSIONS There is a disbalance between proinflammatory and resolution mediators in hypertension. RvD2 protects cardiovascular function and structure when administered before and after the development of hypertension by modulating vascular factors, fibrosis and inflammation. Activating resolution mechanisms by treatment with RvD2 may represent a novel therapeutic strategy for the treatment of hypertensive cardiovascular disease.
Collapse
Affiliation(s)
- Lucia S Díaz Del Campo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (L.S.D.d.C., A.B.G.-R., S.D.-S, R.R.-D., M.S., A.M.B.)
| | - Ana B García-Redondo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (L.S.D.d.C., A.B.G.-R., S.D.-S, R.R.-D., M.S., A.M.B.).,Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (A.B.G.-R.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain (A.B.G.-R., R.R.-D, M.S., A.M.B.).,CIBER Cardiovascular, Spain (A.B.G.-R., C.R., C.Z., R.R.-D., C.V., M.S., A.M.B.)
| | - Cristina Rodríguez
- CIBER Cardiovascular, Spain (A.B.G.-R., C.R., C.Z., R.R.-D., C.V., M.S., A.M.B.).,Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain (C.R.)
| | - Carlos Zaragoza
- CIBER Cardiovascular, Spain (A.B.G.-R., C.R., C.Z., R.R.-D., C.V., M.S., A.M.B.).,Unidad de Investigación Cardiovascular, Departamento de Cardiología, Hospital Ramón y Cajal (IRYCIS), Universidad Francisco de Vitoria, Madrid, Spain (C.Z.)
| | - Santiago Duro-Sánchez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (L.S.D.d.C., A.B.G.-R., S.D.-S, R.R.-D., M.S., A.M.B.)
| | - Francesco Palmas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom (F.P., J.D.)
| | - Angela de Benito-Bueno
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom (J.D.)
| | - Paula G Socuéllamos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain (A.d.B.-B., P.G.S., D.A.P., C.V.)
| | - Diego A Peraza
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain (A.d.B.-B., P.G.S., D.A.P., C.V.)
| | - Raquel Rodrigues-Díez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (L.S.D.d.C., A.B.G.-R., S.D.-S, R.R.-D., M.S., A.M.B.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain (A.B.G.-R., R.R.-D, M.S., A.M.B.).,CIBER Cardiovascular, Spain (A.B.G.-R., C.R., C.Z., R.R.-D., C.V., M.S., A.M.B.)
| | - Carmen Valenzuela
- CIBER Cardiovascular, Spain (A.B.G.-R., C.R., C.Z., R.R.-D., C.V., M.S., A.M.B.).,Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain (A.d.B.-B., P.G.S., D.A.P., C.V.)
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom (F.P., J.D.).,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom (J.D.)
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (L.S.D.d.C., A.B.G.-R., S.D.-S, R.R.-D., M.S., A.M.B.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain (A.B.G.-R., R.R.-D, M.S., A.M.B.).,CIBER Cardiovascular, Spain (A.B.G.-R., C.R., C.Z., R.R.-D., C.V., M.S., A.M.B.)
| | - Ana M Briones
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain (L.S.D.d.C., A.B.G.-R., S.D.-S, R.R.-D., M.S., A.M.B.).,Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain (A.B.G.-R., R.R.-D, M.S., A.M.B.).,CIBER Cardiovascular, Spain (A.B.G.-R., C.R., C.Z., R.R.-D., C.V., M.S., A.M.B.)
| |
Collapse
|
28
|
Liu C, Fan D, Lei Q, Lu A, He X. Roles of Resolvins in Chronic Inflammatory Response. Int J Mol Sci 2022; 23:ijms232314883. [PMID: 36499209 PMCID: PMC9738788 DOI: 10.3390/ijms232314883] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
An inflammatory response is beneficial to the organism, while an excessive uncontrolled inflammatory response can lead to the nonspecific killing of tissue cells. Therefore, promoting the resolution of inflammation is an important mechanism for protecting an organism suffering from chronic inflammatory diseases. Resolvins are a series of endogenous lipid mediums and have the functions of inhibiting a leukocyte infiltration, increasing macrophagocyte phagocytosis, regulating cytokines, and alleviating inflammatory pain. By promoting the inflammation resolution, resolvins play an irreplaceable role throughout the pathological process of some joint inflammation, neuroinflammation, vascular inflammation, and tissue inflammation. Although a large number of experiments have been conducted to study different subtypes of resolvins in different directions, the differences in the action targets between the different subtypes are rarely compared. Hence, this paper reviews the generation of resolvins, the characteristics of resolvins, and the actions of resolvins under a chronic inflammatory response and clinical translation of resolvins for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Chang Liu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Dancai Fan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qian Lei
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai 200052, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510120, China
- Correspondence: (A.L.); (X.H.)
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: (A.L.); (X.H.)
| |
Collapse
|
29
|
Heffron SP, Windheim J, Barrett TJ, Voora D, Berger JS. Platelet inhibition by low-dose aspirin is not influenced by body mass or weight. Platelets 2022; 33:1208-1213. [PMID: 35768902 PMCID: PMC9976777 DOI: 10.1080/09537104.2022.2087868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023]
Abstract
Aspirin's clinical efficacy may be influenced by body weight and mass. Although inadequate platelet inhibition by aspirin is suggested as responsible, evidence for this in non-diabetic patients is sparse. We investigated the influence of body weight and mass on aspirin's inhibition of platelet aggregation in healthy adults without diabetes. Cohort one (NYU, n = 84) had light transmission aggregometry (LTA) of platelet-rich plasma to submaximal adenosine diphosphate (ADP) and arachidonic acid (AA) before and following 1 week of daily 81 mg non-enteric coated aspirin. Subjects in the validation cohort (Duke, n = 66) were randomized to 81 mg or 325 mg non-enteric coated aspirin for 4 weeks, immediately followed by 4 weeks of the other dose, with LTA to submaximal collagen, ADP, and AA before and after each dosage period. Body mass index (BMI) range was 18.0-57.5 kg/m2 and 25% were obese. Inhibition of platelet aggregation was similar irrespective of BMI, body weight and aspirin dose. There was no correlation between platelet aggregation before or after aspirin with BMI or body weight. Our data demonstrate that aspirin produces potent inhibition of direct and indirect COX1-mediated platelet aggregation in healthy adults without diabetes regardless of body weight or mass - suggesting that other mechanisms explain lower preventive efficacy of low-dose aspirin with increasing body weight/mass.
Collapse
Affiliation(s)
- Sean P. Heffron
- NYU Grossman School of Medicine, Leon H. Charney Division of Cardiology, New York, NY
- NYU Grossman School of Medicine, NYU Center for the Prevention of Cardiovascular Disease, New York, NY
| | - Joseph Windheim
- NYU Grossman School of Medicine, Leon H. Charney Division of Cardiology, New York, NY
| | - Tessa J. Barrett
- NYU Grossman School of Medicine, Leon H. Charney Division of Cardiology, New York, NY
| | - Deepak Voora
- Duke Center for Applied Genomics & Precision Medicine, Department of Medicine, Durham, NC
| | - Jeffrey S. Berger
- NYU Grossman School of Medicine, Leon H. Charney Division of Cardiology, New York, NY
- NYU Grossman School of Medicine, NYU Center for the Prevention of Cardiovascular Disease, New York, NY
- NYU Grossman School of Medicine, Department of Surgery, New York, NY
| |
Collapse
|
30
|
Cofer LB, Barrett TJ, Berger JS. Aspirin for the Primary Prevention of Cardiovascular Disease: Time for a Platelet-Guided Approach. Arterioscler Thromb Vasc Biol 2022; 42:1207-1216. [PMID: 36047408 PMCID: PMC9484763 DOI: 10.1161/atvbaha.122.318020] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
Aspirin protects against atherothrombosis while increasing the risk of major bleeding. Although it is widely used to prevent cardiovascular disease (CVD), its benefit does not outweigh its risk for primary CVD prevention in large population settings. The recent United States Preventive Services Task Force guidelines on aspirin use to prevent CVD reflect this clinical tradeoff as well as the persistent struggle to define a population that would benefit from prophylactic aspirin therapy. Past clinical trials of primary CVD prevention with aspirin have not included consideration of a biomarker relevant to aspirin's mechanism of action, platelet inhibition. This approach is at odds with the paradigm used in other key areas of pharmacological CVD prevention, including antihypertensive and statin therapy, which combine cardiovascular risk assessment with the measurement of mechanistic biomarkers (eg, blood pressure and LDL [low-density lipoprotein]-cholesterol). Reliable methods for quantifying platelet activity, including light transmission aggregometry and platelet transcriptomics, exist and should be considered to identify individuals at elevated cardiovascular risk due to a hyperreactive platelet phenotype. Therefore, we propose a new, platelet-guided approach to the study of prophylactic aspirin therapy. We think that this new approach will reveal a population with hyperreactive platelets who will benefit most from primary CVD prevention with aspirin and usher in a new era of precision-guided antiplatelet therapy.
Collapse
|
31
|
Yamaguchi A, Botta E, Holinstat M. Eicosanoids in inflammation in the blood and the vessel. Front Pharmacol 2022; 13:997403. [PMID: 36238558 PMCID: PMC9551235 DOI: 10.3389/fphar.2022.997403] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/05/2022] [Indexed: 01/14/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are structural components of membrane phospholipids in cells. PUFAs regulate cellular function through the formation of derived lipid mediators termed eicosanoids. The oxygenation of 20-carbon PUFAs via the oxygenases cyclooxygenases, lipoxygenases, or cytochrome P450, generates a class of classical eicosanoids including prostaglandins, thromboxanes and leukotrienes, and also the more recently identified hydroxy-, hydroperoxy-, epoxy- and oxo-eicosanoids, and the specialized pro-resolving (lipid) mediators. These eicosanoids play a critical role in the regulation of inflammation in the blood and the vessel. While arachidonic acid-derived eicosanoids are extensively studied due to their pro-inflammatory effects and therefore involvement in the pathogenesis of inflammatory diseases such as atherosclerosis, diabetes mellitus, hypertension, and the coronavirus disease 2019; in recent years, several eicosanoids have been reported to attenuate exacerbated inflammatory responses and participate in the resolution of inflammation. This review focused on elucidating the biosynthesis and the mechanistic signaling of eicosanoids in inflammation, as well as the pro-inflammatory and anti-inflammatory effects of these eicosanoids in the blood and the vascular wall.
Collapse
Affiliation(s)
- Adriana Yamaguchi
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Eliana Botta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States,Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, United States,*Correspondence: Michael Holinstat,
| |
Collapse
|
32
|
Pamuk F, Kantarci A. Inflammation as a link between periodontal disease and obesity. Periodontol 2000 2022; 90:186-196. [PMID: 35916870 DOI: 10.1111/prd.12457] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nutrition plays a critical role in the homeostatic balance, maintenance of health, and longevity. There is a close link between inflammatory diseases and nutritional health. Obesity is a severe pathological process with grave implications on several organ systems and disease processes, including type 2 diabetes, cardiovascular disease, osteoarthritis, and rheumatoid arthritis. The impact of obesity on periodontal inflammation has not been fully understood; the association between nutritional balance and periodontal inflammation is much less explored. This review is focused on the potential mechanistic links between periodontal diseases and obesity and common inflammatory activity pathways that can be pharmacologically targeted.
Collapse
Affiliation(s)
- Ferda Pamuk
- Forsyth Institute, Cambridge, Massachusetts, USA.,Department of Oral Health Sciences, University of Leuven (KU Leuven), Leuven, Belgium
| | | |
Collapse
|
33
|
Song Y, Wang T, Mu C, Gui W, Deng Y, Ma R. LncRNA SENCR overexpression attenuated the proliferation, migration and phenotypic switching of vascular smooth muscle cells in aortic dissection via the miR-206/myocardin axis. Nutr Metab Cardiovasc Dis 2022; 32:1560-1570. [PMID: 35351345 DOI: 10.1016/j.numecd.2022.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIMS Smooth muscle and endothelial cell-enriched migration/differentiation-associated lncRNA (SENCR) has been reported to be associated with some cardiovascular diseases; however, its function and exact molecular mechanism in aortic dissection (AD) remain undefined. Thus, we investigated the effects of SENCR on AD and its potential mechanisms. METHODS AND RESULTS SENCR expression in aortic media specimens from AD patients was detected by quantitative real-time PCR (qPCR). The roles of SENCR in vascular smooth muscle cell (VMSC) proliferation and migration as well as in the regulation of contractile phenotype genes were studied using CCK-8, wound healing, Transwell, qPCR and Western blot assays. Dual-luciferase reporter assays were performed to identify the regulatory correlation between SENCR, miR-206 and myocardin. Furthermore, mouse AD models were constructed with ApoE-/- mice, and the effect of upregulated SENCR on phenotypic switching in the AD model was detected using hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) assays. SENCR overexpression inhibited VSMC proliferation, migration and synthetic phenotype-related gene expression; decreased miR-206 expression; increased myocardin expression; and suppressed rupture of the aortic media in mice. SENCR knockdown had the opposite effects. Our results further suggested that miR-206 upregulation could reverse the inhibitory roles of SENCR upregulation and that myocardin upregulation could restore the function of SENCR upregulation in VSMCs. Dual-luciferase reporter assays confirmed that SENCR regulated miR-206, which directly targeted myocardin in VSMCs. CONCLUSION SENCR overexpression suppressed VMSC proliferation and migration, maintained the contractile phenotype and suppressed aortic dilatation via the miR-206/myocardin axis.
Collapse
Affiliation(s)
- Yi Song
- Department of Extracorporeal Circulation, Fuwai Yunnan Cardiovascular Hospital, Kunming, 650102, China
| | - Tao Wang
- Department of Cardiothoracic Surgery, The First People's Hospital of Kunming, Kunming, 650034, China
| | - Chunjie Mu
- Department of Cardiovascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming, 650102, China
| | - Wenting Gui
- Department of Cardiovascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming, 650102, China
| | - Yao Deng
- Department of Cardiovascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming, 650102, China
| | - Runwei Ma
- Department of Cardiovascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming, 650102, China.
| |
Collapse
|
34
|
Kotlyarov S, Kotlyarova A. Molecular Pharmacology of Inflammation Resolution in Atherosclerosis. Int J Mol Sci 2022; 23:4808. [PMID: 35563200 PMCID: PMC9104781 DOI: 10.3390/ijms23094808] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Atherosclerosis is one of the most important problems of modern medicine as it is the leading cause of hospitalizations, disability, and mortality. The key role in the development and progression of atherosclerosis is the imbalance between the activation of inflammation in the vascular wall and the mechanisms of its control. The resolution of inflammation is the most important physiological mechanism that is impaired in atherosclerosis. The resolution of inflammation has complex, not fully known mechanisms, in which lipid mediators derived from polyunsaturated fatty acids (PUFAs) play an important role. Specialized pro-resolving mediators (SPMs) represent a group of substances that carry out inflammation resolution and may play an important role in the pathogenesis of atherosclerosis. SPMs include lipoxins, resolvins, maresins, and protectins, which are formed from PUFAs and regulate many processes related to the active resolution of inflammation. Given the physiological importance of these substances, studies examining the possibility of pharmacological effects on inflammation resolution are of interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
35
|
Yurdagul A. Crosstalk Between Macrophages and Vascular Smooth Muscle Cells in Atherosclerotic Plaque Stability. Arterioscler Thromb Vasc Biol 2022; 42:372-380. [PMID: 35172605 PMCID: PMC8957544 DOI: 10.1161/atvbaha.121.316233] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Most acute cardiovascular events are due to plaque rupture, with atheromas containing large necrotic cores and thin fibrous caps being more susceptible to rupture and lesions with small necrotic cores and thick fibrous caps being more protected from rupture. Atherosclerotic plaques are comprised various extracellular matrix proteins, modified lipoprotein particles, and cells of different origins, that is, vascular cells and leukocytes. Although much has been revealed about the mechanisms that lead to plaque instability, several key areas remain incompletely understood. This In-Focus Review highlights processes related to cellular crosstalk and the role of the tissue microenvironment in determining cell function and plaque stability. Recent advances highlight critical underpinnings of atherosclerotic plaque vulnerability, particularly impairments in the ability of macrophages to clear dead cells and phenotypic switching of vascular smooth muscle cells. However, these processes do not occur in isolation, as crosstalk between macrophages and vascular smooth muscle cells and interactions with their surrounding microenvironment play a significant role in determining plaque stability. Understanding these aspects of cellular crosstalk within an atherosclerotic plaque may shed light on how to modify cell behavior and identify novel approaches to transform rupture-prone atheromas into stable lesions.
Collapse
Affiliation(s)
- Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences, Shreveport
| |
Collapse
|
36
|
Specialized Pro-Resolving Lipid Mediators: New Therapeutic Approaches for Vascular Remodeling. Int J Mol Sci 2022; 23:ijms23073592. [PMID: 35408952 PMCID: PMC8998739 DOI: 10.3390/ijms23073592] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
Vascular remodeling is a typical feature of vascular diseases, such as atherosclerosis, aneurysms or restenosis. Excessive inflammation is a key mechanism underlying vascular remodeling via the modulation of vascular fibrosis, phenotype and function. Recent evidence suggests that not only augmented inflammation but unresolved inflammation might also contribute to different aspects of vascular diseases. Resolution of inflammation is mediated by a family of specialized pro-resolving mediators (SPMs) that limit immune cell infiltration and initiate tissue repair mechanisms. SPMs (lipoxins, resolvins, protectins, maresins) are generated from essential polyunsaturated fatty acids. Synthases and receptors for SPMs were initially described in immune cells, but they are also present in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), where they regulate processes important for vascular physiology, such as EC activation and VSMC phenotype. Evidence from genetic models targeting SPM pathways and pharmacological supplementation with SPMs have demonstrated that these mediators may play a protective role against the development of vascular remodeling in atherosclerosis, aneurysms and restenosis. This review focuses on the latest advances in understanding the role of SPMs in vascular cells and their therapeutic effects in the vascular remodeling associated with different cardiovascular diseases.
Collapse
|
37
|
Specialized Proresolving Lipid Mediators: A Potential Therapeutic Target for Atherosclerosis. Int J Mol Sci 2022; 23:ijms23063133. [PMID: 35328553 PMCID: PMC8955102 DOI: 10.3390/ijms23063133] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease (CVD) is a global public health issue due to its high morbidity, mortality, and economic impact. The implementation of innovative therapeutic alternatives for CVD is urgently required. Specialized proresolving lipid mediators (SPMs) are bioactive compounds derived from ω-3 and ω-6 fatty acids, integrated into four families: Lipoxins, Resolvins, Protectins, and Maresins. SPMs have generated interest in recent years due to their ability to promote the resolution of inflammation associated with the pathogeneses of numerous illnesses, particularly CVD. Several preclinical studies in animal models have evidenced their ability to decrease the progression of atherosclerosis, intimal hyperplasia, and reperfusion injury via diverse mechanisms. Large-scale clinical trials are required to determine the effects of SPMs in humans. This review integrates the currently available knowledge of the therapeutic impact of SPMs in CVD from preclinical and clinical studies, along with the implicated molecular pathways. In vitro results have been promising, and as such, SPMs could soon represent a new therapeutic alternative for CVD.
Collapse
|
38
|
Kim AS, Werlin EC, Kagaya H, Chen M, Wu B, Mottola G, Jan M, Conte MS. 17R/S-Benzo-RvD1, a synthetic resolvin D1 analogue, attenuates neointimal hyperplasia in a rat model of acute vascular injury. PLoS One 2022; 17:e0264217. [PMID: 35226675 PMCID: PMC8884511 DOI: 10.1371/journal.pone.0264217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/05/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Persistent inflammation following vascular injury drives neointimal hyperplasia (NIH). Specialized lipid mediators (SPM) mediate resolution which attenuates inflammation and downstream NIH. We investigated the effects of a synthetic analogue of resolvin D1 (RvD1) on vascular cells and in a model of rat carotid angioplasty. METHODS Human venous VSMC and endothelial cells (EC) were employed in migration, cell shape, toxicity, proliferation and p65 nuclear translocation assays. Murine RAW 264.7 cells were utilized to test the effect of pro-resolving compounds on phagocytic activity. A model of rat carotid angioplasty was used to evaluate the effects of 17R/S-benzo-RvD1 (benzo-RvD1) and 17R-RvD1 applied to the adventitia via 25% Pluronic gel. Immunostaining was utilized to examine Ki67 expression and leukocyte recruitment. Morphometric analysis was performed on arteries harvested 14 days after injury. RESULTS Exposure to benzo-RvD1 attenuated PDGF- stimulated VSMC migration across a range of concentrations (0.1-100 nM), similar to that observed with 17R-RvD1. Pre-treatment with either Benzo-RvD1 or 17R-RvD1 (10, 100nM) attenuated PDGF-BB-induced VSMC cytoskeletal changes to nearly baseline dimensions. Benzo-RvD1 demonstrated modest anti-proliferative activity on VSMC and EC at various concentrations, without significant cytotoxicity. Benzo-RvD1 (10nM) inhibited p65 nuclear translocation in cytokine-stimulated EC by 21% (p<0.05), similar to 17R-RvD1. Consistent with pro-resolving activities of other SPM, both 17R-RvD1 and benzo-RvD1 increased the phagocytic activity of RAW 264.7 cells against S. Aureus and Zymosan particles. There were no significant differences in Ki-67 or CD45 staining observed on day 3 after angioplasty. Periadventitial treatment with benzo-RvD1 reduced carotid neointimal area at 14 days compared to control (0.08 mm2 v. 0.18 mm2; p<0.05), with similar efficacy to 17R-RvD1. CONCLUSIONS 17R/S-benzo-RvD1 and 17R-RvD1 exhibit similar pro-resolving and anti-migratory activity in cell-based assays, and both compounds attenuated NIH following acute arterial injury in rats. Further studies of the mechanisms of resolution following vascular injury, and the translational potential of SPM analogues, are indicated.
Collapse
Affiliation(s)
- Alexander S. Kim
- Department of Surgery and Cardiovascular Research Institute, UCSF, San Francisco, California, United States of America
| | - Evan C. Werlin
- Department of Surgery and Cardiovascular Research Institute, UCSF, San Francisco, California, United States of America
| | - Hideo Kagaya
- Department of Surgery and Cardiovascular Research Institute, UCSF, San Francisco, California, United States of America
| | - Mian Chen
- Department of Surgery and Cardiovascular Research Institute, UCSF, San Francisco, California, United States of America
| | - Bian Wu
- Department of Surgery and Cardiovascular Research Institute, UCSF, San Francisco, California, United States of America
| | - Giorgio Mottola
- Department of Surgery and Cardiovascular Research Institute, UCSF, San Francisco, California, United States of America
| | - Masood Jan
- Department of Surgery and Cardiovascular Research Institute, UCSF, San Francisco, California, United States of America
| | - Michael S. Conte
- Department of Surgery and Cardiovascular Research Institute, UCSF, San Francisco, California, United States of America
| |
Collapse
|
39
|
Dalli J, Gomez EA, Jouvene CC. Utility of the Specialized Pro-Resolving Mediators as Diagnostic and Prognostic Biomarkers in Disease. Biomolecules 2022; 12:biom12030353. [PMID: 35327544 PMCID: PMC8945731 DOI: 10.3390/biom12030353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 12/14/2022] Open
Abstract
A precision medicine approach is widely acknowledged to yield more effective therapeutic strategies in the treatment of patients with chronic inflammatory conditions than the prescriptive paradigm currently utilized in the management and treatment of these patients. This is because such an approach will take into consideration relevant factors including the likelihood that a patient will respond to given therapeutics based on their disease phenotype. Unfortunately, the application of this precision medicine paradigm in the daily treatment of patients has been greatly hampered by the lack of robust biomarkers, in particular biomarkers for determining early treatment responsiveness. Lipid mediators are central in the regulation of host immune responses during both the initiation and resolution of inflammation. Amongst lipid mediators, the specialized pro-resolving mediators (SPM) govern immune cells to promote the resolution of inflammation. These autacoids are produced via the stereoselective conversion of essential fatty acids to yield molecules that are dynamically regulated during inflammation and exert potent immunoregulatory activities. Furthermore, there is an increasing appreciation for the role that these mediators play in conveying the biological actions of several anti-inflammatory therapeutics, including statins and aspirin. Identification and quantitation of these mediators has traditionally been achieved using hyphenated mass spectrometric techniques, primarily liquid-chromatography tandem mass spectrometry. Recent advances in the field of chromatography and mass spectrometry have increased both the robustness and the sensitivity of this approach and its potential deployment for routine clinical diagnostics. In the present review, we explore the evidence supporting a role for specific SPM as potential biomarkers for patient stratification in distinct disease settings together with methodologies employed in the identification and quantitation of these autacoids.
Collapse
Affiliation(s)
- Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (E.A.G.); (C.C.J.)
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London EC1M 6BQ, UK
- Correspondence:
| | - Esteban Alberto Gomez
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (E.A.G.); (C.C.J.)
| | - Charlotte Camille Jouvene
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (E.A.G.); (C.C.J.)
| |
Collapse
|
40
|
Kotlyarov S, Kotlyarova A. Involvement of Fatty Acids and Their Metabolites in the Development of Inflammation in Atherosclerosis. Int J Mol Sci 2022; 23:1308. [PMID: 35163232 PMCID: PMC8835729 DOI: 10.3390/ijms23031308] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Despite all the advances of modern medicine, atherosclerosis continues to be one of the most important medical and social problems. Atherosclerosis is the cause of several cardiovascular diseases, which are associated with high rates of disability and mortality. The development of atherosclerosis is associated with the accumulation of lipids in the arterial intima and the disruption of mechanisms that maintain the balance between the development and resolution of inflammation. Fatty acids are involved in many mechanisms of inflammation development and maintenance. Endothelial cells demonstrate multiple cross-linkages between lipid metabolism and innate immunity. In addition, these processes are linked to hemodynamics and the function of other cells in the vascular wall, highlighting the central role of the endothelium in vascular biology.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
41
|
Serhan CN, Libreros S, Nshimiyimana R. E-series resolvin metabolome, biosynthesis and critical role of stereochemistry of specialized pro-resolving mediators (SPMs) in inflammation-resolution: Preparing SPMs for long COVID-19, human clinical trials, and targeted precision nutrition. Semin Immunol 2022; 59:101597. [PMID: 35227568 PMCID: PMC8847098 DOI: 10.1016/j.smim.2022.101597] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023]
Abstract
The COVID-19 pandemic has raised international awareness of the importance of rigorous scientific evidence and the havoc caused by uncontrolled excessive inflammation. Here we consider the evidence on whether the specialized pro-resolving mediators (SPMs) are ready to meet this challenge as well as targeted metabololipidomics of the resolution-inflammation metabolomes. Specific stereochemical mechanisms in the biosynthesis of SPMs from omega-3 essential fatty acids give rise to unique local-acting lipid mediators. SPMs possess stereochemically defined potent bioactive structures that are high-affinity ligands for cognate G protein-coupled surface receptors that evoke the cellular responses required for efficient resolution of acute inflammation. The SPMs biosynthesized from the major omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are coined Resolvins (resolution phase interaction products; E series and D-series), Protectins and Maresins (macrophage mediators in resolving inflammation). Their biosynthesis and stereochemical assignments are established and confirmed (>1,441 resolvin publications in PubMed.gov) as well as their functional roles on innate immune cells and adaptive immune cells (both lymphocyte T-cell subsets and B-cells). The resolution of a protective acute inflammatory response is governed mainly by phagocytes that actively clear apoptotic cells, debris, blood clots and pathogens. These resolution phase functions of the acute inflammatory response are enhanced by SPMs, which together prepare the inflammatory loci for homeostasis and stimulate tissue regeneration via activating stem cells and the biosynthesis of novel cys-SPMs (e.g. MCTRs, PCTRs and RCTRs). These cys-SPMs also activate regeneration, are organ protective and stimulate resolution of local inflammation. Herein, we review the biosynthesis and functions of the E-series resolvins, namely resolvin E1 (the first n-3 resolvin identified), resolvin E2, resolvin E3 and resolvin E4 biosynthesized from their precursor eicosapentaenoic acid (EPA), and the critical role of total organic synthesis in confirming SPM complete stereochemistry, establishing their potent functions in resolution of inflammation, and novel structures. The physical properties of each biologically derived SPM, i.e., ultra-violet (UV) absorbance, chromatographic behavior, and tandem mass spectrometry (MS2) fragmentation, were matched to SPMs biosynthesized and prepared by stereospecific total organic synthesis. We briefly review this approach, also used with the endogenous D-series resolvins, protectins and maresins confirming their potent functions in resolution of inflammation, that paves the way for their rigorous evaluation in human tissues and clinical trials. The assignment of complete stereochemistry for each of the E and D series Resolvins, Protectins and Maresins was a critical and required step that enabled human clinical studies as in SPM profiling in COVID-19 infections and experimental animal disease models that also opened the promise of resolution physiology, resolution pharmacology and targeted precision nutrition as new areas for monitoring health and disease mechanisms.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Stephania Libreros
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Robert Nshimiyimana
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
42
|
Liu T, Sun Y, Li H, Xu H, Xiao N, Wang X, Song L, Bai C, Wen H, Ge J, Zhang Y, Song W, Chen J. Metabolomic Characterization of Fatty Acids in Patients With Coronary Artery Ectasias. Front Physiol 2021; 12:770223. [PMID: 34867478 PMCID: PMC8640203 DOI: 10.3389/fphys.2021.770223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Background: We used a targeted metabolomics approach to identify fatty acid (FA) metabolites that distinguished patients with coronary artery ectasia (CAE) from healthy Controls and patients with coronary artery disease (CAD). Materials and methods: Two hundred fifty-two human subjects were enrolled in our study, such as patients with CAE, patients with CAD, and Controls. All the subjects were diagnosed by coronary angiography. Plasma metabolomic profiles of FAs were determined by an ultra-high-performance liquid chromatography coupled to triple quadrupole mass spectrometric (UPLC-QqQ-MS/MS). Results: Ninety-nine plasma metabolites were profiled in the discovery sets (n = 72), such as 35 metabolites of arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), 10 FAs, and 54 phospholipids. Among these metabolites, 36 metabolites of AA, EPA, and DHA showed the largest difference between CAE and Controls or CAD. 12-hydroxyeicosatetraenoic acid (12-HETE), 17(S)-hydroxydocosahexaenoic acid (17-HDoHE), EPA, AA, and 5-HETE were defined as a biomarker panel in peripheral blood to distinguish CAE from CAD and Controls in a discovery set (n = 72) and a validation set (n = 180). This biomarker panel had a better diagnostic performance than metabolite alone in differentiating CAE from Controls and CAD. The areas under the ROC curve of the biomarker panel were 0.991 and 0.836 for CAE versus Controls and 1.00 and 0.904 for CAE versus CAD in the discovery and validation sets, respectively. Conclusions: Our findings revealed that the metabolic profiles of FAs in the plasma from patients with CAE can be distinguished from those of Controls and CAD. Differences in FAs metabolites may help to interpret pathological mechanisms of CAE.
Collapse
Affiliation(s)
- Tianlong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haochen Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Xiao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuliang Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congxia Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongyan Wen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Ge
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinhui Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihua Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
43
|
Kotlyarov S, Kotlyarova A. Anti-Inflammatory Function of Fatty Acids and Involvement of Their Metabolites in the Resolution of Inflammation in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:12803. [PMID: 34884621 PMCID: PMC8657960 DOI: 10.3390/ijms222312803] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid metabolism plays an important role in many lung functions. Disorders of lipid metabolism are part of the pathogenesis of chronic obstructive pulmonary disease (COPD). Lipids are involved in numerous cross-linkages with inflammation. Recent studies strongly support the involvement of fatty acids as participants in inflammation. They are involved in the initiation and resolution of inflammation, including acting as a substrate for the formation of lipid mediators of inflammation resolution. Specialized pro-inflammatory mediators (SPMs) belonging to the classes of lipoxins, resolvins, maresins, and protectins, which are formed enzymatically from unsaturated fatty acids, are now described. Disorders of their production and function are part of the pathogenesis of COPD. SPMs are currently the subject of active research in order to find new drugs. Short-chain fatty acids are another important participant in metabolic and immune processes, and their role in the pathogenesis of COPD is of great clinical interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
44
|
Gerges SH, El-Kadi AOS. Sex differences in eicosanoid formation and metabolism: A possible mediator of sex discrepancies in cardiovascular diseases. Pharmacol Ther 2021; 234:108046. [PMID: 34808133 DOI: 10.1016/j.pharmthera.2021.108046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
Arachidonic acid is metabolized by cyclooxygenase, lipoxygenase, and cytochrome P450 enzymes to produce prostaglandins, leukotrienes, epoxyeicosatrienoic acids (EETs), and hydroxyeicosatetraenoic acids (HETEs), along with other eicosanoids. Eicosanoids have important physiological and pathological roles in the body, including the cardiovascular system. Evidence from several experimental and clinical studies indicates differences in eicosanoid levels, as well as in the activity or expression levels of their synthesizing and metabolizing enzymes between males and females. In addition, there is a clear state of gender specificity in cardiovascular diseases (CVD), which tend to be more common in men compared to women, and their risk increases significantly in postmenopausal women compared to younger women. This could be largely attributed to sex hormones, as androgens exert detrimental effects on the heart and blood vessels, whereas estrogen exhibits cardioprotective effects. Many of androgen and estrogen effects on the cardiovascular system are mediated by eicosanoids. For example, androgens increase the levels of cardiotoxic eicosanoids like 20-HETE, while estrogens increase the levels of cardioprotective EETs. Thus, sex differences in eicosanoid levels in the cardiovascular system could be an important underlying mechanism for the different effects of sex hormones and the differences in CVD between males and females. Understanding the role of eicosanoids in these differences can help improve the management of CVD.
Collapse
Affiliation(s)
- Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
45
|
Liu G, Wan N, Liu Q, Chen Y, Cui H, Wang Y, Ren J, Shen X, Lu W, Yu Y, Shen Y, Wang J. Resolvin E1 Attenuates Pulmonary Hypertension by Suppressing Wnt7a/β-Catenin Signaling. Hypertension 2021; 78:1914-1926. [PMID: 34689593 DOI: 10.1161/hypertensionaha.121.17809] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Guizhu Liu
- From the State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (G.L., Y.C., W.L., Y.Y., J.W.)
| | - Naifu Wan
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao tong University School of Medicine, Shanghai, China (N.W.)
| | - Qian Liu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (Q.L., Y.W., Y.Y., Y.S.)
| | - Yuqin Chen
- From the State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (G.L., Y.C., W.L., Y.Y., J.W.)
| | - Hui Cui
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China (H.C., X.S.)
| | - Yuanyang Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (Q.L., Y.W., Y.Y., Y.S.)
| | - Jiaoqi Ren
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai, China (J.R.)
| | - Xia Shen
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China (H.C., X.S.).,CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China (X.S., Y.Y.)
| | - Wenju Lu
- From the State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (G.L., Y.C., W.L., Y.Y., J.W.)
| | - Ying Yu
- From the State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (G.L., Y.C., W.L., Y.Y., J.W.).,Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (Q.L., Y.W., Y.Y., Y.S.).,CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China (X.S., Y.Y.)
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (Q.L., Y.W., Y.Y., Y.S.)
| | - Jian Wang
- From the State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China (G.L., Y.C., W.L., Y.Y., J.W.).,Department of Medicine, University of California, San Diego, La Jolla (J.W.)
| |
Collapse
|
46
|
Decker C, Sadhu S, Fredman G. Pro-Resolving Ligands Orchestrate Phagocytosis. Front Immunol 2021; 12:660865. [PMID: 34177900 PMCID: PMC8222715 DOI: 10.3389/fimmu.2021.660865] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
The resolution of inflammation is a tissue protective program that is governed by several factors including specialized pro-resolving mediators (SPMs), proteins, gasses and nucleotides. Pro-resolving mediators activate counterregulatory programs to quell inflammation and promote tissue repair in a manner that does not compromise host defense. Phagocytes like neutrophils and macrophages play key roles in the resolution of inflammation because of their ability to remove debris, microbes and dead cells through processes including phagocytosis and efferocytosis. Emerging evidence suggests that failed resolution of inflammation and defective phagocytosis or efferocytosis underpins several prevalent human diseases. Therefore, understanding factors and mechanisms associated with enhancing these processes is a critical need. SPMs enhance phagocytosis and efferocytosis and this review will highlight mechanisms associated with their actions.
Collapse
Affiliation(s)
- Christa Decker
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Sudeshna Sadhu
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Gabrielle Fredman
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, United States
| |
Collapse
|
47
|
Morris G, Berk M, Walder K, O'Neil A, Maes M, Puri BK. The lipid paradox in neuroprogressive disorders: Causes and consequences. Neurosci Biobehav Rev 2021; 128:35-57. [PMID: 34118292 DOI: 10.1016/j.neubiorev.2021.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 04/27/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023]
Abstract
Chronic systemic inflammation is associated with an increased risk of cardiovascular disease in an environment of low low-density lipoprotein (LDL) and low total cholesterol and with the pathophysiology of neuroprogressive disorders. The causes and consequences of this lipid paradox are explored. Circulating activated neutrophils can release inflammatory molecules such as myeloperoxidase and the pro-inflammatory cytokines interleukin-1 beta, interleukin-6 and tumour necrosis factor-alpha. Since activated neutrophils are associated with atherosclerosis and cardiovascular disease and with major depressive disorder, bipolar disorder and schizophrenia, it seems reasonable to hypothesise that the inflammatory molecules released by them may act as mediators of the link between systemic inflammation and the development of atherosclerosis in neuroprogressive disorders. This hypothesis is tested by considering the association at a molecular level of systemic inflammation with increased LDL oxidation; increased small dense LDL levels; increased lipoprotein (a) concentration; secretory phospholipase A2 activation; cytosolic phospholipase A2 activation; increased platelet activation; decreased apolipoprotein A1 levels and function; decreased paroxonase-1 activity; hyperhomocysteinaemia; and metabolic endotoxaemia. These molecular mechanisms suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand
| | | |
Collapse
|
48
|
Dead cell and debris clearance in the atherosclerotic plaque: Mechanisms and therapeutic opportunities to promote inflammation resolution. Pharmacol Res 2021; 170:105699. [PMID: 34087352 DOI: 10.1016/j.phrs.2021.105699] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/05/2021] [Accepted: 05/28/2021] [Indexed: 01/08/2023]
Abstract
Phagocytic clearance of dead cells and debris is critical for inflammation resolution and maintenance of tissue homeostasis. Consequently, defective clearance of dead cells and debris is associated with initiation and exacerbation of several autoimmune disorders and chronic inflammatory diseases such as atherosclerosis. The progressive loss of dead cell clearance capacity within the atherosclerotic plaque leads to accumulation of necrotic cells, chronic non-resolving inflammation, and expansion of the necrotic core, which triggers atherosclerotic plaque rupture and clinical manifestation of acute thrombotic cardiovascular adverse events. In this review, we describe the fundamental molecular and cellular mechanisms of dead cell clearance and how it goes awry in atherosclerosis. Finally, we highlight novel therapeutic strategies that enhance dead cell and debris clearance within the atherosclerotic plaque to promote inflammation resolution and atherosclerotic plaque stabilization.
Collapse
|
49
|
Jaén RI, Sánchez-García S, Fernández-Velasco M, Boscá L, Prieto P. Resolution-Based Therapies: The Potential of Lipoxins to Treat Human Diseases. Front Immunol 2021; 12:658840. [PMID: 33968061 PMCID: PMC8102821 DOI: 10.3389/fimmu.2021.658840] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/07/2021] [Indexed: 02/05/2023] Open
Abstract
Inflammation is an a physiological response instead an essential response of the organism to injury and its adequate resolution is essential to restore homeostasis. However, defective resolution can be the precursor of severe forms of chronic inflammation and fibrosis. Nowadays, it is known that an excessive inflammatory response underlies the most prevalent human pathologies worldwide. Therefore, great biomedical research efforts have been driven toward discovering new strategies to promote the resolution of inflammation with fewer side-effects and more specificity than the available anti-inflammatory treatments. In this line, the use of endogenous specialized pro-resolving mediators (SPMs) has gained a prominent interest. Among the different SPMs described, lipoxins stand out as one of the most studied and their deficiency has been widely associated with a wide range of pathologies. In this review, we examined the current knowledge on the therapeutic potential of lipoxins to treat diseases characterized by a severe inflammatory background affecting main physiological systems, paying special attention to the signaling pathways involved. Altogether, we provide an updated overview of the evidence suggesting that increasing endogenously generated lipoxins may emerge as a new therapeutic approach to prevent and treat many of the most prevalent diseases underpinned by an increased inflammatory response.
Collapse
Affiliation(s)
- Rafael I. Jaén
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | | | - María Fernández-Velasco
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de investigación del Hospital la Paz, IdiPaz, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Prieto
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
50
|
Chen J, Norling LV, Cooper D. Cardiac Dysfunction in Rheumatoid Arthritis: The Role of Inflammation. Cells 2021; 10:881. [PMID: 33924323 PMCID: PMC8070480 DOI: 10.3390/cells10040881] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 12/25/2022] Open
Abstract
Rheumatoid arthritis is a chronic, systemic inflammatory disease that carries an increased risk of mortality due to cardiovascular disease. The link between inflammation and atherosclerotic disease is clear; however, recent evidence suggests that inflammation may also play a role in the development of nonischemic heart disease in rheumatoid arthritis (RA) patients. We consider here the link between inflammation and cardiovascular disease in the RA community with a focus on heart failure with preserved ejection fraction. The effect of current anti-inflammatory therapeutics, used to treat RA patients, on cardiovascular disease are discussed as well as whether targeting resolution of inflammation might offer an alternative strategy for tempering inflammation and subsequent inflammation-driven comorbidities in RA.
Collapse
Affiliation(s)
- Jianmin Chen
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (J.C.); (L.V.N.)
| | - Lucy V. Norling
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (J.C.); (L.V.N.)
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London EC1M 6BQ, UK
| | - Dianne Cooper
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (J.C.); (L.V.N.)
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|