1
|
Campo-Pérez V, Cendra MDM, Julián E, Torrents E. Easily applicable modifications to electroporation conditions improve the transformation efficiency rates for rough morphotypes of fast-growing mycobacteria. N Biotechnol 2021; 63:10-18. [PMID: 33636348 DOI: 10.1016/j.nbt.2021.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 10/22/2022]
Abstract
Electroporation is the most widely used and efficient method to transform mycobacteria. Through this technique, fast- and slow-growing mycobacteria with smooth and rough morphotypes have been successfully transformed. However, transformation efficiencies differ widely between species and strains. In this study, the smooth and rough morphotypes of Mycobacteroides abscessus and Mycolicibacterium brumae were used to improve current electroporation procedures for fast-growing rough mycobacteria. The focus was on minimizing three well-known and challenging limitations: the mycobacterial restriction-modification systems, which degrade foreign DNA; clump formation of electrocompetent cells before electroporation; and electrical discharges during pulse delivery, which were reduced by using salt-free DNA solution. Herein, different strategies are presented that successfully address these three limitations and clearly improve the electroporation efficiencies over the current procedures. The results demonstrated that combining the developed strategies during electroporation is highly recommended for the transformation of fast-growing rough mycobacteria.
Collapse
Affiliation(s)
- Víctor Campo-Pérez
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, Barcelona, 08028, Spain; Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain
| | - Maria Del Mar Cendra
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, Barcelona, 08028, Spain
| | - Esther Julián
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain.
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 15-21, Barcelona, 08028, Spain; Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 643 Diagonal Ave., Barcelona, 08028, Spain.
| |
Collapse
|
2
|
Chimukuche NM, Williams MJ. Genetic Manipulation of Non-tuberculosis Mycobacteria. Front Microbiol 2021; 12:633510. [PMID: 33679662 PMCID: PMC7925387 DOI: 10.3389/fmicb.2021.633510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/27/2021] [Indexed: 11/25/2022] Open
Abstract
Non-tuberculosis mycobacteria (NTMs) comprise a large group of organisms that are phenotypically diverse. Analysis of the growing number of completed NTM genomes has revealed both significant intra-genus genetic diversity, and a high percentage of predicted genes that appear to be unique to this group. Most NTMs have not been studied, however, the rise in NTM infections in several countries has prompted increasing interest in these organisms. Mycobacterial research has recently benefitted from the development of new genetic tools and a growing number of studies describing the genetic manipulation of NTMs have now been reported. In this review, we discuss the use of both site-specific and random mutagenesis tools in NTMs, highlighting the challenges that exist in applying these techniques to this diverse group of organisms.
Collapse
Affiliation(s)
| | - Monique J Williams
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Abstract
The introduction of DNA into bacterial cells is one of the foundational methods of bacterial genetics. Transformation of mycobacterial species is complicated due to the structure of the cell wall, which has a complex outer layer with low permeability. Electroporation has become a routine procedure in genetic studies. In this process, cells are subjected to a brief high-voltage electrical impulse which allows the entry of DNA. It can be used to introduce plasmid DNA, phage DNA, or oligonucleotides. This chapter presents methods for introducing DNA into a representative slow-growing species, M. tuberculosis, and a representative fast-growing species, M. smegmatis. Other mycobacteria can be transformed using variations of these methods, although the efficiency of transformation will vary.
Collapse
Affiliation(s)
- Tanya Parish
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
| |
Collapse
|
4
|
Yan MY, Li SS, Ding XY, Guo XP, Jin Q, Sun YC. A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in Mycobacterium tuberculosis. mBio 2020; 11:e02364-19. [PMID: 31992616 PMCID: PMC6989103 DOI: 10.1128/mbio.02364-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/09/2019] [Indexed: 11/20/2022] Open
Abstract
New tools for genetic manipulation of Mycobacterium tuberculosis are needed for the development of new drug regimens and vaccines aimed at curing tuberculosis infections. Clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein (Cas) systems generate a highly specific double-strand break at the target site that can be repaired via nonhomologous end joining (NHEJ), resulting in the desired genome alteration. In this study, we first improved the NHEJ repair pathway and developed a CRISPR-Cas-mediated genome-editing method that allowed us to generate markerless deletion in Mycobacterium smegmatis, Mycobacterium marinum, and M. tuberculosis Then, we demonstrated that this system could efficiently achieve simultaneous generation of double mutations and large-scale genetic mutations in M. tuberculosis Finally, we showed that the strategy we developed can also be used to facilitate genome editing in Escherichia coli IMPORTANCE The global health impact of M. tuberculosis necessitates the development of new genetic tools for its manipulation, to facilitate the identification and characterization of novel drug targets and vaccine candidates. Clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein (Cas) genome editing has proven to be a powerful genetic tool in various organisms; to date, however, attempts to use this approach in M. tuberculosis have failed. Here, we describe a genome-editing tool based on CRISPR cleavage and the nonhomologous end-joining (NHEJ) repair pathway that can efficiently generate deletion mutants in M. tuberculosis More importantly, this system can generate simultaneous double mutations and large-scale genetic mutations in this species. We anticipate that this CRISPR-NHEJ-assisted genome-editing system will be broadly useful for research on mycobacteria, vaccine development, and drug target profiling.
Collapse
Affiliation(s)
- Mei-Yi Yan
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Si-Shang Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Yuan Ding
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Peng Guo
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Cheng Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Sanming Project of Medicine in Shenzhen on Construction of Novel Systematic Network against Tuberculosis, National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
5
|
Aubry A, Mougari F, Reibel F, Cambau E. Mycobacterium marinum. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tnmi7-0038-2016. [PMID: 28387180 PMCID: PMC11687479 DOI: 10.1128/microbiolspec.tnmi7-0038-2016] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Indexed: 01/16/2023] Open
Abstract
Mycobacterium marinum is a well-known pathogenic mycobacterium for skin and soft tissue infections and is associated with fishes and water. Among nontuberculous mycobacteria (NTM), it is the leading cause of extrarespiratory human infections worldwide. In addition, there is a specific scientific interest in M. marinum because of its genetic relatedness to Mycobacterium tuberculosis and because experimental infection of M. marinum in fishes mimics tuberculosis pathogenesis. Microbiological characteristics include the fact that it grows in 7 to 14 days with photochromogenic colonies and is difficult to differentiate from Mycobacterium ulcerans and other mycolactone-producing NTM on a molecular basis. The diagnosis is highly suspected by the mode of infection, which is related to the hobby of fishkeeping, professional handling of marine shells, or swimming in nonchlorinated pools. Clinics distinguished skin and soft tissue lesions (typically sporotrichoid or subacute hand nodules) and lesions disseminated to joint and bone, often related with the local use of corticosteroids. In clinical microbiology, microscopy and culture are often negative because growth requires low temperature (30°C) and several weeks to succeed in primary cultivation. The treatment is not standardized, and no randomized control trials have been done. Therapy is a combination of surgery and antimicrobial agents such as cyclines and rifampin, with successful outcome in most of the skin diseases but less frequently in deep tissue infections. Prevention can be useful with hand protection recommendations for professionals and all persons manipulating fishes or fish tank water and use of alcohol disinfection after contact.
Collapse
Affiliation(s)
- Alexandra Aubry
- Centre National de Référence des mycobactéries et résistance des Mycobactéries aux antituberculeux
- Sorbonne Université, Université Pierre et Marie Curie, AP-HP Hôpital Pitié-Salpêtrière
- Centre d'Immunologie et des Maladies Infectieuses, Team 13, INSERM U1135, Paris, France
| | - Faiza Mougari
- Centre National de Référence des mycobactéries et résistance des Mycobactéries aux antituberculeux
- Laboratoire de Bactériologie, AP-HP Hôpital Lariboisière
- Université Paris Diderot, IAME UMR 1137 Inserm, Paris, France
| | - Florence Reibel
- Centre National de Référence des mycobactéries et résistance des Mycobactéries aux antituberculeux
- Sorbonne Université, Université Pierre et Marie Curie, AP-HP Hôpital Pitié-Salpêtrière
- Centre d'Immunologie et des Maladies Infectieuses, Team 13, INSERM U1135, Paris, France
| | - Emmanuelle Cambau
- Centre National de Référence des mycobactéries et résistance des Mycobactéries aux antituberculeux
- Laboratoire de Bactériologie, AP-HP Hôpital Lariboisière
- Université Paris Diderot, IAME UMR 1137 Inserm, Paris, France
| |
Collapse
|
6
|
Abstract
High-efficiency transformation of DNA is integral to the study of mycobacteria, allowing genetic manipulation. Electroporation is the most widely used method for introducing DNA into mycobacterial strains. Many parameters contribute to high-efficiency transformation; these include the species per strain, the transforming DNA, the selectable marker, the growth medium additives, and the conditions of electroporation. In this chapter we provide an optimized method for the transformation of representative slow- and fast-growing species of mycobacteria-Mycobacterium tuberculosis and M. smegmatis, respectively.
Collapse
Affiliation(s)
- Renan Goude
- University of Rennes, Campus scientifique de Beaulieu, Rennes, France
| | | | | |
Collapse
|
7
|
Pidot SJ, Porter JL, Tobias NJ, Anderson J, Catmull D, Seemann T, Kidd S, Davies JK, Reynolds E, Dashper S, Stinear TP. Regulation of the 18 kDa heat shock protein in Mycobacterium ulcerans: an alpha-crystallin orthologue that promotes biofilm formation. Mol Microbiol 2010; 78:1216-31. [PMID: 21091506 DOI: 10.1111/j.1365-2958.2010.07401.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mycobacterium ulcerans is the causative agent of the debilitating skin disease Buruli ulcer, which is most prevalent in Western and Central Africa. M. ulcerans shares >98% DNA sequence identity with Mycobacterium marinum, however, M. marinum produces granulomatous, but not ulcerative, lesions in humans and animals. Here we report the differential expression of a small heat shock protein (Hsp18) between strains of M. ulcerans (Hsp18(+) ) and M. marinum (Hsp18(-) ) and describe the molecular basis for this difference. We show by gene deletion and GFP reporter assays in M. marinum that a divergently transcribed gene called hspR_2, immediately upstream of hsp18, encodes a MerR-like regulatory protein that represses hsp18 transcription while promoting its own expression. Naturally occurring mutations within a 70 bp segment of the 144 bp hspR_2-hsp18 intergenic region among M. ulcerans strains inhibit hspR_2 transcription and explain the Hsp18(+) phenotype. We also propose a biological role for Hsp18, as we show that this protein significantly enhances bacterial attachment or aggregation during biofilm formation. This study has uncovered a new member of the MerR family of transcriptional regulators and suggests that upregulation of hsp18 expression was an important pathoadaptive response in the evolution of M. ulcerans from a M. marinum-like ancestor.
Collapse
Affiliation(s)
- Sacha J Pidot
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tobias NJ, Seemann T, Pidot SJ, Porter JL, Marsollier L, Marion E, Letournel F, Zakir T, Azuolas J, Wallace JR, Hong H, Davies JK, Howden BP, Johnson PDR, Jenkin GA, Stinear TP. Mycolactone gene expression is controlled by strong SigA-like promoters with utility in studies of Mycobacterium ulcerans and buruli ulcer. PLoS Negl Trop Dis 2009; 3:e553. [PMID: 19936295 PMCID: PMC2775157 DOI: 10.1371/journal.pntd.0000553] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 10/19/2009] [Indexed: 11/21/2022] Open
Abstract
Mycolactone A/B is a lipophilic macrocyclic polyketide that is the primary virulence factor produced by Mycobacterium ulcerans, a human pathogen and the causative agent of Buruli ulcer. In M. ulcerans strain Agy99 the mycolactone polyketide synthase (PKS) locus spans a 120 kb region of a 174 kb megaplasmid. Here we have identified promoter regions of this PKS locus using GFP reporter assays, in silico analysis, primer extension, and site-directed mutagenesis. Transcription of the large PKS genes mlsA1 (51 kb), mlsA2 (7 kb) and mlsB (42 kb) is driven by a novel and powerful SigA-like promoter sequence situated 533 bp upstream of both the mlsA1 and mlsB initiation codons, which is also functional in Escherichia coli, Mycobacterium smegmatis and Mycobacterium marinum. Promoter regions were also identified upstream of the putative mycolactone accessory genes mup045 and mup053. We transformed M. ulcerans with a GFP-reporter plasmid under the control of the mls promoter to produce a highly green-fluorescent bacterium. The strain remained virulent, producing both GFP and mycolactone and causing ulcerative disease in mice. Mosquitoes have been proposed as a potential vector of M. ulcerans so we utilized M. ulcerans-GFP in microcosm feeding experiments with captured mosquito larvae. M. ulcerans-GFP accumulated within the mouth and midgut of the insect over four instars, whereas the closely related, non-mycolactone-producing species M. marinum harbouring the same GFP reporter system did not. This is the first report to identify M. ulcerans toxin gene promoters, and we have used our findings to develop M. ulcerans-GFP, a strain in which fluorescence and toxin gene expression are linked, thus providing a tool for studying Buruli ulcer pathogenesis and potential transmission to humans.
Collapse
Affiliation(s)
- Nicholas J. Tobias
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - Torsten Seemann
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | - Sacha J. Pidot
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - Jessica L. Porter
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - Laurent Marsollier
- Groupe d'Etude des Interactions Hôte-Pathogène, UPRES-EA 3142, Université d'Angers, Angers, France
| | - Estelle Marion
- Groupe d'Etude des Interactions Hôte-Pathogène, UPRES-EA 3142, Université d'Angers, Angers, France
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire, Angers, France
| | - Franck Letournel
- Laboratoire de Neurobiologie et Transgénèse, UPRES-EA 3143, Université d'Angers, Angers, France
| | - Tasnim Zakir
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Joseph Azuolas
- Department of Primary Industries, Mickleham Road, Attwood, Victoria, Australia
| | - John R. Wallace
- Department of Biology, Millersville University, Millersville, Pennsylvania, United States of America
| | - Hui Hong
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - John K. Davies
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Benjamin P. Howden
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Paul D. R. Johnson
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Grant A. Jenkin
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| | - Timothy P. Stinear
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Victorian Bioinformatics Consortium, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
9
|
mosR, a novel transcriptional regulator of hypoxia and virulence in Mycobacterium tuberculosis. J Bacteriol 2009; 191:5941-52. [PMID: 19648248 DOI: 10.1128/jb.00778-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Latent tuberculosis represents a high-risk burden for one-third of the world population. Previous analysis of murine tuberculosis identified a novel transcriptional regulator encoded by Rv0348 that could control the establishment of persistent tuberculosis. Disruption of the Rv0348 gene from the genome of the virulent H37Rv strain of Mycobacterium tuberculosis revealed a global impact on the transcriptional profiles of 163 genes, including induction of the mammalian cell entry (mce1) operon and the repression of a significant number of genes involved in hypoxia and starvation responses. Nonetheless, gel shift assays did not reveal direct binding between Rv0348 and a set of regulated promoters, suggesting an indirect regulatory role. However, when expressed in Mycobacterium smegmatis, the Rv0348 transcripts were significantly responsive to different levels of hypoxia and the encoded protein was shown to regulate genes involved in hypoxia [e.g., Rv3130c (tgs1)] and intracellular survival (e.g., mce1), among other genes. Interestingly, the colonization level of the DeltamosR mutant strain was significantly lower than that of the wild-type strain of M. tuberculosis, suggesting its attenuation in the murine model of tuberculosis. Taken together, our analyses indicated that the Rv0348 gene encodes a novel transcriptional factor that regulates several operons involved in mycobacterial survival, especially during hypoxia; hence, we propose that Rv0348 be renamed mosR for regulator of mycobacterial operons of survival.
Collapse
|
10
|
Porter JL, Tobias NJ, Hong H, Tuck KL, Jenkin GA, Stinear TP. Transfer, stable maintenance and expression of the mycolactone polyketide megasynthase mls genes in a recombination-impaired Mycobacterium marinum. Microbiology (Reading) 2009; 155:1923-1933. [DOI: 10.1099/mic.0.027029-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human pathogenMycobacterium ulceransproduces a polyketide metabolite called mycolactone with potent immunomodulatory activity.M. ulceransstrain Agy99 has a 174 kb plasmid called pMUM001 with three large genes (mlsA1, 51 kb;mlsA2, 7.2 kb;mlsB, 43 kb) that encode type I polyketide synthases (PKS) required for the biosynthesis of mycolactone, as demonstrated by transposon mutagenesis. However, there have been no reports of transfer of themlslocus to another mycobacterium to demonstrate that these genes are sufficient for mycolactone production because in addition to their large size, themlsgenes contain a high level of internal sequence repetition, such that the entire 102 kb locus is composed of only 9.5 kb of unique DNA. The combination of their large size and lack of stability during laboratory passage makes them a challenging prospect for transfer to a more rapidly growing and genetically tractable host. Here we describe the construction of two bacterial artificial chromosomeEscherichia coli/Mycobacteriumshuttle vectors, one based on the pMUM001 origin of replication bearingmlsB, and the other based on the mycobacteriophage L5 integrase, bearingmlsA1andmlsA2. The combination of these two constructs permitted the two-step transfer of the entire 174 kb pMUM001 plasmid toMycobacterium marinum, a rapidly growing non-mycolactone-producing mycobacterium that is a close genetic relative ofM. ulcerans. To improve the stability of themlslocus inM. marinum,recAwas inactivated by insertion of a hygromycin-resistance gene using double-crossover allelic exchange. As expected, the ΔrecAmutant displayed increased susceptibility to UV killing and a decreased frequency of homologous recombination. Southern hybridization and RT-PCR confirmed the stable transfer and expression of themlsgenes in both wild-typeM. marinumand therecAmutant. However, neither mycolactone nor its predicted precursor metabolites were detected in either strain. These experiments show that it is possible to successfully manipulate and stably transfer the largemlsgenes, but that other bacterial host factors appear to be required to facilitate mycolactone production.
Collapse
Affiliation(s)
- Jessica L. Porter
- Department of Microbiology, Monash University, Clayton 3800, Victoria, Australia
| | - Nicholas J. Tobias
- Department of Microbiology, Monash University, Clayton 3800, Victoria, Australia
| | - Hui Hong
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, UK
| | - Kellie L. Tuck
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - Grant A. Jenkin
- Department of Microbiology, Monash University, Clayton 3800, Victoria, Australia
| | - Timothy P. Stinear
- Department of Microbiology, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
11
|
Wu CW, Schramm TM, Zhou S, Schwartz DC, Talaat AM. Optical mapping of the Mycobacterium avium subspecies paratuberculosis genome. BMC Genomics 2009; 10:25. [PMID: 19146697 PMCID: PMC2633350 DOI: 10.1186/1471-2164-10-25] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 01/15/2009] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Infection of cattle with Mycobacterium avium subspecies paratuberculosis (M. ap) causes severe economic losses to the dairy industry in the USA and worldwide. In an effort to better examine diversity among M. ap strains, we used optical mapping to profile genomic variations between strains of M. ap K-10 (sequenced strain) and M. ap ATCC 19698 (type strain). RESULTS The assembled physical restriction map of M. ap ATCC 19698 showed a genome size of 4,839 kb compared to the sequenced K-10 genome of 4,830 kb. Interestingly, alignment of the optical map of the M. ap ATCC 19698 genome to the complete M. ap K-10 genome sequence revealed a 648-kb inversion around the origin of replication. However, Southern blotting, PCR amplification and sequencing analyses of the inverted region revealed that the genome of M. ap K-10 differs from the published sequence in the region starting from 4,197,080 bp to 11,150 bp, spanning the origin of replication. Additionally, two new copies of the coding sequences > 99.8% were identified, identical to the MAP0849c and MAP0850c genes located immediately downstream of the MAP3758c gene. CONCLUSION The optical map of M. ap ATCC 19698 clearly indicated the miss-assembly of the sequenced genome of M. ap K-10. Moreover, it identified 2 new genes in M. ap K-10 genome. This analysis strongly advocates for the utility of physical mapping protocols to complement genome sequencing projects.
Collapse
Affiliation(s)
- Chia-wei Wu
- The Laboratory of Bacterial Genomics, Department of Pathobiological Sciences, University of Wisconsin-Madison, WI, USA.
| | | | | | | | | |
Collapse
|
12
|
Abstract
High-efficiency transformation is a major limitation in the study of mycobacteria. The genus Mycobacterium can be difficult to transform; this is mainly caused by the thick and waxy cell wall but is compounded by the fact that most molecular techniques have been developed for distantly related species such as Escherichia coli and Bacillus subtilis. In spite of these obstacles, mycobacterial plasmids have been identified, and DNA transformation of many mycobacterial species has now been described. The most successful method for introducing DNA into mycobacteria is electroporation. Many parameters contribute to successful transformation; these include the species/strain, the nature of the transforming DNA, the selectable marker used, the growth medium, and the conditions for the electroporation pulse. Optimized methods for the transformation of both slow-grower and fast-grower are detailed here. Transformation efficiencies for different mycobacterial species and with various selectable markers are reported.
Collapse
Affiliation(s)
- Renan Goude
- Institute of Cell and Molecular Science, Barts and the London, Queen Mary's School of Medicine and Dentistry, 4 Newark Street, Whitechapel, London E1 2AT, UK.
| | | |
Collapse
|
13
|
Wang XM, Galamba A, Warner DF, Soetaert K, Merkel JS, Kalai M, Bifani P, Lefèvre P, Mizrahi V, Content J. IS1096-mediated DNA rearrangements play a key role in genome evolution of Mycobacterium smegmatis. Tuberculosis (Edinb) 2008; 88:399-409. [PMID: 18439874 DOI: 10.1016/j.tube.2008.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/22/2008] [Accepted: 02/16/2008] [Indexed: 11/30/2022]
Abstract
The acquisition of DNA and the loss of genetic information are two important mechanisms that contribute to strain-specific differences in genome content. In this study, comparative genomics has allowed us to infer the roles of genomic rearrangement and changes in both distribution and copy number of the insertion element, IS1096, in the evolution of Mycobacterium smegmatis mc2155 from its progenitor, M. smegmatis ATCC 607. Comparative analysis revealed that the ATCC 607 genome contains only 11 IS1096 elements against the 24 reported in mc2155. As mc2155 evolved, there was a considerable expansion in the copy number of IS1096 (+13) as well as duplication of a 56-kb fragment flanked on both sides by IS1096; concurrently, a single IS1096 element and its flank were deleted. This study demonstrates that insertion sequence (IS) expansion and IS-induced rearrangements such as duplication, deletion and shuffling are major forces driving genomic diversity and evolution.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- IPH-Pasteur Institute of Brussels, Rue Engeland 642, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hong H, Stinear T, Porter J, Demangel C, Leadlay PF. A novel mycolactone toxin obtained by biosynthetic engineering. Chembiochem 2008; 8:2043-7. [PMID: 17907121 PMCID: PMC2699038 DOI: 10.1002/cbic.200700411] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hui Hong
- Sanger Building, Department of Biochemistry, University of Cambridge80 Tennis Court Road, Cambridge CB2 1QW, (UK) E-mail:
| | - Tim Stinear
- Department of Microbiology, Monash UniversityWellington Road, Clayton, 3800, (Australia)
| | - Jessica Porter
- Department of Microbiology, Monash UniversityWellington Road, Clayton, 3800, (Australia)
| | - Caroline Demangel
- Unité de Génétique Moléculaire Bactérienne, Institut Pasteur28 rue du Docteur Roux, 75724 Paris Cedex 15, (France)
| | - Peter F Leadlay
- Sanger Building, Department of Biochemistry, University of Cambridge80 Tennis Court Road, Cambridge CB2 1QW, (UK) E-mail:
| |
Collapse
|
15
|
Wu CW, Schmoller SK, Shin SJ, Talaat AM. Defining the stressome of Mycobacterium avium subsp. paratuberculosis in vitro and in naturally infected cows. J Bacteriol 2007; 189:7877-86. [PMID: 17693514 PMCID: PMC2168719 DOI: 10.1128/jb.00780-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 08/01/2007] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis causes an enteric infection in cattle, with a great impact on the dairy industry in the United States and worldwide. Characterizing the gene expression profile of M. avium subsp. paratuberculosis exposed to different stress conditions, or shed in cow feces, could improve our understanding of the pathogenesis of M. avium subsp. paratuberculosis. In this report, the stress response of M. avium subsp. paratuberculosis on a genome-wide level (stressome) was defined for the first time using DNA microarrays. Expression data analysis revealed unique gene groups of M. avium subsp. paratuberculosis that were regulated under in vitro stressors while additional groups were regulated in the cow samples. Interestingly, acidic pH induced the regulation of a large number of genes (n=597), suggesting the high sensitivity of M. avium subsp. paratuberculosis to acidic environments. Generally, responses to heat shock, acidity, and oxidative stress were similar in M. avium subsp. paratuberculosis and Mycobacterium tuberculosis, suggesting common pathways for mycobacterial defense against stressors. Several sigma factors (e.g., sigH and sigE) were differentially coregulated with a large number of genes depending on the type of each stressor. Subsequently, we analyzed the virulence of six M. avium subsp. paratuberculosis mutants with inactivation of differentially regulated genes using a murine model of paratuberculosis. Both bacterial and histopathological examinations indicated the attenuation of all gene mutants, especially those selected based on their expression in the cow samples (e.g., lipN). Overall, the employed approach profiled mycobacterial genetic networks triggered by variable stressors and identified a novel set of putative virulence genes. A similar approach could be applied to analyze other intracellular pathogens.
Collapse
Affiliation(s)
- Chia-wei Wu
- Laboratory of Bacterial Genomics, Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706-1581, USA
| | | | | | | |
Collapse
|
16
|
Shin SJ, Wu CW, Steinberg H, Talaat AM. Identification of novel virulence determinants in Mycobacterium paratuberculosis by screening a library of insertional mutants. Infect Immun 2006; 74:3825-33. [PMID: 16790754 PMCID: PMC1489745 DOI: 10.1128/iai.01742-05] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Johne's disease, caused by Mycobacterium paratuberculosis infection, is a worldwide problem for the dairy industry and has a possible involvement in Crohn's disease in humans. To identify virulence determinants of this economically important pathogen, a library of 5,060 transposon mutants was constructed using Tn5367 insertion mutagenesis, followed by large-scale sequencing to identify disrupted genes. In this report, 1,150 mutants were analyzed and 970 unique insertion sites were identified. Sequence analysis of the disrupted genes indicated that the insertion of Tn5367 was more prevalent in genomic regions with G+C content (50.5 to 60.5%) lower than the average G+C content (69.3%) of the rest of the genome. Phenotypic screening of the library identified disruptions of genes involved in iron, tryptophan, or mycolic acid metabolic pathways that displayed unique growth characteristics. Bioinformatic analysis of disrupted genes identified a list of potential virulence determinants for further testing with animals. Mouse infection studies showed a significant decrease in tissue colonization by mutants with a disruption in the gcpE, pstA, kdpC, papA2, impA, umaA1, or fabG2_2 gene. Attenuation phenotypes were tissue specific (e.g., for the umaA1 mutant) as well as time specific (e.g., for the impA mutant), suggesting that those genes may be involved in different virulence mechanisms. The identified potential virulence determinants represent novel functional classes that could be necessary for mycobacterial survival during infection and could provide suitable targets for vaccine and drug development against Johne's and Crohn's diseases.
Collapse
Affiliation(s)
- Sung Jae Shin
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706-1581, USA
| | | | | | | |
Collapse
|
17
|
Pagán-Ramos E, Master SS, Pritchett CL, Reimschuessel R, Trucksis M, Timmins GS, Deretic V. Molecular and physiological effects of mycobacterial oxyR inactivation. J Bacteriol 2006; 188:2674-80. [PMID: 16547055 PMCID: PMC1428386 DOI: 10.1128/jb.188.7.2674-2680.2006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 01/13/2006] [Indexed: 11/20/2022] Open
Abstract
The majority of slow-growing mycobacteria have a functional oxyR, the central regulator of the bacterial oxidative stress response. In contrast, this gene has been inactivated during the evolution of Mycobacterium tuberculosis. Here we inactivated the oxyR gene in Mycobacterium marinum, an organism used to model M. tuberculosis pathogenesis. Inactivation of oxyR abrogated induction of ahpC, a gene encoding alkylhydroperoxide reductase, normally activated upon peroxide challenge. The absence of oxyR also resulted in increased sensitivity to the front-line antituberculosis drug isoniazid. Inactivation of oxyR in M. marinum did not affect either virulence in a fish infection model or survival in human macrophages. Our findings demonstrate, at the genetic and molecular levels, a direct role for OxyR in ahpC regulation in response to oxidative stress. Our study also indicates that oxyR is not critical for virulence in M. marinum. However, oxyR inactivation confers increased sensitivity to isonicotinic acid hydrazide, suggesting that the natural loss of oxyR in the tubercle bacillus contributes to the unusually high sensitivity of M. tuberculosis to isoniazid.
Collapse
Affiliation(s)
- Eileen Pagán-Ramos
- Department of Microbiology, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Ruley KM, Ansede JH, Pritchett CL, Talaat AM, Reimschuessel R, Trucksis M. Identification of Mycobacterium marinum virulence genes using signature-tagged mutagenesis and the goldfish model of mycobacterial pathogenesis. FEMS Microbiol Lett 2004; 232:75-81. [PMID: 15019737 DOI: 10.1016/s0378-1097(04)00017-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 01/06/2004] [Accepted: 01/07/2004] [Indexed: 10/26/2022] Open
Abstract
Mycobacterium marinum, a causative agent of fish tuberculosis, is one of the most closely related Mycobacterium species (outside the M. tuberculosis complex) to M. tuberculosis, the etiologic agent of human tuberculosis. Signature-tagged mutagenesis was used to identify genes of M. marinum required for in vivo survival in a goldfish model of mycobacterial pathogenesis. Screening the first 1008 M. marinum mutants led to the identification of 40 putative virulence mutants. DNA sequence analysis of these 40 mutants identified transposon insertions in 35 unique loci. Twenty-eight out of 33 (85%) loci encoding putative virulence genes have homologous genes in M. tuberculosis.
Collapse
Affiliation(s)
- Kristin M Ruley
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
19
|
Rybniker J, Wolke M, Haefs C, Plum G. Transposition of Tn5367 in Mycobacterium marinum, using a conditionally recombinant mycobacteriophage. J Bacteriol 2003; 185:1745-8. [PMID: 12591896 PMCID: PMC148076 DOI: 10.1128/jb.185.5.1745-1748.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium marinum is a close relative of the obligate human pathogen Mycobacterium tuberculosis. As with M. tuberculosis, M. marinum causes intracellular infection of poikilothermic vertebrates and skin infection in humans. It is considered a valid model organism for the study of intracellular pathogenesis of mycobacteria. Low transformation efficiencies for this species have precluded approaches using mutant libraries in pathogenesis studies. We have adapted the conditionally replicating mycobacteriophage phAE94, originally developed as a transposon mutagenesis tool for M. tuberculosis, to meet the specific requirements of M. marinum. Conditions permissive for phage replication in M. tuberculosis facilitated highly efficient transposon delivery in M. marinum. Using this technique we succeeded in generating a representative mutant library of this species, and we conclude that TM4-derived mycobacteriophages are temperature-independent suicide vectors for M. marinum.
Collapse
Affiliation(s)
- Jan Rybniker
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | | | | | | |
Collapse
|
20
|
Gao LY, Groger R, Cox JS, Beverley SM, Lawson EH, Brown EJ. Transposon mutagenesis of Mycobacterium marinum identifies a locus linking pigmentation and intracellular survival. Infect Immun 2003; 71:922-9. [PMID: 12540574 PMCID: PMC145379 DOI: 10.1128/iai.71.2.922-929.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic mycobacteria survive and replicate within host macrophages, but the molecular mechanisms involved in this necessary step in the pathogenesis of infection are not completely understood. Mycobacterium marinum has recently been used as a model for aspects of the pathogenesis of tuberculosis because of its close genetic relationship to Mycobacterium tuberculosis and because of similarities in the pathology and course of infection caused by this organism in its natural hosts, fish and frogs, with tuberculosis in humans. In order to advance the utility of the M. marinum model, we have developed efficient transposon mutagenesis of the organism by using a Drosophila melanogaster mariner-based transposon. To determine the efficiency of transposition, we have analyzed pigmentation mutants from the transposon mutant library. In addition to insertions in four known genes in the pathway of pigment biosynthesis, two insertions in novel genes were identified in our mutant library. One of these is in a putative inhibitor of the carotenoid biosynthesis pathway. The second unexpected insertion is in an intergenic region between two genes homologous to Rv2603c and Rv2604c of M. tuberculosis. In addition to a pigmentation defect, this mutant showed increased susceptibility to singlet oxygen and grew poorly in murine macrophages. Complementation with M. tuberculosis genomic DNA encompassing Rv2603c to Rv2606c corrected the pigmentation and growth defects of the mutant. These data demonstrate the utility of mariner-based transposon mutagenesis of M. marinum and that M. marinum can be used to study the function of M. tuberculosis genes involved in intracellular survival and replication.
Collapse
Affiliation(s)
- Lian-Yong Gao
- Program in Host-Pathogen Interactions, University of California, San Francisco, 94143, USA
| | | | | | | | | | | |
Collapse
|
21
|
Chemlal K, Huys G, Laval F, Vincent V, Savage C, Gutierrez C, Laneelle MA, Swings J, Meyers WM, Daffe M, Portaels F. Characterization of an unusual Mycobacterium: a possible missing link between Mycobacterium marinum and Mycobacterium ulcerans. J Clin Microbiol 2002; 40:2370-80. [PMID: 12089250 PMCID: PMC120612 DOI: 10.1128/jcm.40.7.2370-2380.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an attempt to characterize an unusual mycobacterial isolate from a 44-year-old patient living in France, we applied phenotypic characterizations and various previously described molecular methods for the taxonomic classification of mycobacteria. The results of the investigations were compared to those obtained in a previous study with a set of temporally and geographically diverse Mycobacterium ulcerans (n = 29) and Mycobacterium marinum (n = 29) isolates (K. Chemlal, G. Huys, P.-A. Fonteyne, V. Vincent, A. G. Lopez, L. Rigouts, J. Swings, W. M. Meyers, and F. Portaels, J. Clin. Microbiol. 39:3272-3278, 2001). The isolate, designated ITM 00-1026 (IPP 2000-372), is closely related to M. marinum according to its phenotypic properties, lipid pattern, and partial 16S rRNA sequence. Moreover, fingerprinting by amplified fragment length polymorphism (AFLP) analysis unequivocally classified this strain as a member of the species M. marinum, although it lacked two species-specific AFLP marker bands. However, PCR and restriction fragment length polymorphism analysis based on M. ulcerans-specific insertion sequence IS2404 showed the presence of this element in a low copy number in isolate ITM 00-1026. In conclusion, the designation of this isolate as a transitional species further supports the recent claim by Stinear et al. (T. Stinear, G. Jenkin, P. D. Johnson, and J. K. Davies, J. Bacteriol. 182:6322-6330, 2000) that M. ulcerans represents a relatively recent phylogenetic derivative of M. marinum resulting from the systematic acquisition of foreign DNA fragments.
Collapse
Affiliation(s)
- K Chemlal
- Department of Microbiology, Mycobacteriology Unit, Institute of Tropical Medicine, B-2000 Antwerp, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|