1
|
Starikova EA, Mammedova JT, Rubinstein AA, Sokolov AV, Kudryavtsev IV. Activation of the Coagulation Cascade as a Universal Danger Sign. Curr Issues Mol Biol 2025; 47:108. [PMID: 39996829 PMCID: PMC11854423 DOI: 10.3390/cimb47020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/26/2025] Open
Abstract
Hemostasis is a mechanism that stops bleeding from an injured vessel, involves multiple interlinked steps, culminating in the formation of a "clot" sealing the damaged area. Moreover, it has long been recognized that inflammation also provokes the activation of the coagulation system. However, there has been an increasing amount of evidence revealing the immune function of the hemostasis system. This review collects and analyzes the results of the experimental studies and data from clinical observations confirming the inflammatory function of hemostasis. Here, we summarize the latest knowledge of the pathways in immune system activation under the influence of coagulation factors. The data analyzed allow us to consider the components of hemostasis as receptors recognizing «foreign» or damaged «self» or/and as «self» damage signals that initiate and reinforce inflammation and affect the direction of the adaptive immune response. To sum up, the findings collected in the review allow us to classify the coagulation factors, such as Damage-Associated Molecular Patterns that break down the conventional concepts of the coagulation system.
Collapse
Affiliation(s)
- Eleonora A. Starikova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Department of Microbiology and Virology, Institute of Medical Education Almazov National Medical Research Centre, 2 Akkuratova Street, 197341 Saint Petersburg, Russia
| | - Jennet T. Mammedova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Department of Molecular Biotechnology, Chemical and Biotechnology Faculty, Saint Petersburg State Institute of Technology, Moskovski Ave., 26, 190013 Saint Petersburg, Russia
| | - Artem A. Rubinstein
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
| | - Alexey V. Sokolov
- Laboratory of Systemic Virology, Department of Molecular Biology of Viruses, Smorodintsev Research Institute of Influenza, 15/17, Prof. Popova Str., 197376 Saint Petersburg, Russia;
| | - Igor V. Kudryavtsev
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| |
Collapse
|
2
|
Siddiqui S, Bachert C, Bjermer L, Buchheit KM, Castro M, Qin Y, Rupani H, Sagara H, Howarth P, Taillé C. Eosinophils and tissue remodeling: Relevance to airway disease. J Allergy Clin Immunol 2023; 152:841-857. [PMID: 37343842 DOI: 10.1016/j.jaci.2023.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
The ability of human tissue to reorganize and restore its existing structure underlies tissue homeostasis in the healthy airways, but in disease can persist without normal resolution, leading to an altered airway structure. Eosinophils play a cardinal role in airway remodeling both in health and disease, driving epithelial homeostasis and extracellular matrix turnover. Physiological consequences associated with eosinophil-driven remodeling include impaired lung function and reduced bronchodilator reversibility in asthma, and obstructed airflow in chronic rhinosinusitis with nasal polyps. Given the contribution of airway remodeling to the development and persistence of symptoms in airways disease, targeting remodeling is an important therapeutic consideration. Indeed, there is early evidence that eosinophil attenuation may reduce remodeling and disease progression in asthma. This review provides an overview of tissue remodeling in both health and airway disease with a particular focus on eosinophilic asthma and chronic rhinosinusitis with nasal polyps, as well as the role of eosinophils in these processes and the implications for therapeutic interventions. Areas for future research are also noted, to help improve our understanding of the homeostatic and pathological roles of eosinophils in tissue remodeling, which should aid the development of targeted and effective treatments for eosinophilic diseases of the airways.
Collapse
Affiliation(s)
- Salman Siddiqui
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Claus Bachert
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Münster, Münster, Germany; First Affiliated Hospital, Sun Yat-Sen University, International Airway Research Center, Guangzhou, China; Division of Ear, Nose, and Throat Diseases, Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden; Upper Airways Research Laboratory, Faculty of Medicine, Ghent University, Ghent, Belgium
| | - Leif Bjermer
- Department of Clinical Sciences, Respiratory Medicine, and Allergology, Lund University, Lund, Sweden
| | - Kathleen M Buchheit
- Jeff and Penny Vinik Center for Allergic Diseases Research, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Mario Castro
- Division of Pulmonary, Critical Care Medicine, University of Kansas School of Medicine, Kansas City, NC
| | - Yimin Qin
- Global Medical Affairs, Global Specialty and Primary Care, GlaxoSmithKline, Research Triangle Park, NC
| | - Hitasha Rupani
- Department of Respiratory Medicine, University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom
| | - Hironori Sagara
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University, School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Peter Howarth
- Global Medical, Global Specialty and Primary Care, GlaxoSmithKline, Brentford, Middlesex, United Kingdom
| | - Camille Taillé
- Pneumology Department, Reference Center for Rare Pulmonary Diseases, Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unit 1152, University of Paris Cité, Paris, France
| |
Collapse
|
3
|
Ha JG, Cho HJ. Unraveling the Role of Epithelial Cells in the Development of Chronic Rhinosinusitis. Int J Mol Sci 2023; 24:14229. [PMID: 37762530 PMCID: PMC10531804 DOI: 10.3390/ijms241814229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The pathophysiology of CRS is multifactorial and complex yet needs to be completed. Recent evidence emphasizes the crucial part played by epithelial cells in the development of CRS. The epithelial cells act as physical barriers and play crucial roles in host defense, including initiating and shaping innate and adaptive immune responses. This review aims to present a comprehensive understanding of the significance of nasal epithelial cells in CRS. New research suggests that epithelial dysfunction plays a role in developing CRS through multiple mechanisms. This refers to issues with a weakened barrier function, disrupted mucociliary clearance, and irregular immune responses. When the epithelial barrier is compromised, it can lead to the passage of pathogens and allergens, triggering inflammation in the body. Furthermore, impaired mucociliary clearance can accumulate pathogens and secretions of inflammatory mediators, promoting chronic inflammation. Epithelial cells can release cytokines and chemokines, which attract and activate immune cells. This can result in an imbalanced immune response that continues to cause inflammation. The interaction between nasal epithelial cells and various immune cells leads to the production of cytokines and chemokines, which can either increase or decrease inflammation. By comprehending the role of epithelial cells in CRS, we can enhance our understanding of the disease's pathogenesis and explore new therapeutics.
Collapse
Affiliation(s)
- Jong-Gyun Ha
- Department of Otorhinolaryngology—Head and Neck Surgery, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong 14353, Republic of Korea;
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Gong X, Han Z, Fan H, Wu Y, He Y, Fu Y, Zhu T, Li H. The interplay of inflammation and remodeling in the pathogenesis of chronic rhinosinusitis: current understanding and future directions. Front Immunol 2023; 14:1238673. [PMID: 37771597 PMCID: PMC10523020 DOI: 10.3389/fimmu.2023.1238673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Chronic rhinosinusitis (CRS), a common clinical condition characterized by persistent mucosal inflammation and tissue remodeling, has a complex pathogenesis that is intricately linked to innate and adaptive immunity. A number of studies have demonstrated that a variety of immune cells and cytokines that play a vital role in mediating inflammation in CRS are also involved in remodeling of the nasal mucosa and the cells as well as different cytokines involved in remodeling in CRS are also able to exert some influence on inflammation, even though the exact relationship between inflammation and remodeling in CRS has not yet been fully elucidated. In this review, the potential role of immune cells and cytokines in regulating inflammation and remodeling of CRS mucosa has been described, starting with the immune cells and cytokines that act together in inflammation and remodeling. The goal is to aid researchers in understanding intimate connection between inflammation and remodeling of CRS and to offer novel ideas for future research.
Collapse
Affiliation(s)
- Xinru Gong
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhoutong Han
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hongli Fan
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuqi Wu
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuanqiong He
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yijie Fu
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Tianmin Zhu
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hui Li
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| |
Collapse
|
5
|
Inoue R, Yasuma T, Fridman D’Alessandro V, Toda M, Ito T, Tomaru A, D’Alessandro-Gabazza CN, Tsuruga T, Okano T, Takeshita A, Nishihama K, Fujimoto H, Kobayashi T, Gabazza EC. Amelioration of Pulmonary Fibrosis by Matrix Metalloproteinase-2 Overexpression. Int J Mol Sci 2023; 24:ijms24076695. [PMID: 37047672 PMCID: PMC10095307 DOI: 10.3390/ijms24076695] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive and fatal disease with a poor prognosis. Matrix metalloproteinase-2 is involved in the pathogenesis of organ fibrosis. The role of matrix metalloproteinase-2 in lung fibrosis is unclear. This study evaluated whether overexpression of matrix metalloproteinase-2 affects the development of pulmonary fibrosis. Lung fibrosis was induced by bleomycin in wild-type mice and transgenic mice overexpressing human matrix metalloproteinase-2. Mice expressing human matrix metalloproteinase-2 showed significantly decreased infiltration of inflammatory cells and inflammatory and fibrotic cytokines in the lungs compared to wild-type mice after induction of lung injury and fibrosis with bleomycin. The computed tomography score, Ashcroft score of fibrosis, and lung collagen deposition were significantly reduced in human matrix metalloproteinase transgenic mice compared to wild-type mice. The expression of anti-apoptotic genes was significantly increased, while caspase-3 activity was significantly reduced in the lungs of matrix metalloproteinase-2 transgenic mice compared to wild-type mice. Active matrix metalloproteinase-2 significantly decreased bleomycin-induced apoptosis in alveolar epithelial cells. Matrix metalloproteinase-2 appears to protect against pulmonary fibrosis by inhibiting apoptosis of lung epithelial cells.
Collapse
Affiliation(s)
- Ryo Inoue
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Taro Yasuma
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | | | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Toshiyuki Ito
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Atsushi Tomaru
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | | | - Tatsuki Tsuruga
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Tomohito Okano
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Atsuro Takeshita
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Kota Nishihama
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| |
Collapse
|
6
|
Roles of Exosomes in Chronic Rhinosinusitis: A Systematic Review. Int J Mol Sci 2022; 23:ijms231911284. [PMID: 36232588 PMCID: PMC9570170 DOI: 10.3390/ijms231911284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
The pathophysiology of chronic rhinosinusitis (CRS) is multifactorial and not entirely clear. The objective of the review was to examine the current state of knowledge concerning the role of exosomes in CRS. For this systematic review, we searched PubMed/MEDLINE, Scopus, CENTRAL, and Web of Science databases for studies published until 7 August 2022. Only original research articles describing studies published in English were included. Reviews, book chapters, case studies, conference papers, and opinions were excluded. The quality of the evidence was assessed with the modified Office and Health Assessment and Translation (OHAT) Risk of Bias Rating Tool for Human and Animal Studies. Of 250 records identified, 17 were eligible, all of which had a low to moderate risk of overall bias. Presented findings indicate that exosomal biomarkers, including proteins and microRNA, act as promising biomarkers in the diagnostics and prognosis of CRS patients and, in addition, may contribute to finding novel therapeutic targets. Exosomes reflecting tissue proteomes are excellent, highly available material for studying proteomic alterations noninvasively. The first steps have already been taken, but more advanced research on nasal exosomes is needed, which might open a wider door for individualized medicine in CRS.
Collapse
|
7
|
Eide JG, Wu J, Stevens WW, Bai J, Hou S, Huang JH, Rosenberg J, Utz P, Shintani‐Smith S, Conley DB, Welch KC, Kern RC, Hulse KE, Peters AT, Grammer LC, Zhao M, Lindholm P, Schleimer RP, Tan BK. Anti-phospholipid antibodies are elevated and functionally active in chronic rhinosinusitis with nasal polyps. Clin Exp Allergy 2022; 52:954-964. [PMID: 35253284 PMCID: PMC9339491 DOI: 10.1111/cea.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/02/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Polyps from patients with chronic rhinosinusitis with nasal polyps (CRSwNP) contain increased levels of autoreactive antibodies, B cells and fibrin deposition. Anti-phospholipid antibodies (APA) are autoantibodies known to cause thrombosis but have not been implicated in chronic rhinosinusitis (CRS). OBJECTIVE To compare APA levels (anti-cardiolipin, anti-phosphatidylethanolamine (anti-PE), and anti-β2 -glycoprotein (anti-B2GP)) in nasal polyp (NP) tissue with tissue from control and CRS without nasal polyp (CRSsNP) patients, we tested whether NP antibodies affect coagulation, and correlate APAs with anti-dsDNA IgG and markers of coagulation. METHODS Patient specimens were assayed for APA IgG, anti-dsDNA IgG and thrombin-anti-thrombin (TaT) complex by ELISA. Antibodies from a subset of specimens were tested for modified activated partial thromboplastin time (aPTT) measured on an optical-mechanical coagulometer. RESULTS Anti-cardiolipin IgG in NP was 5-fold higher than control tissue (p < .0001). NP antibodies prolonged aPTT compared to control tissue antibodies at 400 µg/mL (36.7 s vs. 33.8 s, p = .024) and 600 µg/mL (40.9 s vs. 34.7 s, p = .0037). Anti-PE IgG antibodies were increased in NP (p = .027), but anti-B2GP IgG was not significantly higher (p = .084). All APAs correlated with anti-dsDNA IgG levels, which were also elevated (R = .77, .71 and .54, respectively, for anti-cardiolipin, anti-PE, and anti-B2GP; all p < .001), but only anti-cardiolipin (R = .50, p = .0185) and anti-PE (R = 0.45, p = .037) correlated with TaT complex levels. CONCLUSIONS APA IgG antibodies are increased in NP and correlate with autoreactive tissue antibodies. NP antibodies have in vitro anti-coagulant activity similar to those observed in anti-phospholipid syndrome, suggesting that they may have pro-coagulant effects in polyp tissue.
Collapse
Affiliation(s)
- Jacob G. Eide
- Department of Otolaryngology – Head and Neck SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Jeffanie Wu
- Department of Otolaryngology – Head and Neck SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Whitney W. Stevens
- Department of Otolaryngology – Head and Neck SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Allergy and ImmunologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Junqin Bai
- Department of Otolaryngology – Head and Neck SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Songwang Hou
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Julia H. Huang
- Department of Otolaryngology – Head and Neck SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Jacob Rosenberg
- Department of Infectious DiseaseMassachusetts General HospitalBostonMAUSA
| | - Paul Utz
- Institute for ImmunityTransplantation, and InfectionStanford School of MedicineStanfordCAUSA
| | - Stephanie Shintani‐Smith
- Department of Otolaryngology – Head and Neck SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - David B. Conley
- Department of Otolaryngology – Head and Neck SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Kevin C. Welch
- Department of Otolaryngology – Head and Neck SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Robert C. Kern
- Department of Otolaryngology – Head and Neck SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Kathryn E. Hulse
- Department of Allergy and ImmunologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Anju T. Peters
- Department of Allergy and ImmunologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Leslie C. Grammer
- Department of Allergy and ImmunologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Ming Zhao
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Paul Lindholm
- Department of PathologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Robert P. Schleimer
- Department of Otolaryngology – Head and Neck SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Allergy and ImmunologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Bruce K. Tan
- Department of Otolaryngology – Head and Neck SurgeryNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Allergy and ImmunologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
8
|
Cao PP, Wang BF, Norton JE, Suh LA, Carter RG, Stevens WW, Staudacher AG, Huang JH, Hulse KE, Peters AT, Grammer LC, Conley DB, Welch KC, Kern RC, Liu Z, Ye J, Schleimer RP. Studies on activation and regulation of the coagulation cascade in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2022; 150:467-476.e1. [PMID: 35271862 PMCID: PMC9378351 DOI: 10.1016/j.jaci.2022.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/01/2022] [Accepted: 02/10/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Increased activation of the coagulation cascade and diminished fibrinolysis combine to promote fibrin deposition and polyp formation in chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP). More information is needed concerning mechanisms of coagulation in CRSwNP. OBJECTIVE We investigated the mechanisms as well as the initiation and regulation of coagulation cascade activation in CRS. METHODS Samples were collected from 135 subjects with CRSwNP, 80 subjects with chronic CRS without nasal polyps (NP), and 65 control subjects. The levels of activated factor X (FXa), prothrombin fragment 1+2 (F1+2), thrombin-antithrombin complex, tissue factor (TF), and TF pathway inhibitor (TFPI) were monitored in CRS by real-time PCR, ELISA, immunohistochemistry, or immunofluorescence. Heteromeric complexes of TF with activated factor VII (FVII) and TF with activated FVII and FXa were assessed by coimmunoprecipitation and Western blotting. RESULTS Increased levels of FXa, F1+2, and thrombin-antithrombin complex were detected in NP tissue compared to uncinate tissue from CRS and control subjects. Although free TF protein levels were not increased in NP, immunoprecipitation of TF in NP tissue revealed increased complexes of TF with FVII. Local expression of FVII was detected in sinonasal mucosa, and the ratio of TFPI to FXa was lower in NP tissue. CONCLUSION The coagulation cascade is associated with NP compared to control and uncinate tissue from CRS patients, and TF and FVII are produced locally in sinonasal mucosa in patients. TF and FVII can activate the extrinsic coagulation pathway, suggesting that this pathway may activate fibrin deposition in CRSwNP. Reduced formation of the complex of FXa and TFPI in NP may reduce natural suppression of the extrinsic coagulation pathway in CRSwNP.
Collapse
Affiliation(s)
- Ping-Ping Cao
- Department of Otolaryngology-Head and Neck Surgery, Bejing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China; Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| | - Bao-Feng Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - James E Norton
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Lydia A Suh
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Roderick G Carter
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Whitney W Stevens
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Anna G Staudacher
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Julia H Huang
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kathryn E Hulse
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Anju T Peters
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Leslie C Grammer
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - David B Conley
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kevin C Welch
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert C Kern
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingying Ye
- Department of Otolaryngology-Head and Neck Surgery, Bejing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Robert P Schleimer
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
9
|
Parra-Ferro M, Justice JM, Lobo BC, Munger SD, Schlosser RJ, Mulligan JK. Utilization of Nasal Mucus to Investigate the Pathophysiology of Chronic Rhinosinusitis. Am J Rhinol Allergy 2022; 36:872-883. [PMID: 35848564 DOI: 10.1177/19458924221111830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nasal mucus is proving to be a useful means by which to study the pathogenesis of chronic rhinosinusitis (CRS). Given the increase in publications examining nasal mucus and the lack of a review on this topic, we will focus on this noninvasive approach to studying CRS. Particular attention will be drawn towards inflammatory cytokines and biomarkers and their influence on disease severity. METHODS A literature review of papers published in English pertaining to nasal mucus was performed using the PubMed database. The search utilized combinations of the following keywords: sinusitis, polyps, sample collection, nasal mucus, or nasal secretion. Studies solely on acute or bacterial sinusitis, allergic rhinitis, or cystic fibrosis were not included. RESULTS A wide variety of materials and methods have been used to collect nasal mucus. Numerous assay types have been performed with the most common being ELISA, cytometric bead array, and proteomics. Most studies have focused on examining the levels of Th1/Th2 cytokines along with chemokines associated with type 2 immunity. Other factors identified include growth factors, senescence-associated proteins, complement, and antimicrobial defenses have also been identified. Nasal mucus cytokines have proven useful in cluster analysis and predicting postoperative improvement in Sino-nasal Outcome Test (SNOT-22) scores. One limitation of the use of nasal mucus is that some studies have suggested that nasal mucus does not always reflect the tissue microenvironment. CONCLUSIONS Nasal mucus represents a critical tool by which to examine the sinonasal microenvironment in a noninvasive manner. Unlike studies of tissue, it can be utilized in both surgically and medically managed patients and avoids the trauma of biopsies. However, studies are still needed to determine the most effective method for nasal mucus collection. Studies should also take care to confirm that nasal mucus markers do, in fact, reflect the levels of the product studied in the tissue.
Collapse
Affiliation(s)
- Mauricio Parra-Ferro
- Department of Otolaryngology-Head & Neck Surgery, 3463University of Florida, Gainesville, Florida
| | - Jeb M Justice
- Department of Otolaryngology-Head & Neck Surgery, 3463University of Florida, Gainesville, Florida.,Center for Smell and Taste, 3463University of Florida, Gainesville, Florida
| | - Brian C Lobo
- Department of Otolaryngology-Head & Neck Surgery, 3463University of Florida, Gainesville, Florida
| | - Steven D Munger
- Department of Otolaryngology-Head & Neck Surgery, 3463University of Florida, Gainesville, Florida.,Department of Pharmacology and Therapeutics, 440202University of Florida College of Medicine, Gainesville, Florida.,Center for Smell and Taste, 3463University of Florida, Gainesville, Florida.,Training Program in Chemosensory Science, 3463University of Florida, Gainesville, Florida.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, 3463University of Florida College of Medicine, Gainesville, Florida
| | - Rodney J Schlosser
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Jennifer K Mulligan
- Center for Smell and Taste, 3463University of Florida, Gainesville, Florida.,Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, 3463University of Florida, Gainesville, Florida
| |
Collapse
|
10
|
Kato A, Schleimer RP, Bleier BS. Mechanisms and pathogenesis of chronic rhinosinusitis. J Allergy Clin Immunol 2022; 149:1491-1503. [PMID: 35245537 PMCID: PMC9081253 DOI: 10.1016/j.jaci.2022.02.016] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/07/2022] [Accepted: 02/18/2022] [Indexed: 11/19/2022]
Abstract
Chronic rhinosinusitis (CRS) is a heterogeneous disease characterized by local inflammation of the upper airways and is historically divided into 2 main phenotypes: CRS with nasal polyps and CRS without nasal polyps. Inflammation in CRS is mainly characterized by 3 endotypes based on elevation of canonical lymphocyte cytokines: type (T) 1 (T1) by TH1 cytokine IFN-γ, T2 by TH2 cutokines IL-4, IL-5, and IL-13, and T3 by TH17 cytokines including IL-17. Inflammation in both CRS without nasal polyps and CRS with nasal polyps is highly heterogeneous, and the frequency of various endotypes varies geographically around the world. This finding complicates establishment of a unified understanding of the mechanisms of pathogenesis in CRS. Sinonasal epithelium acts as a passive barrier, and epithelial barrier dysfunction is a common feature in CRS induced by endotype-specific cytokines directly and indirectly. The sinonasal epithelium also participates in both innate immunity via recognition by innate pattern-recognition receptors and promotes and regulates adaptive immunity via release of chemokines and innate cytokines including thymic stromal lymphopoietin. The purpose of this review was to discuss the contribution of the epithelium to CRS pathogenesis and to update the field regarding endotypic heterogeneity and various mechanisms for understanding pathogenesis in CRS.
Collapse
Affiliation(s)
- Atsushi Kato
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago.
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago
| | - Benjamin S Bleier
- Department of Otolaryngology-Head & Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston
| |
Collapse
|
11
|
Chen CL, Wang YT, Yao Y, Pan L, Guo B, Zhu KZ, Ma J, Wang N, Li XL, Deng YK, Liu Z. Inflammatory Endotypes and Tissue Remodeling Features in Antrochoanal Polyps. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:863-881. [PMID: 34734505 PMCID: PMC8569026 DOI: 10.4168/aair.2021.13.6.863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 12/03/2022]
Abstract
PURPOSE The pathogenic mechanisms of antrochoanal polyps (ACPs) remain largely unknown. This study aimed to characterize inflammatory patterns and tissue remodeling features in ACPs. METHODS Inflammatory cell infiltration and tissue edema severity as well as fibrin deposition in ACPs and bilateral eosinophilic and noneosinophilic nasal polyps (NPs) were studied with immunohistochemical and immunofluorescence staining. Cytokine levels in sinonasal tissues were detected with the Bio-Plex assay. The expression of coagulation and fibrinolytic markers was measured using reverse-transcription polymerase chain reaction and enzyme-linked immunosorbent assays. RESULTS Compared to control tissues and bilateral eosinophilic and noneosinophilic NPs, ACPs had higher levels of neutrophil infiltration and expression of myeloperoxidase (MPO), interleukin (IL)-8 and interferon (IFN)-γ. In total, 94.4% of ACPs demonstrated an eosinophil cationic protein/MPO ratio of < 1, compared to 79.0% of noneosinophilic and 26% of eosinophilic NPs. Principle component and multiple correspondence analyses revealed a neutrophilic and type 1 inflammation pattern in ACPs. Compared to control tissues, edema scores and fibrin deposition were increased, whereas d-dimer and tissue plasminogen activator (tPA) levels were decreased in ACPs and bilateral NPs, with more prominent changes in ACPs even than in eosinophilic NPs. The tPA levels were negatively correlated with IFN-γ, IL-8, and MPO levels in ACPs. Neutrophils were the major cellular source of IFN-γ in ACPs, and the number of IFN-γ+ neutrophils was elevated in ACPs than in control tissues and bilateral eosinophilic and noneosinophilic NPs. CONCLUSIONS ACPs are characterized by the neutrophilic and type 1 inflammation endotype. Neutrophil-derived IFN-γ is associated with reduced tPA production in ACPs.
Collapse
Affiliation(s)
- Cai-Ling Chen
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ting Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Yao
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Pan
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bei Guo
- Department of Otolaryngology-Head and Neck Surgery, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke-Zhang Zhu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Ma
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Li Li
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Ke Deng
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
12
|
Sinonasal Tissue Remodelling during Chronic Rhinosinusitis. Int J Otolaryngol 2021; 2021:7428955. [PMID: 34567126 PMCID: PMC8460364 DOI: 10.1155/2021/7428955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
The purpose of this review is to summarise contemporary knowledge of sinonasal tissue remodelling during chronic rhinosinusitis (CRS), a chronic disease involving long-term inflammation of the paranasal sinuses and nasal passage. The concept of tissue remodelling has significant clinical relevance because of its potential to cause irreversibility in chronic airway tissues. Recent studies have indicated that early surgical treatment of CRS may improve clinical outcome. Tissue remodelling has been described in the literature extensively with no consensus on how remodelling is defined. This review describes various factors implicated in establishing remodelling in sinonasal tissues with a special mention of asthma as a comorbid condition. Some of the main histological features of remodelling include basement membrane thickening and collagen modulation. This may be an avenue of research with regard to targeted therapy against remodelling in CRS.
Collapse
|
13
|
Asano K, Ueki S, Tamari M, Imoto Y, Fujieda S, Taniguchi M. Adult-onset eosinophilic airway diseases. Allergy 2020; 75:3087-3099. [PMID: 33040364 DOI: 10.1111/all.14620] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Eosinophilic airway inflammation is one of the cardinal features of allergic airway diseases such as atopic asthma and allergic rhinitis. These childhood-onset conditions are mediated by allergen and allergen-specific IgE and often accompanied by other allergic diseases including food allergy and eczema. They can develop consecutively in the same patient, which is referred to as an allergic march. In contrast, some phenotypes of asthma, nonsteroidal anti-inflammatory drugs-exacerbated airway disease (N-ERD), chronic rhinosinusitis with nasal polyps (CRSwNP)/eosinophilic CRS and allergic bronchopulmonary aspergillosis/mycosis (ABPA/ABPM) are adult-onset airway diseases, which are characterized by prominent peripheral blood eosinophilia. Most of these conditions, except for ABPA/ABPM, are nonatopic, and the coexistence of multiple diseases, including an adult-onset eosinophilic systemic disease, eosinophilic granulomatosis with polyangiitis (EGPA), is common. In this review, we focus on eosinophil biology, genetics and clinical characteristics and the pathophysiology of adult-onset eosinophilic asthma, N-ERD, CRSwNP/eosinophilic CRS, ABPA/ABPM and EGPA, while exploring the common genetic, immunological and pathological conditions among these adult-onset eosinophilic diseases.
Collapse
Affiliation(s)
- Koichiro Asano
- Division of Pulmonary Medicine Department of Medicine Tokai University School of Medicine Kanagawa Japan
| | - Shigeharu Ueki
- Department of General Internal Medicine and Clinical Laboratory Medicine Akita University Graduate School of Medicine Akita Japan
| | - Mayumi Tamari
- Division of Molecular Genetics Research Center for Medical Science The Jikei University School of Medicine Tokyo Japan
| | - Yoshimasa Imoto
- Division of Otorhinolaryngology–Head & Neck Surgery Department of Sensory and Locomotor Medicine Faculty of Medical Science University of Fukui Fukui Japan
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology–Head & Neck Surgery Department of Sensory and Locomotor Medicine Faculty of Medical Science University of Fukui Fukui Japan
| | - Masami Taniguchi
- Center for Allergy and Immunology Shonan Kamakura General Hospital Kanagawa Japan
| |
Collapse
|
14
|
Chen CL, Yao Y, Pan L, Hu ST, Ma J, Wang ZC, Kern RC, Schleimer RP, Liu Z. Common fibrin deposition and tissue plasminogen activator downregulation in nasal polyps with distinct inflammatory endotypes. J Allergy Clin Immunol 2020; 146:677-681. [PMID: 32112792 PMCID: PMC9187142 DOI: 10.1016/j.jaci.2020.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/03/2020] [Accepted: 02/18/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Cai-Ling Chen
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Yao
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Pan
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si-Tao Hu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Ma
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Chao Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Robert C Kern
- Deprtment of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Liu Z, Chen J, Cheng L, Li H, Liu S, Lou H, Shi J, Sun Y, Wang D, Wang C, Wang X, Wei Y, Wen W, Yang P, Yang Q, Zhang G, Zhang Y, Zhao C, Zhu D, Zhu L, Chen F, Dong Y, Fu Q, Li J, Li Y, Liu C, Liu F, Lu M, Meng Y, Sha J, She W, Shi L, Wang K, Xue J, Yang L, Yin M, Zhang L, Zheng M, Zhou B, Zhang L. Chinese Society of Allergy and Chinese Society of Otorhinolaryngology-Head and Neck Surgery Guideline for Chronic Rhinosinusitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:176-237. [PMID: 32009319 PMCID: PMC6997287 DOI: 10.4168/aair.2020.12.2.176] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 02/05/2023]
Abstract
The current document is based on a consensus reached by a panel of experts from the Chinese Society of Allergy and the Chinese Society of Otorhinolaryngology-Head and Neck Surgery, Rhinology Group. Chronic rhinosinusitis (CRS) affects approximately 8% of Chinese adults. The inflammatory and remodeling mechanisms of CRS in the Chinese population differ from those observed in the populations of European descent. Recently, precision medicine has been used to treat inflammation by targeting key biomarkers that are involved in the process. However, there are no CRS guidelines or a consensus available from China that can be shared with the international academia. The guidelines presented in this paper cover the epidemiology, economic burden, genetics and epigenetics, mechanisms, phenotypes and endotypes, diagnosis and differential diagnosis, management, and the current status of CRS in China. These guidelines-with a focus on China-will improve the abilities of clinical and medical staff during the treatment of CRS. Additionally, they will help international agencies in improving the verification of CRS endotypes, mapping of eosinophilic shifts, the identification of suitable biomarkers for endotyping, and predicting responses to therapies. In conclusion, these guidelines will help select therapies, such as pharmacotherapy, surgical approaches and innovative biotherapeutics, which are tailored to each of the individual CRS endotypes.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Cheng
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, China
| | - Huabin Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Shixi Liu
- Department of Otolaryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongfei Lou
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Jianbo Shi
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Sun
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dehui Wang
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Xiangdong Wang
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yongxiang Wei
- Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Weiping Wen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Hospital, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pingchang Yang
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Qintai Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Gehua Zhang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Changqing Zhao
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Dongdong Zhu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Li Zhu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, China
| | - Fenghong Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Dong
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingyun Li
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yanqing Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Chengyao Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Feng Liu
- Department of Otolaryngology, West China Hospital, Sichuan University, Chengdu, China
| | - Meiping Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yifan Meng
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Jichao Sha
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wenyu She
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lili Shi
- Department of Otolaryngology Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kuiji Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Jinmei Xue
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Luoying Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Min Yin
- Department of Otorhinolaryngology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- International Centre for Allergy Research, Nanjing Medical University, Nanjing, China
| | - Lichuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ming Zheng
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Bing Zhou
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
16
|
Imoto Y, Kato A, Takabayashi T, Stevens W, Norton JE, Suh LA, Carter RG, Weibman AR, Hulse KE, Harris KE, Peters AT, Grammer LC, Tan BK, Welch K, Shintani-Smith S, Conley DB, Kern RC, Fujieda S, Schleimer RP. Increased thrombin-activatable fibrinolysis inhibitor levels in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2019; 144:1566-1574.e6. [PMID: 31562871 PMCID: PMC6900453 DOI: 10.1016/j.jaci.2019.08.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/02/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is a heterogeneous chronic inflammatory disease subdivided based on the presence or absence of nasal polyps (NPs). Histologic features of chronic rhinosinusitis with nasal polyps (CRSwNP) include inflammatory cell infiltration and excessive fibrin deposition in NPs. Thrombin-activatable fibrinolysis inhibitor (TAFI) is an enzyme that plays an antifibrinolytic role in the body. The significance of TAFI has been documented in patients with chronic inflammatory diseases, including chronic lung disease; however, it has not been evaluated in the pathogenesis of NPs. OBJECTIVE The objective of this study was to evaluate the potential role of TAFI in the pathogenesis of NPs. METHODS Nasal lavage fluid was collected from control subjects and patients with CRS. We measured levels of thrombin/anti-thrombin complex (TATc) and TAFI protein using an ELISA. RESULTS TATc levels in nasal lavage fluid were significantly increased in patients with CRSwNP and patients with chronic rhinosinusitis without nasal polyps (CRSsNP) compared with control subjects, and TAFI levels in nasal lavage fluid were also significantly increased in patients with CRSwNP compared with those in control subjects and patients with CRSsNP. There was a significant correlation between TATc and TAFI levels in nasal lavage fluid. Interestingly, patients with CRS and asthma showed increased TATc and TAFI levels in nasal lavage fluid compared with those in patients with CRS without asthma, especially patients with CRSwNP. CONCLUSIONS Increased TATc and TAFI levels in nasal passages of patients with CRSwNP might participate in fibrin deposition in NPs and might play a role in the pathogenesis of CRSwNP and asthma.
Collapse
Affiliation(s)
- Yoshimasa Imoto
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otorhinolaryngology Head & Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| | - Atsushi Kato
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Tetsuji Takabayashi
- Department of Otorhinolaryngology Head & Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Whitney Stevens
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - James E Norton
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Lydia A Suh
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Roderick G Carter
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Ava R Weibman
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kathryn E Hulse
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kathleen E Harris
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Anju T Peters
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Leslie C Grammer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Bruce K Tan
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Kevin Welch
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | | | - David B Conley
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Robert C Kern
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Shigeharu Fujieda
- Department of Otorhinolaryngology Head & Neck Surgery, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill
| |
Collapse
|
17
|
Kim JY, Ko I, Kim MS, Kim DW, Cho BJ, Kim DK. Relationship of Chronic Rhinosinusitis with Asthma, Myocardial Infarction, Stroke, Anxiety, and Depression. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 8:721-727.e3. [PMID: 31541771 DOI: 10.1016/j.jaip.2019.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is a common chronic inflammatory disease of the nose and paranasal sinuses. It often has a high burden and is difficult to treat because of comorbidities. However, no population-based, long-term longitudinal study has investigated the relationship between CRS and its comorbidities. OBJECTIVE To investigate the potential relationship between CRS and its comorbidities-asthma, acute myocardial infarction (AMI), stroke, anxiety disorder, and depression-using a representative sample. METHODS Data for a total of 1,025,340 patients from the Korean National Health Insurance Service database from 2002 to 2013, including 14,762 patients with CRS and 29,524 patients without CRS, were used for this study. A 1:2 propensity score matching was performed using the nearest-neighbor matching method and sociodemographic factors and enrollment year. Cox proportional hazards model was used to analyze the hazard ratio (HR) of CRS for asthma, AMI, stroke, anxiety disorder, and depression. RESULTS The incidence rates of asthma, AMI, and stroke were 71.1, 3.1, and 7.7 per 1000 person-years in patients with CRS, respectively. The adjusted HRs of asthma, AMI, and stroke were 2.06 (95% CI, 2.00-2.13), 1.29 (95% CI, 1.15-1.44), and 1.16 (95% CI, 1.08-1.24), respectively, in patients with CRS versus patients without CRS. The incidence rates of anxiety disorder and depression in patients with CRS were 42.1 and 24.2 per 1000 person-years, respectively. The adjusted HRs of anxiety disorder (HR, 1.54; 95% CI, 1.49-1.60) and depression (HR, 1.50; 95% CI, 1.44-1.57) were significantly greater in patients with CRS versus patients without CRS. CONCLUSIONS CRS is associated with an increased incidence of asthma, AMI, stroke, anxiety disorder, and depression. Therefore, we suggest that clinicians should monitor patients with CRS carefully, and optimize management as a means to potentially decrease these other associated comorbid conditions.
Collapse
Affiliation(s)
- Jong-Yeup Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon, Korea; Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon, Korea
| | - Inseok Ko
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon, Korea
| | - Myoung Suk Kim
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon, Korea
| | - Dae Woo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Bum-Joo Cho
- Department of Ophthalmology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea; Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Dong-Kyu Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea; Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea.
| |
Collapse
|
18
|
Choi HG, Lee HJ. Increased risk of psoriasis in patients with chronic rhinosinusitis without nasal polyps: a longitudinal follow-up study using Korean national sample cohort. Eur Arch Otorhinolaryngol 2019; 276:3105-3111. [PMID: 31352504 DOI: 10.1007/s00405-019-05580-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/19/2019] [Indexed: 11/30/2022]
Abstract
PURPOSE Focal chronic inflammation or infection is thought to be one of the causes of psoriasis. Few reports on the association between chronic rhinosinusitis (CRS) and psoriasis exist, thus it is poorly defined. This study seeks to investigate the incidence of psoriasis in patients with CRS with reference to a matched control group. METHODS This national cohort study relies on data from Korean Health Insurance Review and Assessment Service-National Sample Cohort (HIRA-NSC), which were entered from 2002 to 2013. A total of 34,219 patients with CRS without nasal polyps was matched with 136,976 controls. The Cox proportional hazard model was used to analyze the crude (simple) and adjusted hazard ratios (HRs) of psoriasis. For subgroup analysis, participants were grouped by age and sex. RESULTS The risk of psoriasis was higher in the CRS group than in the control group (adjusted HR 1.28, 95% CI 1.12-1.47, P < 0.001). Children, adolescents below 19 years regardless of sex, and old adult men above 60 years are at significantly higher risk for subsequent psoriasis after CRS diagnosis. CONCLUSION CRS may increase the risk of psoriasis.
Collapse
Affiliation(s)
- Hyo Geun Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Anyang, Korea
| | - Ho Jun Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon, Korea.
| |
Collapse
|
19
|
Mueller SK, Nocera AL, Dillon ST, Libermann TA, Wendler O, Bleier BS. Tissue and Exosomal Serine Protease Inhibitors Are Significantly Overexpressed in Chronic Rhinosinusitis With Nasal Polyps. Am J Rhinol Allergy 2019; 33:359-368. [PMID: 30810048 DOI: 10.1177/1945892419831108] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background The fibrinolysis pathway has been previously implicated in the etiopathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP). Objective The purpose of this study was (1) to explore protein derangements of selected protease inhibitors of the serpin superfamily in CRSwNP and (2) to correlate the protease inhibitor derangements of the fibrinolysis pathway in tissue with exosomal samples to evaluate the potential of an exosomal noninvasive “liquid biopsy” for CRSwNP. Methods Institutional review board approved study in which matched tissue and mucus exosomal proteins (SerpinB2, SerpinF2, SerpinG1, and SerpinE1) were compared between control and CRSwNP patients using Western Blot analysis (n = 6/group) and immunohistochemistry (IHC). Transcriptome analysis (n = 10/group) on the same proteins was performed using whole transcriptome sequencing. Semiquantitative analysis of the Western Blots was performed using the Whitney–Mann U test. Results The transcriptomic data set showed multiple differentially expressed genes including SerpinB2 (fold changes [FC] 7.38), SerpinE1 (FC 1.42), SerpinF2 (FC 2.03), and SerpinG1 (FC 0.72). Western Blot and IHC analysis showed an overexpression of the Serpin protease inhibitors in tissue (SerpinB2, P < .01; SerpinE1, P < .01; SerpinF2, P < .01; and SerpinG1, P < .01) indicating a downregulation of the fibrinolysis cascade. The mucus exosomal serpin proteins exhibited similar findings. Conclusion Our analysis supported that protease inhibitors of the fibrinolysis pathway, especially SerpinB2, SerpinF2, and SerpinG1, are highly deranged in patients with CRSwNP. These findings suggest a downregulation of the fibrinolysis pathway via proteolytic cascade imbalance leading to excessive polyp fibrin deposition. Our data further supported our hypothesis that exosomal proteomic analyses may be used as noninvasive “liquid biopsy” for CRSwNP and a novel method to study chronic sinonasal inflammation.
Collapse
Affiliation(s)
- S K Mueller
- 1 Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,2 Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - A L Nocera
- 2 Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - S T Dillon
- 3 Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,4 Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,5 BIDMD Genomics, Proteomics, Bioinformatics and Systems Biology Center, Harvard Medical School, Boston, Massachusetts
| | - T A Libermann
- 3 Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,4 Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.,5 BIDMD Genomics, Proteomics, Bioinformatics and Systems Biology Center, Harvard Medical School, Boston, Massachusetts
| | - O Wendler
- 1 Department of Otorhinolaryngology, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - B S Bleier
- 2 Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
20
|
Hong SN, Zhang YL, Rhee CS, Kim DY. Probable Roles of Coagulation Cascade and Fibrinolysis System in the Development of Allergic Rhinitis. Am J Rhinol Allergy 2018; 33:137-144. [PMID: 30518218 DOI: 10.1177/1945892418816015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Dysregulation of the coagulation cascade and fibrinolysis system may play an etiologic role in many diseases. Allergic diseases such as bronchial asthma, atopic dermatitis, and conjunctivitis are also associated with fibrin accumulation caused by a change in hemostasis. However, only a few studies have dealt with the relationship between allergic rhinitis (AR) and the coagulation system. OBJECTIVE We investigated the difference of coagulation and fibrinolysis cascade components between an AR mouse model and a control mice. METHODS BALB/c mice were sensitized and challenged with ovalbumin. Multiple parameters of coagulation cascade and fibrinolysis system such as factors II, V, VII, X, and XIII; tissue-type plasminogen activator; urokinase-type plasminogen activator (u-PA); plasminogen activator inhibitor-1 (PAI-1); and fibrin were compared between the AR model group and the control group. RESULTS The symptom scores and eosinophil counts were higher in the AR group than in the control group ( P < .01). The mRNA expression level of u-PA ( P = .040) was significantly lower, and the expression levels of factor II ( P = .038) and factor X ( P = .036) were significantly higher, in the AR group. Immunohistochemical staining revealed that most of the fibrinolysis system and coagulation cascade components were localized to the epithelium, endothelium, and submucosal glands of the nasal mucosa. u-PA was downregulated in the AR group, whereas fibrin deposition was more prominent in the AR group than in the control group. CONCLUSION In AR, particular components of the coagulation cascade were increased and fibrinolysis system was decreased compared to normal control. This difference may be associated with the fibrin deposition in the mucosa of AR mouse model.
Collapse
Affiliation(s)
- Seung-No Hong
- 1 Department of Otorhinolaryngology, Seoul National University College of Medicine, Boramae Medical Center, Seoul, Republic of Korea
| | - Yu-Lian Zhang
- 2 Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin, People's Republic of China
| | - Chae-Seo Rhee
- 3 Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong-Young Kim
- 3 Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
21
|
Mueller SK, Nocera AL, Dillon ST, Wu D, Libermann TA, Bleier BS. Highly multiplexed proteomic analysis reveals significant tissue and exosomal coagulation pathway derangement in chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol 2018; 8:1438-1444. [DOI: 10.1002/alr.22189] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 05/05/2018] [Accepted: 06/05/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Sarina K. Mueller
- Department of Otolaryngology; Massachusetts Eye and Ear Infirmary, Harvard Medical School; Boston MA
- Department of Otorhinolaryngology, Head and Neck Surgery; Friedrich-Alexander University Erlangen-Nürnberg (FAU); Erlangen Germany
| | - Angela L. Nocera
- Department of Otolaryngology; Massachusetts Eye and Ear Infirmary, Harvard Medical School; Boston MA
| | - Simon T. Dillon
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC); Harvard Medical School; Boston MA
- Division of Interdisciplinary Medicine and Biotechnology; BIDMC, Harvard Medical School; Boston MA
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center; Harvard Medical School; Boston MA
| | - Dawei Wu
- Department of Otolaryngology; Massachusetts Eye and Ear Infirmary, Harvard Medical School; Boston MA
| | - Towia A. Libermann
- Department of Medicine, Beth Israel Deaconess Medical Center (BIDMC); Harvard Medical School; Boston MA
- Division of Interdisciplinary Medicine and Biotechnology; BIDMC, Harvard Medical School; Boston MA
- BIDMC Genomics, Proteomics, Bioinformatics and Systems Biology Center; Harvard Medical School; Boston MA
| | - Benjamin S. Bleier
- Department of Otolaryngology; Massachusetts Eye and Ear Infirmary, Harvard Medical School; Boston MA
| |
Collapse
|
22
|
The epidermal growth factor receptor inhibitor AG1478 inhibits eosinophilic inflammation in upper airways. Clin Immunol 2018; 188:1-6. [DOI: 10.1016/j.clim.2017.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/23/2017] [Accepted: 11/22/2017] [Indexed: 01/18/2023]
|
23
|
Wu D, Wei Y, Bleier BS. Emerging Role of Proteases in the Pathogenesis of Chronic Rhinosinusitis with Nasal Polyps. Front Cell Infect Microbiol 2018; 7:538. [PMID: 29376037 PMCID: PMC5770401 DOI: 10.3389/fcimb.2017.00538] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/26/2017] [Indexed: 12/17/2022] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a heterogeneous upper airway disease with multiple etiologies. Clinically, CRSwNP can be classified into either eosinophilic or non-eosinophilic subtypes. The eosinophilic phenotype of CRSwNP is widely thought to be highly associated with recurrence of nasal polyps or surgical failure. Epithelial cells have a crucial role in the development of Th2-biased airway diseases. Recent studies have shown that a wide range of external stimuli such as allergens and microorganisms can elicit the release of epithelial-derived Th2-driving cytokines and chemokines. Protease activity is a feature common to these multiple environmental insults and there is growing evidence for the concept that an imbalance of proteases and protease inhibitors in the epithelial barrier leads to both the initiation and maintenance of chronic eosinophilic airway inflammation. In this review, we analyze recent work on the role of proteases in the development of the sinonasal mucosal type 2 immune response with an emphasis on the molecular pathways promoting adaptive Th2 cell immunity.
Collapse
Affiliation(s)
- Dawei Wu
- The Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States.,The Department of Otorhinolaryngology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yongxiang Wei
- The Department of Otorhinolaryngology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Benjamin S Bleier
- The Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
24
|
Shimizu S, Tojima I, Takezawa K, Matsumoto K, Kouzaki H, Shimizu T. Thrombin and activated coagulation factor X stimulate the release of cytokines and fibronectin from nasal polyp fibroblasts via protease-activated receptors. Am J Rhinol Allergy 2017; 31:13-18. [PMID: 28234145 DOI: 10.2500/ajra.2017.31.4400] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Nasal epithelial cells and infiltrating eosinophils express tissue factor, and high thrombin activity and excess fibrin deposition are found in nasal secretion and in nasal polyp from patients with chronic rhinosinusitis with nasal polyp (CRSwNP). Activated coagulation factors play important roles not only in thrombosis but also in inflammation through interaction with protease-activated receptors (PAR). However, little is known about the effects of activated coagulation factors on the release of cytokines and extracellular matrix from nasal polyp fibroblasts (NPF). PURPOSE The purpose of this study was to analyze the expression of PARs, which are receptors for activated coagulation factors, on NPFs and to determine the roles of thrombin and activated coagulation factor X (FXa) in the release of cytokines and fibronectin from NPFs. METHODS NPFs were obtained from patients with CRSwNP, and the messenger RNA (mRNA) and protein expression of PARs in these NPFs were examined. We then investigated whether thrombin or FXa stimulates the release of transforming growth factor (TGF) beta 1, fibronectin, eotaxin-1, interleukin (IL) 6, or IL-8 from cultured NPFs. The effects of PAR agonists on the release of cytokines and fibronectin were also examined. RESULTS NPFs expressed the mRNA and proteins of all four PARs: PAR-1, PAR-2, PAR-3, and PAR-4. Both thrombin and FXa significantly stimulated the release of TGF beta 1, fibronectin, eotaxin-1, IL-6, and IL-8 from cultured NPFs. PAR-1 and PAR-2 agonists stimulated the secretion of TGF beta 1, fibronectin, eotaxin-1, IL-6, and IL-8. PAR-3 agonist stimulated the release of TGF beta 1, fibronectin, and eotaxin-1. PAR-4 agonist did not induce the release of these molecules. CONCLUSION NPFs play important roles in the pathophysiology of CRSwNP such as in nasal polyp formation and inflammatory cell infiltration by releasing cytokines and extracellular matrix proteins. Activated coagulation factors, thrombin and FXa, stimulate the release of these cytokines and fibronectin from NPFs via PARs.
Collapse
Affiliation(s)
- Shino Shimizu
- Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Divekar R, Rank M, Squillace D, Kita H, Lal D. Unsupervised network mapping of commercially available immunoassay yields three distinct chronic rhinosinusitis endotypes. Int Forum Allergy Rhinol 2017; 7:373-379. [PMID: 28042687 DOI: 10.1002/alr.21904] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND Endotyping chronic rhinosinusitis (CRS) through simplified cytokine assays may help direct individualized therapy such as corticosteroids, antibiotics, or biologics. We performed an unsupervised network analysis to endotype CRS and control subjects using a commercially available cytokine-chemokine immunoassay. METHODS A 41-plex cytokine-chemokine array along with major basic protein (MBP) assay was performed on sinonasal surgical tissue of 32 adults. Subjects were defined as non-CRS controls (n = 6), CRS with nasal polyps (CRSwNP; n = 13), and CRS without nasal polyps (CRSsNP; n = 13). Unsupervised network modeling was performed to reveal association cytokine-chemokine ("analyte") clusters and "subject" groups. RESULTS Network mapping and unsupervised clustering revealed 3 analyte clusters and 3 subject groups. Analyte cluster-1 was composed of T helper 1 (Th1)/Th17 type markers, analyte cluster-2 Th2 markers, and analyte cluster-3 chemokines (CC) and growth factors (GF). Subject group-1 was devoid of CRSwNP, had fewer asthmatics, and was associated most strongly with analyte cluster-3 (CC/GF) (p < 0.001). Subject group-2 was characterized with the most asthmatics (86%) and CRSwNP (100%) patients, and was associated with analyte cluster-2 (Th2; p < 0.001). Subject group-3 was associated with both analyte cluster-1 (Th1/Th17) and analyte cluster-3 (CC/GF) (p < 0.001), and had the highest proportion of CRSsNP patients (62.5%). Tissue levels of MBP, eosinophilia, and computed tomography (CT) scores were significantly higher in subject group-2 vs other groups (p ≤ 0.05). CONCLUSION An unbiased network-mapping approach using a commercially available immunoassay kit reveals 3 distinct tissue cytokine-chemokine signatures that endotype CRS patients and controls. These signatures are prominent even in a limited number of patients, and may help formulate individualized therapy and optimize outcomes.
Collapse
Affiliation(s)
- Rohit Divekar
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic in Rochester, Rochester, MN
| | - Matthew Rank
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic in Arizona, Scottsdale, AZ
| | - Diane Squillace
- Allergic Diseases Research Laboratory, Mayo Clinic, Rochester, MN
| | - Hirohito Kita
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic in Rochester, Rochester, MN.,Allergic Diseases Research Laboratory, Mayo Clinic, Rochester, MN
| | - Devyani Lal
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic in Arizona, Phoenix, AZ
| |
Collapse
|
26
|
Kim DW, Cho SH. Emerging Endotypes of Chronic Rhinosinusitis and Its Application to Precision Medicine. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2017; 9:299-306. [PMID: 28497916 PMCID: PMC5446944 DOI: 10.4168/aair.2017.9.4.299] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 12/13/2022]
Abstract
Chronic rhinosinusitis (CRS) is a heterogeneous inflammatory disease with various underlying pathophysiologic mechanisms which translate to endotypes, in contrast to clinical phenotypes or histological subtypes. Defining endotypes can help clinicians predict disease prognosis, select subjects suitable for a specific therapy, and assess risks for comorbid conditions, including asthma. Therefore, with recent advancement of biologicals in CRS clinical trials, endotyping can be a breakthrough in treating recalcitrant CRS. CRS is caused by dysregulated immunologic responses to external stimuli, which induce various inflammatory mediators from inflammatory cells, including innate lymphoid cells (ILCs) and T lymphocytes as well as epithelial cells. Thymic stromal lymphopoietin (TSLP), interleukin (IL)-25, and IL-33, which are mainly secreted by epithelial cells in response to external stimuli, act on type 2 ILCs and T helper 2 (Th2) cells, inducing IL-4, IL-5, and IL-13. Local immunoglobulin E (IgE) production is also a signature event in nasal polyps (NP). These inflammatory mediators are novel potential therapeutic targets for recalcitrant CRS. This article reviews recent publications regarding endotypes and endotype-based therapeutic strategies in CRS and NP.
Collapse
Affiliation(s)
- Dae Woo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Seong H Cho
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
27
|
Ge S, Li T, Yao Q, Yan H, Huiyun Z, Zheng Y, Zhang B, He S. Expression of proteinase-activated receptor (PAR)-2 in monocytes from allergic patients and potential molecular mechanism. Cell Biol Toxicol 2016; 32:529-542. [PMID: 27423452 DOI: 10.1007/s10565-016-9353-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/05/2016] [Indexed: 02/05/2023]
Abstract
Serine proteases play an important role in inflammation via PARs. However, little is known of expression levels of PARs on monocytes of allergic patients, and influence of serine proteases and PARs on TNF-α secretion from monocytes. Using quantitative real-time PCR (qPCR) and flowcytometry techniques, we observed that the expression level of PAR-2 in monocytes of patients with allergic rhinitis and asthma was increased by 42.9 and 38.2 %. It was found that trypsin, thrombin, and tryptase induced up to 200, 320, and 310 % increase in TNF-α release from monocytes at 16 h, respectively. PAR-1 agonist peptide, SFLLR-NH2, and PAR-2 agonist peptide tc-LIGRLO-NH2 provoked up to 210 and 240 % increase in release of TNF-α. Since SCH 79797, a PAR-1 antagonist, and PD98059, an inhibitor of ERK inhibited thrombin- and SFLLR-NH2-induced TNF-α release, the action of thrombin is most likely through a PAR-1- and ERK-mediated signaling mechanism. Similarly, because FSLLRN-NH2, an inhibitor of PAR-2 diminished tryptase- and tc-LIGRLO-NH2-induced TNF-α release, the action of tryptase appears PAR-2 dependent. Moreover, in vivo study showed that both recombinant cockroach major allergens Per a 1 and Per a 7 provoked upregulation of PAR-2 and PAR-1 expression on CD14+ cells in OVA-sensitized mouse peritoneum. In conclusion, increased expression of PAR-2 in monocytes of AR and asthma implicates that PAR-2 likely play a role in allergy. PAR-2- and PAR-1-mediated TNF-α release from monocytes suggests that these unique protease receptors are involved in the pathogenesis of inflammation.
Collapse
Affiliation(s)
- Shuqing Ge
- Allergy and Clinical Immunology Research Centre, the First Affiliated Hospital of Liaoning Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning, 121001, People's Republic of China
- Department of Dentistry, the First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, 121001, China
| | - Tao Li
- Department of Infectious Diseases, Shantou University Medical College, Shantou, 515031, China
| | - Qijian Yao
- Department of Infectious Diseases, Shantou University Medical College, Shantou, 515031, China
| | - Hongling Yan
- Clinical Research Centre, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhang Huiyun
- Allergy and Clinical Immunology Research Centre, the First Affiliated Hospital of Liaoning Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning, 121001, People's Republic of China
| | - Yanshan Zheng
- Department of Infectious Diseases, Shantou University Medical College, Shantou, 515031, China
| | - Bin Zhang
- Department of Dentistry, the First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, 121001, China
| | - Shaoheng He
- Allergy and Clinical Immunology Research Centre, the First Affiliated Hospital of Liaoning Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, Liaoning, 121001, People's Republic of China.
| |
Collapse
|
28
|
Shimizu S, Ogawa T, Takezawa K, Tojima I, Kouzaki H, Shimizu T. Tissue factor and tissue factor pathway inhibitor in nasal mucosa and nasal secretions of chronic rhinosinusitis with nasal polyp. Am J Rhinol Allergy 2016; 29:235-42. [PMID: 26163243 DOI: 10.2500/ajra.2015.29.4183] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Activation of the coagulation system with an increase in thrombin generation is involved in the pathogenesis of tissue remodeling in chronic rhinosinusitis (CRS). Tissue factor (TF) is an important protein for initiation of the extrinsic coagulation pathway, and TF pathway inhibitor (TFPI) is a regulator of TF-induced coagulation. This study was conducted to elucidate the roles of TF and TFPI in the pathogenesis of CRS. METHODS Tissue localization of TF, TFPI, and fibrin was determined by immunostaining of nasal polyps and inferior turbinates obtained during endonasal surgery in patients with CRS with nasal polyp (CRSwNP). Nasal secretions were collected from patients with CRSwNP, allergic rhinitis, and from control patients. The concentrations of TF and TFPI were measured in nasal secretions from each group. The concentrations of TF and TFPI released into culture medium by normal human nasal epithelial cells treated with thrombin, protease-activated receptor 1 agonist peptide, or tumor necrosis factor α were also measured. RESULTS TF expression was localized in nasal epithelial cells and in infiltrating eosinophils of nasal mucosa. TFPI expression was localized in nasal epithelial cells, and fibrin deposition was observed in nasal secretions and the lamina propria of nasal polyps. Nasal secretions contained significant concentrations of TF and TFPI. The concentration of TFPI in nasal secretions correlated positively with thrombin activity and the concentration of thrombin-antithrombin III complex. Treatment with thrombin, protease-activated receptor 1 agonist peptide, or tumor necrosis factor α stimulated significant release of TF and TFPI from cultured nasal epithelial cells. CONCLUSIONS By upregulating the coagulation system, TF and TFPI play an important role in the pathogenesis of CRSwNP.
Collapse
Affiliation(s)
- Shino Shimizu
- Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Takezawa K, Ogawa T, Shimizu S, Shimizu T. Epidermal Growth Factor Receptor Inhibitor Ag1478 Inhibits Mucus Hypersecretion in Airway Epithelium. Am J Rhinol Allergy 2016; 30:1-6. [DOI: 10.2500/ajra.2016.30.4263] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Mucus hypersecretion and neutrophil infiltration are important characteristics of airway inflammation. Epidermal growth factor receptor (EGFR) transactivation induces mucus and inflammatory cytokine secretion from airway epithelial cells. To elucidate the roles of EGFR in airway inflammation, the in vitro effects on mucin production and interleukin (IL) 8 secretion from cultured airway epithelial cells and the in vivo effects on mucus hypersecretion and neutrophil infiltration in rat nasal mucosa of the EGFR tyrosine kinase inhibitor AG1478 were examined. Methods The in vitro effects of AG1478 treatment of cultured NCI-H292 cells on lipopolysaccharide (LPS) induced or tumor necrosis factor (TNF) a induced MUC5AC mucin and IL-8 secretion were evaluated. Hypertrophic and metaplastic changes of goblet cells, mucus production and neutrophil infiltration in rat nasal epithelium were induced by intranasal instillation of LPS in vivo, and the inhibitory effects of AG1478 by intraperitoneal injection or intranasal instillation were examined. Results AG1478 (1-1000 nM) significantly inhibited both LPS-induced and TNF-α-induced secretion of MUC5AC and IL-8 from cultured NCI-H292 cells in a dose-dependent manner. The expression of MUC5AC and IL-8 messenger RNAs was also significantly inhibited. Intranasal instillation of AG1478 one hour after intranasal LPS instillation significantly inhibited LPS-induced goblet cell metaplasia, mucus production, and neutrophil infiltration in rat nasal epithelium, as did intraperitoneal injection of AG1478 one hour before LPS instillation. Conclusions These results indicated that EGFR transactivation plays an important role in mucin and IL-8 secretion from airway epithelial cells. Intranasal instillation of an EGFR tyrosine kinase inhibitor may be a new therapeutic approach for the treatment of upper airway inflammation.
Collapse
Affiliation(s)
- Kumiko Takezawa
- Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takao Ogawa
- Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Shino Shimizu
- Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takeshi Shimizu
- Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
30
|
Type 5 and 6 nasal septal deformities: Could we predict and prevent acute coronary syndrome attacks in the future? Med Hypotheses 2015; 85:640-4. [PMID: 26277657 DOI: 10.1016/j.mehy.2015.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/30/2015] [Accepted: 08/01/2015] [Indexed: 11/23/2022]
Abstract
Undisturbed nasal breathing is essential for normal breathing physiology as a whole. Nasal septal deformities (NSD) are well known as a factor which can remarkably and substantially affect the quality of nasal and pulmonary breathing. However, it is well known that type 5 and type 6 nasal septal deformities may cause only a moderate, unilateral nasal obstruction or none at all. The effects of nasal obstruction on the respiratory and cardiovascular systems have been well studied so far: right ventricle problems, ischemic heart diseases, sleep disorders, mucociliary clearance system disturbances, paranasal sinus pathology, have all been described as a result of impaired nasal breathing. The connection between the upper and lower respiratory systems has been recognized in allergic rhinitis and asthma as well, resulting in the united airways concept. Most recently, the ostensible connection between chronic rhinosinusitis (CRS) and acute myocardial infarction has been said to be proven. However, the results of this study might have not been well founded since there are no direct and clear proofs that CRS as a chronic inflammatory process has anything to do with the acute coronary syndrome (ACS). On the other hand, a large international study on the incidence of NSD in CRS patients, based on the Mladina classification, showed that NSD were present in a high incidence and that the most frequent deformities were types 5 (36.18%) and 7 (29.92%). The vast majority of those types 7 consisted of types 3 and (again) types 5 or types 6 (76.32%). The fact that in CRS patients a remarkably high incidence of type 5 septal deformity can be seen, gives rise to thinking that this factor perhaps plays a role in the onset of ACS. Acute coronary syndrome is one of the leading causes of death all over the world. Traditional risk factors such as family history, overweight body, smoking, stress, hypertension, hypercholesterolemia, diabetes mellitus, coronary artery calcium score, C-reactive protein, lipoprotein, homocysteine, lipoprotein-associated phospholipase A2, as well as high-density lipoprotein functionality perhaps cannot account for the entire risk for incident coronary events. Several other potential risk factors have been identified in an effort to improve risk assessment for ACS. This article reviews one of them: the possible influence of an unusual, so far unknown predisposing factor: type 5 or type 6 nasal septal deformities. They have been found as pure, isolated types or as a part of combined nasal septal deformity (type 7).
Collapse
|
31
|
|
32
|
Kim DY, Cho SH, Takabayashi T, Schleimer RP. Chronic Rhinosinusitis and the Coagulation System. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 7:421-30. [PMID: 26122502 PMCID: PMC4509654 DOI: 10.4168/aair.2015.7.5.421] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/02/2015] [Indexed: 12/16/2022]
Abstract
Chronic rhinosinusitis (CRS) is one of the most common chronic diseases in adults and severely affects quality of life in patients. Although various etiologic and pathogenic mechanisms of CRS have been proposed, the causes of CRS remain uncertain. Abnormalities in the coagulation cascade may play an etiologic role in many diseases, such as asthma and other inflammatory conditions. While studies on the relationship between asthma and dysregulated coagulation have been reported, the role of the coagulation system in the pathogenesis of CRS has only been considered following recent reports. Excessive fibrin deposition is seen in nasal polyp (NP) tissue from patients with chronic rhinosinusitis with nasal polyp (CRSwNP) and is associated with activation of thrombin, reduction of tissue plasminogen activator (t-PA) and upregulation of coagulation factor XIII-A (FXIII-A), all events that can contribute to fibrin deposition and crosslinking. These findings were reproduced in a murine model of NP that was recently established. Elucidation of the mechanisms of fibrin deposition may enhance our understanding of tissue remodeling in the pathophysiology of NP and provide new targets for the treatment of CRSwNP.
Collapse
Affiliation(s)
- Dong Young Kim
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.; Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Seong H Cho
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.; Division of Rheumatology, Department of Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Tetsuji Takabayashi
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.; Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Fukui, Japan
| | - Robert P Schleimer
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
33
|
Evaluation on potential contributions of protease activated receptors related mediators in allergic inflammation. Mediators Inflamm 2014; 2014:829068. [PMID: 24876677 PMCID: PMC4021743 DOI: 10.1155/2014/829068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/20/2014] [Indexed: 01/16/2023] Open
Abstract
Protease activated receptors (PARs) have been recognized as a distinctive four-member family of seven transmembrane G protein-coupled receptors (GPCRs) that can be cleaved by certain serine proteases. In recent years, there has been considerable interest in the role of PARs in allergic inflammation, the fundamental pathologic changes of allergy, but the potential roles of PARs in allergy remain obscure. Since many of these proteases are produced and actively involved in the pathologic process of inflammation including exudation of plasma components, inflammatory cell infiltration, and tissue damage and repair, PARs appear to make important contribution to allergy. The aim of the present review is to summarize the expression of PARs in inflammatory and structural cells, the influence of agonists or antagonists of PARs on cell behavior, and the involvement of PARs in allergic disorders, which will help us to better understand the roles of serine proteases and PARs in allergy.
Collapse
|
34
|
Wang PC, Lin HC, Kang JH. Chronic Rhinosinusitis Confers an Increased Risk of Acute Myocardial Infarction. Am J Rhinol Allergy 2013; 27:e178-82. [DOI: 10.2500/ajra.2013.27.3952] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background The link between chronic inflammatory disease and cardiovascular disease (CVD) is recognized. Chronic rhinosinusitis (CRS) is one of the most common chronic inflammatory diseases. However, whether CRS increases the risk for CVD is still unknown. This epidemiology study investigated the risk for acute myocardial infarction (AMI) in patients with CRS using a large-scale population-based cohort study. Methods Data on all study cohorts were retrieved from the Longitudinal Health Insurance Database in Taiwan. In total, data on 7975 CRS subjects from 2001 to 2003 were extracted for the study cohort. We selected 39,875 comparison subjects whose demographic variables matched those of the study cohort. We individually tracked each subject for a 6-year period (from 2001 to 2009) to identify which subjects subsequently received a diagnosis of AMI. A stratified Cox proportional hazards regression was used to compare the 6-year risk of a subsequent AMI after a diagnosis of CRS. Results Among the 47,850 sampled subjects, the incidence rate of AMI during the 6-year follow-up period was 5.66/1000 person-years; rates were 8.49 and 5.09/1000 person-years for the study and comparison cohort, respectively. The hazard ratio (HR) for AMI during the 6-year follow-up period for subjects with CRS was 1.70 (95% confidence interval [CI], 1.52~1.91). In addition, after adjusting for cardiovascular risk factors, the HR of AMI for subjects with CRS was 1.48 (95% CI, 1.32~1.67) compared with subjects without CRS. Conclusion Patients with CRS were at higher risk for AMI occurrence in the 6-year follow-up.
Collapse
Affiliation(s)
- Pi-Chieh Wang
- Department of Family Medicine, PoJen General Hospital, Taipei, Taiwan
| | | | - Jiunn-Horng Kang
- Department of Physical Medicine and Rehabilitation, Taipei, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
35
|
Miyake Y, D'Alessandro-Gabazza CN, Takagi T, Naito M, Hataji O, Nakahara H, Yuda H, Fujimoto H, Kobayashi H, Yasuma T, Toda M, Kobayashi T, Yano Y, Morser J, Taguchi O, Gabazza EC. Dose-dependent differential effects of thrombin in allergic bronchial asthma. J Thromb Haemost 2013; 11:1903-15. [PMID: 23964923 DOI: 10.1111/jth.12392] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 08/04/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Apart from its role in the coagulation system, thrombin plays an important role in the inflammatory response through its protease-activated receptors (PARs). However, the role of thrombin in the immune response is not clear. OBJECTIVE To evaluate whether thrombin has a modulatory role in allergic bronchial asthma. METHODS Bronchial asthma was induced in mice by intraperitoneal sensitization and inhalation challenge with ovalbumin. Thrombin or its inhibitors were administered by inhalation before each allergen challenge. RESULTS Mice with low but sustained coagulation activation had reduced allergic inflammation, and allergic asthma was inhibited by low doses of thrombin but worsened by high doses. Allergic asthma was worsened by antithrombin, argatroban, hirudin, and anti-thrombomodulin antibody. Mice with a higher level of an inhibitor of both thrombin and activated protein C had worse disease. Heterozygous PAR-1 mice had less allergic inflammation, but PAR-1 agonist worsened it. Allergic bronchial inflammation was worsened in mice that received adoptive transfer of PAR-1 agonist-treated Th2 cells as compared with controls. Low levels of thrombin suppressed the maturation and secretion of cytokines in dendritic cells, but high levels enhanced this. CONCLUSIONS The effects of thrombin on allergic asthma are dose-dependent, with detrimental effects at high doses and protective effects at low doses. These data demonstrate that thrombin modulates the outcome in allergic bronchial asthma.
Collapse
Affiliation(s)
- Y Miyake
- Department of Immunology, Mie University Graduate School of Medicine, Tsu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ogawa T, Shimizu S, Shimizu T. The effect of heparin on antigen-induced mucus hypersecretion in the nasal epithelium of sensitized rats. Allergol Int 2013; 62:77-83. [PMID: 23000727 DOI: 10.2332/allergolint.12-oa-0438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 06/09/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Heparin is a potential anti-inflammatory drug for allergic airway inflammation. To elucidate the effects of heparin on allergic inflammation, we examined the in vivo effects of heparin on antigen-induced mucus hypersecretion and infiltration of eosinophils and neutrophils in the nasal epithelium of sensitized rats. METHODS We induced hypertrophic and metaplastic changes of goblet cells in the nasal epithelium of ovalbumin (OVA)-sensitized rats by intranasal challenge with OVA. The effects of intranasal instillation with low molecular weight heparin (LMWH; 1-1000IU/0.1ml) on mucus production and eosinophil/neutrophil infiltration were examined. RESULTS Intranasal instillation with low-dose LMWH (1-10IU/0.1ml) at 30 minutes before OVA instillation stimulated OVA-induced mucus production in the nasal epithelium of sensitized rats, whereas treatment with 100IU/0.1ml LMWH showed no effect. Intranasal instillation with high-dose LMWH (1000IU/0.1ml) significantly inhibited OVA-induced mucus production. Intranasal instillation with LMWH (1-1000IU/0.1ml) dose-dependently inhibited eosinophil and neutrophil infiltration into the rat nasal mucosa. CONCLUSIONS These results indicate that heparin inhibits mucus hypersecretion and infiltration of eosinophils and neutrophils in allergic inflammation, though the inhibitory effect against mucus production is obtained in high-dose heparin. Intranasal instillation with high-dose heparin may provide a new therapeutic strategy for the treatment of nasal allergic inflammation.
Collapse
Affiliation(s)
- Takao Ogawa
- Department of Otorhinolaryngology, Shiga University of Medical Science, Shiga, Japan. −med.ac.jp
| | | | | |
Collapse
|
37
|
Takabayashi T, Kato A, Peters AT, Hulse KE, Suh LA, Carter R, Norton J, Grammer LC, Cho SH, Tan BK, Chandra RK, Conley DB, Kern RC, Fujieda S, Schleimer RP. Excessive fibrin deposition in nasal polyps caused by fibrinolytic impairment through reduction of tissue plasminogen activator expression. Am J Respir Crit Care Med 2012; 187:49-57. [PMID: 23155140 DOI: 10.1164/rccm.201207-1292oc] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Nasal polyps (NPs) are characterized by intense edema or formation of pseudocysts filled with plasma proteins, mainly albumin. However, the mechanisms underlying NP retention of plasma proteins in their submucosa remain unclear. OBJECTIVES We hypothesized that formation of a fibrin mesh retains plasma proteins in NPs. We assessed the fibrin deposition and expression of the components of the fibrinolytic system in patients with chronic rhinosinusitis (CRS). METHODS We assessed fibrin deposition in nasal tissue from patients with CRS and control subjects by means of immunofluorescence. Fibrinolytic components, d-dimer, and plasminogen activators were measured using ELISA, real-time PCR, and immunohistochemistry. We also performed gene expression and protein quantification analysis in cultured airway epithelial cells. MEASUREMENTS AND MAIN RESULTS Immunofluorescence data showed profound fibrin deposition in NP compared with uncinate tissue (UT) from patients with CRS and control subjects. Levels of the cross-linked fibrin cleavage product protein, d-dimer, were significantly decreased in NP compared with UT from patients with CRS and control subjects, suggesting reduced fibrinolysis (P < 0.05). Expression levels of tissue plasminogen activator (t-PA) mRNA and protein were significantly decreased in NP compared with UT from patients with CRS and control subjects (P < 0.01). Immunohistochemistry demonstrated clear reduction of t-PA in NP, primarily in the epithelium and glands. Th2 cytokine-stimulated cultured airway epithelial cells showed down-regulation of t-PA, suggesting a potential Th2 mechanism in NP. CONCLUSIONS A Th2-mediated reduction of t-PA might lead to excessive fibrin deposition in the submucosa of NP, which might contribute to the tissue remodeling and pathogenesis of CRS with nasal polyps.
Collapse
Affiliation(s)
- Tetsuji Takabayashi
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wu CW, Chao PZ, Hao WR, Liou TH, Lin HW. Risk of Stroke among Patients with Rhinosinusitis: A Population-Based Study in Taiwan. Am J Rhinol Allergy 2012. [DOI: 10.2500/ajra.2012.26.3783a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Chin-Wen Wu
- Departments of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Pin-Zhir Chao
- Departments of Otolaryngology, and Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Rui Hao
- Departments of Cardiovascular Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Tsan-Hon Liou
- Departments of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Injury Prevention, Taipei Medical University, Taipei, Taiwan
| | - Hui-Wen Lin
- Department of Mathematics, Soochow University, Taipei, Taiwan
- Evidence Based Medicine Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
39
|
Ogawa T, Shimizu S, Tojima I, Kouzaki H, Shimizu T. Heparin inhibits mucus hypersecretion in airway epithelial cells. Am J Rhinol Allergy 2011; 25:69-74. [PMID: 21679503 DOI: 10.2500/ajra.2011.25.3562] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Heparin is one of the most important anticoagulant drugs. It has been known that heparin also possesses anti-inflammatory activities. Mucus hypersecretion is an important characteristic of airway inflammation. However, little is known about the regulatory effects of heparin on mucus hypersecretion in airway epithelial cells. To elucidate the anti-inflammatory function of heparin in airway epithelial cells, we examined the in vivo effects of heparin on mucus hypersecretion and neutrophil infiltration in rat nasal epithelium. We also examined the in vitro effects of heparin on mucin production and IL-8 secretion from cultured human airway epithelial cells. METHODS We induced hypertrophic and metaplastic changes of goblet cells in rat nasal epithelium by intranasal lipopolysaccharide (LPS) instillation. The effects of intranasal instillation with heparin on mucus production and neutrophil infiltration were examined. in vitro effects of heparin on airway epithelial cells were examined using cultured NCI-H292 cells. Mucus secretion was evaluated by enzyme-linked immunosorbent assay using an anti-MUC5AC monoclonal antibody. RESULTS Intranasal instillation with unfractionated heparin (UFH; 100 IU/0.1 mL) or low molecular weight heparin (LMWH; 100 IU/0.1 mL) at 30 minutes before LPS instillation significantly inhibited LPS-induced mucus production and neutrophil infiltration in rat nasal epithelium. UFH or LMWH inhibited tumor necrosis factor alpha (10 ng/mL)-induced secretion of MUC5AC and IL-8 from NCI-H292 cells in a dose-dependent manner (0.01-10 IU/mL). MUC5AC mRNA expression was also significantly inhibited. CONCLUSION These results indicate that heparin inhibits airway mucus hypersecretion in airway epithelial cells directly and indirectly through the suppression of IL-8 secretion and neutrophil infiltration.
Collapse
Affiliation(s)
- Takao Ogawa
- Department of Otorhinolaryngology, Shiga University of Medical Science, Otsu, Japan.
| | | | | | | | | |
Collapse
|
40
|
Payne SC, Borish L, Steinke JW. Genetics and phenotyping in chronic sinusitis. J Allergy Clin Immunol 2011; 128:710-20; quiz 721-2. [PMID: 21704364 DOI: 10.1016/j.jaci.2011.05.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/06/2011] [Accepted: 05/10/2011] [Indexed: 01/21/2023]
Abstract
Chronic sinusitis with nasal polyposis historically has been treated as a single monolithic clinical disorder. Just as asthma is now accepted as numerous heterogeneous diseases, chronic sinusitis should also be viewed as comprising several diseases with varying causes, with each one characterized by distinct histologic and gene and protein expression patterns. This includes recognition of the need to define these diseases based on the presence or absence of an eosinophilic infiltrate but also on additional distinctions based on unique agents that drive their development and perpetuation. As a collection of heterogeneous diseases, proper differential diagnosis is required to delineate appropriate therapeutic intervention. This review will focus on recognized distinct presentations of chronic sinus disease, including distinguishing the clinical presentations, cellular and molecular characteristics, genetic differences, and current treatment options for each.
Collapse
Affiliation(s)
- Spencer C Payne
- Asthma and Allergic Disease Center, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22903, USA
| | | | | |
Collapse
|