1
|
Bülüç H, Durhan G, Kösemehmetoğlu K, Akpınar MG, Demirkazık F. Quantitative analysis of breast lesions on contrast-enhanced mammography and comparison with histopathological results. Acta Radiol 2025:2841851251333046. [PMID: 40232227 DOI: 10.1177/02841851251333046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
BackgroundContrast-enhanced mammography (CEM) is a promising and emerging digital mammography technique that improves diagnostic performance.PurposeTo quantitatively evaluate breast lesions on CEM and to investigate the effectiveness of CEM in differentiating benign lesions from malignancies. The secondary aim was to evaluate the effectiveness in lesion characterization of quantitative parameters derived from CEM, specifically relative signal density (RSD) and relative signal change (RSC).Material and MethodsA retrospective analysis was conducted of 170 lesions in 164 female patients who underwent CEM. Lesions were grouped as benign, non-infiltrating, and infiltrating cancer. RSD between lesion and background, including fatty and glandular tissue, was measured. RSCs between former (CC) and latter (MLO) images were calculated and contrast enhancement patterns were obtained. The association between CEM values and pathological results was analyzed.ResultsRelative signal differences on both CC and MLO CEM views showed higher relative signal density in infiltrating tumors than benign ones regardless of whether glandular tissue or fat tissue was used in proportion while different infiltrating malignant subgroups showed no statistical significance according to quantitative analysis (P < 0.001). No significant differences in contrast enhancement patterns (ascending, steady, and descending) were seen either between benign and malignant groups or among malignant subtypes.ConclusionCEM can be used to distinguish between benign and malignant breast lesions, regardless of fat or glandular tissue. However, no difference was observed between benign and malignant lesions according to the contrast-enhancement patterns. Therefore, contrast enhancement patterns in CEM and breast MRI may differ.
Collapse
Affiliation(s)
- Hüseyin Bülüç
- Department of Radiology, Çanakkale Mehmet Akif Ersoy State Hospital, Çanakkale, Turkey
| | - Gamze Durhan
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Kemal Kösemehmetoğlu
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | - Figen Demirkazık
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
2
|
Tiwari PK, Chaudhary AA, Gupta S, Chouhan M, Singh HN, Rustagi S, Khan SUD, Kumar S. Extracellular vesicles in triple-negative breast cancer: current updates, challenges and future prospects. Front Mol Biosci 2025; 12:1561464. [PMID: 40297849 PMCID: PMC12034555 DOI: 10.3389/fmolb.2025.1561464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/25/2025] [Indexed: 04/30/2025] Open
Abstract
Breast cancer (BC) remains a complex and widespread problem, affecting millions of women worldwide, Among the various subtypes of BC, triple-negative breast cancer (TNBC) is particularly challenging, representing approximately 20% of all BC cases, and the survival rate of TNBC patients is generally worse than other subtypes of BC. TNBC is a heterogeneous disease characterized by lack of expression of three receptors: estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 (HER2), resulting conventional hormonal therapies are ineffective for its management. Despite various therapeutic approaches have been explored, but no definitive solution has been found yet for TNBC. Current treatments options are chemotherapy, immunotherapy, radiotherapy and surgery, although, these therapies have some limitations, such as the development of resistance to anti-cancer drugs, and off-target toxicity, which remain primary obstacles and significant challenges for TNBC. Several findings have shown that EVs exhibit significant therapeutic promise in many diseases, and a similar important role has been observed in various types of tumor. Studies suggest that EVs may offer a potential solution for the management of TNBC. This review highlights the multifaceted roles of EVs in TNBC, emphasizing their involvement in disease progression, diagnosis and therapeutic approach, as well as their potential as biomarkers and drug delivery.
Collapse
Affiliation(s)
- Prashant Kumar Tiwari
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Mandeep Chouhan
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Himanshu Narayan Singh
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life science, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
Lin M, Zhou J, Xiao J, Li C, Mo Y, Liu Y, Xiao Y, Huang J, Feng X. Integrating multi-omics data of Triple-Negative Breast Cancer to explore the role of Kynurenine pathway and KYNU as a therapeutic target. Biochem Biophys Res Commun 2025; 756:151569. [PMID: 40081237 DOI: 10.1016/j.bbrc.2025.151569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/10/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive breast cancer with poor prognosis. TNBC currently lacks effective therapeutic options, and its molecular mechanisms are still unclear. Thus, identifying novel molecular targets may offer insights to enhance treatment strategies. Accumulating evidence suggests the key role of the kynurenine pathway (KP) of the tryptophan metabolism in the pathogenesis of tumor diseases. The KP is the primary route of tryptophan metabolism, accounting for over 95 % of tryptophan catabolism. Genes within the KP have been implicated in tumor promotion, although their functional mechanisms remain to be elucidated. METHODS Bioinformatics approaches were employed to analyze the expression and function of all genes within the KP in TNBC. RESULTS Genes of the KP were found to be upregulated in TNBC and associated with adverse outcomes. These genes were predominantly involved in various biosynthetic functions. Correlation analyses revealed a close association between KP genes and markers of inflammatory pathways, as well as with chemoresistance in tumors. Immunofluorescence revealed that KYNU accumulated in the nucleus and at sites of nuclear chromatin in TNBC cells. CONCLUSION Genes of the KP are correlated with the progression and drug resistance of TNBC, but further research is needed to clarify the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Min Lin
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.
| | - JingMei Zhou
- Department of Clinical Medicine, Medical College of Xiangya, Central South University, Changsha, 410008, China
| | - Jinxin Xiao
- College of Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Chengmin Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Yan Mo
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Yingzhe Liu
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Yongzhi Xiao
- Department of Ultrasound Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410000, Hunan Province, China.
| | - Juan Huang
- Department of Breast Surgery and Multidisciplinary Breast Cancer Center, Clinical Research Center of Breast Cancer in Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.
| | - Xueping Feng
- Department of Oncology and Institute of Medical Sciences, National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
4
|
Nevala WK, Geng L, Xie H, Stueven NA, Markovic SN. PD-L1-Targeting Nanoparticles for the Treatment of Triple-Negative Breast Cancer: A Preclinical Model. Int J Mol Sci 2025; 26:3295. [PMID: 40244130 PMCID: PMC11989481 DOI: 10.3390/ijms26073295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer. Common treatments following surgical resection include PD-1-targeting checkpoint inhibitors (pembrolizumab), as 20% of tumors are PD-L1 positive with or without systemic chemotherapy. Over the last several years, our laboratory has developed nano-immune conjugates (NIC) in which hydrophobic chemotherapy drugs like paclitaxel (PTX) and SN38, the active metabolite of irinotecan, are made water soluble by formulating them into albumin-based nanoparticles (nab) that are hydrophobically linked to various IgG1 monoclonal antibodies, creating an antigen-targetable nano-immune conjugate. To date, we have successfully tested PTX containing NICs linked to either VEGF- or CD20-targeted antibodies in two phase I clinical trials against multiple relapsed ovarian/uterine cancer or non-Hodgkin's lymphoma, respectively. Herein, we describe a novel NIC created with either PTX or SN38 that is coated with anti-PD-L1-targeting antibodies for the treatment of a preclinical model of TNBC. In vitro testing suggests that the chemotherapy drug and antibody retain their toxicity and ligand binding capability in the context of the NIC. Furthermore, both the PTX and SN-38 NIC demonstrate superior anti-tumor efficacy relative to antibody and chemotherapy drugs alone in a PD-L1 + MDA-MB-231 human TNBC xenograft model, which could translate clinically to patients with TNBC.
Collapse
Affiliation(s)
- Wendy K. Nevala
- Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA; (W.K.N.); (L.G.); (N.A.S.)
| | - Liyi Geng
- Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA; (W.K.N.); (L.G.); (N.A.S.)
| | - Hui Xie
- Vivasor, 9380 Judicial Dr., San Diego, CA 92121, USA;
| | - Noah A. Stueven
- Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA; (W.K.N.); (L.G.); (N.A.S.)
| | - Svetomir N. Markovic
- Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA; (W.K.N.); (L.G.); (N.A.S.)
| |
Collapse
|
5
|
Battula S, Bhumannagari H, Ambadipudi SSSSS, Andugulapati SB, Nayani K. Diastereoselective Cascade Double Michael Addition to Access Bridged Coumarins, Oxindoles and Spirooxindoles: A Sustainable Strategy for Synthesis of Anticancer Molecules. ChemMedChem 2025; 20:e202400946. [PMID: 39686658 DOI: 10.1002/cmdc.202400946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
An efficient and concise synthesis of highly functionalized bridged coumarins has been developed through a diastereoselective double Michael addition reaction of p-quinols with various 4-hydroxy coumarins under catalyst-free conditions in H2O-DMSO (8 : 2). The method has been applied to oxindoles for the synthesis of a variety of bridged-oxindoles and bridged-spiroxindoles in presence of a DABCO base using H2O-EtOH (8 : 2) as solvent medium. The strategy is simple, highly atom economical as there is no by-product and environmentally benign (E-factor=0.1-0.9). The synthesized compounds were screened against triple-negative breast cancers and found that bridged coumarin (3 a) and oxindole (5 d) compounds exhibit potent anti-cancer activity at 6.6 and 8.8 μM (IC50) concentrations respectively. Further analysis revealed that 3 a and 5 d caused elevated early and total apoptosis by arresting the MDA-MB-468 cells in G2/M phase of the cell cycle. Overall, our results demonstrate that bridged coumarin (3 a) and oxindole (5 d) compounds-based approach attenuates the cancer progression and may pave a path for the translational outcome.
Collapse
Affiliation(s)
- Shravani Battula
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Haripriya Bhumannagari
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - S S S S Sudha Ambadipudi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Sai Balaji Andugulapati
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Kiranmai Nayani
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
6
|
Hong JH, Song JH, Choi KH, Kim SW, Park WC, Lee J, Lee A, Kang J, Choi BO. De-escalation of regional nodal irradiation fields in pT1-2N1 breast cancer patients after breast conserving surgery: retrospective real-world clinical experience. Front Oncol 2025; 15:1484190. [PMID: 40190556 PMCID: PMC11968704 DOI: 10.3389/fonc.2025.1484190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/17/2025] [Indexed: 04/09/2025] Open
Abstract
Purpose Regional nodal irradiation (RNI) in pN1 patients with one to three positive axillary lymph node breast cancers remains controversial. This study aimed to evaluate the impact of RNI in patients with pT1-2N1 breast cancer who underwent radiotherapy after breast-conserving surgery (BCS), focusing on risk stratification and defining the extent of RNI as axillary lymph node levels I and II. Methods Female patients with pT1-2N1 breast cancer after BCS with axillary lymph node dissection or sentinel lymph node biopsy who were treated with radiotherapy between 2009 and 2021 were identified. Radiotherapy included either whole-breast irradiation (WBI) alone or WBI with RNI to axillary levels I and II. Patients were categorized into three risk groups based on pathological T stage, number of positive lymph nodes, and immunohistochemical classification. Results A total of 464 patients were analyzed, with a median follow-up of 68.5 months. A total of 212 (45.7%) patients received WBI alone, and 252 (54.3%) received WBI with RNI. Overall, RNI did not significantly improve disease-free survival (DFS) (p = 0.317), locoregional recurrence-free survival (LRRFS) (p = 0.321), distant metastasis-free survival (DMFS) (p = 0.452), or overall survival (OS) (p = 0.721). However, RNI demonstrated a significant benefit in terms of LRRFS (p = 0.014) in the high-risk group. Case-control matched analysis showed robust benefits in DFS (p = 0.020), LRRFS (p = 0.030), and marginal improvement in DMFS (p = 0.066) in the high-risk group. The toxicities were comparable between WBI alone and WBI with RNI. Conclusions RNI omission may be considered in low-risk patients with pT1 and one positive lymph node. High-risk patients with pT2, two to three lymph nodes, or triple-negative breast cancer may benefit from RNI. De-escalation of the RNI extent might be considered for non-inferior survival outcomes with comparable toxicities.
Collapse
Affiliation(s)
- Ji Hyun Hong
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-Ho Song
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyu-Hye Choi
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Shin Woo Kim
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woo-Chan Park
- Division of Breast Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jieun Lee
- Division of Medical Oncology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ahwon Lee
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jun Kang
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung-Ock Choi
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
7
|
Mastrolonardo EV, Llerena P, De Ravin E, Nunes K, Kaki PC, Bridgham KM, Amin DR, Campbell DJ, Philips R, Koeneman SH, Cognetti DM, Luginbuhl AJ, Simone NL, Johnson JM, Curry JM. Improved survival with elevated BMI following immune checkpoint inhibition across various solid tumor cancer types. Cancer 2025; 131:e35799. [PMID: 40069917 PMCID: PMC11897419 DOI: 10.1002/cncr.35799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 03/15/2025]
Abstract
INTRODUCTION/BACKGROUND Obesity is a well-known risk factor for various cancers, yet emerging research demonstrates its association with improved survival outcomes in cancer treatment, labeled as "the obesity paradox." Studies investigating the clinical benefits of obesity across various cancer types after immune checkpoint inhibition (ICI) are limited. METHODS Data were queried from the TriNetX database to identify patients with solid tumor malignancies of various organ systems (pulmonary/intrathoracic, cutaneous, head and neck, gastrointestinal, breast, genitourinary) who received ICI between 2012 and 2024. Propensity score matching was used to match cohorts for demographics, medical comorbidities, and oncologic staging. Primary outcome was overall survival (OS) up to 5 years and compared between obese body mass index (BMI; >30) and normal BMI (20-24.9) cohorts. RESULTS After propensity score matching, there were a total of 18,434 patients, with 9217 patients in the obese BMI cohort and 9217 patients in the normal BMI cohort for all solid tumor malignancies. In the overall pan-cancer analysis, obese BMI was associated with significantly improved OS up to 5 years compared to the normal BMI cohort (hazard ratio [HR], 0.69 [0.66-0.72]). Subgroup analysis likewise demonstrated that obese BMI was associated with significantly improved OS up to 5 years for respiratory/intrathoracic (HR, 0.77 [0.72-0.83]), cutaneous (HR, 0.62 [0.63-0.78]), head and neck (HR, 0.67 [0.58-0.78]), gastrointestinal (HR, 0.67 [0.58-0.78]), breast (HR, 0.66 [0.55-0.79]), and genitourinary (HR, 0.57 [0.34-0.93]) malignancies (though not renal cell carcinoma specifically.) CONCLUSIONS: Obesity was associated with improved 5-year OS after treatment with ICI across various solid tumor malignancies in this electronic health record-based big data study. Further investigation is warranted to understand the mechanism of this association.
Collapse
Affiliation(s)
- Eric V. Mastrolonardo
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson University HospitalPhiladelphiaPAUSA
| | - Pablo Llerena
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson University HospitalPhiladelphiaPAUSA
| | - Emma De Ravin
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson University HospitalPhiladelphiaPAUSA
| | - Kathryn Nunes
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson University HospitalPhiladelphiaPAUSA
| | - Praneet C. Kaki
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson University HospitalPhiladelphiaPAUSA
| | - Kelly M. Bridgham
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson University HospitalPhiladelphiaPAUSA
| | - Dev R. Amin
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson University HospitalPhiladelphiaPAUSA
| | - Daniel J. Campbell
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson University HospitalPhiladelphiaPAUSA
| | - Ramez Philips
- Department of Otolaryngology – Head and Neck SurgeryVanderbilt University Medical CenterNashvilleTNUSA
| | - Scott H. Koeneman
- Division of BiostatisticsThomas Jefferson UniversityPhiladelphiaPAUSA
| | - David M. Cognetti
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson University HospitalPhiladelphiaPAUSA
- Sidney Kimmel Cancer CenterThomas Jefferson University HospitalPhiladelphiaPAUSA
| | - Adam J. Luginbuhl
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson University HospitalPhiladelphiaPAUSA
- Sidney Kimmel Cancer CenterThomas Jefferson University HospitalPhiladelphiaPAUSA
| | - Nicole L. Simone
- Department of Radiation OncologyThomas Jefferson University HospitalPhiladelphiaPAUSA
| | - Jennifer M. Johnson
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson University HospitalPhiladelphiaPAUSA
- Sidney Kimmel Cancer CenterThomas Jefferson University HospitalPhiladelphiaPAUSA
- Department of Medical OncologyThomas Jefferson University HospitalPhiladelphiaPAUSA
| | - Joseph M. Curry
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson University HospitalPhiladelphiaPAUSA
- Sidney Kimmel Cancer CenterThomas Jefferson University HospitalPhiladelphiaPAUSA
| |
Collapse
|
8
|
Hussain MS, Ramalingam PS, Chellasamy G, Yun K, Bisht AS, Gupta G. Harnessing Artificial Intelligence for Precision Diagnosis and Treatment of Triple Negative Breast Cancer. Clin Breast Cancer 2025:S1526-8209(25)00052-7. [PMID: 40158912 DOI: 10.1016/j.clbc.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/24/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Triple-Negative Breast Cancer (TNBC) is a highly aggressive subtype of breast cancer (BC) characterized by the absence of estrogen, progesterone, and HER2 receptors, resulting in limited therapeutic options. This article critically examines the role of Artificial Intelligence (AI) in enhancing the diagnosis and treatment of TNBC treatment. We begin by discussing the incidence of TNBC and the fundamentals of precision medicine, emphasizing the need for innovative diagnostic and therapeutic approaches. Current diagnostic methods, including conventional imaging techniques and histopathological assessments, exhibit limitations such as delayed diagnosis and interpretative discrepancies. This article highlights AI-driven advancements in image analysis, biomarker discovery, and the integration of multi-omics data, leading to enhanced precision and efficiency in diagnosis and treatment. In treatment, AI facilitates personalized therapeutic strategies, accelerates drug discovery, and enables real-time monitoring of patient responses. However, challenges persist, including issues related to data quality, model interpretability, and the societal impact of AI implementation. In the conclusion, we discuss the future prospects of integrating AI into clinical practice and emphasize the importance of multidisciplinary collaboration. This review aims to outline key trends and provide recommendations for utilizing AI to improve TNBC management outcomes, while highlighting the need for further research.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, India.
| | - Prasanna Srinivasan Ramalingam
- Protein Engineering lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, South Korea
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, South Korea
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
9
|
Wang X, Allen C. Synergistic effects of thermosensitive liposomal doxorubicin, mild hyperthermia, and radiotherapy in breast cancer management: an orthotopic mouse model study. Drug Deliv Transl Res 2025; 15:1011-1022. [PMID: 38977541 DOI: 10.1007/s13346-024-01654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
Liposome formulations of the cancer drug doxorubicin have been developed to address the severe side effects that result from administration of this drug in a conventional formulation. Among them, thermosensitive liposomal doxorubicin presents enhanced tumor targeting and efficient drug release when combined with mild hyperthermia localized to the tumor site. Exploiting the radiosensitizing benefits of localized thermal therapy, the integration of radiation therapy with the thermally activated liposomal system is posited to amplify the anti-tumor efficacy. This study explored a synergistic therapeutic strategy that combines thermosensitive liposomal doxorubicin, mild hyperthermia, and radiotherapy, using an orthotopic murine model of breast cancer. The protocol of sequential multi-modal treatment, incorporating low-dose chemotherapy and radiotherapy, substantially postponed the progression of primary tumor growth in comparison to the application of monotherapy at elevated dosages. Improvements in unheated distant lesions were also observed. Furthermore, the toxicity associated with the combination treatment was comparable to that of either thermosensitive liposome treatment or radiation alone at low doses. These outcomes underscore the potential of multi-modal therapeutic strategies to refine treatment efficacy while concurrently diminishing adverse effects in the management of breast cancer, providing valuable insight for the future refinement of thermosensitive liposomal doxorubicin applications.
Collapse
Affiliation(s)
- Xuehan Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
de Moraes FCA, Souza MEC, Sano VKT, Moraes RA, Melo AC. Association of tumor-infiltrating lymphocytes with clinical outcomes in patients with triple-negative breast cancer receiving neoadjuvant chemotherapy: a systematic review and meta-analysis. Clin Transl Oncol 2025; 27:974-987. [PMID: 39154313 DOI: 10.1007/s12094-024-03661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE Triple-negative breast cancer (TNBC) presents a clinical challenge as an aggressive tumor, correlated with unfavorable prognosis. Tumor-infiltrating lymphocytes (TILs) have garnered interest as a potential prognostic biomarker. However, the disparity in outcomes between varying TILs rates remains inadequately explored. METHODS PubMed, Scopus, Web of Science, and Cochrane databases were searched for studies about the prognostic value of TILs in patients with TNBC receiving neoadjuvant chemotherapy. The hazard ratios (HRs) or odds ratios (ORs) were computed for binary endpoints, with 95% confidence intervals (CIs). RESULTS Twenty-nine studies were included, involving a population of six thousand one hundred sixty-one (80.41%) with TNBC. The cut-off TILs value ranged from 10 to 60%, with 50% being the most related value. Compared with the low-TIL expression group, the disease-free survival (DFS) (HR 0.71; 95% CI 0.61-0.82; p < 0.00001) and overall survival (OS) (HR 0.76; 95% CI 0.63-0.90; p = 0.002) rates showed significant improvement with higher TIL infiltrations. In the subgroup analyses of the lymphocyte subtypes CD4 + and CD8 + , there was statistical significance favoring higher TILs rates in both subtypes, each associated with improved DFS (HR 0.48; 95% CI 0.33-0.71; p = 0.0002) and OS (HR 0.53; 95% CI 0.36-0.78; p = 0.001), regardless of which cell subtype was predominantly infiltrated. The complete pathological response analysis showed better rates for the higher TIL group than the control for both the TIL (OR 1.29; 95% CI 1.13-1.48; p = 0.0003) and Ki-67 (OR 2.74; 95% CI 2.01-3.73; p < 0.00001) analyses. CONCLUSION Higher expressions of TILs in patients with TNBC were associated with improved significantly DFS, OS, and pCR outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Ana C Melo
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
11
|
Jin W, Wang J, Cao H, Shen X, Yang Y, Lv L. Effects of sufentanil on immune response, pain mediators and brain-sparing effect in patients with breast cancer undergoing radical mastectomy. BMC Surg 2025; 25:80. [PMID: 39994609 PMCID: PMC11849331 DOI: 10.1186/s12893-025-02814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
OBJECTIVE To investigate the effects of sufentanil on immune response, pain mediators and brain-sparing effect in patients with breast cancer undergoing radical mastectomy. METHODS This study was a single center retrospective cohort study. The 118 study subjects were diagnosed and treated in our hospital from the period of January 2020-October 2022, who planned to undergo radical surgery for breast cancer. According to the different surgical drugs, these subjects were divided into sufentanil group and the control group, with 59 cases each. The visual analog scores (VAS) of patients in two groups were compared at 24 hour and 48 hour after surgery. The immune response indexes (including CD3+, CD4+, CD8+, CD4+/CD8+), pain mediators (β-endorphin, substance P and 5-hydroxytryptophan), brain-sparing effect indexes [arterio-venous oxygen content difference (Da-jvO2), jugular bulb venous saturation (S-jvO2), cerebral oxygen uptake (CEO2) and the Mini Mental State Scale (MMSE)], and brain damage indexes [S100 calcium-binding protein B (S100B) and neuron-specific enolase (NSE)] in two groups were compared. The incidence of adverse reactions in two groups was compared. RESULTS VAS scores were obviously lower in the sufentanil group than the control group at 24 hour and 48 hour postoperatively (P<0.001). Compared with the control group, the sufentanil group had higher CD3+, CD4+, CD4+/CD8+, MMSE scores, and lower content of CD8+, β-Endorphins, substance P, 5-hydroxytryptophan, Da-jvO2, S-jvO2 and CEO2 at 24 hour and 48 hour postoperatively (P<0.05). Patients in the sufentanil group had lower levels of S100B and NSE than the control group on the 1st and 7th day after surgery (P<0.01). The incidence of gastrointestinal reactions, hypertension and chills was significantly lower in the sufentanil group than the control group (P<0.05). CONCLUSION The application of sufentanil in breast cancer radical surgery effectively improved the immune function of the body, reduced pain response, alleviated brain damage, and had a certain brain-sparing effect.
Collapse
Affiliation(s)
- Weicheng Jin
- Department of anesthesiology, The Ninth People's Hospital of Suzhou, TaihuXincheng Town, No. 2666 Ludang RoadWujiang District, Suzhou, 215200, Jiangsu, China
| | - Jie Wang
- Department of anesthesiology, The Ninth People's Hospital of Suzhou, TaihuXincheng Town, No. 2666 Ludang RoadWujiang District, Suzhou, 215200, Jiangsu, China
| | - Hui Cao
- Department of anesthesiology, The Ninth People's Hospital of Suzhou, TaihuXincheng Town, No. 2666 Ludang RoadWujiang District, Suzhou, 215200, Jiangsu, China
| | - Xiaoping Shen
- Department of anesthesiology, The Ninth People's Hospital of Suzhou, TaihuXincheng Town, No. 2666 Ludang RoadWujiang District, Suzhou, 215200, Jiangsu, China
| | - Yang Yang
- Department of anesthesiology, The Ninth People's Hospital of Suzhou, TaihuXincheng Town, No. 2666 Ludang RoadWujiang District, Suzhou, 215200, Jiangsu, China
| | - Lanqing Lv
- Department of anesthesiology, The Ninth People's Hospital of Suzhou, TaihuXincheng Town, No. 2666 Ludang RoadWujiang District, Suzhou, 215200, Jiangsu, China.
| |
Collapse
|
12
|
Ye J, Wang H, Chakraborty S, Sang X, Xue Q, Sun M, Zhang Y, Uher O, Pacak K, Zhuang Z. Optimizing rWTC-MBTA Vaccine Formulations, Dosing Regimens, and Cryopreservation Techniques to Enhance Anti-Metastatic Immunotherapy. Int J Mol Sci 2025; 26:1340. [PMID: 39941108 PMCID: PMC11818183 DOI: 10.3390/ijms26031340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/17/2025] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
Metastatic cancer poses significant clinical challenges, necessitating effective immunotherapies with minimal systemic toxicity. Building on prior research demonstrating the rWTC-MBTA vaccine's ability to inhibit tumor metastasis and growth, this study focuses on its clinical translation by optimizing vaccine composition, dosing regimens, and freezing techniques. The vaccine formula components included three TLR ligands (LTA, Poly I:C, and Resiquimod) and an anti-CD40 antibody, which were tested in melanoma and triple-negative breast cancer (TNBC) models. The formulations were categorized as rWTC-MBT (Mannan-BAM with LTA, Poly I:C, Resiquimod), rWTC-MBL (LTA), rWTC-MBP (Mannan-BAM with Poly I:C), and rWTC-MBR (Resiquimod). In the melanoma models, all the formulations exhibited efficacy that was comparable to that of the full vaccine, while in the "colder" TNBC models, the formulations with multiple TLR ligands or Resiquimod alone performed the best. Vaccine-induced activation of dendritic cell (DC) subsets, including conventional DCs (cDCs), myeloid DCs (mDCs), and plasmacytoid DCs (pDCs), was accompanied by significant CD80+CD86+ population induction, suggesting robust innate immune stimulation. An initial three-dose schedule followed by booster doses (3-1-1-1 or 3-3-3-3) reduced the metastatic burden effectively. Gradual freezing (DMSO-based preservation) maintained vaccine efficacy, underscoring the importance of intact cell structure. These findings highlight the potential of simplified formulations, optimized dosing, and freezing techniques in developing practical, scalable immunotherapies for metastatic cancers.
Collapse
Affiliation(s)
- Juan Ye
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Herui Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Xueyu Sang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qingfeng Xue
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mitchell Sun
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaping Zhang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ondrej Uher
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
McArthur HL, Tolaney SM, Dent R, Schmid P, Asselah J, Liu Q, Meisel JL, Niikura N, Park YH, Werutsky G, Bianchini G, Andersen JC, Kozarski R, Rokutanda N, Pistilli B, Loibl S. TROPION-Breast04: a randomized phase III study of neoadjuvant datopotamab deruxtecan (Dato-DXd) plus durvalumab followed by adjuvant durvalumab versus standard of care in patients with treatment-naïve early-stage triple negative or HR-low/HER2- breast cancer. Ther Adv Med Oncol 2025; 17:17588359251316176. [PMID: 39917260 PMCID: PMC11800260 DOI: 10.1177/17588359251316176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025] Open
Abstract
Background Despite treatment advances for patients with early-stage triple-negative breast cancer (TNBC) and hormone receptor (HR)-low/human epidermal growth factor receptor 2-negative (HER2-) breast cancer, treatments that improve clinical outcomes while mitigating toxicity are needed. Datopotamab deruxtecan (Dato-DXd), a TROP2-directed antibody-drug conjugate consisting of a humanized IgG1 monoclonal antibody attached via a plasma-stable cleavable linker to a topoisomerase-I inhibitor payload, has shown efficacy alone or in combination with durvalumab, a selective, high-affinity anti-programmed cell death ligand 1 antibody, in early-phase clinical studies. Objectives The primary objective of TROPION-Breast04 is to evaluate the efficacy and safety of neoadjuvant Dato-DXd plus durvalumab followed by adjuvant durvalumab with or without chemotherapy versus standard of care in patients with previously untreated early-stage TNBC or HR-low/HER2- breast cancer. Design This is an ongoing, international, phase III, open-label, randomized controlled study. Methods and analysis Approximately 1728 patients (aged ⩾18 years) will be randomized 1:1 to eight cycles of neoadjuvant Dato-DXd (6 mg/kg intravenously (IV) every 3 weeks (Q3W)) plus durvalumab (1120 mg IV Q3W) followed by nine cycles of adjuvant durvalumab (1120 mg IV Q3W) with or without chemotherapy versus eight cycles of pembrolizumab (200 mg IV Q3W) plus chemotherapy followed by nine cycles of adjuvant pembrolizumab (200 mg IV Q3W) with or without chemotherapy. Dual primary endpoints are pathological complete response by blinded central review and event-free survival by investigator assessment. Secondary endpoints include overall survival (key), distant disease-free survival, patient-reported outcomes, and safety. Ethics The study is approved by independent ethics committees and/or institutional review boards at each study site. All patients will provide written informed consent. Discussion This study will evaluate the potential use of neoadjuvant Dato-DXd plus durvalumab followed by adjuvant durvalumab with or without chemotherapy versus standard of care in patients with previously untreated early-stage TNBC or HR-low/HER2- breast cancer. The findings of this trial could lead to promising treatment options for these patients. Trial registration ClinicalTrials.gov identifier: NCT06112379.
Collapse
Affiliation(s)
- Heather L. McArthur
- Department of Medicine, UT Southwestern Medical Center, 2201 Inwood Road, Dallas, TX 75390-9096, USA
| | - Sara M. Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rebecca Dent
- Department of Medical Oncology, National Cancer Center Singapore, Singapore
| | - Peter Schmid
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jamil Asselah
- Gerald Bronfman Department of Oncology, McGill University Health Centre, Cedars Cancer Centre, Montreal, QC, Canada
| | - Qiang Liu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | | | - Naoki Niikura
- Department of Breast Oncology, Tokai University School of Medicine, Kanagawa, Japan
| | - Yeon Hee Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine/Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Gustavo Werutsky
- Breast Cancer Program, Hospital Moinhos de Vento, Porto Alegre, Brazil
| | | | - Jay C. Andersen
- Medical Oncology, Compass Oncology/Sarah Cannon Research Institute, Portland, OR, USA
| | | | | | | | - Sibylle Loibl
- Department of Medicine and Research, German Breast Group, Neu-Isenburg, Germany
| |
Collapse
|
14
|
Ku GDLC, Wareham C, King C, Koul A, Desai A, Persing SM, Nardello S, Chatterjee A. Is Oncoplastic Surgery Safe in High-Risk Breast Cancer Phenotypes? J Surg Oncol 2025; 131:133-142. [PMID: 39285642 DOI: 10.1002/jso.27899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/16/2024] [Accepted: 09/03/2024] [Indexed: 04/29/2025]
Abstract
BACKGROUND Oncoplastic surgery (OPS) has increased in popularity over the recent years. It is a form of breast conservation surgery allowing for larger partial mastectomy (PM) resections followed by either volume displacement or volume replacement reconstruction techniques. However, there is a lack of evidence on the effectiveness and safety of OPS with radiotherapy (OPS + RT) in high-risk breast cancer phenotypes, such as triple negative breast cancer (TNBC) and HER2 positive (HER2+) patients. Our aim was to compare the breast cancer-specific survival (BCSS) and postoperative surgical complications in OPS + RT compared to PM alone with radiation (PM + RT) and total mastectomy (MTX) without radiotherapy (MTX-RT). METHODS Patient data were analyzed from the Surveillance, Epidemiology, and End Results (SEER) cancer registries from January 1, 2012 to December 31, 2020. Patients were stratified according to the type of surgery. Cox regression analysis was performed to assess prognostic factors of BCSS. RESULTS A total of 24 621 patients with high-risk breast cancer phenotypes were identified, 180 underwent OPS + RT; 13 402, PM + RT; and 11 039 MTX-RT. OPS + RT was more frequently performed in younger (mean age of 65.53 years, SD: 9.29, p < 0.001), non-Hispanic White (90.5% vs. 77.7% vs. 76.3%) and single women (17.9% vs. 12.1% vs. 13.3%). MTX-RT was usually performed in patients with high histological grade, TNBC, and higher stages. Overall complication rates were higher in the MTX-RT, compared to OPS + RT and PM + RT, 2%, 1.1%, and 0.7%, respectively, p < 0.001. Rates of hematoma and surgical site infections were higher in the MTX-RT group. With a median follow-up of 46 months, OPS + RT had better BCSS rates at 5 years compared to PM + RT and MTX-RT (97.1% vs. 94.7% vs. 89.8%, p < 0.001). MTX-RT was found to be an independent prognostic factor of worse BCSS compared to OPS + RT (hazard ratio [HR] = 2.584; 95% confidence interval [CI]: 1.005-7.171), while PM + RT had no difference compared to OPS + RT (HR = 1.670, 95% CI: 0.624-4.469). CONCLUSIONS OPS is a safe breast surgical option in patients with HER2+ and TNBC. Patients with high-risk phenotypes who underwent OPS + RT and have similar BCSS and complication rates compared to standard breast surgical options. As such, OPS should be considered as an option whenever breast conservation surgery is being discussed.
Collapse
Affiliation(s)
- Gabriel De La Cruz Ku
- Department of Surgery, Universidad Cientifica del Sur, Lima, Peru
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Carly Wareham
- Department of Surgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Caroline King
- Department of Surgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Akash Koul
- Department of Surgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Anshumi Desai
- Department of Surgery, University of Miami Medical School, Miami, Florida, USA
| | - Sarah M Persing
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tufts Medical Center, Boston, Massachusetts, USA
- Division of Surgical Oncology, Department of Surgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Salvatore Nardello
- Division of Surgical Oncology, Department of Surgery, Tufts Medical Center, Boston, Massachusetts, USA
| | - Abhishek Chatterjee
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tufts Medical Center, Boston, Massachusetts, USA
- Division of Surgical Oncology, Department of Surgery, Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Hassanein MM, Hagyousif YA, Zenati RA, Al-Hroub HM, Khan FM, Abuhelwa AY, Alzoubi KH, Soares NC, El-Huneidi W, Abu-Gharbieh E, Omar H, Zaher DM, Bustanji Y, Semreen MH. Metabolomics insights into doxorubicin and 5-fluorouracil combination therapy in triple-negative breast cancer: a xenograft mouse model study. Front Mol Biosci 2025; 11:1517289. [PMID: 39872164 PMCID: PMC11769812 DOI: 10.3389/fmolb.2024.1517289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/27/2024] [Indexed: 01/29/2025] Open
Abstract
Background Breast cancer is one of the most prevalent malignancies and a leading cause of death among women worldwide. Among its subtypes, triple-negative breast cancer (TNBC) poses significant clinical challenges due to its aggressive behavior and limited treatment options. This study aimed to investigate the effects of doxorubicin (DOX) and 5-fluorouracil (5-FU) as monotherapies and in combination using an established MDA-MB-231 xenograft model in female BALB/C nude mice employing advanced metabolomics analysis to identify molecular alterations induced by these treatments. Methods We conducted comprehensive plasma and tumor tissue sample profiling using ultra-high-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS). Results Each treatment group exhibited unique metabolic profiles in plasma and tumor analysis. Univariate and enrichment analyses identified alterations in metabolic pathways. The combination treatment of DOX + 5-FU induced the most extensive metabolic alterations disrupting key pathways including purine, pyrimidine, beta-alanine, and sphingolipid metabolism. It significantly reduced critical metabolites such as guanine, xanthine, inosine, L-fucose, and sphinganine, demonstrating enhanced cytotoxic effects compared to individual treatments. The DOX treatment uniquely increased ornithine levels, while 5-FU altered sphingolipid metabolism, promoting apoptosis. Significance This in vivo study highlights TNBC's metabolic alterations to chemotherapeutics, identifying potential biomarkers like L-fucose and beta-alanine, and provides insights for improving treatment strategies.
Collapse
Affiliation(s)
- Mai M. Hassanein
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Yousra A. Hagyousif
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ruba A. Zenati
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hamza M. Al-Hroub
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Farman Matloob Khan
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmad Y. Abuhelwa
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Karem H. Alzoubi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Nelson C. Soares
- Laboratory of Proteomics, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University Medicine and Health Sciences (MBRU), Dubai Health, Dubai, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Hany Omar
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Dana M. Zaher
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Mohammad H. Semreen
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
16
|
Garcia V, Gardecki E, Jou S, Li X, Shroyer KR, Saltz J, Acs B, Elfer K, Lennerz J, Salgado R, Gallas BD. Prioritizing cases from a multi-institutional cohort for a dataset of pathologist annotations. J Pathol Inform 2025; 16:100411. [PMID: 39720416 PMCID: PMC11667696 DOI: 10.1016/j.jpi.2024.100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/26/2024] Open
Abstract
Objective With the increasing energy surrounding the development of artificial intelligence and machine learning (AI/ML) models, the use of the same external validation dataset by various developers allows for a direct comparison of model performance. Through our High Throughput Truthing project, we are creating a validation dataset for AI/ML models trained in the assessment of stromal tumor-infiltrating lymphocytes (sTILs) in triple negative breast cancer (TNBC). Materials and methods We obtained clinical metadata for hematoxylin and eosin-stained glass slides and corresponding scanned whole slide images (WSIs) of TNBC core biopsies from two US academic medical centers. We selected regions of interest (ROIs) from the WSIs to target regions with various tissue morphologies and sTILs densities. Given the selected ROIs, we implemented a hierarchical rank-sort method for case prioritization. Results We received 122 glass slides and clinical metadata on 105 unique patients with TNBC. All received cases were female, and the mean age was 63.44 years. 60% of all cases were White patients, and 38.1% were Black or African American. After case prioritization, the skewness of the sTILs density distribution improved from 0.60 to 0.46 with a corresponding increase in the entropy of the sTILs density bins from 1.20 to 1.24. We retained cases with less prevalent metadata elements. Conclusion This method allows us to prioritize underrepresented subgroups based on important clinical factors. In this manuscript, we discuss how we sourced the clinical metadata, selected ROIs, and developed our approach to prioritizing cases for inclusion in our pivotal study.
Collapse
Affiliation(s)
- Victor Garcia
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging, Diagnostics, and Software Reliability, Silver Spring, MD, United States of America
| | - Emma Gardecki
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging, Diagnostics, and Software Reliability, Silver Spring, MD, United States of America
| | - Stephanie Jou
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States of America
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States of America
| | - Kenneth R. Shroyer
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Joel Saltz
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States of America
| | - Balazs Acs
- Department of Oncology and Pathology, Cancer Centre Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Katherine Elfer
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging, Diagnostics, and Software Reliability, Silver Spring, MD, United States of America
- Division of Cancer Prevention, National Cancer Institute, National Institute of Health, Shady Grove, MD, United States of America
| | | | - Roberto Salgado
- Division of Research, Peter Mac Callum Cancer Centre, Melbourne, Australia
- Department of Pathology, ZAS Hospitals, Antwerp, Belgium
| | - Brandon D. Gallas
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Imaging, Diagnostics, and Software Reliability, Silver Spring, MD, United States of America
| |
Collapse
|
17
|
Gao Y, Wang J, Wang S, Tao W, Duan R, Hao J, Gao M. Development and validation of a nomogram to predict survival after neoadjuvant chemotherapy in elderly women with triple-negative invasive ductal breast cancer: A SEER population-based study. Saudi Med J 2025; 46:43-51. [PMID: 39779351 PMCID: PMC11717112 DOI: 10.15537/smj.2025.46.1.20240341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVES To construct and verify a nomogram for post-neoadjuvant chemotherapy survival predication in elderly women with triple-negative invasive ductal breast cancer. METHODS Elderly patients diagnosed as triple-negative invasive ductal breast cancer between 2019-2000 were screened from surveillance, epidemiology, and end results database. Depending on the post-neoadjuvant chemotherapy pathological response, they were assigned to the complete or non-complete response group. Inter-group clinicopathological characteristics and disease-specific and overall survivals were compared. Then, they were allocated randomly into the training or validation cohort. A prediction nomogram was developed in the training cohort and verified in the validation cohort. RESULTS A total of 382 patients were included, with 285 patients in non-response group and 97 patients in response group. After propensity score matching, disease-specific survival showed a significant difference between response and non-response groups (88.7% versus 64.6%, p<0.001). The training cohort included 196 patients and the validation cohort included 82 patients. A total of 7 variables (age, race, tumor location, tumor-node-metastasis stage, summary stage, receipt of surgery, and response to neoadjuvant chemotherapy) were integrated to construct a survival prediction nomogram. The C-indexes were 0.756 in the training cohort and 0.791 in the validation cohort. In both cohorts, the predicted survival showed satisfactory coherence with the actual survival in the calibration curve analysis. CONCLUSION In elderly women with triple-negative invasive ductal breast cancer, post-neoadjuvant chemotherapy pathological complete response could indicate improved disease-specific survival. A novel survival prediction nomogram was created to have satisfactory performance in these patients.
Collapse
Affiliation(s)
- Ying Gao
- From the Department of Breast and Thyroid Surgery (Y. Gao, J. Wang, S. Wang, Tao, Duan, Hao, M. Gao), Tianjin Union Medical Center, from the Department of Thyroid and Neck Oncology (Y. Gao), Tianjin Medical University Cancer Hospital, National Clinical Research Center for Malignant Tumors, Tianjin Clinical Research Center for Malignant Tumors, Tianjin Key Laboratory of Cancer Prevention and Treatment, and from the Medical College (J. Wang, S. Wang), Nankai University, Tianjin, China.
| | - Jinmiao Wang
- From the Department of Breast and Thyroid Surgery (Y. Gao, J. Wang, S. Wang, Tao, Duan, Hao, M. Gao), Tianjin Union Medical Center, from the Department of Thyroid and Neck Oncology (Y. Gao), Tianjin Medical University Cancer Hospital, National Clinical Research Center for Malignant Tumors, Tianjin Clinical Research Center for Malignant Tumors, Tianjin Key Laboratory of Cancer Prevention and Treatment, and from the Medical College (J. Wang, S. Wang), Nankai University, Tianjin, China.
| | - Shoujun Wang
- From the Department of Breast and Thyroid Surgery (Y. Gao, J. Wang, S. Wang, Tao, Duan, Hao, M. Gao), Tianjin Union Medical Center, from the Department of Thyroid and Neck Oncology (Y. Gao), Tianjin Medical University Cancer Hospital, National Clinical Research Center for Malignant Tumors, Tianjin Clinical Research Center for Malignant Tumors, Tianjin Key Laboratory of Cancer Prevention and Treatment, and from the Medical College (J. Wang, S. Wang), Nankai University, Tianjin, China.
| | - Weijie Tao
- From the Department of Breast and Thyroid Surgery (Y. Gao, J. Wang, S. Wang, Tao, Duan, Hao, M. Gao), Tianjin Union Medical Center, from the Department of Thyroid and Neck Oncology (Y. Gao), Tianjin Medical University Cancer Hospital, National Clinical Research Center for Malignant Tumors, Tianjin Clinical Research Center for Malignant Tumors, Tianjin Key Laboratory of Cancer Prevention and Treatment, and from the Medical College (J. Wang, S. Wang), Nankai University, Tianjin, China.
| | - Ran Duan
- From the Department of Breast and Thyroid Surgery (Y. Gao, J. Wang, S. Wang, Tao, Duan, Hao, M. Gao), Tianjin Union Medical Center, from the Department of Thyroid and Neck Oncology (Y. Gao), Tianjin Medical University Cancer Hospital, National Clinical Research Center for Malignant Tumors, Tianjin Clinical Research Center for Malignant Tumors, Tianjin Key Laboratory of Cancer Prevention and Treatment, and from the Medical College (J. Wang, S. Wang), Nankai University, Tianjin, China.
| | - Jie Hao
- From the Department of Breast and Thyroid Surgery (Y. Gao, J. Wang, S. Wang, Tao, Duan, Hao, M. Gao), Tianjin Union Medical Center, from the Department of Thyroid and Neck Oncology (Y. Gao), Tianjin Medical University Cancer Hospital, National Clinical Research Center for Malignant Tumors, Tianjin Clinical Research Center for Malignant Tumors, Tianjin Key Laboratory of Cancer Prevention and Treatment, and from the Medical College (J. Wang, S. Wang), Nankai University, Tianjin, China.
| | - Ming Gao
- From the Department of Breast and Thyroid Surgery (Y. Gao, J. Wang, S. Wang, Tao, Duan, Hao, M. Gao), Tianjin Union Medical Center, from the Department of Thyroid and Neck Oncology (Y. Gao), Tianjin Medical University Cancer Hospital, National Clinical Research Center for Malignant Tumors, Tianjin Clinical Research Center for Malignant Tumors, Tianjin Key Laboratory of Cancer Prevention and Treatment, and from the Medical College (J. Wang, S. Wang), Nankai University, Tianjin, China.
| |
Collapse
|
18
|
Yao QY, Hou XY, Jian WZ, Wang TY, Luo PY, Xue JS, Chen R, Zhou TY. Model-based analysis for investigating the impact of tumor size, lymphocyte and neutrophil on the survival of breast cancer 4T1 tumor-bearing mice. Toxicol Appl Pharmacol 2025; 494:117176. [PMID: 39615798 DOI: 10.1016/j.taap.2024.117176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/28/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
Survival is one of the foremost endpoints in cancer therapy, and parametric survival analysis could comprehensively demonstrate the overall result of various different baseline and longitudinal factors. In this study, the survival of triple negative breast cancer 4T1 tumor-bearing mice treated by gemcitabine (GEM) and dexamethasone (DEX) was investigated with model-based analysis. The tumor size, lymphocyte (LY) and neutrophil (NE) of 4T1 tumor-bearing BALB/c mice were collected, and the PK/PD models of these longitudinal data were established in a sequential manner, respectively. The parametric time-to-event (TTE) model of survival was developed and the PK/PD models were tested and integrated as time-varying prognostic factors. The final model was evaluated and externally validated. LY and NE influence the survival directly, while tumor size showed its indirect impact on survival by affecting LY. The exposure of GEM significantly improved the survival results but DEX did not bring extra benefit. The models established in this study quantitatively characterized the abnormal increasing of LY and NE due to tumor progression in T1 tumor-bearing mice and also demonstrate their relationship with survival outcomes, and further provide a modeling framework to demonstrate potential prognostic factors of survival and evaluate the efficacy of different therapies.
Collapse
Affiliation(s)
- Qing-Yu Yao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China
| | - Xin-Yu Hou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei-Zhe Jian
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tian-Yu Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ping-Yao Luo
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jun-Sheng Xue
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Rong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Tian-Yan Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, China.
| |
Collapse
|
19
|
Beas-Guzmán OF, Cabrera-Licona A, Hernández-Fuentes GA, Ceballos-Magaña SG, Guzmán-Esquivel J, De-León-Zaragoza L, Ramírez-Flores M, Diaz-Martinez J, Garza-Veloz I, Martínez-Fierro ML, Rodríguez-Sanchez IP, Ceja-Espíritu G, Meza-Robles C, Cervantes-Kardasch VH, Delgado-Enciso I. Ethanolic Extract of Averrhoa carambola Leaf Has an Anticancer Activity on Triple-Negative Breast Cancer Cells: An In Vitro Study. Pharmaceutics 2024; 17:2. [PMID: 39861654 PMCID: PMC11768879 DOI: 10.3390/pharmaceutics17010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Averrhoa carambola, or star fruit, is a shrub known for its medicinal properties, especially due to bioactive metabolites identified in its roots and fruit with anti-cancer activity. However, the biological effects of its leaves remain unexplored. This study aimed to assess the effects of ethanolic extract from A. carambola leaves on triple-negative breast cancer (TNBC), an aggressive subtype lacking specific therapy. Methods: Phytochemical analysis and HPLC profile and additional cell line evaluation employing MDA-MB-231 were carried out. Results: Phytochemical screening revealed that the ethanolic extract was rich in flavonoids, saponins, and steroids, demonstrating an antioxidant capacity of 45%. 1H NMR analysis indicated the presence of flavonoids, terpenes, and glycoside-like compounds. Cell viability assays showed a concentration-dependent decrease in viability, with an IC50 value of 20.89 μg/mL at 48 h. Clonogenic assays indicated significant inhibition of replicative immortality, with only 2.63% survival at 15 μg/mL. Migration, assessed through a wound healing assay, was reduced to 3.06% at 100 μg/mL, with only 16.23% of cells remaining attached. An additive effect was observed when combining lower concentrations of the extract with doxorubicin, indicating potential synergy. Conclusions: These results suggest that the ethanolic extract of A. carambola leaves contains metabolites with anti-cancer activity against TNBC cells, supporting further research into their bioactive compounds and therapeutic potential.
Collapse
Affiliation(s)
- Oscar F. Beas-Guzmán
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico; (O.F.B.-G.); (G.A.H.-F.); (M.R.-F.); (G.C.-E.); (V.H.C.-K.)
- State Cancerology Institute of Colima, Health Services of the Mexican Social Security Institute for Welfare (IMSS-BIENESTAR), Colima 28085, Mexico; (A.C.-L.); (L.D.-L.-Z.); (C.M.-R.)
| | - Ariana Cabrera-Licona
- State Cancerology Institute of Colima, Health Services of the Mexican Social Security Institute for Welfare (IMSS-BIENESTAR), Colima 28085, Mexico; (A.C.-L.); (L.D.-L.-Z.); (C.M.-R.)
| | - Gustavo A. Hernández-Fuentes
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico; (O.F.B.-G.); (G.A.H.-F.); (M.R.-F.); (G.C.-E.); (V.H.C.-K.)
- Faculty of Chemical Sciences, University of Colima, Coquimatlan 28400, Mexico
| | | | - José Guzmán-Esquivel
- Clinical Epidemiology Research Unit, Mexican Institute of Social Security, Villa de Alvarez, Colima 28984, Mexico;
| | - Luis De-León-Zaragoza
- State Cancerology Institute of Colima, Health Services of the Mexican Social Security Institute for Welfare (IMSS-BIENESTAR), Colima 28085, Mexico; (A.C.-L.); (L.D.-L.-Z.); (C.M.-R.)
| | - Mario Ramírez-Flores
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico; (O.F.B.-G.); (G.A.H.-F.); (M.R.-F.); (G.C.-E.); (V.H.C.-K.)
| | - Janet Diaz-Martinez
- Research Center in Minority Institutions, Florida International University (FIU-RCMI), Miami, FL 33199, USA;
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (I.G.-V.); (M.L.M.-F.)
| | - Margarita L. Martínez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (I.G.-V.); (M.L.M.-F.)
| | - Iram P. Rodríguez-Sanchez
- Molecular and Structural Physiology Laboratory, School of Biological Sciences, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66455, Mexico;
| | - Gabriel Ceja-Espíritu
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico; (O.F.B.-G.); (G.A.H.-F.); (M.R.-F.); (G.C.-E.); (V.H.C.-K.)
| | - Carmen Meza-Robles
- State Cancerology Institute of Colima, Health Services of the Mexican Social Security Institute for Welfare (IMSS-BIENESTAR), Colima 28085, Mexico; (A.C.-L.); (L.D.-L.-Z.); (C.M.-R.)
| | - Víctor H. Cervantes-Kardasch
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico; (O.F.B.-G.); (G.A.H.-F.); (M.R.-F.); (G.C.-E.); (V.H.C.-K.)
| | - Iván Delgado-Enciso
- Department of Molecular Medicine, School of Medicine, University of Colima, Colima 28040, Mexico; (O.F.B.-G.); (G.A.H.-F.); (M.R.-F.); (G.C.-E.); (V.H.C.-K.)
- State Cancerology Institute of Colima, Health Services of the Mexican Social Security Institute for Welfare (IMSS-BIENESTAR), Colima 28085, Mexico; (A.C.-L.); (L.D.-L.-Z.); (C.M.-R.)
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
20
|
Seok Han B, Ko S, Seok Park M, Ji Lee Y, Eun Kim S, Lee P, Jin Cho Y, Gyeol Go H, Kwak S, Park E, Lim A, Lee S, Yoo S, Kim H, Hee Jung K, Hong SS. Lidocaine combined with general anesthetics impedes metastasis of breast cancer cells via inhibition of TGF-β/Smad-mediated EMT signaling by reprogramming tumor-associated macrophages. Int Immunopharmacol 2024; 142:113207. [PMID: 39312860 DOI: 10.1016/j.intimp.2024.113207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Surgical resection is the best-known approach for breast cancer treatment. However, post-operative metastases increase the rate of death. The potential effect of anesthetic drugs on long-term tumor growth, risk of metastasis, and recurrence after surgery has been investigated in cancer patients. However, the underlying mechanisms remain unclear. Therefore, we aimed to elucidate the anti-metastatic effect of lidocaine combined with common anesthetics and its mechanisms of action on lung metastasis in breast cancer models. The combination of lidocaine with propofol or sevoflurane inhibited the growth of TNBC cells compared to treatment alone. In addition, the combination effectively inhibited cancer cell migration and invasion. It suppressed tumor growth and increased the survival rate in breast 4 T1 orthotopic models. More importantly, it inhibited lung metastasis and recurrence compared with groups treated with a single anesthetic. In co-culture with TAMs and TNBC cells, lidocaine not only reduced M2-tumor-associated macrophages (TAM) that were increased by sevoflurane or propofol but also increased M1 macrophage polarization, impeding tumor growth in TNBC. Also, we found that the transforming growth factor-β (TGF-β) derived from TAMs increased EMT signaling in TNBC cells, and that lidocaine affected cancer cells as well as M2-TAMs, inducing M2 to M1 reprogramming and decreasing TGF-β/Smads-mediated EMT signaling in TNBC cells, leading to inhibition of cancer metastasis and recurrence. These findings suggest lidocaine combined with general anesthetics as a potential therapeutic approach for the inhibition of recurrence and metastasis of breast cancer patients undergoing curative resection.
Collapse
Affiliation(s)
- Beom Seok Han
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Soyeon Ko
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Min Seok Park
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Yun Ji Lee
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Sang Eun Kim
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Pureunchowon Lee
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Ye Jin Cho
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Han Gyeol Go
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Sehan Kwak
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Eunji Park
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Ayoung Lim
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Suji Lee
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Seungjong Yoo
- Department of Anesthesiology and Pain Medicine, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea
| | - Hyunzu Kim
- Department of Anesthesiology and Pain Medicine, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea.
| | - Kyung Hee Jung
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea.
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, 366, Seohae-daero, Jung-gu, Incheon 22332, Republic of Korea.
| |
Collapse
|
21
|
Mallick S, Duttaroy AK, Dutta S. The PIK3CA gene and its pivotal role in tumor tropism of triple-negative breast cancer. Transl Oncol 2024; 50:102140. [PMID: 39369580 PMCID: PMC11491976 DOI: 10.1016/j.tranon.2024.102140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024] Open
Abstract
The PIK3CA gene is a linchpin in the intricate molecular network governing triple-negative breast cancer (TNBC) tumor tropism, serving as a focal point for understanding this aggressive disease. Anchored within the PI3K/AKT/mTOR signaling axis, PIK3CA mutations exert substantial influence, driving cellular processes that highlight the unique biology of TNBC. This review meticulously highlights the association between PIK3CA mutations and distinct TNBC subtypes, elucidating the gene's multifaceted contributions to tumor tropism. Molecular dissection reveals how PIK3CA mutations dynamically modulate chemokine responses, growth factor signaling, and extracellular matrix interactions, orchestrating the complex migratory behaviour characteristic of TNBC cells. A detailed exploration of PIK3CA-targeted strategies in the therapeutic arena is presented, outlining the current landscape of clinical trials and precision medicine approaches. As the scientific narrative converges, this review underscores the critical role of PIK3CA in shaping the molecular intricacies of TNBC tumor tropism and illuminates pathways toward tailored interventions, promising a paradigm shift in the clinical management of TNBC.
Collapse
Affiliation(s)
- Sumit Mallick
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Mangalore, Karnataka, India
| | - Asim K Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway.
| | - Suman Dutta
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK; Dorothy Crowfoot Hodgkin Building, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
22
|
Sader D, Zlotver I, Moya S, Calabrese GC, Sosnik A. Doubly self-assembled dermatan sulfate/chitosan nanoparticles for targeted siRNA delivery in cancer therapy. J Colloid Interface Sci 2024; 680:763-775. [PMID: 39580927 DOI: 10.1016/j.jcis.2024.11.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
RNA interference, a naturally occurring regulatory mechanism in which small interfering RNA (siRNA) molecules are responsible for the sequence-specific suppression of gene expression, emerged as one of the most promising gene therapies in cancer. In this work, we investigate a microfluidics double self-assembly method based on micellization and polyelectrolyte complex formation for the encapsulation of siRNA targeting the BIRC5 gene, a member of the inhibitor of apoptosis gene family, that codes for survivin a protein of theinhibitorof apoptosis protein family that is involved in triple-negative breast cancer (TNBC) proliferation and metastasis within nanoparticles of an amphiphilic chitosan-graft-poly(methyl methacrylate) copolymer and low-molecular weight dermatan sulfate, a polysaccharide targeting the CD44 receptor overexpressed in this tumor. Nanoparticles are spherical and display a hydrodynamic diameter of ∼ 200 nm, as measured by dynamic light scattering and scanning electron microscopy. In addition, these colloidal systems exhibit a strongly negative zeta-potential that confers them excellent physical stability for at least four months owing to electrostatic repulsion and evidences the exposure of the polyanionic dermatan sulfate on the surface. The key role of dermatan sulfate in the active targeting and intracellular delivery of the cargo in the murine breast cancer cell line 4T1, a model of TNBC, is confirmed by confocal laser scanning microscopy and imaging flow cytometry. Finally, the silencing efficiency is demonstrated in 4T1 cell viability, migration, proliferation and spheroid formation assays in vitro. Overall results highlight the promise of this simple, reproducible and scalable method for the nanoencapsulation of siRNA and other therapeutic nucleic acids.
Collapse
Affiliation(s)
- Dareen Sader
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering Technion - Israel Institute of Technology, Technion City 320003, Haifa, Israel
| | - Ivan Zlotver
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering Technion - Israel Institute of Technology, Technion City 320003, Haifa, Israel
| | - Sergio Moya
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain
| | - Graciela C Calabrese
- Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA) and Instituto de Química Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB) UBA - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Junín 956, C1113AAD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering Technion - Israel Institute of Technology, Technion City 320003, Haifa, Israel.
| |
Collapse
|
23
|
De Paolis V, Troisi V, Bordin A, Pagano F, Caputo V, Parisi C. Unconventional p65/p52 NF-κB module regulates key tumor microenvironment-related genes in breast tumor-associated macrophages (TAMs). Life Sci 2024; 357:123059. [PMID: 39278618 DOI: 10.1016/j.lfs.2024.123059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/17/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
The complex heterogeneity of tumor microenvironment (TME) of triple-negative breast cancer (TNBC) presents a significant obstacle to cytotoxic immune response and successful treatment, building up one of the most hostile oncological phenotypes. Among the most abundant TME components, tumor-associated macrophages (TAMs) have pivotal pro-tumoral functions, involving discordant roles for the nuclear factor kappa-B (NF-κB) transcription factors and directing to higher levels of pathway complexity. In both resting macrophages and TAMs, we recently revealed the existence of the uncharacterized NF-κB p65/p52 dimer. In the present study, we demonstrated its enhanced active nuclear localization in TAMs and validated selected immune target genes as directly regulated by dimer binding on DNA sequences. We demonstrated by ChIP-qPCR that p65/p52 enrichment on HSPG2 and CSF-1 regulatory regions is strictly dependent on macrophage polarization and tumor environment. Our data provide novel mechanisms of transcriptional regulation in TAMs, orchestrated by the varied and dynamic nature of NF-κB combinations, which needs to be considered when targeting this pathway in cancer therapies. Our results offer p65/p52, together with identified regulatory regions on genes impacting macrophage behavior and tumor biology, as novel molecular targets for TNBC, aimed at modulating TAMs functions towards anti-tumoral phenotypes and thus improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Veronica De Paolis
- Institute of Biochemistry and Cell Biology, CNR-National Research Council, Via Ercole Ramarini, 32, 00015 Monterotondo Scalo, RM, Italy.
| | - Virginia Troisi
- Institute of Biochemistry and Cell Biology, CNR-National Research Council, Via Ercole Ramarini, 32, 00015 Monterotondo Scalo, RM, Italy
| | - Antonella Bordin
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100, Latina, Italy
| | - Francesca Pagano
- Institute of Biochemistry and Cell Biology, CNR-National Research Council, Via Ercole Ramarini, 32, 00015 Monterotondo Scalo, RM, Italy
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Chiara Parisi
- Institute of Biochemistry and Cell Biology, CNR-National Research Council, Via Ercole Ramarini, 32, 00015 Monterotondo Scalo, RM, Italy.
| |
Collapse
|
24
|
Cruz-Collazo AM, Katsara O, Grafals-Ruiz N, Gonzalez JC, Dorta-Estremera S, Carlo VP, Chorna N, Schneider RJ, Dharmawardhane S. Novel Inhibition of Central Carbon Metabolism Pathways by Rac and CDC42 inhibitor MBQ167 and Paclitaxel. Mol Cancer Ther 2024; 23:1613-1625. [PMID: 39087451 PMCID: PMC11534544 DOI: 10.1158/1535-7163.mct-23-0803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/07/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Triple negative breast cancer (TNBC) represents a therapeutic challenge in which standard chemotherapy is limited to paclitaxel. MBQ167, a clinical stage small molecule inhibitor that targets Rac and Cdc42, inhibits tumor growth and metastasis in mouse models of TNBC. Herein, we investigated the efficacy of MBQ167 in combination with paclitaxel in TNBC preclinical models, as a prelude to safety trials of this combination in patients with advanced breast cancer. Individual MBQ167 or combination therapy with paclitaxel was more effective at reducing TNBC cell viability and increasing apoptosis compared with paclitaxel alone. In orthotopic mouse models of human TNBC (MDA-MB231 and MDA-MB468), individual MBQ167, paclitaxel, or the combination reduced mammary tumor growth with similar efficacy, with no apparent liver toxicity. However, paclitaxel single agent treatment significantly increased lung metastasis, whereas MBQ167, single or combined, reduced lung metastasis. In the syngeneic 4T1/BALB/c model, combined MBQ167 and paclitaxel decreased established lung metastases by ∼80%. To determine the molecular basis for the improved efficacy of the combined treatment on metastasis, 4T1 tumor extracts from BALB/c mice treated with MBQ167, paclitaxel, or the combination were subjected to transcriptomic analysis. Gene set enrichment identified specific downregulation of central carbon metabolic pathways by the combination of MBQ167 and paclitaxel but not individual compounds. Biochemical validation, by immunoblotting and metabolic Seahorse analysis, shows that combined MBQ167 and paclitaxel reduces glycolysis. This study provides a strong rationale for the clinical testing of MBQ167 in combination with paclitaxel as a potential therapeutic for TNBC and identifies a unique mechanism of action.
Collapse
Affiliation(s)
- Ailed M. Cruz-Collazo
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| | - Olga Katsara
- Department of Microbiology, New York University School of Medicine, New York, NY
| | - Nilmary Grafals-Ruiz
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| | - Jessica Colon Gonzalez
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| | - Stephanie Dorta-Estremera
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR
- Cancer Biology Division, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR
| | | | - Nataliya Chorna
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR
| | - Robert J Schneider
- Department of Microbiology, New York University School of Medicine, New York, NY
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR
- Cancer Biology Division, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR
- MBQ Pharma, Inc., San Juan, PR
| |
Collapse
|
25
|
Bellaye PS, Dias AMM, Vrigneaud JM, Bouchard A, Moreau M, Petitot C, Bernhard C, Claron M, Froidurot L, Morgand V, Guillemin M, Monterrat M, Mirjolet C, Garrido C, Kohli E, Collin B. Targeted radionuclide therapy against GARP expressing T regulatory cells after tumour priming with external beam radiotherapy in a murine syngeneic model. Heliyon 2024; 10:e39543. [PMID: 39498075 PMCID: PMC11533616 DOI: 10.1016/j.heliyon.2024.e39543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024] Open
Abstract
Purpose Radiation therapy (RT) exerts its anti-tumour efficacy by inducing direct damage to cancer cells but also through modification of the tumour microenvironment (TME) by inducing immunogenic antitumor response. Conversely, RT also promotes an immunosuppressive TME notably through the recruitment of regulatory T cells (Tregs). Glycoprotein A repetitions predominant (GARP), a transmembrane protein highly expressed by activated Tregs, plays a key role in the activation of TGF-β and thus promotes the immunosuppressive action of Tregs. The development of a theranostic approach targeting GARP combining imaging and targeted radionuclide therapy (TRT) was carried out. Methods A preclinical model of 4T1 triple negative breast tumour-bearing BALB/c mice was used to show that GARP expression is increased after external beam radiation in the TME of our cancer model. We generated a theranostic probe through the bioconjugation of the chelating agent DOTAGA onto an anti-GARP monoclonal antibody. The bioconjugation with DOTAGA allows the radiolabelling of the DOTAGA-GARP conjugate with both Indium-111 for SPECT imaging and Lutetium-177 for TRT purposes. Results We demonstrate that GARP expression is increased following RT in vivo and can be specifically detected and quantified using in vivo SPECT imaging with [111In]In-DOTAGA-GARP. In addition, 177Lu-DOTAGA-GARP limits tumour growth in our cancer model. Conclusion This theranostic strategy may allow for the personalization of cancer treatments by early detection of activated Tregs infiltration following RT and identification of patients likely to respond to Tregs-targeted therapy via TRT.
Collapse
Affiliation(s)
- Pierre-Simon Bellaye
- Centre George-François Leclerc, Service de Médecine Nucléaire, IMATHERA UMS INSERM BioSanD US58, 1 rue du Professeur Marion, 21079, Dijon, France
| | - Alexandre MM. Dias
- Centre George-François Leclerc, Service de Médecine Nucléaire, IMATHERA UMS INSERM BioSanD US58, 1 rue du Professeur Marion, 21079, Dijon, France
| | - Jean-Marc Vrigneaud
- Centre George-François Leclerc, Service de Médecine Nucléaire, IMATHERA UMS INSERM BioSanD US58, 1 rue du Professeur Marion, 21079, Dijon, France
| | - Alexanne Bouchard
- Centre George-François Leclerc, Service de Médecine Nucléaire, IMATHERA UMS INSERM BioSanD US58, 1 rue du Professeur Marion, 21079, Dijon, France
- UMR INSERM/uB/AGROSUP 1231, Labex LipSTIC, Faculty of Health Sciences, Université de Bourgogne Franche-Comté, 21079, Dijon, France
| | - Mathieu Moreau
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR CNRS/uB 6302, Université de Bourgogne Franche-Comté, 21079, Dijon, France
| | - Camille Petitot
- Centre George-François Leclerc, Service de Médecine Nucléaire, IMATHERA UMS INSERM BioSanD US58, 1 rue du Professeur Marion, 21079, Dijon, France
| | - Claire Bernhard
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR CNRS/uB 6302, Université de Bourgogne Franche-Comté, 21079, Dijon, France
| | - Michael Claron
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR CNRS/uB 6302, Université de Bourgogne Franche-Comté, 21079, Dijon, France
| | - Lisa Froidurot
- Centre George-François Leclerc, Service de Médecine Nucléaire, IMATHERA UMS INSERM BioSanD US58, 1 rue du Professeur Marion, 21079, Dijon, France
| | - Véronique Morgand
- Centre George-François Leclerc, Service de Médecine Nucléaire, IMATHERA UMS INSERM BioSanD US58, 1 rue du Professeur Marion, 21079, Dijon, France
| | - Mélanie Guillemin
- Centre George-François Leclerc, Service de Médecine Nucléaire, IMATHERA UMS INSERM BioSanD US58, 1 rue du Professeur Marion, 21079, Dijon, France
| | - Marie Monterrat
- Centre George-François Leclerc, Service de Médecine Nucléaire, IMATHERA UMS INSERM BioSanD US58, 1 rue du Professeur Marion, 21079, Dijon, France
| | - Céline Mirjolet
- Centre George-François Leclerc, Service de Médecine Nucléaire, IMATHERA UMS INSERM BioSanD US58, 1 rue du Professeur Marion, 21079, Dijon, France
| | - Carmen Garrido
- UMR INSERM/uB/AGROSUP 1231, Labex LipSTIC, Faculty of Health Sciences, Université de Bourgogne Franche-Comté, 21079, Dijon, France
| | - Evelyne Kohli
- UMR INSERM/uB/AGROSUP 1231, Labex LipSTIC, Faculty of Health Sciences, Université de Bourgogne Franche-Comté, 21079, Dijon, France
- University Hospital Centre François Mitterrand, 21000, Dijon, France
| | - Bertrand Collin
- Centre George-François Leclerc, Service de Médecine Nucléaire, IMATHERA UMS INSERM BioSanD US58, 1 rue du Professeur Marion, 21079, Dijon, France
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR CNRS/uB 6302, Université de Bourgogne Franche-Comté, 21079, Dijon, France
| |
Collapse
|
26
|
Luo N, Ma L, Ma N, Wei J, Zhang H, Jin W, Li Y, Shi J, Xiong Y. Hesperidin PLGA nanoparticles potentiate the efficacy of aPD-1 in treating triple negative breast cancer by regulating CCL2 and ADPN expression in cancer-associated adipocytes. Int Immunopharmacol 2024; 140:112759. [PMID: 39098226 DOI: 10.1016/j.intimp.2024.112759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Triple negative breast cancer (TNBC) represents a heterogeneous subtype of breast cancer characterized by an unfavorable prognosis due to its aggressive biology. Cancer-associated adipocytes (CAAs) play an active role in tumor development, invasion and metastasis, and response to treatment by secreting various cytokines. CAAs secrete CCL2 and ADPN which significantly affect the efficacy of aPD-1 in treating breast cancer. Our recent research has demonstrated that Hesperidin, a natural phenolic compound, significantly inhibits CCL2, elevates ADPN secreted by CAAs in vitro and in vivo, remodels the immune microenvironment, and potentiates the efficacy of aPD-1 in triple-negative breast cancer. We used Oil red staining, Bodipy 493/503 staining and quantitative real-time PCR to verify the formation of CAAs. ELISA was used to detect levels of CCL2, ADPN secreted by CAAs. Changes in the number of immune cells in mouse tumor tissues were detected using flow cytometry and immunofluorescence. Our data suggest that Hesperidin PLGA nanoparticles significantly reduced CCL2 and increased ADPN secreted by CAAs, which concurrently decreased the recruitment of M2 macrophages, Tregs and MDSCs while increased the infiltration of CD8+T cells, M1 macrophages and DCs into tumor, thus significantly potentiated the efficacy of aPD-1 in vivo. This study provides a new combined strategy for the clinical treatment of triple-negative breast cancer by interfering with CCL2, ADPN secreted by CAAs to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Ningchao Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Lisha Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ninghui Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jiale Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Hongyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Wanyu Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yujie Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jingbin Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yang Xiong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
27
|
Martello SE, Xia J, Kusunose J, Hacker BC, Mayeaux MA, Lin EJ, Hawkes A, Singh A, Caskey CF, Rafat M. Ultrafast power doppler ultrasound enables longitudinal tracking of vascular changes that correlate with immune response after radiotherapy. Theranostics 2024; 14:6883-6896. [PMID: 39629131 PMCID: PMC11610147 DOI: 10.7150/thno.97759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/09/2024] [Indexed: 12/06/2024] Open
Abstract
Rationale: While immunotherapy shows great promise in patients with triple negative breast cancer, many will not respond to treatment. Radiotherapy has the potential to prime the tumor-immune microenvironment for immunotherapy. However, predicting response is difficult due to tumor heterogeneity across patients, which necessitates personalized medicine strategies that incorporate tumor tracking into the therapeutic approach. Here, we investigated the use of ultrasound (US) imaging of the tumor vasculature to monitor the tumor response to treatment. Methods: We utilized ultrafast power doppler US to track the vascular response to radiotherapy over time. We used 4T1 (metastatic) and 67NR (non-metastatic) breast cancer models to determine if US measurements corroborate conventional immunostaining analysis of the tumor vasculature. To evaluate the effects of radiation, tumor volume and vascular index were calculated using US, and the correlation between vascular changes and immune cell infiltration was determined. Results: US tumor measurements and the quantified vascular response to radiation were confirmed with caliper measurements and immunostaining, respectively, demonstrating a proof-of-principle method for non-invasive vascular monitoring. Additionally, we found significant infiltration of CD8+ T cells into irradiated tumors 10 days after radiation, which followed a sustained decline in vascular index and an increase in splenic CD8+ T cells that was first observed 1 day post-radiation. Conclusions: Our findings reveal that ultrafast power doppler US can evaluate changes in tumor vasculature that are indicative of shifts in the tumor-immune microenvironment. This work may lead to improved patient outcomes through observing and predicting response to therapy.
Collapse
Affiliation(s)
- Shannon E. Martello
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jixin Xia
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jiro Kusunose
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Benjamin C. Hacker
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - McKenzie A. Mayeaux
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Erica J. Lin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Adrienne Hawkes
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aparna Singh
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Charles F. Caskey
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
28
|
Jeon T, Goswami R, Nagaraj H, Cicek YA, Lehot V, Welton J, Bell CJ, Park J, Luther DC, Im J, Rotello CM, Mager J, Rotello VM. Engineered zwitterionic diblock copolymer-siRNA polyplexes provide highly effective treatment of triple-negative breast cancer in a 4T1 murine model. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2406763. [PMID: 40017807 PMCID: PMC11864752 DOI: 10.1002/adfm.202406763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Indexed: 03/01/2025]
Abstract
Self-assembly of siRNA with a block copolymer featuring guanidinium and zwitterion functionalized blocks generates core-shell-like nanovectors that provide cytosolic access to siRNA and efficiently evade phagocytic clearance. The guanidinium-functionalized inner block complexes siRNA in the nanovector interior and enables cytosolic delivery. The zwitterionic outer block provides a non-interacting shell on the nanovectors that reduces macrophage uptake in vitro and phagocytic clearance and enhances tumor localization in vivo. These nanovectors were used to treat a 4T1 (murine) model of triple-negative breast cancer (TNBC). The nanovectors deliver siRNA efficiently to 4T1 triple-negative breast cancer cells in vitro, with high selectivity relative to macrophages. This efficiency and selectivity translate into in vivo efficacy: diblock nanovectors evaded phagocytic clearance and efficiently localized in an aggressive murine 4T1 orthotopic model, with a ~3-fold increase of vector residing in the tumor compared to the homopolymer nanovectors. This increased localization efficiently knocked down STAT3 (~80%) and provided tumorostasis (100% growth inhibition) at a low dose of 0.14 mg/kg. The in vitro and in vivo efficacy of these nanovectors demonstrate the potential of engineered polymer architectures to generate effective self-assembled siRNA therapeutics that avoid phagocytic clearance for the treatment of diseases requiring systemic administration.
Collapse
Affiliation(s)
- Taewon Jeon
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Yagiz Anil Cicek
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Victor Lehot
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Janelle Welton
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Charlotte J Bell
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - David C Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Jungkyun Im
- Department of Chemical Engineering, and Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyangro, Asan, 31538, Republic of Korea
| | - Caren M Rotello
- Department of Psychological and Brain Science, University of Massachusetts, Amherst, 135 Hicks Way, MA, 01003, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 N Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Vincent M Rotello
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, 230 Stockbridge Road, Amherst, Massachusetts, 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| |
Collapse
|
29
|
Martello SE, Xia J, Kusunose J, Hacker BC, Mayeaux MA, Lin EJ, Hawkes A, Singh A, Caskey CF, Rafat M. Ultrafast Power Doppler Ultrasound Enables Longitudinal Tracking of Vascular Changes that Correlate with Immune Response After Radiotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.04.552076. [PMID: 37577718 PMCID: PMC10418282 DOI: 10.1101/2023.08.04.552076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Background While immunotherapy shows great promise in patients with triple negative breast cancer, many will not respond to treatment. Radiotherapy has the potential to prime the tumor-immune microenvironment for immunotherapy. However, predicting response is difficult due to tumor heterogeneity across patients, which necessitates personalized medicine strategies that incorporate tumor tracking into the therapeutic approach. Here, we investigated the use of ultrasound (US) imaging of the tumor vasculature to monitor the tumor response to treatment. Methods We utilized ultrafast power doppler US to track the vascular response to radiotherapy over time. We used 4T1 (metastatic) and 67NR (non-metastatic) breast cancer models to determine if US measurements corroborate conventional immunostaining analysis of the tumor vasculature. To evaluate the effects of radiation, tumor volume and vascular index were calculated using US, and the correlation between vascular changes and immune cell infiltration was determined. Results US tumor measurements and the quantified vascular response to radiation were confirmed with caliper measurements and immunostaining, respectively, demonstrating a proof-of-principle method for non-invasive vascular monitoring. Additionally, we found significant infiltration of CD8 + T cells into irradiated tumors 10 days after radiation, which followed a sustained decline in vascular index and an increase in splenic CD8 + T cells that was first observed 1 day post-radiation. Conclusions Our findings reveal that ultrafast power doppler US can evaluate changes in tumor vasculature that are indicative of shifts in the tumor-immune microenvironment. This work may lead to improved patient outcomes through observing and predicting response to therapy.
Collapse
|
30
|
Vinik Y, Maimon A, Raj H, Dubey V, Geist F, Wienke D, Lev S. Computational pipeline predicting cell death suppressors as targets for cancer therapy. iScience 2024; 27:110859. [PMID: 39310772 PMCID: PMC11416655 DOI: 10.1016/j.isci.2024.110859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/24/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Identification of promising targets for cancer therapy is a global effort in precision medicine. Here, we describe a computational pipeline integrating transcriptomic and vulnerability responses to cell-death inducing drugs, to predict cell-death suppressors as candidate targets for cancer therapy. The prediction is based on two modules; the transcriptomic similarity module to identify genes whose targeting results in similar transcriptomic responses of the death-inducing drugs, and the correlation module to identify candidate genes whose expression correlates to the vulnerability of cancer cells to the same death-inducers. The combined predictors of these two modules were integrated into a single metric. As a proof-of-concept, we selected ferroptosis inducers as death-inducing drugs in triple negative breast cancer. The pipeline reliably predicted candidate genes as ferroptosis suppressors, as validated by computational methods and cellular assays. The described pipeline might be used to identify repressors of various cell-death pathways as potential therapeutic targets for different cancer types.
Collapse
Affiliation(s)
- Yaron Vinik
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avi Maimon
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Harsha Raj
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vinay Dubey
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Felix Geist
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Dirk Wienke
- The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Sima Lev
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
31
|
Li Z, Yao L, Saravanakumar K, Thuy NTT, Kim Y, Xue C, Zheng X, Cho N. Lespedeza bicolor root extract exerts anti-TNBC potential by regulating FAK-related signalling pathways. Am J Cancer Res 2024; 14:4265-4285. [PMID: 39417178 PMCID: PMC11477838 DOI: 10.62347/mypg4066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Lespedeza bicolor is a shrub plant that has been widely distributed in East Asia. The methanol extract from its LBR has been shown to exhibit anticancer and anti-bacterial effects. However, its anticancer efficacy in TNBC remains uncertain. This work aimed to study the anti-TNBC effect of LBR ethanol extract and its underlying mechanism. LBR triggered the cell death in TNBC through inhibiting cell proliferation, S-phase cell arrest, and induction of apoptosis. RNA-seq analysis revealed that the genes altered by LBR treatment were predominantly enriched in the cell adhesion. Notably, LBR inhibited phosphorylation and distribution of FAK. Furthermore, LBR demonstrated significant anticancer activity in xenograft tumors in mice through inhibiting cancer cell growth and inducing apoptosis. This work demonstrated the anticancer efficiency of LBR in TNBC without causing significant adverse effect, which providing a foundation for developing LBR based chemotherapeutic agents for breast cancer therapy.
Collapse
Affiliation(s)
- Zijun Li
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National UniversityGwangju 61186, Korea
| | - Lulu Yao
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National UniversityGwangju 61186, Korea
| | - Kandasamy Saravanakumar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National UniversityGwangju 61186, Korea
| | - Nguyen Thi Thanh Thuy
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National UniversityGwangju 61186, Korea
| | - Yunyeong Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National UniversityGwangju 61186, Korea
| | - Chang Xue
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National UniversityGwangju 61186, Korea
| | - Xiaohui Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University1210 University Town, Wenzhou 325035, Zhejiang, China
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National UniversityGwangju 61186, Korea
| |
Collapse
|
32
|
Ge Y, Wei X, Liu JN, Sun PL, Gao H. New insights into acinic cell carcinoma of the breast: clinicopathology, origin of histology, molecular features, prognosis, and treatment. Front Oncol 2024; 14:1438179. [PMID: 39286022 PMCID: PMC11402605 DOI: 10.3389/fonc.2024.1438179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Acinic cell carcinoma (AciCC) of the breast is a rare malignant epithelial neoplasm, with approximately 60 cases reported in the literature. It predominantly affects women and exhibits significant histological heterogeneity. The diagnosis of breast AciCC is primarily based on the presence of eosinophilic and/or basophilic granular cytoplasm and markers of serous acinar differentiation. Despite being considered a low-grade variant of conventional triple-negative breast cancer (TNBC), over 25% of patients with breast AciCC have adverse clinical outcomes. Additionally, in early research, microglandular adenosis (MGA) and atypical MGA were considered potential precursors for various breast cancers, including intraductal carcinoma, invasive ductal carcinoma, adenoid cystic carcinoma, metaplastic carcinoma, and AciCC. Similarly, some studies have proposed that breast AciCC should be considered a type of carcinoma developing in MGA with acinic cell differentiation rather than a distinct entity. Therefore, the pathogenesis of breast AciCC has not yet been clarified. Moreover, to the best of our knowledge, the literature has not summarized the latest prognosis and treatment of breast AciCC. In this review, we synthesized the current literature and the latest developments, aiming at exploring the clinicopathology, histological origin, molecular features, prognosis, and treatment of breast AciCC from a novel perspective.
Collapse
Affiliation(s)
- Yunjie Ge
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xianping Wei
- Department of Clinical Research, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jing-Nan Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Ping-Li Sun
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Hongwen Gao
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
33
|
Banerjee R, Maitra I, Bhattacharya T, Banerjee M, Ramanathan G, Rayala SK, Venkatraman G, Rajeswari D. Next-generation biomarkers for prognostic and potential therapeutic enhancement in Triple negative breast cancer. Crit Rev Oncol Hematol 2024; 201:104417. [PMID: 38901639 DOI: 10.1016/j.critrevonc.2024.104417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
Triple-negative breast carcinoma (TNBC) is one of the most challenging subtypes of breast carcinoma and it has very limited therapeutic options as it is highly aggressive. The prognostic biomarkers are crucial for early diagnosis of the tumor, it also helps in anticipating the trajectory of the illness and optimizing the therapy options. Several therapeutic biomarkers are being used. Among them, the next-generation biomarkers that include Circulating tumor (ct) DNA, glycogen, lipid, and exosome biomarkers provide intriguing opportunities for enhancing the prognosis of TNBC. Lipid and glycogen biomarkers serve as essential details on the development of the tumor along with the efficacy of the treatment, as it exhibits metabolic alteration linked to TNBC. Several types of biomarkers have predictive abilities in TNBC. Elevated levels are associated with worse outcomes. ctDNA being a noninvasive biomarker reveals the genetic composition of the tumor, as well as helps to monitor the progression of the disease. Traditional therapies are ineffective in TNBC due to a lack of receptors, targeted drug delivery provides a tailored approach to overcome drug resistance and site-specific action by minimizing the side effects in TNBC treatment. This enhances therapeutic outcomes against the aggressive nature of breast cancer. This paper includes all the recent biomarkers which has been researched so far in TNBC and the state of art for TNBC which is explored.
Collapse
Affiliation(s)
- Risav Banerjee
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Indrajit Maitra
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Trisha Bhattacharya
- Department of Biotechnology, Indian Academy Degree College, Autonomous, Hennur cross, Kalyan Nagar, Bengaluru, Karnataka 560043, India
| | - Manosi Banerjee
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology, Madras, Tamil Nadu 600036, India
| | - Ganesh Venkatraman
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - Devi Rajeswari
- Department of Biomedical Genetics, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
34
|
Carlosama C, Arévalo C, Jimenez MC, Lasso P, Urueña C, Fiorentino S, Barreto A. Triple negative breast cancer migration is modified by mitochondrial metabolism alteration induced by natural extracts of C. spinosa and P. alliacea. Sci Rep 2024; 14:20253. [PMID: 39215068 PMCID: PMC11364553 DOI: 10.1038/s41598-024-70550-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Tumor metabolism is a crucial aspect of cancer development, and mitochondria plays a significant role in the aggressiveness and metastasis of tumors. As a result, mitochondria have become a promising therapeutic target in cancer treatment, leading to the development of compounds known as mitocans. In our group, we have consolidated the search of anticancer therapies based on natural products derived from plants, obtaining extracts such as P2Et from Caesalpinia spinosa and Anamu-SC from Petiveria alliacea, which have been shown to have antitumor activities in different cancer models. These extracts, due to their complex molecular composition, can interfere with multiple functions during tumor progression. To better understand how these natural products operate (P2Et and Anamu-SC), we constructed a model using 4T1 murine breast cancer cells with reduced expression of genes associated with glycolysis (Hexokinase-2) and mitochondrial function (Cqbp). The results indicate that the cells were more sensitive to the Anamu-SC extract, showing significant decreases in glucose consumption, ATP production, and oxygen consumption rate. Additionally, we observed changes in mitochondrial function, which reduced the cells' ability to migrate, particularly when C1qbp was silenced. This triple-negative breast cancer model allows us to identify potential natural products that can modulate tumor cell metabolism.
Collapse
Affiliation(s)
- Carolina Carlosama
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - Cindy Arévalo
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - María Camila Jimenez
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia.
| |
Collapse
|
35
|
Erwin N, De U, Xiao Y, Wang L, Maharjan C, Pan X, Awasthee N, Zheng G, Liao D, Zhang W, He M. Proteolysis targeting chimera extracellular vesicles for therapeutic development treating triple negative breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.25.609564. [PMID: 39253438 PMCID: PMC11383279 DOI: 10.1101/2024.08.25.609564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) are an emerging targeted cancer therapy approach, but wide-spread clinical use of PROTAC is limited due to poor cell targeting and penetration, and instability in vivo. To overcome such issues and enhance the in vivo efficacy of PROTAC drugs, microfluidic droplet-based electroporation (µDES) was developed as a novel extracellular vesicle (EVs) transfection system, which enables the high-efficient PROTAC loading and effective delivery in vivo. Our previously developed YX968 PROTAC drug had shown the selectively degradation of HDAC3 and 8, which effectively suppresses the growth of breast tumor cell lines, including MDA-MB-231 triple negative breast cancer (TNBC) line, via dual degradation without provoking a global histone hyperacetylation. In this study, we demonstrated that µDES-based PROTAC loading in EVs significantly enhanced therapeutic function of PROTAC drug in vivo in the TNBC breast tumor mouse model. NSG mice with pre-established MDA-MB-231 tumors and treated with intraperitoneal injection of EVs for tumor inhibition study, which showed significantly higher HDAC 3 and 8 degradation efficiency and tumor inhibition than PROTAC only group. The liver, spleen, kidney, lung, heart, and brain were collected for safety testing, which exhibited improved toxicity. The EV delivery of PROTAC drug enhances drug stability and bioavailability in vivo, transportability, and drug targeting ability, which fills an important gap in current development of PROTAC therapeutic functionality in vivo and clinical translation. This novel EV-based drug transfection and delivery strategy could be applicable to various therapeutics for enhancing in vivo delivery, efficacy, and safety.
Collapse
|
36
|
Leone GM, Mangano K, Caponnetto S, Fagone P, Nicoletti F. Identification of Poliovirus Receptor-like 3 Protein as a Prognostic Factor in Triple-Negative Breast Cancer. Cells 2024; 13:1299. [PMID: 39120328 PMCID: PMC11312209 DOI: 10.3390/cells13151299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Triple-negative breast cancer (TNBC) represents an aggressive subtype of breast cancer, with a bad prognosis and lack of targeted therapeutic options. Characterized by the absence of estrogen receptors, progesterone receptors, and HER2 expression, TNBC is often associated with a significantly lower survival rate compared to other breast cancer subtypes. Our study aimed to explore the prognostic significance of 83 immune-related genes, by using transcriptomic data from the TCGA database. Our analysis identified the Poliovirus Receptor-Like 3 protein (PVRL3) as a critical negative prognostic marker in TNBC patients. Furthermore, we found that the Enhancer of Zeste Homolog 2 (EZH2), a well-known epigenetic regulator, plays a pivotal role in modulating PVRL3 levels in TNBC cancer cell lines expressing EZH2 along with high levels of PVRL3. The elucidation of the EZH2-PVRL3 regulatory axis provides valuable insights into the molecular mechanisms underlying TNBC aggressiveness and opens up potential pathways for personalized therapeutic intervention.
Collapse
Affiliation(s)
- Gian Marco Leone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.M.L.); (K.M.); (F.N.)
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.M.L.); (K.M.); (F.N.)
| | - Salvatore Caponnetto
- Medical Oncology Unit B, Department of Radiology, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy;
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.M.L.); (K.M.); (F.N.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95123 Catania, Italy; (G.M.L.); (K.M.); (F.N.)
| |
Collapse
|
37
|
Corbin J, Yu X, Jin J, Cai L, Wang GG. EZH2 PROTACs target EZH2- and FOXM1-associated oncogenic nodes, suppressing breast cancer cell growth. Oncogene 2024; 43:2722-2736. [PMID: 39112519 DOI: 10.1038/s41388-024-03119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024]
Abstract
Breast cancer (BC) remains the second leading cause of cancer-related mortalities in women. Resistance to hormone therapies such as tamoxifen, an estrogen receptor (ER) inhibitor, is a major hurdle in the treatment of BC. Enhancer of zeste homolog 2 (EZH2), the methyltransferase component of the Polycomb repressive complex 2 (PRC2), has been implicated in tamoxifen resistance. Evidence suggests that EZH2 often functions noncanonically, in a methyltransferase-independent manner, as a transcription coactivator through interacting with oncogenic transcription factors. Unlike methyltransferase inhibitors, proteolysis targeting chimeras (PROTAC) can suppress both activating and repressive functions of EZH2. Here, we find that EZH2 PROTACs, MS177 and MS8815, effectively inhibited the growth of BC cells, including those with acquired tamoxifen resistance, to a much greater degree when compared to methyltransferase inhibitors. Mechanistically, EZH2 associates with forkhead box M1 (FOXM1) and binds to the promoters of FOXM1 target genes. EZH2 PROTACs induce degradation of both EZH2 and FOXM1, leading to reduced expression of target genes involved in cell cycle progression and tamoxifen resistance. Together, this study supports that EZH2-targeted PROTACs represent a promising avenue of research for the future treatment of BC, including in the setting of tamoxifen resistance.
Collapse
Affiliation(s)
- Joshua Corbin
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xufen Yu
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jian Jin
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ling Cai
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
| | - Gang Greg Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
38
|
Xia L, Yang L, Hu M. Diagnostic Accuracy of Combined 3.0T Magnetic Resonance Imaging and Molybdenum Target X-Ray in Triple-Negative Breast Cancer: Correlation with Prognosis in Patients Undergoing Sentinel Lymph Node Biopsy. WOMEN'S HEALTH REPORTS (NEW ROCHELLE, N.Y.) 2024; 5:546-553. [PMID: 39035134 PMCID: PMC11257123 DOI: 10.1089/whr.2023.0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/23/2024]
Abstract
Objective This study assessed the diagnostic efficacy of combining 3.0T MRI and molybdenum target X-ray in triple-negative breast carcinoma (TNBC) and its association with the prognosis of sentinel lymph node biopsy (SLNB). Methods The retrospective analysis included 128 patients suspected of having TNBC, who underwent 3.0T MRI and molybdenum target X-ray. Sensitivity and specificity were calculated for each imaging technique, and their combined diagnosis was evaluated using the four-table method. Consistency between the imaging techniques and pathological examination was assessed using the consistency checking method. Additionally, changes in imaging indicators were compared among patients with different prognostic indicators. Results Among the 128 patients, 86 were diagnosed with TNBC through pathological examination. The sensitivity and specificity of 3.0T MRI for TNBC were 82.56% and 76.19%, respectively. Molybdenum target X-ray exhibited a sensitivity of 77.91% and specificity of 78.57%. The combined diagnosis of the two techniques showed a sensitivity of 90.70% and specificity of 86.36%. There was good agreement between both imaging techniques and pathological examination results. Significant differences were observed in imaging indicators based on tumor diameter, histological grade, and lymph node metastasis. Conclusion Both 3.0T MRI and molybdenum target X-ray are valuable in diagnosing TNBC. Additionally, these imaging techniques provide prognostic information and can aid in treatment decision-making. The findings highlight the importance of 3.0T MRI and molybdenum target X-ray in improving the outcomes of patients with TNBC.
Collapse
Affiliation(s)
- Li Xia
- Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Huangpu, China
| | - Ling Yang
- Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Huangpu, China
| | - Meng Hu
- Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Huangpu, China
| |
Collapse
|
39
|
Xiao Y, Zhao X, Guo Y, Li Y. Expression and function of cytokine interleukin-22 gene in the tumor microenvironment of triple negative breast cancer. Cytokine 2024; 179:156590. [PMID: 38581864 DOI: 10.1016/j.cyto.2024.156590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND The tumor microenvironment (TME) and interleukin-22 (IL-22) in cytokines have recently attracted much attention due to their potential impact on tumor biology. However, the role of IL-22 in triple negative breast cancer (TNBC) TME is still poorly understood. This article investigated the gene expression and function of IL-22 in TNBC TME. METHODS Tumor samples from TNBC patients were collected, and adjacent noncancerous tissues were used as controls. A functional test was performed to evaluate the impact of IL-22 for TNBC cells, including proliferation, migration, and apoptosis. RESULTS IL-22 gene expression in TNBC tumor samples was markedly higher relative to adjacent non-cancerous tissues (P < 0.05). In addition, it was also observed that IL-22facilitated proliferation and migration of TNBC cells, and inhibit apoptosis. This article reveals the role of IL-22 in the TME of TNBC. The up-regulation of IL-22 gene expression in TNBC tumors and its promoting effect on cancer cell invasiveness highlight its potential as a therapeutic target in TNBC treatment strategies. CONCLUSION The findings suggested that targeting IL-22 and its related pathways can offer new insights for developing effective therapies for TNBC.
Collapse
Affiliation(s)
- Yibin Xiao
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xia Zhao
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yihui Guo
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yanping Li
- Department of Breast Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| |
Collapse
|
40
|
Godinez Paredes JM, Rodriguez I, Ren M, Orozco A, Ortiz J, Albanez A, Jones C, Nahleh Z, Barreda L, Garland L, Torres-Gonzalez E, Wu D, Luo W, Liu J, Argueta V, Orozco R, Gharzouzi E, Dean M. Germline pathogenic variants associated with triple-negative breast cancer in US Hispanic and Guatemalan women using hospital and community-based recruitment strategies. Breast Cancer Res Treat 2024; 205:567-577. [PMID: 38520597 PMCID: PMC11101360 DOI: 10.1007/s10549-024-07300-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/21/2024] [Indexed: 03/25/2024]
Abstract
PURPOSE Recruit and sequence breast cancer subjects in Guatemalan and US Hispanic populations. Identify optimum strategies to recruit Latin American and Hispanic women into genetic studies of breast cancer. METHODS We used targeted gene sequencing to identify pathogenic variants in 19 familial breast cancer susceptibility genes in DNA from unselected Hispanic breast cancer cases in the US and Guatemala. Recruitment across the US was achieved through community-based strategies. In addition, we obtained patients receiving cancer treatment at major hospitals in Texas and Guatemala. RESULTS We recruited 287 Hispanic US women, 38 (13%) from community-based and 249 (87%) from hospital-based strategies. In addition, we ascertained 801 Guatemalan women using hospital-based recruitment. In our experience, a hospital-based approach was more efficient than community-based recruitment. In this study, we sequenced 103 US and 137 Guatemalan women and found 11 and 10 pathogenic variants, respectively. The most frequently mutated genes were BRCA1, BRCA2, CHEK2, and ATM. In addition, an analysis of 287 US Hispanic patients with pathology reports showed a significantly higher percentage of triple-negative disease in patients with pathogenic variants (41% vs. 15%). Finally, an analysis of mammography usage in 801 Guatemalan patients found reduced screening in women with a lower socioeconomic status (p < 0.001). CONCLUSION Guatemalan and US Hispanic women have rates of hereditary breast cancer pathogenic variants similar to other populations and are more likely to have early age at diagnosis, a family history, and a more aggressive disease. Patient recruitment was higher using hospital-based versus community enrollment. This data supports genetic testing in breast cancer patients to reduce breast cancer mortality in Hispanic women.
Collapse
Affiliation(s)
- Jesica M Godinez Paredes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Gaithersburg, MD, USA
| | - Isabel Rodriguez
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Gaithersburg, MD, USA
| | - Megan Ren
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Gaithersburg, MD, USA
| | - Anali Orozco
- Instituto Cancerologia, Guatemala City, Guatemala
| | - Jeremy Ortiz
- Instituto Cancerologia, Guatemala City, Guatemala
| | | | - Catherine Jones
- Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Lilian Barreda
- Hospital General San Juan de Dios, Guatemala City, Guatemala
| | - Lisa Garland
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Gaithersburg, MD, USA
| | - Edmundo Torres-Gonzalez
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Gaithersburg, MD, USA
| | - Dongjing Wu
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Gaithersburg, MD, USA
| | - Wen Luo
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Gaithersburg, MD, USA
| | - Jia Liu
- Cancer Genetics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Gaithersburg, MD, USA
| | - Victor Argueta
- Hospital General San Juan de Dios, Guatemala City, Guatemala
| | - Roberto Orozco
- Hospital General San Juan de Dios, Guatemala City, Guatemala
| | | | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Gaithersburg, MD, USA.
- National Cancer Institute, 9615 Medical Center Drive, Rm 3130, Rockville, MD, 20850, USA.
| |
Collapse
|
41
|
Linde C, Chien YT, Chen Z, Mu Q. Nanoparticle-enhanced PD-1/PD-L1 targeted combination therapy for triple negative breast cancer. Front Oncol 2024; 14:1393492. [PMID: 38756653 PMCID: PMC11096478 DOI: 10.3389/fonc.2024.1393492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Breast cancer with triple-negative subtype (TNBC) presents significant challenges with limited treatment options and a poorer prognosis than others. While PD-1/PD-L1 checkpoint inhibitors have shown promise, their efficacy in TNBC remains constrained. In recent years, nanoparticle (NP) technologies offer a novel approach to enhance cancer therapy by optimizing the tumor microenvironment and augmenting chemo- and immunotherapy effects in various preclinical and clinical settings. This review discusses recent investigations in NP strategies for improving PD-1/PD-L1 blockade-based combination therapy for TNBC. Those include single or multi-therapeutic NPs designed to enhance immunogenicity of the tumor, induce immunogenic cell death, and target immunosuppressive elements within the tumor microenvironment. The investigations also include NPs co-loaded with PD-L1 inhibitors and other therapeutic agents, leveraging targeted delivery and synergistic effects to maximize efficacy while minimizing systemic toxicity. Overall, NP approaches represent a promising avenue for enhancing PD-1/PD-L1 checkpoint blockade-based combination therapy in TNBC and encourage further developmental studies.
Collapse
Affiliation(s)
| | | | | | - Qingxin Mu
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States
| |
Collapse
|
42
|
Ferreira Almeida C, Correia-da-Silva G, Teixeira N, Amaral C. Influence of tumor microenvironment on the different breast cancer subtypes and applied therapies. Biochem Pharmacol 2024; 223:116178. [PMID: 38561089 DOI: 10.1016/j.bcp.2024.116178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Despite the significant improvements made in breast cancer therapy during the last decades, this disease still has increasing incidence and mortality rates. Different targets involved in general processes, like cell proliferation and survival, have become alternative therapeutic options for this disease, with some of them already used in clinic, like the CDK4/6 inhibitors for luminal A tumors treatment. Nevertheless, there is a demand for novel therapeutic strategies focused not only on tumor cells, but also on their microenvironment. Tumor microenvironment (TME) is a very complex and dynamic system that, more than surrounding and supporting tumor cells, actively participates in tumor development and progression. During the last decades, it has become clear that the cellular and acellular components of TME differ between the various breast cancer subtypes and shape the differences regarding their severity and prognosis. The pivotal role of the TME in controlling tumor growth and influencing responses to therapy represents a potential source for novel targets and therapeutic strategies. In this review, we present a description of the multiple therapeutic options used for different breast cancer subtypes, as well as the influence that the TME may exert on the development of the disease and on the response to the distinct therapies, which in some cases may explain their failure by the occurrence of relapses and resistance. Furthermore, the ongoing studies focused on the use of TME components for developing potential cancer treatments are described.
Collapse
Affiliation(s)
- Cristina Ferreira Almeida
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| | - Natércia Teixeira
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal
| | - Cristina Amaral
- UCIBIO, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
43
|
Ray SK, Mukherjee S. Breast cancer stem cells as novel biomarkers. Clin Chim Acta 2024; 557:117855. [PMID: 38453050 DOI: 10.1016/j.cca.2024.117855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Breast cancer is the most common cancer and the leading cause of mortality worldwide. Despite advancements in detection and treatment, it remains a major cause of cancer-related deaths in women. Breast cancer stem cells (BCSCs) are a crucial group of cells responsible for carcinogenesis, metastasis, medication resistance, and tumor recurrence. Identifying and understanding their molecular pathways is essential for developing effective breast cancer therapy. BCSCs are responsible for tumor genesis, development, metastasis, treatment resistance, and recurrence. Biomarkers are essential tools for identifying high-risk patients, improving diagnostic accuracy, developing follow-up programs, assessing treatment susceptibility, and predicting prognostic outcomes. Stem cell intervention therapy can provide specialized tools for precision therapy. Biomarker analysis in cancer patients is crucial to identify cells associated with disease progression and post-therapeutic relapse. However, negative post-therapeutic impacts can enhance cancer stemness by boosting BCSCs plasticity phenotypes, activating stemness pathways in non-BCSCs, and promoting senescence escape, leading to tumor relapse and metastasis. Despite the advancements in precision medicine, challenges persist in identifying stem cell markers, limiting the number of eligible patients for treatment. The diversity of biomedical research hinders the development of individualization-based preventative, monitoring, and treatment strategies, especially in oncology. Integrating and interpreting clinical and scientific data remains challenging. The development of stem cell-related indicators could significantly improve disease precision, enabling stem cell-targeted therapy and personalized treatment plans, although BCSCs are promising for breast cancer treatment optimization, serving as biomarkers for current therapy modalities. This summary discusses recent advancements in breast cancer stem cell research, including biomarkers, identification methods, molecular mechanisms, and tools for studying their biological origin and lineage development for precision medicine.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh 462020, India.
| |
Collapse
|
44
|
Szulc A, Woźniak M. Targeting Pivotal Hallmarks of Cancer for Enhanced Therapeutic Strategies in Triple-Negative Breast Cancer Treatment-In Vitro, In Vivo and Clinical Trials Literature Review. Cancers (Basel) 2024; 16:1483. [PMID: 38672570 PMCID: PMC11047913 DOI: 10.3390/cancers16081483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This literature review provides a comprehensive overview of triple-negative breast cancer (TNBC) and explores innovative targeted therapies focused on specific hallmarks of cancer cells, aiming to revolutionize breast cancer treatment. TNBC, characterized by its lack of expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), presents distinct features, categorizing these invasive breast tumors into various phenotypes delineated by key elements in molecular assays. This article delves into the latest advancements in therapeutic strategies targeting components of the tumor microenvironment and pivotal hallmarks of cancer: deregulating cellular metabolism and the Warburg effect, acidosis and hypoxia, the ability to metastasize and evade the immune system, aiming to enhance treatment efficacy while mitigating systemic toxicity. Insights from in vitro and in vivo studies and clinical trials underscore the promising effectiveness and elucidate the mechanisms of action of these novel therapeutic interventions for TNBC, particularly in cases refractory to conventional treatments. The integration of targeted therapies tailored to the molecular characteristics of TNBC holds significant potential for optimizing clinical outcomes and addressing the pressing need for more effective treatment options for this aggressive subtype of breast cancer.
Collapse
Affiliation(s)
| | - Marta Woźniak
- Department of Clinical and Experimental Pathology, Division of General and Experimental Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
45
|
Saleh RO, Ibrahim FM, Pallathadka H, Kaur I, Ahmad I, Ali SHJ, Redhee AH, Ghildiyal P, Jawad MA, Alsaadi SB. Nucleic acid vaccines-based therapy for triple-negative breast cancer: A new paradigm in tumor immunotherapy arena. Cell Biochem Funct 2024; 42:e3992. [PMID: 38551221 DOI: 10.1002/cbf.3992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Nucleic acid vaccines (NAVs) have the potential to be economical, safe, and efficacious. Furthermore, just the chosen antigen in the pathogen is the target of the immune responses brought on by NAVs. Triple-negative breast cancer (TNBC) treatment shows great promise for nucleic acid-based vaccines, such as DNA (as plasmids) and RNA (as messenger RNA [mRNA]). Moreover, cancer vaccines offer a compelling approach that can elicit targeted and long-lasting immune responses against tumor antigens. Bacterial plasmids that encode antigens and immunostimulatory molecules serve as the foundation for DNA vaccines. In the 1990s, plasmid DNA encoding the influenza A nucleoprotein triggered a protective and targeted cytotoxic T lymphocyte (CTL) response, marking the first instance of DNA vaccine-mediated immunity. Similarly, in vitro transcribed mRNA was first successfully used in animals in 1990. At that point, mice were given an injection of the gene encoding the mRNA sequence, and the researchers saw the production of a protein. We begin this review by summarizing our existing knowledge of NAVs. Next, we addressed NAV delivery, emphasizing the need to increase efficacy in TNBC.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Fatma M Ibrahim
- Community Health Nursing, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
- Geriatric Nursing, Mansoura University, Mansoura, Egypt
| | | | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Saad Hayif Jasim Ali
- Department of Medical Laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Huseen Redhee
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, Iraq
| |
Collapse
|
46
|
Domínguez-Jurado E, Ripoll C, Lara-Sánchez A, Ocaña A, Vitórica-Yrezábal IJ, Bravo I, Alonso-Moreno C. Evaluation of heteroscorpionate ligands as scaffolds for the generation of Ruthenium(II) metallodrugs in breast cancer therapy. J Inorg Biochem 2024; 253:112486. [PMID: 38266323 DOI: 10.1016/j.jinorgbio.2024.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
The modular synthesis of the heteroscorpionate core is explored as a tool for the rapid development of ruthenium-based therapeutic agents. Starting with a series of structurally diverse alcohol-NN ligands, a family of heteroscorpionate-based ruthenium derivatives was synthesized, characterized, and evaluated as an alternative to platinum therapy for breast cancer therapy. In vitro, the antitumoral activity of the novel derivatives was assessed in a series of breast cancer cell lines using UNICAM-1 and cisplatin as metallodrug control. Through this approach, a bimetallic heteroscorpionate-based metallodrug (RUSCO-2) was identified as the lead compound of the series with an IC50 value range as low as 3-5 μM. Notably, RUSCO-2 was found to be highly cytotoxic in TNBC cell lines, suggesting a mode of action independent of the receptor status of the cells. As a proof of concept and taking advantage of the luminescent properties of one of the complexes obtained, uptake was monitored in human breast cancer MCF7 cell lines by fluorescence lifetime imaging microscopy (FLIM) to reveal that the compound is evenly distributed in the cytoplasm and that the incorporation of the heteroscorpionate ligand protects it from aqueous processes, conversion in another entity, or the loss of the chloride group. Finally, ROS studies were conducted, lipophilicity was estimated, the chloride/water exchange was studied, and stability studies in simulated biological media were carried out to propose structure-activity relationships.
Collapse
Affiliation(s)
- Elena Domínguez-Jurado
- Universidad de Castilla-La Mancha, Unidad nanoDrug, Facultad de Farmacia de Albacete, 02008 Albacete, Spain; Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Ciudad Real 13071, Spain
| | - Consuelo Ripoll
- Universidad de Castilla-La Mancha, Unidad nanoDrug, Facultad de Farmacia de Albacete, 02008 Albacete, Spain; Universidad de Castilla-La Mancha, Departamento de Química Física. Facultad de Farmacia de Albacete, Albacete 02071, Spain
| | - Agustín Lara-Sánchez
- Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Ciudad Real 13071, Spain
| | - Alberto Ocaña
- Experimental Therapeutics Unit, Hospital clínico San Carlos, IdISSC and CIBERONC, Madrid, Spain
| | - Iñigo J Vitórica-Yrezábal
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avda de Fuentenueva. s/n, 18071 Granada, Spain
| | - Iván Bravo
- Universidad de Castilla-La Mancha, Unidad nanoDrug, Facultad de Farmacia de Albacete, 02008 Albacete, Spain; Universidad de Castilla-La Mancha, Departamento de Química Física. Facultad de Farmacia de Albacete, Albacete 02071, Spain
| | - Carlos Alonso-Moreno
- Universidad de Castilla-La Mancha, Unidad nanoDrug, Facultad de Farmacia de Albacete, 02008 Albacete, Spain; Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías Químicas-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Ciudad Real 13071, Spain.
| |
Collapse
|
47
|
Moitra P, Skrodzki D, Molinaro M, Gunaseelan N, Sar D, Aditya T, Dahal D, Ray P, Pan D. Context-Responsive Nanoparticle Derived from Synthetic Zwitterionic Ionizable Phospholipids in Targeted CRISPR/Cas9 Therapy for Basal-like Breast Cancer. ACS NANO 2024; 18:9199-9220. [PMID: 38466962 DOI: 10.1021/acsnano.4c01400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The majority of triple negative breast cancers (TNBCs) are basal-like breast cancers (BLBCs), which tend to be more aggressive, proliferate rapidly, and have poor clinical outcomes. A key prognostic biomarker and regulator of BLBC is the Forkhead box C1 (FOXC1) transcription factor. However, because of its functional placement inside the cell nucleus and its structural similarity with other related proteins, targeting FOXC1 for therapeutic benefit, particularly for BLBC, continues to be difficult. We envision targeted nonviral delivery of CRISPR/Cas9 plasmid toward the efficacious knockdown of FOXC1. Keeping in mind the challenges associated with the use of CRISPR/Cas9 in vivo, including off-targeting modifications, and effective release of the cargo, a nanoparticle with context responsive properties can be designed for efficient targeted delivery of CRISPR/Cas9 plasmid. Consequently, we have designed, synthesized, and characterized a zwitterionic amino phospholipid-derived transfecting nanoparticle for delivery of CRISPR/Cas9. The construct becomes positively charged only at low pH, which encourages membrane instability and makes it easier for nanoparticles to exit endosomes. This has enabled effective in vitro and in vivo downregulation of protein expression and genome editing. Following this, we have used EpCAM aptamer to make the system targeted toward BLBC cell lines and to reduce its off-target toxicity. The in vivo efficacy, biodistribution, preliminary pharmacokinetics, and biosafety of the optimized targeted CRISPR nanoplatform is then validated in a rodent xenograft model. Overall, we have attempted to knockout the proto-oncogenic FOXC1 expression in BLBC cases by efficient delivery of CRISPR effectors via a context-responsive nanoparticle delivery system derived from a designer lipid derivative. We believe that the nonviral approach for in vitro and in vivo delivery of CRISPR/Cas9 targeted toward FOXC1, studied herein, will greatly emphasize the therapeutic regimen for BLBC.
Collapse
Affiliation(s)
- Parikshit Moitra
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Pediatrics, Centre of Blood Oxygen Transport & Hemostasis, University of Maryland-Baltimore School of Medicine, Baltimore, Maryland 21201, United States
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - David Skrodzki
- Department of Pediatrics, Centre of Blood Oxygen Transport & Hemostasis, University of Maryland-Baltimore School of Medicine, Baltimore, Maryland 21201, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Matthew Molinaro
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nivetha Gunaseelan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dinabandhu Sar
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Teresa Aditya
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dipendra Dahal
- Department of Pediatrics, Centre of Blood Oxygen Transport & Hemostasis, University of Maryland-Baltimore School of Medicine, Baltimore, Maryland 21201, United States
| | - Priyanka Ray
- Department of Chemical & Biochemical Engineering, University of Maryland-Baltimore County, Baltimore County, Maryland 21250, United States
| | - Dipanjan Pan
- Department of Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Pediatrics, Centre of Blood Oxygen Transport & Hemostasis, University of Maryland-Baltimore School of Medicine, Baltimore, Maryland 21201, United States
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemical & Biochemical Engineering, University of Maryland-Baltimore County, Baltimore County, Maryland 21250, United States
- Huck Institutes of the Life Sciences, 101 Huck Life Sciences Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
48
|
Mehrotra N, Pal K. Tumor targeted nanohybrid for dual stimuli responsive and NIR amplified photothermal/photo-induced thermodynamic/chemodynamic combination therapy. Biomed Mater 2024; 19:035019. [PMID: 38471148 DOI: 10.1088/1748-605x/ad330f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
The combination of photodynamic (PDT) and chemodynamic therapy (CDT) for cancer treatment has gathered a lot of attention in recent years. However, its efficacy is severely limited by elevated levels of hypoxia and glutathione (GSH) in the tumor microenvironment (TME). Multifunctional nanoparticles that can help remodel the TME while facilitating PDT/CDT combination therapy are the need of the hour. To this effect, we have developed O2self-supplying, free radical generating nanohybrids that exhibit near infra-red (NIR) triggered photothermal (PTT)/photo-induced thermodynamic (P-TDT) and CDT for efficient breast cancer treatment. The surface of nanohybrids has been further modified by biointerfacing with cancer cell membrane. The biomimetic nanohybrids have been comprehensively characterized and found to exhibit high 2,2'-azobis-[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) loading, GSH depletion, oxygen self-supply with TME responsive AIPH release. Biological activity assays demonstrate efficient cellular uptake with homotypic targeting, excellent hemo- and cytocompatibility as well as high intracellular reactive oxygen species generation with synergistic cytotoxicity against tumor cells. The multifunctional nanohybrid proposed in the present study provides an attractive strategy for achieving NIR responsive, tumor targeted PTT/P-TDT/CDT combination therapy for breast cancer treatment.
Collapse
Affiliation(s)
- Neha Mehrotra
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kaushik Pal
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
49
|
Napiórkowska-Mastalerz M, Wybranowski T, Bosek M, Kruszewski S, Rhone P, Ruszkowska-Ciastek B. A Preliminary Evaluation of Advanced Oxidation Protein Products (AOPPs) as a Potential Approach to Evaluating Prognosis in Early-Stage Breast Cancer Patients and Its Implication in Tumour Angiogenesis: A 7-Year Single-Centre Study. Cancers (Basel) 2024; 16:1068. [PMID: 38473424 DOI: 10.3390/cancers16051068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Breast cancer (BrC) is a highly prevalent tumour among women. The high incidence and mortality rate of BrC prompts researchers to search for new markers that will provide information on the possible impact of the therapy on the risk of cancer-related events. This study aimed to investigate whether the level of advanced oxidation protein products (AOPPs) may have a potential impact on disease-free (DFS) and overall survival (OS) in BrC patients with early-stage cancer. Additionally, we tried to assess the relationship between AOPPs and angiogenic parameters. In this study, the pre- and post-treatment AOPP levels were examined in the serum of 70 newly diagnosed BrC women. The receiver operating characteristic curve identified pre- and post-treatment AOPPs to be above 9.37 μM and 10.39 μM, respectively, as the best cut-off values to predict the risk of cancer relapse. Additionally, Kaplan-Meier survival analysis indicated that pre- and post-treatment AOPPs above 9.37 μM and 10.39 μM were associated with significantly poorer OS. The uni- and multivariate Cox regression analysis highlighted that lower levels of pre- and post-treatment AOPPs were associated with a longer duration without relapse or cancer-related death. A positive correlation between concentrations of pre-treatment AOPPs and vascular endothelial growth factor A, and negative correlations with levels of soluble forms of vascular endothelial growth factor receptor type 1 and 2, were found. In conclusion, AOPPs appear to have an important role in predicting cancer-related events and may potentially serve as a simple prognostic marker in clinical practice.
Collapse
Affiliation(s)
- Marta Napiórkowska-Mastalerz
- Department of Biophysics, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-067 Bydgoszcz, Poland
| | - Tomasz Wybranowski
- Department of Biophysics, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-067 Bydgoszcz, Poland
| | - Maciej Bosek
- Department of Biophysics, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-067 Bydgoszcz, Poland
| | - Stefan Kruszewski
- Department of Biophysics, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-067 Bydgoszcz, Poland
| | - Piotr Rhone
- Clinical Ward of Breast Cancer and Reconstructive Surgery, Oncology Centre Prof. F. Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland
| | - Barbara Ruszkowska-Ciastek
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-094 Bydgoszcz, Poland
| |
Collapse
|
50
|
Liu Y, Zhang D, Zhang Z, Liang X, Yang X, Ding N, Nie Y, Li C. Multifunctional nanoparticles inhibit tumor and tumor-associated macrophages for triple-negative breast cancer therapy. J Colloid Interface Sci 2024; 657:598-610. [PMID: 38071809 DOI: 10.1016/j.jcis.2023.11.156] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 01/02/2024]
Abstract
HYPOTHESIS Tumor-associated macrophages (TAM) are the mainstay of immunosuppressive cells in the tumor microenvironment, and elimination of M2-type macrophages (M2-TAM) is considered as a potential immunotherapy. However, the interaction of breast cancer cells with macrophages hinders the effectiveness of immunotherapy. In order to improve the efficacy of triple-negative breast cancer (TNBC) therapy, strategies that simultaneously target the elimination of M2-TAM and breast cancer cells may be able to achieve a better therapy. EXPERIMENTS LyP-SA/AgNP@Dox multifunctional nanoparticles were synthesized by electrostatic adsorption. They were characterized by particle size, potential and spectroscopy. And the efficacy of multifunctional nanoparticles was evaluated in 4 T1 cell lines and M2 macrophages, including their cell uptake intracellular reactive oxygen species (ROS) production and the therapeutic effect. Furthermore, based on the orthotopic xenotransplantation model of triple negative breast cancer, the biological distribution, fluorescence imaging, biosafety evaluation and combined efficacy evaluation of the nanoplatform were performed. FINDINGS We have successfully prepared LyP-SA/AgNP@Dox and characterized. Administering the nanosystem to 4 T1 tumor cells or M2 macrophages in culture induced accumulation of reactive oxygen species, destruction of mitochondria and apoptosis, and inhibited replication and transcription. Animal experiments demonstrated the nanoparticle had favorable targeting and antitumor activity. Our nanosystem may be useful for simultaneously inhibiting tumor and tumor-associated macrophages in breast cancer and, potentially, other malignancies.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Dan Zhang
- Department of Pharmacy of Traditional Chinese Medicine, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiaoya Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Nianhui Ding
- Department of Pharmacology Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|