1
|
Shawa M, Hayashida K, Nao N, Paudel A, Kamboyi H, Chambaro H, Mulavu M, Khumalo CS, Nundwe M, Zorigt T, Nakamura C, Qiu Y, Kawai N, Kasanga M, Chizimu J, Moonga L, Ndebe J, Simbotwe M, Ogata S, Samutela M, Nakajima C, Chilengi R, Mutengo M, Kajihara M, Sawa H, Hang'ombe B, Suzuki Y, Higashi H. Development of a PCR-dipstick DNA chromatography-based tool for the detection of CTX-M- and TEM-producing Escherichia coli and Klebsiella pneumoniae isolated from patients in Kafue and Katete districts of Zambia. BMC Infect Dis 2025; 25:541. [PMID: 40240940 PMCID: PMC12004789 DOI: 10.1186/s12879-025-10628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/11/2025] [Indexed: 04/18/2025] Open
Abstract
In Zambia, 40% of clinical Gram-negative bacteria are either Escherichia coli or Klebsiella pneumoniae, with a high third-generation cephalosporin (3GC) resistance prevalence. Therefore, 3GC resistance surveillance is a crucial indicator for guiding focused intervention policies. However, the lack of genotypic diagnostic tools limits the ability to elucidate trends, especially in peri-urban and rural areas of developing countries. This study aimed to develop a rapid, cost-effective tool for the genotypic surveillance of 3GC resistance. Here, 900 stool samples collected from patients in Kafue (peri-urban, n = 400) and Katete (rural, n = 500) districts of Zambia were used for bacterial isolation on MacConkey agar supplemented with 1 μg/ml cefotaxime. Isolated 3GC-resistant strains were characterized by sequencing the 16S rRNA gene and screening for blaCTX-M and blaTEM genes using single polymerase chain reaction (PCR). Furthermore, selected 3GC-resistant strains were subjected to whole-genome sequencing (WGS) using MiSeq/HiSeq (n = 34) and MinION (n = 1). Using the data from this and other previous studies, we developed a rapid PCR-dipstick DNA chromatography-based tool for detecting blaCTX-M, blaTEM, E. coli-specific yaiO, and K. pneumoniae-specific khe genes. The prevalence of isolated 3GC resistant strains was 15.4% (139/900), dominated by E. coli (102/139, 73.4%). On PCR, the blaCTX-M gene was detected in 72.7% (101/139) of the isolates, while blaTEM was found in 46.8% (65/139) of the strains. The developed tool displayed a high level of agreement with WGS and single PCR/Sanger sequencing, with sensitivity and specificity ≥ 95% and Kappa ≥ 0.95 for each of the four target genes. We envisage that the simplicity and adaptability of this tool will be a significant advantage for the surveillance of 3GC resistance in Zambia and elsewhere.
Collapse
Affiliation(s)
- Misheck Shawa
- Hokudai Center for Zoonosis Control in Zambia, Hokkaido University, Lusaka, 10101, Zambia.
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-Ku, Sapporo, 001-0020, Japan.
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-Ku, Sapporo, 001-0020, Japan.
| | - Kyoko Hayashida
- Hokudai Center for Zoonosis Control in Zambia, Hokkaido University, Lusaka, 10101, Zambia
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-Ku, Sapporo, 001-0020, Japan
| | - Naganori Nao
- Hokudai Center for Zoonosis Control in Zambia, Hokkaido University, Lusaka, 10101, Zambia
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-Ku, Sapporo, 001-0020, Japan
- One Health Research Center, Hokkaido University, N18 W9, Kita-Ku, Sapporo, 060-0818, Japan
| | - Atmika Paudel
- GenEndeavor LLC, 26219 Eden Landing Rd, Hayward, CA, 94545, USA
| | - Harvey Kamboyi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-Ku, Sapporo, 001-0020, Japan
| | - Herman Chambaro
- Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka, 10101, Zambia
| | - Malala Mulavu
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, 10101, Zambia
| | - Cynthia Sipho Khumalo
- Department of Biological Sciences, School of Veterinary Medicine, University of Zambia, Lusaka, 10101, Zambia
| | - Mike Nundwe
- Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, 10101, Lusaka, Zambia
| | - Tuvshinzaya Zorigt
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-Ku, Sapporo, 001-0020, Japan
| | - Chinatsu Nakamura
- Hokudai Center for Zoonosis Control in Zambia, Hokkaido University, Lusaka, 10101, Zambia
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-Ku, Sapporo, 001-0020, Japan
| | - Yongjin Qiu
- Hokudai Center for Zoonosis Control in Zambia, Hokkaido University, Lusaka, 10101, Zambia
- Department of Virology-I, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo, 162-8640, Japan
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo, 162-8640, Japan
| | - Naoko Kawai
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-Ku, Sapporo, 001-0020, Japan
| | - Maisa Kasanga
- Department of Pathology and Microbiology, University Teaching Hospital, Lusaka, 10101, Zambia
| | - Joseph Chizimu
- Zambia National Public Health Institute, Ministry of Health, Lusaka, 10101, Zambia
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-Ku, Sapporo, 001-0020, Japan
| | - Lavel Moonga
- Department of Para-Clinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, 10101, Zambia
| | - Joseph Ndebe
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, 10101, Zambia
| | - Manyando Simbotwe
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, 10101, Zambia
| | - Shohei Ogata
- Hokudai Center for Zoonosis Control in Zambia, Hokkaido University, Lusaka, 10101, Zambia
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-Ku, Sapporo, 001-0020, Japan
| | - Mulemba Samutela
- Department of Biomedical Sciences, School of Health Sciences, University of Zambia, Lusaka, 10101, Zambia
| | - Chie Nakajima
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-Ku, Sapporo, 001-0020, Japan
| | - Roma Chilengi
- Zambia National Public Health Institute, Ministry of Health, Lusaka, 10101, Zambia
| | - Mable Mutengo
- Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, 10101, Lusaka, Zambia
| | - Masahiro Kajihara
- Hokudai Center for Zoonosis Control in Zambia, Hokkaido University, Lusaka, 10101, Zambia
- Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-Ku, Sapporo, 001-0020, Japan
| | - Hirofumi Sawa
- Hokudai Center for Zoonosis Control in Zambia, Hokkaido University, Lusaka, 10101, Zambia
- One Health Research Center, Hokkaido University, N18 W9, Kita-Ku, Sapporo, 060-0818, Japan
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, 10101, Zambia
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-Ku, Sapporo, 001-0020, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, N21 W11, Kita-Ku, Sapporo, 001-0021, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-Ku, Sapporo, 001-0020, Japan
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, School of Veterinary Medicine, University of Zambia, Lusaka, 10101, Zambia
- Global Virus Network, 725 W Lombard Street, Baltimore, MD, 21201, USA
| | - Bernard Hang'ombe
- Department of Para-Clinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, 10101, Zambia
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, School of Veterinary Medicine, University of Zambia, Lusaka, 10101, Zambia
| | - Yasuhiko Suzuki
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-Ku, Sapporo, 001-0020, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, N21 W11, Kita-Ku, Sapporo, 001-0021, Japan
| | - Hideaki Higashi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, N20 W10, Kita-Ku, Sapporo, 001-0020, Japan
| |
Collapse
|
2
|
Huang M, Zhang X, Luo C, Xu H, Qiu Y, Yang J. Genome and antibiotic resistance characteristics of Shigella clinical isolates in Fujian Province, Southeast China, 2005-2019. Microb Genom 2024; 10:001325. [PMID: 39565081 PMCID: PMC11893363 DOI: 10.1099/mgen.0.001325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024] Open
Abstract
Shigellosis is a serious public health issue in many developing countries. The emergence of multidrug-resistant (MDR) Shigella isolates has deepened the treatment difficulty and health burden of shigellosis. China is the largest developing country in the world, but so far, the genome of MDR Shigella isolates has not been well characterized. In this study, 60 clinical isolates of Shigella spp. in Fujian Province, southeast China, from 2005 to 2019 were characterized for drug resistance phenotype, whole-genome sequencing and bioinformatics analysis. The results showed that the MDR rate of Shigella isolates was 100%, among which the resistance rates of cefotaxime, ciprofloxacin and azithromycin were 36.67, 21.67 and 10.00 %, respectively. The positive rate of extended-spectrum beta-lactamase (ESBL)-producing strains was 23.33%. The resistance profiles of Shigella flexneri and Shigella sonnei to some antimicrobials differed. The MDR isolates carried multiple antimicrobial resistance genes, among which blaCTX-M-14 and blaCTX-M-15 mediated ESBL resistance. 'ISEcp1 -blaCTX-M -IS903' (type I) and 'ISEcp1 -blaCTX-M' (type II) were the most common genetic environments around the blaCTX-M genes, and plasmids containing these structures included IncFII, IncI1, IncI2 and IncN. The double gene mutation pattern of gyrA and parC resulted in a significant decrease in the sensitivity of S. flexneri to ciprofloxacin. The overall resistance phenotype and genotype concordance rate was 88.50%, and the sensitivity and specificity of the genotype antimicrobial susceptibility test (AST) were 93.35 and 82.53 %, respectively. However, inconsistency occurred between phenotypic and genotype profiles for a few antibiotics. Phylogenomic investigation with core genome multi-locus sequence typing (cgMLST) and SNPs were used to characterize the endemic transmission of these infections in Fujian and their evolutionary origin within the global context. For S. flexneri, Fujian isolates were all limited to PG3 and could be divided into three phylogenetic clusters. The ciprofloxacin-resistant strains were mainly F2a and FXv and assigned to the three clusters with different quinolone resistance-determining region mutation patterns. For S. sonnei, most Fujian strains belonged to Lineage III with genotype 3.7.6, except three isolates of Lineage I with genotype 1.3. The strains carrying the blaCTX-M genes were dispersed, indicating different origins of gene acquisition. Most of the circulating isolates in Fujian Province were not related to major international outbreak lineages and were only endemic to the country. In conclusion, multi-drug resistance of Shigella isolates in Fujian Province was serious, and genome-based laboratory surveillance will be crucial to the clinical treatment and public health measures for shigellosis.
Collapse
Affiliation(s)
- Mengying Huang
- Fujian Center for Disease Control and Prevention, Fuzhou, PR China
| | - Xiaoxuan Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, PR China
| | - Chaochen Luo
- Fujian Center for Disease Control and Prevention, Fuzhou, PR China
| | - Haibin Xu
- Fujian Center for Disease Control and Prevention, Fuzhou, PR China
| | - Yufeng Qiu
- Fujian Center for Disease Control and Prevention, Fuzhou, PR China
| | - Jinsong Yang
- Fujian Center for Disease Control and Prevention, Fuzhou, PR China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, PR China
- Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, PR China
| |
Collapse
|
3
|
Ikhimiukor OO, Zac Soligno NI, Akintayo IJ, Marcovici MM, Souza SSR, Workman A, Martin IW, Andam CP. Clonal background and routes of plasmid transmission underlie antimicrobial resistance features of bloodstream Klebsiella pneumoniae. Nat Commun 2024; 15:6969. [PMID: 39138200 PMCID: PMC11322185 DOI: 10.1038/s41467-024-51374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Bloodstream infections caused by the opportunistic pathogen Klebsiella pneumoniae are associated with adverse health complications and high mortality rates. Antimicrobial resistance (AMR) limits available treatment options, thus exacerbating its public health and clinical burden. Here, we aim to elucidate the population structure of K. pneumoniae in bloodstream infections from a single medical center and the drivers that facilitate the dissemination of AMR. Analysis of 136 short-read genome sequences complemented with 12 long-read sequences shows the population consisting of 94 sequence types (STs) and 99 clonal groups, including globally distributed multidrug resistant and hypervirulent clones. In vitro antimicrobial susceptibility testing and in silico identification of AMR determinants reveal high concordance (90.44-100%) for aminoglycosides, beta-lactams, carbapenems, cephalosporins, quinolones, and sulfonamides. IncF plasmids mediate the clonal (within the same lineage) and horizontal (between lineages) transmission of the extended-spectrum beta-lactamase gene blaCTX-M-15. Nearly identical plasmids are recovered from isolates over a span of two years indicating long-term persistence. The genetic determinants for hypervirulence are carried on plasmids exhibiting genomic rearrangement, loss, and/or truncation. Our findings highlight the importance of considering both the genetic background of host strains and the routes of plasmid transmission in understanding the spread of AMR in bloodstream infections.
Collapse
Affiliation(s)
- Odion O Ikhimiukor
- Department of Biological Sciences, State University of New York at Albany, Albany, NY, USA.
| | - Nicole I Zac Soligno
- Department of Biological Sciences, State University of New York at Albany, Albany, NY, USA
| | - Ifeoluwa J Akintayo
- Institute for Infection Prevention and Hospital Epidemiology, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Michael M Marcovici
- Department of Biological Sciences, State University of New York at Albany, Albany, NY, USA
| | - Stephanie S R Souza
- Department of Biological Sciences, State University of New York at Albany, Albany, NY, USA
| | - Adrienne Workman
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Isabella W Martin
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Cheryl P Andam
- Department of Biological Sciences, State University of New York at Albany, Albany, NY, USA.
| |
Collapse
|
4
|
Garzon A, Basbas C, Schlesener C, Silva-del-Rio N, Karle BM, Lima FS, Weimer BC, Pereira RV. WGS of intrauterine E. coli from cows with early postpartum uterine infection reveals a non-uterine specific genotype and virulence factors. mBio 2024; 15:e0102724. [PMID: 38742889 PMCID: PMC11237492 DOI: 10.1128/mbio.01027-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Escherichia coli has been attributed to playing a major role in a cascade of events that affect the prevalence and severity of uterine disease in cattle. The objectives of this project were to (i) define the association between the prevalence of specific antimicrobial resistance and virulence factor genes in E. coli with the clinical status related to uterine infection, (ii) identify the genetic relationship between E. coli isolates from cows with diarrhea, with mastitis, and with and without metritis, and (iii) determine the association between the phenotypic and genotypic antimicrobial resistance identified on the E. coli isolated from postpartum cattle. Bacterial isolates (n = 148) were obtained from a larger cross-sectional study. Cows were categorized into one of three clinical groups before enrollment: metritis, cows with purulent discharge, and control cows. For genomic comparison, public genomes (n = 130) from cows with diarrhea, mastitis, and metritis were included in a genome-wide association study, to evaluate differences between the drug classes or the virulence factor category among clinical groups. A distinct E. coli genotype associated with metritis could not be identified. Instead, a high genetic diversity among the isolates from uterine sources was present. A virulence factor previously associated with metritis (fimH) using PCR was not associated with metritis. There was moderate accuracy for whole-genome sequencing to predict phenotypic resistance, which varied depending on the antimicrobial tested. Findings from this study contradict the traditional pathotype classification and the unique intrauterine E. coli genotype associated with metritis in dairy cows.IMPORTANCEMetritis is a common infectious disease in dairy cattle and the second most common reason for treating a cow with antimicrobials. The pathophysiology of the disease is complex and is not completely understood. Specific endometrial pathogenic Escherichia coli have been reported to be adapted to the endometrium and sometimes lead to uterine disease. Unfortunately, the specific genomic details of the endometrial-adapted isolates have not been investigated using enough genomes to represent the genomic diversity of this organism to identify specific virulence genes that are consistently associated with disease development and severity. Results from this study provide key microbial ecological advances by elucidating and challenging accepted concepts for the role of Intrauterine E. coli in metritis in dairy cattle, especially contradicting the existence of a unique intrauterine E. coli genotype associated with metritis in dairy cows, which was not found in our study.
Collapse
Affiliation(s)
- Adriana Garzon
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Carl Basbas
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Cory Schlesener
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Noelia Silva-del-Rio
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
- Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Tulare, California, USA
| | - Betsy M. Karle
- Cooperative Extension, Division of Agriculture and Natural Resources, University of California, Orland, California, USA
| | - Fabio S. Lima
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Bart C. Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Richard V. Pereira
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
5
|
Olorunleke SO, Kirchner M, Duggett N, Stevens K, Chah KF, Nwanta JA, Brunton LA, Anjum MF. Rapid detection and molecular epidemiology of β-lactamase producing Enterobacteriaceae isolated from food animals and in-contact humans in Nigeria. PLoS One 2024; 19:e0289190. [PMID: 38603727 PMCID: PMC11008865 DOI: 10.1371/journal.pone.0289190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/02/2024] [Indexed: 04/13/2024] Open
Abstract
The emergence and spread of β-lactamase-producing Enterobacteriaceae poses a significant threat to public health, necessitating the rapid detection and investigation of the molecular epidemiology of these pathogens. We modified a multiplex real-time (RT)-PCR to concurrently detect β-lactamase genes (blaCTX-M, blaTEM, and blaSHV) and Enterobacteriaceae 16S ribosomal RNA. qPCR probes and primers were validated using control isolates, and the sensitivity and specificity assessed. The optimised multiplex qPCR was used to screen 220 non-clinical Enterobacteriaceae from food animals and in-contact humans in Southeast Nigeria selected on cefotaxime-supplemented agar plates. Binary logistic regression was used to explore factors associated with the presence of the blaTEM and blaSHV genes in these isolates, and a subset of isolates from matched sampling sites and host species were whole genome sequenced, and their antimicrobial resistance (AMR) and plasmid profiles determined. The sensitivity and specificity of the qPCR assay was 100%. All isolates (220/220) were positive for Enterobacteriaceae ribosomal 16S rRNA and blaCTX-M, while 66.4% (146/220) and 9% (20/220) were positive for blaTEM and blaSHV, respectively. The prevalence of blaTEM and blaSHV varied across different sampling sites (farm, animal market and abattoirs). Isolates from Abia state were more likely to harbour blaTEM (OR = 2.3, p = 0.04) and blaSHV (OR = 5.12,p = 0.01) than isolates from Ebonyi state; blaTEM was more likely to be detected in isolates from food animals than humans (OR = 2.34, p = 0.03), whereas the reverse was seen for blaSHV (OR = 7.23, p = 0.02). Furthermore, Klebsiella and Enterobacter isolates harboured more AMR genes than Escherichia coli, even though they were isolated from the same sample. We also identified pan resistant Klebsiella harbouring resistance to ten classes of antimicrobials and disinfectant. Therefore, we recommend ESKAPE pathogens are included in AMR surveillance in future and suggest qPCRs be utilised for rapid screening of Enterobacteriaceae from human and animal sources.
Collapse
Affiliation(s)
- Solomon Olabiyi Olorunleke
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, United Kingdom
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria Nsukka, Enugu, Nigeria
| | - Miranda Kirchner
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, United Kingdom
| | - Nicholas Duggett
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, United Kingdom
| | - Kim Stevens
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Kennedy F. Chah
- Department of Veterinary Pathology and Microbiology, University of Nigeria Nsukka, Enugu, Nigeria
| | - John A. Nwanta
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria Nsukka, Enugu, Nigeria
| | - Lucy A. Brunton
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Muna F. Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, United Kingdom
| |
Collapse
|
6
|
Phu DH, Wongtawan T, Wintachai P, Nhung NT, Yen NTP, Carrique-Mas J, Turni C, Omaleki L, Blackall PJ, Thomrongsuwannakij T. Molecular characterization of Campylobacter spp. isolates obtained from commercial broilers and native chickens in Southern Thailand using whole genome sequencing. Poult Sci 2024; 103:103485. [PMID: 38335668 PMCID: PMC10869288 DOI: 10.1016/j.psj.2024.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Chickens are the primary reservoirs of Campylobacter spp., mainly C. jejuni and C. coli, that cause human bacterial gastrointestinal infections. However, genomic characteristics and antimicrobial resistance of Campylobacter spp. in low- to middle-income countries need more comprehensive exploration. This study aimed to characterize 21 C. jejuni and 5 C. coli isolates from commercial broilers and native chickens using whole genome sequencing and compare them to 28 reference Campylobacter sequences. Among the 26 isolates, 13 sequence types (ST) were identified in C. jejuni and 5 ST in C. coli. The prominent ST was ST 2274 (5 isolates, 19.2%), followed by ST 51, 460, 2409, and 6455 (2 isolates in each ST, 7.7%), while all remaining ST (464, 536, 595, 2083, 6736, 6964, 8096, 10437, 828, 872, 900, 8237, and 13540) had 1 isolate per ST (3.8%). Six types of antimicrobial resistance genes (ant(6)-Ia, aph(3')-III, blaOXA, cat, erm(B), and tet(O)) and one point mutations in the gyrA gene (Threonine-86-Isoleucine) and another in the rpsL gene (Lysine-43-Arginine) were detected. The blaOXA resistance gene was present in all isolates, the gyrA mutations was in 95.2% of C. jejuni and 80.0% of C. coli, and the tet(O) resistance gene in 76.2% of C. jejuni and 80.0% of C. coli. Additionally, 203 virulence-associated genes linked to 16 virulence factors were identified. In terms of phenotypic resistance, the C. jejuni isolates were all resistant to ciprofloxacin, enrofloxacin, and nalidixic acid, with lower levels of resistance to tetracycline (76.2%), tylosin (52.3%), erythromycin (23.8%), azithromycin (22.2%), and gentamicin (11.1%). Most C. coli isolates were resistant to all tested antimicrobials, while 1 C. coli was pan-susceptible except for tylosin. Single-nucleotide polymorphisms concordance varied widely, with differences of up to 13,375 single-nucleotide polymorphisms compared to the reference Campylobacter isolates, highlighting genetic divergence among comparative genomes. This study contributes to a deeper understanding of the molecular epidemiology of Campylobacter spp. in Thai chicken production systems.
Collapse
Affiliation(s)
- Doan Hoang Phu
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; Doctoral Program in Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City 70000, Vietnam
| | - Tuempong Wongtawan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre for One Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | | | - Nguyen Thi Nhung
- Oxford University Clinical Research Unit, Ho Chi Minh City 70000, Vietnam
| | | | - Juan Carrique-Mas
- Food and Agriculture Organization of the United Nations, Ha Noi 10000, Vietnam
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Lida Omaleki
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Thotsapol Thomrongsuwannakij
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre for One Health, Walailak University, Nakhon Si Thammarat 80160, Thailand.
| |
Collapse
|
7
|
Bhatia M, Shamanna V, Nagaraj G, Gupta P, Omar BJ, Diksha, Rohilla R, Ravikumar KL. Assessment of in vitro colistin susceptibility of carbapenem-resistant clinical Gram-negative bacterial isolates using four commercially available systems & Whole-genome sequencing: A diagnostic accuracy study. Diagn Microbiol Infect Dis 2024; 108:116155. [PMID: 38219381 DOI: 10.1016/j.diagmicrobio.2023.116155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/11/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
AIM To analyze the diagnostic utility of commercially available platforms and Whole-genome sequencing (WGS) for accurate determination of colistin susceptibility test results. MATERIAL & METHODS An exploratory diagnostic accuracy study was conducted in which sixty carbapenem-resistant Gram-negative bacteria were subjected to identification and AST using MALDI-TOF MS & MicroScan walkaway 96 Plus. Additional AST was performed using the BD Phoenix system and Mikrolatest colistin kit. The test isolates were subjected to Vitek-2 and WGS at CRL, Bengaluru. RESULTS There was no statistically significant agreement between the colistin susceptibility results obtained by WGS, with those of commercial phenotypic platforms. The MicroScan 96 Plus had the highest sensitivity (31 %) & NPV (77 %), and the BD Phoenix system had the highest specificity (97 %) and PPV (50 %), respectively, for determining colistin resistance. CONCLUSION The utility of WGS as a tool in AMR surveillance and validation of phenotypic AST methods should be explored further.
Collapse
Affiliation(s)
- Mohit Bhatia
- Department of Microbiology, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, 110029, India.
| | - Varun Shamanna
- Central Research Laboratory, Kempegowda Institute of Medical Sciences, Bengaluru, Karnataka 560070, India; Department of Biotechnology, NMAM Institute of Technology, Nitte, Udupi, Karnataka 574110, India
| | - Geetha Nagaraj
- Central Research Laboratory, Kempegowda Institute of Medical Sciences, Bengaluru, Karnataka 560070, India
| | - Pratima Gupta
- Department of Microbiology, All India Institute of Medical Sciences Deoghar, Jharkhand 814152, India
| | - Balram Ji Omar
- Department of Microbiology, All India Institute of Medical Sciences Rishikesh, Uttarakhand 249203, India
| | - Diksha
- Department of Microbiology, All India Institute of Medical Sciences Rishikesh, Uttarakhand 249203, India
| | - Ranjana Rohilla
- Department of Microbiology, Sri Guru Ram Rai Institute of Medical & Health Science, Dehradun, Uttarakhand 248001, India
| | - K L Ravikumar
- Central Research Laboratory, Kempegowda Institute of Medical Sciences, Bengaluru, Karnataka 560070, India
| |
Collapse
|
8
|
Muloi DM, Jauneikaite E, Anjum MF, Essack SY, Singleton DA, Kasudi MR, Wade MJ, Egyir B, Nunn JG, Midega JT, Peacock SJ, Feasey NA, Baker KS, Zadoks RN. Exploiting genomics for antimicrobial resistance surveillance at One Health interfaces. THE LANCET. MICROBE 2023; 4:e1056-e1062. [PMID: 37977165 DOI: 10.1016/s2666-5247(23)00284-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 11/19/2023]
Abstract
The intersection of human, animal, and ecosystem health at One Health interfaces is recognised as being of key importance in the evolution and spread of antimicrobial resistance (AMR) and represents an important, and yet rarely realised opportunity to undertake vital AMR surveillance. A working group of international experts in pathogen genomics, AMR, and One Health convened to take part in a workshop series and online consultation focused on the opportunities and challenges facing genomic AMR surveillance in a range of settings. Here we outline the working group's discussion of the potential utility, advantages of, and barriers to, the implementation of genomic AMR surveillance at One Health interfaces and propose a series of recommendations for addressing these challenges. Embedding AMR surveillance at One Health interfaces will require the development of clear beneficial use cases, especially in low-income and middle-income countries. Evidence of directionality, risks to human and animal health, and potential trade implications were also identified by the working group as key issues. Addressing these challenges will be vital to enable genomic surveillance technology to reach its full potential for assessing the risk of transmission of AMR between the environment, animals, and humans at One Health interfaces.
Collapse
Affiliation(s)
- Dishon M Muloi
- Animal and Human Health Department, International Livestock Research Institute, Nairobi, Kenya; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Elita Jauneikaite
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Department of Infectious Disease, Imperial College London, Hammersmith Hospital, London, UK
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, New Haw, UK
| | - Sabiha Y Essack
- Antimicrobial Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - David A Singleton
- Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, UK
| | - Mitchelle R Kasudi
- Animal and Human Health Department, International Livestock Research Institute, Nairobi, Kenya
| | - Matthew J Wade
- Data Analytics and Surveillance Group, UK Health Security Agency, London, UK; School of Engineering, Newcastle University, Newcastle-upon-Tyne, UK
| | - Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon-Accra, Ghana
| | - Jamie G Nunn
- Infectious Disease Challenge Area, Wellcome Trust, London, UK
| | | | | | - Nicholas A Feasey
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Malawi Liverpool Wellcome Research Programme, Chichiri, Blantyre, Malawi
| | - Kate S Baker
- Clinical Infection, Microbiology, and Immunology, University of Liverpool, Liverpool, UK; Department of Genetics, University of Cambridge, Cambridge, UK.
| | - Ruth N Zadoks
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, Australia; School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
9
|
Kenneth MJ, Koner S, Hsu GJ, Chen JS, Hsu BM. A review on the effects of discharging conventionally treated livestock waste to the environmental resistome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122643. [PMID: 37775024 DOI: 10.1016/j.envpol.2023.122643] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Globally, animal production has developed rapidly as a consequence of the ongoing population growth, to support food security. This has consequently led to an extensive use of antibiotics to promote growth and prevent diseases in animals. However, most antibiotics are not fully metabolized by these animals, leading to their excretion within urine and faeces, thus making these wastes a major reservoir of antibiotics residues, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) in the environment. Farmers normally depend on conventional treatment methods to mitigate the environmental impact of animal waste; however, these methods are not fully efficient to remove the environmental resistome. The present study reviewed the variability of residual antibiotics, ARB, as well as ARGs in the conventionally treated waste and assessed how discharging it could increase resistome in the receiving environments. Wherein, considering the efficiency and environmental safety, an addition of pre-treatments steps with these conventional treatment methods could enhance the removal of antibiotic resistance agents from livestock waste.
Collapse
Affiliation(s)
- Mutebi John Kenneth
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Doctoral Program in Science, Technology, Environment and Mathematics, National Chung Cheng University, Chiayi County, Taiwan
| | - Suprokash Koner
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan; Department of Biomedical Sciences, National Chung Cheng University, Chiayi County, Taiwan
| | - Gwo-Jong Hsu
- Division of Infectious Diseases, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi County, Taiwan.
| |
Collapse
|
10
|
Davies TJ, Swann J, Sheppard AE, Pickford H, Lipworth S, AbuOun M, Ellington MJ, Fowler PW, Hopkins S, Hopkins KL, Crook DW, Peto TEA, Anjum MF, Walker AS, Stoesser N. Discordance between different bioinformatic methods for identifying resistance genes from short-read genomic data, with a focus on Escherichia coli. Microb Genom 2023; 9:001151. [PMID: 38100178 PMCID: PMC10763500 DOI: 10.1099/mgen.0.001151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Several bioinformatics genotyping algorithms are now commonly used to characterize antimicrobial resistance (AMR) gene profiles in whole-genome sequencing (WGS) data, with a view to understanding AMR epidemiology and developing resistance prediction workflows using WGS in clinical settings. Accurately evaluating AMR in Enterobacterales, particularly Escherichia coli, is of major importance, because this is a common pathogen. However, robust comparisons of different genotyping approaches on relevant simulated and large real-life WGS datasets are lacking. Here, we used both simulated datasets and a large set of real E. coli WGS data (n=1818 isolates) to systematically investigate genotyping methods in greater detail. Simulated constructs and real sequences were processed using four different bioinformatic programs (ABRicate, ARIBA, KmerResistance and SRST2, run with the ResFinder database) and their outputs compared. For simulation tests where 3079 AMR gene variants were inserted into random sequence constructs, KmerResistance was correct for 3076 (99.9 %) simulations, ABRicate for 3054 (99.2 %), ARIBA for 2783 (90.4 %) and SRST2 for 2108 (68.5 %). For simulation tests where two closely related gene variants were inserted into random sequence constructs, KmerResistance identified the correct alleles in 35 338/46 318 (76.3 %) simulations, ABRicate identified them in 11 842/46 318 (25.6 %) simulations, ARIBA identified them in 1679/46 318 (3.6 %) simulations and SRST2 identified them in 2000/46 318 (4.3 %) simulations. In real data, across all methods, 1392/1818 (76 %) isolates had discrepant allele calls for at least 1 gene. In addition to highlighting areas for improvement in challenging scenarios, (e.g. identification of AMR genes at <10× coverage, identifying multiple closely related AMR genes present in the same sample), our evaluations identified some more systematic errors that could be readily soluble, such as repeated misclassification (i.e. naming) of genes as shorter variants of the same gene present within the reference resistance gene database. Such naming errors accounted for at least 2530/4321 (59 %) of the discrepancies seen in real data. Moreover, many of the remaining discrepancies were likely 'artefactual', with reporting of cut-off differences accounting for at least 1430/4321 (33 %) discrepants. Whilst we found that comparing outputs generated by running multiple algorithms on the same dataset could identify and resolve these algorithmic artefacts, the results of our evaluations emphasize the need for developing new and more robust genotyping algorithms to further improve accuracy and performance.
Collapse
Affiliation(s)
- Timothy J. Davies
- Nuffield Department of Medicine, Oxford University, Oxford, UK
- National Institute for Health Research (NIHR) Health Protection Research Unit on Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford, Oxford, UK
| | - Jeremy Swann
- Nuffield Department of Medicine, Oxford University, Oxford, UK
- National Institute for Health Research (NIHR) Health Protection Research Unit on Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford, Oxford, UK
| | - Anna E. Sheppard
- Nuffield Department of Medicine, Oxford University, Oxford, UK
- National Institute for Health Research (NIHR) Health Protection Research Unit on Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford, Oxford, UK
| | - Hayleigh Pickford
- Nuffield Department of Medicine, Oxford University, Oxford, UK
- National Institute for Health Research (NIHR) Health Protection Research Unit on Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford, Oxford, UK
| | - Samuel Lipworth
- Nuffield Department of Medicine, Oxford University, Oxford, UK
- National Institute for Health Research (NIHR) Health Protection Research Unit on Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford, Oxford, UK
| | - Manal AbuOun
- Bacteriology, Animal and Plant Health Agency, Surrey, UK
| | - Matthew J. Ellington
- National Institute for Health Research (NIHR) Health Protection Research Unit on Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford, Oxford, UK
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Division, UK Health Security Agency, London, UK
| | | | - Susan Hopkins
- National Institute for Health Research (NIHR) Health Protection Research Unit on Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford, Oxford, UK
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Division, UK Health Security Agency, London, UK
| | - Katie L. Hopkins
- National Institute for Health Research (NIHR) Health Protection Research Unit on Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford, Oxford, UK
- HCAI, Fungal, AMR, AMU and Sepsis Division, UK Health Security Agency, London, UK
| | - Derrick W. Crook
- Nuffield Department of Medicine, Oxford University, Oxford, UK
- National Institute for Health Research (NIHR) Health Protection Research Unit on Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Timothy E. A. Peto
- Nuffield Department of Medicine, Oxford University, Oxford, UK
- National Institute for Health Research (NIHR) Health Protection Research Unit on Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Muna F. Anjum
- Bacteriology, Animal and Plant Health Agency, Surrey, UK
| | - A. Sarah Walker
- Nuffield Department of Medicine, Oxford University, Oxford, UK
- National Institute for Health Research (NIHR) Health Protection Research Unit on Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford, Oxford, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, Oxford University, Oxford, UK
- National Institute for Health Research (NIHR) Health Protection Research Unit on Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
11
|
O’Neill L, Manzanilla EG, Ekhlas D, Leonard FC. Antimicrobial Resistance in Commensal Escherichia coli of the Porcine Gastrointestinal Tract. Antibiotics (Basel) 2023; 12:1616. [PMID: 37998818 PMCID: PMC10669415 DOI: 10.3390/antibiotics12111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Antimicrobial resistance (AMR) in Escherichia coli of animal origin presents a threat to human health. Although animals are not the primary source of human infections, humans may be exposed to AMR E. coli of animal origin and their AMR genes through the food chain, direct contact with animals, and via the environment. For this reason, AMR in E. coli from food producing animals is included in most national and international AMR monitoring programmes and is the subject of a large body of research. As pig farming is one of the largest livestock sectors and the one with the highest antimicrobial use, there is considerable interest in the epidemiology of AMR in E. coli of porcine origin. This literature review presents an overview and appraisal of current knowledge of AMR in commensal E. coli of the porcine gastrointestinal tract with a focus on its evolution during the pig lifecycle and the relationship with antimicrobial use. It also presents an overview of the epidemiology of resistance to extended spectrum cephalosporins, fluoroquinolones, and colistin in pig production. The review highlights the widespread nature of AMR in the porcine commensal E. coli population, especially to the most-used classes in pig farming and discusses the complex interplay between age and antimicrobial use during the pig lifecycle.
Collapse
Affiliation(s)
- Lorcan O’Neill
- Pig Development Department, Teagasc, The Irish Food and Agriculture Authority, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (E.G.M.); (D.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
| | - Edgar García Manzanilla
- Pig Development Department, Teagasc, The Irish Food and Agriculture Authority, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (E.G.M.); (D.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
| | - Daniel Ekhlas
- Pig Development Department, Teagasc, The Irish Food and Agriculture Authority, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (E.G.M.); (D.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin D15 DY05, Ireland
| | - Finola C. Leonard
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
| |
Collapse
|
12
|
Deza-Cruz I, Vilar MJ, Velasova M, AbuOun M, Anjum MF, Smith RP. Antimicrobial resistance of Escherichia coli in the UK: comparison of single vs. pooled samples from healthy pigs. Lett Appl Microbiol 2023; 76:ovad123. [PMID: 37942558 DOI: 10.1093/lambio/ovad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
This study compared the antimicrobial resistance (AMR) of Escherichia coli detected from single samples vs. pooled samples at herd level. The national monitoring dataset included isolates from one sample per pig holding, whereas the research study included isolates from pooled samples of 10 pigs per holding. In both datasets, caecal samples were collected from healthy pigs randomly selected at slaughterhouses and plated on non-selective and antibiotic selective media. Resistance against a panel of nine antibiotics was compared between datasets by generalized linear mixed effects models (GLMMs) and by bootstrapped generalized linear model (GLM) to account for pooling. The highest proportion of resistant E. coli was observed against tetracycline and ampicillin in both datasets. In non-selective media, single and pooled samples showed similar results, but the bootstrapped GLM detected significantly lower resistance to ciprofloxacin and nalidixic acid in the national dataset. In selective media, a significantly greater proportion of resistant isolates was observed in the research dataset for ceftazidime (OR: 0.05, 95%CI = 0.01-0.42) and nalidixic acid (OR: 0.15, 95%CI = 0.05-0.51). The results suggest that one sample per holding provides similar information on AMR at herd level as pooled samples for most of the tested antibiotics, although less resistance to ciprofloxacin, ceftazidime, and nalidixic acid was detected.
Collapse
Affiliation(s)
- Iñaki Deza-Cruz
- Department of Veterinary Epidemiology and Public Health, School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, United Kingdom
| | - María J Vilar
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Martina Velasova
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Richard P Smith
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey KT15 3NB, United Kingdom
| |
Collapse
|
13
|
Kong M, Liu C, Xu Y, Wang J, Jin D. Concordance between Genotypic and Phenotypic Drug-Resistant Profiles of Shigella Isolates from Taiyuan City, Shanxi Province, China, 2005 to 2016. Microbiol Spectr 2023; 11:e0011923. [PMID: 37249442 PMCID: PMC10269460 DOI: 10.1128/spectrum.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Antimicrobial resistance in Shigella spp. is a global public health concern. In this study, the AMR phenotypic profiles of 10 kinds of antibiotics were compared with the genotypic profiles using genomic analysis of 218 Shigella isolates from Taiyuan City, Shanxi Province, China, 2005 to 2016. Core genome Multilocus Sequence Typing (cgMLST) based on the EnteroBase Escherichia/Shigella scheme was used to obtain the genetic relatedness of Shigella isolates. Multiple-drug resistance was observed in 96.79% Shigella spp., and the resistance to antimicrobial agents varied between S. flexneri and S. sonnei. The genotypic results correlated well with the phenotypic profiles with concordance rates of 96.42% and 94.50% in S. flexneri and S. sonnei isolates, respectively, from Taiyuan City, Shanxi Province. The sensitivity and specificity of the genotypic antimicrobial susceptibility testing (AST) were 97.56% and 95.34% for S. flexneri, and 95.65% and 93.31% for S. sonnei isolates, respectively. A discrepancy of genotypic and phenotypic AST results existed in some cephalosporin- and azithromycin-resistant Shigella isolates; there were no clear resistance patterns to predict ciprofloxacin resistance. There were major discrepancies between genotypic and phenotypic AST in the genotypically resistant but phenotypically susceptible isolates. The drug-resistance patterns and essential drug-resistance genes to predict the phenotypic drug-resistant profiles were the discrepancies between S. flexneri and S. sonnei isolates. Phylogenetic analysis showed that isolates of the same cluster but with different antibiotic-resistance gene patterns occurred because of the loss or gain of antibiotic-resistance genes located in the plasmids and multidrug-resistance islands. IMPORTANCE Antimicrobial resistance in Shigella spp. has become a global public health concern. In this study, we identified the antimicrobial susceptibility testing (AST) characteristics based on genomic sequences of 218 Shigella isolates and analyzed the correlation between genotypic and phenotypic antibiotic resistance profiles of Shigella spp., especially for fluoroquinolone, macrolides, and third-generation cephalosporins. Our results show that the genotypic results correlated with the phenotypic profiles with concordance rates of 96.42% and 94.50% in S. flexneri and S. sonnei isolates, respectively. The drug-resistance patterns and essential drug-resistance genes to predict the phenotypic drug-resistant profiles of S. flexneri and S. sonnei isolates in Taiyuan city were distinct. The discrepancy between genotypic and phenotypic AST was considerable in the genotypically resistant but phenotypically susceptible isolates. The information on drug resistance and resistance genes in this study can offer more details on the prevalence of drug resistance of Shigella spp.
Collapse
Affiliation(s)
- Mimi Kong
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan City, Shanxi Province, China
| | - Chunmei Liu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan City, Shanxi Province, China
| | - Yang Xu
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, Taiyuan City, Shanxi Province, China
| | - Jitao Wang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan City, Shanxi Province, China
- Department of Microbiology Test, Taiyuan Center for Disease Control and Prevention, Taiyuan City, Shanxi Province, China
| | - Dong Jin
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan City, Shanxi Province, China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| |
Collapse
|
14
|
Li B, Yan T. Metagenomic next generation sequencing for studying antibiotic resistance genes in the environment. ADVANCES IN APPLIED MICROBIOLOGY 2023; 123:41-89. [PMID: 37400174 DOI: 10.1016/bs.aambs.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Bacterial antimicrobial resistance (AMR) is a persisting and growing threat to human health. Characterization of antibiotic resistance genes (ARGs) in the environment is important to understand and control ARG-associated microbial risks. Numerous challenges exist in monitoring ARGs in the environment, due to the extraordinary diversity of ARGs, low abundance of ARGs with respect to the complex environmental microbiomes, difficulties in linking ARGs with bacterial hosts by molecular methods, difficulties in achieving quantification and high throughput simultaneously, difficulties in assessing mobility potential of ARGs, and difficulties in determining the specific AMR determinant genes. Advances in the next generation sequencing (NGS) technologies and related computational and bioinformatic tools are facilitating rapid identification and characterization ARGs in genomes and metagenomes from environmental samples. This chapter discusses NGS-based strategies, including amplicon-based sequencing, whole genome sequencing, bacterial population-targeted metagenome sequencing, metagenomic NGS, quantitative metagenomic sequencing, and functional/phenotypic metagenomic sequencing. Current bioinformatic tools for analyzing sequencing data for studying environmental ARGs are also discussed.
Collapse
Affiliation(s)
- Bo Li
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Tao Yan
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI, United States.
| |
Collapse
|
15
|
Lopez-Garcia AV, AbuOun M, Nunez-Garcia J, Nale JY, Gaylov EE, Phothaworn P, Sukjoi C, Thiennimitr P, Malik DJ, Korbsrisate S, Clokie MRJ, Anjum MF. Pathogen genomics and phage-based solutions for accurately identifying and controlling Salmonella pathogens. Front Microbiol 2023; 14:1166615. [PMID: 37234523 PMCID: PMC10206635 DOI: 10.3389/fmicb.2023.1166615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/03/2023] [Indexed: 05/28/2023] Open
Abstract
Salmonella is a food-borne pathogen often linked to poultry sources, causing gastrointestinal infections in humans, with the numbers of multidrug resistant (MDR) isolates increasing globally. To gain insight into the genomic diversity of common serovars and their potential contribution to disease, we characterized antimicrobial resistance genes, and virulence factors encoded in 88 UK and 55 Thai isolates from poultry; the presence of virulence genes was detected through an extensive virulence determinants database compiled in this study. Long-read sequencing of three MDR isolates, each from a different serovar, was used to explore the links between virulence and resistance. To augment current control methods, we determined the sensitivity of isolates to 22 previously characterized Salmonella bacteriophages. Of the 17 serovars included, Salmonella Typhimurium and its monophasic variants were the most common, followed by S. Enteritidis, S. Mbandaka, and S. Virchow. Phylogenetic analysis of Typhumurium and monophasic variants showed poultry isolates were generally distinct from pigs. Resistance to sulfamethoxazole and ciprofloxacin was highest in isolates from the UK and Thailand, respectively, with 14-15% of all isolates being MDR. We noted that >90% of MDR isolates were likely to carry virulence genes as diverse as the srjF, lpfD, fhuA, and stc operons. Long-read sequencing revealed the presence of global epidemic MDR clones in our dataset, indicating they are possibly widespread in poultry. The clones included MDR ST198 S. Kentucky, harboring a Salmonella Genomic Island-1 (SGI)-K, European ST34 S. 1,4,[5],12:i:-, harboring SGI-4 and mercury-resistance genes, and a S. 1,4,12:i:- isolate from the Spanish clone harboring an MDR-plasmid. Testing of all isolates against a panel of bacteriophages showed variable sensitivity to phages, with STW-77 found to be the most effective. STW-77 lysed 37.76% of the isolates, including serovars important for human clinical infections: S. Enteritidis (80.95%), S. Typhimurium (66.67%), S. 1,4,[5],12:i:- (83.3%), and S. 1,4,12: i:- (71.43%). Therefore, our study revealed that combining genomics and phage sensitivity assays is promising for accurately identifying and providing biocontrols for Salmonella to prevent its dissemination in poultry flocks and through the food chain to cause infections in humans.
Collapse
Affiliation(s)
| | - Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Javier Nunez-Garcia
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Janet Y. Nale
- Department of Veterinary and Animal Science, Scotland's Rural College, Inverness, United Kingdom
| | - Edouard E. Gaylov
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Preeda Phothaworn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chutikarn Sukjoi
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Danish J. Malik
- Department of Chemical Engineering, Loughborough University, Loughborough, United Kingdom
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Muna F. Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| |
Collapse
|
16
|
Sodagari HR, Varga C. Evaluating Antimicrobial Resistance Trends in Commensal Escherichia coli Isolated from Cecal Samples of Swine at Slaughter in the United States, 2013-2019. Microorganisms 2023; 11:microorganisms11041033. [PMID: 37110456 PMCID: PMC10142105 DOI: 10.3390/microorganisms11041033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/08/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
The emergence of antimicrobial resistance (AMR) in commensal and pathogenic enteric bacteria of swine is a public health threat. This study evaluated publicly available AMR surveillance data collected by the National Antimicrobial Resistance Monitoring System (NARMS) by assessing AMR patterns and temporal trends in commensal E. coli isolated from cecal samples of swine at slaughter across the United States. We applied the Mann-Kendall test (MKT) and a linear regression trend line to detect significant trends in the proportion of resistant isolates to individual antimicrobials over the study period. A Poisson regression model assessed differences among years in the number of antimicrobials to which an E. coli isolate was resistant. Among the 3237 E. coli isolates, a very high prevalence of resistance for tetracycline (67.62%), and high resistance for streptomycin (24.13%), and ampicillin (21.10%) were identified. The MKT and the linear trend line showed a significantly increasing temporal trend for amoxicillin-clavulanic acid, ampicillin, azithromycin, cefoxitin, ceftriaxone, and trimethoprim-sulfamethoxazole. Compared to 2013 the number of antimicrobials to which an E. coli isolate was resistant was significantly higher in the years 2017, 2018, and 2019. The increasing temporal trend of resistance to important antimicrobials for human medicine (e.g., third-generation cephalosporins) and the increase in multidrug resistance in the later years of the study are concerning and should be followed up by studies to identify sources and risk factors for the selection of AMR.
Collapse
Affiliation(s)
- Hamid Reza Sodagari
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
17
|
De Koster S, Ringenier M, Xavier BB, Lammens C, De Coninck D, De Bruyne K, Mensaert K, Kluytmans-van den Bergh M, Kluytmans J, Dewulf J, Goossens H. Genetic characterization of ESBL-producing and ciprofloxacin-resistant Escherichia coli from Belgian broilers and pigs. Front Microbiol 2023; 14:1150470. [PMID: 37089550 PMCID: PMC10116946 DOI: 10.3389/fmicb.2023.1150470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
BackgroundThe increasing number of infections caused by Escherichia coli resistant to clinically important antibiotics is a global concern for human and animal health. High overall levels of extended-spectrum beta-lactamase (ESBL)-producing and ciprofloxacin-resistant (ciproR) Escherichia coli in livestock are reported in Belgium. This cross-sectional study aimed to genotypically characterize and trace ESBL-and ciproR-E. coli of Belgian food-producing animals.MethodsA total of 798 fecal samples were collected in a stratified-random sampling design from Belgian broilers and sows. Consequently, 77 ESBL-E. coli and 84 ciproR-E. coli were sequenced using Illumina MiSeq. Minimum inhibitory concentration (MIC) for fluoroquinolones and cephalosporins were determined. Molecular in silico typing, resistance and virulence gene determination, and plasmid identification was performed. Scaffolds harboring ESBL or plasmid-mediated quinolone resistance (PMQR) genes were analyzed to detect mobile genetic elements (MGEs) and plasmid origins. Core genome allelic distances were used to determine genetic relationships among isolates.ResultsA variety of E. coli sequence types (ST) (n = 63), resistance genes and virulence profiles was detected. ST10 was the most frequently encountered ST (8.1%, n = 13). The pandemic multidrug-resistant clone ST131 was not detected. Most farms harbored more than one ESBL type, with blaCTX-M-1 (41.6% of ESBL-E. coli) being the most prevalent and blaCTX M-15 (n = 3) being the least prevalent. PMQR genes (15.5%, n = 13) played a limited role in the occurrence of ciproR-E. coli. More importantly, sequential acquisition of mutations in quinolone resistance-determining regions (QRDR) of gyrA and parC led to increasing MICs for fluoroquinolones. GyrA S83L, D87N and ParC S80I mutations were strongly associated with high-level fluoroquinolone resistance. Genetically related isolates identified within the farms or among different farms highlight transmission of resistant E. coli or the presence of a common reservoir. IncI1-I(alpha) replicon type plasmids carried different ESBL genes (blaCTX-M-1, blaCTX-M-32 and blaTEM-52C). In addition, the detection of plasmid replicons with associated insertion sequence (IS) elements and ESBL/PMQR genes in different farms and among several STs (e.g., IncI1-I(alpha)/IncX3) underline that plasmid transmission could be another important contributor to transmission of resistance in these farms.ConclusionOur findings reveal a multifaceted narrative of transmission pathways. These findings could be relevant in understanding and battling the problem of antibiotic resistance in farms.
Collapse
Affiliation(s)
- Sien De Koster
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
| | - Moniek Ringenier
- Veterinary Epidemiology Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
- HIV/STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Hospital Outbreak Support Team-HOST, ZNA Middelheim, Antwerp, Belgium
- Hospital Outbreak Support Team-HOST, GZA Ziekenhuizen, Wilrijk, Belgium
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
| | | | | | | | - Marjolein Kluytmans-van den Bergh
- Department of Infection Control, Amphia Hospital, Breda, Netherlands
- Julius Center for Health Sciences and Primary Care, UMC Utrecht, University of Utrecht, CG Utrecht, Netherlands
- Amphia Academy Infectious Disease Foundation, Amphia Hospital, CK Breda, Netherlands
| | - Jan Kluytmans
- Julius Center for Health Sciences and Primary Care, UMC Utrecht, University of Utrecht, CG Utrecht, Netherlands
- Microvida Laboratory for Microbiology, Amphia Hospital, Breda, Netherlands
| | - Jeroen Dewulf
- Veterinary Epidemiology Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
- *Correspondence: Herman Goossens,
| | | |
Collapse
|
18
|
Massé J, Vanier G, Fairbrother JM, de Lagarde M, Arsenault J, Francoz D, Dufour S, Archambault M. Description of Antimicrobial-Resistant Escherichia coli and Their Dissemination Mechanisms on Dairy Farms. Vet Sci 2023; 10:vetsci10040242. [PMID: 37104397 PMCID: PMC10144642 DOI: 10.3390/vetsci10040242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/28/2023] Open
Abstract
Despite its importance in veterinary medicine, there is little information about antimicrobial resistance (AMR) and its transmission in dairy cattle. The aim of this work is to compare AMR phenotypes and genotypes in resistant Escherichia coli and to determine how the resistance genes spread among the E. coli population on dairy farms in Québec, Canada. From an existing culture collection of E. coli isolated from dairy manure, a convenient selection of the most resistant isolates (a high level of multidrug resistance or resistance to broad-spectrum β-lactams or fluoroquinolones) was analyzed (n = 118). An AMR phenotype profile was obtained for each isolate. Whole genome sequencing was used to determine the presence of resistance genes, point mutations, and mobile genetic elements. In addition, a subset of isolates from 86 farms was taken to investigate the phylogenetic relationship and geographic distribution of the isolates. The average agreement between AMR phenotypes and genotypes was 95%. A third-generation cephalosporin resistance gene (blaCTX-M-15), a resistance gene conferring reduced susceptibility to fluoroquinolones (qnrS1), and an insertion sequence (ISKpn19) were detected in the vicinity of each other on the genome. These genes were harbored in one triplet of clonal isolates from three farms located >100 km apart. Our study reveals the dissemination of resistant E. coli clones between dairy farms. Furthermore, these clones are resistant to broad-spectrum β-lactam and fluoroquinolone antimicrobials.
Collapse
Affiliation(s)
- Jonathan Massé
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Ghyslaine Vanier
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Saint-Hyacinthe, QC J2S 2M2, Canada
- WOAH Reference Laboratory for Escherichia coli, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - John M Fairbrother
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- WOAH Reference Laboratory for Escherichia coli, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Maud de Lagarde
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Julie Arsenault
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - David Francoz
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Simon Dufour
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie Archambault
- Regroupement FRQNT Op+lait, Saint-Hyacinthe, QC J2S 2M2, Canada
- Groupe de Recherche sur les Maladies Infectieuses en Production Animale (GREMIP), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
19
|
Smith RP, May HE, AbuOun M, Stubberfield E, Gilson D, Chau KK, Crook DW, Shaw LP, Read DS, Stoesser N, Vilar MJ, Anjum MF. A longitudinal study reveals persistence of antimicrobial resistance on livestock farms is not due to antimicrobial usage alone. Front Microbiol 2023; 14:1070340. [PMID: 36998408 PMCID: PMC10043416 DOI: 10.3389/fmicb.2023.1070340] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/23/2023] [Indexed: 03/15/2023] Open
Abstract
IntroductionThere are concerns that antimicrobial usage (AMU) is driving an increase in multi-drug resistant (MDR) bacteria so treatment of microbial infections is becoming harder in humans and animals. The aim of this study was to evaluate factors, including usage, that affect antimicrobial resistance (AMR) on farm over time.MethodsA population of 14 cattle, sheep and pig farms within a defined area of England were sampled three times over a year to collect data on AMR in faecal Enterobacterales flora; AMU; and husbandry or management practices. Ten pooled samples were collected at each visit, with each comprising of 10 pinches of fresh faeces. Up to 14 isolates per visit were whole genome sequenced to determine presence of AMR genes.ResultsSheep farms had very low AMU in comparison to the other species and very few sheep isolates were genotypically resistant at any time point. AMR genes were detected persistently across pig farms at all visits, even on farms with low AMU, whereas AMR bacteria was consistently lower on cattle farms than pigs, even for those with comparably high AMU. MDR bacteria was also more commonly detected on pig farms than any other livestock species.DiscussionThe results may be explained by a complex combination of factors on pig farms including historic AMU; co-selection of AMR bacteria; variation in amounts of antimicrobials used between visits; potential persistence in environmental reservoirs of AMR bacteria; or importation of pigs with AMR microbiota from supplying farms. Pig farms may also be at increased risk of AMR due to the greater use of oral routes of group antimicrobial treatment, which were less targeted than cattle treatments; the latter mostly administered to individual animals. Also, farms which exhibited either increasing or decreasing trends of AMR across the study did not have corresponding trends in their AMU. Therefore, our results suggest that factors other than AMU on individual farms are important for persistence of AMR bacteria on farms, which may be operating at the farm and livestock species level.
Collapse
Affiliation(s)
- Richard P. Smith
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, United Kingdom
- *Correspondence: Richard P. Smith,
| | - Hannah E. May
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Emma Stubberfield
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Daniel Gilson
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Kevin K. Chau
- Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Derrick W. Crook
- Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research, Health Protection Research Unit, University of Oxford in Partnership with Public Health England (PHE), Oxford, United Kingdom
- Molecular Ecology Group, UK Centre of Ecology and Hydrology (UKCEH), Wallingford, United Kingdom
| | - Liam P. Shaw
- Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Daniel S. Read
- Molecular Ecology Group, UK Centre of Ecology and Hydrology (UKCEH), Wallingford, United Kingdom
| | - Nicole Stoesser
- Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research, Health Protection Research Unit, University of Oxford in Partnership with Public Health England (PHE), Oxford, United Kingdom
- Molecular Ecology Group, UK Centre of Ecology and Hydrology (UKCEH), Wallingford, United Kingdom
| | - Maria Jose Vilar
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Muna F. Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| |
Collapse
|
20
|
Light E, Baker-Austin C, Card RM, Ryder D, Alves MT, Al-Sarawi HA, Abdulla KH, Stahl H, Al-Ghabshi A, Alghoribi MF, Balkhy HH, Joseph A, Hughes A, Quesne WJL, Verner-Jeffreys DW, Lyons BP. Establishing a marine monitoring programme to assess antibiotic resistance: A case study from the Gulf Cooperation Council (GCC) region. ENVIRONMENTAL ADVANCES 2022; 9:None. [PMID: 36466197 PMCID: PMC9710716 DOI: 10.1016/j.envadv.2022.100268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 05/29/2023]
Abstract
The World Health Organization considers antimicrobial resistance as one of the most pressing global issues which poses a fundamental threat to human health, development, and security. Due to demographic and environmental factors, the marine environment of the Gulf Cooperation Council (GCC) region may be particularly susceptible to the threat of antimicrobial resistance. However, there is currently little information on the presence of AMR in the GCC marine environment to inform the design of appropriate targeted surveillance activities. The objective of this study was to develop, implement and conduct a rapid regional baseline monitoring survey of the presence of AMR in the GCC marine environment, through the analysis of seawater collected from high-risk areas across four GCC states: (Bahrain, Oman, Kuwait, and the United Arab Emirates). 560 Escherichia coli strains were analysed as part of this monitoring programme between December 2018 and May 2019. Multi-drug resistance (resistance to three or more structural classes of antimicrobials) was observed in 32.5% of tested isolates. High levels of reduced susceptibility to ampicillin (29.6%), nalidixic acid (27.9%), tetracycline (27.5%), sulfamethoxazole (22.5%) and trimethoprim (22.5%) were observed. Reduced susceptibility to the high priority critically important antimicrobials: azithromycin (9.3%), ceftazidime (12.7%), cefotaxime (12.7%), ciprofloxacin (44.6%), gentamicin (2.7%) and tigecycline (0.5%), was also noted. A subset of 173 isolates was whole genome sequenced, and high carriage rates of qnrS1 (60/173) and bla CTX-M-15 (45/173) were observed, correlating with reduced susceptibility to the fluoroquinolones and third generation cephalosporins, respectively. This study is important because of the resistance patterns observed, the demonstrated utility in applying genomic-based approaches to routine microbiological monitoring, and the overall establishment of a transnational AMR surveillance framework focussed on coastal and marine environments.
Collapse
Affiliation(s)
- Edel Light
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, Dorset DT4 8UB, United Kingdom
- UK FAO Reference Centre for Antimicrobial Resistance, Veterinary Medicines Directorate, Woodham Lane, New Haw, Addlestone, Surrey, UK
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, Dorset DT4 8UB, United Kingdom
| | - Roderick M. Card
- UK FAO Reference Centre for Antimicrobial Resistance, Veterinary Medicines Directorate, Woodham Lane, New Haw, Addlestone, Surrey, UK
- Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, UK
| | - David Ryder
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, Dorset DT4 8UB, United Kingdom
| | - Mickael Teixeira Alves
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, Dorset DT4 8UB, United Kingdom
| | - Hanan A. Al-Sarawi
- Kuwait Environment Public Authority (KEPA), P.O. Box: 24395, Safat 13104, Kuwait
| | | | - Henrik Stahl
- Zayed University, Academic City, 192 82 Dubai, United Arab Emirates
| | - Aliya Al-Ghabshi
- Al-Khabourah Vocational College for Marine Sciences, Ministry of Higher Education, Scientific Research and Innovation, Oman
| | - Majed F. Alghoribi
- King Abdullah International Medical Research Centre, KAIMRC, Saudi Arabia
| | | | - Andrew Joseph
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, Dorset DT4 8UB, United Kingdom
| | - Alexandra Hughes
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, Dorset DT4 8UB, United Kingdom
| | - Will J.F. Le Quesne
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Suffolk, Lowestoft NR33 0HT, United Kingdom
| | - David W. Verner-Jeffreys
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, Dorset DT4 8UB, United Kingdom
- UK FAO Reference Centre for Antimicrobial Resistance, Veterinary Medicines Directorate, Woodham Lane, New Haw, Addlestone, Surrey, UK
| | - Brett P. Lyons
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, Dorset DT4 8UB, United Kingdom
| |
Collapse
|
21
|
Effendi MH, Hartadi EB, Witaningrum AM, Permatasari DA, Ugbo EN. Molecular identification of blaTEM gene of extended-spectrum beta-lactamase-producing Escherichia coli from healthy pigs in Malang district, East Java, Indonesia. J Adv Vet Anim Res 2022; 9:447-452. [PMID: 36382042 PMCID: PMC9597926 DOI: 10.5455/javar.2022.i613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 02/25/2025] Open
Abstract
OBJECTIVE The increase and prevalence of multidrug-resistant bacteria in livestock animals are serious public health concerns. This study aimed to identify the presence of the blaTEM gene in extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolated from rectal swabs of apparently healthy pigs in Malang District, East Java, Indonesia. MATERIALS AND METHODS A total of 120 rectal swab samples were collected from the pigs. The rectal swabs were screened for the presence of E. coli using standard microbiological identification procedures. The Kirby-Bauer disk diffusion method identified multidrug-resistant E. coli. Five different classes of antibiotics were used to identify multidrug-resistant isolates, including Ciprofloxacin, Trimethoprim, Tetracycline, Streptomycin, and Aztreonam. Multidrug-resistant E. coli isolates were characterized for the presence of ESBL using double-disk synergy test methods. The presence of blaTEM genes was determined using polymerase chain reaction methods. RESULTS The results of this study indicated that 107 (89.2%) out of 120 samples analyzed were positive for E. coli isolates. A total of 32 (29.9%) E. coli isolates were identified to be multidrug-resistant and further subjected to molecular testing. The molecular analysis revealed (5; 15.6%) E. coli isolates to harbor the blaTEM gene. CONCLUSION The results of this study revealed that pigs and products of pork origin must be considered a source of transmission of ESBL-producing E. coli to public health important under the food chain.
Collapse
Affiliation(s)
- Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Erwan Budi Hartadi
- Postgraduate Student of Veterinary Public Health Program, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Adiana Mutamsari Witaningrum
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Dian Ayu Permatasari
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | |
Collapse
|
22
|
Nunez-Garcia J, AbuOun M, Storey N, Brouwer MS, Delgado-Blas JF, Mo SS, Ellaby N, Veldman KT, Haenni M, Châtre P, Madec JY, Hammerl JA, Serna C, Getino M, La Ragione R, Naas T, Telke AA, Glaser P, Sunde M, Gonzalez-Zorn B, Ellington MJ, Anjum MF. Harmonisation of in-silico next-generation sequencing based methods for diagnostics and surveillance. Sci Rep 2022; 12:14372. [PMID: 35999234 PMCID: PMC9396611 DOI: 10.1038/s41598-022-16760-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
Improvements in cost and speed of next generation sequencing (NGS) have provided a new pathway for delivering disease diagnosis, molecular typing, and detection of antimicrobial resistance (AMR). Numerous published methods and protocols exist, but a lack of harmonisation has hampered meaningful comparisons between results produced by different methods/protocols vital for global genomic diagnostics and surveillance. As an exemplar, this study evaluated the sensitivity and specificity of five well-established in-silico AMR detection software where the genotype results produced from running a panel of 436 Escherichia coli were compared to their AMR phenotypes, with the latter used as gold-standard. The pipelines exploited previously known genotype–phenotype associations. No significant differences in software performance were observed. As a consequence, efforts to harmonise AMR predictions from sequence data should focus on: (1) establishing universal minimum to assess performance thresholds (e.g. a control isolate panel, minimum sensitivity/specificity thresholds); (2) standardising AMR gene identifiers in reference databases and gene nomenclature; (3) producing consistent genotype/phenotype correlations. The study also revealed limitations of in-silico technology on detecting resistance to certain antimicrobials due to lack of specific fine-tuning options in bioinformatics tool or a lack of representation of resistance mechanisms in reference databases. Lastly, we noted user friendliness of tools was also an important consideration. Therefore, our recommendations are timely for widespread standardisation of bioinformatics for genomic diagnostics and surveillance globally.
Collapse
Affiliation(s)
| | - M AbuOun
- Animal and Plant Health Agency (APHA), Weybridge, UK
| | - N Storey
- Animal and Plant Health Agency (APHA), Weybridge, UK
| | - M S Brouwer
- Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | | | - S S Mo
- Norwegian Veterinary Institute (NVI), Oslo, Norway
| | - N Ellaby
- Public Health England (PHE), London, UK
| | - K T Veldman
- Wageningen Bioveterinary Research (WBVR), Lelystad, The Netherlands
| | - M Haenni
- Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Unité Antibiorésistance et Virulence Bactériennes, Maisons-Alfort, France
| | - P Châtre
- Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Unité Antibiorésistance et Virulence Bactériennes, Maisons-Alfort, France
| | - J Y Madec
- Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Unité Antibiorésistance et Virulence Bactériennes, Maisons-Alfort, France
| | - J A Hammerl
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - C Serna
- Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - M Getino
- University of Surrey (UoS), Guildford, UK
| | | | - T Naas
- Assistance Publique Hopitaux de Paris, Paris, France
| | - A A Telke
- Norwegian Veterinary Institute (NVI), Oslo, Norway
| | - P Glaser
- Institute Pasteur, EERA Unit, Paris, France
| | - M Sunde
- Norwegian Veterinary Institute (NVI), Oslo, Norway
| | | | | | - M F Anjum
- Animal and Plant Health Agency (APHA), Weybridge, UK. .,University of Surrey (UoS), Guildford, UK.
| |
Collapse
|
23
|
Olorunleke SO, Kirchner M, Duggett N, AbuOun M, Okorie-Kanu OJ, Stevens K, Card RM, Chah KF, Nwanta JA, Brunton LA, Anjum MF. Molecular characterization of extended spectrum cephalosporin resistant Escherichia coli isolated from livestock and in-contact humans in Southeast Nigeria. Front Microbiol 2022; 13:937968. [PMID: 35935201 PMCID: PMC9354541 DOI: 10.3389/fmicb.2022.937968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022] Open
Abstract
The rise in antimicrobial resistance (AMR) in bacteria is reducing therapeutic options for livestock and human health, with a paucity of information globally. To fill this gap, a One-Health approach was taken by sampling livestock on farms (n = 52), abattoir (n = 8), and animal markets (n = 10), and in-contact humans in Southeast Nigeria. Extended spectrum cephalosporin (ESC)-resistant (ESC-R) Escherichia coli was selectively cultured from 975 healthy livestock faecal swabs, and hand swabs from in-contact humans. Antimicrobial susceptibility testing (AST) was performed on all ESC-R E. coli. For isolates showing a multi-drug resistance (MDR) phenotype (n = 196), quantitative real-time PCR (qPCR) was performed for confirmation of extended-spectrum β-lactamase (ESBL) and carbapenemase genes. Whole-genome sequencing (WGS) was performed on a subset (n = 157) for detailed molecular characterisation. The results showed ESC-R E. coli was present in 41.2% of samples, with AST results indicating 48.8% of isolates were phenotypically MDR. qPCR confirmed presence of ESBL genes, with blaCTX-M present in all but others in a subset [blaTEM (62.8%) and blaSHV (0.5%)] of isolates; none harboured transferable carbapenemase genes. Multi-locus sequence typing identified 34 Sequence Types (ST) distributed among different sampling levels; ST196 carrying blaCTX-M-55 was predominant in chickens. Large numbers of single nucleotide polymorphisms (SNPs) in the core genome of isolates, even within the same clade by phylogenetic analysis, indicated high genetic diversity. AMR genotyping indicated the predominant blaCTX-M variant was blaCTX-M-15 (87.9%), although blaCTX-M-55, blaCTX-M-64, and blaCTX-M-65 were present; it was notable that blaCTX-M-1, common in livestock, was absent. Other predominant AMR genes included: sul2, qnrS1, strB, blaTEM-1b, tetA-v2, and dfrA14, with prevalence varying according to host livestock species. A blaCTX-M-15 harbouring plasmid from livestock isolates in Ebonyi showed high sequence identity to one from river/sewage water in India, indicating this ESBL plasmid to be globally disseminated, being present beyond the river environment. In conclusion, ESC-R E. coli was widespread in livestock and in-contact humans from Southeast Nigeria. WGS data indicated the isolates were genetically highly diverse, probably representing true diversity of wild type E. coli; they were likely to be MDR with several harbouring blaCTX-M-15. Surprisingly, human isolates had highest numbers of AMR genes and pigs the least.
Collapse
Affiliation(s)
- Solomon O. Olorunleke
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka, Enugu, Nigeria
- Department of Animal Science, Ebonyi State University, Abakaliki, Nigeria
| | - Miranda Kirchner
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Nicholas Duggett
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
- School of Health and Life Science, Teesside University, Middlesbrough, United Kingdom
| | - Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Onyinye J. Okorie-Kanu
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Kim Stevens
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Roderick M. Card
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Kennedy Foinkfu Chah
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria
| | - John A. Nwanta
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka, Enugu, Nigeria
| | - Lucy A. Brunton
- Veterinary Epidemiology, Economics and Public Health Group, Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Muna F. Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
- *Correspondence: Muna F. Anjum
| |
Collapse
|
24
|
Petrillo M, Fabbri M, Kagkli DM, Querci M, Van den Eede G, Alm E, Aytan-Aktug D, Capella-Gutierrez S, Carrillo C, Cestaro A, Chan KG, Coque T, Endrullat C, Gut I, Hammer P, Kay GL, Madec JY, Mather AE, McHardy AC, Naas T, Paracchini V, Peter S, Pightling A, Raffael B, Rossen J, Ruppé E, Schlaberg R, Vanneste K, Weber LM, Westh H, Angers-Loustau A. A roadmap for the generation of benchmarking resources for antimicrobial resistance detection using next generation sequencing. F1000Res 2022; 10:80. [PMID: 35847383 PMCID: PMC9243550 DOI: 10.12688/f1000research.39214.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
Next Generation Sequencing technologies significantly impact the field of Antimicrobial Resistance (AMR) detection and monitoring, with immediate uses in diagnosis and risk assessment. For this application and in general, considerable challenges remain in demonstrating sufficient trust to act upon the meaningful information produced from raw data, partly because of the reliance on bioinformatics pipelines, which can produce different results and therefore lead to different interpretations. With the constant evolution of the field, it is difficult to identify, harmonise and recommend specific methods for large-scale implementations over time. In this article, we propose to address this challenge through establishing a transparent, performance-based, evaluation approach to provide flexibility in the bioinformatics tools of choice, while demonstrating proficiency in meeting common performance standards. The approach is two-fold: first, a community-driven effort to establish and maintain “live” (dynamic) benchmarking platforms to provide relevant performance metrics, based on different use-cases, that would evolve together with the AMR field; second, agreed and defined datasets to allow the pipelines’ implementation, validation, and quality-control over time. Following previous discussions on the main challenges linked to this approach, we provide concrete recommendations and future steps, related to different aspects of the design of benchmarks, such as the selection and the characteristics of the datasets (quality, choice of pathogens and resistances, etc.), the evaluation criteria of the pipelines, and the way these resources should be deployed in the community.
Collapse
Affiliation(s)
| | - Marco Fabbri
- European Commission Joint Research Centre, Ispra, Italy
| | | | | | - Guy Van den Eede
- European Commission Joint Research Centre, Ispra, Italy
- European Commission Joint Research Centre, Geel, Belgium
| | - Erik Alm
- The European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Derya Aytan-Aktug
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | | | - Catherine Carrillo
- Ottawa Laboratory – Carling, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | | | - Kok-Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Teresa Coque
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Carlos III Health Institute, Madrid, Spain
| | | | - Ivo Gut
- Centro Nacional de Análisis Genómico, Centre for Genomic Regulation (CNAG-CRG), Barcelona Institute of Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Paul Hammer
- BIOMES. NGS GmbH c/o Technische Hochschule Wildau, Wildau, Germany
| | - Gemma L. Kay
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, ANSES Site de Lyon, Lyon, France
| | - Alison E. Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| | | | - Thierry Naas
- French-NRC for CPEs, Service de Bactériologie-Hygiène, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | | | - Silke Peter
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Arthur Pightling
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | | | - John Rossen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Robert Schlaberg
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Lukas M. Weber
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
- Present address: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | |
Collapse
|
25
|
A Metagenomic Approach for Characterizing Antibiotic Resistance Genes in Specific Bacterial Populations: Demonstration with Escherichia coli in Cattle Manure. Appl Environ Microbiol 2022; 88:e0255421. [PMID: 35285243 DOI: 10.1128/aem.02554-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The high diversity of bacterial antibiotic resistance genes (ARGs) and the different health risks due to their association with different bacterial hosts require environmental ARG risk assessment to have capabilities of both high throughput and host differentiation. Current whole genome sequencing of cultivated isolates is low in throughput, while direct metagenomic next generation sequencing (mNGS) of environmental samples is nonselective with respect to bacterial hosts. This study introduced a population metagenomic approach that combines isolate library construction and mNGS of the population metagenomic DNA, which enables studying ARGs and their association with mobile genetic elements (MGEs) in a specific bacterial population. The population metagenomic approach was demonstrated with the E. coli population in cattle manure, which detected the co-location of multiple ARGs on the same MGEs and their correspondence to the prevalence of resistance phenotypes of the E. coli isolates. When compared with direct mNGS of the cattle manure samples, the E. coli population metagenomes exhibited a significantly different resistome and an overall higher relative abundance of ARGs and horizontal gene transfer risks. IMPORTANCE Bacterial antibiotic resistance genes in the environment are ubiquitous and can pose different levels of human health risks due to their bacterial host association and subsequent mobility. This study introduced a population metagenomic approach to study ARGs and their mobility in specific bacterial populations through a combination of selective cultivation followed by next generation sequencing and bioinformatic analysis of the combined metagenome of isolates. The utility of this approach was demonstrated with the E. coli population in cattle manure samples, which showed that ARGs detected in the E. coli population corresponded to the observed resistance phenotypes, co-location of multiple ARGs on the same mobile genetic elements.
Collapse
|
26
|
Peng Z, Hu Z, Li Z, Zhang X, Jia C, Li T, Dai M, Tan C, Xu Z, Wu B, Chen H, Wang X. Antimicrobial resistance and population genomics of multidrug-resistant Escherichia coli in pig farms in mainland China. Nat Commun 2022; 13:1116. [PMID: 35236849 PMCID: PMC8891348 DOI: 10.1038/s41467-022-28750-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 02/03/2022] [Indexed: 12/19/2022] Open
Abstract
The expanding use of antimicrobials in livestock is an important contributor to the worldwide rapid increase in antimicrobial resistance (AMR). However, large-scale studies on AMR in livestock remain scarce. Here, we report findings from surveillance of E. coli AMR in pig farms in China in 2018-2019. We isolated E. coli in 1,871 samples from pigs and their breeding environments, and found AMR in E. coli in all provinces in mainland China. We detected multidrug-resistance in 91% isolates and found resistance to last-resort drugs including colistin, carbapenems and tigecycline. We also identified a heterogeneous group of O-serogroups and sequence types among the multidrug-resistant isolates. These isolates harbored multiple resistance genes, virulence factor-encoding genes, and putative plasmids. Our data will help to understand the current AMR profiles of pigs and provide a reference for AMR control policy formulation for livestock in China.
Collapse
Affiliation(s)
- Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Zizhe Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Zugang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Xiaoxue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Chaoying Jia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Tianzhi Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Menghong Dai
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, 430070, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Zhuofei Xu
- Shanghai MasScience Biotechnology Institute, Shanghai, China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China.
| |
Collapse
|
27
|
Storey N, Cawthraw S, Turner O, Rambaldi M, Lemma F, Horton R, Randall L, Duggett NA, AbuOun M, Martelli F, Anjum MF. Use of genomics to explore AMR persistence in an outdoor pig farm with low antimicrobial usage. Microb Genom 2022; 8:000782. [PMID: 35344479 PMCID: PMC9176276 DOI: 10.1099/mgen.0.000782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Food animals may be reservoirs of antimicrobial resistance (AMR) passing through the food chain, but little is known about AMR prevalence in bacteria when selective pressure from antimicrobials is low or absent. We monitored antimicrobial-resistant Escherichia coli over 1 year in a UK outdoor pig farm with low antimicrobial usage (AMU) compared to conventional pig farms in the United Kingdom. Short and selected long-read whole-genome sequencing (WGS) was performed to identify AMR genes, phylogeny and mobile elements in 385 E. coli isolates purified mainly from pig and some seagull faeces. Generally, low levels of antimicrobial-resistant E. coli were present, probably due to low AMU. Those present were likely to be multi-drug resistant (MDR) and belonging to particular Sequence Types (STs) such as ST744, ST88 or ST44, with shared clones (<14 Single Nucleotide Polymorphisms (SNPs) apart) isolated from different time points indicating epidemiological linkage within pigs of different ages, and between pig and the wild bird faeces. Although importance of horizontal transmission of AMR is well established, there was limited evidence of plasmid-mediated dissemination between different STs. Non-conjugable MDR plasmids or large AMR gene-bearing transposons were stably integrated within the chromosome and remained associated with particular STs/clones over the time period sampled. Heavy metal resistance genes were also detected within some genetic elements. This study highlights that although low levels of antimicrobial-resistant E. coli correlates with low AMU, a basal level of MDR E. coli can still persist on farm potentially due to transmission and recycling of particular clones within different pig groups. Environmental factors such as wild birds and heavy metal contaminants may also play important roles in the recycling and dissemination, and hence enabling persistence of MDR E. coli. All such factors need to be considered as any rise in AMU on low usage farms, could in future, result in a significant increase in their AMR burden.
Collapse
Affiliation(s)
- Nathaniel Storey
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
- Great Ormond Street Hospital for Children, London WC1N 3JH, UK
| | - Shaun Cawthraw
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Olivia Turner
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Margherita Rambaldi
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
- University of Bologna, Via Zamboni, 33, 40126 Bologna BO, Italy
| | - Fabrizio Lemma
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Robert Horton
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Luke Randall
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Nicholas A. Duggett
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
- Teeside University, Campus Heart, Middlesbrough TS1 3BX, UK
| | - Manal AbuOun
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Francesca Martelli
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Muna F. Anjum
- Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK
- *Correspondence: Muna F. Anjum,
| |
Collapse
|
28
|
Anjum MF, Schmitt H, Börjesson S, Berendonk TU. The potential of using E. coli as an indicator for the surveillance of antimicrobial resistance (AMR) in the environment. Curr Opin Microbiol 2021; 64:152-158. [PMID: 34739920 DOI: 10.1016/j.mib.2021.09.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
To understand the dynamics of antimicrobial resistance (AMR), in a One-Health perspective, surveillance play an important role. Monitoring systems already exist in the human health and livestock sectors, but there are no environmental monitoring programs. Therefore there is an urgent need to initiate environmental AMR monitoring programs nationally and globally, which will complement existing systems in different sectors. However, environmental programs should not only identify anthropogenic influences and levels of AMR, but they should also allow for identification of transmissions to and from human and animal populations. In the current review we therefore propose using antimicrobial resistant Escherichia coli as indicators for monitoring occurrence and levels of AMR in the environment, including wildlife.
Collapse
Affiliation(s)
- Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Heike Schmitt
- Centre for Zoonoses and Environmental Microbiology - Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, The Netherlands
| | - Stefan Börjesson
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute (SVA), 751 89, Uppsala, Sweden.
| | - Thomas U Berendonk
- Institute for Hydrobiology, Technische Universität Dresden, 01217, Dresden, Germany.
| | | |
Collapse
|
29
|
Li M, Wang K, Tang A, Tang A, Chen A, Huang Z. Investigation of the Genes Involved in the Outbreaks of Escherichia coli and Salmonella spp. in the United States. Antibiotics (Basel) 2021; 10:1274. [PMID: 34680854 PMCID: PMC8532668 DOI: 10.3390/antibiotics10101274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Salmonella spp. and Escherichiacoli (E. coli) are two of the deadliest foodborne pathogens in the US. Genes involved in antimicrobial resistance, virulence, and stress response, enable these pathogens to increase their pathogenicity. This study aims to examine the genes detected in both outbreak and non-outbreak Salmonella spp. and E. coli by analyzing the data from the National Centre for Biotechnology Information (NCBI) Pathogen Detection Isolates Browser database. A multivariate statistical analysis was conducted on the genes detected in isolates of outbreak Salmonella spp., non-outbreak Salmonella spp., outbreak E. coli, and non-outbreak E. coli. The genes from the data were projected onto a two-dimensional space through principal component analysis. Hierarchical clustering was then used to quantify the relationship between the genes in the dataset. Most of the outlier genes identified in E. coli isolates are virulence genes, while outlier genes identified in Salmonella spp. are mainly involved in stress response. Gene epeA, which encodes a high-molecular-weight serine protease autotransporter of Enterobacteriaceae (SPATE) protein, along with subA and subB that encode cytotoxic activity, may contribute to the pathogenesis of outbreak E. coli. The iro operon and ars operon may play a role in the ecological success of the epidemic clones of Salmonella spp. Concurrent relationships between esp and ter operons in E. coli and pco and sil operons in Salmonella spp. are found. Stress-response genes (asr, golT, golS), virulence gene (sinH), and antimicrobial resistance genes (mdsA and mdsB) in Salmonella spp. also show a concurrent relationship. All these findings provide helpful information for experiment design to combat outbreaks of E. coli and Salmonella spp.
Collapse
Affiliation(s)
| | | | | | | | | | - Zuyi Huang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19085, USA; (M.L.); (K.W.); (A.T.); (A.T.); (A.C.)
| |
Collapse
|
30
|
AbuOun M, Jones H, Stubberfield E, Gilson D, Shaw LP, Hubbard ATM, Chau KK, Sebra R, Peto TEA, Crook DW, Read DS, Gweon HS, Walker AS, Stoesser N, Smith RP, Anjum MF. A genomic epidemiological study shows that prevalence of antimicrobial resistance in Enterobacterales is associated with the livestock host, as well as antimicrobial usage. Microb Genom 2021; 7:000630. [PMID: 34609275 PMCID: PMC8627209 DOI: 10.1099/mgen.0.000630] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/11/2021] [Indexed: 01/19/2023] Open
Abstract
Enterobacterales from livestock are potentially important reservoirs for antimicrobial resistance (AMR) to pass through the food chain to humans, thereby increasing the AMR burden and affecting our ability to tackle infections. In this study 168 isolates from four genera of the order Enterobacterales , primarily Escherichia coli , were purified from livestock (cattle, pigs and sheep) faeces from 14 farms in the United Kingdom. Their genomes were resolved using long- and short-read sequencing to analyse AMR genes and their genetic context, as well as to explore the relationship between AMR burden and on-farm antimicrobial usage (AMU), in the three months prior to sampling. Although E. coli isolates were genomically diverse, phylogenetic analysis using a core-genome SNP tree indicated pig isolates to generally be distinct from sheep isolates, with cattle isolates being intermediates. Approximately 28 % of isolates harboured AMR genes, with the greatest proportion detected in pigs, followed by cattle then sheep; pig isolates also harboured the highest number of AMR genes per isolate. Although 90 % of sequenced isolates harboured diverse plasmids, only 11 % of plasmids (n =58 out of 522) identified contained AMR genes, with 91 % of AMR plasmids being from pig, 9 % from cattle and none from sheep isolates; these results indicated that pigs were a principle reservoir of AMR genes harboured by plasmids and likely to be involved in their horizontal transfer. Significant associations were observed between AMU (mg kg−1) and AMR. As both the total and the numbers of different antimicrobial classes used on-farm increased, the risk of multi-drug resistance (MDR) in isolates rose. However, even when AMU on pig farms was comparatively low, pig isolates had increased likelihood of being MDR; harbouring relatively more resistances than those from other livestock species. Therefore, our results indicate that AMR prevalence in livestock is not only influenced by recent AMU on-farm but also livestock-related factors, which can influence the AMR burden in these reservoirs and its plasmid mediated transmission.
Collapse
Affiliation(s)
- Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, UK
| | - Hannah Jones
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, Surrey, UK
| | - Emma Stubberfield
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, UK
| | - Daniel Gilson
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, Surrey, UK
| | - Liam P. Shaw
- Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alasdair T. M. Hubbard
- Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kevin K. Chau
- Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Robert Sebra
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mt Sinai, Mt Sinai, New York, USA
| | - Tim E. A. Peto
- Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Derrick W. Crook
- Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research, Health Protection Research Unit, University of Oxford in partnership with Public Health England (PHE), Oxford, UK
| | - Daniel S. Read
- UK Centre for Ecology & Hydrology (UKCEH), Benson Lane, Crowmarsh Gifford, Wallingford, UK
| | - H. Soon Gweon
- UK Centre for Ecology & Hydrology (UKCEH), Benson Lane, Crowmarsh Gifford, Wallingford, UK
- School of Biological Sciences, University of Reading, UK
| | - A. Sarah Walker
- Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research, Health Protection Research Unit, University of Oxford in partnership with Public Health England (PHE), Oxford, UK
| | - Nicole Stoesser
- Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research, Health Protection Research Unit, University of Oxford in partnership with Public Health England (PHE), Oxford, UK
| | - Richard P. Smith
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, Surrey, UK
| | - Muna F. Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, UK
| | - on behalf of the REHAB consortium
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, UK
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, Surrey, UK
- Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mt Sinai, Mt Sinai, New York, USA
- National Institute for Health Research, Health Protection Research Unit, University of Oxford in partnership with Public Health England (PHE), Oxford, UK
- UK Centre for Ecology & Hydrology (UKCEH), Benson Lane, Crowmarsh Gifford, Wallingford, UK
- School of Biological Sciences, University of Reading, UK
| |
Collapse
|
31
|
Stubberfield E, Sheldon J, Card RM, AbuOun M, Rogers J, Williamson S, Kay GL, Pallen MJ, Anjum MF. Whole-Genome Sequencing of Brachyspira hyodysenteriae Isolates From England and Wales Reveals Similarities to European Isolates and Mutations Associated With Reduced Sensitivity to Antimicrobials. Front Microbiol 2021; 12:713233. [PMID: 34531838 PMCID: PMC8439570 DOI: 10.3389/fmicb.2021.713233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
Brachyspira hyodysenteriae is the principal cause of swine dysentery, a disease that threatens economic productivity of pigs in many countries as it can spread readily within and between farms, and only a small number of antimicrobials are authorized for treatment of pigs. In this study, we performed whole-genome sequencing (WGS) of 81 B. hyodysenteriae archived at the Animal and Plant Health Agency (APHA) from diagnostic submissions and herd monitoring in England and Wales between 2004 and 2015. The resulting genome sequences were analyzed alongside 34 genomes we previously published. Multi-locus sequence typing (MLST) showed a diverse population with 32 sequence types (STs) among the 115 APHA isolates, 25 of them identified only in England; while also confirming that the dominant European clonal complexes, CC8 and CC52, were common in the United Kingdom. A core-genome SNP tree typically clustered the isolates by ST, with isolates from some STs detected only within a specific region in England, although others were more widespread, suggesting transmission between different regions. Also, some STs were more conserved in their core genome than others, despite these isolates being from different holdings, regions and years. Minimum inhibitory concentrations to commonly used antimicrobials (Tiamulin, Valnemulin, Doxycycline, Lincomycin, Tylosin, Tylvalosin) were determined for 82 of the genome-sequenced isolates; genomic analysis revealed mutations generally correlated well with the corresponding resistance phenotype. There was a major swine dysentery intervention program in 2009–2010, and antimicrobial survival curves showed a significant reduction in sensitivity to tiamulin and valnemulin in isolates collected in and after 2010, compared to earlier isolates. This correlated with a significant increase in post-2009 isolates harboring the pleuromutilin resistance gene tva(A), which if present, may facilitate higher levels of resistance. The reduction in susceptibility of Brachyspira from diagnostic submissions to pleuromutilins, emphasizes the need for prudent treatment, control and eradication strategies.
Collapse
Affiliation(s)
- Emma Stubberfield
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Jonathan Sheldon
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Roderick M Card
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Jon Rogers
- Animal and Plant Health Agency, Bury St Edmunds, United Kingdom
| | | | - Gemma L Kay
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Mark J Pallen
- Quadram Institute Bioscience, Norwich, United Kingdom.,Norwich Medical School, University of East Anglia, Norwich, United Kingdom.,School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom.,School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
32
|
Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL, Rebelo AR, Florensa AF, Fagelhauer L, Chakraborty T, Neumann B, Werner G, Bender JK, Stingl K, Nguyen M, Coppens J, Xavier BB, Malhotra-Kumar S, Westh H, Pinholt M, Anjum MF, Duggett NA, Kempf I, Nykäsenoja S, Olkkola S, Wieczorek K, Amaro A, Clemente L, Mossong J, Losch S, Ragimbeau C, Lund O, Aarestrup FM. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2021; 75:3491-3500. [PMID: 32780112 PMCID: PMC7662176 DOI: 10.1093/jac/dkaa345] [Citation(s) in RCA: 1789] [Impact Index Per Article: 447.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
Abstract
Objectives WGS-based antimicrobial susceptibility testing (AST) is as reliable as phenotypic AST for several antimicrobial/bacterial species combinations. However, routine use of WGS-based AST is hindered by the need for bioinformatics skills and knowledge of antimicrobial resistance (AMR) determinants to operate the vast majority of tools developed to date. By leveraging on ResFinder and PointFinder, two freely accessible tools that can also assist users without bioinformatics skills, we aimed at increasing their speed and providing an easily interpretable antibiogram as output. Methods The ResFinder code was re-written to process raw reads and use Kmer-based alignment. The existing ResFinder and PointFinder databases were revised and expanded. Additional databases were developed including a genotype-to-phenotype key associating each AMR determinant with a phenotype at the antimicrobial compound level, and species-specific panels for in silico antibiograms. ResFinder 4.0 was validated using Escherichia coli (n = 584), Salmonella spp. (n = 1081), Campylobacter jejuni (n = 239), Enterococcus faecium (n = 106), Enterococcus faecalis (n = 50) and Staphylococcus aureus (n = 163) exhibiting different AST profiles, and from different human and animal sources and geographical origins. Results Genotype–phenotype concordance was ≥95% for 46/51 and 25/32 of the antimicrobial/species combinations evaluated for Gram-negative and Gram-positive bacteria, respectively. When genotype–phenotype concordance was <95%, discrepancies were mainly linked to criteria for interpretation of phenotypic tests and suboptimal sequence quality, and not to ResFinder 4.0 performance. Conclusions WGS-based AST using ResFinder 4.0 provides in silico antibiograms as reliable as those obtained by phenotypic AST at least for the bacterial species/antimicrobial agents of major public health relevance considered.
Collapse
Affiliation(s)
- Valeria Bortolaia
- Technical University of Denmark, National Food Institute, European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Rolf S Kaas
- Technical University of Denmark, National Food Institute, European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | | | - Marilyn C Roberts
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Vincent Cattoir
- Rennes University Hospital, Department of Clinical Microbiology, Rennes, France.,National Reference Center for Antimicrobial Resistance (lab Enterococci), Rennes, France.,University of Rennes 1, INSERM U1230, Rennes, France
| | - Alain Philippon
- Faculty of Medicine Paris Descartes, Bacteriology, Paris, France
| | - Rosa L Allesoe
- Technical University of Denmark, National Food Institute, European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Ana Rita Rebelo
- Technical University of Denmark, National Food Institute, European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Alfred Ferrer Florensa
- Technical University of Denmark, National Food Institute, European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Linda Fagelhauer
- Institute of Medical Microbiolgy, Justus Liebig University Giessen, Giessen, Germany.,German Center for Infection Research, site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany.,Institute of Hygiene and Environmental Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiolgy, Justus Liebig University Giessen, Giessen, Germany.,German Center for Infection Research, site Giessen-Marburg-Langen, Justus Liebig University Giessen, Giessen, Germany
| | - Bernd Neumann
- Robert Koch Institute, Wernigerode Branch, Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany
| | - Guido Werner
- Robert Koch Institute, Wernigerode Branch, Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany
| | - Jennifer K Bender
- Robert Koch Institute, Wernigerode Branch, Department of Infectious Diseases, Division of Nosocomial Pathogens and Antibiotic Resistances, Wernigerode, Germany
| | - Kerstin Stingl
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Campylobacter, Berlin, Germany
| | - Minh Nguyen
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium
| | - Jasmine Coppens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Belgium
| | - Henrik Westh
- Department of Clinical Microbiology, Hvidovre University Hospital, Hvidovre, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mette Pinholt
- Department of Clinical Microbiology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Muna F Anjum
- Animal and Plant Health Agency, Addlestone, Surrey, UK
| | | | - Isabelle Kempf
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | | | | | | | - Ana Amaro
- National Institute of Agrarian and Veterinary Research (INIAV), National Reference Laboratory for Animal Health, Oeiras, Portugal
| | - Lurdes Clemente
- National Institute of Agrarian and Veterinary Research (INIAV), National Reference Laboratory for Animal Health, Oeiras, Portugal
| | - Joël Mossong
- Laboratoire National de Santé, Epidemiology and Microbial Genomics, Dudelange, Luxembourg
| | - Serge Losch
- Laboratoire de Médecine Vétérinaire de l'Etat, Veterinary Services Administration, Dudelange, Luxembourg
| | - Catherine Ragimbeau
- Laboratoire National de Santé, Epidemiology and Microbial Genomics, Dudelange, Luxembourg
| | - Ole Lund
- Technical University of Denmark, National Food Institute, European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Frank M Aarestrup
- Technical University of Denmark, National Food Institute, European Union Reference Laboratory for Antimicrobial Resistance, WHO Collaborating Centre for Antimicrobial Resistance in Foodborne Pathogens and Genomics, FAO Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| |
Collapse
|
33
|
De Lucia A, Card RM, Duggett N, Smith RP, Davies R, Cawthraw SA, Anjum MF, Rambaldi M, Ostanello F, Martelli F. Reduction in antimicrobial resistance prevalence in Escherichia coli from a pig farm following withdrawal of group antimicrobial treatment. Vet Microbiol 2021; 258:109125. [PMID: 34033985 DOI: 10.1016/j.vetmic.2021.109125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
An important element in the control of antimicrobial resistance (AMR) is reduction in antimicrobial usage. In the veterinary sector individual antimicrobial treatment of livestock, rather than the use of group treatment, can help achieve this goal. The aim of this study was to investigate how cessation of group antimicrobial treatment impacted the prevalence of AMR in commensal Escherichia coli in pigs at one farm over an 11-month period. Minimum inhibitory concentrations of eight antimicrobials were determined for 259 E. coli isolates collected during the study. A significant reduction in the prevalence of multidrug resistance and a significant increase in the proportion of full susceptibility to the panel of nine antimicrobials tested was seen after 11 months. Whole genome sequencing of 48 multidrug resistant isolates revealed E. coli clones that persisted across multiple visits and provided evidence for the presence of plasmids harbouring AMR genes shared across multiple E. coli lineages. E. coli were also isolated from on-farm environmental samples. Whole genome sequencing of one multidrug resistant isolate obtained from cleaning tools showed it was clonal to pig-derived E. coli that persisted on the farm for 11 months. In this study we provide evidence that withdrawal of group antimicrobial use leads to significant reductions in key indicators for AMR prevalence and the importance of the farm environment as a reservoir of resistant bacteria. These findings support policy makers and producers in the implementation of measures to control AMR and reduce antimicrobial use.
Collapse
Affiliation(s)
- A De Lucia
- Dipartimento di Scienze Mediche Veterinarie Università di Bologna, Italy; Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK.
| | - R M Card
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK.
| | - N Duggett
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK.
| | - R P Smith
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK.
| | - R Davies
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK.
| | - S A Cawthraw
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK.
| | - M F Anjum
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK.
| | - M Rambaldi
- Dipartimento di Scienze Mediche Veterinarie Università di Bologna, Italy.
| | - F Ostanello
- Dipartimento di Scienze Mediche Veterinarie Università di Bologna, Italy.
| | - F Martelli
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK.
| |
Collapse
|
34
|
Comparison of Phenotypical Antimicrobial Resistance between Clinical and Non-Clinical E. coli Isolates from Broilers, Turkeys and Calves in Four European Countries. Microorganisms 2021; 9:microorganisms9040678. [PMID: 33805983 PMCID: PMC8064350 DOI: 10.3390/microorganisms9040678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022] Open
Abstract
Livestock data on antimicrobial resistance (AMR) are commonly collected from bacterial populations of clinical and non-clinical isolates. In contrast to data on non-clinical isolates from livestock, data on clinical isolates are not harmonized in Europe. The Normalized Resistance Interpretation (NRI) method was applied to overcome the lack of harmonization of laboratory methods and interpretation rules between monitoring systems. Statistical analyses were performed to identify associations between the isolate type (clinical vs. non-clinical) and resistance to four antimicrobials (ampicillin, tetracycline, gentamicin, and nalidixic acid) per animal category in Germany and France. Additional statistical analyses comparing clinical and non-clinical isolates were performed with the available data on the same antimicrobial panel and animal categories from the UK and Norway. Higher resistance prevalence was found in clinical isolates compared to non-clinical isolates from calves to all antimicrobials included in Germany and France. It was also found for gentamicin in broilers from France. In contrast, in broilers and turkeys from Germany and France and in broilers from the UK, a higher resistance level to ampicillin and tetracycline in non-clinical isolates was encountered. This was also found in resistance to gentamicin in isolates from turkeys in Germany. Resistance differed within countries and across years, which was partially in line with differences in antimicrobial use patterns. Differences in AMR between clinical and non-clinical isolates of Escherichia coli are associated with animal category (broiler, calf, and turkey) and specific antimicrobials. The NRI method allowed comparing results of non-harmonized AMR systems and might be useful until international harmonization is achieved.
Collapse
|
35
|
Petrillo M, Fabbri M, Kagkli DM, Querci M, Van den Eede G, Alm E, Aytan-Aktug D, Capella-Gutierrez S, Carrillo C, Cestaro A, Chan KG, Coque T, Endrullat C, Gut I, Hammer P, Kay GL, Madec JY, Mather AE, McHardy AC, Naas T, Paracchini V, Peter S, Pightling A, Raffael B, Rossen J, Ruppé E, Schlaberg R, Vanneste K, Weber LM, Westh H, Angers-Loustau A. A roadmap for the generation of benchmarking resources for antimicrobial resistance detection using next generation sequencing. F1000Res 2021; 10:80. [PMID: 35847383 PMCID: PMC9243550 DOI: 10.12688/f1000research.39214.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 10/31/2024] Open
Abstract
Next Generation Sequencing technologies significantly impact the field of Antimicrobial Resistance (AMR) detection and monitoring, with immediate uses in diagnosis and risk assessment. For this application and in general, considerable challenges remain in demonstrating sufficient trust to act upon the meaningful information produced from raw data, partly because of the reliance on bioinformatics pipelines, which can produce different results and therefore lead to different interpretations. With the constant evolution of the field, it is difficult to identify, harmonise and recommend specific methods for large-scale implementations over time. In this article, we propose to address this challenge through establishing a transparent, performance-based, evaluation approach to provide flexibility in the bioinformatics tools of choice, while demonstrating proficiency in meeting common performance standards. The approach is two-fold: first, a community-driven effort to establish and maintain "live" (dynamic) benchmarking platforms to provide relevant performance metrics, based on different use-cases, that would evolve together with the AMR field; second, agreed and defined datasets to allow the pipelines' implementation, validation, and quality-control over time. Following previous discussions on the main challenges linked to this approach, we provide concrete recommendations and future steps, related to different aspects of the design of benchmarks, such as the selection and the characteristics of the datasets (quality, choice of pathogens and resistances, etc.), the evaluation criteria of the pipelines, and the way these resources should be deployed in the community.
Collapse
Affiliation(s)
| | - Marco Fabbri
- European Commission Joint Research Centre, Ispra, Italy
| | | | | | - Guy Van den Eede
- European Commission Joint Research Centre, Ispra, Italy
- European Commission Joint Research Centre, Geel, Belgium
| | - Erik Alm
- The European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Derya Aytan-Aktug
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | | | - Catherine Carrillo
- Ottawa Laboratory – Carling, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | | | - Kok-Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Teresa Coque
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Carlos III Health Institute, Madrid, Spain
| | | | - Ivo Gut
- Centro Nacional de Análisis Genómico, Centre for Genomic Regulation (CNAG-CRG), Barcelona Institute of Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Paul Hammer
- BIOMES. NGS GmbH c/o Technische Hochschule Wildau, Wildau, Germany
| | - Gemma L. Kay
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, ANSES Site de Lyon, Lyon, France
| | - Alison E. Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| | | | - Thierry Naas
- French-NRC for CPEs, Service de Bactériologie-Hygiène, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | | | - Silke Peter
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Arthur Pightling
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | | | - John Rossen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Robert Schlaberg
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Lukas M. Weber
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
- Present address: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | |
Collapse
|
36
|
The importance of using whole genome sequencing and extended spectrum beta-lactamase selective media when monitoring antimicrobial resistance. Sci Rep 2020; 10:19880. [PMID: 33199763 PMCID: PMC7670430 DOI: 10.1038/s41598-020-76877-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
To tackle the problem of antimicrobial resistance (AMR) surveillance programmes are in place within Europe applying phenotypic methods, but there are plans for implementing whole genome sequencing (WGS). We tested the benefits of WGS using Escherichia coli collected from pig surveillance performed between 2013 to 2017. WGS was performed on 498 E. coli producing ESBL and AmpC enzymes, recovered from pig caeca on MacConkey + cefotaxime (McC + CTX) agar, as recommended by the European Commission, or ESBL agar, used additionally by United Kingdom. Our results indicated WGS was extremely useful for monitoring trends for specific ESBL genes, as well as a plethora of AMR genotypes, helping to establish their prevalence and co-linkage to certain plasmids. Recovery of isolates with multi-drug resistance (MDR) genotypes was lower from McC + CTX than ESBL agar. The most widespread ESBL genes belonged to the blaCTX-M family. blaCTX-M-1 dominated all years, and was common in two highly stable IncI1 MDR plasmids harbouring (blaCTX-M-1,sul2, tetA) or (blaCTX-M-1, aadA5, sul2, dfrA17), in isolates which were phylogenetically dissimilar, suggesting plasmid transmission. Therefore, WGS provided a wealth of data on prevalence of AMR genotypes and plasmid persistence absent from phenotypic data and, also, demonstrated the importance of culture media for detecting ESBL E. coli.
Collapse
|
37
|
AbuOun M, O'Connor HM, Stubberfield EJ, Nunez-Garcia J, Sayers E, Crook DW, Smith RP, Anjum MF. Characterizing Antimicrobial Resistant Escherichia coli and Associated Risk Factors in a Cross-Sectional Study of Pig Farms in Great Britain. Front Microbiol 2020; 11:861. [PMID: 32523560 PMCID: PMC7261845 DOI: 10.3389/fmicb.2020.00861] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
Combatting antimicrobial resistant (AMR) using a One-Health approach is essential as various bacteria, including Escherichia coli, a common bacteria, are becoming increasingly resistant and livestock may be a reservoir. The AMR gene content of 492 E. coli, isolated from 56 pig farms across Great Britain in 2014–2015, and purified on antibiotic selective and non-selective plates, was determined using whole genome sequencing (WGS). The E. coli were phylogenetically diverse harboring a variety of AMR profiles with widespread resistance to “old” antibiotics; isolates harbored up to seven plasmid Inc-types. None showed concurrent resistance to third-generation cephalosporins, fluoroquinolones and clinically relevant aminoglycosides, although ∼3% harbored AMR genes to both the former two. Transferable resistance to carbapenem and colistin were absent, and six of 117 E. coli STs belonged to major types associated with human disease. Prevalence of genotypically MDR E. coli, gathered from non-selective media was 35% and that of extended-spectrum-beta-lactamase E. coli was low (∼2% from non-selective). Approximately 72.6% of E. coli from ciprofloxacin plates and only 8.5% from the other plates harbored fluoroquinolone resistance due to topoisomerase mutations; the majority were MDR. In fact, multivariable analysis confirmed E. coli purified from CIP enrichment plates were more likely to be MDR, and suggested MDR isolates were also more probable from farms with high antibiotic usage, specialist finisher farms, and farms emptying their manure pits only after each batch. Additionally, farms from the South East were more likely to have MDR E. coli, whereas farms in Yorkshire and the Humber were less likely. Future investigations will determine whether suggested improvements such as better biosecurity or lower antimicrobial use decreases MDR E. coli on pig farms. Although this study focuses on pig farms, we believe the methodology and findings can be applied more widely to help livestock farmers in the United Kingdom and elsewhere to tackle AMR.
Collapse
Affiliation(s)
- Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom.,National Institute for Health Research, Health Protection Research Unit, University of Oxford in Partnership with Public Health England (PHE), Oxford, United Kingdom
| | - Heather M O'Connor
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Emma J Stubberfield
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Javier Nunez-Garcia
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Ellie Sayers
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Derick W Crook
- National Institute for Health Research, Health Protection Research Unit, University of Oxford in Partnership with Public Health England (PHE), Oxford, United Kingdom.,Modernising Medical Microbiology Consortium, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Richard P Smith
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom.,National Institute for Health Research, Health Protection Research Unit, University of Oxford in Partnership with Public Health England (PHE), Oxford, United Kingdom
| |
Collapse
|
38
|
Osei Sekyere J, Sephofane AK, Mbelle NM. Comparative Evaluation of CHROMagar COL-APSE, MicroScan Walkaway, ComASP Colistin, and Colistin MAC Test in Detecting Colistin-resistant Gram-Negative Bacteria. Sci Rep 2020; 10:6221. [PMID: 32277132 PMCID: PMC7148314 DOI: 10.1038/s41598-020-63267-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Colistin has become a critical antibiotic for fatal Gram-negative infections owing to the proliferation of multidrug-resistant carbapenemase-producing bacteria. Thus, cheaper, faster, efficient and easier-to-use colistin diagnostics are required for clinical surveillance, diagnoses and therapeutics. The sensitivity, specificity, major error (ME), very major error (VME), categorial agreement, essential agreement, turnaround time (TAT), average cost, and required skill for four colistin resistance diagnostics viz., CHROMagar COL-APSE, ComASP Colistin, MicroScan, and Colistin MAC Test (CMT) were evaluated against broth microdilution (BMD) using 84 Gram-negative bacterial isolates. A multiplex PCR (M-PCR) was used to screen all isolates to detect the presence of the mcr-1 to mcr-5 genes. A 15-point grading scale was used to grade the tests under skill, ease, processing time etc. mcr-1 was detected by both M-PCR and CMT in a single E. coli isolate, with other PCR amplicons suggestive of mcr-2, -3 and -4 genes being also observed on the gel. The sensitivity and specificity of CHROMagar COL-APSE, MicroScan, and ComASP Colistin, were 82.05% and 66.67%, 92.31% and 76.92%, and 100% and 88.89% respectively. The MicroScan was the most expensive at a cost (per sampe tested) of R221.6 ($15.0), followed by CHROMagar COL-APSE (R118.3; $8.0), M-PCR (R75.1; $5.1), CMT (R20.1; $1.4) and ComASP Colistin (R2.64; $0.2). CHROMagar was the easiest to perform, followed by ComASP Colistin, M-PCR, MicroScan, CMT and BMD whilst M-PCR and MicroScan required higher skill. The ComASP Colistin was the best performing diagnostic test, with low VME and ME, making it recommendable for routine colistin sensitivity testing in clinical laboratories; particularly, in poorer settings. It is however limited by a TAT of 18-24 hours.
Collapse
Affiliation(s)
- John Osei Sekyere
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, 0084, Prinshof, Pretoria, South Africa.
| | - Arnold Karabo Sephofane
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, 0084, Prinshof, Pretoria, South Africa
| | - Nontombi Marylucy Mbelle
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, 0084, Prinshof, Pretoria, South Africa
- National Health Laboratory Service, Tshwane Academic Division, Pretoria, South Africa
| |
Collapse
|
39
|
Duarte ASR, Stärk KDC, Munk P, Leekitcharoenphon P, Bossers A, Luiken R, Sarrazin S, Lukjancenko O, Pamp SJ, Bortolaia V, Nissen JN, Kirstahler P, Van Gompel L, Poulsen CS, Kaas RS, Hellmér M, Hansen RB, Gomez VM, Hald T. Addressing Learning Needs on the Use of Metagenomics in Antimicrobial Resistance Surveillance. Front Public Health 2020; 8:38. [PMID: 32158739 PMCID: PMC7051937 DOI: 10.3389/fpubh.2020.00038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/05/2020] [Indexed: 01/23/2023] Open
Abstract
One Health surveillance of antimicrobial resistance (AMR) depends on a harmonized method for detection of AMR. Metagenomics-based surveillance offers the possibility to compare resistomes within and between different target populations. Its potential to be embedded into policy in the future calls for a timely and integrated knowledge dissemination strategy. We developed a blended training (e-learning and a workshop) on the use of metagenomics in surveillance of pathogens and AMR. The objectives were to highlight the potential of metagenomics in the context of integrated surveillance, to demonstrate its applicability through hands-on training and to raise awareness to bias factors. The target participants included staff of competent authorities responsible for AMR monitoring and academic staff. The training was organized in modules covering the workflow, requirements, benefits and challenges of surveillance by metagenomics. The training had 41 participants. The face-to-face workshop was essential to understand the expectations of the participants about the transition to metagenomics-based surveillance. After revision of the e-learning, we released it as a Massive Open Online Course (MOOC), now available at https://www.coursera.org/learn/metagenomics. This course has run in more than 20 sessions, with more than 3,000 learners enrolled, from more than 120 countries. Blended learning and MOOCs are useful tools to deliver knowledge globally and across disciplines. The released MOOC can be a reference knowledge source for international players in the application of metagenomics in surveillance.
Collapse
Affiliation(s)
- Ana Sofia Ribeiro Duarte
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | | | - Patrick Munk
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Alex Bossers
- Department of Infection Biology, Wageningen Bioveterinary Research, Lelystad, Netherlands
- Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Roosmarijn Luiken
- Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Steven Sarrazin
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Oksana Lukjancenko
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Sünje Johanna Pamp
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Valeria Bortolaia
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Jakob Nybo Nissen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Philipp Kirstahler
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Liese Van Gompel
- Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Casper Sahl Poulsen
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Rolf Sommer Kaas
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Maria Hellmér
- Research Group for Microbiology and Hygiene, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Tine Hald
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|