1
|
Behr AC, Fæste CK, Azqueta A, Tavares AM, Spyropoulou A, Solhaug A, Olsen AK, Vettorazzi A, Mertens B, Zegura B, Streel C, Ndiaye D, Spilioti E, Dubreil E, Buratti FM, Crudo F, Eriksen GS, Snapkow I, Teixeira JP, Rasinger JD, Sanders J, Machera K, Ivanova L, Gaté L, Le Hegarat L, Novak M, Smith NM, Tait S, Fraga S, Hager S, Marko D, Braeuning A, Louro H, Silva MJ, Dirven H, Dietrich J. Hazard characterization of the mycotoxins enniatins and beauvericin to identify data gaps and improve risk assessment for human health. Arch Toxicol 2025:10.1007/s00204-025-03988-3. [PMID: 40137953 DOI: 10.1007/s00204-025-03988-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/10/2025] [Indexed: 03/29/2025]
Abstract
Enniatins (ENNs) and beauvericin (BEA) are cyclic hexadepsipeptide fungal metabolites which have demonstrated antibiotic, antimycotic, and insecticidal activities. The substantial toxic potentials of these mycotoxins are associated with their ionophoric molecular properties and relatively high lipophilicities. ENNs occur extensively in grain and grain-derived products and are considered a food safety issue by the European Food Safety Authority (EFSA). The tolerable daily intake and maximum levels for ENNs in humans and animals remain unestablished due to key toxicological and toxicokinetic data gaps, preventing full risk assessment. Aiming to find critical data gaps impeding hazard characterization and risk evaluation, this review presents a comprehensive summary of the existing information from in vitro and in vivo studies on toxicokinetic characteristics and cytotoxic, genotoxic, immunotoxic, endocrine, reproductive and developmental effects of the most prevalent ENN analogues (ENN A, A1, B, B1) and BEA. The missing information identified showed that additional studies on ENNs and BEA have to be performed before sufficient data for an in-depth hazard characterisation of these mycotoxins become available.
Collapse
Affiliation(s)
- Anne-Cathrin Behr
- Department Food Safety, BfR German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | | | - Amaya Azqueta
- Department of Pharmaceutical Sciences, UNAV University of Navarra, Pamplona, Spain
| | - Ana M Tavares
- INSA National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics and ToxOmics, Centre for Toxicogenomics and Human Health, Nova Medical School/Faculdade de Ciências Médicas, Universida de Nova de Lisboa, Lisbon, Portugal
| | - Anastasia Spyropoulou
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, BPI Benaki Phytopathological Institute, 8 Stefanou Delta Street, Kifissia, Attica, Greece
| | - Anita Solhaug
- NVI Norwegian Veterinary Institute, PO box 64, 1431, Ås, Norway
| | - Ann-Karin Olsen
- Department of Pharmaceutical Sciences, UNAV University of Navarra, Pamplona, Spain
| | - Ariane Vettorazzi
- Department for Environmental Chemistry and Health Effects, NILU Climate and Environment Institute, PO Box 100, 2027, Kjeller, Norway
| | - Birgit Mertens
- Department of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Bojana Zegura
- NIB National Institute of Biology, Večna Pot 121, Ljubljana, Slovenia
| | - Camille Streel
- Department of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Dieynaba Ndiaye
- INRS Institut National de Recherche et de Sécurité Pour La Prévention Des Accidents du Travail Et Des Maladies Professionnelles, Rue du Morvan, CS 60027, 54519, Vandœuvre-Lès-Nancy Cedex, France
| | - Eliana Spilioti
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, BPI Benaki Phytopathological Institute, 8 Stefanou Delta Street, Kifissia, Attica, Greece
| | - Estelle Dubreil
- Fougères Laboratory, Toxicology of Contaminants Unit, ANSES French Agency for Food, Environmental and Occupational Health and Safety, 35306, Fougères Cedex, France
| | - Franca Maria Buratti
- Mechanisms, Biomarkers and Models Unit, Department Environmental and Health, ISS Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Francesco Crudo
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, UNIVIE University of Vienna, Vienna, Austria
| | | | - Igor Snapkow
- Department of Chemical Toxicology, NIPH Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - João Paulo Teixeira
- Department of Environmental Health, INSA National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto and Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Josef D Rasinger
- IMR Norwegian Institute of Marine Research, Nordnes, PO box 1870, 5817, Bergen, Norway
| | - Julie Sanders
- Department of Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Kyriaki Machera
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides' Control and Phytopharmacy, BPI Benaki Phytopathological Institute, 8 Stefanou Delta Street, Kifissia, Attica, Greece
| | - Lada Ivanova
- NVI Norwegian Veterinary Institute, PO box 64, 1431, Ås, Norway
| | - Laurent Gaté
- INRS Institut National de Recherche et de Sécurité Pour La Prévention Des Accidents du Travail Et Des Maladies Professionnelles, Rue du Morvan, CS 60027, 54519, Vandœuvre-Lès-Nancy Cedex, France
| | - Ludovic Le Hegarat
- Fougères Laboratory, Toxicology of Contaminants Unit, ANSES French Agency for Food, Environmental and Occupational Health and Safety, 35306, Fougères Cedex, France
| | - Matjaz Novak
- NIB National Institute of Biology, Večna Pot 121, Ljubljana, Slovenia
| | - Nicola M Smith
- Department of Chemical Toxicology, NIPH Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Sabrina Tait
- Mechanisms, Biomarkers and Models Unit, Department Environmental and Health, ISS Istituto Superiore Di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Sónia Fraga
- Department of Environmental Health, INSA National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto and Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Sonja Hager
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, UNIVIE University of Vienna, Vienna, Austria
| | - Doris Marko
- Faculty of Chemistry, Department of Food Chemistry and Toxicology, UNIVIE University of Vienna, Vienna, Austria
| | - Albert Braeuning
- Department Food Safety, BfR German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Henriqueta Louro
- INSA National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics and ToxOmics, Centre for Toxicogenomics and Human Health, Nova Medical School/Faculdade de Ciências Médicas, Universida de Nova de Lisboa, Lisbon, Portugal
| | - Maria João Silva
- INSA National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics and ToxOmics, Centre for Toxicogenomics and Human Health, Nova Medical School/Faculdade de Ciências Médicas, Universida de Nova de Lisboa, Lisbon, Portugal
| | - Hubert Dirven
- Department of Chemical Toxicology, NIPH Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Jessica Dietrich
- Department Food Safety, BfR German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| |
Collapse
|
2
|
Li K, Cai H, Luo B, Duan S, Yang J, Zhang N, He Y, Wu A, Liu H. Recent Progress of Mycotoxin in Various Food Products-Human Exposure and Health Risk Assessment. Foods 2025; 14:865. [PMID: 40077568 PMCID: PMC11898784 DOI: 10.3390/foods14050865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Mycotoxins, as prevalent contaminants in the food chain, exhibit diverse toxicological effects on both animals and humans. Chronic dietary exposure to mycotoxin-contaminated foods may result in the bioaccumulation of these toxins, posing substantial public health risks. This review systematically examines the contamination patterns of mycotoxins across major food categories, including cereals and related products, animal-derived foods, fruits, and medical food materials. Furthermore, we critically evaluated two methodological frameworks for assessing mycotoxin exposure risks: (1) dietary exposure models integrating contamination levels and consumption data and (2) human biomonitoring approaches quantifying mycotoxin biomarkers in biological samples. A key contribution lies in the stratified analysis of exposure disparities among population subgroups (adults, teenagers, children, and infants). Additionally, we summarize current research on the relationship between human mycotoxin biomonitoring and associated health impacts, with a particular emphasis on vulnerable groups such as pregnant women and infants. By elucidating the challenges inherent in existing studies, this synthesis provides a roadmap for advancing risk characterization and evidence-based food safety interventions.
Collapse
Affiliation(s)
- Kailin Li
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200331, China
| | - Hua Cai
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Baozhang Luo
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Shenggang Duan
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Jingjin Yang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Nan Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Yi He
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200331, China
| | - Hong Liu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; (K.L.); (H.C.); (B.L.); (S.D.); (J.Y.); (N.Z.); (Y.H.)
| |
Collapse
|
3
|
Dayeh VR, Solhaug A, Hamilton ME, Linton LE, Lee LEJ, Bols NC. The impact of beauvericin on rainbow trout intestinal epithelial cells at different temperatures and dosing methods. In Vitro Cell Dev Biol Anim 2025:10.1007/s11626-025-01014-5. [PMID: 39900744 DOI: 10.1007/s11626-025-01014-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/19/2024] [Indexed: 02/05/2025]
Abstract
Mycotoxins in aquatic feeds and their effects on fish are becoming more important in aquaculture, as fishmeal and fish oil in feeds are being replaced with more sustainable plant protein. Here, we investigated the potential of the mycotoxin, beauvericin (BEA), to impact the rainbow trout (RT) intestine by using cultures of the epithelial cell line, RTgutGC. BEA was dosed in different ways and exposed at temperatures ranging from 4 to 26 °C before being evaluated for cell viability by the metabolic reduction of Alamar Blue, by the accumulation of Neutral Red (lysosomal activity), cytotoxicity (CellTox Green), and for wound healing. BEA induces cell death in RTgutGC cells. The lysosomes are the main target (Neutral Red assay is the most sensitive) while cytotoxicity and plasma membrane rupture (CellTox Green) occur at considerably higher concentrations. BEA caused a dose-dependent decline in Neutral Red reading at all tested temperatures but Alamar Blue readings did not decline at 4 °C. Under these conditions, BEA appears to impair only lysosomal activity. Wound healing was reduced at 4, 10, and 26 °C compared to 18 °C. Also BEA treatment, at non-cytotoxic concentrations, reduced wound healing, but the temperature had little influence on this. Different carrier vehicles (methanol, DMSO) and exposure methods (passive or active dispersal) for BEA exposure were also studied. Here, methanol and passive dispersal gave comparable results to exposure with DMSO and active dispersal. In contrast, when DMSO was dosed with passive dispersal, immediate cytotoxicity in combination with BEA was induced.
Collapse
Affiliation(s)
- Vivian R Dayeh
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | | | - Mark E Hamilton
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Laura E Linton
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Lucy E J Lee
- Faculty of Science, University of the Fraser Valley, Abbotsford, BC, V2S 7M8, Canada
| | - Niels C Bols
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
4
|
Angula MA, Ishola A, Tjiurutue M, Sulyok M, Krska R, Ezekiel CN, Misihairabgwi J. Mycotoxin exposure through the consumption of processed cereal food for children (< 5 years old) from rural households of Oshana, a region of Namibia. Mycotoxin Res 2025; 41:249-265. [PMID: 39808410 PMCID: PMC11759469 DOI: 10.1007/s12550-024-00580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
Mycotoxin exposure from contaminated food is a significant global health issue, particularly among vulnerable children. Given limited data on mycotoxin exposure among Namibian children, this study investigated mycotoxin types and levels in foods, evaluated dietary mycotoxin exposure from processed cereal foods in children under age five from rural households in Oshana region, Namibia. Mycotoxins in cereal-based food samples (n = 162) (mahangu flour (n = 35), sorghum flour (n = 13), mahangu thin/thick porridge (n = 54), oshikundu (n = 56), and omungome (n = 4)) were determined by liquid chromatography-tandem mass spectrometry. Aflatoxin B1 (AFB1, 35.8%), zearalenone (27.2%), fumonisin B1 (FB1, 24.1%), citrinin (CIT, 12.4%) and deoxynivalenol (10.5%) were the major mycotoxins quantified. Food samples (35.8% (n = 58) and 6.2% (n = 10)) exceeded the 0.1 µg/kg AFB1 and 200 µg/kg FB1 EU limit for children's food, respectively. Several emerging mycotoxins including the neurotoxic 3-nitropropionic acid, moniliformin (MON), and tenuazonic acid were quantified in over 50% of all samples. Co-occurrence of AFB1, CIT, and FB1 detected in 4.9% (n = 8) samples, which could heighten food safety concerns. Regarding exposure assessment and risk characterization, average probable dietary intake for AFB1 from all ready-to-eat-foods was 0.036 µg/kg bw/day, which resulted in margin of exposures (MOE) of 11 and 0.65 risk cancer cases/year/100,000 people, indicating a risk of chronic aflatoxicosis. High tolerable daily intake values for FB1, and MOE for beauvericin and MON exceeded reference values. Consumption of a diversified diet and interventions including timely planting and harvesting, best grain storage, and other standard postharvest food handling practices are needed to mitigate mycotoxin exposure through contaminated cereal foods and to safeguard the health of the rural children in Namibia.
Collapse
Affiliation(s)
- Maria A Angula
- Department of Human, Biological, and Translational Medical Sciences, School of Medicine, University of Namibia, Windhoek, Namibia.
| | - Anthony Ishola
- Department of Pharmaceutical Sciences, School of Pharmacy, Faculty of Health Sciences and Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Muvari Tjiurutue
- Department of Biochemistry, Microbiology and Biotechnology, School of Science, University of Namibia, Windhoek, Namibia
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Konrad Lorenz Str. 20, 3430, Vienna, Tulln, Austria
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Konrad Lorenz Str. 20, 3430, Vienna, Tulln, Austria
- Institute for Global Food Security, School of Biological Sciences, Queen'S University Belfast, University Road, Belfast, Northern Ireland, BT7 1NN, UK
| | - Chibundu N Ezekiel
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Konrad Lorenz Str. 20, 3430, Vienna, Tulln, Austria
| | - Jane Misihairabgwi
- Department of Human, Biological, and Translational Medical Sciences, School of Medicine, University of Namibia, Windhoek, Namibia
| |
Collapse
|
5
|
Pérez-Fuentes N, Alvariño R, Alfonso A, González-Jartín J, Vieytes MR, Botana LM. In vitro assessment of emerging mycotoxins co-occurring in cheese: a potential health hazard. Arch Toxicol 2024; 98:4173-4186. [PMID: 39322822 DOI: 10.1007/s00204-024-03872-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Some Penicillium strains used in cheese ripening produce emerging mycotoxins, notably roquefortine C (ROQC) and cyclopiazonic acid (CPA), as well as enniatins (ENNs) and beauvericin (BEA). Co-occurrence of these mycotoxins in natural samples has been reported worldwide, however, most studies focus on the toxicity of a single mycotoxin. In the present study, the effects of ROQC and CPA alone and in combination with BEA and ENNs A, A1, B, and B1 were analysed in human neuroblastoma cells. ROQC and CPA reduced cell viability, with IC50 values of 49.5 and 7.3 µM, respectively, and induced caspase-8-mediated apoptosis. When ROQC and CPA were binary combined with ENNs, an enhancement of their individual effects was observed. Furthermore, a clear synergism was produced when ROQC and CPA were mixed with the four ENNs. An additive effect was also described for the combination of CPA + ENNs (A, A1, B, B1) + BEA. Finally, the effects of commercial cheese extracts containing the mentioned mycotoxins were evaluated, finding a strong reduction in cell viability. These results suggest that the co-occurrence of emerging mycotoxins in natural matrices could pose a potential health risk.
Collapse
Affiliation(s)
- Nadia Pérez-Fuentes
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Rebeca Alvariño
- Departamento de Fisiología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| | - Jesús González-Jartín
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidad de Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
6
|
Dick F, Dietz A, Asam S, Rychlik M. Development of a high-throughput UHPLC-MS/MS method for the analysis of Fusarium and Alternaria toxins in cereals and cereal-based food. Anal Bioanal Chem 2024; 416:5619-5637. [PMID: 39222085 PMCID: PMC11493838 DOI: 10.1007/s00216-024-05486-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
A QuEChERS (quick, easy, cheap, effective, rugged, and safe)-based multi-mycotoxin method was developed, analyzing 24 (17 free and 7 modified) Alternaria and Fusarium toxins in cereals via ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). A modified QuEChERS approach was optimized for sample preparation. Quantification was conducted using a combination of stable isotope dilution analysis (SIDA) for nine toxins and matrix-matched calibration for ten toxins. Quantification via a structurally similar internal standard was conducted for four analytes. Alternariol-9-sulfate (AOH-9-S) was measured qualitatively. Limits of detection (LODs) were between 0.004 µg/kg for enniatin A1 (ENN A1) and 3.16 µg/kg for nivalenol (NIV), while the limits of quantification were between 0.013 and 11.8 µg/kg, respectively. The method was successfully applied to analyze 136 cereals and cereal-based foods, including 28 cereal-based infant food products. The analyzed samples were frequently contaminated with Alternaria toxins, proving their ubiquitous occurrence. Interestingly, in many of those samples, some modified Alternaria toxins occurred, mainly alternariol-3-sulfate (AOH-3-S) and alternariol monomethyl ether-3-sulfate (AME-3-S), thus highlighting the importance of including modified mycotoxins in the routine analysis as they may significantly add to the total exposure of their parent toxins. Over 95% of the analyzed samples were contaminated with at least one toxin. Despite the general contamination, no maximum or indicative levels were exceeded.
Collapse
Affiliation(s)
- Fabian Dick
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-Von-Imhof Forum 2, 85354, Freising, Germany
| | - Alena Dietz
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-Von-Imhof Forum 2, 85354, Freising, Germany
| | - Stefan Asam
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-Von-Imhof Forum 2, 85354, Freising, Germany.
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-Von-Imhof Forum 2, 85354, Freising, Germany
| |
Collapse
|
7
|
Mischler S, André A, Chetschik I, Miescher Schwenninger S. Potential for the Bio-Detoxification of the Mycotoxins Enniatin B and Deoxynivalenol by Lactic Acid Bacteria and Bacillus spp. Microorganisms 2024; 12:1892. [PMID: 39338565 PMCID: PMC11434589 DOI: 10.3390/microorganisms12091892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Mycotoxins, toxic compounds produced by fungi, pose significant risks to food safety and human health. This study investigates the bio-detoxification potential of 238 strains of lactic acid bacteria (LAB) and Bacillus spp., previously isolated from cereals (including mycotoxin-contaminated grains), against the emerging mycotoxin, enniatin B (ENB), and the prevalent mycotoxin, deoxynivalenol (DON). Out of the tested strains, 26 demonstrated notable mycotoxin reduction capabilities, including 2 Bacillus pumilus and 24 Bacillus licheniformis strains. B. licheniformis strains MA572, MA695, MA696, TR174a, TR284, TR363, and TR466a degraded ENB to levels below the detection limit, and six strains reduced DON by 30-35%; B. licheniformis TR251b and TR374 showed the highest DON reduction with 35.7%. The most promising strains for bio-detoxification were B. licheniformis TR284, which achieved a 100% reduction in ENB and a 28.6% reduction in DON and B. licheniformis TR388 with a 97.5% reduction in ENB and a 31.9% reduction in DON. None of the tested LAB strains significantly reduced either mycotoxin. These findings highlight the promising potential of B. licheniformis strains in bio-detoxifying mycotoxin-contaminated cereal products. Further research into the underlying detoxification mechanisms and safety aspects is essential to develop effective bio-detoxification strategies for enhancing food safety.
Collapse
Affiliation(s)
- Sandra Mischler
- Institute of Food and Beverage Innovation, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Amandine André
- Institute of Food and Beverage Innovation, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Irene Chetschik
- Institute of Food and Beverage Innovation, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | | |
Collapse
|
8
|
Wang Q, Li Y, Hu P, Zhang Y, Liu Y, Yang Q, Xu L, Gong Z, Yang J, Sun W, Liu X, Wu Y. Impact of enniatins and beauvericin on lipid metabolism: Insights from a 3D HepaRG spheroid model. ENVIRONMENT INTERNATIONAL 2024; 191:108969. [PMID: 39180774 DOI: 10.1016/j.envint.2024.108969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Emerging mycotoxins enniatins (ENNs) and beauvericin (BEA) pose potential health risks to humans through dietary exposure. However, research into their mechanisms of toxicity is limited, with a lack of comprehensive toxicological data. This study investigates from a hepatic lipid metabolism perspective, establishing a more precise and reliable 3D HepaRG hepatocyte spheroid model as an alternative for toxicity assessment. Utilizing physiological indices, histopathological analyses, lipidomics, and molecular docking techniques, it comprehensively elucidates the effects of ENNs and BEA on hepatic lipid homeostasis and their molecular toxicological mechanisms. Our findings indicate that ENNs and BEA impact cellular viability and biochemical functions, significantly altering lipid metabolism pathways, particularly those involving glycerophospholipids and sphingolipids. Molecular docking has demonstrated strong binding affinity of ENNs and BEA with key enzymes in lipid metabolism such as Peroxisome Proliferator-Activated Receptor α (PPARα) and Cytosolic Phospholipase A2 (cPLA2), revealing the mechanistic basis for their hepatotoxic effects and potential to impair liver function and human health. These insights enhance our understanding of the potential hepatotoxicity of such fungal toxins and lay a foundation for the assessment of their health risks.
Collapse
Affiliation(s)
- Qiao Wang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Yan Li
- Key Laboratory of Animal Biological Products & Genetic Engineering, Ministry of Agriculture and Rural, Sinopharm Animal Health Corporation Ltd., Wuhan 430023, Hubei, China; State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing 100024, China
| | - Peihao Hu
- Key Laboratory of Animal Biological Products & Genetic Engineering, Ministry of Agriculture and Rural, Sinopharm Animal Health Corporation Ltd., Wuhan 430023, Hubei, China
| | - Yutao Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Yan Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Qing Yang
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Lin Xu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Jiangke Yang
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, Hubei, China
| | - Wen Sun
- Key Laboratory of Animal Biological Products & Genetic Engineering, Ministry of Agriculture and Rural, Sinopharm Animal Health Corporation Ltd., Wuhan 430023, Hubei, China; State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing 100024, China.
| | - Xin Liu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| | - Yongning Wu
- Key Laboratory for Deep Processing of Major Grain and Oil (The Chinese Ministry of Education), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, Hubei, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| |
Collapse
|
9
|
Xu W, Liang J, Zhang J, Song Y, Zhao X, Liu X, Zhang H, Sui H, Ye J, Wu Y, Ji J, Ye Y, Sun X, Xu J, Bai L, Han X, Zhang L. Natural Occurrence and Co-Occurrence of Beauvericin and Enniatins in Wheat Kernels from China. Toxins (Basel) 2024; 16:290. [PMID: 39057930 PMCID: PMC11280995 DOI: 10.3390/toxins16070290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
A total of 769 wheat kernels collected from six provinces in China were analyzed for beauvericin (BEA) and four enniatins (ENNs), namely, ENA, ENA1, ENB and ENB1, using a solid phase extraction (SPE) technique with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The results show that the predominant toxin was BEA, which had a maximum of 387.67 μg/kg and an average of 37.69 μg/kg. With regard to ENNs, the prevalence and average concentrations of ENB and ENB1 were higher than those of ENA and ENA1. The geographical distribution of BEA and ENNs varied. Hubei and Shandong exhibited the highest and lowest positive rates of BEA and ENNs (13.46% and 87.5%, respectively). However, no significant difference was observed among these six provinces. There was a co-occurrence of BEA and ENNs, and 42.26% of samples were simultaneously detected with two or more toxins. Moreover, a significant linear correlation in concentrations was observed between the four ENN analogs (r range: 0.75~0.96, p < 0.05). This survey reveals that the contamination and co-contamination of BEA and ENNs in Chinese wheat kernels were very common.
Collapse
Affiliation(s)
- Wenjing Xu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China; (W.X.); (J.L.); (J.Z.); (Y.S.); (X.Z.); (X.L.); (H.Z.); (H.S.); (J.X.); (L.B.)
| | - Jiang Liang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China; (W.X.); (J.L.); (J.Z.); (Y.S.); (X.Z.); (X.L.); (H.Z.); (H.S.); (J.X.); (L.B.)
| | - Jing Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China; (W.X.); (J.L.); (J.Z.); (Y.S.); (X.Z.); (X.L.); (H.Z.); (H.S.); (J.X.); (L.B.)
| | - Yan Song
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China; (W.X.); (J.L.); (J.Z.); (Y.S.); (X.Z.); (X.L.); (H.Z.); (H.S.); (J.X.); (L.B.)
| | - Xi Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China; (W.X.); (J.L.); (J.Z.); (Y.S.); (X.Z.); (X.L.); (H.Z.); (H.S.); (J.X.); (L.B.)
| | - Xiao Liu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China; (W.X.); (J.L.); (J.Z.); (Y.S.); (X.Z.); (X.L.); (H.Z.); (H.S.); (J.X.); (L.B.)
| | - Hongyuan Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China; (W.X.); (J.L.); (J.Z.); (Y.S.); (X.Z.); (X.L.); (H.Z.); (H.S.); (J.X.); (L.B.)
| | - Haixia Sui
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China; (W.X.); (J.L.); (J.Z.); (Y.S.); (X.Z.); (X.L.); (H.Z.); (H.S.); (J.X.); (L.B.)
| | - Jin Ye
- National Food and Strategic Reserves Administration, Beijing 100834, China; (J.Y.); (Y.W.)
| | - Yu Wu
- National Food and Strategic Reserves Administration, Beijing 100834, China; (J.Y.); (Y.W.)
| | - Jian Ji
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, Jiangnan University, Wuxi 214122, China; (J.J.); (Y.Y.); (X.S.)
| | - Yongli Ye
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, Jiangnan University, Wuxi 214122, China; (J.J.); (Y.Y.); (X.S.)
| | - Xiulan Sun
- School of Food Science, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Foods, Jiangnan University, Wuxi 214122, China; (J.J.); (Y.Y.); (X.S.)
| | - Jin Xu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China; (W.X.); (J.L.); (J.Z.); (Y.S.); (X.Z.); (X.L.); (H.Z.); (H.S.); (J.X.); (L.B.)
| | - Li Bai
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China; (W.X.); (J.L.); (J.Z.); (Y.S.); (X.Z.); (X.L.); (H.Z.); (H.S.); (J.X.); (L.B.)
| | - Xiaomin Han
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China; (W.X.); (J.L.); (J.Z.); (Y.S.); (X.Z.); (X.L.); (H.Z.); (H.S.); (J.X.); (L.B.)
| | - Lei Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100021, China; (W.X.); (J.L.); (J.Z.); (Y.S.); (X.Z.); (X.L.); (H.Z.); (H.S.); (J.X.); (L.B.)
| |
Collapse
|
10
|
Paege N, Feustel S, Marx-Stoelting P. Toxicological evaluation of microbial secondary metabolites in the context of European active substance approval for plant protection products. Environ Health 2024; 23:52. [PMID: 38835048 DOI: 10.1186/s12940-024-01092-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
Risk assessment (RA) of microbial secondary metabolites (SM) is part of the EU approval process for microbial active substances (AS) used in plant protection products (PPP). As the number of potentially produced microbial SM may be high for a certain microbial strain and existing information on the metabolites often are low, data gaps are frequently identified during the RA. Often, RA cannot conclusively clarify the toxicological relevance of the individual substances. This work presents data and RA conclusions on four metabolites, Beauvericin, 2,3-deepoxy-2,3-didehydro-rhizoxin (DDR), Leucinostatin A and Swainsonin in detail as examples for the challenging process of RA. To overcome the problem of incomplete assessment reports, RA of microbial AS for PPP is in need of new approaches. In view of the Next Generation Risk Assessment (NGRA), the combination of literature data, omic-methods, in vitro and in silico methods combined in adverse outcome pathways (AOPs) can be used for an efficient and targeted identification and assessment of metabolites of concern (MoC).
Collapse
Affiliation(s)
- Norman Paege
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| | - Sabrina Feustel
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | |
Collapse
|
11
|
Perego MC, Spicer LJ, Cortinovis C, Bertero A, Caloni F. In vitro effects of two environmental toxicants, beauvericin and glyphosate in Roundup, on cell numbers and steroidogenesis of bovine ovarian cells. Vet Res Commun 2024; 48:1769-1778. [PMID: 38558370 DOI: 10.1007/s11259-024-10357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Beauvericin is an emerging Fusariotoxin naturally occurring in cereal grains throughout the world whereas glyphosate (N-phosphonomethyl-glycine) is a non-selective systemic herbicide used worldwide. The purpose of this study is to evaluate a newly developed ovarian cell culture system (that includes both granulosa and theca cells) as an in vitro model for toxicological studies. Specifically, the effects of beauvericin and glyphosate in formulation with Roundup on ovarian cell numbers and steroid production were evaluated. Ovaries collected from cattle without luteal structures were sliced into 30-70 pieces each, and granulosa and theca cells were collected. Harvested cells were cultured for 48 h in 10% fetal bovine serum-containing medium followed by 48 h in serum-free medium containing testosterone (500 ng/mL; as an estrogen precursor) with the following eight treatments: (1) controls, (2) FSH (30 ng/mL) alone, (3) FSH plus insulin-like growth factor-1 (IGF1; 30 ng/mL), (4) FSH plus IGF1 plus beauvericin (3 µM), (5) FSH plus IGF1 plus glyphosate in Roundup (10 µg/mL), (6) FSH plus IGF1 plus fibroblast growth factor 9 (FGF9, 30 ng/mL), (7) a negative control without added testosterone, and (8) IGF1 plus LH (30 ng/mL) with basal medium without added testosterone. In the presence of FSH, IGF1 significantly increased cell numbers, estradiol and progesterone production by severalfold. Glyphosate in Roundup formulation significantly inhibited IGF1-induced cell numbers and estradiol and progesterone production by 89-94%. Beauvericin inhibited IGF1-induced cell numbers and estradiol and progesterone by 50-97% production. LH plus IGF1 significantly increased androstenedione secretion compared with controls without added testosterone indicating the presence of theca cells. In conclusion, the present study demonstrates that toxicological effects of beauvericin and glyphosate in Roundup formulation are observed in a newly developed ovarian cell model system and further confirms that both glyphosate and beauvericin may have the potential to impair reproductive function in cattle.
Collapse
Affiliation(s)
- M C Perego
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - L J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - C Cortinovis
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 10, Milan, 20133, Italy
| | - A Bertero
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - F Caloni
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 10, Milan, 20133, Italy
| |
Collapse
|
12
|
Berzina Z, Pavlenko R, Bartkiene E, Bartkevics V. Mycotoxins and pyrrolizidine alkaloids in herbal dietary supplements. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2024; 17:180-192. [PMID: 38629617 DOI: 10.1080/19393210.2024.2332516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/14/2024] [Indexed: 06/09/2024]
Abstract
The market demand for herbal dietary supplements is rapidly growing and such products are becoming more common and accessible to consumers. However, the knowledge about their safety remains incomplete. Herbal dietary supplements are one of the food groups that can contribute significantly to human health concerns arising from chronic exposure to pyrrolizidine alkaloids and mycotoxins. This study aimed to simultaneously determine 79 natural contaminants, including mycotoxins, as well as pyrrolizidine and tropane alkaloids in herbal dietary supplements in one analytical run. Exposure assessment and human health risks were assessed for all compounds included in this study. The total concentration of naturally occurring contaminants in herbal dietary supplements reached 5.3 mg kg-1 and the most frequently detected mycotoxins were tentoxin and alternariol monomethyl ether. The latter was detected with the highest frequency, reaching concentrations up to 2.5 mg kg-1. The obtained results indicate a potential risk to public health related to herbal dietary supplement consumption.
Collapse
Affiliation(s)
- Zane Berzina
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia
- Faculty of Chemistry, University of Latvia, Riga, Latvia
| | - Romans Pavlenko
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia
| | - Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Riga, Latvia
- Faculty of Chemistry, University of Latvia, Riga, Latvia
| |
Collapse
|
13
|
de Sá SVM, Sousa Monteiro C, Fernandes JO, Pinto E, Faria MA, Cunha SC. Evaluating the human neurotoxicity and toxicological interactions impact of co-occurring regulated and emerging mycotoxins. Food Res Int 2024; 184:114239. [PMID: 38609220 DOI: 10.1016/j.foodres.2024.114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024]
Abstract
Mycotoxins can inflict harmful effects on diverse organs, and mounting evidence indicates their potential involvement in human neurodegenerative diseases. Given the common occurrence of these toxins in food, there is an increasing demand for a comprehensive assessment of their combined toxicity to enhance our understanding of their potential hazards. This research investigates mycotoxin exposure from widely consumed cereal-based products, including enniatin B (ENNB), sterigmatocystin (STG), aflatoxin B1 (AFB1), cyclopiazonic acid (CPZ), citrinin (CIT), and ochratoxin A (OTA). Employing the median-effect equation based on Chou and Talalay's mass-action law, we assessed their cytotoxicity in human SH-SY5Y neuronal cells. Notably, ENNB displayed the highest neurotoxicity (IC50 = 3.72 µM), followed by OTA (9.10 µM) and STG (9.99 µM). The combination of OTA + STG exhibited the highest toxicity (IC50 = 3.77 µM), while CPZ + CIT showed the least detrimental effect. Approximately 70 % of tested binary combinations displayed synergistic or additive effects, except for ENNB + STG, ENNB + AFB1, and CPZ + CIT, which showed antagonistic interactions. Intriguingly, the senary combination displayed moderate antagonism at the lowest exposure and moderate synergism at higher doses. OTA exhibited predominantly synergistic interactions, comprising approximately 90 %, a noteworthy finding considering its prevalence in food. Conversely, ENNB interactions tended to be antagonistic. The most remarkable synergy occurred in the STG and CIT combination, enabling a 50-fold reduction in CIT dosage for an equivalent toxic effect. These findings highlight the biological relevance of robust synergistic interactions, emphasizing the need to assess human exposure hazards accurately, particularly considering frequent mycotoxin co-occurrence in environmental and food settings.
Collapse
Affiliation(s)
- Soraia V M de Sá
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carolina Sousa Monteiro
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Eugénia Pinto
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Miguel A Faria
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
14
|
Woo SY, Lee SY, Park SB, Chun HS. Simultaneous determination of 17 regulated and non-regulated Fusarium mycotoxins co-occurring in foodstuffs by UPLC-MS/MS with solid-phase extraction. Food Chem 2024; 438:137624. [PMID: 38011795 DOI: 10.1016/j.foodchem.2023.137624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/29/2023]
Abstract
Fusarium species produce numerous mycotoxins known to co-occur in food. While some of these mycotoxins (e.g., deoxynivalenol, fumonisins) are regulated in several countries, others are non-regulated (e.g., nivalenol, beauvericin). In this study, UPLC-MS/MS with solid-phase extraction cleanup was used to determine 17 Fusarium mycotoxins (FTs) simultaneously. The method showed excellent performance in terms of linearity (R2 > 0.99), LOD (<1.2 μg/kg), LOQ (<3.6 μg/kg), accuracy (70.0-116.3 %), repeatability (<15.7 %), reproducibility (<25.3 %), and expanded uncertainty (<41.7 %). The validated method was successfully applied to 198 marketed food samples collected in South Korea. Of the tested samples, 79 % were contaminated with at least one FT. Job's tears showed the highest prevalence of 14 FTs, and sorghum had the highest total FTs level (3.03 mg/kg). The results suggest that this method can be used for the simultaneous analysis of 17 FTs in food samples, which would serve as crucial information for risk management.
Collapse
Affiliation(s)
- So Young Woo
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sang Yoo Lee
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Su Been Park
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hyang Sook Chun
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
15
|
Tang L, Ye Y, Ji J, Wang JS, Huang Z, Sun J, Sheng L, Sun X. PI3K/Akt/FoxO Pathway Mediates Antagonistic Toxicity in HepG2 Cells Coexposed to Deoxynivalenol and Enniatins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8214-8224. [PMID: 38557103 DOI: 10.1021/acs.jafc.4c01888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The emerging mycotoxins enniatins (ENNs) and the traditional mycotoxin deoxynivalenol (DON) often co-contaminate various grain raw materials and foods. While the liver is their common target organ, the mechanism of their combined effect remains unclear. In this study, the combined cytotoxic effects of four ENNs (ENA, ENA1, ENB, and ENB1) with DON and their mechanisms were investigated using the HepG2 cell line. Additionally, a population exposure risk assessment of these mycotoxins was performed by using in vitro experiments and computer simulations. The results showed that only ENA at 1/4 IC50 and ENB1 at 1/8 IC50 coexposed with DON showed an additive effect, while ENB showed the strongest antagonism at IC50 (CI = 3.890). Co-incubation of ENNs regulated the signaling molecule levels which were disrupted by DON. Transcriptome analysis showed that ENB (IC50) up-regulated the PI3K/Akt/FoxO signaling pathway and inhibited the expression of apoptotic genes (Bax, P53, Caspase 3, etc.) via phosphorylation of FoxO, thereby reducing the cytotoxic effects caused by DON. Both types of mycotoxins posed serious health risks, and the cumulative risk of coexposure was particularly important for emerging mycotoxins.
Collapse
Affiliation(s)
- Luyao Tang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602, United States
| | - Zhicong Huang
- Food and Drug Administration, Zhongshan City West District Street, Zhongshan, Guangdong 528401, PR China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, Jiangsu 214200, PR China
| |
Collapse
|
16
|
Jeong DH, Jung DW, You C, Lee HS. Mechanistic insight into human androgen receptor-mediated endocrine disrupting potential of cyclic depsipeptide mycotoxin, beauvericin, and influencing environmental factors for its biosynthesis in Fusarium oxysporum KFCC 11363P on rice cereal. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116227. [PMID: 38493703 DOI: 10.1016/j.ecoenv.2024.116227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
In current study, Fusarium mycotoxin, beauvericin (BEA), has endocrine disrupting potential through suppressing the exogenous androgen receptor (AR)-mediated transcriptional activation. BEA was classified as an AR antagonist, with IC30 and IC50 values indicating that it suppressed AR dimerization in the cytosol. BEA suppress the translocation of cytosolic activated ARs to the nucleus via exogenous androgens. Furthermore, we investigated the impact of environmental conditions for BEA production on rice cereal using response surface methodology. The environmental factors affecting the production of BEA, namely temperature, initial moisture content, and growth time were optimized at 20.28 °C, 42.79 % (w/w), and 17.31 days, respectively. To the best of our knowledge, this is the first report showing that BEA has endocrine disrupting potential through suppressing translocation of cytosolic ARs to nucleus, and temperature, initial moisture content, and growth time are important influencing environmental factors for its biosynthesis in Fusarium strains on cereal.
Collapse
Affiliation(s)
- Da-Hyun Jeong
- GreenTech-based Food Safety Research Group, BK21 Four, Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, the Republic of Korea
| | - Da-Woon Jung
- GreenTech-based Food Safety Research Group, BK21 Four, Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, the Republic of Korea
| | - Chaemin You
- GreenTech-based Food Safety Research Group, BK21 Four, Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, the Republic of Korea
| | - Hee-Seok Lee
- GreenTech-based Food Safety Research Group, BK21 Four, Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, the Republic of Korea; Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong 17546, the Republic of Korea.
| |
Collapse
|
17
|
Ji X, Zhou Y, Xiao Y, Lyu W, Wang W, Shao K, Yang H. A tiered approach of hazard-prioritization and risk-ranking for chemical hazards in food commodities: Application for selected mycotoxins. Food Res Int 2024; 178:113946. [PMID: 38309871 DOI: 10.1016/j.foodres.2024.113946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Chemical hazards in foods, especially naturally occurring food contaminants like mycotoxins, are of serious public health concern. It is important to develop a practical framework to assess and rank health risks of chemical contaminants which can be further utilized by regulatory agencies to prioritize resources for risk assessment and management. In this study, a tiered hazard-prioritization and risk-ranking approach, which included two steps: exposure-based screening and margin of exposure (MOE)-based probabilistic risk ranking; was proposed to efficiently identify and rank chemicals of health concerns. Given the exposure-based hazard prioritization, chemicals with negligible or low health risks were first excluded. The remaining chemicals, imposing a higher health risk, were then ranked to facilitate risk-based decision making. The proposed approach was applied to identify and rank the mycotoxins with substantial health concerns in food commodities randomly sampled in China. A total of 19 mycotoxins were analyzed in 783 food commodities, including infant cookie, noodle, rice flour samples, wheat flour, millet, and rice. Results showed that the mycotoxins in infant foods with the highest health risk were Tenuazonic acid, Deoxynivalenol, and Enniatin B1, but as indicated by the probabilistic MOE estimation, the risks were still in the acceptable range and generally lower than the risks imposed by trace elements (e.g., Arsenic and Cadmium). The health risks of the other 16 mycotoxins were negligible mainly due to their low exposure levels. This study demonstrated that the proposed tiered approach was an efficient and effective tool to quantify and prioritize health risks in support of human health risk management.
Collapse
Affiliation(s)
- Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yun Zhou
- Department of Environmental and Occupational Health, School of Public Health - Bloomington, Indiana University, Bloomington, IN 47405, USA
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health - Bloomington, Indiana University, Bloomington, IN 47405, USA.
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| |
Collapse
|
18
|
Hwang Y, Lee HS. Statistical optimization of environmental factors to produce the cytotoxic enniatins H, I and MK1688 against human multidrug resistance cancer cell lines. Food Sci Biotechnol 2024; 33:579-587. [PMID: 38274188 PMCID: PMC10805692 DOI: 10.1007/s10068-023-01363-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 06/01/2023] [Indexed: 01/27/2024] Open
Abstract
The environmental conditions were optimized to produce the enniatin H, I, and MK1688 by Fusarium strain on cereal grain exhibiting anti-carcinogenic potential against MES-SA (human uterine sarcoma cell line), HCT15 (human colorectal carcinoma cancer cell line), and their multidrug resistance sublines. From the statistical optimization by response surface methodology, the optimal condition of independent variables affecting the response variables were 20.85 °C (temperature), 46.85% (w/w, initial moisture content), and 18.42 days (growth time) for ENN H; 23.31 °C, 44.15% (w/w) and 17.23 days for ENN I; 23.08 °C, 43.97% (w/w) and 17.06 days for ENN MK1688. In case of cytotoxic effects, ENNs significantly suppressed growth of cancer cell lines without multidrug resistance, and ENN I inhibited growth of cancer cell lines most strongly. These data will provide valuable point to produce the cyclic hexadepsipeptide exhibiting anti-carcinogenic potential from Fusarium strains.
Collapse
Affiliation(s)
- YoungMin Hwang
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, 17546 Republic of Korea
| | - Hee-Seok Lee
- Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, 17546 Republic of Korea
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546 Republic of Korea
| |
Collapse
|
19
|
Pavlenko R, Berzina Z, Reinholds I, Bartkiene E, Bartkevics V. An Occurrence Study of Mycotoxins in Plant-Based Beverages Using Liquid Chromatography-Mass Spectrometry. Toxins (Basel) 2024; 16:53. [PMID: 38251269 PMCID: PMC10821093 DOI: 10.3390/toxins16010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Mycotoxins are toxic mold metabolites that can adversely affect human and animal health. More than 400 mycotoxins have been identified so far. Cereals and nuts are the predominant mycotoxin-contaminated foodstuffs. Plant-based drinks produced from cereals, nuts, and legumes have grown in popularity. The mycotoxins accumulated in these crops may transfer to these beverages. A liquid chromatography-tandem mass spectrometry method was developed and optimized for the assessment of 22 mycotoxins in commercially available plant-based drinks in Latvia and Lithuania. A total of 64% of the seventy-two analyzed beverages were positive for one to sixteen mycotoxins, with deoxynivalenol, beauvericin, and enniatins A, B, B1, T-2, and HT-2 toxins detected most frequently. The European Commission has not yet set guidelines for the maximum mycotoxin concentrations in plant-based beverages, nor has the European Food Safety Authority conducted a risk assessment. Therefore, acute exposure studies were provided for the Latvian population based on the assumed replacement of dairy milk with plant-based beverages to ascertain the safety of plant-based milk substitutes. Based on the observed levels of mycotoxin prevalence and contamination levels and assumed exposure, it can be concluded that tested plant-based beverages may be relatively safe. However, exposure to emerging mycotoxins should be considered.
Collapse
Affiliation(s)
- Romans Pavlenko
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Iela 3, LV-1076 Riga, Latvia; (R.P.); (Z.B.); (V.B.)
| | - Zane Berzina
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Iela 3, LV-1076 Riga, Latvia; (R.P.); (Z.B.); (V.B.)
| | - Ingars Reinholds
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Iela 3, LV-1076 Riga, Latvia; (R.P.); (Z.B.); (V.B.)
| | - Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania;
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment “BIOR”, Lejupes Iela 3, LV-1076 Riga, Latvia; (R.P.); (Z.B.); (V.B.)
| |
Collapse
|
20
|
Deligeorgakis C, Magro C, Skendi A, Gebrehiwot HH, Valdramidis V, Papageorgiou M. Fungal and Toxin Contaminants in Cereal Grains and Flours: Systematic Review and Meta-Analysis. Foods 2023; 12:4328. [PMID: 38231837 DOI: 10.3390/foods12234328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024] Open
Abstract
Cereal grains serve as the cornerstone of global nutrition, providing a significant portion of humanity's caloric requirements. However, the presence of fungal genera, such Fusarium, Penicillium, Aspergillus, and Alternaria, known for their mycotoxin-producing abilities, presents a significant threat to human health due to the adverse effects of these toxins. The primary objective of this study was to identify the predominant fungal contaminants in cereal grains utilized in breadmaking, as well as in flour and bread. Moreover, a systematic review, including meta-analysis, was conducted on the occurrence and levels of mycotoxins in wheat flour from the years 2013 to 2023. The genera most frequently reported were Fusarium, followed by Penicillium, Aspergillus, and Alternaria. Among the published reports, the majority focused on the analysis of Deoxynivalenol (DON), which garnered twice as many reports compared to those focusing on Aflatoxins, Zearalenone, and Ochratoxin A. The concentration of these toxins, in most cases determined by HPLC-MS/MS or HPLC coupled with a fluorescence detector (FLD), was occasionally observed to exceed the maximum limits established by national and/or international authorities. The prevalence of mycotoxins in flour samples from the European Union (EU) and China, as well as in foods intended for infants, exhibited a significant reduction compared to other commercial flours assessed by a meta-analysis investigation.
Collapse
Affiliation(s)
- Christodoulos Deligeorgakis
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| | - Christopher Magro
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta
| | - Adriana Skendi
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| | | | - Vasilis Valdramidis
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, MSD 2080 Msida, Malta
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou, GR-15771 Athens, Greece
| | - Maria Papageorgiou
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece
| |
Collapse
|
21
|
Leite M, Freitas A, Barbosa J, Ramos F. Regulated and Emerging Mycotoxins in Bulk Raw Milk: What Is the Human Risk? Toxins (Basel) 2023; 15:605. [PMID: 37888636 PMCID: PMC10610745 DOI: 10.3390/toxins15100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Mycotoxins are abiotic hazards whose contamination occurs at the pre- and post-harvest stages of the maize value chain, with animal exposure through contaminated feed leading to their excretion into milk. Currently, only aflatoxin M1 is regulated in milk products. Since feed materials and complete feed present a multi-mycotoxin composition and are the main mycotoxin source into milk, it is important to recognize the occurrence of multiple toxins and their co-occurrence in this highly consumed food product. The aim of this study was to determine the content of regulated and emerging mycotoxins in milk samples, which allowed for evaluating the occurrence and co-occurrence patterns of different mycotoxins known to contaminate feed materials and complete animal feed. Human exposure considering the occurrence patterns obtained was also estimated. Aflatoxins, fumonisins, zearalenone, and emerging mycotoxins were among the mycotoxins found to be present in the 100 samples analyzed. Concentrations ranged from 0.006 to 16.3 μg L-1, with no sample exceeding the AFM1 maximum level. Though several mycotoxins were detected, no exceeding values were observed considering the TDI or PMTDI. It can be concluded that the observed exposure does not pose a health risk to milk consumers, though it is important to recognize vulnerable age groups.
Collapse
Affiliation(s)
- Marta Leite
- Faculty of Pharmacy, Health Science Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal;
- REQUIMTE/LAQV, R. D. Manuel II, Apartado, 4051-401 Oporto, Portugal
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal;
- REQUIMTE/LAQV, R. D. Manuel II, Apartado, 4051-401 Oporto, Portugal
| | - Jorge Barbosa
- REQUIMTE/LAQV, R. D. Manuel II, Apartado, 4051-401 Oporto, Portugal
| | - Fernando Ramos
- Faculty of Pharmacy, Health Science Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, R. D. Manuel II, Apartado, 4051-401 Oporto, Portugal
| |
Collapse
|
22
|
da Silva LAGA, Piacentini KC, Caramês ETDS, Silva NCC, Wawroszová S, Běláková S, Rocha LDO. Quantitative PCR (qPCR) for estimating the presence of Fusarium and its mycotoxins in barley grains. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1369-1387. [PMID: 37640447 DOI: 10.1080/19440049.2023.2250474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Members within the Fusarium sambucinum species complex (FSAMSC) are able to produce mycotoxins, such as deoxynivalenol (DON), nivalenol (NIV), zearalenone (ZEN) and enniatins (ENNs) in food products. Consequently, alternative methods for assessing the levels of these mycotoxins are relevant for quick decision-making. In this context, qPCR based on key mycotoxin biosynthetic genes could aid in determining the toxigenic fungal biomass, and could therefore infer mycotoxin content. The aim of this study was to verify the use of qPCR as a technique for estimating DON, NIV, ENNs and ZEN, as well as Fusarium graminearum sensu lato (s.l.) and F. poae in barley grains. For this purpose, 53 barley samples were selected for mycobiota, mycotoxin and qPCR analyses. ENNs were the most frequent mycotoxins, followed by DON, ZEN and NIV. 83% of the samples were contaminated by F. graminearum s.l. and 51% by F. poae. Pearson correlation analysis showed significant correlations for TRI12/15-ADON with DON, ESYN1 with ENNs, TRI12/15-ADON and ZEB1 with F. graminearum s.l., as well as ESYN1 and TRI12/NIV with F. poae. Based on the results, qPCR could be useful for the assessment of Fusarium presence, and therefore, provide an estimation of its mycotoxins' levels from the same sample.
Collapse
Affiliation(s)
| | - Karim Cristina Piacentini
- Department of Food Science and Nutrition (DECAN), State University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Simona Wawroszová
- Regional Department Brno, Central Institute for Supervising and Testing in Agriculture, National Reference Laboratory, Brno, Czech Republic
| | - Sylvie Běláková
- Malting Institute Brno, Research Institute of Brewing and Malting, Brno, Czech Republic
| | - Liliana de Oliveira Rocha
- Department of Food Science and Nutrition (DECAN), State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
23
|
Mihalache OA, De Boevre M, Dellafiora L, De Saeger S, Moretti A, Pinson-Gadais L, Ponts N, Richard-Forget F, Susca A, Dall’Asta C. The Occurrence of Non-Regulated Mycotoxins in Foods: A Systematic Review. Toxins (Basel) 2023; 15:583. [PMID: 37756008 PMCID: PMC10534703 DOI: 10.3390/toxins15090583] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
The aim of this systematic review is to provide an update on the occurrence and co-occurrence of selected non-regulated mycotoxins and provide an overview of current regulations. Fifteen non-regulated mycotoxins were found in 19 food categories worldwide. On top of that, 38 different combinations of non-regulated mycotoxins were found, with mixtures varying from binary combinations up to 12 mycotoxins. Taking into consideration the amount of evidence regarding the prevalence and co-occurrence of non-regulated mycotoxins, future steps should be taken considering continuous monitoring, scientific exchange, and generation of high-quality data. To enhance data quality, guidelines outlining the minimum quality criteria for both occurrence data and metadata are needed. By doing so, we can effectively address concerns related to the toxicity of non-regulated mycotoxins. Furthermore, obtaining more data concerning the co-occurrence of both regulated and non-regulated mycotoxins could aid in supporting multiple chemical risk assessment methodologies. Implementing these steps could bolster food safety measures, promote evidence-based regulations, and ultimately safeguard public health from the potential adverse effects of non-regulated mycotoxins.
Collapse
Affiliation(s)
| | - Marthe De Boevre
- Center of Excellence in Mycotoxicology and Public Health, Ghent University, 9000 Ghent, Belgium; (M.D.B.); (S.D.S.)
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (O.A.M.); (L.D.)
| | - Sarah De Saeger
- Center of Excellence in Mycotoxicology and Public Health, Ghent University, 9000 Ghent, Belgium; (M.D.B.); (S.D.S.)
| | - Antonio Moretti
- ISPA-CNR—Institute of Sciences of Food Production, National Research Council, 70126 Bari, Italy; (A.M.); (A.S.)
| | - Laetitia Pinson-Gadais
- INRAE, UR1264 Mycology and Food Safety (MycSA), F-33882 Villenave d’Ornon, France; (L.P.-G.); (N.P.); (F.R.-F.)
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), F-33882 Villenave d’Ornon, France; (L.P.-G.); (N.P.); (F.R.-F.)
| | - Florence Richard-Forget
- INRAE, UR1264 Mycology and Food Safety (MycSA), F-33882 Villenave d’Ornon, France; (L.P.-G.); (N.P.); (F.R.-F.)
| | - Antonia Susca
- ISPA-CNR—Institute of Sciences of Food Production, National Research Council, 70126 Bari, Italy; (A.M.); (A.S.)
| | - Chiara Dall’Asta
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (O.A.M.); (L.D.)
| |
Collapse
|
24
|
Di Matteo G, Cimbalo A, Manyes L, Mannina L. Beauvericin Immunotoxicity Prevention by Gentiana lutea L. Flower In Vitro. Toxins (Basel) 2023; 15:538. [PMID: 37755964 PMCID: PMC10535299 DOI: 10.3390/toxins15090538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023] Open
Abstract
Beauvericin (BEA) is an emerging mycotoxin produced by some species of Fusarium genera that widely contaminates food and feed. Gentiana lutea is a protected medicinal plant known for its antioxidant and anti-inflammatory properties, which are attributed to its rich content of bioactive compounds. In order to evaluate the beneficial effects of G. lutea flower against BEA cytotoxicity, the aim of this study is to evaluate changes in protein expression after Jurkat cell exposure through a proteomics approach. To carry out the experiment, cells were exposed to intestinally digested G. lutea flower alone or in combination with the BEA standard (100 nM) over 7 days. Differentially expressed proteins were statistically evaluated (p < 0.05), revealing a total of 172 proteins with respect to the control in cells exposed to the BEA standard, 145 proteins for G. lutea alone, and 139 proteins when exposing the cells to the combined exposure. Bioinformatic analysis revealed processes implicated in mitochondria, ATP-related activity, and RNA binding. After careful analysis of differentially expressed proteins, it was evident that G. lutea attenuated, in most cases, the negative effects of BEA. Furthermore, it decreased the presence of major oncoproteins involved in the modulation of immune function.
Collapse
Affiliation(s)
- Giacomo Di Matteo
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (G.D.M.); (L.M.)
| | - Alessandra Cimbalo
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Avda Vicent Andrés Estellés s/n, 46100 Burjassot, Spain;
| | - Lara Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Avda Vicent Andrés Estellés s/n, 46100 Burjassot, Spain;
| | - Luisa Mannina
- Food Chemistry Lab, Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (G.D.M.); (L.M.)
| |
Collapse
|
25
|
Senatore MT, Prodi A, Tini F, Balmas V, Infantino A, Onofri A, Cappelletti E, Oufensou S, Sulyok M, Covarelli L, Beccari G. Different diagnostic approaches for the characterization of the fungal community and Fusarium species complex composition of Italian durum wheat grain and correlation with secondary metabolite accumulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4503-4521. [PMID: 36828788 DOI: 10.1002/jsfa.12526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The evolution of the fungal communities associated with durum wheat was assessed using different diagnostic approaches. Durum wheat grain samples were collected in three different Italian cultivation macro-areas (north, center and south). Fungal isolation was realized by potato dextrose agar (PDA) and by deep-freezing blotter (DFB). Identification of Fusarium isolates obtained from PDA was achieved by partial tef1α sequencing (PDA + tef1α), while those obtained from DFB were identified from their morphological characteristics (DFB + mc). The fungal biomass of eight Fusarium species was quantified in grains by quantitative polymerase chain reaction (qPCR). Fungal secondary metabolites were analyzed in grains by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Correlations between Fusarium detection techniques (PDA + tef1α; DFB + mc and qPCR) and mycotoxins in grains were assessed. RESULTS Alternaria and Fusarium showed the highest incidence among the fungal genera developed from grains. Within the Fusarium community, PDA + tef1α highlighted that F. avenaceum and F. graminearum were the most represented members, while, DFB + mc detected a high presence of F. proliferatum. Alternaria and Fusarium mycotoxins, principally enniatins, were particularly present in the grain harvested in central Italy. Deoxynivalenol was mainly detected in northern-central Italy. CONCLUSIONS The adoption of the different diagnostic techniques of Fusarium detection highlighted that, for some species, qPCR was the best method of predicting their mycotoxin contamination in grains. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Maria Teresa Senatore
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Antonio Prodi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Francesco Tini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Virgilio Balmas
- Department of Agriculture, University of Sassari, Sassari, Italy
| | - Alessandro Infantino
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification, Rome, Italy
| | - Andrea Onofri
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Eleonora Cappelletti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Safa Oufensou
- Department of Agriculture, University of Sassari, Sassari, Italy
| | - Michael Sulyok
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology (IFA-Tulln), Institute of Bionalytics and Agro-Metabolomics, Tulln, Austria
| | - Lorenzo Covarelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Giovanni Beccari
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
26
|
Ji X, Jin C, Xiao Y, Deng M, Wang W, Lyu W, Chen J, Li R, Li Y, Yang H. Natural Occurrence of Regulated and Emerging Mycotoxins in Wheat Grains and Assessment of the Risks from Dietary Mycotoxins Exposure in China. Toxins (Basel) 2023; 15:389. [PMID: 37368690 DOI: 10.3390/toxins15060389] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Wheat grains are susceptible to contamination with various natural mycotoxins including regulated and emerging mycotoxins. This study surveyed the natural presence of regulated mycotoxins, such as deoxynivalenol (DON) and zearalenone (ZEN), and emerging mycotoxins such as beauvericin (BEA), enniatins (ENNs such as ENA, ENA1, ENB, ENB1) and Alternaria mycotoxins (i.e., alternariol monomethyl ether (AME), alternariol (AOH), tenuazonic acid (TeA), tentoxin (TEN), and altenuene (ALT)) in wheat grains randomly collected from eight provinces across China in 2021. The results revealed that each wheat grain sample was detected with at least one type of mycotoxin. The detection rates of these mycotoxins ranged from 7.1% to 100%, with the average occurrence level ranging from 1.11 to 921.8 µg/kg. DON and TeA were the predominant mycotoxins with respect to both prevalence and concentration. Approximately 99.7% of samples were found to contain more than one toxin, and the co-occurrence of ten toxins (DON + ZEN + ENA + ENA1 + ENB + ENB1 + AME + AOH + TeA + TEN) was the most frequently detected combination. The dietary exposure to different mycotoxins among Chinese consumers aged 4-70 years was as follows: 0.592-0.992 µg/kg b.w./day for DON, 0.007-0.012 µg/kg b.w./day for ZEN, 0.0003-0.007 µg/kg b.w./day for BEA and ENNs, 0.223-0.373 µg/kg b.w./day for TeA, and 0.025-0.041 µg/kg b.w./day for TEN, which were lower than the health-based guidance values for each mycotoxin, with the corresponding hazard quotient (HQ) being far lower than 1, implying a tolerable health risk for Chinese consumers. However, the estimated dietary exposure to AME and AOH was in the range of 0.003-0.007 µg/kg b.w./day, exceeding the Threshold of Toxicological Concern (TTC) value of 0.0025 µg/kg b.w./day, demonstrating potential dietary risks for Chinese consumers. Therefore, developing practical control and management strategies is essential for controlling mycotoxins contamination in the agricultural systems, thereby ensuring public health.
Collapse
Affiliation(s)
- Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Canghong Jin
- School of Computer and Computing Science, Hangzhou City University, Hangzhou 310015, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Meihua Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiapeng Chen
- School of Computer and Computing Science, Hangzhou City University, Hangzhou 310015, China
| | - Rui Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yan Li
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
27
|
De Felice B, Spicer LJ, Caloni F. Enniatin B1: Emerging Mycotoxin and Emerging Issues. Toxins (Basel) 2023; 15:383. [PMID: 37368684 DOI: 10.3390/toxins15060383] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Although over the last 10 years several studies have focused on the emerging mycotoxins known as enniatins (ENNs), there is still a lack of knowledge regarding their toxicological effects and the development of a correct risk assessment. This is especially true for enniatin B1 (ENN B1), considered the younger sister of the widely studied enniatin B (ENN B). ENN B1 has been found in several food commodities and, as with other mycotoxins, presents antibacterial and antifungal properties. On the other hand, ENN B1 has shown cytotoxic activity, impairment of the cell cycle, the induction of oxidative stress, and changes in mitochondrial membrane permeabilization, as well as negative genotoxic and estrogenic effects. Overall, considering the paucity of information available regarding ENN B1, further studies are necessary to perform a risk assessment. This review summarizes information on the biological characteristics and toxicological effects of ENN B1 as well as the future challenges that this mycotoxin could present.
Collapse
Affiliation(s)
- Beatrice De Felice
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Francesca Caloni
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy
| |
Collapse
|
28
|
Pietruszka K, Panasiuk Ł, Jedziniak P. Survey of the enniatins and beauvericin in raw and UHT cow's milk in Poland. J Vet Res 2023; 67:259-266. [PMID: 37786432 PMCID: PMC10541658 DOI: 10.2478/jvetres-2023-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction The enniatins A, A1, B and B1 (ENNs) and beauvericin (BEA) are structurally related compounds produced by Fusarium species. They occur as contaminants in cereals, such as wheat, barley and maize. They are called "emerging mycotoxins", because they have been reported in feed and food and their toxic effects are not fully known. Data on their levels in food (especially in milk) are limited. The study aimed to evaluate the occurrence of ENNs and BEA in milk. Material and Methods A total of 103 bovine milk samples (76 of raw milk and 27 of UHT milk) were collected from different parts of Poland and analysed using liquid chromatography-tandem mass spectrometry. Results Among the 76 raw milk samples, 31 (41%) and 15 (20%) samples were contaminated with ENN B and with BEA, respectively. No contamination with other enniatins was found. The highest concentration of BEA was found in raw milk and was 6.17 μg kg-1. Out of the 27 samples of UHT milk, 16 (59%) were contaminated with ENN B at concentrations ranging from 0.157 μg kg-1 to 0.587 μg kg-1 (limit of quantification (LOQ) 0.098 μg kg-1). Beauvericin was detected in 9 UHT milk samples (33%) at concentrations ranging from 0.101 μg kg-1 to 1.934 μg kg-1 (LOQ 0.095 μg kg-1). Conclusion This study demonstrated constant but low milk contamination in Poland with ENN B and BEA. The analysis of milk samples revealed that the emerging mycotoxins ENN B and BEA were measured in trace amounts. It does not suggest any immediate risk to milk consumers; however, it is unknown whether long-term exposure to low levels of toxins may be harmful.
Collapse
Affiliation(s)
- Katarzyna Pietruszka
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Łukasz Panasiuk
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Piotr Jedziniak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
29
|
Tolosa J, Serrano Candelas E, Vallés Pardo JL, Goya A, Moncho S, Gozalbes R, Palomino Schätzlein M. MicotoXilico: An Interactive Database to Predict Mutagenicity, Genotoxicity, and Carcinogenicity of Mycotoxins. Toxins (Basel) 2023; 15:355. [PMID: 37368656 PMCID: PMC10301946 DOI: 10.3390/toxins15060355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by certain filamentous fungi. They are common contaminants found in a wide variety of food matrices, thus representing a threat to public health, as they can be carcinogenic, mutagenic, or teratogenic, among other toxic effects. Several hundreds of mycotoxins have been reported, but only a few of them are regulated, due to the lack of data regarding their toxicity and mechanisms of action. Thus, a more comprehensive evaluation of the toxicity of mycotoxins found in foodstuffs is required. In silico toxicology approaches, such as Quantitative Structure-Activity Relationship (QSAR) models, can be used to rapidly assess chemical hazards by predicting different toxicological endpoints. In this work, for the first time, a comprehensive database containing 4360 mycotoxins classified in 170 categories was constructed. Then, specific robust QSAR models for the prediction of mutagenicity, genotoxicity, and carcinogenicity were generated, showing good accuracy, precision, sensitivity, and specificity. It must be highlighted that the developed QSAR models are compliant with the OECD regulatory criteria, and they can be used for regulatory purposes. Finally, all data were integrated into a web server that allows the exploration of the mycotoxin database and toxicity prediction. In conclusion, the developed tool is a valuable resource for scientists, industry, and regulatory agencies to screen the mutagenicity, genotoxicity, and carcinogenicity of non-regulated mycotoxins.
Collapse
Affiliation(s)
- Josefa Tolosa
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés, Burjasot, 46100 Valencia, Spain
| | - Eva Serrano Candelas
- ProtoQSAR S.L., CEEI-Technology Park of Valencia, Av. Benjamín Franklin, 12, 46980 Paterna, Spain; (E.S.C.); (J.L.V.P.); (A.G.); (S.M.); (R.G.)
| | - José Luis Vallés Pardo
- ProtoQSAR S.L., CEEI-Technology Park of Valencia, Av. Benjamín Franklin, 12, 46980 Paterna, Spain; (E.S.C.); (J.L.V.P.); (A.G.); (S.M.); (R.G.)
| | - Addel Goya
- ProtoQSAR S.L., CEEI-Technology Park of Valencia, Av. Benjamín Franklin, 12, 46980 Paterna, Spain; (E.S.C.); (J.L.V.P.); (A.G.); (S.M.); (R.G.)
| | - Salvador Moncho
- ProtoQSAR S.L., CEEI-Technology Park of Valencia, Av. Benjamín Franklin, 12, 46980 Paterna, Spain; (E.S.C.); (J.L.V.P.); (A.G.); (S.M.); (R.G.)
| | - Rafael Gozalbes
- ProtoQSAR S.L., CEEI-Technology Park of Valencia, Av. Benjamín Franklin, 12, 46980 Paterna, Spain; (E.S.C.); (J.L.V.P.); (A.G.); (S.M.); (R.G.)
- Moldrug AI Systems S.L., Olimpia Arozena Torres, 45, 46018 Valencia, Spain
| | - Martina Palomino Schätzlein
- ProtoQSAR S.L., CEEI-Technology Park of Valencia, Av. Benjamín Franklin, 12, 46980 Paterna, Spain; (E.S.C.); (J.L.V.P.); (A.G.); (S.M.); (R.G.)
| |
Collapse
|
30
|
Valenti I, Tini F, Sevarika M, Agazzi A, Beccari G, Bellezza I, Ederli L, Grottelli S, Pasquali M, Romani R, Saracchi M, Covarelli L. Impact of Enniatin and Deoxynivalenol Co-Occurrence on Plant, Microbial, Insect, Animal and Human Systems: Current Knowledge and Future Perspectives. Toxins (Basel) 2023; 15:271. [PMID: 37104209 PMCID: PMC10144843 DOI: 10.3390/toxins15040271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Fusarium mycotoxins commonly contaminate agricultural products resulting in a serious threat to both animal and human health. The co-occurrence of different mycotoxins in the same cereal field is very common, so the risks as well as the functional and ecological effects of mycotoxins cannot always be predicted by focusing only on the effect of the single contaminants. Enniatins (ENNs) are among the most frequently detected emerging mycotoxins, while deoxynivalenol (DON) is probably the most common contaminant of cereal grains worldwide. The purpose of this review is to provide an overview of the simultaneous exposure to these mycotoxins, with emphasis on the combined effects in multiple organisms. Our literature analysis shows that just a few studies on ENN-DON toxicity are available, suggesting the complexity of mycotoxin interactions, which include synergistic, antagonistic, and additive effects. Both ENNs and DON modulate drug efflux transporters, therefore this specific ability deserves to be explored to better understand their complex biological role. Additionally, future studies should investigate the interaction mechanisms of mycotoxin co-occurrence on different model organisms, using concentrations closer to real exposures.
Collapse
Affiliation(s)
- Irene Valenti
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (I.V.); (M.P.); (M.S.)
| | - Francesco Tini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Milos Sevarika
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Alessandro Agazzi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy;
| | - Giovanni Beccari
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Ilaria Bellezza
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.B.); (S.G.)
| | - Luisa Ederli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Silvia Grottelli
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.B.); (S.G.)
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (I.V.); (M.P.); (M.S.)
| | - Roberto Romani
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| | - Marco Saracchi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, 20133 Milan, Italy; (I.V.); (M.P.); (M.S.)
| | - Lorenzo Covarelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (M.S.); (G.B.); (L.E.); (R.R.); (L.C.)
| |
Collapse
|
31
|
Inbaia S, Farooqi A, Ray RV. Aggressiveness and mycotoxin profile of Fusarium avenaceum isolates causing Fusarium seedling blight and Fusarium head blight in UK malting barley. FRONTIERS IN PLANT SCIENCE 2023; 14:1121553. [PMID: 36968422 PMCID: PMC10031139 DOI: 10.3389/fpls.2023.1121553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Fusarium avenaceum causing Fusarium seedling blight (FSB) and Fusarium head blight (FHB) on barley is associated with economic losses of crop yield and quality, and the accumulation of mycotoxins including the enniatins (ENNs) A, A1, B and B1. Although F. avenaceum is the main producer of ENNs, studies on the ability of isolates to cause severe Fusarium diseases or produce mycotoxins in barley are limited. METHODS In this work, we investigated the aggressiveness of nine isolates of F. avenaceum to two cultivars of malting barley, Moonshine and Quench, and defined their ENN mycotoxin profiles in in vitro and in planta experiments. We assessed and compared the severity of FSB and FHB caused by these isolates to disease severity by F. graminearum, F. tricinctum and F. poae. Quantitative real-time polymerase chain reaction and Liquid Chromatography Tandem Mass Spectrometry assays were used to quantify pathogen DNA and mycotoxin accumulation, respectively, in barley heads. RESULTS Isolates of F. avenaceum were equally aggressive to barley stems and heads and caused the most severe FSB symptoms resulting in up to 55% reductions of stem and root length. Fusarium graminearum caused the most severe FHB disease, followed by the isolates of F. avenaceum with the most aggressive F. avenaceum isolates capable of causing similar bleaching of barley heads as F. avenaceum. Fusarium avenaceum isolates produced ENN B as the predominant mycotoxin, followed by ENN B1 and A1 in vitro. However, only the most aggressive isolates produced ENN A1 in planta and none produced ENN A or beauvericin (BEA) either in planta or in vitro. DISCUSSION The capacity of F. avenaceum isolates to produce ENNs was related to the accumulation of pathogen DNA in barley heads, whilst FHB severity was related to the synthesis and accumulation of ENN A1 in planta. Cv. Moonshine was significantly more resistant than Quench to FSB or FHB, caused by any Fusarium isolate, and to the accumulation of pathogen DNA, ENNs or BEA. In conclusion, aggressive F. avenaceum isolates are potent ENN producers causing severe FSB and FHB with ENN A1 requiring further investigation as potential virulence factor for F. avenaceum in cereals.
Collapse
|
32
|
Xu R, Yiannikouris A, Shandilya UK, Karrow NA. Comparative Assessment of Different Yeast Cell Wall-Based Mycotoxin Adsorbents Using a Model- and Bioassay-Based In Vitro Approach. Toxins (Basel) 2023; 15:104. [PMID: 36728779 PMCID: PMC9959493 DOI: 10.3390/toxins15020104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Frequently reported occurrences of deoxynivalenol (DON), beauvericin (BEA), and, to a lesser extent, ochratoxin A (OTA) and citrinin (CIT) in ruminant feed or feedstuff could represent a significant concern regarding feed safety, animal health, and productivity. Inclusion of yeast cell wall-based mycotoxin adsorbents in animal feeds has been a common strategy to mitigate adverse effects of mycotoxins. In the present study, an in vitro approach combining adsorption isotherm models and bioassays was designed to assess the efficacy of yeast cell wall (YCW), yeast cell wall extract (YCWE), and a postbiotic yeast cell wall-based blend (PYCW) products at the inclusion rate of 0.5% (w/v) (ratio of adsorbent mass to buffer solution volume). The Hill's adsorption isotherm model was found to best describe the adsorption processes of DON, BEA, and CIT. Calculated binding potential for YCW and YCWE using the Hill's model exhibited the same ranking for mycotoxin adsorption, indicating that BEA had the highest adsorption rate, followed by DON and CIT, which was the least adsorbed. PYCW had the highest binding potential for BEA compared with YCW and YCWE. In contrast, the Freundlich isotherm model presented a good fit for OTA adsorption by all adsorbents and CIT adsorption by PYCW. Results indicated that YCW was the most efficacious for sequestering OTA, whereas YCWE was the least efficacious. PYCW showed greater efficacy at adsorbing OTA than CIT. All adsorbents exhibited high adsorption efficacy for BEA, with an overall percentage average of bound mycotoxin exceeding 60%, whereas moderate efficacies for the other mycotoxins were observed (up to 37%). Differences in adsorbent efficacy of each adsorbent significantly varied according to experimental concentrations tested for each given mycotoxin (p < 0.05). The cell viability results from the bioassay using a bovine mammary epithelial cell line (MAC-T) indicated that all tested adsorbents could potentially mitigate mycotoxin-related damage to bovine mammary epithelium. Results from our studies suggested that all tested adsorbents had the capacity to adsorb selected mycotoxins in vitro, which could support their use to mitigate their effects in vivo.
Collapse
Affiliation(s)
- Ran Xu
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Alexandros Yiannikouris
- Alltech Inc., Center for Animal Nutrigenomics and Applied Animal Nutrition, 3031 Catnip Hill Road, Nicholasville, KY 40356, USA
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G2W1, Canada
| |
Collapse
|
33
|
Gallardo JA, Marín S, Ramos AJ, Cano-Sancho G, Sanchis V. Occurrence and Dietary Exposure Assessment to Enniatin B through Consumption of Cereal-Based Products in Spain and the Catalonia Region. Toxins (Basel) 2022; 15:24. [PMID: 36668844 PMCID: PMC9863481 DOI: 10.3390/toxins15010024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Enniatin B (ENNB) is a mycotoxin produced by moulds from the Fusarium genera and its toxic effects are still not fully elucidated, hence a safe reference exposure value has not been established yet. ENNB is the most prevalent emerging mycotoxin and is widely found in cereal-based products, nevertheless, there are no comprehensive exposure assessment studies. For that reason, the aim of this study was to characterise the occurrence of ENNB and estimate the exposure of the Spanish and Catalan populations. A total of 347 cereal-based products were collected in 2019 and were analysed using liquid chromatography-tandem mass spectrometry. Consumption data were obtained from the national food consumption surveys (ENALIA) and a regional survey conducted in Catalonia. The global exposure was estimated using deterministic and probabilistic methods. The results showed a high occurrence of close to 100% in all foodstuffs, with a range from 6 to 269 µg/kg, and a strong correlation with the levels of deoxynivalenol. Children aged one-nine years were the most exposed, showing mean estimates in the range 308-324 ng/kg bw/day and 95th percentiles 697-781 ng/kg bw/day. This study stresses the need for further toxicological data to establish reference doses and conclude formal risk assessment, accounting for the co-occurrence with deoxynivalenol.
Collapse
Affiliation(s)
- Jose A. Gallardo
- Technology, Engineering and Science of Food Department, AGROTECNIO-CERCA Center, University of Lleida, 25198 Lleida, Spain
| | - Sonia Marín
- Technology, Engineering and Science of Food Department, AGROTECNIO-CERCA Center, University of Lleida, 25198 Lleida, Spain
| | - Antonio J. Ramos
- Technology, Engineering and Science of Food Department, AGROTECNIO-CERCA Center, University of Lleida, 25198 Lleida, Spain
| | | | - Vicente Sanchis
- Technology, Engineering and Science of Food Department, AGROTECNIO-CERCA Center, University of Lleida, 25198 Lleida, Spain
| |
Collapse
|
34
|
Fliszár-Nyúl E, Faisal Z, Skaper R, Lemli B, Bayartsetseg B, Hetényi C, Gömbös P, Szabó A, Poór M. Interaction of the Emerging Mycotoxins Beauvericin, Cyclopiazonic Acid, and Sterigmatocystin with Human Serum Albumin. Biomolecules 2022; 12:biom12081106. [PMID: 36009000 PMCID: PMC9406214 DOI: 10.3390/biom12081106] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022] Open
Abstract
Beauvericin (BEA), cyclopiazonic acid (CPA), and sterigmatocystin (STC) are emerging mycotoxins. They appear as contaminants in food and animal feed, leading to economic losses and health risks. Human serum albumin (HSA) forms stable complexes with certain mycotoxins, including ochratoxins, alternariol, citrinin, and zearalenone. HSA binding can influence the toxicokinetics of xenobiotics, and albumin can also be considered and applied as a relatively cheap affinity protein. Therefore, we examined the potential interactions of BEA, CPA, and STC with HSA employing fluorescence spectroscopy, ultracentrifugation, ultrafiltration, and molecular modeling. Spectroscopic and ultracentrifugation studies demonstrated the formation of low-affinity BEA–HSA (Ka ≈ 103 L/mol) and moderately strong CPA–HSA and STC–HSA complexes (Ka ≈ 104 L/mol). In ultrafiltration experiments, CPA slightly displaced each site marker (warfarin, naproxen, and camptothecin) tested, while BEA and STC did not affect significantly the albumin binding of these drugs. Modeling studies suggest that CPA occupies Sudlow’s site I, while STC binds to the Heme site (FA1) on HSA. Considering the interactions of CPA with the site markers, the CPA–HSA interaction may have toxicological importance.
Collapse
Affiliation(s)
- Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Zelma Faisal
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Renáta Skaper
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Beáta Lemli
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
- Department of Organic and Pharmacological Chemistry, Faculty of Pharmacy, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
- Green Chemistry Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Bayarsaikhan Bayartsetseg
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, H-7624 Pécs, Hungary
| | - Patrik Gömbös
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary
| | - András Szabó
- Institute of Physiology and Nutrition, Department of Physiology and Animal Health, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
- Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
- Correspondence: ; Tel.: +36-72-501-500 (ext. 28316)
| |
Collapse
|
35
|
Tamirys dos Santos Caramês E, Piacentini KC, Aparecida Almeida N, Lopes Pereira V, Azevedo Lima Pallone J, de Oliveira Rocha L. Rapid assessment of enniatins in barley grains using near infrared spectroscopy and chemometric tools. Food Res Int 2022; 161:111759. [DOI: 10.1016/j.foodres.2022.111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022]
|
36
|
Scarpino V, Sulyok M, Krska R, Reyneri A, Blandino M. The Role of Nitrogen Fertilization on the Occurrence of Regulated, Modified and Emerging Mycotoxins and Fungal Metabolites in Maize Kernels. Toxins (Basel) 2022; 14:toxins14070448. [PMID: 35878186 PMCID: PMC9316227 DOI: 10.3390/toxins14070448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
The European Food Safety Authority is currently evaluating the risks related to the presence of emerging mycotoxins in food and feeds. The aim of this study was to investigate the role of soil fertility, resulting from different nitrogen fertilization rates, on the contamination of regulated mycotoxins and emerging fungal metabolites in maize grains. The trial was carried out in the 2012–2013 growing seasons as part of a long-term (20-year) experimental platform area in North-West Italy, where five different N rates, ranging from 0 to 400 kg N ha−1, were applied to maize each year. Maize samples were analyzed by means of a dilute-and-shoot multi-mycotoxin LC-MS/MS method, and more than 25 of the most abundant mycotoxins and fungal metabolites were detected. Contamination by fumonisins and other fungal metabolites produced by Fusarium spp. of the section Liseola was observed to have increased in soils that showed a poor fertility status. On the other hand, an overload of nitrogen fertilization was generally associated with higher deoxynivalenol and zearalenone contamination in maize kernels, as well as a higher risk of other fungal metabolites produced by Fusarium spp. sections Discolor and Roseum. A balanced application of N fertilizer, in accordance with maize uptake, generally appears to be the best solution to guarantee an overall lower contamination by regulated mycotoxins and emerging fungal metabolites.
Collapse
Affiliation(s)
- Valentina Scarpino
- Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (V.S.); (A.R.)
| | - Michael Sulyok
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; (M.S.); (R.K.)
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria; (M.S.); (R.K.)
| | - Amedeo Reyneri
- Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (V.S.); (A.R.)
| | - Massimo Blandino
- Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy; (V.S.); (A.R.)
- Correspondence: ; Tel.: +39-0116708895
| |
Collapse
|
37
|
Sayed Ali S, El-Saadany H, Kotb GA, Elshaer N, Melebary SJ, Soliman SM, A. Gh. Farag A. Biosafety evaluation of two Beauveria bassiana products on female albino rats using acute oral test. Saudi J Biol Sci 2022; 29:103293. [PMID: 35592743 PMCID: PMC9112006 DOI: 10.1016/j.sjbs.2022.103293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/11/2022] [Accepted: 04/17/2022] [Indexed: 11/11/2022] Open
Abstract
Application of bio-pesticides in agriculture has been developed as alternative agents to conventional pesticides due to residues accumulating which causing detrimental effects to human and environment. The aim of this investigation is to evaluate biosafety of a bio-insecticide Beauveria bassiana using two products in female rats by single oral dose through hepato- and renal toxicity, hematotoxicity and lipid profile. The two products from B. bassiana (AUMC 9896) were metabolic crude (MC), and wettable powder formulation (WP) of the local isolate. Results showed a significant increase in values of erythrocytes (RBCs), leucocytes (WBCs), platelet count (Plt) and the absolute differential WBC counts. Liver enzymes (AST, ALT, and ALP) and globulin (Glb) content were reduced in the exposed female rats with both types of B. bassiana in comparison to controls. While ratio of AST/ALT and A/G, total protein level (TP) and albumin (Alb) were raised in Beauveria bassiana -treated rats (Bb - treated rats). Urea and creatinine concentrations decreased or increased significantly in treated rats. Moreover, there was a decline in the serum of lipid profiles in WP - treated rats, but LDL levels increased in all treated animal. Additionally, no mortality or toxicity in all treated. All animals treated showed non-significant modifications in body weight gain and a slight change in relative liver weights when compared to controls. These results suggest that both treatments effect markedly on function and somatic index of the liver and slight effects on CBC and lipid profile aspects of treated female rats.
Collapse
Affiliation(s)
- Sahar Sayed Ali
- Bio-Insecticide Production Unit, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - H.M. El-Saadany
- Bio-Insecticide Production Unit, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Gamila A.M. Kotb
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza 12618, Egypt
| | - Nashwa Elshaer
- Department of Plant Protection, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Sahar J. Melebary
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Soliman M. Soliman
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Ahmed A. Gh. Farag
- Department of Plant Protection, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| |
Collapse
|
38
|
Overview of Recent Liquid Chromatography Mass Spectrometry-Based Methods for Natural Toxins Detection in Food Products. Toxins (Basel) 2022; 14:toxins14050328. [PMID: 35622576 PMCID: PMC9143482 DOI: 10.3390/toxins14050328] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 01/25/2023] Open
Abstract
Natural toxins include a wide range of toxic metabolites also occurring in food and products, thus representing a risk for consumer health. In the last few decades, several robust and sensitive analytical methods able to determine their occurrence in food have been developed. Liquid chromatography mass spectrometry is the most powerful tool for the simultaneous detection of these toxins due to its advantages in terms of sensitivity and selectivity. A comprehensive review on the most relevant papers on methods based on liquid chromatography mass spectrometry for the analysis of mycotoxins, alkaloids, marine toxins, glycoalkaloids, cyanogenic glycosides and furocoumarins in food is reported herein. Specifically, a literature search from 2011 to 2021 was carried out, selecting a total of 96 papers. Different approaches to sample preparation, chromatographic separation and detection mode are discussed. Particular attention is given to the analytical performance characteristics obtained in the validation process and the relevant application to real samples.
Collapse
|
39
|
Pandey AK, Samota MK, Sanches Silva A. Mycotoxins along the tea supply chain: A dark side of an ancient and high valued aromatic beverage. Crit Rev Food Sci Nutr 2022; 63:8672-8697. [PMID: 35452322 DOI: 10.1080/10408398.2022.2061908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACTSTea (Camellia sinensis L.) is a high valued beverage worldwide since ancient times; more than three billion cups of tea are consumed each day. Leaf extracts of the plant are used for food preservation, cosmetics, and medicinal purposes. Nevertheless, tea contaminated with mycotoxins poses a serious health threat to humans. Mycotoxin production by tea fungi is induced by a variety of factors, including poor processing methods and environmental factors such as high temperature and humidity. This review summarizes the studies published to date on mycotoxin prevalence, toxicity, the effects of climate change on mycotoxin production, and the methods used to detect and decontaminate tea mycotoxins. While many investigations in this domain have been carried out on the prevalence of aflatoxins and ochratoxins in black, green, pu-erh, and herbal teas, much less information is available on zearalenone, fumonisins, and Alternaria toxins. Mycotoxins in teas were detected using several methods; the most commonly used being the High-Performance Liquid Chromatography (HPLC) with fluorescence detection, followed by HPLC with tandem mass spectrometry, gas chromatography and enzyme-linked immunosorbent assay. Further, mycotoxins decontamination methods for teas included physical, chemical, and biological methods, with physical methods being most prevalent. Finally, research gaps and future directions have also been discussed.
Collapse
Affiliation(s)
- Abhay K Pandey
- Department of Mycology & Microbiology, Tea Research Association, North Bengal Regional R & D Center, Nagrakata, West Bengal, India
| | - Mahesh K Samota
- Horticulture Crop Processing Division, ICAR- Central Institute of Post Harvest Engineering & Technology, Ludhiana, Punjab, India
| | - Ana Sanches Silva
- Food Science, National Institute for Agricultural and Veterinary Research (INIAV), Oeiras, Portugal
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
| |
Collapse
|
40
|
Narváez A, Rodríguez-Carrasco Y, Ritieni A, Mañes J. Human biomonitoring of multiple mycotoxins in hair: first large-scale pilot study. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human biomonitoring (HBM) represents the most accurate approach for assessing the exposure to mycotoxins, but traditional matrices fail to provide information about long-term exposure due to the rapid excretion rates and short half-lives of mycotoxins. Hair emerges as a promising matrix considering that contaminants can form stable links with hair components, such as keratins and melanin. Hence, the aim of the present study was to monitor the presence of up to ten mycotoxins (aflatoxins and Fusarium mycotoxins) in human hair samples (n=100) through a high-performance liquid chromatography coupled to Q-TOF high resolution mass spectrometry. A prevalence of 43% at concentrations ranging from 2.7 to 106.1 ng/g was observed, being enniatins and aflatoxin B1 the most prevalent compounds. Co-occurrence of up to three mycotoxins was observed in 42% of the positive samples. Retrospective untargeted analysis of hair samples tentatively identified up to 128 mycotoxins and related metabolites. These results confirm the accumulation of toxicologically relevant mycotoxins in hair matrix, thus standing as a suitable matrix for assessing long-term exposure.
Collapse
Affiliation(s)
- A. Narváez
- Department of Pharmacy, Faculty of Pharmacy, University of Naples ‘Federico II’, via Domenico Montesano 49, Naples 80131, Italy
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, av. Vicent Andrés Estellés s/n, Burjassot 46100, Spain
| | - Y. Rodríguez-Carrasco
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, av. Vicent Andrés Estellés s/n, Burjassot 46100, Spain
| | - A. Ritieni
- Department of Pharmacy, Faculty of Pharmacy, University of Naples ‘Federico II’, via Domenico Montesano 49, Naples 80131, Italy
- UNESCO Chair on Health Education and Sustainable Development at University of Naples ‘Federico II’, via Domenico Montesano 49, Naples 80131, Italy
| | - J. Mañes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, av. Vicent Andrés Estellés s/n, Burjassot 46100, Spain
| |
Collapse
|
41
|
Influence of Endosperm Starch Composition on Maize Response to Fusarium temperatum Scaufl. & Munaut. Toxins (Basel) 2022; 14:toxins14030200. [PMID: 35324697 PMCID: PMC8951129 DOI: 10.3390/toxins14030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
Fusarium temperatum Scaufl. & Munaut is a newly described taxon belonging to the Fusarium fujikuroi species complex (FFSC) and a frequent causative factor of maize ear rot. The aim of the present study was to determine the responses to the disease in maize populations differing in endosperm features that were classified to flint, dent, and a group of plants with intermediate kernel characteristics. In inoculation studies, substantial variation of host response to the fungus was found among the tested maize types. The dent-type kernels contained significantly less amylose (28.27%) and exhibited significantly higher rates of infection (IFER = 2.10) and contamination by beauvericin (7.40 mg kg−1) than plants of the flint maize subpopulation. The study documents a significant positive correlation between the Fusarium ear rot intensity (IFER) and ergosterol content (the R value ranged from 0.396 in 2015 to 0.735 in 2018) and between IFER and the presence of beauvericin (the R value ranged from 0.364 in 2015 to 0.785 in 2017). The negative correlation between (IFER) and amylose content (ranging from R = −0.303 to R= −0.180) stresses the role of the endosperm starch composition in the kernel resistance to Fusarium ear rot. The conducted study indicated that the risk of kernel infection and contamination with fungal metabolites (beauvericin and ergosterol) was associated with the maize type kernels.
Collapse
|
42
|
Berzina Z, Pavlenko R, Jansons M, Bartkiene E, Neilands R, Pugajeva I, Bartkevics V. Application of Wastewater-Based Epidemiology for Tracking Human Exposure to Deoxynivalenol and Enniatins. Toxins (Basel) 2022; 14:91. [PMID: 35202119 PMCID: PMC8878170 DOI: 10.3390/toxins14020091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/24/2022] Open
Abstract
Wastewater-based epidemiology (WBE) is a promising biomonitoring approach with the potential to provide direct information on human intake and exposure to food contaminants and environmental chemicals. The aim of this study was to apply WBE while employing the normalization method for exploring human exposure to selected mycotoxins according to population biomarker 5-hydroxyindoleacetic acid (5-HIAA). This type of normalization technique has been previously used to detect various other compounds. However, to the best of our knowledge, this is the first study tracking human exposure to mycotoxins. A sensitive analytical methodology was developed to achieve reliable quantification of deoxynivalenol, enniatins, and beauvericin in wastewater (WW) samples. The applicability of the method was evaluated by testing 29 WW samples collected at WW treatment plants in Latvia. With frequency of detection greater than 86%, enniatins B, B1, A, and A1 were revealed in WW samples. The estimated total daily intake for enniatins was in the range of 1.8-27.6 µg/day per person. Free deoxynivalenol (DON) was determined in all analysed WW samples. Based on the average 5-HIAA excretion level and the determined 5-HIAA content in the samples, the intake of DON by the human population of Riga was estimated at 325 ng/kg b.w. day.
Collapse
Affiliation(s)
- Zane Berzina
- Animal Health and Environment “BIOR”, Institute of Food Safety, Lejupes 3, LV-1076 Riga, Latvia; (R.P.); (M.J.); (I.P.); (V.B.)
- Faculty of Chemistry, University of Latvia, Jelgavas 1, LV-1004 Riga, Latvia
| | - Romans Pavlenko
- Animal Health and Environment “BIOR”, Institute of Food Safety, Lejupes 3, LV-1076 Riga, Latvia; (R.P.); (M.J.); (I.P.); (V.B.)
- Faculty of Chemistry, University of Latvia, Jelgavas 1, LV-1004 Riga, Latvia
| | - Martins Jansons
- Animal Health and Environment “BIOR”, Institute of Food Safety, Lejupes 3, LV-1076 Riga, Latvia; (R.P.); (M.J.); (I.P.); (V.B.)
| | - Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Mickeviciaus 9, LT-44307 Kaunas, Lithuania;
| | - Romans Neilands
- Department of Water Engineering and Technology, Riga Technical University, Kalku 1, LV-1658 Riga, Latvia;
| | - Iveta Pugajeva
- Animal Health and Environment “BIOR”, Institute of Food Safety, Lejupes 3, LV-1076 Riga, Latvia; (R.P.); (M.J.); (I.P.); (V.B.)
| | - Vadims Bartkevics
- Animal Health and Environment “BIOR”, Institute of Food Safety, Lejupes 3, LV-1076 Riga, Latvia; (R.P.); (M.J.); (I.P.); (V.B.)
- Faculty of Chemistry, University of Latvia, Jelgavas 1, LV-1004 Riga, Latvia
| |
Collapse
|
43
|
Penczynski KJ, Cramer B, Dietrich S, Humpf HU, Abraham K, Weikert C. Mycotoxins in Serum and 24-h Urine of Vegans and Omnivores from the Risks and Benefits of a Vegan Diet (RBVD) Study. Mol Nutr Food Res 2022; 66:e2100874. [PMID: 35072972 DOI: 10.1002/mnfr.202100874] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/17/2021] [Indexed: 11/05/2022]
Abstract
Scope Vegans might have a higher exposure to mycotoxins due to their heightened consumption of typical mycotoxin containing food sources. Yet, data on internal exposure among vegans in comparison to omnivores are currently lacking. Methods and Results This cross-sectional study included 36 vegans and 36 omnivores (50% females, 30-60 years). A set of 28 and 27 mycotoxins was analyzed in 24-h urine and serum samples, respectively, by validated multi-mycotoxin methods (HPLC-MS/MS). Ochratoxin A (OTA), 2'R-OTA, and enniatin B in serum as well as deoxynivalenol-glucuronide in 24-h urine were quantified in 57 to 100% of the samples. Serum OTA levels were twofold higher in vegans than in omnivores (median 0.24 versus 0.12 ng/mL; P <0.0001). No further significant differences were observed. Serum OTA levels were associated with intake of "vegan products" (r = 0.50, P <0.0001) and "pasta & rice" (r = 0.33, P = 0.006). Sensitivity analyses advise cautious interpretation. Furthermore, serum levels of 2'R-OTA were related to coffee consumption (r = 0.64, P <0.0001). Conclusion Our results indicate a higher exposure of vegans to OTA, but not to other mycotoxins. However, larger studies with repeated measurements are required to better evaluate the exposure to mycotoxins from plant-based diets. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Katharina J Penczynski
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Münster, 48149, Germany
| | - Stefan Dietrich
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Münster, 48149, Germany
| | - Klaus Abraham
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Cornelia Weikert
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| |
Collapse
|
44
|
Pascari X, Marin S, Ramos AJ, Sanchis V. Relevant Fusarium Mycotoxins in Malt and Beer. Foods 2022; 11:246. [PMID: 35053978 PMCID: PMC8774397 DOI: 10.3390/foods11020246] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/03/2023] Open
Abstract
Mycotoxins are secondary fungal metabolites of high concern in the food and feed industry. Their presence in many cereal-based products has been numerously reported. Beer is the most consumed alcoholic beverage worldwide, and Fusarium mycotoxins originating from the malted and unmalted cereals might reach the final product. This review aims to describe the possible Fusarium fungi that could infect the cereals used in beer production, the transfer of mycotoxins throughout malting and brewing as well as an insight into the incidence of mycotoxins in the craft beer segment of the industry. Studies show that germination is the malting step that can lead to a significant increase in the level of all Fusarium mycotoxins. The first step of mashing (45 °C) has been proved to possess the most significant impact in the transfer of hydrophilic toxins from the grist into the wort. However, during fermentation, a slight reduction of deoxynivalenol, and especially of zearalenone, is achieved. This review also highlights the limited research available on craft beer and the occurrence of mycotoxins in these products.
Collapse
Affiliation(s)
| | | | | | - Vicente Sanchis
- AGROTECNIO-CERCA Center, Applied Mycology Unit, Food Technology Department, University of Lleida, Av. Rovira Roure 191, 25198 Lleida, Spain; (X.P.); (S.M.); (A.J.R.)
| |
Collapse
|
45
|
Pallarés N, Sebastià A, Martínez-Lucas V, Queirós R, Barba FJ, Berrada H, Ferrer E. High Pressure Processing Impact on Emerging Mycotoxins (ENNA, ENNA1, ENNB, ENNB1) Mitigation in Different Juice and Juice-Milk Matrices. Foods 2022; 11:190. [PMID: 35053922 PMCID: PMC8774803 DOI: 10.3390/foods11020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/01/2022] [Accepted: 01/09/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to investigate the potential of high-pressure processing (HPP) (600 MPa during 5 min) on emerging mycotoxins, enniatin A (ENNA), enniatin A1 (ENNA1), enniatin B (ENNB), enniatin B1 (ENNB1) reduction in different juice/milk models, and to compare it with the effect of a traditional thermal treatment (HT) (90 °C during 21 s). For this purpose, different juice models (orange juice, orange juice/milk beverage, strawberry juice, strawberry juice/milk beverage, grape juice and grape juice/milk beverage) were prepared and spiked individually with ENNA, ENNA1, ENNB and ENNB1 at a concentration of 100 µg/L. After HPP and HT treatments, ENNs were extracted from treated samples and controls employing dispersive liquid-liquid microextraction methodology (DLLME) and determined by liquid chromatography coupled to ion-trap tandem mass spectrometry (HPLC-MS/MS-IT). The results obtained revealed higher reduction percentages (11% to 75.4%) when the samples were treated under HPP technology. Thermal treatment allowed reduction percentages varying from 2.6% to 24.3%, at best, being ENNA1 the only enniatin that was reduced in all juice models. In general, no significant differences (p > 0.05) were observed when the reductions obtained for each enniatin were evaluated according to the kind of juice model, so no matrix effects were observed for most cases. HPP technology can constitute an effective tool in mycotoxins removal from juices.
Collapse
Affiliation(s)
- Noelia Pallarés
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, Burjassot, 46100 València, Spain; (N.P.); (A.S.); (V.M.-L.); (E.F.)
| | - Albert Sebastià
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, Burjassot, 46100 València, Spain; (N.P.); (A.S.); (V.M.-L.); (E.F.)
| | - Vicente Martínez-Lucas
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, Burjassot, 46100 València, Spain; (N.P.); (A.S.); (V.M.-L.); (E.F.)
| | - Rui Queirós
- Hiperbaric, S.A., C/Condado de Treviño, 6, 09001 Burgos, Spain;
| | - Francisco J. Barba
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, Burjassot, 46100 València, Spain; (N.P.); (A.S.); (V.M.-L.); (E.F.)
| | - Houda Berrada
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, Burjassot, 46100 València, Spain; (N.P.); (A.S.); (V.M.-L.); (E.F.)
| | - Emilia Ferrer
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, Burjassot, 46100 València, Spain; (N.P.); (A.S.); (V.M.-L.); (E.F.)
| |
Collapse
|
46
|
In silico evidence of beauvericin antiviral activity against SARS-CoV-2. Comput Biol Med 2021; 141:105171. [PMID: 34968860 PMCID: PMC8709726 DOI: 10.1016/j.compbiomed.2021.105171] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/26/2022]
Abstract
Background Scientists are still battling severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus 2019 (COVID-19) pandemic so human lives can be saved worldwide. Secondary fungal metabolites are of intense interest due to their broad range of pharmaceutical properties. Beauvericin (BEA) is a secondary metabolite produced by the fungus Beauveria bassiana. Although promising anti-viral activity has previously been reported for BEA, studies investigating its therapeutic potential are limited. Methods The objective of this study was to assess the potential usage of BEA as an anti-viral molecule via protein–protein docking approaches using MolSoft. Results In-silico results revealed relatively favorable binding energies for BEA to different viral proteins implicated in the vital life stages of this virus. Of particular interest is the capability of BEA to dock to both the main coronavirus protease (Pockets A and B) and spike proteins. These results were validated by molecular dynamic simulation (Gromacs). Several parameters, such as root-mean-square deviation/fluctuation, the radius of gyration, H-bonding, and free binding energy were analyzed. Computational analyses revealed that interaction of BEA with the main protease pockets in addition to the spike glycoprotein remained stable. Conclusion Altogether, our results suggest that BEA might be considered as a potential competitive and allosteric agonist inhibitor with therapeutic options for treating COVID-19 pending in vitro and in vivo validation.
Collapse
|
47
|
Novak B, Lopes Hasuda A, Ghanbari M, Mayumi Maruo V, Bracarense APFRL, Neves M, Emsenhuber C, Wein S, Oswald IP, Pinton P, Schatzmayr D. Effects of Fusarium metabolites beauvericin and enniatins alone or in mixture with deoxynivalenol on weaning piglets. Food Chem Toxicol 2021; 158:112719. [PMID: 34843867 DOI: 10.1016/j.fct.2021.112719] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 01/16/2023]
Abstract
The impact of the Fusarium-derived metabolites beauvericin, enniatin B and B1 (EB) alone or in combination with deoxynivalenol (DON) was investigated in 28-29 days old weaning piglets over a time period of 14 days. The co-application of EB and DON (EB + DON) led to a significant decrease in the weight gain of the animals. Liver enzyme activities in plasma were significantly decreased at day 14 in piglets receiving the EB + DON-containing diet compared to piglets receiving the control diet. All mycotoxin-contaminated diets led to moderate to severe histological lesions in the jejunum, the liver and lymph nodes. Shotgun metagenomics revealed a significant effect of EB-application on the gut microbiota. Our results provide novel insights into the harmful impact of emerging mycotoxins alone or with DON on the performance, gut health and immunological parameters in pigs.
Collapse
Affiliation(s)
- Barbara Novak
- BIOMIN Research Center, Technopark 1, 3430, Tulln, Austria.
| | - Amanda Lopes Hasuda
- Laboratory of Animal Pathology, State University of Londrina, P.O. Box 10.011, Londrina, PR, 86057-970, Brazil; Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France.
| | - Mahdi Ghanbari
- BIOMIN Research Center, Technopark 1, 3430, Tulln, Austria.
| | - Viviane Mayumi Maruo
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France; Universidade Federal do Tocantins, Araguaína, 77824-838, Brazil.
| | - Ana Paula F R L Bracarense
- Laboratory of Animal Pathology, State University of Londrina, P.O. Box 10.011, Londrina, PR, 86057-970, Brazil.
| | - Manon Neves
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France.
| | | | - Silvia Wein
- BIOMIN Research Center, Technopark 1, 3430, Tulln, Austria.
| | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France.
| | - Philippe Pinton
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 31027, Toulouse, France.
| | | |
Collapse
|
48
|
Tolosa J, Rodríguez-Carrasco Y, Ruiz MJ, Vila-Donat P. Multi-mycotoxin occurrence in feed, metabolism and carry-over to animal-derived food products: A review. Food Chem Toxicol 2021; 158:112661. [PMID: 34762978 DOI: 10.1016/j.fct.2021.112661] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 10/08/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
The world requests for raw materials used in animal feed has been steadily rising in the last years driven by higher demands for livestock production. Mycotoxins are frequent toxic metabolites present in these raw materials. The exposure of farm animals to mycotoxins could result in undesirable residues in animal-derived food products. Thus, the potential ingestion of edible animal products (milk, meat and fish) contaminated with mycotoxins constitutes a public health concern, since they enter the food chain and may cause adverse effects upon human health. The present review summarizes the state-of-the-art on the occurrence of mycotoxins in feed, their metabolism and carry-over into animal source foodstuffs, focusing particularly on the last decade. Maximum levels (MLs) for various mycotoxins have been established for a number of raw feed materials and animal food products. Such values are sometimes exceeded, however. Aflatoxins (AFs), fumonisins (FBs), ochratoxin A (OTA), trichothecenes (TCs) and zearalenone (ZEN) are the most prevalent mycotoxins in animal feed, with aflatoxin M1 (AFM1) predominating in milk and dairy products, and OTA in meat by-products. The co-occurrence of mycotoxins in feed raw materials tends to be the rule rather than the exception, and the carry-over of mycotoxins from feed to animal source foods is more than proven.
Collapse
Affiliation(s)
- J Tolosa
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Valencia, 46100, Spain
| | - Y Rodríguez-Carrasco
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Valencia, 46100, Spain
| | - M J Ruiz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Valencia, 46100, Spain
| | - P Vila-Donat
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, Valencia, 46100, Spain.
| |
Collapse
|
49
|
Ederli L, Beccari G, Tini F, Bergamini I, Bellezza I, Romani R, Covarelli L. Enniatin B and Deoxynivalenol Activity on Bread Wheat and on Fusarium Species Development. Toxins (Basel) 2021; 13:728. [PMID: 34679021 PMCID: PMC8538094 DOI: 10.3390/toxins13100728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Fusarium head blight (FHB) is a devastating wheat disease, mainly caused by Fusarium graminearum (FG)-a deoxynivalenol (DON)-producing species. However, Fusarium avenaceum (FA), able to biosynthesize enniatins (ENNs), has recently increased its relevance worldwide, often in co-occurrence with FG. While DON is a well-known mycotoxin, ENN activity, also in association with DON, is poorly understood. This study aims to explore enniatin B (ENB) activity, alone or combined with DON, on bread wheat and on Fusarium development. Pure ENB, DON, and ENB+DON (10 mg kg-1) were used to assess the impacts on seed germination, seedling growth, cell death induction (trypan blue staining), chlorophyll content, and oxidative stress induction (malondialdehyde quantification). The effect on FG and FA growth was tested using ENB, DON, and ENB+DON (10, 50, and 100 mg kg-1). Synergistic activity in the reduction of seed germination, growth, and chlorophyll degradation was observed. Conversely, antagonistic interaction in cell death and oxidative stress induction was found, with DON counteracting cellular stress produced by ENB. Fusarium species responded to mycotoxins in opposite directions. ENB inhibited FG development, while DON promoted FA growth. These results highlight the potential role of ENB in cell death control, as well as in fungal competition.
Collapse
Affiliation(s)
- Luisa Ederli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (L.E.); (F.T.); (I.B.); (R.R.); (L.C.)
| | - Giovanni Beccari
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (L.E.); (F.T.); (I.B.); (R.R.); (L.C.)
| | - Francesco Tini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (L.E.); (F.T.); (I.B.); (R.R.); (L.C.)
| | - Irene Bergamini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (L.E.); (F.T.); (I.B.); (R.R.); (L.C.)
| | - Ilaria Bellezza
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy;
| | - Roberto Romani
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (L.E.); (F.T.); (I.B.); (R.R.); (L.C.)
| | - Lorenzo Covarelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (L.E.); (F.T.); (I.B.); (R.R.); (L.C.)
| |
Collapse
|
50
|
Chalyy Z, Kiseleva M, Sedova I, Tutelyan V. Mycotoxins in herbal tea: transfer into the infusion. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mycotoxins are natural food contaminants, associated with adverse health effects due to acute intoxication and, what is much more common, chronic exposure. The most hazardous and widespread mycotoxins are subjected to regulation in food in most countries. Alongside with regulated, a wide list of mycotoxins is monitored in various foods. Traditionally mycotoxins in tea are determined in a dry sample, not taking into account their transfer rate into the infusion. This study was aimed at the determination of the transfer rate of several mycotoxins from naturally contaminated herbal tea samples into an infusion. Seven of the most contaminated samples were pre-selected during the monitoring of mycotoxins in Camellia sinensis and herbal tea available in the Russian Federation. Ochratoxin A (OTA), sterigmatocystin (STE), mycophenolic acid (MPA), tentoxin (TTX), alternariol (AOH), its methyl ether (AME), zearalenone (ZEN), enniatins A and B (ENN A and B), beauvericin (BEA) were detected in these samples in the range of several μg/kg to several mg/kg. HPLC-MS/MS was used for dry tea samples and their infusion analysis. Mycotoxin polarity and infusion pH (for analytes possessing carboxylic groups) appeared to be factors determining transfer rate. STE transferred into infusion at the average rate of 10%. Average transfer of Alternaria toxins varied from 73% (TTX) to 45% (AOH) and about 11% (AME). A third part of ZEN was detected in the infusion. Transfer of ENNs and BEA was low and did not exceed 7%. Infusion pH affected MPA transfer rate; it increased from 23% to 96% in the pH range from 5.5 to 6.3. 83% of OTA was detected in the infusion of a single contaminated sample. Consideration of the mycotoxin transfer rate to herbal tea infusions resulted in the change of the model herbal tea input into mean chronic dietary exposure for most studied mycotoxins.
Collapse
Affiliation(s)
- Z. Chalyy
- Federal Research Centre of Nutrition and Biotechnology, Ust’inskiy pr. 2/14, 109240 Moscow, Russian Federation
| | - M. Kiseleva
- Federal Research Centre of Nutrition and Biotechnology, Ust’inskiy pr. 2/14, 109240 Moscow, Russian Federation
| | - I. Sedova
- Federal Research Centre of Nutrition and Biotechnology, Ust’inskiy pr. 2/14, 109240 Moscow, Russian Federation
| | - V. Tutelyan
- Federal Research Centre of Nutrition and Biotechnology, Ust’inskiy pr. 2/14, 109240 Moscow, Russian Federation
- I.M. Sechenov First Moscow State Medical University, Trubetskaya str. 8/2, 119992 Moscow, Russian Federation
| |
Collapse
|