1
|
Kubelick K, Kim J, Kim M, Huang X, Wang C, Song S, Xia Y, Emelianov SY. In Vivo Ultrasound and Photoacoustic Imaging of Nanoparticle-Engineered T Cells and Post-Treatment Assessment to Guide Adoptive Cell Immunotherapy. ACS NANO 2025; 19:6079-6094. [PMID: 39908484 PMCID: PMC11841050 DOI: 10.1021/acsnano.4c12929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
Despite great promise, adoptive cell therapy (ACT) continues to fail at treating a majority of cancers, especially solid tumors. To inform development and expedite the translation of more potent cellular immunotherapies, advanced immunoimaging tools are needed to better understand the in vivo requirements for generating a robust immune response. Even methods to evaluate the delivery, location, and status of transferred T cells at the tumor target are lacking. Therefore, a real-time, safe, noninvasive, longitudinal imaging method is critically needed to 1) monitor adoptive T cell location and status and 2) assess treatment progression and response through imaging biomarkers. Here, we developed a combined ultrasound (US) and photoacoustic (PA) imaging approach to enable T cell tracking following adoptive transfer for cancer immunotherapy. Our approach leverages highly photostable gold nanorods and cell surface engineering to tag the T cells without impacting effector functions, as well as generate PA contrast for imaging post-transfer. Our in vivo US/PA imaging approach detected nanoparticle-labeled T cell accumulation at the tumor, visualized changes in tumor volume, and conveyed accompanying changes in blood biomarkers. US/PA data also showed different trends according to a positive or negative antitumor response to T cell therapy over 7 days. Results highlight the potential of the approach and motivate future development to expand the platform for advanced, theranostic immunoimaging.
Collapse
Affiliation(s)
- Kelsey
P. Kubelick
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
- School
of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jinhwan Kim
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
- School
of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Myeongsoo Kim
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
| | - Xinyue Huang
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
| | - Chenxiao Wang
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United
States
| | - Seoyoon Song
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
| | - Younan Xia
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United
States
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Stanislav Y. Emelianov
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia 30332, United States
- School
of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Puik JR, Le C, Kazemier G, Oprea-Lager DE, Swijnenburg RJ, Giovannetti E, Griffioen AW, Huijbers EJ. Prostate-specific membrane antigen as target for vasculature-directed therapeutic strategies in solid tumors. Crit Rev Oncol Hematol 2025; 205:104556. [PMID: 39551117 DOI: 10.1016/j.critrevonc.2024.104556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
Prostate-specific membrane antigen (PSMA) is one of the few biomarkers which has been successfully translated to the clinic as theranostic biomarker for patients with prostate cancer. In the context of prostate cancer, PSMA is overexpressed on the cell membrane of tumor cells, making it a viable target for interventions with urea-based small molecule inhibitors or antibodies conjugated to radioactive isotopes. Interestingly, in several non-prostatic cancers, expression of PSMA appears to be associated with the tumor neovasculature. This offers novel therapeutic opportunities for treatments targeting the vasculature in non-prostatic cancers. In this review, we discuss PSMA and its potential as target for vasculature-directed therapeutic approaches, including radioligand therapy, fusion protein vaccination and CAR T-cell therapy.
Collapse
Affiliation(s)
- Jisce R Puik
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Surgery, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Chung Le
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Geert Kazemier
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Surgery, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Daniela E Oprea-Lager
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Radiology and Nuclear Medicine, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Rutger-Jan Swijnenburg
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Surgery, De Boelelaan 1117, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Elisa Giovannetti
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands; Cancer Pharmacology Lab, Associazione Italiana per la Ricerca sul Cancro (AIRC), Fondazione Pisana per la Scienza, University of Pisa, Pisa, Italy.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Plesmanlaan 125, Amsterdam, the Netherlands
| | - Elisabeth Jm Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; CimCure BV, Plesmanlaan 125, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Hou X, Kong X, Yao Y, Liu S, Ren Y, Hu M, Wang Z, Zhu H, Yang Z. Next Generation of Solid Target Radionuclide Antibody Conjugates for Tumor Immuno-Therapy. J Labelled Comp Radiopharm 2024; 67:396-409. [PMID: 39480113 DOI: 10.1002/jlcr.4124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/07/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024]
Abstract
Immune checkpoint therapy has emerged as an effective treatment option for various types of cancers. Key immune checkpoint molecules, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), and lymphocyte activation gene 3 (LAG-3), have become pivotal targets in cancer immunotherapy. Antibodies designed to inhibit these molecules have demonstrated significant clinical efficacy. Nevertheless, the ability to monitor changes in the immune status of tumors and predict treatment response remains limited. Conventional methods, such as assessing lymphocytes in peripheral blood or conducting tumor biopsies, are inadequate for providing real-time, spatial information about T-cell distributions within heterogeneous tumors. Positron emission tomography (PET) using T-cell specific probes represents a promising and noninvasive approach to monitor both systemic and intratumoral immune changes during treatment. This technique holds substantial clinical significance and potential utility. In this paper, we review the applications of PET probes that target immune cells in molecular imaging.
Collapse
Affiliation(s)
- Xingguo Hou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Xiangxing Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuan Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
| | - Song Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ya'nan Ren
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
- Guizhou University School of Medicine, Guiyang, Guizhou, China
| | - Muye Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zilei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Fröse J, Rowley J, Farid AS, Rakhshandehroo T, Leclerc P, Mak H, Allen H, Moravej H, Munaretto L, Millan-Barea L, Codet E, Glockner H, Jacobson C, Hemann M, Rashidian M. Development of an antigen-based approach to noninvasively image CAR T cells in real time and as a predictive tool. SCIENCE ADVANCES 2024; 10:eadn3816. [PMID: 39292778 PMCID: PMC11409975 DOI: 10.1126/sciadv.adn3816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
CAR T cell therapy has revolutionized the treatment of a spectrum of blood-related malignancies. However, treatment responses vary among cancer types and patients. Accurate monitoring of CAR T cell dynamics is crucial for understanding and evaluating treatment efficacy. Positron emission tomography (PET) offers a comprehensive view of CAR T cell homing, especially in critical organs such as lymphoid structures and bone marrow. This information will help assess treatment response and predict relapse risk. Current PET imaging methods for CAR T require genetic modifications, limiting clinical use. To overcome this, we developed an antigen-based imaging approach enabling whole-body CAR T cell imaging. The probe detects CAR T cells in vivo without affecting their function. In an immunocompetent B cell leukemia model, CAR-PET signal in the spleen predicted early mortality risk. The antigen-based CAR-PET approach allows assessment of CAR T therapy responses without altering established clinical protocols. It seamlessly integrates with FDA-approved and future CAR T cell generations, facilitating broader clinical application.
Collapse
Affiliation(s)
- Julia Fröse
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jennifer Rowley
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Ali Salehi Farid
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Taha Rakhshandehroo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Paul Leclerc
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02142, USA
| | - Howard Mak
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02142, USA
| | - Harris Allen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Heydar Moravej
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Leila Munaretto
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Luis Millan-Barea
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02142, USA
| | - Elisabeth Codet
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hannah Glockner
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Caron Jacobson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Michael Hemann
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| |
Collapse
|
5
|
Hou X, Liu S, Zeng Z, Wang Z, Ding J, Chen Y, Gao X, Wang J, Xiao G, Li B, Zhu H, Yang Z. Preclinical imaging evaluation of a bispecific antibody targeting hPD1/CTLA4 using humanized mice. Biomed Pharmacother 2024; 175:116669. [PMID: 38677243 DOI: 10.1016/j.biopha.2024.116669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND The lack of an efficient way to screen patients who are responsive to immunotherapy challenges PD1/CTLA4-targeting cancer treatment. Immunotherapeutic efficacy cannot be clearly determined by peripheral blood analyses, tissue gene markers or CT/MR value. Here, we used a radionuclide and imaging techniques to investigate the novel dual targeted antibody cadonilimab (AK104) in PD1/CTLA4-positive cells in vivo. METHODS First, humanized PD1/CTLA4 mice were purchased from Biocytogen Pharmaceuticals (Beijing) Co., Ltd. to express hPD1/CTLA4 in T-cells. Then, mouse colon cancer MC38-hPD-L1 cell xenografts were established in humanized mice. A bispecific antibody targeting PD1/CTLA4 (AK104) was labeled with radio-nuclide iodine isotopes. Immuno-PET/CT imaging was performed using a bispecific monoclonal antibody (mAb) probe 124I-AK104, developed in-house, to locate PD1+/CTLA4+ tumor-infiltrating T cells and monitor their distribution in mice to evaluate the therapeutic effect. RESULTS The 124I-AK104 dual-antibody was successfully constructed with ideal radiochemical characteristics, in vitro stability and specificity. The results of immuno-PET showed that 124I-AK104 revealed strong hPD1/CTLA4-positive responses with high specificity in humanized mice. High uptake of 124I-AK104 was observed not only at the tumor site but also in the spleen. Compared with PD1- or CTLA4-targeting mAb imaging, 124I-AK104 imaging had excellent standard uptake values at the tumor site and higher tumor to nontumor (T/NT) ratios. CONCLUSIONS The results demonstrated the potential of translating 124I-AK104 into a method for screening patients who benefit from immunotherapy and the efficacy, as well as the feasibility, of this method was verified by immuno-PET imaging of humanized mice.
Collapse
Affiliation(s)
- Xingguo Hou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Song Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ziqing Zeng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zilei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Jin Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yan Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China; Guizhou University School of Medicine, Guiyang, Guizhou 550025, China
| | - Xiangyu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jianghua Wang
- Research and Development Department, Akeso Biopharma Inc., Zhongshan, Guangdong 528437, China
| | - Guanxi Xiao
- Research and Development Department, Akeso Biopharma Inc., Zhongshan, Guangdong 528437, China
| | - Baiyong Li
- Research and Development Department, Akeso Biopharma Inc., Zhongshan, Guangdong 528437, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China; Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China; Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
6
|
McMorrow R, Zambito G, Nigg A, Lila K, van den Bosch TPP, Lowik CWGM, Mezzanotte L. Whole-body bioluminescence imaging of T-cell response in PDAC models. Front Immunol 2023; 14:1207533. [PMID: 37497236 PMCID: PMC10367003 DOI: 10.3389/fimmu.2023.1207533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/12/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction The location of T-cells during tumor progression and treatment provides crucial information in predicting the response in vivo. Methods Here, we investigated, using our bioluminescent, dual color, T-cell reporter mouse, termed TbiLuc, T-cell location and function during murine PDAC tumor growth and checkpoint blockade treatment with anti-PD-1 and anti-CTLA-4. Using this model, we could visualize T-cell location and function in the tumor and the surrounding tumor microenvironment longitudinally. We used murine PDAC clones that formed in vivo tumors with either high T-cell infiltration (immunologically 'hot') or low T-cell infiltration (immunologically 'cold'). Results Differences in total T-cell bioluminescence could be seen between the 'hot' and 'cold' tumors in the TbiLuc mice. During checkpoint blockade treatment we could see in the tumor-draining lymph nodes an increase in bioluminescence on day 7 after treatment. Conclusions In the current work, we showed that the TbiLuc mice can be used to monitor T-cell location and function during tumor growth and treatment.
Collapse
Affiliation(s)
- Roisin McMorrow
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, Rotterdam, Netherlands
- Erasmus Medical Centre, Department of Molecular Genetics, Rotterdam, Netherlands
- Percuros BV, Leiden, Netherlands
| | - Giorgia Zambito
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, Rotterdam, Netherlands
- Erasmus Medical Centre, Department of Molecular Genetics, Rotterdam, Netherlands
| | - Alex Nigg
- Erasmus Medical Centre, Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Karishma Lila
- Erasmus Medical Centre, Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | | | - Clemens W. G. M. Lowik
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, Rotterdam, Netherlands
| | - Laura Mezzanotte
- Erasmus Medical Centre, Department of Radiology and Nuclear Medicine, Rotterdam, Netherlands
- Erasmus Medical Centre, Department of Molecular Genetics, Rotterdam, Netherlands
| |
Collapse
|
7
|
Ren M, Yao B, Han B, Li C. Nuclear Imaging of CAR T Immunotherapy to Solid Tumors: In Terms of Biodistribution, Viability, and Cytotoxic Effect. Adv Biol (Weinh) 2023; 7:e2200293. [PMID: 36642820 DOI: 10.1002/adbi.202200293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/25/2022] [Indexed: 01/17/2023]
Abstract
Immunotherapy has become a mainstay of cancer therapy. Since chimeric antigen receptor (CAR) T immunotherapy achieves unprecedented success in curing hematological malignancies, the possibility of it revolutionizing the paradigm of solid tumors has aroused increasing attention. However, the restricted accessibility to tumor parenchyma, the immunosuppressive tumor microenvironment, and antigen heterogeneity of solid tumors make it difficult to replicate its success. Therefore, dynamic evaluation of CAR T cells' tumor accessibility, intratumoral viability, and anti-tumor cytotoxicity is necessary to facilitate its translation to solid tumors. Besides, real-timely imaging above events in vivo can help evaluate therapeutic responses and optimize CAR T immunotherapy for solid tumors. Nuclear imaging, including positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging, is frequently applied for evaluating adoptive cell therapies owing to its excellent sensitivity, high tissue penetration, and great translation potential. In addition, quantitative analysis can be performed in dynamic and noninvasive patterns. This review focuses on recent advances in PET/SPECT technologies and imaging probes in monitoring CAR T cells' migration, viability, and cytotoxicity to solid tumors post-administration. Prospects of what should be done in the next stage to promote CAR T therapy's application in solid tumors are also discussed.
Collapse
Affiliation(s)
- Mingliang Ren
- Minhang Hospital and Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Zhangheng Road 826, 201203, Shanghai, China
| | - Bolin Yao
- Minhang Hospital and Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Zhangheng Road 826, 201203, Shanghai, China
| | - Bing Han
- Minhang Hospital, Fudan University, Shanghai, China
| | - Cong Li
- Minhang Hospital and Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Zhangheng Road 826, 201203, Shanghai, China
| |
Collapse
|
8
|
Wen H, Huang Y, Hou T, Wang J, Huo Y. Determination of the biodistribution of chimeric antigen receptor-modified T cells against CD19 in NSG mice. Methods Cell Biol 2022; 167:15-37. [DOI: 10.1016/bs.mcb.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Imaging CAR T-cell kinetics in solid tumors: Translational implications. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:355-367. [PMID: 34553024 PMCID: PMC8426175 DOI: 10.1016/j.omto.2021.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/08/2021] [Indexed: 01/22/2023]
Abstract
Success in solid tumor chimeric antigen receptor (CAR) T-cell therapy requires overcoming several barriers, including lung sequestration, inefficient accumulation within the tumor, and target-antigen heterogeneity. Understanding CAR T-cell kinetics can assist in the interpretation of therapy response and limitations and thereby facilitate developing successful strategies to treat solid tumors. As T-cell therapy response varies across metastatic sites, the assessment of CAR T-cell kinetics by peripheral blood analysis or a single-site tumor biopsy is inadequate for interpretation of therapy response. The use of tumor imaging alone has also proven to be insufficient to interpret response to therapy. To address these limitations, we conducted dual tumor and T-cell imaging by use of a bioluminescent reporter and positron emission tomography in clinically relevant mouse models of pleural mesothelioma and non-small cell lung cancer. We observed that the mode of delivery of T cells (systemic versus regional), T-cell activation status (presence or absence of antigen-expressing tumor), and tumor-antigen expression heterogeneity influence T-cell kinetics. The observations from our study underscore the need to identify and develop a T-cell reporter—in addition to standard parameters of tumor imaging and antitumor efficacy—that can be used for repeat imaging without compromising the efficacy of CAR T cells in vivo.
Collapse
|
10
|
Lechermann LM, Lau D, Attili B, Aloj L, Gallagher FA. In Vivo Cell Tracking Using PET: Opportunities and Challenges for Clinical Translation in Oncology. Cancers (Basel) 2021; 13:4042. [PMID: 34439195 PMCID: PMC8392745 DOI: 10.3390/cancers13164042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022] Open
Abstract
Cell therapy is a rapidly evolving field involving a wide spectrum of therapeutic cells for personalised medicine in cancer. In vivo imaging and tracking of cells can provide useful information for improving the accuracy, efficacy, and safety of cell therapies. This review focuses on radiopharmaceuticals for the non-invasive detection and tracking of therapeutic cells using positron emission tomography (PET). A range of approaches for imaging therapeutic cells is discussed: Direct ex vivo labelling of cells, in vivo indirect labelling of cells by utilising gene reporters, and detection of specific antigens expressed on the target cells using antibody-based radiopharmaceuticals (immuno-PET). This review examines the evaluation of PET imaging methods for therapeutic cell tracking in preclinical cancer models, their role in the translation into patients, first-in-human studies, as well as the translational challenges involved and how they can be overcome.
Collapse
Affiliation(s)
- Laura M. Lechermann
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (B.A.); (L.A.); (F.A.G.)
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| | - Doreen Lau
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (B.A.); (L.A.); (F.A.G.)
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| | - Bala Attili
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (B.A.); (L.A.); (F.A.G.)
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| | - Luigi Aloj
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (B.A.); (L.A.); (F.A.G.)
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
- Department of Nuclear Medicine, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Ferdia A. Gallagher
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (B.A.); (L.A.); (F.A.G.)
- Cancer Research UK Cambridge Centre, Cambridge CB2 0RE, UK
| |
Collapse
|
11
|
Shao F, Long Y, Ji H, Jiang D, Lei P, Lan X. Radionuclide-based molecular imaging allows CAR-T cellular visualization and therapeutic monitoring. Am J Cancer Res 2021; 11:6800-6817. [PMID: 34093854 PMCID: PMC8171102 DOI: 10.7150/thno.56989] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy is a new and effective form of adoptive cell therapy that is rapidly entering the mainstream for the treatment of CD19-positive hematological cancers because of its impressive effect and durable responses. Huge challenges remain in achieving similar success in patients with solid tumors. The current methods of monitoring CAR-T, including morphological imaging (CT and MRI), blood tests, and biopsy, have limitations to assess whether CAR-T cells are homing to tumor sites and infiltrating into tumor bed, or to assess the survival, proliferation, and persistence of CAR-T cells in solid tumors associated with an immunosuppressive microenvironment. Radionuclide-based molecular imaging affords improved CAR-T cellular visualization and therapeutic monitoring through either a direct cellular radiolabeling approach or a reporter gene imaging strategy, and endogenous cell imaging is beneficial to reflect functional information and immune status of T cells. Focusing on the dynamic monitoring and precise assessment of CAR-T therapy, this review summarizes the current applications of radionuclide-based noninvasive imaging in CAR-T cells visualization and monitoring and presents current challenges and strategic choices.
Collapse
|
12
|
Ying Z, He T, Wang X, Zheng W, Lin N, Tu M, Xie Y, Ping L, Zhang C, Liu W, Deng L, Wu M, Feng F, Leng X, Du T, Qi F, Hu X, Ding Y, Lu XA, Song Y, Zhu J. Distribution of chimeric antigen receptor-modified T cells against CD19 in B-cell malignancies. BMC Cancer 2021; 21:198. [PMID: 33632155 PMCID: PMC7908740 DOI: 10.1186/s12885-021-07934-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/18/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The unprecedented efficacy of chimeric antigen receptor T (CAR-T) cell immunotherapy of CD19+ B-cell malignancies has opened a new and useful way for the treatment of malignant tumors. Nonetheless, there are still formidable challenges in the field of CAR-T cell therapy, such as the biodistribution of CAR-T cells in vivo. METHODS NALM-6, a human B-cell acute lymphoblastic leukemia (B-ALL) cell line, was used as target cells. CAR-T cells were injected into a mice model with or without target cells. Then we measured the distribution of CAR-T cells in mice. In addition, an exploratory clinical trial was conducted in 13 r/r B-cell non-Hodgkin lymphoma (B-NHL) patients, who received CAR-T cell infusion. The dynamic changes in patient blood parameters over time after infusion were detected by qPCR and flow cytometry. RESULTS CAR-T cells still proliferated over time after being infused into the mice without target cells within 2 weeks. However, CAR-T cells did not increase significantly in the presence of target cells within 2 weeks after infusion, but expanded at week 6. In the clinical trial, we found that CAR-T cells peaked at 7-21 days after infusion and lasted for 420 days in peripheral blood of patients. Simultaneously, mild side effects were observed, which could be effectively controlled within 2 months in these patients. CONCLUSIONS CAR-T cells can expand themselves with or without target cells in mice, and persist for a long time in NHL patients without serious side effects. TRIAL REGISTRATION The registration date of the clinical trial is May 17, 2018 and the trial registration numbers is NCT03528421 .
Collapse
Affiliation(s)
- Zhitao Ying
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ting He
- Beijing Immunochina Pharmaceuticals Co., Ltd., Beijing, China
| | - Xiaopei Wang
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Wen Zheng
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ningjing Lin
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Meifeng Tu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yan Xie
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Lingyan Ping
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Chen Zhang
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Weiping Liu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Lijuan Deng
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Meng Wu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Feier Feng
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Xin Leng
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Tingting Du
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Feifei Qi
- Beijing Immunochina Pharmaceuticals Co., Ltd., Beijing, China
| | - Xuelian Hu
- Beijing Immunochina Pharmaceuticals Co., Ltd., Beijing, China
| | - Yanping Ding
- Beijing Immunochina Pharmaceuticals Co., Ltd., Beijing, China
| | - Xin-An Lu
- Beijing Immunochina Pharmaceuticals Co., Ltd., Beijing, China.
| | - Yuqin Song
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China.
| | - Jun Zhu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
13
|
Volpe A, Pillarsetty NVK, Lewis JS, Ponomarev V. Applications of nuclear-based imaging in gene and cell therapy: probe considerations. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:447-458. [PMID: 33718593 PMCID: PMC7907215 DOI: 10.1016/j.omto.2021.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/26/2021] [Indexed: 01/11/2023]
Abstract
Several types of gene- and cell-based therapeutics are now emerging in the cancer immunotherapy, transplantation, and regenerative medicine landscapes. Radionuclear-based imaging can be used as a molecular imaging tool for repetitive and non-invasive visualization as well as in vivo monitoring of therapy success. In this review, we discuss the principles of nuclear-based imaging and provide a comprehensive overview of its application in gene and cell therapy. This review aims to inform investigators in the biomedical field as well as clinicians on the state of the art of nuclear imaging, from probe design to available radiopharmaceuticals and advances of direct (probe-based) and indirect (transgene-based) strategies in both preclinical and clinical settings. Notably, as the nuclear-based imaging toolbox is continuously expanding, it will be increasingly incorporated into the clinical setting where the distribution, targeting, and persistence of a new generation of therapeutics can be imaged and ultimately guide therapeutic decisions.
Collapse
Affiliation(s)
- Alessia Volpe
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Naga Vara Kishore Pillarsetty
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
14
|
Jacobs AH, Schelhaas S, Viel T, Waerzeggers Y, Winkeler A, Zinnhardt B, Gelovani J. Imaging of Gene and Cell-Based Therapies: Basis and Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
15
|
In vivo cell tracking with viral vector mediated genetic labeling. J Neurosci Methods 2020; 350:109021. [PMID: 33316318 DOI: 10.1016/j.jneumeth.2020.109021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
Cell tracking is a useful technique to monitor specific cell populations for their morphology, development, proliferation, migration, interaction, function, and other properties, both in vitro and in vivo. Using different materials and methodologies to label the target cells directly or indirectly, the dynamic biological processes in living organisms can be visualized with appropriate detection techniques. Viruses, with the unique ability to deliver exogenous genes into host cells, have been used as vectors to mediate gene transfer. Genetic labeling of target cells by viral vectors endows the cells to express reporter genes with high efficiency and specificity. In conjunction with corresponding imaging techniques, cells labeled with different genetic reporters mediated by different viral vectors can be monitored across spatial and temporal scales to fulfill various purposes and address different questions. In the present review, we introduce the basic principle of viral vectors in cell tracking and highlight the examples of cell tracking in various research areas.
Collapse
|
16
|
Mane MM, Cohen IJ, Ackerstaff E, Shalaby K, Ijoma JN, Ko M, Maeda M, Albeg AS, Vemuri K, Satagopan J, Moroz A, Zurita J, Shenker L, Shindo M, Nickles T, Nikolov E, Moroz MA, Koutcher JA, Serganova I, Ponomarev V, Blasberg RG. Lactate Dehydrogenase A Depletion Alters MyC-CaP Tumor Metabolism, Microenvironment, and CAR T Cell Therapy. Mol Ther Oncolytics 2020; 18:382-395. [PMID: 32913888 PMCID: PMC7452096 DOI: 10.1016/j.omto.2020.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022] Open
Abstract
To enhance human prostate-specific membrane antigen (hPSMA)-specific chimeric antigen receptor (CAR) T cell therapy in a hPSMA+ MyC-CaP tumor model, we studied and imaged the effect of lactate dehydrogenase A (LDH-A) depletion on the tumor microenvironment (TME) and tumor progression. Effective LDH-A short hairpin RNA (shRNA) knockdown (KD) was achieved in MyC-CaP:hPSMA+ Renilla luciferase (RLuc)-internal ribosome entry site (IRES)-GFP tumor cells, and changes in tumor cell metabolism and in the TME were monitored. LDH-A downregulation significantly inhibited cell proliferation and subcutaneous tumor growth compared to control cells and tumors. However, total tumor lactate concentration did not differ significantly between LDH-A knockdown and control tumors, reflecting the lower vascularity, blood flow, and clearance of lactate from LDH-A knockdown tumors. Comparing treatment responses of MyC-CaP tumors with LDH-A depletion and/or anti-hPSMA CAR T cells showed that the dominant effect on tumor growth was LDH-A depletion. With anti-hPSMA CAR T cell treatment, tumor growth was significantly slower when combined with tumor LDH-A depletion and compared to control tumor growth (p < 0.0001). The lack of a complete tumor response in our animal model can be explained in part by (1) the lower activity of human CAR T cells against hPSMA-expressing murine tumors in a murine host, and (2) a loss of hPSMA antigen from the tumor cell surface in progressive generations of tumor cells.
Collapse
Affiliation(s)
- Mayuresh M. Mane
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ivan J. Cohen
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ellen Ackerstaff
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Khalid Shalaby
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jenny N. Ijoma
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Myat Ko
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Masatomo Maeda
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Avi S. Albeg
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kiranmayi Vemuri
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jaya Satagopan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna Moroz
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Juan Zurita
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Larissa Shenker
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Masahiro Shindo
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tanner Nickles
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ekaterina Nikolov
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maxim A. Moroz
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jason A. Koutcher
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Inna Serganova
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vladimir Ponomarev
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronald G. Blasberg
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
17
|
Amor C, Feucht J, Leibold J, Ho YJ, Zhu C, Alonso-Curbelo D, Mansilla-Soto J, Boyer JA, Li X, Giavridis T, Kulick A, Houlihan S, Peerschke E, Friedman SL, Ponomarev V, Piersigilli A, Sadelain M, Lowe SW. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 2020; 583:127-132. [PMID: 32555459 PMCID: PMC7583560 DOI: 10.1038/s41586-020-2403-9] [Citation(s) in RCA: 642] [Impact Index Per Article: 128.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
Abstract
Cellular senescence is characterized by stable cell-cycle arrest and a secretory program that modulates the tissue microenvironment1,2. Physiologically, senescence serves as a tumour-suppressive mechanism that prevents the expansion of premalignant cells3,4 and has a beneficial role in wound-healing responses5,6. Pathologically, the aberrant accumulation of senescent cells generates an inflammatory milieu that leads to chronic tissue damage and contributes to diseases such as liver and lung fibrosis, atherosclerosis, diabetes and osteoarthritis1,7. Accordingly, eliminating senescent cells from damaged tissues in mice ameliorates the symptoms of these pathologies and even promotes longevity1,2,8-10. Here we test the therapeutic concept that chimeric antigen receptor (CAR) T cells that target senescent cells can be effective senolytic agents. We identify the urokinase-type plasminogen activator receptor (uPAR)11 as a cell-surface protein that is broadly induced during senescence and show that uPAR-specific CAR T cells efficiently ablate senescent cells in vitro and in vivo. CAR T cells that target uPAR extend the survival of mice with lung adenocarcinoma that are treated with a senescence-inducing combination of drugs, and restore tissue homeostasis in mice in which liver fibrosis is induced chemically or by diet. These results establish the therapeutic potential of senolytic CAR T cells for senescence-associated diseases.
Collapse
Affiliation(s)
- Corina Amor
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Judith Feucht
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Josef Leibold
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Jui Ho
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Changyu Zhu
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Direna Alonso-Curbelo
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge Mansilla-Soto
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jacob A Boyer
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiang Li
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Theodoros Giavridis
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amanda Kulick
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shauna Houlihan
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ellinor Peerschke
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alessandra Piersigilli
- Laboratory of Comparative Pathology, Rockefeller University, Weill Cornell Medicine and Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Scott W Lowe
- Department of Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
18
|
Minn I, Rowe SP, Pomper MG. Enhancing CAR T-cell therapy through cellular imaging and radiotherapy. Lancet Oncol 2019; 20:e443-e451. [PMID: 31364596 DOI: 10.1016/s1470-2045(19)30461-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is one of the most remarkable advances in cancer therapy in the last several decades. More than 300 adoptive T-cell therapy trials are ongoing, which is a testament to the early success and hope engendered by this line of investigation. Despite the enthusiasm, application of CAR T-cell therapy to solid tumours has had little success, although positive outcomes are increasingly being reported for these diseases. In this Series paper, we discuss the short-term strategies to improve CAR T-cell therapy responses, particularly for solid tumours, by combining CAR T-cell therapy with radiotherapy through the use of careful monitoring and non-invasive imaging. Through the use of imaging, we can gain greater mechanistic insights into the cascade of events that must unfold to enable tumour eradication by CAR T-cell therapy.
Collapse
Affiliation(s)
- Il Minn
- Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steven P Rowe
- Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin G Pomper
- Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
19
|
Akhavan D, Alizadeh D, Wang D, Weist MR, Shepphird JK, Brown CE. CAR T cells for brain tumors: Lessons learned and road ahead. Immunol Rev 2019; 290:60-84. [PMID: 31355493 PMCID: PMC6771592 DOI: 10.1111/imr.12773] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022]
Abstract
Malignant brain tumors, including glioblastoma, represent some of the most difficult to treat of solid tumors. Nevertheless, recent progress in immunotherapy, across a broad range of tumor types, provides hope that immunological approaches will have the potential to improve outcomes for patients with brain tumors. Chimeric antigen receptors (CAR) T cells, a promising immunotherapeutic modality, utilizes the tumor targeting specificity of any antibody or receptor ligand to redirect the cytolytic potency of T cells. The remarkable clinical response rates of CD19-targeted CAR T cells and early clinical experiences in glioblastoma demonstrating safety and evidence for disease modifying activity support the potential of further advancements ultimately providing clinical benefit for patients. The brain, however, is an immune specialized organ presenting unique and specific challenges to immune-based therapies. Remaining barriers to be overcome for achieving effective CAR T cell therapy in the central nervous system (CNS) include tumor antigenic heterogeneity, an immune-suppressive microenvironment, unique properties of the CNS that limit T cell entry, and risks of immune-based toxicities in this highly sensitive organ. This review will summarize preclinical and clinical data for CAR T cell immunotherapy in glioblastoma and other malignant brain tumors, including present obstacles to advancement.
Collapse
Affiliation(s)
- David Akhavan
- Department of Radiation OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Darya Alizadeh
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Dongrui Wang
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Michael R. Weist
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Molecular Imaging and TherapyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Jennifer K. Shepphird
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| | - Christine E. Brown
- Department of Hematology & Hematopoietic Cell TransplantationBeckman Research Institute of City of HopeDuarteCalifornia
- Department of Immuno‐OncologyBeckman Research Institute of City of HopeDuarteCalifornia
| |
Collapse
|
20
|
Mayer KE, Mall S, Yusufi N, Gosmann D, Steiger K, Russelli L, Bianchi HDO, Audehm S, Wagner R, Bräunlein E, Stelzl A, Bassermann F, Weichert W, Weber W, Schwaiger M, D'Alessandria C, Krackhardt AM. T-cell functionality testing is highly relevant to developing novel immuno-tracers monitoring T cells in the context of immunotherapies and revealed CD7 as an attractive target. Am J Cancer Res 2018; 8:6070-6087. [PMID: 30613283 PMCID: PMC6299443 DOI: 10.7150/thno.27275] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/14/2018] [Indexed: 12/16/2022] Open
Abstract
Cancer immunotherapy has proven high efficacy in treating diverse cancer entities by immune checkpoint modulation and adoptive T-cell transfer. However, patterns of treatment response differ substantially from conventional therapies, and reliable surrogate markers are missing for early detection of responders versus non-responders. Current imaging techniques using 18F-fluorodeoxyglucose-positron-emmission-tomograpy (18F-FDG-PET) cannot discriminate, at early treatment times, between tumor progression and inflammation. Therefore, direct imaging of T cells at the tumor site represents a highly attractive tool to evaluate effective tumor rejection or evasion. Moreover, such markers may be suitable for theranostic imaging. Methods: We mainly investigated the potential of two novel pan T-cell markers, CD2 and CD7, for T-cell tracking by immuno-PET imaging. Respective antibody- and F(ab´)2 fragment-based tracers were produced and characterized, focusing on functional in vitro and in vivo T-cell analyses to exclude any impact of T-cell targeting on cell survival and antitumor efficacy. Results: T cells incubated with anti-CD2 and anti-CD7 F(ab´)2 showed no major modulation of functionality in vitro, and PET imaging provided a distinct and strong signal at the tumor site using the respective zirconium-89-labeled radiotracers. However, while T-cell tracking by anti-CD7 F(ab´)2 had no long-term impact on T-cell functionality in vivo, anti-CD2 F(ab´)2 caused severe T-cell depletion and failure of tumor rejection. Conclusion: This study stresses the importance of extended functional T-cell assays for T-cell tracer development in cancer immunotherapy imaging and proposes CD7 as a highly suitable target for T-cell immuno-PET imaging.
Collapse
|
21
|
Serganova I, Cohen IJ, Vemuri K, Shindo M, Maeda M, Mane M, Moroz E, Khanin R, Satagopan J, Koutcher JA, Blasberg R. LDH-A regulates the tumor microenvironment via HIF-signaling and modulates the immune response. PLoS One 2018; 13:e0203965. [PMID: 30248111 PMCID: PMC6153000 DOI: 10.1371/journal.pone.0203965] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/30/2018] [Indexed: 01/01/2023] Open
Abstract
Previous studies show that LDH-A knockdown reduces orthotopic 4T1 breast tumor lactate and delays tumor growth and the development of metastases in nude mice. Here, we report significant changes in the tumor microenvironment (TME) and a more robust anti-tumor response in immune competent BALB/c mice. 4T1 murine breast cancer cells were transfected with shRNA plasmids directed against LDH-A (KD) or a scrambled control plasmid (NC). Cells were also transduced with dual luciferase-based reporter systems to monitor HIF-1 activity and the development of metastases by bioluminescence imaging, using HRE-sensitive and constitutive promoters, respectively. The growth and metastatic profile of orthotopic 4T1 tumors developed from these cell lines were compared and a primary tumor resection model was studied to simulate the clinical management of breast cancer. Primary tumor growth, metastasis formation and TME phenotype were significantly different in LDH-A KD tumors compared with controls. In LDH-A KD cells, HIF-1 activity, hexokinase 1 and 2 expression and VEGF secretion were reduced. Differences in the TME included lower HIF-1α expression that correlated with lower vascularity and pimonidazole staining, higher infiltration of CD3+ and CD4+ T cells and less infiltration of TAMs. These changes resulted in a greater delay in metastases formation and 40% long-term survivors (>20 weeks) in the LDH-A KD cohort following surgical resection of the primary tumor. We show for the first time that LDH-depletion inhibits the formation of metastases and prolongs survival of mice through changes in tumor microenvironment that modulate the immune response. We attribute these effects to diminished HIF-1 activity, vascularization, necrosis formation and immune suppression in immune competent animals. Gene-expression analyses from four human breast cancer datasets are consistent with these results, and further demonstrate the link between glycolysis and immune suppression in breast cancer.
Collapse
Affiliation(s)
- Inna Serganova
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Ivan J. Cohen
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Kiranmayi Vemuri
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Masahiro Shindo
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Masatomo Maeda
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Mayuresh Mane
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Ekaterina Moroz
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Raya Khanin
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Jaya Satagopan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Jason A. Koutcher
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Ronald Blasberg
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
22
|
Zhang F, Stephan SB, Ene CI, Smith TT, Holland EC, Stephan MT. Nanoparticles That Reshape the Tumor Milieu Create a Therapeutic Window for Effective T-cell Therapy in Solid Malignancies. Cancer Res 2018; 78:3718-3730. [PMID: 29760047 DOI: 10.1158/0008-5472.can-18-0306] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/28/2018] [Accepted: 05/09/2018] [Indexed: 12/31/2022]
Abstract
A major obstacle to the success rate of chimeric antigen receptor (CAR-) T-cell therapy against solid tumors is the microenvironment antagonistic to T cells that solid tumors create. Conventional checkpoint blockade can silence lymphocyte antisurvival pathways activated by tumors, but because they are systemic, these treatments disrupt immune homeostasis and induce autoimmune side effects. Thus, new technologies are required to remodel the tumor milieu without causing systemic toxicities. Here, we demonstrate that targeted nanocarriers that deliver a combination of immune-modulatory agents can remove protumor cell populations and simultaneously stimulate antitumor effector cells. We administered repeated infusions of lipid nanoparticles coated with the tumor-targeting peptide iRGD and loaded with a combination of a PI3K inhibitor to inhibit immune-suppressive tumor cells and an α-GalCer agonist of therapeutic T cells to synergistically sway the tumor microenvironment of solid tumors from suppressive to stimulatory. This treatment created a therapeutic window of 2 weeks, enabling tumor-specific CAR-T cells to home to the lesion, undergo robust expansion, and trigger tumor regression. CAR-T cells administered outside this therapeutic window had no curative effect. The lipid nanoparticles we used are easy to manufacture in substantial amounts, and we demonstrate that repeated infusions of them are safe. Our technology may therefore provide a practical and low-cost strategy to potentiate many cancer immunotherapies used to treat solid tumors, including T-cell therapy, vaccines, and BITE platforms.Significance: A new nanotechnology approach can promote T-cell therapy for solid tumors. Cancer Res; 78(13); 3718-30. ©2018 AACR.
Collapse
Affiliation(s)
- Fan Zhang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sirkka B Stephan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Chibawanye I Ene
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington
| | - Tyrel T Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Eric C Holland
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, Washington.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Alvord Brain Tumor Center, University of Washington, Seattle, Washington
| | - Matthias T Stephan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. .,Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington
| |
Collapse
|
23
|
Wei W, Jiang D, Ehlerding EB, Luo Q, Cai W. Noninvasive PET Imaging of T cells. Trends Cancer 2018; 4:359-373. [PMID: 29709260 DOI: 10.1016/j.trecan.2018.03.009] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
Abstract
The rapidly evolving field of cancer immunotherapy recently saw the approval of several new therapeutic antibodies. Several cell therapies, for example, chimeric antigen receptor-expressing T cells (CAR-T), are currently in clinical trials for a variety of cancers and other diseases. However, approaches to monitor changes in the immune status of tumors or to predict therapeutic responses are limited. Monitoring lymphocytes from whole blood or biopsies does not provide dynamic and spatial information about T cells in heterogeneous tumors. Positron emission tomography (PET) imaging using probes specific for T cells can noninvasively monitor systemic and intratumoral immune alterations during experimental therapies and may have an important and expanding value in the clinic.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Department of Radiology, Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA; These authors contributed equally to this work
| | - Dawei Jiang
- Department of Radiology, Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA; These authors contributed equally to this work
| | - Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Weibo Cai
- Department of Radiology, Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA; Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, USA.
| |
Collapse
|
24
|
Palethorpe HM, Leach DA, Need EF, Drew PA, Smith E. Myofibroblast androgen receptor expression determines cell survival in co-cultures of myofibroblasts and prostate cancer cells in vitro. Oncotarget 2018; 9:19100-19114. [PMID: 29721186 PMCID: PMC5922380 DOI: 10.18632/oncotarget.24913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/06/2018] [Indexed: 01/18/2023] Open
Abstract
Fibroblasts express androgen receptor (AR) in the normal prostate and during prostate cancer development. We have reported that loss of AR expression in prostate cancer-associated fibroblasts is a poor prognostic indicator. Here we report outcomes of direct and indirect co-cultures of immortalised AR-positive (PShTert-AR) or AR-negative (PShTert) myofibroblasts with prostate cancer cells. In the initial co-cultures the AR-negative PC3 cell line was used so AR expression and signalling were restricted to the myofibroblasts. In both direct and indirect co-culture with PShTert-AR myofibroblasts, paracrine signalling to the PC3 cells slowed proliferation and induced apoptosis. In contrast, PC3 cells proliferated with PShTert myofibroblasts irrespective of the co-culture method. In direct co-culture PC3 cells induced apoptosis in and destroyed PShTerts by direct signalling. Similar results were seen in direct co-cultures with AR-negative DU145 and AR-positive LNCaP and C4-2B prostate cancer cell lines. The AR ligand 5α-dihydrotestosterone (DHT) inhibited the proliferation of the PShTert-AR myofibroblasts, thereby reducing the extent of their inhibitory effect on cancer cell growth. These results suggest loss of stromal AR would favour prostate cancer cell growth in vivo, providing an explanation for the clinical observation that reduced stromal AR is associated with a poorer outcome.
Collapse
Affiliation(s)
- Helen M Palethorpe
- Discipline of Surgical Specialities, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, Australia
| | - Damien A Leach
- Discipline of Surgical Specialities, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, Australia.,Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Eleanor F Need
- Discipline of Surgical Specialities, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, Australia
| | - Paul A Drew
- Discipline of Surgical Specialities, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, Australia.,School of Nursing and Midwifery, Flinders University, Adelaide, Australia
| | - Eric Smith
- Discipline of Surgical Specialities, The University of Adelaide, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, Australia.,Molecular Oncology, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, Australia
| |
Collapse
|
25
|
Emami-Shahri N, Foster J, Kashani R, Gazinska P, Cook C, Sosabowski J, Maher J, Papa S. Clinically compliant spatial and temporal imaging of chimeric antigen receptor T-cells. Nat Commun 2018. [PMID: 29540684 PMCID: PMC5852048 DOI: 10.1038/s41467-018-03524-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The unprecedented efficacy of chimeric antigen receptor (CAR) T-cell immunotherapy of CD19+ B-cell malignancy has established a new therapeutic pillar of hematology–oncology. Nonetheless, formidable challenges remain for the attainment of comparable success in patients with solid tumors. To accelerate progress and rapidly characterize emerging toxicities, systems that permit the repeated and non-invasive assessment of CAR T-cell bio-distribution would be invaluable. An ideal solution would entail the use of a non-immunogenic reporter that mediates specific uptake of an inexpensive, non-toxic and clinically established imaging tracer by CAR T cells. Here we show the utility of the human sodium iodide symporter (hNIS) for the temporal and spatial monitoring of CAR T-cell behavior in a cancer-bearing host. This system provides a clinically compliant toolkit for high-resolution serial imaging of CAR T cells in vivo, addressing a fundamental unmet need for future clinical development in the field. Adoptive transfer of chimeric antigen receptor (CAR) T cells has shown promising anticancer results in clinical trials. Here the authors use the human sodium iodide symporter (hNIS) as a reporter gene to image human CAR T cells in cancer-bearing mice using broadly available tracers and imaging platforms.
Collapse
Affiliation(s)
- Nia Emami-Shahri
- ImmunoEngineering Group, King's College London, Division of Cancer Studies, 3rd Floor Bermondsey Wing, King's Health Partners Integrated Cancer Centre, Great Maze Pond, Guy's Hospital, London, SE1 9RT, UK
| | - Julie Foster
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Roxana Kashani
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Patrycja Gazinska
- Breast Cancer Now, Division of Cancer Studies, Guy's Cancer Centre, Great Maze Pond, London, SE1 9RT, UK
| | - Celia Cook
- ImmunoEngineering Group, King's College London, Division of Cancer Studies, 3rd Floor Bermondsey Wing, King's Health Partners Integrated Cancer Centre, Great Maze Pond, Guy's Hospital, London, SE1 9RT, UK
| | - Jane Sosabowski
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - John Maher
- CAR Mechanics Group, King's College London, Division of Cancer Studies, 3rd Floor Bermondsey Wing, King's Health Partners Integrated Cancer Centre, Great Maze Pond, Guy's Hospital, London, SE1 9RT, UK.,Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, SE5 9RS, UK.,Department of Immunology, Eastbourne Hospital, King's Drive, Eastbourne, BN21 2UD, UK
| | - Sophie Papa
- ImmunoEngineering Group, King's College London, Division of Cancer Studies, 3rd Floor Bermondsey Wing, King's Health Partners Integrated Cancer Centre, Great Maze Pond, Guy's Hospital, London, SE1 9RT, UK. .,Department of Medical Oncology, Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
26
|
Abstract
Immunotherapies include various approaches, ranging from stimulating effector mechanisms to counteracting inhibitory and suppressive mechanisms, and creating a forum for discussing the most effective means of advancing these therapies through imaging is the focus of the newly formed Imaging in Cellular and Immune Therapies (ICIT) interest group within the World Molecular Imaging Society. Efforts are being made in the identification and validation of predictive biomarkers for a number of immunotherapies. Without predictive biomarkers, a considerable number of patients may receive treatments that have no chance of offering a benefit. This will reflect poorly on the field of immunotherapy and will yield false hopes in patients while at the same time contributing to significant cost to the healthcare system. This review summarizes the main strategies in cancer immune and cell-based therapies and discusses recent advances in imaging strategies aimed to improve cancer immunotherapy outcomes.
Collapse
Affiliation(s)
- Vladimir Ponomarev
- Department of Radiology, Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave Z-2063, Box 501, New York, NY, 10065, USA.
| |
Collapse
|
27
|
Lee JT, Moroz MA, Ponomarev V. Imaging T Cell Dynamics and Function Using PET and Human Nuclear Reporter Genes. Methods Mol Biol 2018; 1790:165-180. [PMID: 29858791 PMCID: PMC9344925 DOI: 10.1007/978-1-4939-7860-1_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Adoptive cell transfer immunotherapy has demonstrated significant promise in the treatment of cancer, with long-term, durable responses. T cells expressing T cell receptors (TCRs) that recognize tumor antigens, or engineered with chimeric antigen receptors (CARs) can recognize and eliminate tumor cells even in advanced disease. Positron emission tomography (PET) imaging with nuclear reporter genes, a noninvasive method to track and monitor function of engineered cells in vivo, allows quantitative, longitudinal monitoring of these cells, including their expansion/contraction, migration, retention at target and off-target sites, and biological state. As an additional advantage, some reporter genes also exhibit "suicide potential" permitting the safe elimination of adoptively transferred T cells in instances of adverse reaction to therapy. Here, we describe the production of human nuclear reporter gene-expressing T cells and noninvasive PET imaging to monitor their cell fate in vivo.
Collapse
Affiliation(s)
- Jason T Lee
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maxim A Moroz
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
28
|
Smith TT, Stephan SB, Moffett HF, McKnight LE, Ji W, Reiman D, Bonagofski E, Wohlfahrt ME, Pillai SPS, Stephan MT. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. NATURE NANOTECHNOLOGY 2017; 12:813-820. [PMID: 28416815 PMCID: PMC5646367 DOI: 10.1038/nnano.2017.57] [Citation(s) in RCA: 506] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 03/09/2017] [Indexed: 05/18/2023]
Abstract
An emerging approach for treating cancer involves programming patient-derived T cells with genes encoding disease-specific chimeric antigen receptors (CARs), so that they can combat tumour cells once they are reinfused. Although trials of this therapy have produced impressive results, the in vitro methods they require to generate large numbers of tumour-specific T cells are too elaborate for widespread application to treat cancer patients. Here, we describe a method to quickly program circulating T cells with tumour-recognizing capabilities, thus avoiding these complications. Specifically, we demonstrate that DNA-carrying nanoparticles can efficiently introduce leukaemia-targeting CAR genes into T-cell nuclei, thereby bringing about long-term disease remission. These polymer nanoparticles are easy to manufacture in a stable form, which simplifies storage and reduces cost. Our technology may therefore provide a practical, broadly applicable treatment that can generate anti-tumour immunity 'on demand' for oncologists in a variety of settings.
Collapse
Affiliation(s)
- Tyrel T. Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Sirkka B. Stephan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Howell F. Moffett
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Laura E. McKnight
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Weihang Ji
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Diana Reiman
- Technology Access Foundation (TAF) Academy, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Emmy Bonagofski
- Technology Access Foundation (TAF) Academy, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Martin E. Wohlfahrt
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Smitha P. S. Pillai
- Comparative Pathology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Matthias T. Stephan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
- Technology Access Foundation (TAF) Academy, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
- Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98105, USA
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington 98109, USA
| |
Collapse
|
29
|
Yusufi N, Mall S, Bianchi HDO, Steiger K, Reder S, Klar R, Audehm S, Mustafa M, Nekolla S, Peschel C, Schwaiger M, Krackhardt AM, D`Alessandria C. In-depth Characterization of a TCR-specific Tracer for Sensitive Detection of Tumor-directed Transgenic T Cells by Immuno-PET. Am J Cancer Res 2017; 7:2402-2416. [PMID: 28744323 PMCID: PMC5525745 DOI: 10.7150/thno.17994] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/22/2017] [Indexed: 12/19/2022] Open
Abstract
A number of different technologies have been developed to monitor in vivo the distribution of gene-modified T cells used in immunotherapy. Nevertheless, in-depth characterization of novel approaches with respect to sensitivity and clinical applicability are so far missing. We have previously described a novel method to track engineered human T cells in tumors using 89Zr-Df-aTCRmu-F(ab')2 targeting the murinized part of the TCR beta domain (TCRmu) of a transgenic TCR. Here, we performed an in-depth in vitro characterization of the tracer in terms of antigen affinity, immunoreactivity, influence on T-cell functionality and stability in vitro and in vivo. Of particular interest, we have developed diverse experimental settings to quantify TCR-transgenic T cells in vivo. Local application of 89Zr-Df-aTCRmu-F(ab')2-labeled T cells in a spot-assay revealed signal detection down to approximately 1.8x104 cells. In a more clinically relevant model, NSG mice were intravenously injected with different numbers of transgenic T cells, followed by injection of the 89Zr-Df-aTCRmu-F(ab')2 tracer, PET/CT imaging and subsequent ex vivo T-cell quantification in the tumor. Using this setting, we defined a comparable detection limit of 1.0x104 T cells. PET signals correlated well to total numbers of transgenic T cells detected ex vivo independently of the engraftment rates observed in different individual experiments. Thus, these findings confirm the high sensitivity of our novel PET/CT T-cell tracking method and provide critical information about the quantity of transgenic T cells in the tumor environment suggesting our technology being highly suitable for further clinical translation.
Collapse
|
30
|
Hoffmann SHL, Maurer A, Reck DI, Reischl G, Pichler BJ, Kneilling M, Griessinger CM. Murine Lymphocyte Labeling by 64Cu-Antibody Receptor Targeting for In Vivo Cell Trafficking by PET/CT. J Vis Exp 2017. [PMID: 28518105 DOI: 10.3791/55270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This protocol illustrates the production of 64Cu and the chelator conjugation/radiolabeling of a monoclonal antibody (mAb) followed by murine lymphocyte cell culture and 64Cu-antibody receptor targeting of the cells. In vitro evaluation of the radiolabel and non-invasive in vivo cell tracking in an animal model of an airway delayed-type hypersensitivity reaction (DTHR) by PET/CT are described. In detail, the conjugation of a mAb with the chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) is shown. Following the production of radioactive 64Cu, radiolabeling of the DOTA-conjugated mAb is described. Next, the expansion of chicken ovalbumin (cOVA)-specific CD4+ interferon (IFN)-γ-producing T helper cells (cOVA-TH1) and the subsequent radiolabeling of the cOVA-TH1 cells are depicted. Various in vitro techniques are presented to evaluate the effects of 64Cu-radiolabeling on the cells, such as the determination of cell viability by trypan blue exclusion, the staining for apoptosis with Annexin V for flow cytometry, and the assessment of functionality by IFN-γ enzyme-linked immunosorbent assay (ELISA). Furthermore, the determination of the radioactive uptake into the cells and the labeling stability are described in detail. This protocol further describes how to perform cell tracking studies in an animal model for an airway DTHR and, therefore, the induction of cOVA-induced acute airway DHTR in BALB/c mice is included. Finally, a robust PET/CT workflow including image acquisition, reconstruction, and analysis is presented. The 64Cu-antibody receptor targeting approach with subsequent receptor internalization provides high specificity and stability, reduced cellular toxicity, and low efflux rates compared to common PET-tracers for cell labeling, e.g.64Cu-pyruvaldehyde bis(N4-methylthiosemicarbazone) (64Cu-PTSM). Finally, our approach enables non-invasive in vivo cell tracking by PET/CT with an optimal signal-to-background ratio for 48 h. This experimental approach can be transferred to different animal models and cell types with membrane-bound receptors that are internalized.
Collapse
Affiliation(s)
- Sabrina H L Hoffmann
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen
| | - Dorothea I Reck
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen
| | - Gerald Reischl
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen
| | - Manfred Kneilling
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen; Department of Dermatology, Eberhard Karls University Tübingen
| | - Christoph M Griessinger
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen;
| |
Collapse
|
31
|
Smith TT, Moffett HF, Stephan SB, Opel CF, Dumigan AG, Jiang X, Pillarisetty VG, Pillai SPS, Wittrup KD, Stephan MT. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors. J Clin Invest 2017; 127:2176-2191. [PMID: 28436934 DOI: 10.1172/jci87624] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 02/23/2017] [Indexed: 01/01/2023] Open
Abstract
Therapies using T cells that are programmed to express chimeric antigen receptors (CAR T cells) consistently produce positive results in patients with hematologic malignancies. However, CAR T cell treatments are less effective in solid tumors for several reasons. First, lymphocytes do not efficiently target CAR T cells; second, solid tumors create an immunosuppressive microenvironment that inactivates T cell responses; and third, solid cancers are typified by phenotypic diversity and thus include cells that do not express proteins targeted by the engineered receptors, enabling the formation of escape variants that elude CAR T cell targeting. Here, we have tested implantable biopolymer devices that deliver CAR T cells directly to the surfaces of solid tumors, thereby exposing them to high concentrations of immune cells for a substantial time period. In immunocompetent orthotopic mouse models of pancreatic cancer and melanoma, we found that CAR T cells can migrate from biopolymer scaffolds and eradicate tumors more effectively than does systemic delivery of the same cells. We have also demonstrated that codelivery of stimulator of IFN genes (STING) agonists stimulates immune responses to eliminate tumor cells that are not recognized by the adoptively transferred lymphocytes. Thus, these devices may improve the effectiveness of CAR T cell therapy in solid tumors and help protect against the emergence of escape variants.
Collapse
Affiliation(s)
- Tyrel T Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Howell F Moffett
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sirkka B Stephan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Cary F Opel
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, USA
| | - Amy G Dumigan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Xiuyun Jiang
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | | | - Smitha P S Pillai
- Comparative Pathology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - K Dane Wittrup
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, USA.,Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA
| | - Matthias T Stephan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington, USA.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
32
|
Palethorpe HM, Drew PA, Smith E. Androgen Signaling in Esophageal Adenocarcinoma Cell Lines In Vitro. Dig Dis Sci 2017; 62:3402-3414. [PMID: 29052817 PMCID: PMC5694516 DOI: 10.1007/s10620-017-4794-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 10/06/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND We showed previously that nuclear localization of the androgen receptor (AR) and expression of the androgen-responsive gene FK506-binding protein 5 (FKBP5) in esophageal adenocarcinoma (EAC) tissues were associated with decreased patient survival, suggesting a role for androgens in this cancer. AIM To investigate the effect of the AR ligand 5α-dihydrotestosterone (DHT) on AR-expressing EAC cell lines in vitro. METHODS AND RESULTS In tissue resection specimens from EAC patients, FKBP5 expression was positively associated with proliferation as measured by Ki-67 expression. We stably transduced AR into three AR-negative EAC cell lines, OE33, JH-EsoAd1, and OE19, to investigate androgen signaling in vitro. In the AR-expressing cell lines, 10 nM DHT, the concentration typically used to study AR signaling, induced changes in the expression of androgen-responsive genes and inhibited proliferation by inducing cell cycle arrest and senescence. At lower DHT concentrations near the half maximal inhibitory concentration (IC50), the AR-expressing cell lines proliferated and there were changes in the expression of androgen-responsive genes. In direct co-culture with cancer-associated fibroblast-like PShTert myofibroblasts, 10 nM DHT induced changes in the expression of androgen-responsive genes but did not inhibit proliferation. CONCLUSIONS This is the first study to show that EAC cell lines respond to androgen in vitro. Proliferation together with the expression of androgen-responsive genes was dependent on the concentration of DHT, or the presence of a permissive microenvironment, consistent with observations in the tissues. These findings are consistent with a role for androgen signaling in EAC.
Collapse
Affiliation(s)
- Helen M. Palethorpe
- 0000 0004 1936 7304grid.1010.0Solid Cancer Regulation Group, Discipline of Surgery, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, 28 Woodville Rd, Woodville South, SA 5011 Australia
| | - Paul A. Drew
- 0000 0004 1936 7304grid.1010.0Solid Cancer Regulation Group, Discipline of Surgery, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, 28 Woodville Rd, Woodville South, SA 5011 Australia ,0000 0004 0367 2697grid.1014.4School of Nursing and Midwifery, Flinders University, PO Box 2100, Adelaide, SA 5001 Australia
| | - Eric Smith
- 0000 0004 1936 7304grid.1010.0Solid Cancer Regulation Group, Discipline of Surgery, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, The University of Adelaide, 28 Woodville Rd, Woodville South, SA 5011 Australia ,0000 0004 0486 659Xgrid.278859.9Department of Medical Oncology, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, 28 Woodville Rd, Woodville South, SA 5011 Australia
| |
Collapse
|
33
|
Abstract
Chimaeric antigen receptor (CAR) therapy is entering the mainstream for the treatment of CD19(+)cancers. As is does we learn more about resistance to therapy and the role, risks and management of toxicity. In solid tumour CAR therapy research the route to the clinic is less smooth with a wealth of challenges facing translating this, potentially hugely valuable, therapeutic option for patients. As we strive to understand our successes, and navigate the challenges, having a clear understanding of how adoptively transferred CAR-T-cells behavein vivoand in human trials is invaluable. Harnessing reporter gene imaging to enable detection and tracking of small numbers of CAR-T-cells after adoptive transfer is one way by which we can accomplish this. The compatibility of certain reporter gene systems with tracers available routinely in the clinic makes this approach highly useful for future appraisal of CAR-T-cell success in humans.
Collapse
|
34
|
Serganova I, Moroz E, Cohen I, Moroz M, Mane M, Zurita J, Shenker L, Ponomarev V, Blasberg R. Enhancement of PSMA-Directed CAR Adoptive Immunotherapy by PD-1/PD-L1 Blockade. MOLECULAR THERAPY-ONCOLYTICS 2016; 4:41-54. [PMID: 28345023 PMCID: PMC5363727 DOI: 10.1016/j.omto.2016.11.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/29/2016] [Indexed: 01/07/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy in hematologic malignancies has shown remarkable responses, but the same level of success has not been observed in solid tumors. A new prostate cancer model (Myc-CaP:PSMA(+)) and a second-generation anti-hPSMA human CAR T cells expressing a Click Beetle Red luciferase reporter) were used to study hPSMA targeting and assess CAR T cell trafficking and persistence by bioluminescence imaging (BLI). We investigated the antitumor efficacy of human CAR T cells targeting human prostate-specific membrane antigen (hPSMA), in the presence and absence of the target antigen; first alone and then combined with a monoclonal antibody targeting the human programmed death receptor 1 (anti-hPD1 mAb). PDL-1 expression was detected in Myc-CaP murine prostate tumors growing in immune competent FVB/N and immune-deficient SCID mice. Endogenous CD3+ T cells were restricted from the centers of Myc-CaP tumor nodules growing in FVB/N mice. Following anti-programmed cell death protein 1 (PD-1) treatment, the restriction of CD3+ T cells was reversed, and a tumor-treatment response was observed. Adoptive hPSMA-CAR T cell immunotherapy was enhanced when combined with PD-1 blockade, but the treatment response was of comparatively short duration, suggesting other immune modulation mechanisms exist and restrict CAR T cell targeting, function, and persistence in hPSMA expressing Myc-CaP tumors. Interestingly, an “inverse pattern” of CAR T cell BLI intensity was observed in control and test tumors, which suggests CAR T cells undergo changes leading to a loss of signal and/or number following hPSMA-specific activation. The lower BLI signal intensity in the hPSMA test tumors (compared with controls) is due in part to a decrease in T cell mitochondrial function following T cell activation, which may limit the intensity of the ATP-dependent Luciferin-luciferase bioluminescence signal.
Collapse
Affiliation(s)
- Inna Serganova
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ekaterina Moroz
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ivan Cohen
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY 10065, USA
| | - Maxim Moroz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mayuresh Mane
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Juan Zurita
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Larissa Shenker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronald Blasberg
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
35
|
Vedvyas Y, Shevlin E, Zaman M, Min IM, Amor-Coarasa A, Park S, Park S, Kwon KW, Smith T, Luo Y, Kim D, Kim Y, Law B, Ting R, Babich J, Jin MM. Longitudinal PET imaging demonstrates biphasic CAR T cell responses in survivors. JCI Insight 2016; 1:e90064. [PMID: 27882353 DOI: 10.1172/jci.insight.90064] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Clinical monitoring of adoptive T cell transfer (ACT) utilizes serial blood analyses to discern T cell activity. While useful, these data are 1-dimensional and lack spatiotemporal information related to treatment efficacy or toxicity. We utilized a human genetic reporter, somatostatin receptor 2 (SSTR2), and PET, to quantitatively and longitudinally visualize whole-body T cell distribution and antitumor dynamics using a clinically approved radiotracer. Initial evaluations determined that SSTR2-expressing T cells were detectable at low densities with high sensitivity and specificity. SSTR2-based PET was applied to ACT of chimeric antigen receptor (CAR) T cells targeting intercellular adhesion molecule-1, which is overexpressed in anaplastic thyroid tumors. Timely CAR T cell infusions resulted in survival of tumor-bearing mice, while later infusions led to uniform death. Real-time PET imaging revealed biphasic T cell expansion and contraction at tumor sites among survivors, with peak tumor burden preceding peak T cell burden by several days. In contrast, nonsurvivors displayed unrelenting increases in tumor and T cell burden, indicating that tumor growth was outpacing T cell killing. Thus, longitudinal PET imaging of SSTR2-positive ACT dynamics enables prognostic, spatiotemporal monitoring with unprecedented clarity and detail to facilitate comprehensive therapy evaluation with potential for clinical translation.
Collapse
Affiliation(s)
- Yogindra Vedvyas
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Enda Shevlin
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Marjan Zaman
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Irene M Min
- Department of Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Alejandro Amor-Coarasa
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Spencer Park
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Susan Park
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Keon-Woo Kwon
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Turner Smith
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Yonghua Luo
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Dohyun Kim
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Young Kim
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York, USA.,Department of Pathology, Chonnam National University Medical School, Gwangju, South Korea
| | - Benedict Law
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Richard Ting
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - John Babich
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Moonsoo M Jin
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York, USA.,Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA.,Department of Surgery, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
36
|
Saadatpour Z, Rezaei A, Ebrahimnejad H, Baghaei B, Bjorklund G, Chartrand M, Sahebkar A, Morovati H, Mirzaei HR, Mirzaei H. Imaging techniques: new avenues in cancer gene and cell therapy. Cancer Gene Ther 2016; 24:1-5. [PMID: 27834357 DOI: 10.1038/cgt.2016.61] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 09/11/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022]
Abstract
Cancer is one of the world's most concerning health problems and poses many challenges in the range of approaches associated with the treatment of cancer. Current understanding of this disease brings to the fore a number of novel therapies that can be useful in the treatment of cancer. Among them, gene and cell therapies have emerged as novel and effective approaches. One of the most important challenges for cancer gene and cell therapies is correct monitoring of the modified genes and cells. In fact, visual tracking of therapeutic cells, immune cells, stem cells and genetic vectors that contain therapeutic genes and the various drugs is important in cancer therapy. Similarly, molecular imaging, such as nanosystems, fluorescence, bioluminescence, positron emission tomography, single photon-emission computed tomography and magnetic resonance imaging, have also been found to be powerful tools in monitoring cancer patients who have received therapeutic cell and gene therapies or drug therapies. In this review, we focus on these therapies and their molecular imaging techniques in treating and monitoring the progress of the therapies on various types of cancer.
Collapse
Affiliation(s)
- Z Saadatpour
- Bozorgmehr Imaging Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - A Rezaei
- Khanevadeh Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - H Ebrahimnejad
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - B Baghaei
- Department of Endodontics, School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - G Bjorklund
- Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - M Chartrand
- DigiCare Behavioral Research, Casa Grande, AZ, USA
| | - A Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H Morovati
- Department of Medical Parasitology and Medical Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - H R Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - H Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Mall S, Yusufi N, Wagner R, Klar R, Bianchi H, Steiger K, Straub M, Audehm S, Laitinen I, Aichler M, Peschel C, Ziegler S, Mustafa M, Schwaiger M, D'Alessandria C, Krackhardt AM. Immuno-PET Imaging of Engineered Human T Cells in Tumors. Cancer Res 2016; 76:4113-23. [PMID: 27354381 DOI: 10.1158/0008-5472.can-15-2784] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 03/13/2016] [Indexed: 11/16/2022]
Abstract
Sensitive in vivo imaging technologies applicable to the clinical setting are still lacking for adoptive T-cell-based immunotherapies, an important gap to fill if mechanisms of tumor rejection or escape are to be understood. Here, we propose a highly sensitive imaging technology to track human TCR-transgenic T cells in vivo by directly targeting the murinized constant TCR beta domain (TCRmu) with a zirconium-89 ((89)Zr)-labeled anti-TCRmu-F(ab')2 fragment. Binding of the labeled or unlabeled F(ab')2 fragment did not impair functionality of transgenic T cells in vitro and in vivo Using a murine xenograft model of human myeloid sarcoma, we monitored by Immuno-PET imaging human central memory T cells (TCM), which were transgenic for a myeloid peroxidase (MPO)-specific TCR. Diverse T-cell distribution patterns were detected by PET/CT imaging, depending on the tumor size and rejection phase. Results were confirmed by IHC and semiquantitative evaluation of T-cell infiltration within the tumor corresponding to the PET/CT images. Overall, these findings offer a preclinical proof of concept for an imaging approach that is readily tractable for clinical translation. Cancer Res; 76(14); 4113-23. ©2016 AACR.
Collapse
Affiliation(s)
- Sabine Mall
- Medizinische Klinik III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Nahid Yusufi
- Nuklearmedizinische Klinik und Poliklinik, Technische Universität München, Munich, Germany
| | - Ricarda Wagner
- Medizinische Klinik III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Richard Klar
- Medizinische Klinik III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Henrique Bianchi
- Medizinische Klinik III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Katja Steiger
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Melanie Straub
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Munich, Germany
| | - Stefan Audehm
- Medizinische Klinik III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Iina Laitinen
- Nuklearmedizinische Klinik und Poliklinik, Technische Universität München, Munich, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Munich, Germany
| | - Christian Peschel
- Medizinische Klinik III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany. German Cancer Consortium (DKTK), Munich, Germany
| | - Sibylle Ziegler
- Nuklearmedizinische Klinik und Poliklinik, Technische Universität München, Munich, Germany
| | - Mona Mustafa
- Nuklearmedizinische Klinik und Poliklinik, Technische Universität München, Munich, Germany
| | - Markus Schwaiger
- Nuklearmedizinische Klinik und Poliklinik, Technische Universität München, Munich, Germany. German Cancer Consortium (DKTK), Munich, Germany
| | - Calogero D'Alessandria
- Nuklearmedizinische Klinik und Poliklinik, Technische Universität München, Munich, Germany
| | - Angela M Krackhardt
- Medizinische Klinik III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany. German Cancer Consortium (DKTK), Munich, Germany. Clinical Cooperation Group Antigen Specific T-Cell Therapy, Helmholtz Zentrum München, Munich, Germany.
| |
Collapse
|
38
|
Abstract
Positron emission tomography (PET) is a powerful noninvasive imaging technique able to measure distinct biological processes in vivo by administration of a radiolabeled probe. Whole-body measurements track the probe accumulation providing a means to measure biological changes such as metabolism, cell location, or tumor burden. PET can also be applied to both preclinical and clinical studies providing three-dimensional information. For immunotherapies (in particular understanding T cell responses), PET can be utilized for spatial and longitudinal tracking of T lymphocytes. Although PET has been utilized clinically for over 30 years, the recent development of additional PET radiotracers have dramatically expanded the use of PET to detect endogenous or adoptively transferred T cells in vivo. Novel probes have identified changes in T cell quantity, location, and function. This has enabled investigators to track T cells outside of the circulation and in hematopoietic organs such as spleen, lymph nodes, and bone marrow, or within tumors. In this review, we cover advances in PET detection of the antitumor T cell response and areas of focus for future studies.
Collapse
|
39
|
Adoptive cellular therapy for chronic lymphocytic leukemia and B cell malignancies. CARs and more. Best Pract Res Clin Haematol 2016; 29:15-29. [DOI: 10.1016/j.beha.2016.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 11/18/2022]
|
40
|
Juergens RA, Zukotynski KA, Singnurkar A, Snider DP, Valliant JF, Gulenchyn KY. Imaging Biomarkers in Immunotherapy. BIOMARKERS IN CANCER 2016; 8:1-13. [PMID: 26949344 PMCID: PMC4768940 DOI: 10.4137/bic.s31805] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 12/23/2022]
Abstract
Immune-based therapies have been in use for decades but recent work with immune checkpoint inhibitors has now changed the landscape of cancer treatment as a whole. While these advances are encouraging, clinicians still do not have a consistent biomarker they can rely on that can accurately select patients or monitor response. Molecular imaging technology provides a noninvasive mechanism to evaluate tumors and may be an ideal candidate for these purposes. This review provides an overview of the mechanism of action of varied immunotherapies and the current strategies for monitoring patients with imaging. We then describe some of the key researches in the preclinical and clinical literature on the current uses of molecular imaging of the immune system and cancer.
Collapse
Affiliation(s)
| | - Katherine A Zukotynski
- Department of Radiology, McMaster University, Hamilton, ON, Canada.; Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Amit Singnurkar
- Department of Radiology, McMaster University, Hamilton, ON, Canada.; Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Denis P Snider
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - John F Valliant
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Karen Y Gulenchyn
- Department of Radiology, McMaster University, Hamilton, ON, Canada.; Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
41
|
Moroz MA, Zhang H, Lee J, Moroz E, Zurita J, Shenker L, Serganova I, Blasberg R, Ponomarev V. Comparative Analysis of T Cell Imaging with Human Nuclear Reporter Genes. J Nucl Med 2015; 56:1055-60. [PMID: 26025962 DOI: 10.2967/jnumed.115.159855] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Monitoring genetically altered T cells is an important component of adoptive T cell therapy in patients, and the ability to visualize their trafficking/targeting, proliferation/expansion, and retention/death using highly sensitive reporter systems that do not induce an immunologic response would provide useful information. Therefore, we focused on human reporter gene systems that have the potential for translation to clinical studies. The objective of the in vivo imaging studies was to determine the minimum number of T cells that could be visualized with the different nuclear reporter systems. We determined the imaging sensitivity (lower limit of T cell detection) of each reporter using appropriate radiolabeled probes for PET or SPECT imaging. METHODS Human T cells were transduced with retroviral vectors encoding for the human norepinephrine transporter (hNET), human sodium-iodide symporter (hNIS), a human deoxycytidine kinase double mutant (hdCKDM), and herpes simplex virus type 1 thymidine kinase (hsvTK) reporter genes. After viability and growth were assessed, 10(5) to 3 × 10(6) reporter T cells were injected subcutaneously on the shoulder area. The corresponding radiolabeled probe was injected intravenously 30 min later, followed by sequential PET or SPECT imaging. Radioactivity at the T cell injection sites and in the thigh (background) was measured. RESULTS The viability and growth of experimental cells were unaffected by transduction. The hNET/meta-(18)F-fluorobenzylguanidine ((18)F-MFBG) reporter system could detect less than 1 × 10(5) T cells because of its high uptake in the transduced T cells and low background activity. The hNIS/(124)I-iodide reporter system could detect approximately 1 × 10(6) T cells; (124)I-iodide uptake at the T cell injection site was time-dependent and associated with high background. The hdCKDM/2'-(18)F-fluoro-5-ethyl-1-β-d-arabinofuranosyluracil ((18)F-FEAU) and hsvTK/(18)F-FEAU reporter systems detected approximately 3 × 10(5) T cells, respectively. (18)F-FEAU was a more efficient probe (higher uptake, lower background) than (124)I-1-(2-deoxy-2-fluoro-1-d-arabinofuranosyl)-5-iodouracil for both hdCKDM and hsvTK. CONCLUSION A comparison of different reporter gene-reporter probe systems for imaging of T cell number was performed, and the hNET/(18)F-MFBG PET reporter system was found to be the most sensitive and capable of detecting approximately 35-40 × 10(3) T cells at the site of T cell injection in the animal model.
Collapse
Affiliation(s)
- Maxim A Moroz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hanwen Zhang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason Lee
- Crump Institute for Molecular Imaging, University of California, Los Angeles, California
| | - Ekaterina Moroz
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Juan Zurita
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Larissa Shenker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Inna Serganova
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Ronald Blasberg
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York; and Sloan Kettering Institute Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York Sloan Kettering Institute Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
42
|
Abstract
The promise of cell-based immunotherapies for the treatment of cancer offers the potential of therapeutic synergy with chemo- and radiotherapies that may overcome current limitations leading to durable responses and prevention of recurrence. There is a wide array of cell-based immunotherapies that are either poised to enter cancer clinical trials or are in clinical trials, and many are showing some success. Yet within this field, there are clear obstacles that need to be overcome, including limited access across tissue barriers, development of antigen tolerance, and the immunosuppressive microenvironment of tumors. Through an understanding of immune cell signaling and trafficking, immune cell populations can be selected for adoptive transfer, and delivery strategies can be developed that circumvent these obstacles to effectively direct populations of cells with robust anti-tumor efficacy to the target. Within the realm of immune cell therapies, cytokine-induced killer (CIK) cells have demonstrated promising trafficking patterns, effective delivery of synergistic therapeutics, and stand-alone efficacy. Here, we discuss the next generation of CIK therapies and their application for the effective treatment of a wide variety of cancers.
Collapse
Affiliation(s)
- Tobi L Schmidt
- Molecular Imaging Program at Stanford (MIPS), Department of Pediatrics, Stanford Center for Photomedicine, Stanford University School of Medicine, Clark Center, East Wing E150, 318 Campus Drive, Stanford, CA, 94305-5439, USA
| | | | | |
Collapse
|
43
|
Youniss FM, Sundaresan G, Graham LJ, Wang L, Berry CR, Dewkar GK, Jose P, Bear HD, Zweit J. Near-infrared imaging of adoptive immune cell therapy in breast cancer model using cell membrane labeling. PLoS One 2014; 9:e109162. [PMID: 25334026 PMCID: PMC4204826 DOI: 10.1371/journal.pone.0109162] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/19/2014] [Indexed: 12/22/2022] Open
Abstract
The overall objective of this study is to non-invasively image and assess tumor targeting and retention of directly labeled T-lymphocytes following their adoptive transfer in mice. T-lymphocytes obtained from draining lymph nodes of 4T1 (murine breast cancer cell) sensitized BALB/C mice were activated in-vitro with Bryostatin/Ionomycin for 18 hours, and were grown in the presence of Interleukin-2 for 6 days. T-lymphocytes were then directly labeled with 1,1-dioctadecyltetramethyl indotricarbocyanine Iodide (DiR), a lipophilic near infrared fluorescent dye that labels the cell membrane. Assays for viability, proliferation, and function of labeled T-lymphocytes showed that they were unaffected by DiR labeling. The DiR labeled cells were injected via tail vein in mice bearing 4T1 tumors in the flank. In some cases labeled 4T1 specific T-lymphocytes were injected a week before 4T1 tumor cell implantation. Multi-spectral in vivo fluorescence imaging was done to subtract the autofluorescence and isolate the near infrared signal carried by the T-lymphocytes. In recipient mice with established 4T1 tumors, labeled 4T1 specific T-lymphocytes showed marked tumor retention, which peaked 6 days post infusion and persisted at the tumor site for up to 3 weeks. When 4T1 tumor cells were implanted 1-week post-infusion of labeled T-lymphocytes, T-lymphocytes responded to the immunologic challenge and accumulated at the site of 4T1 cell implantation within two hours and the signal persisted for 2 more weeks. Tumor accumulation of labeled 4T1 specific T-lymphocytes was absent in mice bearing Meth A sarcoma tumors. When lysate of 4T1 specific labeled T-lymphocytes was injected into 4T1 tumor bearing mice the near infrared signal was not detected at the tumor site. In conclusion, our validated results confirm that the near infrared signal detected at the tumor site represents the DiR labeled 4T1 specific viable T-lymphocytes and their response to immunologic challenge can be imaged in vivo.
Collapse
Affiliation(s)
- Fatma M. Youniss
- Department of Radiology, Center for Molecular Imaging, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Gobalakrishnan Sundaresan
- Department of Radiology, Center for Molecular Imaging, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Laura J. Graham
- Department of Surgery, Division of Surgical Oncology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Li Wang
- Department of Radiology, Center for Molecular Imaging, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Collin R. Berry
- Department of Radiology, Center for Molecular Imaging, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Gajanan K. Dewkar
- Department of Radiology, Center for Molecular Imaging, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Purnima Jose
- Department of Radiology, Center for Molecular Imaging, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Harry D. Bear
- Department of Surgery, Division of Surgical Oncology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jamal Zweit
- Department of Radiology, Center for Molecular Imaging, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
44
|
Kuruppu D, Brownell AL, Shah K, Mahmood U, Tanabe KK. Molecular imaging with bioluminescence and PET reveals viral oncolysis kinetics and tumor viability. Cancer Res 2014; 74:4111-21. [PMID: 24876106 DOI: 10.1158/0008-5472.can-13-3472] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Viral oncolysis, the destruction of cancer cells by replicating virus, is an experimental cancer therapy that continues to be explored. The treatment paradigm for this therapy involves successive waves of lytic replication in cancer cells. At present, monitoring viral titer at sites of replication requires biopsy. However, repeat serial biopsies are not practically feasible for temporal monitoring of viral replication and tumor response in patients. Molecular imaging provides a noninvasive method to identify intracellular viral gene expression in real time. We imaged viral oncolysis and tumor response to oncolysis sequentially with bioluminescence and positron emission tomography (PET), revealing the kinetics of both processes in tumor xenografts. We demonstrate that virus replication cycles can be identified as successive waves of reporter expression that occur ∼2 days after the initial viral tumor infection peak. These waves correspond to virions that are released following a replication cycle. The viral and cellular kinetics were imaged with Fluc and Rluc bioluminescence reporters plus two 18F-labeled PET reporters FHBG [9-(4-18F-fluoro-3-[hydroxymethyl] butyl) guanine] and FLT (18F-3'-deoxy-3-'fluorothymidine), respectively. Correlative immunohistochemistry on tumor xenograft sections confirmed in vivo results. Our findings show how PET can be used to identify virus replication cycles and for real-time measurements of intratumoral replicating virus levels. This noninvasive imaging approach has potential utility for monitoring viral oncolysis therapy in patients.
Collapse
Affiliation(s)
| | | | - Khalid Shah
- Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Umar Mahmood
- Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | | |
Collapse
|
45
|
Narunsky L, Oren R, Bochner F, Neeman M. Imaging aspects of the tumor stroma with therapeutic implications. Pharmacol Ther 2013; 141:192-208. [PMID: 24134903 DOI: 10.1016/j.pharmthera.2013.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 12/25/2022]
Abstract
Cancer cells rely on extensive support from the stroma in order to survive, proliferate and invade. The tumor stroma is thus an important potential target for anti-cancer therapy. Typical changes in the stroma include a shift from the quiescence promoting-antiangiogenic extracellular matrix to a provisional matrix that promotes invasion and angiogenesis. These changes in the extracellular matrix are induced by changes in the secretion of extracellular matrix proteins and glucose amino glycans, extravasation of plasma proteins from hyperpermeable vessels and release of matrix modifying enzymes resulting in cleavage and cross-linking of matrix macromolecules. These in turn alter the rigidity of the matrix and the exposure and release of cytokines. Changes in matrix rigidity and vessel permeability affect drug delivery and mediate resistance to cytotoxic therapy. These stroma changes are brought about not only by the cancer cells, but also through the action of many cell types that are recruited by tumors including immune cells, fibroblasts and endothelial cells. Within the tumor, these normal host cells are activated resulting in loss of inhibitory and induction of cancer promoting activities. Key to the development of stroma-targeted therapies, selective biomarkers were developed for specific imaging of key aspects of the tumor stroma.
Collapse
Affiliation(s)
- Lian Narunsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Roni Oren
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Filip Bochner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michal Neeman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
46
|
Bhatnagar P, Li Z, Choi Y, Guo J, Li F, Lee DY, Figliola M, Huls H, Lee DA, Zal T, Li KC, Cooper LJN. Imaging of genetically engineered T cells by PET using gold nanoparticles complexed to Copper-64. Integr Biol (Camb) 2013; 5:231-8. [PMID: 23034721 DOI: 10.1039/c2ib20093g] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Adoptive transfer of primary T cells genetically modified to have desired specificity can exert an anti-tumor response in some patients. To improve our understanding of their therapeutic potential we have developed a clinically-appealing approach to reveal their in vivo biodistribution using nanoparticles that serve as a radiotracer for imaging by positron emission tomography (PET). T cells electroporated with DNA plasmids from the Sleeping Beauty transposon-transposase system to co-express a chimeric antigen receptor (CAR) specific for CD19 and Firefly luciferase (ffLuc) were propagated on CD19(+) K562-derived artificial antigen presenting cells. The approach to generating our clinical-grade CAR(+) T cells was adapted for electro-transfer of gold nanoparticles (GNPs) functionalized with (64)Cu(2+) using the macrocyclic chelator (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, DOTA) and polyethyleneglycol (GNP-(64)Cu/PEG2000). MicroPET/CT was used to visualize CAR(+)EGFPffLucHyTK(+)GNP-(64)Cu/PEG2000(+) T cells and correlated with bioluminescence imaging. These data demonstrate that GNPs conjugated with (64)Cu(2+) can be prepared as a radiotracer for PET and used to image T cells using an approach that has translational implications.
Collapse
Affiliation(s)
- Parijat Bhatnagar
- Baylor College of Medicine & Texas Children's Hospital, Department of Obstetrics & Gynecology, Division of Maternal Fetal Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ghosh A, Dogan Y, Moroz M, Holland AM, Yim NL, Rao UK, Young LF, Tannenbaum D, Masih D, Velardi E, Tsai JJ, Jenq RR, Penack O, Hanash AM, Smith OM, Piersanti K, Lezcano C, Murphy GF, Liu C, Palomba ML, Sauer MG, Sadelain M, Ponomarev V, van den Brink MRM. Adoptively transferred TRAIL+ T cells suppress GVHD and augment antitumor activity. J Clin Invest 2013; 123:2654-62. [PMID: 23676461 DOI: 10.1172/jci66301] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 03/14/2013] [Indexed: 01/24/2023] Open
Abstract
Current strategies to suppress graft-versus-host disease (GVHD) also compromise graft-versus-tumor (GVT) responses. Furthermore, most experimental strategies to separate GVHD and GVT responses merely spare GVT function without actually enhancing it. We have previously shown that endogenously expressed TNF-related apoptosis-inducing ligand (TRAIL) is required for optimal GVT activity against certain malignancies in recipients of allogeneic hematopoietic stem cell transplantation (allo-HSCT). In order to model a donor-derived cellular therapy, we genetically engineered T cells to overexpress TRAIL and adoptively transferred donor-type unsorted TRAIL+ T cells into mouse models of allo-HSCT. We found that murine TRAIL+ T cells induced apoptosis of alloreactive T cells, thereby reducing GVHD in a DR5-dependent manner. Furthermore, murine TRAIL+ T cells mediated enhanced in vitro and in vivo antilymphoma GVT response. Moreover, human TRAIL+ T cells mediated enhanced in vitro cytotoxicity against both human leukemia cell lines and against freshly isolated chronic lymphocytic leukemia (CLL) cells. Finally, as a model of off-the-shelf, donor-unrestricted antitumor cellular therapy, in vitro-generated TRAIL+ precursor T cells from third-party donors also mediated enhanced GVT response in the absence of GVHD. These data indicate that TRAIL-overexpressing donor T cells could potentially enhance the curative potential of allo-HSCT by increasing GVT response and suppressing GVHD.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Immunology and Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Youn H, Hong KJ. In vivo non invasive molecular imaging for immune cell tracking in small animals. Immune Netw 2012; 12:223-9. [PMID: 23396713 PMCID: PMC3566416 DOI: 10.4110/in.2012.12.6.223] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 12/18/2022] Open
Abstract
Clinical and preclinical in vivo immune cell imaging approaches have been used to study immune cell proliferation, apoptosis and interaction at the microscopic (intra-vital imaging) and macroscopic (whole-body imaging) level by use of ex vivo or in vivo labeling method. A series of imaging techniques ranging from non-radiation based techniques such as optical imaging, MRI, and ultrasound to radiation based CT/nuclear imaging can be used for in vivo immune cell tracking. These imaging modalities highlight the intrinsic behavior of different immune cell populations in physiological context. Fluorescent, radioactive or paramagnetic probes can be used in direct labeling protocols to monitor the specific cell population. Reporter genes can also be used for genetic, indirect labeling protocols to track the fate of a given cell subpopulation in vivo. In this review, we summarized several methods dealing with dendritic cell, macrophage, and T lymphocyte specifically labeled for different macroscopic wholebody imaging techniques both for the study of their physiological function and in the context of immunotherapy to exploit imaging-derived information and immune-based treatments.
Collapse
Affiliation(s)
- Hyewon Youn
- Department of Nuclear Medicine, Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea. ; Laboratory of Molecular Imaging and Therapy, Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-799, Korea. ; Cancer Imaging Center, Seoul National University Cancer Hospital Tumor Biology, Seoul 110-799, Korea
| | | |
Collapse
|
49
|
Park JJ, Lee TS, Son JJ, Chun KS, Song IH, Park YS, Kim KI, Lee YJ, Kang JH. Comparison of cell-labeling methods with ¹²⁴I-FIAU and ⁶⁴Cu-PTSM for cell tracking using chronic myelogenous leukemia cells expressing HSV1-tk and firefly luciferase. Cancer Biother Radiopharm 2012; 27:719-28. [PMID: 23009582 DOI: 10.1089/cbr.2012.1225] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell-tracking methods with molecular-imaging modality can monitor the biodistribution of cells. In this study, the direct-labeling method with ⁶⁴Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) (⁶⁴Cu-PTSM), indirect cell-labeling methods with herpes simplex virus type 1-thymidine kinase (HSV1-tk)-mediated ¹²⁴I-2'-fluoro-2'-deoxy-1-β-D-arabinofuranosyl-5-iodouracil (¹²⁴I-FIAU) were comparatively investigated in vitro and in vivo for tracking of human chronic myelogenous leukemia cells. K562-TL was established by retroviral transduction of the HSV1-tk and firefly luciferase gene in the K562 cell. K562-TL cells were labeled with ⁶⁴Cu-PTSM or ¹²⁴I-FIAU. Cell labeling efficiency, viability, and radiolabels retention were compared in vitro. The biodistribution of radiolabeled K562-TL cells with each radiolabel and small-animal positron emission tomography imaging were performed. Additionally, in vivo and ex vivo bioluminescence imaging (BLI) and tissue reverse transcriptase-polymerase chain reaction (RT-PCR) analysis were used for confirming those results. K562-TL cells were efficiently labeled with both radiolabels. The radiolabel retention (%) of ¹²⁴I-FIAU (95.2%±1.1%) was fourfold higher than ⁶⁴Cu-PTSM (23.6%±0.7%) at 24 hours postlabeling. Viability of radiolabeled cells was statistically nonsignificant between ¹²⁴I-FIAU and ⁶⁴Cu-PTSM. The radioactivity of each radiolabeled cells was predominantly accumulated in the lungs and liver at 2 hours. Both the radioactivity of ⁶⁴Cu-PTSM- and ¹²⁴I-FIAU-labeled cells was highly accumulated in the liver at 24 hours. However, the radioactivity of ¹²⁴I-FIAU-labeled cells was markedly decreased from the body at 24 hours. The K562-TL cells were dominantly localized in the lungs and liver, which also verified by BLI and RT-PCR analysis at 2 and 24 hours postinjection. The ⁶⁴Cu-PTSM-labeled cell-tracking method is more efficient than ¹²⁴I-FIAU-labeled cell tracking, because of markedly decrease of radioactivity and fast efflux of ¹²⁴I-FIAU in vivo. In spite of a high labeling yield and radiolabel retention of ¹²⁴I-FIAU in vitro, the in vivo cell-tracking method using ⁶⁴Cu-PTSM could be a useful method to evaluate the distribution and targeting of various cell types, especially, stem cells and immune cells.
Collapse
Affiliation(s)
- Jae-Jun Park
- Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences-KIRAMS, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yaghoubi SS, Campbell DO, Radu CG, Czernin J. Positron emission tomography reporter genes and reporter probes: gene and cell therapy applications. Am J Cancer Res 2012; 2:374-91. [PMID: 22509201 PMCID: PMC3326723 DOI: 10.7150/thno.3677] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/09/2012] [Indexed: 12/22/2022] Open
Abstract
Positron emission tomography (PET) imaging reporter genes (IRGs) and PET reporter probes (PRPs) are amongst the most valuable tools for gene and cell therapy. PET IRGs/PRPs can be used to non-invasively monitor all aspects of the kinetics of therapeutic transgenes and cells in all types of living mammals. This technology is generalizable and can allow long-term kinetics monitoring. In gene therapy, PET IRGs/PRPs can be used for whole-body imaging of therapeutic transgene expression, monitoring variations in the magnitude of transgene expression over time. In cell or cellular gene therapy, PET IRGs/PRPs can be used for whole-body monitoring of therapeutic cell locations, quantity at all locations, survival and proliferation over time and also possibly changes in characteristics or function over time. In this review, we have classified PET IRGs/PRPs into two groups based on the source from which they were derived: human or non-human. This classification addresses the important concern of potential immunogenicity in humans, which is important for expansion of PET IRG imaging in clinical trials. We have then discussed the application of this technology in gene/cell therapy and described its use in these fields, including a summary of using PET IRGs/PRPs in gene and cell therapy clinical trials. This review concludes with a discussion of the future direction of PET IRGs/PRPs and recommends cell and gene therapists collaborate with molecular imaging experts early in their investigations to choose a PET IRG/PRP system suitable for progression into clinical trials.
Collapse
|