1
|
Ullah G, Nisar M, Rehman FU, Paree Paker N, Hussain Munis MF, Chaudhary HJ. Mitigating maize stalk rot disease: harnessing Bacillus subtilis PM57 and Bacillus cereus PM38 as biocontrol allies against Erwiniacarotovora. Microb Pathog 2025; 205:107556. [PMID: 40254077 DOI: 10.1016/j.micpath.2025.107556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/14/2025] [Accepted: 04/05/2025] [Indexed: 04/22/2025]
Abstract
Maize bacterial stalk rot, caused by Erwinia carotovora pv. zeae (EC) is a significant threat to maize production, and applicable biocontrol measures are lacking. This study aims to identify a potent biocontrol agent against Erwinia carotovora and enhance plant growth under stress conditions. Thirty strains were screened using the agar plate well diffusion method. Strains PM57 and PM38 exhibited the highest antagonistic activity, forming inhibition zones of 5.0 and 4.51 mm, while distilled water served as a control with no inhibition. Their cell-free supernatants (CFSs) also demonstrated strong antagonistic activity with the maximum inhibition zones of 7.0 and 5.5 mm. The minimum inhibitory concentration of cell-free supernatants from both strains was 50 μg/ml. PM57 was identified as Bacillus subtilis via 16S rRNA gene sequencing. FTIR analysis revealed functional groups, including sulfonates, carbohydrates, proteins, and polyphenols in PM38, while PM57 exhibited peaks related to C-N stretching and aliphatic primary amine. GC-MS analysis identified twenty-six bioactive compounds known for their biological and medicinal properties, including tert-butyl phenol compounds, hydrocarbons, aldehydes, benzoquinones, pyrroles, and terpenes. Both inoculants produced volatile metabolites that effectively inhibited Erwinia carotovora growth in vitro. A greenhouse study revealed that PM57 reduced stalk rot disease incidence by 76.83 %, while PM38 reduced it by 74.94 %. The application of both inoculants enhanced chlorophyll activity; PM57 increased plant-growth by 11 %, and PM38 by 6 % and improved pathogen stress tolerance in maize seedlings compared to the positive control. These results demonstrate the potential of PM57 and PM38 as effective biocontrol agents for sustainable maize cultivation.
Collapse
Affiliation(s)
- Ghufran Ullah
- Department of Plant Science, Faculty of Biological Science, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Maleeha Nisar
- Department of Plant Science, Faculty of Biological Science, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Fazal Ur Rehman
- Department of Plant Science, Faculty of Biological Science, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | - Najeeba Paree Paker
- Department of Plant Science, Faculty of Biological Science, Quaid-i-Azam University Islamabad, 45320, Pakistan
| | | | - Hassan Javed Chaudhary
- Department of Plant Science, Faculty of Biological Science, Quaid-i-Azam University Islamabad, 45320, Pakistan.
| |
Collapse
|
2
|
Cai Z, Zhong Q, Zhang D, Feng Y, Wang Q, Yang Y, Xu Y, Liang C, Liu Z, Cai K. Z-Spectral MRI Quantifies the Mass and Metabolic Activity of Adipose Tissues With Fat-Water-Fraction and Amide-Proton-Transfer Contrasts. J Magn Reson Imaging 2025; 61:1905-1913. [PMID: 39215496 PMCID: PMC11868463 DOI: 10.1002/jmri.29598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) is metabolically activatable and plays an important role in obesity and metabolic diseases. With reduced fat-water-fraction (FWF) compared with white adipose tissue (WAT), BAT mass and its functional activation may be quantified with Z-spectra MRI, with built-in FWF and the metabolic amide proton transfer (APT) contrasts. PURPOSE To investigate if Z-spectral MRI can quantify the mass and metabolic activity of adipose tissues. STUDY TYPE Prospective. SUBJECTS Seven groups of 8-week-old male rats, including two groups (n = 7 per group) for in vivo MRI study and five groups (n = 5 per group) for ex vivo validation; 12 young and healthy volunteers with 6 male and 6 female. FIELD STRENGTH/SEQUENCE The 7 T small animal and 3 T clinical systems, T2-weighted imaging, Rapid Acquisition with Relaxation Enhancement (RARE) readout based chemical exchange saturation transfer (CEST) Z-spectral MRI sequence. ASSESSMENT Quantified FWF and APT from Z-spectra in rats before and after norepinephrine (NE) stimulation and in healthy human subjects; ex vivo measurements of total proteins in BAT from rats. STATISTICAL TESTS Two-tailed unpaired Student's t-tests and repeated measures ANOVA. P-value <0.05 was considered significant. RESULTS Decreased FWF (from 39.6% ± 7.2% before NE injection to 16.4% ± 7.2% 120 minutes after NE injection, P < 0.0001) and elevated APT (from 1.1% ± 0.5% before NE injection to 2.9% ± 0.5% 120 minutes after NE injection, P < 0.0001) signals in BAT were observed with in vivo Z-spectral MRI in rats injected with NE at 7 T MRI. At clinical 3 T, Z-spectral MRI was used to quantify the FWF (58.5% ± 7.2% in BAT and 73.7% ± 6.5% in WAT with P < 0.0001) and APT (2.6% ± 0.8% in BAT and 0.9% ± 0.3% in WAT with P < 0.0001) signals in healthy volunteers. APT signals of BAT were negatively correlated with the BMI in humans (r = 0.71). DATA CONCLUSION Endogenous Z-spectral MRI was demonstrated to simultaneously quantify BAT mass and function based on its FWF and APT contrasts. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE 1.
Collapse
Affiliation(s)
- Zimeng Cai
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Qiaoling Zhong
- Department of Radiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Daming Zhang
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
- Department of Radiology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde, Foshan), Foshan, China
| | - Qian Wang
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, China
| | - Yuanbo Yang
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | | | - Changhong Liang
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Zaiyi Liu
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Kejia Cai
- Radiology Department, University of Illinois at Chicago, Chicago, Illinois, USA
- Biomedical Engineering Department, University of llinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Kononova YA, Tuchina TP, Babenko AY. Brown and Beige Adipose Tissue: One or Different Targets for Treatment of Obesity and Obesity-Related Metabolic Disorders? Int J Mol Sci 2024; 25:13295. [PMID: 39769065 PMCID: PMC11677471 DOI: 10.3390/ijms252413295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
The failure of the fight against obesity makes us turn to new goals in its treatment. Now, brown adipose tissue has attracted attention as a promising target for the treatment of obesity and associated metabolic disorders such as insulin resistance, dyslipidemia, and glucose tolerance disorders. Meanwhile, the expansion of our knowledge has led to awareness about two rather different subtypes: classic brown and beige (inducible brown) adipose tissue. These subtypes have different origin, differences in the expression of individual genes but also a lot in common. Both tissues are thermogenic, which means that, by increasing energy consumption, they can improve their balance with excess intake. Both tissues are activated in response to specific inducers (cold, beta-adrenergic receptor activation, certain food and drugs), but beige adipose tissue transdifferentiates back into white adipose tissue after the cessation of inducing action, while classic brown adipose tissue persists, but its activity decreases. In this review, we attempted to understand whether there are differences in the effects of different groups of thermogenesis-affecting drugs on these tissues. The analysis showed that this area of research is rather sparse and requires close attention in further studies.
Collapse
Affiliation(s)
- Yulia A. Kononova
- World-Class Scientific Center “Center for Personalized Medicine”, Almazov National Medical Research Centre, 197341 St. Petersburg, Russia;
| | - Taisiia P. Tuchina
- Endocrinology Department, Almazov National Medical Research Centre, 197341 St. Petersburg, Russia;
| | - Alina Yu. Babenko
- World-Class Scientific Center “Center for Personalized Medicine”, Almazov National Medical Research Centre, 197341 St. Petersburg, Russia;
| |
Collapse
|
4
|
Cai Z, Zhong Q, Feng Y, Wang Q, Zhang Z, Wei C, Yin Z, Liang C, Liew CW, Kazak L, Cypess AM, Liu Z, Cai K. Non-invasive mapping of brown adipose tissue activity with magnetic resonance imaging. Nat Metab 2024; 6:1367-1379. [PMID: 39054361 PMCID: PMC11272596 DOI: 10.1038/s42255-024-01082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
Thermogenic brown adipose tissue (BAT) has a positive impact on whole-body metabolism. However, in vivo mapping of BAT activity typically relies on techniques involving ionizing radiation, such as [18F]fluorodeoxyglucose ([18F]FDG) positron emission tomography (PET) and computed tomography (CT). Here we report a noninvasive metabolic magnetic resonance imaging (MRI) approach based on creatine chemical exchange saturation transfer (Cr-CEST) contrast to assess in vivo BAT activity in rodents and humans. In male rats, a single dose of the β3-adrenoceptor agonist (CL 316,243) or norepinephrine, as well as cold exposure, triggered a robust elevation of the Cr-CEST MRI signal, which was consistent with the [18F]FDG PET and CT data and 1H nuclear magnetic resonance measurements of creatine concentration in BAT. We further show that Cr-CEST MRI detects cold-stimulated BAT activation in humans (both males and females) using a 3T clinical scanner, with data-matching results from [18F]FDG PET and CT measurements. This study establishes Cr-CEST MRI as a promising noninvasive and radiation-free approach for in vivo mapping of BAT activity.
Collapse
Affiliation(s)
- Zimeng Cai
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Qiaoling Zhong
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Qian Wang
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Zuoman Zhang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cailv Wei
- School of Medicine, Shenzhen Campus, Sun Yat-sen University, Shenzhen, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Changhong Liang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Chong Wee Liew
- Physiology and Biophysics Department, University of Illinois at Chicago, Chicago, IL, USA
| | - Lawrence Kazak
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Aaron M Cypess
- Diabetes, Endocrinology, and Obesity Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China.
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Bansal SK, Bansal MB. Pathogenesis of MASLD and MASH - role of insulin resistance and lipotoxicity. Aliment Pharmacol Ther 2024; 59 Suppl 1:S10-S22. [PMID: 38451123 DOI: 10.1111/apt.17930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/26/2023] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Insulin resistance and lipotoxicity are extremely interconnected but fundamental in setting the stage for the development of MASLD/MASH. AIM/METHODS A comprehensive literature search was performed and key themes were synthesised to provide insight into the underlying molecular mechanisms of insulin resistance and lipotoxicity in the liver, muscle, pancreas and adipose tissue and how organ cross-talk is fundamental to driving disease pathogenesis. RESULTS Classical thinking postulates that excess FFA load exceeds the storage capacity of adipose tissue, which is predicated upon both genetic and environmental factors. This results in insulin resistance and compensatory hyperinsulinaemia by pancreatic beta cells to overcome target organ insulin resistance. As adipocyte dysfunction worsens, not only are excess FFA delivered to other organs, including skeletal muscle, pancreas and liver but a pro-inflammatory milieu is established with increases in IL-6, TNF-α and changes in adipokine levels (increased leptin and decreased adiponectin). With increased intramuscular lipid accumulation, lipotoxic species decrease insulin signalling, reduce glucose uptake by downregulation of GLUT4 and decrease glycogen synthesis. With this additional reduced capacity, hyperglycaemia is further exacerbated and increased FFA are delivered to the liver. The liver has the largest capacity to oxidise fat and to adapt to these stressors and, therefore, has become the last line of defence for excess lipid storage and utilisation, the capacity of which may be impacted by genetic and environmental factors. However, when the liver can no longer keep up with increasing FFA delivery and DNL, lipotoxic species accumulate with ensuing mitochondrial dysfunction, increased ER stress, oxidant stress and inflammasome activation, all of which drive hepatocyte injury and apoptosis. The resulting wound healing response, marked by stellate cell activation, drives collagen accumulation, progressive fibrosis, and, ultimately, end organ failure and death. This vicious cycle and complex interplay between insulin resistance, hyperinsulinaemia, lipotoxicity and multi-directional cross-talk among different target organs are critical drivers of MASLD/MASH. CONCLUSIONS Targeting tissue-specific insulin resistance and hyperinsulinaemia while decreasing FFA load (lipotoxicity) through dietary and lifestyle changes remain the best upstream interventions.
Collapse
Affiliation(s)
- Shalini K Bansal
- Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Meena B Bansal
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
6
|
Wu B, Cheng C, Qi Y, Zhou H, Peng H, Wan Q, Liu X, Zheng H, Zhang H, Zou C. Automatic segmentation of human supraclavicular adipose tissue using high-resolution T2-weighted magnetic resonance imaging. MAGMA (NEW YORK, N.Y.) 2023; 36:641-649. [PMID: 36538249 DOI: 10.1007/s10334-022-01056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE To achieve efficient segmentation of human supraclavicular adipose tissue (sclavAT) using high-resolution T2-weighted magnetic resonance images. METHODS High-resolution 1.0 mm isotropic 3D T2-weighted images covering human supraclavicular area were acquired in transverse or coronary plane from 29 volunteers using a 3.0 T MRI scanner. There were typically 144/288 slices for the transverse/coronary scans for each subject, which amounts to a total of 6816 images in 29 volunteers. A U-NET network was trained to segment the supraclavicular adipose tissue (sclavAT). The performance of the automatic segmentation method was evaluated by comparing the output results with the manual labels using the quantitative indices of dice similarity coefficient (DSC), precision rate (PR), and recall rate (RR). The auto-segmented images were used to calculate the sclavAT volumes and registered to the MR fat fraction (FF) images to quantify the fat component of the sclavAT area. The relationship between body mass index (BMI), the volume and FF of sclavAT area was evaluated for all subjects. RESULTS The DSC, PR and RR of the automatic sclavAT segmentation method on the testing datasets were 0.920 ± 0.048, 0.915 ± 0.070 and 0.930 ± 0.058. The volume and the mean FF of sclavAT were both found to be strongly correlated to BMI, with the correlation coefficient of 0.703 and 0.625 (p < 0.05), respectively. The averaged computation time of the automatic segmentation method was approximately 0.06 s per slice, compared to more than 5 min for manual labeling. CONCLUSION The present study demonstrates that the proposed automatic segmentation method using U-Net network is able to identify human sclavAT efficiently and accurately.
Collapse
Affiliation(s)
- Bingxia Wu
- School of Information Engineering, Wuhan University of Technology, Wuhan, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Chuanli Cheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
- Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China
| | - Yulong Qi
- Radiology Department, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hongyu Zhou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Hao Peng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Qian Wan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Huimao Zhang
- Radiology Department, Bethune First Hospital of Jilin University, Changchun, China
| | - Chao Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China.
- Imaging Research Institute of Innovative Medical Equipment, Shenzhen, China.
| |
Collapse
|
7
|
In vivo imaging of brown adipose tissue vasculature reactivity during adrenergic stimulation of non-shivering thermogenesis in mice. Sci Rep 2022; 12:21383. [PMID: 36496470 PMCID: PMC9741597 DOI: 10.1038/s41598-022-25819-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Brown adipose tissue (BAT) is a fat tissue specialized in heat production (non-shivering thermogenesis) and used by mammals to defend core body temperature when exposed to cold. Several studies have shown that during non-shivering thermogenesis the increase in BAT oxygen demand is met by a local and specific increase in tissue's blood flow. While the vasculature of BAT has been extensively studied postmortem in rodents using histology, optical and CT imaging techniques, vasculature changes during stimulation of non-shivering thermogenesis have never been directly detected in vivo. Here, by using computed tomography (CT) angiography with gold nanoparticles we investigate, non-invasively, changes in BAT vasculature during adrenergic stimulation of non-shivering thermogenesis by norepinephrine, a vasoconstrictor known to mediate brown fat heat production, and by CL 316,243, a specific β3-adrenergic agonist also known to elicit BAT thermogenesis in rodents. We found that while CL 316,243 causes local vasodilation in BAT, with little impact on the rest of the vasculature throughout the body, norepinephrine leads to local vasodilation in addition to peripheral vasoconstriction. As a result, a significantly greater relative increase in BAT perfusion is observed following the injection of NE compared to CL. This study demonstrates the use of in vivo CT angiography as an effective tool in assessing vascular reactivity in BAT both qualitatively and quantitatively in preclinical studies.
Collapse
|
8
|
Lin L, Zhang Q, Wang N, Jiang K, Lin Y, Chen Z, Song Q, Liu A, Wang J. Evaluation of brown adipose tissue with intermolecular double-quantum coherence magnetic resonance spectroscopy at 3.0 T. NMR IN BIOMEDICINE 2022; 35:e4676. [PMID: 35043481 DOI: 10.1002/nbm.4676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
In the current study, we propose a single-voxel (SV) magnetic resonance spectroscopy (MRS) pulse sequence, based on intermolecular double-quantum coherence (iDQC), for in vivo specific assessment of brown adipose tissue (BAT) at 3 T. The multilocular adipocyte, present in BAT, typically contains a large number of small lipid droplets surrounded by abundant intracellular water, while the monolocular adipocyte, present in white adipose tissue (WAT), accommodates only a single large lipid droplet with much less water content. The SV-iDQC sequence probes the spatial correlation between water and fat spins at a distance of about the size of an adipocyte, thus can be used for assessment of BAT, even when mixed with WAT and/or muscle tissues. This sequence for measurement of water-to-fat (water-fat) iDQC signals was tested on phantoms and mouse BAT and WAT tissues. It was then used to differentiate adipose tissues in the supraclavicular and subcutaneous regions of healthy youth human volunteers (n = 6). Phantom results with water-fat emulsions demonstrated enhanced water-fat iDQC signal with increased voxel size, increased energy level of emulsification, or increased distribution balance of water and fat spins. The animal tissue experiments resulted in obvious water-fat iDQC signal in mouse BAT, while this signal was almost absent in the WAT spectrum. The optimal choice of the dipolar coupling distance for the observation was approximately 100 μm, as tested on both emulsion phantom and animal tissue. The water-fat iDQC signals observed in the supraclavicular adipose tissues were higher than in the subcutaneous adipose tissues in healthy young volunteers (0.43 ± 0.36 vs. 0.10 ± 0.06, p = 0.06). It was concluded that the iDQC-based sequence has potential for assessment of mouse and human BAT at 3 T, which is of interest for clinical research and the diagnosis of obesity and associated diseases.
Collapse
Affiliation(s)
- Liangjie Lin
- Clinical & Technical Solutions, Philips Healthcare, Beijing, China
| | - Qinhe Zhang
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Nan Wang
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ke Jiang
- Clinical & Technical Solutions, Philips Healthcare, Beijing, China
| | - Yanqin Lin
- Department of Electronic Science, Xiamen University, Xiamen, China
| | - Zhong Chen
- Department of Electronic Science, Xiamen University, Xiamen, China
| | - Qingwei Song
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ailian Liu
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiazheng Wang
- Clinical & Technical Solutions, Philips Healthcare, Beijing, China
| |
Collapse
|
9
|
Human Brown Adipose Tissue and Metabolic Health: Potential for Therapeutic Avenues. Cells 2021; 10:cells10113030. [PMID: 34831253 PMCID: PMC8616549 DOI: 10.3390/cells10113030] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022] Open
Abstract
Obesity-associated metabolic abnormalities comprise a cluster of conditions including dyslipidemia, insulin resistance, diabetes and cardiovascular diseases that has affected more than 650 million people all over the globe. Obesity results from the accumulation of white adipose tissues mainly due to the chronic imbalance of energy intake and energy expenditure. A variety of approaches to treat or prevent obesity, including lifestyle interventions, surgical weight loss procedures and pharmacological approaches to reduce energy intake and increase energy expenditure have failed to substantially decrease the prevalence of obesity. Brown adipose tissue (BAT), the primary source of thermogenesis in infants and small mammals may represent a promising therapeutic target to treat obesity by promoting energy expenditure through non-shivering thermogenesis mediated by mitochondrial uncoupling protein 1 (UCP1). Since the confirmation of functional BAT in adult humans by several groups, approximately a decade ago, and its association with a favorable metabolic phenotype, intense interest on the significance of BAT in adult human physiology and metabolic health has emerged within the scientific community to explore its therapeutic potential for the treatment of obesity and metabolic diseases. A substantially decreased BAT activity in individuals with obesity indicates a role for BAT in the setting of human obesity. On the other hand, BAT mass and its prevalence correlate with lower body mass index (BMI), decreased age and lower glucose levels, leading to a lower incidence of cardio-metabolic diseases. The increased cold exposure in adult humans with undetectable BAT was associated with decreased body fat mass and increased insulin sensitivity. A deeper understanding of the role of BAT in human metabolic health and its interrelationship with body fat distribution and deciphering proper strategies to increase energy expenditure, by either increasing functional BAT mass or inducing white adipose browning, holds the promise for possible therapeutic avenues for the treatment of obesity and associated metabolic disorders.
Collapse
|
10
|
Flanagan EW, Altazan AD, Carmichael OT, Hu HH, Redman LM. Practical application of in vivo MRI-based brown adipose tissue measurements in infants. Obesity (Silver Spring) 2021; 29:1676-1683. [PMID: 34553508 PMCID: PMC9115839 DOI: 10.1002/oby.23237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The role of brown adipose tissue (BAT) in infant metabolism remains poorly understood, primarily because of the inherent limitation of positron emission tomography/computed tomography imaging to measure BAT, which is not suitable for infants. The aims of this method development study were to assess the feasibility, intra-rater reliability, interscan repeatability, and physiological relevance of measuring BAT in infants using magnetic resonance imaging (MRI). METHODS A total of 10 nonsedated infants (mean age, 22.6 [1.3] days old) completed two 3-T MRI exams using chemical-shift-encoded water-fat scans 6.2 (2.8) days apart. Candidate BAT voxels in the supraclavicular region were identified based on fat signal fraction (FSF). The volumes of BAT depots were manually traced, and FSF was calculated. Whole-body fat mass was determined using dual-energy x-ray absorptiometry. RESULTS Images were successfully obtained from 19 of 20 (95%) attempted scans. The mean BAT volume was 5.41 (SD 1.1) cm3 , and the mean FSF was 16.41% (SD 3.3%). Intra-rater analysis showed good reliability with no systemic bias (proportional bias for volume: p = 0.19; FSF: p = 0.30). Test-retest for interscan repeatability was good (intraclass correlation coefficients for volume: 0.92, p = 0.001 and intraclass correlation coefficients for FSF: 0.93, p < 0.001). FSF was inversely related to fat-free mass (r = -0.69, p = 0.03). CONCLUSIONS This method development study supports the use of MRI to obtain reliable and quantitative measurements of BAT volume in infants.
Collapse
Affiliation(s)
- Emily W Flanagan
- Pennington Biomedical Research Center, Baton Rouge, Louisana, USA
| | - Abby D Altazan
- Pennington Biomedical Research Center, Baton Rouge, Louisana, USA
| | | | - Houchun H Hu
- Hyperfine Research, Inc., Guilford, Connecticut, USA
| | - Leanne M Redman
- Pennington Biomedical Research Center, Baton Rouge, Louisana, USA
| |
Collapse
|
11
|
Ogawa M, Koskensalo K, Laurila S, Holstila M, Lahesmaa M, Virtanen KA, Iida H, Akima H, Nuutila P. Brown adipose tissue fat-fraction is associated with skeletal muscle adiposity. Eur J Appl Physiol 2021; 122:81-90. [PMID: 34564756 DOI: 10.1007/s00421-021-04816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE While brown adipose tissue (BAT) activity is known to be associated with both muscle and adipose tissue volumes, the association between BAT and muscle composition remains unclear, especially in adults. Therefore, the present study aimed to examine the association between BAT parameters (glucose uptake and fat-fraction) and muscle volumes and intramuscular adipose tissue contents among healthy young and middle-aged men. METHODS BAT glucose uptake was determined using positron emission tomography with [18F]-2-deoxy-2-fluoro-D-glucose (18F-FDG) during cold exposure in 19 young and middle-aged men (36.3 ± 10.7 years). The fat-fraction of BAT was determined from volumes of interest set in cervical and supraclavicular adipose tissue depots using signal fat-fraction maps via magnetic resonance imaging (MRI). Muscle volumes and intramuscular adipose tissue contents of m. tibialis anterior and m. multifidus lumborum were measured using MRI. RESULTS The fat-fraction of BAT was significantly associated with intramuscular adipose tissue content in m. tibialis anterior (n = 13, rs = 0.691, P = 0.009). A similar trend was also observed in m. multifidus lumborum (n = 19, rs = 0.454, P = 0.051). However, BAT glucose uptake was not associated with intramuscular adipose tissue contents in both muscles, nor were muscle volumes associated with the BAT glucose uptake and fat-fraction. CONCLUSION The fat-fraction of BAT increases with skeletal muscle adiposity, especially in the lower leg, among healthy young and middle-aged men.
Collapse
Affiliation(s)
- Madoka Ogawa
- Graduate School of Education and Human Development, Nagoya University, Aichi, Japan. .,Nippon Sport Science University, Tokyo, Japan. .,Kyoto Sangyo University, Kyoto, Japan.
| | - Kalle Koskensalo
- Turku PET centre, University of Turku, Turku, Finland.,Turku PET centre, Turku University Hospital, Turku, Finland.,Department of Medical Physics, Turku University Hospital, Turku, Finland.,Heart Center, Turku University Hospital, Turku, Finland
| | - Sanna Laurila
- Turku PET centre, University of Turku, Turku, Finland.,Turku PET centre, Turku University Hospital, Turku, Finland.,Heart Center, Turku University Hospital, Turku, Finland.,Satakunta Central Hospital, Pori, Finland
| | - Milja Holstila
- Turku PET centre, University of Turku, Turku, Finland.,Turku PET centre, Turku University Hospital, Turku, Finland.,Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland
| | - Minna Lahesmaa
- Turku PET centre, University of Turku, Turku, Finland.,Turku PET centre, Turku University Hospital, Turku, Finland
| | - Kirsi A Virtanen
- Turku PET centre, Turku University Hospital, Turku, Finland.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Hidehiro Iida
- Turku PET centre, University of Turku, Turku, Finland.,Turku PET centre, Turku University Hospital, Turku, Finland
| | - Hiroshi Akima
- Graduate School of Education and Human Development, Nagoya University, Aichi, Japan.,Research Center of Health, Physical Fitness and Sports, Nagoya University, Aichi, Japan
| | - Pirjo Nuutila
- Turku PET centre, University of Turku, Turku, Finland.,Turku PET centre, Turku University Hospital, Turku, Finland.,Department of Endocrinology, Turku University Hospital, Turku, Finland
| |
Collapse
|
12
|
Yang J, Zhang H, Parhat K, Xu H, Li M, Wang X, Ran C. Molecular Imaging of Brown Adipose Tissue Mass. Int J Mol Sci 2021; 22:ijms22179436. [PMID: 34502347 PMCID: PMC8431742 DOI: 10.3390/ijms22179436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Brown adipose tissue (BAT), a uniquely thermogenic tissue that plays an important role in metabolism and energy expenditure, has recently become a revived target in the fight against metabolic diseases, such as obesity, diabetes, and non-alcoholic fatty liver disease (NAFLD). Different from white adipose tissue (WAT), the brown adipocytes have distinctive features including multilocular lipid droplets, a large number of mitochondria, and a high expression of uncoupling protein-1 (UCP-1), as well as abundant capillarity. These histologic characteristics provide an opportunity to differentiate BAT from WAT using imaging modalities, such as PET/CT, SPECT/CT, MRI, NIRF and Ultrasound. However, most of the reported imaging methods were BAT activation dependent, and the imaging signals could be affected by many factors, including environmental temperatures and the states of the sympathetic nervous system. Accurate BAT mass detection methods that are independent of temperature and hormone levels have the capacity to track the development and changes of BAT throughout the lifetime of mammals, and such methods could be very useful for the investigation of potential BAT-related therapies. In this review, we focus on molecular imaging modalities that can detect and quantify BAT mass. In addition, their detection mechanism and limitations will be discussed as well.
Collapse
Affiliation(s)
- Jing Yang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, MA 02129, USA
- Correspondence: (J.Y.); (C.R.)
| | - Haili Zhang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Kadirya Parhat
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Hui Xu
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Mingshuang Li
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Xiangyu Wang
- School of Engineering, China Pharmaceutical University, Nanjing 210009, China; (H.Z.); (K.P.); (H.X.); (M.L.); (X.W.)
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Room 2301, Building 149, Charlestown, Boston, MA 02129, USA
- Correspondence: (J.Y.); (C.R.)
| |
Collapse
|
13
|
Crandall JP, Wahl RL. Perspectives on Brown Adipose Tissue Imaging: Insights from Preclinical and Clinical Observations from the Last and Current Century. J Nucl Med 2021; 62:34S-43S. [PMID: 34230071 DOI: 10.2967/jnumed.120.246991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Brown adipose tissue (BAT) was first described in the 16th century, but until late last century had mainly been considered a tissue with the function of nonshivering thermogenesis, maintaining body temperature in key organs in newborns who have high body surface areas relative to their weight and thus marked radiative heat loss. BAT was believed to have substantially disappeared by adulthood. Molecular imaging with 18F-FDG PET and PET combined with CT, as well as imaging with 131I-metaiodobenzylguanidine (MIBG) beginning late last century have shown BAT to be present and active well into adulthood. This review highlights key aspects of BAT biology, early empiric observations misidentifying BAT, pitfalls in image interpretation, and methods to intentionally reduce BAT uptake, and outlines multiple imaging methods used to identify BAT in vivo. The therapeutic potential of increasing the amount or activity of BAT for weight loss and improvement of glucose and lipid profiles is highlighted as a major opportunity. Molecular imaging can help dissect the physiology of this complex dynamic tissue and offers the potential for addressing challenges separating "active BAT" from "total BAT." Research in BAT has grown extensively, and 18F-FDG PET is the key imaging procedure against which all other BAT imaging methods must be compared. Given the multiple functions of BAT, it is reasonable to consider it a previously unrecognized endocrine tissue and thus an appropriate topic for review in this supplement to The Journal of Nuclear Medicine.
Collapse
Affiliation(s)
- John P Crandall
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
14
|
Ouwerkerk R, Hamimi A, Matta J, Abd-Elmoniem KZ, Eary JF, Abdul Sater Z, Chen KY, Cypess AM, Gharib AM. Proton MR Spectroscopy Measurements of White and Brown Adipose Tissue in Healthy Humans: Relaxation Parameters and Unsaturated Fatty Acids. Radiology 2021; 299:396-406. [PMID: 33724063 DOI: 10.1148/radiol.2021202676] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background Activation of brown adipose tissue (BAT) in rodents increases lipolysis in white adipose tissue (WAT) and improves glucose tolerance. Adult humans can have metabolically active BAT. Implications for diabetes and obesity in humans require a better characterization of BAT in humans. Purpose To study fat depots with localized proton MR spectroscopy relaxometry and to identify differences between WAT and fluorine 18 fluorodeoxyglucose (FDG) PET/CT proven cold-activated BAT in humans. Materials and Methods Participants were consecutively enrolled in this prospective study (ClinicalTrials.gov identifiers: NCT01568671 and NCT01399385) from August 2016 to May 2019. Supraclavicular potential BAT regions were localized with MRI. Proton densities, T1, and T2 were measured with localized MR spectroscopy in potential BAT and in subcutaneous WAT. FDG PET/CT after cold stimulation was used to retrospectively identify active supraclavicular BAT or supraclavicular quiescent adipose tissue (QAT) regions. MR spectroscopy results from BAT and WAT were compared with grouped and paired tests. Results Of 21 healthy participants (mean age, 36 years ± 16 [standard deviation]; 13 men) FDG PET/CT showed active BAT in 24 MR spectroscopy-targeted regions in 16 participants (eight men). Four men had QAT. The T2 for methylene protons was shorter in BAT (mean, 69 msec ± 6, 24 regions) than in WAT (mean, 83 msec ± 3, 18 regions, P < .01) and QAT (mean, 78 msec ± 2, five regions, P < .01). A T2 cut-off value of 76 msec enabled the differentiation of BAT from WAT or QAT with a sensitivity of 85% and a specificity of 95%. Densities of protons adjacent and between double bonds were 33% and 24% lower, respectively, in BAT compared with those in WAT (P = .01 and P = .03, respectively), indicating a lower content of unsaturated and polyunsaturated fatty acids, respectively, in BAT compared with WAT. Conclusion Proton MR spectroscopy showed shorter T2 and lower unsaturated fatty acids in brown adipose tissue (BAT) than that in white adipose tissue in healthy humans. It was feasible to identify BAT with MR spectroscopy without the use of PET/CT or cold stimulation. © RSNA, 2021 See also the editorial by Barker in this issue. Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Ronald Ouwerkerk
- From the Biomedical and Metabolic Imaging Branch (R.O., A.H., J.M., K.Z.A., A.M.G.) and Diabetes, Endocrinology, and Obesity Branch (Z.A.S., K.Y.C., A.M.C.), National Institute of Diabetes and Digestive and Kidney Diseases, 10 Center Dr, Bldg 10-CRC, Room 3-5340, Bethesda, MD 20892-1263; and Cancer Imaging Program, National Cancer Institute, Bethesda, Md (J.F.E.)
| | - Ahmed Hamimi
- From the Biomedical and Metabolic Imaging Branch (R.O., A.H., J.M., K.Z.A., A.M.G.) and Diabetes, Endocrinology, and Obesity Branch (Z.A.S., K.Y.C., A.M.C.), National Institute of Diabetes and Digestive and Kidney Diseases, 10 Center Dr, Bldg 10-CRC, Room 3-5340, Bethesda, MD 20892-1263; and Cancer Imaging Program, National Cancer Institute, Bethesda, Md (J.F.E.)
| | - Jatin Matta
- From the Biomedical and Metabolic Imaging Branch (R.O., A.H., J.M., K.Z.A., A.M.G.) and Diabetes, Endocrinology, and Obesity Branch (Z.A.S., K.Y.C., A.M.C.), National Institute of Diabetes and Digestive and Kidney Diseases, 10 Center Dr, Bldg 10-CRC, Room 3-5340, Bethesda, MD 20892-1263; and Cancer Imaging Program, National Cancer Institute, Bethesda, Md (J.F.E.)
| | - Khaled Z Abd-Elmoniem
- From the Biomedical and Metabolic Imaging Branch (R.O., A.H., J.M., K.Z.A., A.M.G.) and Diabetes, Endocrinology, and Obesity Branch (Z.A.S., K.Y.C., A.M.C.), National Institute of Diabetes and Digestive and Kidney Diseases, 10 Center Dr, Bldg 10-CRC, Room 3-5340, Bethesda, MD 20892-1263; and Cancer Imaging Program, National Cancer Institute, Bethesda, Md (J.F.E.)
| | - Janet F Eary
- From the Biomedical and Metabolic Imaging Branch (R.O., A.H., J.M., K.Z.A., A.M.G.) and Diabetes, Endocrinology, and Obesity Branch (Z.A.S., K.Y.C., A.M.C.), National Institute of Diabetes and Digestive and Kidney Diseases, 10 Center Dr, Bldg 10-CRC, Room 3-5340, Bethesda, MD 20892-1263; and Cancer Imaging Program, National Cancer Institute, Bethesda, Md (J.F.E.)
| | - Zahraa Abdul Sater
- From the Biomedical and Metabolic Imaging Branch (R.O., A.H., J.M., K.Z.A., A.M.G.) and Diabetes, Endocrinology, and Obesity Branch (Z.A.S., K.Y.C., A.M.C.), National Institute of Diabetes and Digestive and Kidney Diseases, 10 Center Dr, Bldg 10-CRC, Room 3-5340, Bethesda, MD 20892-1263; and Cancer Imaging Program, National Cancer Institute, Bethesda, Md (J.F.E.)
| | - Kong Y Chen
- From the Biomedical and Metabolic Imaging Branch (R.O., A.H., J.M., K.Z.A., A.M.G.) and Diabetes, Endocrinology, and Obesity Branch (Z.A.S., K.Y.C., A.M.C.), National Institute of Diabetes and Digestive and Kidney Diseases, 10 Center Dr, Bldg 10-CRC, Room 3-5340, Bethesda, MD 20892-1263; and Cancer Imaging Program, National Cancer Institute, Bethesda, Md (J.F.E.)
| | - Aaron M Cypess
- From the Biomedical and Metabolic Imaging Branch (R.O., A.H., J.M., K.Z.A., A.M.G.) and Diabetes, Endocrinology, and Obesity Branch (Z.A.S., K.Y.C., A.M.C.), National Institute of Diabetes and Digestive and Kidney Diseases, 10 Center Dr, Bldg 10-CRC, Room 3-5340, Bethesda, MD 20892-1263; and Cancer Imaging Program, National Cancer Institute, Bethesda, Md (J.F.E.)
| | - Ahmed M Gharib
- From the Biomedical and Metabolic Imaging Branch (R.O., A.H., J.M., K.Z.A., A.M.G.) and Diabetes, Endocrinology, and Obesity Branch (Z.A.S., K.Y.C., A.M.C.), National Institute of Diabetes and Digestive and Kidney Diseases, 10 Center Dr, Bldg 10-CRC, Room 3-5340, Bethesda, MD 20892-1263; and Cancer Imaging Program, National Cancer Institute, Bethesda, Md (J.F.E.)
| |
Collapse
|
15
|
Santhanam P, Rowe SP, Solnes LB, Quainoo B, Ahima RS. A systematic review of imaging studies of human brown adipose tissue. Ann N Y Acad Sci 2021; 1495:5-23. [PMID: 33604891 DOI: 10.1111/nyas.14579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023]
Abstract
Brown adipose tissue (BAT) is involved in energy dissipation and has been linked to weight loss, insulin sensitivity, and reduced risk of atherosclerotic disease. BAT is found most often in the supraclavicular region, as well as mediastinal and paravertebral areas, and it is predominantly seen in young persons. BAT is activated by cold temperature and the sympathetic nervous system. In humans, BAT was initially detected via 2-deoxy-2-[18 F]fluoro-d-glucose (FDG) positron emission tomography/computed tomography (PET/CT), a high-resolution molecular imaging modality used to identify and stage malignancies. Recent studies have shown that BAT can be localized using conventional imaging modalities, such as CT or magnetic resonance imaging, as well as radiotracers used for single-photon emission CT. In this systematic review, we have summarized the evidence for BAT detection in humans using various imaging techniques.
Collapse
Affiliation(s)
- Prasanna Santhanam
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Asthma and Allergy Center, Baltimore, Maryland
| | - Steven P Rowe
- Division of Nuclear Medicine, Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lilja B Solnes
- Division of Nuclear Medicine, Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brittany Quainoo
- Columbian College of Arts and Sciences, George Washington University, Washington, DC
| | - Rexford S Ahima
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Asthma and Allergy Center, Baltimore, Maryland
| |
Collapse
|
16
|
Functional characterization of human brown adipose tissue metabolism. Biochem J 2020; 477:1261-1286. [PMID: 32271883 DOI: 10.1042/bcj20190464] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.
Collapse
|
17
|
Zhao Y, Pilvar A, Tank A, Peterson H, Jiang J, Aster JC, Dumas JP, Pierce MC, Roblyer D. Shortwave-infrared meso-patterned imaging enables label-free mapping of tissue water and lipid content. Nat Commun 2020; 11:5355. [PMID: 33097705 PMCID: PMC7585425 DOI: 10.1038/s41467-020-19128-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Water and lipids are key participants in many biological processes, but there are few non-invasive methods that provide quantification of these components in vivo, and none that can isolate and quantify lipids in the blood. Here we develop a new imaging modality termed shortwave infrared meso-patterned imaging (SWIR-MPI) to provide label-free, non-contact, spatial mapping of water and lipid concentrations in tissue. The method utilizes patterned hyperspectral illumination to target chromophore absorption bands in the 900-1,300 nm wavelength range. We use SWIR-MPI to monitor clinically important physiological processes including edema, inflammation, and tumor lipid heterogeneity in preclinical models. We also show that SWIR-MPI can spatially map blood-lipids in humans, representing an example of non-invasive and contact-free measurements of in vivo blood lipids. Together, these results highlight the potential of SWIR-MPI to enable new capabilities in fundamental studies and clinical monitoring of major conditions including obesity, cancer, and cardiovascular disease.
Collapse
Affiliation(s)
- Yanyu Zhao
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Anahita Pilvar
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Anup Tank
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Hannah Peterson
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - John Jiang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - John Paul Dumas
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Mark C Pierce
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Darren Roblyer
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
18
|
Yu Q, Huang S, Xu TT, Wang YC, Ju S. Measuring Brown Fat Using MRI and Implications in the Metabolic Syndrome. J Magn Reson Imaging 2020; 54:1377-1392. [PMID: 33047448 DOI: 10.1002/jmri.27340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 01/04/2023] Open
Abstract
Metabolic syndrome is presently becoming a global health concern. Brown adipose tissue (BAT) has the potential for managing the risk factors of metabolic syndrome by adjusting plasma lipids and glucose. Magnetic resonance imaging (MRI) is a noninvasive and radiation-free imaging modality for BAT research and clinical applications in both animals and humans. In the past decade, MRI technologies for detecting and characterizing BAT have developed rapidly, with progress in MRI sequencing and the emerging understanding of BAT. In this review, we focus on the main MRI methods for BAT including currently used imaging techniques and new methods and their implications for the symptoms and complications of metabolic syndrome. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Qian Yu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Shan Huang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Ting-Ting Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yuan-Cheng Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
19
|
Sievers W, Rathner JA, Green RA, Kettle C, Irving HR, Whelan DR, Fernandez RGD, Zacharias A. Innervation of supraclavicular adipose tissue: A human cadaveric study. PLoS One 2020; 15:e0236286. [PMID: 32702004 PMCID: PMC7377457 DOI: 10.1371/journal.pone.0236286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Functional brown adipose tissue (BAT) was identified in adult humans only in 2007 with the use of fluorodeoxyglucose positron emission tomography imaging. Previous studies have demonstrated a negative correlation between obesity and BAT presence in humans. It is proposed that BAT possesses the capacity to increase metabolism and aid weight loss. In rodents it is well established that BAT is stimulated by the sympathetic nervous system with the interscapular BAT being innervated via branches of intercostal nerves. Whilst there is evidence to suggest that BAT possesses beta-3 adrenoceptors, no studies have identified the specific nerve branch that carries sympathetic innervation to BAT in humans. The aim of this study was to identify and trace the peripheral nerve or nerves that innervate human BAT in the supraclavicular region. The posterior triangle region of the neck of cadaveric specimens were dissected in order to identify any peripheral nerve branches piercing and/or terminating in supraclavicular BAT. A previously undescribed branch of the cervical plexus terminating in a supraclavicular adipose depot was identified in all specimens. This was typically an independent branch of the plexus, from the third cervical spinal nerve, but in one specimen was a branch of the supraclavicular nerve. Histological analysis revealed the supraclavicular adipose depot contained tyrosine hydroxylase immunoreactive structures, which likely represent sympathetic axons. This is the first study that identifies a nerve branch to supraclavicular BAT-like tissue. This finding opens new avenues for the investigation of neural regulation of fat metabolism in humans.
Collapse
Affiliation(s)
- Will Sievers
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Joseph A. Rathner
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
- Department of Physiology, School of Biomedical Sciences University of Melbourne, Parkville, Victoria, Australia
| | - Rodney A. Green
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Christine Kettle
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Helen R. Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Donna R. Whelan
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Richard G. D. Fernandez
- Department of Physiology Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia
| | - Anita Zacharias
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| |
Collapse
|
20
|
Shrestha B, DeLuna F, Anastasio MA, Yong Ye J, Brey EM. Photoacoustic Imaging in Tissue Engineering and Regenerative Medicine. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:79-102. [PMID: 31854242 PMCID: PMC7041335 DOI: 10.1089/ten.teb.2019.0296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022]
Abstract
Several imaging modalities are available for investigation of the morphological, functional, and molecular features of engineered tissues in small animal models. While research in tissue engineering and regenerative medicine (TERM) would benefit from a comprehensive longitudinal analysis of new strategies, researchers have not always applied the most advanced methods. Photoacoustic imaging (PAI) is a rapidly emerging modality that has received significant attention due to its ability to exploit the strong endogenous contrast of optical methods with the high spatial resolution of ultrasound methods. Exogenous contrast agents can also be used in PAI for targeted imaging. Applications of PAI relevant to TERM include stem cell tracking, longitudinal monitoring of scaffolds in vivo, and evaluation of vascularization. In addition, the emerging capabilities of PAI applied to the detection and monitoring of cancer and other inflammatory diseases could be exploited by tissue engineers. This article provides an overview of the operating principles of PAI and its broad potential for application in TERM. Impact statement Photoacoustic imaging, a new hybrid imaging technique, has demonstrated high potential in the clinical diagnostic applications. The optical and acoustic aspect of the photoacoustic imaging system works in harmony to provide better resolution at greater tissue depth. Label-free imaging of vasculature with this imaging can be used to track and monitor disease, as well as the therapeutic progression of treatment. Photoacoustic imaging has been utilized in tissue engineering to some extent; however, the full benefit of this technique is yet to be explored. The increasing availability of commercial photoacoustic systems will make application as an imaging tool for tissue engineering application more feasible. This review first provides a brief description of photoacoustic imaging and summarizes its current and potential application in tissue engineering.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Frank DeLuna
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Mark A. Anastasio
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jing Yong Ye
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Eric M. Brey
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
21
|
Wu M, Junker D, Branca RT, Karampinos DC. Magnetic Resonance Imaging Techniques for Brown Adipose Tissue Detection. Front Endocrinol (Lausanne) 2020; 11:421. [PMID: 32849257 PMCID: PMC7426399 DOI: 10.3389/fendo.2020.00421] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) methods can non-invasively assess brown adipose tissue (BAT) structure and function. Recently, MRI and MRS have been proposed as a means to differentiate BAT from white adipose tissue (WAT) and to extract morphological and functional information on BAT inaccessible by other means. Specifically, proton MR (1H) techniques, such as proton density fat fraction mapping, diffusion imaging, and intermolecular multiple quantum coherence imaging, have been employed to access BAT microstructure; MR thermometry, relaxometry, and MRI and MRS with 31P, 2H, 13C, and 129Xe have shown to provide complementary information on BAT function. The purpose of the present review is to provide a comprehensive overview of MR imaging and spectroscopy techniques used to detect BAT in rodents and in humans. The present work discusses common challenges of current methods and provides an outlook on possible future directions of using MRI and MRS in BAT studies.
Collapse
Affiliation(s)
- Mingming Wu
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
- *Correspondence: Mingming Wu
| | - Daniela Junker
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Rosa Tamara Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dimitrios C. Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
22
|
Frankl J, Sherwood A, Clegg DJ, Scherer PE, Öz OK. Imaging Metabolically Active Fat: A Literature Review and Mechanistic Insights. Int J Mol Sci 2019; 20:E5509. [PMID: 31694216 PMCID: PMC6862590 DOI: 10.3390/ijms20215509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Currently, obesity is one of the leading causes death in the world. Shortly before 2000, researchers began describing metabolically active adipose tissue on cancer-surveillance 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in adult humans. This tissue generates heat through mitochondrial uncoupling and functions similar to classical brown and beige adipose tissue in mice. Despite extensive research, human brown/beige fat's role in resistance to obesity in humans has not yet been fully delineated. FDG uptake is the de facto gold standard imaging technique when studying brown adipose tissue, although it has not been rigorously compared to other techniques. We, therefore, present a concise review of established and emerging methods to image brown adipose tissue activity in humans. Reviewed modalities include anatomic imaging with CT and magnetic resonance imaging (MRI); molecular imaging with FDG, fatty acids, and acetate; and emerging techniques. FDG-PET/CT is the most commonly used modality because of its widespread use in cancer imaging, but there are mechanistic reasons to believe other radiotracers may be more sensitive and accurate at detecting brown adipose tissue activity. Radiation-free modalities may help the longitudinal study of brown adipose tissue activity in the future.
Collapse
Affiliation(s)
- Joseph Frankl
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (J.F.); (A.S.)
| | - Amber Sherwood
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (J.F.); (A.S.)
| | - Deborah J. Clegg
- College of Nursing and Health Professions, Drexel University, 10th Floor, Room 1092, 1601 Cherry Street, Mail Stop 10501, Philadelphia, PA 19102, USA;
| | - Philipp E. Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA;
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-8542, USA; (J.F.); (A.S.)
| |
Collapse
|
23
|
Pereira RO, McFarlane SI. The Role of Brown Adipose Tissue in Cardiovascular Disease Protection: Current Evidence and Future Directions. ACTA ACUST UNITED AC 2019; 4. [PMID: 31650091 PMCID: PMC6812533 DOI: 10.15344/2456-8007/2019/136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Renata O Pereira
- Department of Internal Medicine - Endocrinology and Metabolism, FOE Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Samy I McFarlane
- Department of Internal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NYC 11203, USA
| |
Collapse
|
24
|
Sun L, Verma S, Michael N, Chan SP, Yan J, Sadananthan SA, Camps SG, Goh HJ, Govindharajulu P, Totman J, Townsend D, Goh JPN, Sun L, Boehm BO, Lim SC, Sze SK, Henry CJ, Hu HH, Velan SS, Leow MKS. Brown Adipose Tissue: Multimodality Evaluation by PET, MRI, Infrared Thermography, and Whole-Body Calorimetry (TACTICAL-II). Obesity (Silver Spring) 2019; 27:1434-1442. [PMID: 31301122 PMCID: PMC6899540 DOI: 10.1002/oby.22560] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/17/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study aimed to compare the associations of positron emission tomography (PET), magnetic resonance (MR), and infrared thermography (IRT) imaging modalities with energy expenditure (EE) after brown adipose tissue (BAT) activation using capsinoid ingestion and cold exposure. METHODS Twenty participants underwent PET-MR, IRT imaging, and whole-body calorimetry after capsinoid ingestion and cold exposure. Standardized uptake values (SUV) and the fat fraction (FF) of the supraclavicular brown adipose tissue regions were estimated. The anterior supraclavicular temperature (Tscv) from IRT at baseline and postintervention was measured. Two-hour post-capsinoid ingestion EE and post-cold exposure EE served as a reference to correlate fluorodeoxyglucose uptake, FF, and Tscv for BAT assessment. IRT images were geometrically transformed to overlay on PET-MR for visualization of the hottest regions. RESULTS The supraclavicular hot spot identified on IRT closely corresponded to the area of maximal fluorodeoxyglucose uptake on PET images. Controlling for body weight, post-cold exposure Tscv was a significant variable associated with EE (P = 0.025). The SUV was significantly inversely correlated with FF (P = 0.012) and significantly correlated with peak of Tscv during cold exposure in BAT-positive participants (P = 0.022). CONCLUSIONS Tscv correlated positively with EE and was also significantly correlated with SUV after cold exposure. Both IRT and MR FF are promising methods to study BAT activity noninvasively.
Collapse
Affiliation(s)
- Lijuan Sun
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, National University Health System, Singapore
| | - Sanjay Verma
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore
| | - Navin Michael
- Singapore Institute of Clinical Sciences, Agency for Science, Technology, and Research, Singapore
| | - Siew Pang Chan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore
- College of Science, Health, and Engineering, La Trobe University, Melbourne, Australia
| | - Jianhua Yan
- Molecular Imaging Precision Medicine Collaborative Innovation Center, Shanxi Medical University, Taiyuan, China
| | - Suresh Anand Sadananthan
- Singapore Institute of Clinical Sciences, Agency for Science, Technology, and Research, Singapore
| | - Stefan G Camps
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, National University Health System, Singapore
| | - Hui Jen Goh
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, National University Health System, Singapore
| | - Priya Govindharajulu
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, National University Health System, Singapore
| | - John Totman
- Clinical Imaging Research Centre, Agency for Science, Technology, and Research, National University of Singapore, Singapore
| | - David Townsend
- Clinical Imaging Research Centre, Agency for Science, Technology, and Research, National University of Singapore, Singapore
| | | | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
| | - Bernhard Otto Boehm
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore
- Imperial College London, London, UK
| | - Su Chi Lim
- Department of Medicine, Khoo Teck Puat Hospital, Singapore
| | - Siew Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, National University Health System, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Houchun Harry Hu
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - S Sendhil Velan
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science, Technology, and Research, Singapore
- Singapore Institute of Clinical Sciences, Agency for Science, Technology, and Research, Singapore
- Department of Physiology, National University of Singapore, Singapore
- Department of Medicine, National University of Singapore, Singapore
| | - Melvin Khee-Shing Leow
- Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research, National University Health System, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
25
|
Gashi G, Madoerin P, Maushart CI, Michel R, Senn JR, Bieri O, Betz MJ. MRI characteristics of supraclavicular brown adipose tissue in relation to cold-induced thermogenesis in healthy human adults. J Magn Reson Imaging 2019; 50:1160-1168. [PMID: 30945366 DOI: 10.1002/jmri.26733] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) has been proposed as a target to treat obesity and metabolic disease. Currently, 18 F-Fluordeoxyglucose positron emission tomography (FDG-PET) is the standard for BAT-imaging. MRI might be a promising alternative, as it is not associated with ionizing radiation, offers a high resolution, and allows to discriminate different types of soft tissue. PURPOSE We sought to evaluate whether supraclavicular BAT (scBAT) volume, fat-fraction (FF), and relaxation rate (R2*) determined by MRI can predict its metabolic activity, which was assessed by measurement of cold-induced thermogenesis (CIT). STUDY TYPE Prospective cohort study. SUBJECTS Twenty healthy volunteers (9 female, 11 male), aged 18-47 years, with a body mass index (BMI) of 18-30 kg/m2 . FIELD STRENGTH/SEQUENCE Multiecho gradient MRI for water-fat separation was used on a 3T device to measure the FF and T2 * of BAT. ASSESSMENT Prior to imaging, CIT was determined by measuring the difference in energy expenditure (EE) during warm conditions and after cold exposure. Volume, FF, and R2* of scBAT was assessed and compared with CIT. In 11 participants, two MRI sessions with and without cold exposure were performed and the dynamic changes in FF and R2* assessed. STATISTICAL TESTS Linear regression was used to evaluate the relation of MRI measurements and CIT. P-values below 0.05 were considered significant; data are given as mean ± SD. RESULTS R2* correlated positively with CIT (r = 0.64, R2 = 0.41 P = 0.0041). Volume and FF did not correlate significantly with CIT. After mild cold exposure EE increased significantly (P = 0.0002), with a mean CIT of 147 kcal/day. The mean volume of scBAT was 72.4 ± 38.4 ml, mean FF was 74.3 ± 5.8%, and the mean R2* (1/T2 *) was 33.5 ± 12.7 s-1 . DATA CONCLUSION R2* of human scBAT can be used to estimate CIT. FF of scBAT was not associated with CIT. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1160-1168.
Collapse
Affiliation(s)
- Gani Gashi
- Department of Endocrinology, Diabetes and Metabolism, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Philipp Madoerin
- Department of Radiology, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Claudia I Maushart
- Department of Endocrinology, Diabetes and Metabolism, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Regina Michel
- Department of Endocrinology, Diabetes and Metabolism, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Jaël-Rut Senn
- Department of Endocrinology, Diabetes and Metabolism, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Oliver Bieri
- Department of Radiology, University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Matthias J Betz
- Department of Endocrinology, Diabetes and Metabolism, University Hospital of Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
26
|
Franz D, Diefenbach MN, Treibel F, Weidlich D, Syväri J, Ruschke S, Wu M, Holzapfel C, Drabsch T, Baum T, Eggers H, Rummeny EJ, Hauner H, Karampinos DC. Differentiating supraclavicular from gluteal adipose tissue based on simultaneous PDFF and T 2 * mapping using a 20-echo gradient-echo acquisition. J Magn Reson Imaging 2019; 50:424-434. [PMID: 30684282 PMCID: PMC6767392 DOI: 10.1002/jmri.26661] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/15/2023] Open
Abstract
Background Adipose tissue (AT) can be classified into white and brown/beige subtypes. Chemical shift encoding‐based water–fat MRI‐techniques allowing simultaneous mapping of proton density fat fraction (PDFF) and T2* result in a lower PDFF and a shorter T2* in brown compared with white AT. However, AT T2* values vary widely in the literature and are primarily based on 6‐echo data. Increasing the number of echoes in a multiecho gradient‐echo acquisition is expected to increase the precision of AT T2* mapping. Purpose 1) To mitigate issues of current T2*‐measurement techniques through experimental design, and 2) to investigate gluteal and supraclavicular AT T2* and PDFF and their relationship using a 20‐echo gradient‐echo acquisition. Study Type Prospective. Subjects Twenty‐one healthy subjects. Field Strength/Sequence Assessment First, a ground truth signal evolution was simulated from a single‐T2* water–fat model. Second, a time‐interleaved 20‐echo gradient‐echo sequence with monopolar gradients of neck and abdomen/pelvis at 3 T was performed in vivo to determine supraclavicular and gluteal PDFF and T2*. Complex‐based water–fat separation was performed for the first 6 echoes and the full 20 echoes. AT depots were segmented. Statistical Tests Mann‐Whitney test, Wilcoxon signed‐rank test and simple linear regression analysis. Results Both PDFF and T2* differed significantly between supraclavicular and gluteal AT with 6 and 20 echoes (PDFF: P < 0.0001 each, T2*: P = 0.03 / P < 0.0001 for 6/20 echoes). 6‐echo T2* demonstrated higher standard deviations and broader ranges than 20‐echo T2*. Regression analyses revealed a strong relationship between PDFF and T2* values per AT compartment (R2 = 0.63 supraclavicular, R2 = 0.86 gluteal, P < 0.0001 each). Data Conclusion The present findings suggest that an increase in the number of sampled echoes beyond 6 does not affect AT PDFF quantification, whereas AT T2* is considerably affected. Thus, a 20‐echo gradient‐echo acquisition enables a multiparametric analysis of both AT PDFF and T2* and may therefore improve MR‐based differentiation between white and brown fat. Level of Evidence: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:424–434.
Collapse
Affiliation(s)
- Daniela Franz
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian N Diefenbach
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Franziska Treibel
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan Syväri
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stefan Ruschke
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Mingming Wu
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christina Holzapfel
- Institute for Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Theresa Drabsch
- Institute for Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Ernst J Rummeny
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans Hauner
- Institute for Nutritional Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
27
|
Zhang Y, Hu X, Hu S, Scotti A, Cai K, Wang J, Zhou X, Yang D, Figini M, Pan L, Shangguan J, Yang J, Zhang Z. Non-invasive Imaging Methods for Brown Adipose Tissue Detection and Function Evaluation. ACTA ACUST UNITED AC 2019; 8. [PMID: 31080698 PMCID: PMC6508884 DOI: 10.4172/2165-8048.1000299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Brown Adipose Tissue (BAT) has a major role in thermoregulation, producing heat by non-shivering thermogenesis. Primarily found in animals and human infants, the presence of significant brown adipose tissue was identified only recently, and its metabolic role in adults was reconsidered. BAT is believed to have an important role in many metabolic diseases, such as obesity and diabetes, and also to be associated with cancer cachexia. Therefore, it is currently a topic of great interest in the research community, and many groups are investigating the mechanisms underlying BAT metabolism in normal and pathological conditions. However, well established non-invasive methods for assessing BAT distribution and function are still lacking. The purpose of this review is to summarize the current state of the art of these methods, with a particular focus on PET, CT and MRI.
Collapse
Affiliation(s)
- Yaqi Zhang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Xiaofei Hu
- Department of Radiology, Third Military Medical University Southwest Hospital, Chongqing, China
| | - Su Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alessandro Scotti
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Jian Wang
- Department of Radiology, Third Military Medical University Southwest Hospital, Chongqing, China
| | - Xin Zhou
- Department of Cardiology, Pingjin Hospital, Tianjin, China
| | - Ding Yang
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matteo Figini
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Liang Pan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Junjie Shangguan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jia Yang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
28
|
Abreu-Vieira G, Sardjoe Mishre ASD, Burakiewicz J, Janssen LGM, Nahon KJ, van der Eijk JA, Riem TT, Boon MR, Dzyubachyk O, Webb AG, Rensen PCN, Kan HE. Human Brown Adipose Tissue Estimated With Magnetic Resonance Imaging Undergoes Changes in Composition After Cold Exposure: An in vivo MRI Study in Healthy Volunteers. Front Endocrinol (Lausanne) 2019; 10:898. [PMID: 31998233 PMCID: PMC6964318 DOI: 10.3389/fendo.2019.00898] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/09/2019] [Indexed: 01/02/2023] Open
Abstract
Aim: Magnetic resonance imaging (MRI) is increasingly being used to evaluate brown adipose tissue (BAT) function. Reports on the extent and direction of cold-induced changes in MRI fat fraction and estimated BAT volume vary between studies. Here, we aimed to explore the effect of different fat fraction threshold ranges on outcomes measured by MRI. Moreover, we aimed to investigate the effect of cold exposure on estimated BAT mass and energy content. Methods: The effects of cold exposure at different fat fraction thresholding levels were analyzed in the supraclavicular adipose depot of nine adult males. MRI data were reconstructed, co-registered and analyzed in two ways. First, we analyzed cold-induced changes in fat fraction, T2* relaxation time, volume, mass, and energy of the entire supraclavicular adipose depot at different fat fraction threshold levels. As a control, we assessed fat fraction differences of deltoid subcutaneous adipose tissue (SAT). Second, a local analysis was performed to study changes in fat fraction and T2* on a voxel-level. Thermoneutral and post-cooling data were compared using paired-sample t-tests (p < 0.05). Results: Global analysis unveiled that the largest cold-induced change in fat fraction occurred within a thermoneutral fat fraction range of 30-100% (-3.5 ± 1.9%), without changing the estimated BAT volume. However, the largest cold-induced changes in estimated BAT volume were observed when applying a thermoneutral fat fraction range of 70-100% (-3.8 ± 2.6%). No changes were observed for the deltoid SAT fat fractions. Tissue energy content was reduced from 126 ± 33 to 121 ± 30 kcal, when using a 30-100% fat fraction range, and also depended on different fat fraction thresholds. Voxel-wise analysis showed that while cold exposure changed the fat fraction across nearly all thermoneutral fat fractions, decreases were most pronounced at high thermoneutral fat fractions. Conclusion: Cold-induced changes in fat fraction occurred over the entire range of thermoneutral fat fractions, and were especially found in lipid-rich regions of the supraclavicular adipose depot. Due to the variability in response between lipid-rich and lipid-poor regions, care should be taken when applying fat fraction thresholds for MRI BAT analysis.
Collapse
Affiliation(s)
- Gustavo Abreu-Vieira
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Aashley S. D. Sardjoe Mishre
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Jedrzej Burakiewicz
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Laura G. M. Janssen
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Kimberly J. Nahon
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Jari A. van der Eijk
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Titia T. Riem
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Mariëtte R. Boon
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Oleh Dzyubachyk
- Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Andrew G. Webb
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
| | - Patrick C. N. Rensen
- Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Hermien E. Kan
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Hermien E. Kan
| |
Collapse
|
29
|
Karampinos DC, Weidlich D, Wu M, Hu HH, Franz D. Techniques and Applications of Magnetic Resonance Imaging for Studying Brown Adipose Tissue Morphometry and Function. Handb Exp Pharmacol 2019; 251:299-324. [PMID: 30099625 DOI: 10.1007/164_2018_158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The present review reports on the current knowledge and recent findings in magnetic resonance imaging (MRI) and spectroscopy (MRS) of brown adipose tissue (BAT). The work summarizes the features and mechanisms that allow MRI to differentiate BAT from white adipose tissue (WAT) by making use of their distinct morphological appearance and the functional characteristics of BAT. MR is a versatile imaging modality with multiple contrast mechanisms as potential candidates in the study of BAT, targeting properties of 1H, 13C, or 129Xe nuclei. Techniques for assessing BAT morphometry based on fat fraction and markers of BAT microstructure, including intermolecular quantum coherence and diffusion imaging, are first described. Techniques for assessing BAT function based on the measurement of BAT metabolic activity, perfusion, oxygenation, and temperature are then presented. The application of the above methods in studies of BAT in animals and humans is described, and future directions in MR study of BAT are finally discussed.
Collapse
Affiliation(s)
- Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Mingming Wu
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Houchun H Hu
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Daniela Franz
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
30
|
Stojanovska J, Lumeng CN, Griffin C, Hernando D, Hoffmann U, Haft JW, Kim KM, Burant CF, Singer K, Tsodikov A, Long BD, Romano MA, Tang PC, Yang B, Chenevert TL. Water-fat magnetic resonance imaging quantifies relative proportions of brown and white adipose tissues: ex-vivo experiments. J Med Imaging (Bellingham) 2018; 5:024007. [PMID: 30137870 PMCID: PMC6025480 DOI: 10.1117/1.jmi.5.2.024007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022] Open
Abstract
Quantifying the amount of brown adipose tissue (BAT) within white adipose tissue (WAT) in human depots may serve as a target to combat obesity. We aimed to quantify proton density fat fraction (PDFF) of BAT and WAT in relatively pure and in mixed preparation using water–fat imaging. Three ex-vivo experiments were performed at 3 T using excised interscapular BAT and inguinal/subcutaneous WAT from mice. The first two experiments consisted of BAT and WAT in separate tubes, and the third used mixed preparation with graded quantities of BAT and WAT. To investigate the influence of partial volume on PDFF metrics, low (2.66 mm3) and high spatial resolution (0.55 mm3 acquired voxels) in two orthogonal three-dimensional sections were compared. The low-resolution acquisitions are corrected for T2* and multipeak lipid spectrum, thus considered “quantitative,” whereas the high-resolution acquisitions are not corrected but were performed to better spatially segment BAT from WAT zones. As potential BAT metrics, we quantified the average PDFF and the volume of tissue having PDFF ≤50% (VOLPDFF≤50%) based on the PDFF histogram. In the first experiment, the average PDFF of BAT was 23±6% and 21±7.6% and the average PDFF of WAT was 76±7% and 87±7% using high- and low-resolution techniques, respectively. A similar trend with excellent reproducibility in average PDFF of BAT and WAT was observed in the second experiment. In the third experiment over the four acquisitions, the BAT-dominant tube demonstrated lower PDFF (mean ± SD) of 55±2% than WAT-dominant (69±4%) and WAT-only tubes (88±4%). Estimating VOLPDFF≤50%, the BAT-dominant tube demonstrated higher volume of 0.26 cm3 than WAT-dominant (0.16 cm3) and WAT-only tubes (0.01 cm3). The presence of BAT exhibits a lower PDFF relative to WAT, thus allowing segmentation of low PDFF tissue for quantification of volume representative of BAT. Future studies will determine the clinical relevance of BAT volume within human depots.
Collapse
Affiliation(s)
- Jadranka Stojanovska
- Michigan Medicine, Division of Cardiothoracic Radiology, Department of Radiology, Ann Arbor, Michigan, United States
| | - Carey N Lumeng
- Michigan Medicine, Department of Pediatrics and Molecular Physiology, Ann Arbor, Michigan, United States
| | - Cameron Griffin
- Michigan Medicine, Division of Pediatric Endocrinology, Ann Arbor, Michigan, United States
| | - Diego Hernando
- University of Wisconsin, Wisconsin Institutes for Medical Research, Medical Physics Department, Madison, Wisconsin, United States
| | - Udo Hoffmann
- Massachusetts General Hospital, Department of Radiology, Boston, Massachusetts, United States
| | - Jonathan W Haft
- Michigan Medicine, Frankel Cardiovascular Center, Department of Cardiac Surgery, Ann Arbor, Michigan, United States
| | - Karen M Kim
- Michigan Medicine, Frankel Cardiovascular Center, Department of Cardiac Surgery, Ann Arbor, Michigan, United States
| | | | - Kanakadurga Singer
- Michigan Medicine, Division of Pediatric Endocrinology, Department of Pediatrics and Communicable Diseases, Ann Arbor, Michigan, United States
| | - Alex Tsodikov
- School of Public Health, Ann Arbor, Michigan, United States
| | - Benjamin D Long
- University of Michigan Medical School, Cardiovascular Center, Ann Arbor, Michigan, United States
| | - Matthew A Romano
- Michigan Medicine, Cardiovascular Center, Ann Arbor, Michigan, United States
| | - Paul C Tang
- Michigan Medicine, Cardiovascular Center, Ann Arbor, Michigan, United States
| | - Bo Yang
- Michigan Medicine, Cardiovascular Center, Ann Arbor, Michigan, United States
| | - Thomas L Chenevert
- Michigan Medicine, Department of Radiology-MRI, Ann Arbor, Michigan, United States
| |
Collapse
|
31
|
Recent advances in the detection of brown adipose tissue in adult humans: a review. Clin Sci (Lond) 2018; 132:1039-1054. [PMID: 29802209 DOI: 10.1042/cs20170276] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
Abstract
The activation of brown adipose tissue (BAT) is associated with reductions in circulating lipids and glucose in rodents and contributes to energy expenditure in humans indicating the potential therapeutic importance of targetting this tissue for the treatment of a variety of metabolic disorders. In order to evaluate the therapeutic potential of human BAT, a variety of methodologies for assessing the volume and metabolic activity of BAT are utilized. Cold exposure is often utilized to increase BAT activity but inconsistencies in the characteristics of the exposure protocols make it challenging to compare findings. The metabolic activity of BAT in response to cold exposure has most commonly been measured by static positron emission tomography of 18F-fluorodeoxyglucose in combination with computed tomography (18F-FDG PET-CT) imaging, but recent studies suggest that under some conditions this may not always reflect BAT thermogenic activity. Therefore, recent studies have used alternative positron emission tomography and computed tomography (PET-CT) imaging strategies and radiotracers that may offer important insights. In addition to PET-CT, there are numerous emerging techniques that may have utility for assessing BAT metabolic activity including magnetic resonance imaging (MRI), skin temperature measurements, near-infrared spectroscopy (NIRS) and contrast ultrasound (CU). In this review, we discuss and critically evaluate the various methodologies used to measure BAT metabolic activity in humans and provide a contemporary assessment of protocols which may be useful in interpreting research findings and guiding the development of future studies.
Collapse
|
32
|
Identification of an optimal threshold for detecting human brown adipose tissue using receiver operating characteristic analysis of IDEAL MRI fat fraction maps. Magn Reson Imaging 2018; 51:61-68. [PMID: 29704560 DOI: 10.1016/j.mri.2018.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/30/2018] [Accepted: 04/24/2018] [Indexed: 01/23/2023]
Abstract
PURPOSE Lower fat fraction (FF) in brown adipose tissue (BAT) than white adipose tissue (WAT) has been exploited using Dixon-based Magnetic Resonance Imaging (MRI) to differentiate these tissues in rodents, human infants and adults. We aimed to determine whether an optimal FF threshold could be determined to differentiate between BAT and WAT in adult humans in vivo. METHODS Sixteen volunteers were recruited (9 females, 7 males; 44.2 ± 19.2 years) based on BAT uptake on 18F-FDG PET/CT. Axial 3-echo TSE IDEAL sequences were acquired (TR(ms)/TE(ms)/matrix/NEX/FoV(cm) = 440/10.7-11.1/512 × 512/3/30-40), of the neck/upper thorax on a 3T HDxt MRI scanner (GE Medical Systems, Milwaukee, USA), and FF maps generated from the resulting water- and fat-only images. BAT depots were delineated on PET/CT based on standardized uptake values (SUV) >2.5 g/ml, and transposed onto FF maps. WAT depots were defined manually within subcutaneous fat. Receiver operating characteristic (ROC) analyses were performed, and optimal thresholds for differentiating BAT and WAT determined for each subject using Youden's J statistic. RESULTS There was large variation in optimal FF thresholds to differentiate BAT and WAT between subjects (0.68-0.85), with great variation in sensitivity (0.26-0.84) and specificity (0.62-0.99). FF was excellent or good at separating BAT and WAT in four cases (area under the curve [AUC] 0.84-0.92), but poor in 10 (AUC 0.25-0.68). CONCLUSION Although this technique was effective at differentiating BAT and WAT in some cases, no universal cut-off could be identified to reliably differentiate BAT and WAT in vivo in adult humans on the basis of FF.
Collapse
|
33
|
Dewal RS, Stanford KI. Effects of exercise on brown and beige adipocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:71-78. [PMID: 29684558 PMCID: PMC6292667 DOI: 10.1016/j.bbalip.2018.04.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/21/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022]
Abstract
Physical exercise leads to beneficial effects in numerous tissues and organ systems and offers protection against obesity and type 2 diabetes. Recent studies have investigated the role of exercise on brown adipose tissue (BAT) and white adipose tissue (WAT), and have indicated marked adaptations to each tissue with exercise. Studies investigating the effects of exercise on BAT have produced conflicting results, with some showing an increase in the thermogenic activity of BAT and some demonstrating a decrease in the thermogenic activity of BAT. Human studies have observed a down-regulation of BAT activity (measured by a reduction in glucose uptake) in response to exercise. In WAT, exercise decreases adipocyte size, alters gene expression, and increases mitochondrial activity. Transplantation of exercise-trained subcutaneous WAT (scWAT) improves whole-body metabolic health. In rodents, exercise also results in a beiging of scWAT. Thus, exercise-induced changes to adipose tissue may be part of the mechanism by which exercise improves metabolic health.
Collapse
Affiliation(s)
- Revati S Dewal
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
34
|
Chondronikola M, Beeman SC, Wahl RL. Non-invasive methods for the assessment of brown adipose tissue in humans. J Physiol 2018; 596:363-378. [PMID: 29119565 PMCID: PMC5792561 DOI: 10.1113/jp274255] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/04/2017] [Indexed: 01/10/2023] Open
Abstract
Brown adipose tissue (BAT) is a recently rediscovered tissue in people that has shown promise as a potential therapeutic target against obesity and its metabolic abnormalities. Reliable non-invasive assessment of BAT volume and activity is critical to allow its importance in metabolic control to be evaluated. Positron emission tomography/computed tomography (PET/CT) in combination with 2-deoxy-2-[18 F]fluoroglucose administration is currently the most frequently used and most established method for the detection and quantification of activated BAT in humans. However, it involves radiation exposure and can detect activated (e.g. after cold exposure), but not quiescent, BAT. Several alternative methods that overcome some of these limitations have been developed including different PET approaches, single-photon emission imaging, CT, magnetic resonance based approaches, contrast-enhanced ultrasound, near infrared spectroscopy, and temperature assessment of fat depots containing brown adipocytes. The purpose of this review is to summarize and critically evaluate the currently available methods that non-invasively probe various aspects of BAT biology in order to assess BAT volume and/or metabolism. Although several of these methods show promise for the non-invasive assessment of BAT volume and function, further research is needed to optimize them to enable an accurate, reproducible and practical means for the assessment of human BAT content and its metabolic function.
Collapse
Affiliation(s)
- Maria Chondronikola
- Center for Human NutritionWashington University School of MedicineSt LouisMOUSA
- Harokopio University of AthensAthensGreece
| | - Scott C. Beeman
- Department of Radiology, Mallinckrodt Institute of RadiologyWashington University School of MedicineSt LouisMOUSA
| | - Richard L. Wahl
- Department of Radiology, Mallinckrodt Institute of RadiologyWashington University School of MedicineSt LouisMOUSA
- Department of Radiation Oncology, Mallinckrodt Institute of RadiologyWashington University School of MedicineSt LouisMOUSA
| |
Collapse
|
35
|
Sun L, Yan J, Sun L, Velan S, Leow M. A synopsis of brown adipose tissue imaging modalities for clinical research. DIABETES & METABOLISM 2017; 43:401-410. [DOI: 10.1016/j.diabet.2017.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/02/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022]
|
36
|
Sampath SC, Sampath SC, Bredella MA, Cypess AM, Torriani M. Imaging of Brown Adipose Tissue: State of the Art. Radiology 2017; 280:4-19. [PMID: 27322970 DOI: 10.1148/radiol.2016150390] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The rates of diabetes, obesity, and metabolic disease have reached epidemic proportions worldwide. In recent years there has been renewed interest in combating these diseases not only by modifying energy intake and lifestyle factors, but also by inducing endogenous energy expenditure. This approach has largely been stimulated by the recent recognition that brown adipose tissue (BAT)-long known to promote heat production and energy expenditure in infants and hibernating mammals-also exists in adult humans. This landmark finding relied on the use of clinical fluorine 18 fluorodeoxyglucose positron emission tomography/computed tomography, and imaging techniques continue to play a crucial and increasingly central role in understanding BAT physiology and function. Herein, the authors review the origins of BAT imaging, discuss current preclinical and clinical strategies for imaging BAT, and discuss imaging methods that will provide crucial insight into metabolic disease and how it may be treated by modulating BAT activity. (©) RSNA, 2016.
Collapse
Affiliation(s)
- Srihari C Sampath
- From Musculoskeletal Biology and Bioimaging, Department of Pharmacology, Genomics Institute of the Novartis Research Foundation, San Diego, Calif (Srihari Sampath, Srinath Sampath); Division of Musculoskeletal Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 6E, Boston, MA 02114 (M.B., M.T.); and Translational Physiology Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Md (A.M.C.)
| | - Srinath C Sampath
- From Musculoskeletal Biology and Bioimaging, Department of Pharmacology, Genomics Institute of the Novartis Research Foundation, San Diego, Calif (Srihari Sampath, Srinath Sampath); Division of Musculoskeletal Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 6E, Boston, MA 02114 (M.B., M.T.); and Translational Physiology Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Md (A.M.C.)
| | - Miriam A Bredella
- From Musculoskeletal Biology and Bioimaging, Department of Pharmacology, Genomics Institute of the Novartis Research Foundation, San Diego, Calif (Srihari Sampath, Srinath Sampath); Division of Musculoskeletal Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 6E, Boston, MA 02114 (M.B., M.T.); and Translational Physiology Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Md (A.M.C.)
| | - Aaron M Cypess
- From Musculoskeletal Biology and Bioimaging, Department of Pharmacology, Genomics Institute of the Novartis Research Foundation, San Diego, Calif (Srihari Sampath, Srinath Sampath); Division of Musculoskeletal Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 6E, Boston, MA 02114 (M.B., M.T.); and Translational Physiology Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Md (A.M.C.)
| | - Martin Torriani
- From Musculoskeletal Biology and Bioimaging, Department of Pharmacology, Genomics Institute of the Novartis Research Foundation, San Diego, Calif (Srihari Sampath, Srinath Sampath); Division of Musculoskeletal Imaging and Intervention, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Yawkey 6E, Boston, MA 02114 (M.B., M.T.); and Translational Physiology Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Md (A.M.C.)
| |
Collapse
|
37
|
El Hadi H, Vettor R, Rossato M. Functional imaging of brown adipose tissue in human. Horm Mol Biol Clin Investig 2017; 31:hmbci-2017-0009. [PMID: 28609290 DOI: 10.1515/hmbci-2017-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/02/2017] [Indexed: 11/15/2022]
Abstract
Obesity has become a major public health challenge and an increasing trend is seen in its prevalence worldwide. It is a complex disorder involving an excessive amount of body fat as a result of an energy imbalance leading to caloric overload. Since the discovery of functional brown adipose tissue (BAT) in adult humans, with energy dissipating properties, this thermogenic tissue has thus emerged as an attractive therapeutic target to combat obesity and related cardiometabolic disorders. The advancements in imaging modalities to evaluate organ-specific metabolism in humans is substantially contributing to understand the physiological role of BAT. This review presents an overview of the different imaging approaches implied in BAT assessment, with a special emphasis on adult human BAT. In this context, we also attempted to summarize the developmental origins and physiology of BAT.
Collapse
Affiliation(s)
- Hamza El Hadi
- Internal Medicine 3, Department of Medicine - DIMED, University of Padova, Padova 35128, Italy
| | - Roberto Vettor
- Internal Medicine 3, Department of Medicine - DIMED, University of Padova, Padova 35128, Italy
| | - Marco Rossato
- Internal Medicine 3, Department of Medicine - DIMED, University of Padova, Via Giustiniani 2, Padova 35128, Italy, Phone: +39 049 8218747, Fax: +39 049 8213332
| |
Collapse
|
38
|
Farhat G, Drummond S, Al-Dujaili EAS. Polyphenols and Their Role in Obesity Management: A Systematic Review of Randomized Clinical Trials. Phytother Res 2017; 31:1005-1018. [PMID: 28493374 DOI: 10.1002/ptr.5830] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/06/2017] [Accepted: 04/17/2017] [Indexed: 12/21/2022]
Abstract
Polyphenols have been suggested to reduce body weight and modify body composition through different mechanisms. These effects have been extensively studied in animals and in vitro and to a lesser extent in humans. The aim of this review is to consider the association between polyphenols and body weight status by focusing on human intervention studies. We conducted a systematic literature search in MEDLINE (via EBSCOhost), ProQuest CENTRAL, and Cochrane CENTRAL without time restrictions. Randomized controlled trials assessing the effect of polyphenols on weight and/or body composition in the overweight and/or obese population were included. Nineteen studies met our inclusion criteria. Results suggest that further research is required before supporting a potential role of polyphenols in reducing weight in overweight and obese individuals (nine studies showed a significant decrease in weight by a mean of 1.47 ± 0.58 kg). Nevertheless, several studies indicated that polyphenols might be effective in preventing small increases in weight during periods of overfeeding rather than reducing weight as such. The outcomes noted do not yet support polyphenol supplementation as a complementary approach in weight loss diets. Further larger trials with a duration of 12 months or more are needed to elucidate the effect of polyphenols on body weight status. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Grace Farhat
- Department of Dietetics, Nutrition and Biological Sciences, Queen Margaret University, Musselburgh, East Lothian, EH21 6UU, UK
| | - Sandra Drummond
- Department of Dietetics, Nutrition and Biological Sciences, Queen Margaret University, Musselburgh, East Lothian, EH21 6UU, UK
| | | |
Collapse
|
39
|
Holstila M, Pesola M, Saari T, Koskensalo K, Raiko J, Borra RJH, Nuutila P, Parkkola R, Virtanen KA. MR signal-fat-fraction analysis and T2* weighted imaging measure BAT reliably on humans without cold exposure. Metabolism 2017; 70:23-30. [PMID: 28403942 DOI: 10.1016/j.metabol.2017.02.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/19/2017] [Accepted: 02/01/2017] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Brown adipose tissue (BAT) is compositionally distinct from white adipose tissue (WAT) in terms of triglyceride and water content. In adult humans, the most significant BAT depot is localized in the supraclavicular area. Our aim is to differentiate brown adipose tissue from white adipose tissue using fat T2* relaxation time mapping and signal-fat-fraction (SFF) analysis based on a commercially available modified 2-point-Dixon (mDixon) water-fat separation method. We hypothesize that magnetic resonance (MR) imaging can reliably measure BAT regardless of the cold-induced metabolic activation, with BAT having a significantly higher water and iron content compared to WAT. MATERIAL AND METHODS The supraclavicular area of 13 volunteers was studied on 3T PET-MRI scanner using T2* relaxation time and SFF mapping both during cold exposure and at ambient temperature; and 18F-FDG PET during cold exposure. Volumes of interest (VOIs) were defined semiautomatically in the supraclavicular fat depot, subcutaneous WAT and muscle. RESULTS The supraclavicular fat depot (assumed to contain BAT) had a significantly lower SFF and fat T2* relaxation time compared to subcutaneous WAT. Cold exposure did not significantly affect MR-based measurements. SFF and T2* values measured during cold exposure and at ambient temperature correlated inversely with the glucose uptake measured by 18F-FDG PET. CONCLUSIONS Human BAT can be reliably and safely assessed using MRI without cold activation and PET-related radiation exposure.
Collapse
Affiliation(s)
- Milja Holstila
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland; Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland.
| | - Marko Pesola
- Medical Imaging and Radiation Therapy, Carea, Kymenlaakso Social and Health Services, Kotka, Finland
| | - Teemu Saari
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Juho Raiko
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland
| | - Ronald J H Borra
- Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Pirjo Nuutila
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland
| | - Riitta Parkkola
- Turku PET Centre, University of Turku, Turku, Finland; Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland
| | - Kirsi A Virtanen
- Turku PET Centre, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku, Turku, Finland
| |
Collapse
|
40
|
Common and distinct regulation of human and mouse brown and beige adipose tissues: a promising therapeutic target for obesity. Protein Cell 2017; 8:446-454. [PMID: 28220393 PMCID: PMC5445025 DOI: 10.1007/s13238-017-0378-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/26/2017] [Indexed: 01/03/2023] Open
Abstract
Obesity, which underlies various metabolic and cardiovascular diseases, is a growing public health challenge for which established therapies are inadequate. Given the current obesity epidemic, there is a pressing need for more novel therapeutic strategies that will help adult individuals to manage their weight. One promising therapeutic intervention for reducing obesity is to enhance energy expenditure. Investigations into human brown fat and the recently discovered beige/brite fat have galvanized intense research efforts during the past decade because of their pivotal roles in energy dissipation. In this review, we summarize the evolution of human brown adipose tissue (hBAT) research and discuss new in vivo methodologies for evaluating energy expenditure in patients. We highlight the differences between human and mouse BAT by integrating and comparing their cellular morphology, function, and gene expression profiles. Although great advances in hBAT biology have been achieved in the past decade, more cellular models are needed to acquire a better understanding of adipose-specific processes and molecular mechanisms. Thus, this review also describes the development of a human brown fat cell line, which could provide promising mechanistic insights into hBAT function, signal transduction, and development. Finally, we focus on the therapeutic potential and current limitations of hBAT as an anti-glycemic, anti-lipidemic, and weight loss-inducing ‘metabolic panacea’.
Collapse
|
41
|
Franssens BT, Hoogduin H, Leiner T, van der Graaf Y, Visseren FLJ. Relation between brown adipose tissue and measures of obesity and metabolic dysfunction in patients with cardiovascular disease. J Magn Reson Imaging 2017; 46:497-504. [PMID: 28130811 DOI: 10.1002/jmri.25594] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/15/2016] [Indexed: 01/21/2023] Open
Abstract
PURPOSE To evaluate whether brown adipose tissue (BAT) is present in middle-aged patients with cardiovascular comorbidities and to quantify how BAT presence associates with obesity and metabolic dysfunction. MATERIALS AND METHODS Supraclavicular and subcutaneous adipose tissue fat-signal-fraction (FF) was determined with 1.5T water-fat magnetic resonance imaging (MRI) in 50 patients with coronary artery disease, cerebrovascular disease, or peripheral artery disease. The association between BAT presence, as measured by a higher FF difference between supraclavicular and subcutaneous adipose tissue, and obesity and metabolic dysfunction was quantified using multivariable linear regression. RESULTS Supraclavicular adipose tissue displays a lower FF of 82.6% (interquartile range [IQR] 78.8-84.3) compared to 90.2% (IQR 87.3-91.9) in subcutaneous white adipose tissue (WAT, P < 0.0001). BAT presence was associated with less obesity and metabolic dysfunction. For example, 1 SD lower waist circumference (11.7 cm), 1 SD lower triglycerides (1.0 mmol/L), and absence of metabolic syndrome and type 2 diabetes were associated with 1.1% (95% confidence interval [CI] 0.1; 2.0), 1.1% (95% CI 0.1; 2.0), 2.1% (95% CI 0.1; 4.1), and 4.1% (95% CI 0.1; 7.1) higher FF difference between supraclavicular adipose tissue and subcutaneous WAT, respectively. CONCLUSION Supraclavicular adipose tissue has BAT characteristics in adult patients with clinical manifest cardiovascular disease and BAT presence is associated with less obesity and a more favorable metabolic profile. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:497-504.
Collapse
Affiliation(s)
- Bas T Franssens
- Department of Vascular Medicine, University Medical Center Utrecht, the Netherlands
| | - Hans Hoogduin
- Department of Radiology, University Medical Center Utrecht, the Netherlands
| | - Tim Leiner
- Department of Radiology, University Medical Center Utrecht, the Netherlands
| | - Yolanda van der Graaf
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, the Netherlands
| | - Frank L J Visseren
- Department of Vascular Medicine, University Medical Center Utrecht, the Netherlands
| |
Collapse
|
42
|
McCallister A, Zhang L, Burant A, Katz L, Branca RT. A pilot study on the correlation between fat fraction values and glucose uptake values in supraclavicular fat by simultaneous PET/MRI. Magn Reson Med 2017; 78:1922-1932. [PMID: 28112821 DOI: 10.1002/mrm.26589] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/15/2016] [Accepted: 12/01/2016] [Indexed: 01/02/2023]
Abstract
PURPOSE To assess the spatial correlation between MRI and 18F-fludeoxyglucose positron emission tomography (FDG-PET) maps of human brown adipose tissue (BAT) and to measure differences in fat fraction (FF) between glucose avid and non-avid regions of the supraclavicular fat depot using a hybrid FDG-PET/MR scanner. METHODS In 16 healthy volunteers, mean age of 30 and body mass index of 26, FF, R2*, and FDG uptake maps were acquired simultaneously using a hybrid PET/MR system while employing an individualized cooling protocol to maximally stimulate BAT. RESULTS Fourteen of the 16 volunteers reported BAT-positive FDG-PET scans. MR FF maps of BAT correlate well with combined FDG-PET/MR maps of BAT only in subjects with intense glucose uptake. The results indicate that the extent of the spatial correlation positively correlates with maximum FDG uptake in the supraclavicular fat depot. No consistent, significant differences were found in FF or R2* between FDG avid and non-avid supraclavicular fat regions. In a few FDG-positive subjects, a small but significant linear decrease in BAT FF was observed during BAT stimulation. CONCLUSION MR FF, when used in conjunction with FDG uptake maps, can be seen as a valuable, radiation-free alternative to CT and can be used to measure tissue hydration and lipid consumption in some subjects. Magn Reson Med 78:1922-1932, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Andrew McCallister
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Le Zhang
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alex Burant
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Laurence Katz
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rosa Tamara Branca
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
43
|
Hui SC, Ko JK, Zhang T, Shi L, Yeung DK, Wang D, Chan Q, Chu WC. Quantification of brown and white adipose tissue based on Gaussian mixture model using water-fat and T2* MRI in adolescents. J Magn Reson Imaging 2017; 46:758-768. [DOI: 10.1002/jmri.25632] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/22/2016] [Indexed: 01/03/2023] Open
Affiliation(s)
- Steve C.N. Hui
- Department of Imaging and Interventional Radiology; Chinese University of Hong Kong; Sha Tin, New Territories Hong Kong SAR
| | - Jacky K.L. Ko
- Department of Imaging and Interventional Radiology; Chinese University of Hong Kong; Sha Tin, New Territories Hong Kong SAR
| | - Teng Zhang
- Department of Imaging and Interventional Radiology; Chinese University of Hong Kong; Sha Tin, New Territories Hong Kong SAR
| | - Lin Shi
- Department of Medicine and Therapeutics; Chinese University of Hong Kong; Sha Tin, New Territories Hong Kong SAR
- Chow Yuk Ho Technology Centre for Innovative Medicine, Chinese University of Hong Kong; Sha Tin, New Territories Hong Kong SAR
| | - David K.W. Yeung
- Department of Imaging and Interventional Radiology; Chinese University of Hong Kong; Sha Tin, New Territories Hong Kong SAR
| | - Defeng Wang
- Department of Imaging and Interventional Radiology; Chinese University of Hong Kong; Sha Tin, New Territories Hong Kong SAR
- Research Center for Medical Image Computing, Chinese University of Hong Kong; Sha Tin, New Territories Hong Kong SAR
| | - Queenie Chan
- Philips Healthcare; Sha Tin, New Territories Hong Kong SAR
| | - Winnie C.W. Chu
- Department of Imaging and Interventional Radiology; Chinese University of Hong Kong; Sha Tin, New Territories Hong Kong SAR
| |
Collapse
|
44
|
Berry DC, Jiang Y, Arpke RW, Close EL, Uchida A, Reading D, Berglund ED, Kyba M, Graff JM. Cellular Aging Contributes to Failure of Cold-Induced Beige Adipocyte Formation in Old Mice and Humans. Cell Metab 2017; 25:166-181. [PMID: 27889388 PMCID: PMC5226893 DOI: 10.1016/j.cmet.2016.10.023] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/13/2016] [Accepted: 10/28/2016] [Indexed: 01/08/2023]
Abstract
Cold temperatures induce progenitor cells within white adipose tissue to form beige adipocytes that burn energy and generate heat; this is a potential anti-diabesity therapy. However, the potential to form cold-induced beige adipocytes declines with age. This creates a clinical roadblock to potential therapeutic use in older individuals, who constitute a large percentage of the obesity epidemic. Here we show that aging murine and human beige progenitor cells display a cellular aging, senescence-like phenotype that accounts for their age-dependent failure. Activating the senescence pathway, either genetically or pharmacologically, in young beige progenitors induces premature cellular senescence and blocks their potential to form cold-induced beige adipocytes. Conversely, genetically or pharmacologically reversing cellular aging by targeting the p38/MAPK-p16Ink4a pathway in aged mouse or human beige progenitor cells rejuvenates cold-induced beiging. This in turn increases glucose sensitivity. Collectively, these data indicate that anti-aging or senescence modalities could be a strategy to induce beiging, thereby improving metabolic health in aging humans.
Collapse
Affiliation(s)
- Daniel C Berry
- Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Yuwei Jiang
- Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert W Arpke
- Lillehei Heart Institute, University Minnesota, Minneapolis, MN 55455, USA; Department of Medicine, University Minnesota, Minneapolis, MN 55455, USA
| | - Elizabeth L Close
- Division of Metabolic Mechanisms of Disease in the Advanced Imaging Research Center and Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aki Uchida
- Division of Metabolic Mechanisms of Disease in the Advanced Imaging Research Center and Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - David Reading
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric D Berglund
- Division of Metabolic Mechanisms of Disease in the Advanced Imaging Research Center and Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael Kyba
- Lillehei Heart Institute, University Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University Minnesota, Minneapolis, MN 55455, USA
| | - Jonathan M Graff
- Division of Endocrinology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
45
|
Verma SK, Nagashima K, Yaligar J, Michael N, Lee SS, Xianfeng T, Gopalan V, Sadananthan SA, Anantharaj R, Velan SS. Differentiating brown and white adipose tissues by high-resolution diffusion NMR spectroscopy. J Lipid Res 2016; 58:289-298. [PMID: 27845688 DOI: 10.1194/jlr.d072298] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/13/2016] [Indexed: 01/14/2023] Open
Abstract
There are two types of fat tissues, white adipose tissue (WAT) and brown adipose tissue (BAT), which essentially perform opposite functions in whole body energy metabolism. There is a large interest in identifying novel biophysical properties of WAT and BAT by a quantitative and easy-to-run technique. In this work, we used high-resolution pulsed field gradient diffusion NMR spectroscopy to study the apparent diffusion coefficient (ADC) of fat molecules in rat BAT and WAT samples. The ADC of fat in BAT and WAT from rats fed with a chow diet was compared with that of rats fed with a high-fat diet to monitor how the diffusion properties change due to obesity-associated parameters such as lipid droplet size, fatty acid chain length, and saturation. Feeding a high-fat diet resulted in increased saturation, increased chain lengths, and reduced ADC of fat in WAT. The ADC of fat was lower in BAT relative to WAT in rats fed both chow and high-fat diets. Diffusion of fat was restricted in BAT due to the presence of small multilocular lipid droplets. Our findings indicate that in vivo diffusion might be a potential way for better delineation of BAT and WAT in both lean and obese states.
Collapse
Affiliation(s)
- Sanjay Kumar Verma
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - Kaz Nagashima
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - Jadegoud Yaligar
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - Navin Michael
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore
| | - Swee Shean Lee
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - Tian Xianfeng
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - Venkatesh Gopalan
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore
| | - Rengaraj Anantharaj
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore
| | - S Sendhil Velan
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), Singapore .,Singapore Institute for Clinical Sciences, Agency for Science Technology and Research (A*STAR), Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
46
|
Kasza I, Hernando D, Roldán-Alzate A, Alexander CM, Reeder SB. Thermogenic profiling using magnetic resonance imaging of dermal and other adipose tissues. JCI Insight 2016; 1:e87146. [PMID: 27668285 DOI: 10.1172/jci.insight.87146] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dermal white adipose tissue (dWAT) was recently recognized for its potential to modify whole body metabolism. Here, we show that dWAT can be quantified using a high-resolution, fat-specific magnetic resonance imaging (MRI) technique. Noninvasive MRI has been used to describe adipocyte depots for many years; the MRI technique we describe uses an advanced fat-specific method to measure the thickness of dWAT, together with the total volume of WAT and the relative activation/fat depletion of brown adipose tissues (BAT). Since skin-embedded adipocytes may provide natural insulation, they provide an important counterpoint to the activation of thermogenic brown and beige adipose tissues, whereby these distinct depots are functionally interrelated and require simultaneous assay. This method was validated using characterized mouse cohorts of a lipodystrophic, dWAT-deficient strain (syndecan-1 KO) and 2 obese models (diet-induced obese mice and genetically obese animals, ob/ob). Using a preliminary cohort of normal human subjects, we found the thickness of skin-associated fat varied 8-fold, from 0.13-1.10 cm; on average, this depot is calculated to weigh 8.8 kg.
Collapse
Affiliation(s)
| | | | | | | | - Scott B Reeder
- Department of Radiology.,Department of Medical Physics.,Department of Biomedical Engineering.,Department of Medicine, and.,Department of Emergency Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
47
|
Stahl V, Maier F, Freitag MT, Floca RO, Berger MC, Umathum R, Berriel Diaz M, Herzig S, Weber MA, Dimitrakopoulou-Strauss A, Rink K, Bachert P, Ladd ME, Nagel AM. In vivoassessment of cold stimulation effects on the fat fraction of brown adipose tissue using DIXON MRI. J Magn Reson Imaging 2016; 45:369-380. [DOI: 10.1002/jmri.25364] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/15/2016] [Indexed: 12/13/2022] Open
Affiliation(s)
- Vanessa Stahl
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Florian Maier
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Martin T. Freitag
- Department of Radiology; German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Ralf O. Floca
- Medical and Biological Informatics, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Moritz C. Berger
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Reiner Umathum
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Mauricio Berriel Diaz
- Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital; Neuherberg Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer IDC Helmholtz Center Munich and Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital; Neuherberg Germany
| | - Marc-André Weber
- Diagnostic and Interventional Radiology; University Hospital of Heidelberg; Heidelberg Germany
| | | | - Kristian Rink
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Mark E. Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Armin M. Nagel
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
- Department of Diagnostic and Interventional Radiology; University Medical Center Ulm; Ulm Germany
- Institute of Radiology; University Hospital Erlangen; Erlangen Germany
| |
Collapse
|
48
|
Abstract
The marked (18)F-flurodeoxyglucose uptake by brown adipose tissue (BAT) enabled its identification in human positron emission tomography imaging studies. In this Perspective, we discuss how glucose extraction by BAT and beige adipose tissue (BeAT) sufficiently impacts on glycemic control. We then present a unique overview of the central circuits modulated by gluco-regulatory hormones, temperature, and glucose itself, which converge on sympathetic preganglionic neurons and whose activation syphon circulating glucose into BAT/BeAT. Targeted stimulation of the sympathetic nervous system at specific nodes to selectively recruit BAT/BeAT may represent a safe and effective means of treating diabetes.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Integrated Research and Treatment Centre for Adiposity Diseases, Department of Medicine, University of Leipzig, Leipzig, Saxony 04103, Germany.
| | - Michael A Cowley
- Department of Physiology, Monash Obesity and Diabetes Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Wiebke K Fenske
- Integrated Research and Treatment Centre for Adiposity Diseases, Department of Medicine, University of Leipzig, Leipzig, Saxony 04103, Germany
| |
Collapse
|
49
|
Gifford A, Towse TF, Walker RC, Avison MJ, Welch EB. Characterizing active and inactive brown adipose tissue in adult humans using PET-CT and MR imaging. Am J Physiol Endocrinol Metab 2016; 311:E95-E104. [PMID: 27166284 PMCID: PMC4967150 DOI: 10.1152/ajpendo.00482.2015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/29/2016] [Indexed: 12/23/2022]
Abstract
Activated brown adipose tissue (BAT) plays an important role in thermogenesis and whole body metabolism in mammals. Positron emission tomography (PET)-computed tomography (CT) imaging has identified depots of BAT in adult humans, igniting scientific interest. The purpose of this study is to characterize both active and inactive supraclavicular BAT in adults and compare the values to those of subcutaneous white adipose tissue (WAT). We obtained [(18)F]fluorodeoxyglucose ([(18)F]FDG) PET-CT and magnetic resonance imaging (MRI) scans of 25 healthy adults. Unlike [(18)F]FDG PET, which can detect only active BAT, MRI is capable of detecting both active and inactive BAT. The MRI-derived fat signal fraction (FSF) of active BAT was significantly lower than that of inactive BAT (means ± SD; 60.2 ± 7.6 vs. 62.4 ± 6.8%, respectively). This change in tissue morphology was also reflected as a significant increase in Hounsfield units (HU; -69.4 ± 11.5 vs. -74.5 ± 9.7 HU, respectively). Additionally, the CT HU, MRI FSF, and MRI R2* values are significantly different between BAT and WAT, regardless of the activation status of BAT. To the best of our knowledge, this is the first study to quantify PET-CT and MRI FSF measurements and utilize a semiautomated algorithm to identify inactive and active BAT in the same adult subjects. Our findings support the use of these metrics to characterize and distinguish between BAT and WAT and lay the foundation for future MRI analysis with the hope that some day MRI-based delineation of BAT can stand on its own.
Collapse
Affiliation(s)
- Aliya Gifford
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee; Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee
| | - Theodore F Towse
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee; Department of Physical Medicine and Rehabilitation, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Ronald C Walker
- Department of Medical Imaging, Tennessee Valley Veterans Affairs Healthcare, Nashville, Nashville, Tennessee; Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Malcolm J Avison
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee; Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee; Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - E Brian Welch
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee; Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee; Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| |
Collapse
|
50
|
Purcell SA, Elliott SA, Baracos VE, Chu QSC, Prado CM. Key determinants of energy expenditure in cancer and implications for clinical practice. Eur J Clin Nutr 2016; 70:1230-1238. [DOI: 10.1038/ejcn.2016.96] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/06/2016] [Indexed: 12/17/2022]
|