1
|
Hou J, Du K, Li J, Li Z, Cao S, Zhang S, Huang W, Liu H, Yang X, Sun S, Mo S, Qin T, Zhang X, Yin S, Nie X, Lu X. Research trends in the use of nanobodies for cancer therapy. J Control Release 2025; 381:113454. [PMID: 39922288 DOI: 10.1016/j.jconrel.2025.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/10/2025]
Abstract
Although there are many challenges in using nanobodies for treating various complex tumor diseases, including rapid renal clearance and the complex blood-brain barrier environment, nanobodies have shown great potential due to their high antigen affinity, excellent tumor penetration ability, and favorable safety profile. Since the discovery of the variable domain (VHH) of camelid heavy-chain antibodies in 1993, nanobodies have been progressively applied to various cancer therapy platforms, such as antagonistic drugs and targeting agents for effector domains. In recent years, several nanobody-based drugs, including Caplacizumab, KN-035, and Ozoralizumab, have been approved for clinical use. Among them, KN-035 is used for treating advanced solid tumors, and these advancements have propelled nanobody development to new heights. Currently, nanobodies are being rapidly applied to the treatment of a wide range of diseases, from viral infections to cancer, demonstrating strong advantages in areas such as targeted protein degradation, bioimaging, nanobody-drug conjugation, bispecific T-cell engagers, and vaccine applications. Bibliometric tools, including CiteSpace, HisCite Pro, and Alluvial Generator, were employed to trace the historical development of nanobodies in cancer research. The contributions of authors, countries, and institutions in this field were analyzed, and research hotspots and emerging trends were identified through keyword analysis and influential articles. Future trends were also predicted. This study provides a unique, comprehensive, and objective perspective on the use of nanobodies in tumor research, laying a foundation for future research directions and offering valuable insights for researchers in the field.
Collapse
Affiliation(s)
- Jun Hou
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Kejiang Du
- Department of Otorhinolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou 545006, China
| | - Jinling Li
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Zhenghui Li
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Shaorui Cao
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Shilin Zhang
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Wenxing Huang
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Heng Liu
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Xiaomei Yang
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Shuyang Sun
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Shanzhao Mo
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Tianyu Qin
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Xilei Zhang
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Shihua Yin
- Department of Otorhinolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China.
| | - Xinyu Nie
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230002, China.
| | - Xiaoling Lu
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
2
|
Ma X, Liu T, Guo R, Zhou W, Yao Y, Wen D, Tao J, Zhu J, Wang F, Zhu H, Yang Z. Radioiodinated Nanobody immunoPET probe for in vivo detection of CD147 in pan-cancer. Eur J Nucl Med Mol Imaging 2025; 52:1406-1421. [PMID: 39549046 DOI: 10.1007/s00259-024-06985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND To develop the extracellular matrix metalloproteinase inducer (CD147)-targeting therapeutic strategies, accurate detection of CD147 expression in tumors is crucial. Owing to their relatively low molecular weights and high affinities, nanobodies (Nbs) may be powerful candidates for cancer diagnosis and therapy. In this study, we developed a novel CD147-targeted nanobody radiotracer, [124I]I-NB147, which provides guidance for the noninvasive detection of CD147-overexpressing cancers. METHODS CD147 expression in human cancers was detected via immunohistochemistry (IHC) on tissue microarrays (TMAs). Western blot (WB) and flow cytometry were used to screen CD147-positive malignant melanoma (MM), triple-negative breast cancer (TNBC), and pancreatic cancer (PCA) cell lines. The CD147 nanobody (NB147) was labeled with [124I]INa using Iodogen as the oxidizing agent and was purified by the PD-10 column. The physicochemical properties, affinity, metabolic characteristics, biodistribution, and immunoPET imaging of [124I]I-NB147 were evaluated Moreover, [18F]F-FDG was used as a control. Finally, CD147 expression analysis was performed via multiplex immunofluorescence (MxIF) and autoradiography on human cancer specimens and tumor-bearing mice tissues. RESULTS TMAs results revealed that CD147 is highly expressed in MM, TNBC, and PCA. A CD147-specific nanobody, NB147, was successfully generated with excellent in vitro binding characteristics. [124I]I-NB147 was obtained with high radiochemical yield and purity, and was stable for at least 4 h in vitro. WB and FCM revealed that CD147 was positive in A375, MDA-MB-435 and ASPC1 cells, whereas SK-MEL-28, 4T1 and BXPC3 cells presented low expression levels. The radio-ELISA results indicated that [124I]I-NB147 had a high binding affinity to CD147. The uptake of [124I]I-NB147 was significantly different between CD147 high-expression cells and CD147 low-expression cells (P < 0.001). The biological half-life of the distribution and clearance phases were 0.05 h and 1.58 h, respectively. In CD147-positive tumor models, the [124I]I-NB147 accumulated in A375, MDA-MB-435, and ASPC1 tumors, and the uptake value was significantly higher than that of [18F]F-FDG. Uptake in SK-MEL-28, BXPC3, and 4T1 tumors was not clearly observed. Finally, through autoradiography and histological studies, the correlation analysis between tumor uptake and CD147 expression level was determined. CONCLUSIONS The high expression of CD147 in MM, TNBC, and PCA tissuesand in tumor cells was verified. The CD147 nanobody, NB147 was produced and radiolabeled to obtain the immunoPET probe, [124I]I-NB147, which showed high affinity to CD147 and precise visualization for accurate diagnosis of CD147-expressing lesions in different cancers. These results provide insight into the imaging and binding properties of nanobody NB147 over extended periods of time, reinforcing its potential in developing radionuclide therapies for CD147-positive cancer patients.
Collapse
Affiliation(s)
- Xiaokun Ma
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Teli Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Rui Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Wenyuan Zhou
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yuan Yao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Dan Wen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637002, Sichuan, China
| | - Jinping Tao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jinyu Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Feng Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hua Zhu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Zhi Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
3
|
Vanermen M, Ligeour M, Oliveira MC, Gestin JF, Elvas F, Navarro L, Guérard F. Astatine-211 radiolabelling chemistry: from basics to advanced biological applications. EJNMMI Radiopharm Chem 2024; 9:69. [PMID: 39365487 PMCID: PMC11452365 DOI: 10.1186/s41181-024-00298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND 211At-radiopharmaceuticals are currently the subject of growing studies for targeted alpha therapy of cancers, which leads to the widening of the scope of the targeting vectors, from small molecules to peptides and proteins. This has prompted, during the past decade, to a renewed interest in developing novel 211At-labelling approaches and novel prosthetic groups to address the diverse scenarios and to reach improved efficiency and robustness of procedures as well as an appropriate in vivo stability of the label. MAIN BODY Translated from the well-known (radio)iodine chemistry, the long preferred electrophilic astatodemetallation using trialkylaryltin precursors is now complemented by new approaches using electrophilic or nucleophilic At. Alternatives to the astatoaryl moiety have been proposed to improve labelling stability, and the range of prosthetic groups available to label proteins has expanded. CONCLUSION In this report, we cover the evolution of radiolabelling chemistry, from the initial strategies developed in the late 1970's to the most recent findings.
Collapse
Affiliation(s)
- Maarten Vanermen
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium
| | - Mathilde Ligeour
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Maria-Cristina Oliveira
- Departamento de Engenharia e Ciências Nucleares and Centro de Ciências e Tecnologias Nucleares, IST, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066, Bobadela LRS, Portugal
| | | | - Filipe Elvas
- Molecular Imaging and Radiology (MIRA), University of Antwerp, Wilrijk, Belgium
| | | | - François Guérard
- Nantes Université, Inserm, CNRS, Université d'Angers, CRCI2NA, Nantes, France.
| |
Collapse
|
4
|
Poty S, Ordas L, Dekempeneer Y, Parach AA, Navarro L, Santens F, Dumauthioz N, Bardiès M, Lahoutte T, D'Huyvetter M, Pouget JP. Optimizing the Therapeutic Index of sdAb-Based Radiopharmaceuticals Using Pretargeting. J Nucl Med 2024; 65:1564-1570. [PMID: 39266288 PMCID: PMC11448608 DOI: 10.2967/jnumed.124.267624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/05/2024] [Indexed: 09/14/2024] Open
Abstract
Single-domain antibodies (sdAbs) demonstrate favorable pharmacokinetic profiles for molecular imaging applications. However, their renal excretion and retention are obstacles for applications in targeted radionuclide therapy (TRT). Methods: Using a click-chemistry-based pretargeting approach, we aimed to reduce kidney retention of a fibroblast activation protein α (FAP)-targeted sdAb, 4AH29, for 177Lu-TRT. Key pretargeting parameters (sdAb-injected mass and lag time) were optimized in healthy mice and U87MG (FAP+) xenografts. A TRT study in a pancreatic ductal adenocarcinoma (PDAC) patient-derived xenograft (PDX) model was performed as a pilot study for sdAb-based pretargeting applications. Results: Modification of 4AH29 with trans-cyclooctene (TCO) moieties did not modify the sdAb pharmacokinetic profile. A 200-µg injected mass of 4AH29-TCO and an 8-h lag time for the injection of [177Lu]Lu-DOTA-PEG7-tetrazine resulted in the highest kidney therapeutic index (2.0 ± 0.4), which was 5-fold higher than that of [177Lu]Lu-DOTA-4AH29 (0.4 ± 0.1). FAP expression in the tumor microenvironment was validated in a PDAC PDX model with both immunohistochemistry and PET/CT imaging. Mice treated with the pretargeting high-activity approach (4AH29-TCO + [177Lu]Lu-DOTA-PEG7-tetrazine; 3 × 88 MBq, 1 injection per week for 3 wk) demonstrated prolonged survival compared with the vehicle control and conventionally treated ([177Lu]Lu-DOTA-4AH29; 3 × 37 MBq, 1 injection per week for 3 wk) mice. Mesangial expansion was reported in 7 of 10 mice in the conventional cohort, suggesting treatment-related kidney morphologic changes, but was not observed in the pretargeting cohort. Conclusion: This study validates pretargeting to mitigate sdAbs' kidney retention with no observation of morphologic changes on therapy regimen at early time points. Clinical translation of click-chemistry-based pre-TRT is warranted on the basis of its ability to alleviate toxicities related to biovectors' intrinsic pharmacokinetic profiles. The absence of representative animal models with extensive stroma and high FAP expression on cancer-associated fibroblasts led to a low mean tumor-absorbed dose even with high injected activity and consequently to modest survival benefit in this PDAC PDX.
Collapse
Affiliation(s)
- Sophie Poty
- Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, INSERM, U1194, Équipe labellisée Ligue contre le cancer, Montpellier, France; and
| | - Laura Ordas
- Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, INSERM, U1194, Équipe labellisée Ligue contre le cancer, Montpellier, France; and
| | | | - Ali Asghar Parach
- Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, INSERM, U1194, Équipe labellisée Ligue contre le cancer, Montpellier, France; and
| | | | | | | | - Manuel Bardiès
- Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, INSERM, U1194, Équipe labellisée Ligue contre le cancer, Montpellier, France; and
| | | | | | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, INSERM, U1194, Équipe labellisée Ligue contre le cancer, Montpellier, France; and
| |
Collapse
|
5
|
Cong Y, Devoogdt N, Lambin P, Dubois LJ, Yaromina A. Promising Diagnostic and Therapeutic Approaches Based on VHHs for Cancer Management. Cancers (Basel) 2024; 16:371. [PMID: 38254860 PMCID: PMC10814765 DOI: 10.3390/cancers16020371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The discovery of the distinctive structure of heavy chain-only antibodies in species belonging to the Camelidae family has elicited significant interest in their variable antigen binding domain (VHH) and gained attention for various applications, such as cancer diagnosis and treatment. This article presents an overview of the characteristics, advantages, and disadvantages of VHHs as compared to conventional antibodies, and their usage in diverse applications. The singular properties of VHHs are explained, and several strategies that can augment their utility are outlined. The preclinical studies illustrating the diagnostic and therapeutic efficacy of distinct VHHs in diverse formats against solid cancers are summarized, and an overview of the clinical trials assessing VHH-based agents in oncology is provided. These investigations demonstrate the enormous potential of VHHs for medical research and healthcare.
Collapse
Affiliation(s)
- Ying Cong
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6211 LK Maastricht, The Netherlands; (Y.C.); (P.L.)
| | - Nick Devoogdt
- Molecular Imaging and Therapy Research Group (MITH), Vrije Universiteit Brussel, 1090 Brussels, Belgium;
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6211 LK Maastricht, The Netherlands; (Y.C.); (P.L.)
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6211 LK Maastricht, The Netherlands; (Y.C.); (P.L.)
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW—School for Oncology and Reproduction, Maastricht University, 6211 LK Maastricht, The Netherlands; (Y.C.); (P.L.)
| |
Collapse
|
6
|
Coll RP, Bright SJ, Martinus DKJ, Georgiou DK, Sawakuchi GO, Manning HC. Alpha Particle-Emitting Radiopharmaceuticals as Cancer Therapy: Biological Basis, Current Status, and Future Outlook for Therapeutics Discovery. Mol Imaging Biol 2023; 25:991-1019. [PMID: 37845582 PMCID: PMC12054971 DOI: 10.1007/s11307-023-01857-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Critical advances in radionuclide therapy have led to encouraging new options for cancer treatment through the pairing of clinically useful radiation-emitting radionuclides and innovative pharmaceutical discovery. Of the various subatomic particles used in therapeutic radiopharmaceuticals, alpha (α) particles show great promise owing to their relatively large size, delivered energy, finite pathlength, and resulting ionization density. This review discusses the therapeutic benefits of α-emitting radiopharmaceuticals and their pairing with appropriate diagnostics, resulting in innovative "theranostic" platforms. Herein, the current landscape of α particle-emitting radionuclides is described with an emphasis on their use in theranostic development for cancer treatment. Commonly studied radionuclides are introduced and recent efforts towards their production for research and clinical use are described. The growing popularity of these radionuclides is explained through summarizing the biological effects of α radiation on cancer cells, which include DNA damage, activation of discrete cell death programs, and downstream immune responses. Examples of efficient α-theranostic design are described with an emphasis on strategies that lead to cellular internalization and the targeting of proteins involved in therapeutic resistance. Historical barriers to the clinical deployment of α-theranostic radiopharmaceuticals are also discussed. Recent progress towards addressing these challenges is presented along with examples of incorporating α-particle therapy in pharmaceutical platforms that can be easily converted into diagnostic counterparts.
Collapse
Affiliation(s)
- Ryan P Coll
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - David K J Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
| |
Collapse
|
7
|
Li S, Hoefnagel SJM, Krishnadath KK. Single domain Camelid antibody fragments for molecular imaging and therapy of cancer. Front Oncol 2023; 13:1257175. [PMID: 37746282 PMCID: PMC10514897 DOI: 10.3389/fonc.2023.1257175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Despite innovations in cancer therapeutics, cancer remains associated with high mortality and is one of biggest health challenges worldwide. Therefore, developing precise cancer imaging and effective treatments is an unmet clinical need. A relatively novel type of therapeutics are heavy chain variable domain antibody fragments (VHHs) derived from llamas. Here, we explored the suitability of VHHs for cancer imaging and therapy through reviewing the existing literature. We searched the MEDLINE, EMBASE and Cochrane databases and identified 32 papers on molecular imaging and 41 papers on therapy that were suitable for comprehensive reviewing. We found that VHHs harbor a higher specificity and affinity compared to mAbs, which contributes to high-quality imaging and less side-effects on healthy cells. The employment of VHHs in cancer imaging showed remarkably shorter times between administration and imaging. Studies showed that 18F and 99mTc are two optimal radionuclides for imaging with VHHs and that site-specific labelling is the optimal conjugation modality for VHHs with radionuclide or fluorescent molecules. We found different solutions for reducing kidney retention and immunogenicity of VHHs. VHHs as anticancer therapeutics have been tested in photodynamic therapy, targeted radionuclide therapy, immunotherapy and molecular targeted therapy. These studies showed that VHHs target unique antigen epitopes, which are distinct from the ones recognized by mAbs. This advantage means that VHHs may be more effective for targeted anticancer therapy and can be combined with mAbs. We found that high cellular internalization and specificity of VHHs contributes to the effectiveness and safety of VHHs as anticancer therapeutics. Two clinical trials have confirmed that VHHs are effective and safe for cancer imaging and therapy. Together, VHHs seem to harbor several advantages compared to mAbs and show potential for application in personalized treatment for cancer patients. VHH-based imaging and therapy are promising options for improving outcomes of cancer patients.
Collapse
Affiliation(s)
- Shulin Li
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
| | | | - Kausilia Krishnawatie Krishnadath
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
8
|
Hurley K, Cao M, Huang H, Wang Y. Targeted Alpha Therapy (TAT) with Single-Domain Antibodies (Nanobodies). Cancers (Basel) 2023; 15:3493. [PMID: 37444603 DOI: 10.3390/cancers15133493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
The persistent threat of cancer necessitates the development of improved and more efficient therapeutic strategies that limit damage to healthy tissues. Targeted alpha therapy (TαT), a novel form of radioimmuno-therapy (RIT), utilizes a targeting vehicle, commonly antibodies, to deliver high-energy, but short-range, alpha-emitting particles specifically to cancer cells, thereby reducing toxicity to surrounding normal tissues. Although full-length antibodies are often employed as targeting vehicles for TαT, their high molecular weight and the presence of an Fc-region lead to a long blood half-life, increased bone marrow toxicity, and accumulation in other tissues such as the kidney, liver, and spleen. The discovery of single-domain antibodies (sdAbs), or nanobodies, naturally occurring in camelids and sharks, has introduced a novel antigen-specific vehicle for molecular imaging and TαT. Given that nanobodies are the smallest naturally occurring antigen-binding fragments, they exhibit shorter relative blood half-lives, enhanced tumor uptake, and equivalent or superior binding affinity and specificity. Nanobody technology could provide a viable solution for the off-target toxicity observed with full-length antibody-based TαT. Notably, the pharmacokinetic properties of nanobodies align better with the decay characteristics of many short-lived α-emitting radionuclides. This review aims to encapsulate recent advancements in the use of nanobodies as a vehicle for TαT.
Collapse
Affiliation(s)
- Kate Hurley
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0, Canada
| | - Meiyun Cao
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0, Canada
| | - Haiming Huang
- Research Center, Forlong Biotechnology Inc., Suzhou 215004, China
| | - Yi Wang
- Radiobiology and Health, Canadian Nuclear Laboratories, Chalk River, ON K0J 1J0, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
9
|
Funeh CN, Bridoux J, Ertveldt T, De Groof TWM, Chigoho DM, Asiabi P, Covens P, D'Huyvetter M, Devoogdt N. Optimizing the Safety and Efficacy of Bio-Radiopharmaceuticals for Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15051378. [PMID: 37242621 DOI: 10.3390/pharmaceutics15051378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The precise delivery of cytotoxic radiation to cancer cells through the combination of a specific targeting vector with a radionuclide for targeted radionuclide therapy (TRT) has proven valuable for cancer care. TRT is increasingly being considered a relevant treatment method in fighting micro-metastases in the case of relapsed and disseminated disease. While antibodies were the first vectors applied in TRT, increasing research data has cited antibody fragments and peptides with superior properties and thus a growing interest in application. As further studies are completed and the need for novel radiopharmaceuticals nurtures, rigorous considerations in the design, laboratory analysis, pre-clinical evaluation, and clinical translation must be considered to ensure improved safety and effectiveness. Here, we assess the status and recent development of biological-based radiopharmaceuticals, with a focus on peptides and antibody fragments. Challenges in radiopharmaceutical design range from target selection, vector design, choice of radionuclides and associated radiochemistry. Dosimetry estimation, and the assessment of mechanisms to increase tumor uptake while reducing off-target exposure are discussed.
Collapse
Affiliation(s)
- Cyprine Neba Funeh
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Jessica Bridoux
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Thomas Ertveldt
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Timo W M De Groof
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Dora Mugoli Chigoho
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Parinaz Asiabi
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Peter Covens
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Matthias D'Huyvetter
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| | - Nick Devoogdt
- Laboratory for In Vivo Cellular and Molecular Imaging, Department of Medical Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103/K.001, 1090 Brussels, Belgium
| |
Collapse
|
10
|
Jung S, Jiang L, Zhao J, Shultz LD, Greiner DL, Bae M, Li X, Ordikhani F, Kuai R, Joseph J, Kasinath V, Elmaleh DR, Abdi R. Clathrin light chain-conjugated drug delivery for cancer. Bioeng Transl Med 2023; 8:e10273. [PMID: 36684105 PMCID: PMC9842032 DOI: 10.1002/btm2.10273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/25/2023] Open
Abstract
Targeted drug delivery systems hold the remarkable potential to improve the therapeutic index of anticancer medications markedly. Here, we report a targeted delivery platform for cancer treatment using clathrin light chain (CLC)-conjugated drugs. We conjugated CLC to paclitaxel (PTX) through a glutaric anhydride at high efficiency. Labeled CLCs localized to 4T1 tumors implanted in mice, and conjugation of PTX to CLC enhanced its delivery to these tumors. Treatment of three different mouse models of cancer-melanoma, breast cancer, and lung cancer-with CLC-PTX resulted in significant growth inhibition of both the primary tumor and metastatic lesions, as compared to treatment with free PTX. CLC-PTX treatment caused a marked increase in apoptosis of tumor cells and reduction of tumor angiogenesis. Our data suggested HSP70 as a binding partner for CLC. Our study demonstrates that CLC-based drug-conjugates constitute a novel drug delivery platform that can augment the effects of chemotherapeutics in treating a variety of cancers. Moreover, conjugation of therapeutics with CLC may be used as means by which drugs are delivered specifically to primary tumors and metastatic lesions, thereby prolonging the survival of cancer patients.
Collapse
Affiliation(s)
- Sungwook Jung
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Liwei Jiang
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Institute of Health and Medical TechnologyHefei Institutes of Physical Science, Chinese Academy of SciencesBostonHefeiChina
| | - Jing Zhao
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Dale L. Greiner
- Department of Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Munhyung Bae
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Xiaofei Li
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Farideh Ordikhani
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Rui Kuai
- Center for Nanomedicine and Division of Engineering in Medicine, Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - John Joseph
- Center for Nanomedicine and Division of Engineering in Medicine, Department of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Vivek Kasinath
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - David R. Elmaleh
- Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Reza Abdi
- Transplantation Research Center, Renal DivisionBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
11
|
Feng Y, Meshaw R, Zhao XG, Jannetti S, Vaidyanathan G, Zalutsky MR. Effective Treatment of Human Breast Carcinoma Xenografts with Single-Dose 211At-Labeled Anti-HER2 Single-Domain Antibody Fragment. J Nucl Med 2023; 64:124-130. [PMID: 35618478 PMCID: PMC9841253 DOI: 10.2967/jnumed.122.264071] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 01/06/2023] Open
Abstract
Single-domain antibody fragments (sdAbs) are attractive for targeted α-particle therapy, particularly with 211At, because of their rapid accumulation in tumor and clearance from normal tissues. Here, we evaluate the therapeutic potential of this strategy with 5F7 and VHH_1028-2 sdAbs that bind with high affinity to domain IV of human epidermal growth factor receptor type 2 (HER2). Methods: The HER2-specific sdAbs and HER2-irrelevant VHH_2001 were labeled using N-succinimidyl-3-211At-astato-5-guanidinomethyl benzoate (iso-211At-SAGMB). The cytotoxicity of iso- 211At-SAGMB-5F7 and iso- 211At-SAGMB-VHH_2001 were compared on HER2-expressing BT474 breast carcinoma cells. Three experiments in mice with subcutaneous BT474 xenografts were performed to evaluate the therapeutic effectiveness of single doses of iso- 211At-SAGMB-5F7 (0.7-3.0 MBq), iso- 211At-SAGMB-VHH_1028 (1.0-3.0 MBq), and iso- 211At-SAGMB-VHH_1028 and iso- 211At-SAGMB-VHH_2001 (∼1.0 MBq). Results: Clonogenic survival of BT474 cells was reduced after exposure to iso- 211At-SAGMB-5F7 (D0 = 1.313 kBq/mL) whereas iso- 211At-SAGMB-VHH_2001 was ineffective. Dose-dependent tumor growth inhibition was observed with 211At-labeled HER2-specific 5F7 and VHH_1028 but not with HER2-irrelevant VHH_2001. At the 3.0-MBq dose, complete tumor regression was seen in 3 of 4 mice treated with iso- 211At-SAGMB-5F7 and 8 of 11 mice treated with iso- 211At-SAGMB-VHH_1028; prolongation in median survival was 495% and 414%, respectively. Conclusion: Combining rapidly internalizing, high-affinity HER2-targeted sdAbs with the iso- 211At-SAGMB residualizing prosthetic agent is a promising strategy for targeted α-particle therapy of HER2-expressing cancers.
Collapse
Affiliation(s)
- Yutian Feng
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Rebecca Meshaw
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Xiao-Guang Zhao
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Stephen Jannetti
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | | | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
12
|
Qin X, Guo X, Liu T, Li L, Zhou N, Ma X, Meng X, Liu J, Zhu H, Jia B, Yang Z. High in-vivo stability in preclinical and first-in-human experiments with [ 18F]AlF-RESCA-MIRC213: a 18F-labeled nanobody as PET radiotracer for diagnosis of HER2-positive cancers. Eur J Nucl Med Mol Imaging 2023; 50:302-313. [PMID: 36129493 DOI: 10.1007/s00259-022-05967-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/11/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE [18F]AlF-RESCA was introduced as a core particularly useful for 18F-labeling of heat-sensitive biomolecules. However, no translational studies have been reported up to now. Herein, we reported the first-in-human evaluation of an 18F-labeled anti-HER2 nanobody MIRC213 as a PET radiotracer for imaging HER2-positive cancers. METHODS MIRC213 was produced by E. coli and conjugated with ( ±)-H3RESCA-Mal. [18F]AlF-RESCA-MIRC213 was prepared at room temperature. Its radiochemical purity and stability of were determined by radio-HPLC with the size-exclusion chromatographic column. Cell uptake was performed in NCI-N87 (HER2 +) and MCF-7 (HER2-) cells and the cell-binding affinity was verified in SK-OV-3 (HER2 +) cells. Small-animal PET/CT was performed using SK-OV-3, NCI-N87, and MCF-7 tumor-bearing mice at 30 min, 1 h, and 2 h post-injection. For blocking experiment, excess MIRC213 was co-injected with radiotracer. Biodistribution were performed on SKOV-3 and MCF-7 tumor-bearing mice at 2 h post-injection. For clinical study, PET/CT images were acquired at 2 h and 4 h after injection of [18F]AlF-RESCA-MIRC213 (1.85-3.7 MBq/kg) in six breast cancer patients (3 HER2-positive and 3 HER2-negative). All patients underwent [18F]-FDG PET/CT within a week for tissue selection purpose. Distribution and dosimetry were calculated. Standardized uptake values (SUV) were measured in tumors and normal organs. RESULTS MIRC213 was produced with > 95% purity and modified with RESCA to obtain RESCA-MIRC213. [18F]AlF-RESCA-MIRC213 was prepared within 20 min at room temperature with the radiochemical yield of 50.48 ± 7.6% and radiochemical purity of > 98% (n > 10), and remained stable in both PBS (88%) and 5% HSA (92%) after 6 h. The 2 h cellular uptake of [18F]AlF-RESCA-MIRC213 in NCI-N87 cells was 11.22 ± 0.60 AD%/105 cells. Its binding affinity Kd value was determined to be 1.23 ± 0.58 nM. Small-animal PET/CT with [18F]AlF-RESCA-MIRC213 can clearly differentiate SK-OV-3 and NCI-N87 tumors from MCF-7 tumors and background with a high uptake of 4.73 ± 1.18 ID%/g and substantially reduced to 1.70 ± 0.13 ID%/g for the blocking group (p < 0.05) in SK-OV-3 tumors at 2 h post-injection. No significant bone radioactivity was seen in the tumor-bearing animals. In all six breast cancer patients, there was no adverse reaction during study. The uptake of [18F]AlF-RESCA-MIRC213 was mainly in lacrimal gland, parotid gland, submandibular gland, thyroid gland, gallbladder, kidneys, liver, and intestines. There was no significant bone radioactivity accumulation in cancer patients. [18F]AlF-RESCA-MIRC213 had significantly higher tumor uptake in lesions from HER2-positive patients than that lesions from HER2-negative patients (SUVmax of 3.62 ± 1.56 vs. 1.41 ± 0.41, p = 0.0012) at 2 h post-injection. The kidneys received the highest radiation dose of 2.42 × 10-1 mGy/MBq, and the effective dose was 1.56 × 10-2 mSv/MBq. CONCLUSIONS [18F]AlF-RESCA-MIRC213 could be prepared with high radiolabeling yield under mild conditions. [18F]AlF-RESCA-MIRC213 has relatively high stability both in vitro and in vivo. The results from clinical transformation suggest that [18F]AlF-RESCA-MIRC213 PET/CT is a safe procedure with favorable pharmacokinetics and dosimetry profile, and it is a promising new PET radiotracer for noninvasive diagnosis of HER2-positive cancers.
Collapse
Affiliation(s)
- Xue Qin
- Guizhou University School of Medicine, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaoyi Guo
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Tianyu Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Liqiang Li
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Nina Zhou
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaopan Ma
- Guizhou University School of Medicine, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiayue Liu
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hua Zhu
- Guizhou University School of Medicine, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Bing Jia
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Zhi Yang
- Guizhou University School of Medicine, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
13
|
Zhao L, Gong J, Qi Q, Liu C, Su H, Xing Y, Zhao J. 131I-Labeled Anti-HER2 Nanobody for Targeted Radionuclide Therapy of HER2-Positive Breast Cancer. Int J Nanomedicine 2023; 18:1915-1925. [PMID: 37064291 PMCID: PMC10094415 DOI: 10.2147/ijn.s399322] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/04/2023] [Indexed: 04/18/2023] Open
Abstract
Purpose The unique structure of nanobodies is advantageous for the development of radiopharmaceuticals for nuclear medicine. Nanobodies targeted to human epidermal growth factor receptor 2 (HER2) can be used as tools for the imaging and therapy of HER2-overexpressing tumors. In this study, we aimed to describe the generation of a 131I-labeled anti-HER2 nanobody as a targeted radionuclide therapy (TRNT) agent for HER2-positive breast cancer. Methods The anti-HER2 nanobody NM-02 was labeled with 131I using the iodogen method, and its radiochemical purity and stability in vitro were assessed. The pharmacokinetic profile of 131I-NM-02 was investigated in normal mice. Tumor accumulation, biodistribution, and therapeutic potential of 131I-NM-02 were evaluated in HER2-positive SKBR3 xenografts; HER2-negative MB-MDA-231 xenografts were used as the control group. Results 131I-NM-02 could be readily prepared with satisfactory radiochemical purity and stability in vitro. Apparent tumor uptake was observed in HER2-positive tumor-bearing mice with rapid blood clearance and favorable biodistribution. 131I-NM-02 could significantly inhibit tumor growth and extend the life of these mice with good organ compatibility. Negligible tumor accumulation and inhibitory effects of 131I-NM-02 were observed in the negative control group. Conclusion 131I-NM-02 has the potential to be explored as a novel tool for TRNT of HER2-positive breast cancer.
Collapse
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jiali Gong
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Qinli Qi
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Changcun Liu
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Hongxing Su
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yan Xing
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Correspondence: Jinhua Zhao; Yan Xing, Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Road, Shanghai, 200080, People’s Republic of China, Tel/Fax +86 21 3779 8352, Email ;
| |
Collapse
|
14
|
Rodak M, Dekempeneer Y, Wojewódzka M, Caveliers V, Covens P, Miller BW, Sevenois MB, Bruchertseifer F, Morgenstern A, Lahoutte T, D'Huyvetter M, Pruszyński M. Preclinical Evaluation of 225Ac-Labeled Single-Domain Antibody for the Treatment of HER2pos Cancer. Mol Cancer Ther 2022; 21:1835-1845. [PMID: 36129807 PMCID: PMC9716241 DOI: 10.1158/1535-7163.mct-21-1021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/25/2022] [Accepted: 09/16/2022] [Indexed: 01/12/2023]
Abstract
Human epidermal growth factor receptor type 2 (HER2) is overexpressed in various cancers; thus, HER2-targeting single-domain antibodies (sdAb) could offer a useful platform for radioimmunotherapy. In this study, we optimized the labeling of an anti-HER2-sdAb with the α-particle-emitter 225Ac through a DOTA-derivative. The formed radioconjugate was tested for binding affinity, specificity and internalization properties, whereas cytotoxicity was evaluated by clonogenic and DNA double-strand-breaks assays. Biodistribution studies were performed in mice bearing subcutaneous HER2pos tumors to estimate absorbed doses delivered to organs and tissues. Therapeutic efficacy and potential toxicity were assessed in HER2pos intraperitoneal ovarian cancer model and in healthy C57Bl/6 mice. [225Ac]Ac-DOTA-2Rs15d exhibited specific cell uptake and cell-killing capacity in HER2pos cells (EC50 = 3.9 ± 1.1 kBq/mL). Uptake in HER2pos lesions peaked at 3 hours (9.64 ± 1.69% IA/g), with very low accumulation in other organs (<1% IA/g) except for kidneys (11.69 ± 1.10% IA/g). α-camera imaging presented homogeneous uptake of radioactivity in tumors, although heterogeneous in kidneys, with a higher signal density in cortex versus medulla. In mice with HER2pos disseminated tumors, repeated administration of [225Ac]Ac-DOTA-2Rs15d significantly prolonged survival (143 days) compared to control groups (56 and 61 days) and to the group treated with HER2-targeting mAb trastuzumab (100 days). Histopathologic evaluation revealed signs of kidney toxicity after repeated administration of [225Ac]Ac-DOTA-2Rs15d. [225Ac]Ac-DOTA-2Rs15d efficiently targeted HER2pos cells and was effective in treatment of intraperitoneal disseminated tumors, both alone and as an add-on combination with trastuzumab, albeit with substantial signs of inflammation in kidneys. This study warrants further development of [225Ac]Ac-DOTA-2Rs15d.
Collapse
Affiliation(s)
- Magdalena Rodak
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Yana Dekempeneer
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Vicky Caveliers
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
- Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| | - Peter Covens
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Brian W. Miller
- Department of Medical Imaging, University of Arizona, Tucson, Arizona
| | - Matthijs B. Sevenois
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | - Tony Lahoutte
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
- Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| | - Matthias D'Huyvetter
- Department of Medical Imaging, In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marek Pruszyński
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
- NOMATEN Centre of Excellence, National Centre for Nuclear Research, Otwock, Poland
| |
Collapse
|
15
|
Feng Y, Sarrett SM, Meshaw RL, Vaidyanathan G, Cornejo MA, Zeglis BM, Zalutsky MR. Site-Specific Radiohalogenation of a HER2-Targeted Single-Domain Antibody Fragment Using a Novel Residualizing Prosthetic Agent. J Med Chem 2022; 65:15358-15373. [PMID: 36368007 DOI: 10.1021/acs.jmedchem.2c01331] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Because of their rapid tumor accumulation and normal tissue clearance, single-domain antibody fragments (sdAbs) are an attractive vehicle for developing radiotherapeutics labeled with the α-emitter 211At. Herein, we have evaluated iso-[211At]AGMB-PODS, a prosthetic agent that combines a functionality for residualizing radiohalogens with a phenyloxadiazolyl methylsulfone (PODS) moiety for site-specific sdAb conjugation. Iso-[211At]AGMB-PODS and its radioiodinated analogue were evaluated for thiol-selective conjugation to anti-HER2 5F7 sdAb bearing a C-terminus GGC tail. Both radiohalogenated PODS-5F7GGC conjugates were synthesized in good radiochemical yields and retained high binding affinity on HER2-positive BT474 breast carcinoma cells. Iso-[211At]AGMB-PODS-5F7GGC was considerably more stable in vitro than its maleimide analogue in the presence of cysteine and human serum albumin (HSA) and exhibited excellent tumor uptake and high in vivo stability. Superior tumor-to-kidney activity ratios were seen for both radiohalogenated PODS-5F7GGC conjugates compared with [177Lu]Lu-DOTA-PODS-5F7GGC. These results suggest that iso-[211At]AGMB-PODS-5F7GGC warrants further evaluation for the treatment of HER2-expressing malignancies.
Collapse
Affiliation(s)
- Yutian Feng
- Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Samantha M. Sarrett
- Hunter College, City University of New York, New York, New York 10021, United States
- Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center, City University of New York, New York, New York 10021, United States
| | - Rebecca L. Meshaw
- Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Ganesan Vaidyanathan
- Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Mike A. Cornejo
- Hunter College, City University of New York, New York, New York 10021, United States
- Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center, City University of New York, New York, New York 10021, United States
| | - Brian M. Zeglis
- Hunter College, City University of New York, New York, New York 10021, United States
- Ph.D. Programs in Biochemistry and Chemistry, The Graduate Center, City University of New York, New York, New York 10021, United States
| | - Michael R. Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
16
|
Shoari A, Tahmasebi M, Khodabakhsh F, Cohan RA, Oghalaie A, Behdani M. Angiogenic biomolecules specific nanobodies application in cancer imaging and therapy; review and updates. Int Immunopharmacol 2022; 105:108585. [DOI: 10.1016/j.intimp.2022.108585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/05/2022]
|
17
|
Yang E, Liu Q, Huang G, Liu J, Wei W. Engineering nanobodies for next-generation molecular imaging. Drug Discov Today 2022; 27:1622-1638. [PMID: 35331925 DOI: 10.1016/j.drudis.2022.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/04/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
Abstract
In recent years, nanobodies have emerged as ideal imaging agents for molecular imaging. Molecular nanobody imaging combines the specificity of nanobodies with the sensitivity of state-of-the-art molecular imaging modalities, such as positron emission tomography (PET). Given that modifications of nanobodies alter their pharmacokinetics (PK), the engineering strategies that combine nanobodies with radionuclides determine the effectiveness, reliability, and safety of the molecular imaging probes. In this review, we introduce conjugation strategies that have been applied to nanobodies, including random conjugation, 99mTc tricarbonyl chemistry, sortase A-mediated site-specific conjugation, maleimide-cysteine chemistry, and click chemistries. We also summarize the latest advances in nanobody tracers, emphasizing their preclinical and clinical use. In addition, we elaborate on nanobody-based near-infrared fluorescence (NIRF) imaging and image-guided surgery.
Collapse
Affiliation(s)
- Erpeng Yang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Qiufang Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China.
| |
Collapse
|
18
|
Feng Y, Meshaw R, McDougald D, Zhou Z, Zhao XG, Jannetti SA, Reiman RE, Pippen E, Marjoram R, Schaal JL, Vaidyanathan G, Zalutsky MR. Evaluation of an 131I-labeled HER2-specific single domain antibody fragment for the radiopharmaceutical therapy of HER2-expressing cancers. Sci Rep 2022; 12:3020. [PMID: 35194100 PMCID: PMC8864007 DOI: 10.1038/s41598-022-07006-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Radiopharmaceutical therapy (RPT) is an attractive strategy for treatment of disseminated cancers including those overexpressing the HER2 receptor including breast, ovarian and gastroesophageal carcinomas. Single-domain antibody fragments (sdAbs) exemplified by the HER2-targeted VHH_1028 evaluated herein are attractive for RPT because they rapidly accumulate in tumor and clear faster from normal tissues than intact antibodies. In this study, VHH_1028 was labeled using the residualizing prosthetic agent N-succinimidyl 3-guanidinomethyl 5-[131I]iodobenzoate (iso-[131I]SGMIB) and its tissue distribution evaluated in the HER2-expressing SKOV-3 ovarian and BT474 breast carcinoma xenograft models. In head-to-head comparisons to [131I]SGMIB-2Rs15d, a HER2-targeted radiopharmaceutical currently under clinical investigation, iso-[131I]SGMIB-VHH_1028 exhibited significantly higher tumor uptake and significantly lower kidney accumulation. The results demonstrated 2.9 and 6.3 times more favorable tumor-to-kidney radiation dose ratios in the SKOV-3 and BT474 xenograft models, respectively. Iso-[131I]SGMIB-VHH_1028 was prepared using a solid-phase extraction method for purification of the prosthetic agent intermediate Boc2-iso-[131I]SGMIB that reproducibly scaled to therapeutic-level doses and obviated the need for its HPLC purification. Single-dose (SKOV-3) and multiple-dose (BT474) treatment regimens demonstrated that iso-[131I]SGMIB-VHH_1028 was well tolerated and provided significant tumor growth delay and survival prolongation. This study suggests that iso-[131I]SGMIB-VHH_1028 is a promising candidate for RPT of HER2-expressing cancers and further development is warranted.
Collapse
Affiliation(s)
- Yutian Feng
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Rebecca Meshaw
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Darryl McDougald
- Department of Radiology, Duke University Medical Center, Durham, NC, USA.,Cereius Inc, Durham, NC, USA
| | - Zhengyuan Zhou
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Xiao-Guang Zhao
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Stephen A Jannetti
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Robert E Reiman
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
19
|
Zhou Z, Meshaw R, Zalutsky MR, Vaidyanathan G. Site-Specific and Residualizing Linker for 18F Labeling with Enhanced Renal Clearance: Application to an Anti-HER2 Single-Domain Antibody Fragment. J Nucl Med 2021; 62:1624-1630. [PMID: 33637584 PMCID: PMC8612331 DOI: 10.2967/jnumed.120.261446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/01/2021] [Indexed: 11/16/2022] Open
Abstract
Single-domain antibody fragments (sdAbs) are promising vectors for immuno-PET; however, better methods for labeling sdAbs with 18F are needed. Herein, we evaluate a site-specific strategy using an 18F residualizing motif and the anti-epidermal growth factor receptor 2 (HER2) sdAb 5F7 bearing an engineered C-terminal GGC tail (5F7GGC). Methods: 5F7GGC was site-specifically attached with a tetrazine-bearing agent via thiol-maleimide reaction. The resultant conjugate was labeled with 18F by inverse electron demand Diels-Alder cycloaddition with a trans-cyclooctene attached to 6-18F-fluoronicotinoyl moiety via a renal brush border enzyme-cleavable linker and a PEG4 chain (18F-5F7GGC). For comparisons, 5F7 sdAb was labeled using the prototypical residualizing agent, N-succinimidyl 3-(guanidinomethyl)-5-125I-iodobenzoate (iso-125I-SGMIB). The 2 labeled sdAbs were compared in paired-label studies performed in the HER2-expressing BT474M1 breast carcinoma cell line and athymic mice bearing BT474M1 subcutaneous xenografts. Small-animal PET/CT imaging after administration of 18F-5F7GGC in the above mouse model was also performed. Results:18F-5F7GGC was synthesized in an overall radiochemical yield of 8.9% ± 3.2% with retention of HER2 binding affinity and immunoreactivity. The total cell-associated and intracellular activity for 18F-5F7GGC was similar to that for coincubated iso-125I-SGMIB-5F7. Likewise, the uptake of 18F-5F7GGC in BT474M1 xenografts in mice was similar to that for iso-125I-SGMIB-5F7; however, 18F-5F7GGC exhibited significantly more rapid clearance from the kidney. Small-animal PET/CT imaging confirmed high uptake and retention in the tumor with very little background activity at 3 h except in the bladder. Conclusion: This site-specific and residualizing 18F-labeling strategy could facilitate clinical translation of 5F7 anti-HER2 sdAb as well as other sdAbs for immuno-PET.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Rebecca Meshaw
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
20
|
Hrynchak I, Santos L, Falcão A, Gomes CM, Abrunhosa AJ. Nanobody-Based Theranostic Agents for HER2-Positive Breast Cancer: Radiolabeling Strategies. Int J Mol Sci 2021; 22:ijms221910745. [PMID: 34639086 PMCID: PMC8509594 DOI: 10.3390/ijms221910745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023] Open
Abstract
The overexpression of human epidermal growth factor 2 (HER2) in breast cancer (BC) has been associated with a more aggressive tumor subtype, poorer prognosis and shorter overall survival. In this context, the development of HER2-targeted radiotracers is crucial to provide a non-invasive assessment of HER2 expression to select patients for HER2-targeted therapies, monitor response and identify those who become resistant. Antibodies represent ideal candidates for this purpose, as they provide high contrast images for diagnosis and low toxicity in the therapeutic setting. Of those, nanobodies (Nb) are of particular interest considering their favorable kinetics, crossing of relevant biological membranes and intratumoral distribution. The purpose of this review is to highlight the unique characteristics and advantages of Nb-based radiotracers in BC imaging and therapy. Additionally, radiolabeling methods for Nb including direct labeling, indirect labeling via prosthetic group and indirect labeling via complexation will be discussed, reporting advantages and drawbacks. Furthermore, the preclinical to clinical translation of radiolabeled Nbs as promising theranostic agents will be reported.
Collapse
Affiliation(s)
- Ivanna Hrynchak
- ICNAS-Produção Unipessoal, Lda.—University of Coimbra, 3000-548 Coimbra, Portugal; (I.H.); (L.S.)
- CIBIT/ICNAS—Institute for Nuclear Sciences Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Liliana Santos
- ICNAS-Produção Unipessoal, Lda.—University of Coimbra, 3000-548 Coimbra, Portugal; (I.H.); (L.S.)
- CIBIT/ICNAS—Institute for Nuclear Sciences Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Amílcar Falcão
- CIBIT/ICNAS—Institute for Nuclear Sciences Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Célia M. Gomes
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
| | - Antero J. Abrunhosa
- ICNAS-Produção Unipessoal, Lda.—University of Coimbra, 3000-548 Coimbra, Portugal; (I.H.); (L.S.)
- CIBIT/ICNAS—Institute for Nuclear Sciences Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal;
- Correspondence:
| |
Collapse
|
21
|
Al-Baradie RS. Nanobodies as versatile tools: A focus on targeted tumor therapy, tumor imaging and diagnostics. Hum Antibodies 2021; 28:259-272. [PMID: 32831197 DOI: 10.3233/hab-200425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Monoclonal antibodies and vaccines have widely been studied for the immunotherapy of cancer, though their large size appears to limit their functionality in solid tumors, in large part due to unique properties of tumor microenvironment. Smaller formats of antibodies have been developed to throw such restrictions. These small format antibodies include antigen binding fragments, single-chain variable fragments, single variable domain of camelid antibody (so-called nanobody (Nb) or VHH). Since their serendipitous discovery, nanobodies have been studies at length in the fields of research, diagnostics and therapy. These antigen binding fragments, originating from camelid heavy-chain antibodies, possess unusual hallmarks in terms of (small) size, stability, solubility and specificity, hence allowing cost-effective production and sometimes out performing monoclonal antibodies. In addition, these small camelid heavy-chain antibodies are highly adaptable tools for cancer research as they enable specific modulation of targets, enzymatic and non-enzymatic proteins alike. Molecular imaging studies benefit from the rapid, homogeneous tumor accumulation of nanobodies and their fast blood clearance, permitting previously unattainable fast tumor visualization. Moreover, they are endowed with considerable therapeutic potential as inhibitors of receptor-ligand pairs and deliverers of drugs or drug-loaded nanoparticles towards tumors. In this review, we shed light on the current status of nanobodies in diagnosis and imaging of tumor and exploiting nanobodies revert immunosuppressive events, modulation of immune checkpoints, and as deliverers of drugs for targeted tumor therapy.
Collapse
|
22
|
Alamoudi AO. Radiomics, aptamers and nanobodies: New insights in cancer diagnostics and imaging. Hum Antibodies 2021; 29:1-15. [PMID: 33554897 DOI: 10.3233/hab-200436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
At present, cancer is a major health issue and the second leading cause of mortality worldwide. Researchers have been working hard on investigating not only improved therapeutics but also on early detection methods, both critical to increasing treatment efficacy and developing methods for disease prevention. Diagnosis of cancers at an early stage can promote timely medical intervention and effective treatment and will result in inhibiting tumor growth and development. Several advances have been made in the diagnostics and imagining technologies for early tumor detection and deciding an effective therapy these include radiomics, nanobodies, and aptamers. Here in this review, we summarize the main applications of radiomics, aptamers, and the use of nanobody-based probes for molecular imaging applications in diagnosis, treatment planning, and evaluations in the field of oncology to develop quantitative and personalized medicine. The preclinical data reported to date are quite promising, and it is predicted that nanobody-based molecular imaging agents will play an important role in the diagnosis and management of different cancer types in near future.
Collapse
|
23
|
Wang L, Zhang G, Qin L, Ye H, Wang Y, Long B, Jiao Z. Anti-EGFR Binding Nanobody Delivery System to Improve the Diagnosis and Treatment of Solid Tumours. Recent Pat Anticancer Drug Discov 2021; 15:200-211. [PMID: 32885759 DOI: 10.2174/1574892815666200904111728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND Epidermal Growth Factor Receptor (EGFR) and members of its homologous protein family mediate transmembrane signal transduction by binding to a specific ligand, which leads to regulated cell growth, differentiation, proliferation and metastasis. With the development and application of Genetically Engineered Antibodies (GEAs), Nanobodies (Nbs) constitute a new research hot spot in many diseases. A Nb is characterized by its low molecular weight, deep tissue penetration, good solubility and high antigen-binding affinity, the anti-EGFR Nbs are of significance for the diagnosis and treatment of EGFR-positive tumours. OBJECTIVE This review aims to provide a comprehensive overview of the information about the molecular structure of EGFR and its transmembrane signal transduction mechanism, and discuss the anti-EGFR-Nbs influence on the diagnosis and treatment of solid tumours. METHODS Data were obtained from PubMed, Embase and Web of Science. All patents are searched from the following websites: the World Intellectual Property Organization (WIPO®), the United States Patent Trademark Office (USPTO®) and Google Patents. RESULTS EGFR is a key target for regulating transmembrane signaling. The anti-EGFR-Nbs for targeted drugs could effectively improve the diagnosis and treatment of solid tumours. CONCLUSION EGFR plays a role in transmembrane signal transduction. The Nbs, especially anti- EGFR-Nbs, have shown effectiveness in the diagnosis and treatment of solid tumours. How to increase the affinity of Nb and reduce its immunogenicity remain a great challenge.
Collapse
Affiliation(s)
- Long Wang
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| | - Gengyuan Zhang
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| | - Long Qin
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou 730000, Gansu, China
| | - Huili Ye
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou 730000, Gansu, China
| | - Yan Wang
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou 730000, Gansu, China
| | - Bo Long
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| | - Zuoyi Jiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
24
|
Küppers J, Kürpig S, Bundschuh RA, Essler M, Lütje S. Radiolabeling Strategies of Nanobodies for Imaging Applications. Diagnostics (Basel) 2021; 11:1530. [PMID: 34573872 PMCID: PMC8471529 DOI: 10.3390/diagnostics11091530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Nanobodies are small recombinant antigen-binding fragments derived from camelid heavy-chain only antibodies. Due to their compact structure, pharmacokinetics of nanobodies are favorable compared to full-size antibodies, allowing rapid accumulation to their targets after intravenous administration, while unbound molecules are quickly cleared from the circulation. In consequence, high signal-to-background ratios can be achieved, rendering radiolabeled nanobodies high-potential candidates for imaging applications in oncology, immunology and specific diseases, for instance in the cardiovascular system. In this review, a comprehensive overview of central aspects of nanobody functionalization and radiolabeling strategies is provided.
Collapse
Affiliation(s)
- Jim Küppers
- Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany; (S.K.); (R.A.B.); (M.E.); (S.L.)
| | | | | | | | | |
Collapse
|
25
|
Cheng L, Zhang X, Chen Y, Wang D, Zhang D, Yan S, Wang H, Xiao M, Liang T, Li H, Xu M, Hou X, Dai J, Wu X, Li M, Lu M, Wu D, Tian R, Zhao J, Zhang Y, Cao W, Wang J, Yan X, Zhou X, Liu Z, Xu Y, He F, Li Y, Yu X, Zhang S. Dynamic landscape mapping of humoral immunity to SARS-CoV-2 identifies non-structural protein antibodies associated with the survival of critical COVID-19 patients. Signal Transduct Target Ther 2021; 6:304. [PMID: 34404759 PMCID: PMC8368053 DOI: 10.1038/s41392-021-00718-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/19/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022] Open
Abstract
A comprehensive analysis of the humoral immune response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential in understanding COVID-19 pathogenesis and developing antibody-based diagnostics and therapy. In this work, we performed a longitudinal analysis of antibody responses to SARS-CoV-2 proteins in 104 serum samples from 49 critical COVID-19 patients using a peptide-based SARS-CoV-2 proteome microarray. Our data show that the binding epitopes of IgM and IgG antibodies differ across SARS-CoV-2 proteins and even within the same protein. Moreover, most IgM and IgG epitopes are located within nonstructural proteins (nsps), which are critical in inactivating the host's innate immune response and enabling SARS-CoV-2 replication, transcription, and polyprotein processing. IgM antibodies are associated with a good prognosis and target nsp3 and nsp5 proteases, whereas IgG antibodies are associated with high mortality and target structural proteins (Nucleocapsid, Spike, ORF3a). The epitopes targeted by antibodies in patients with a high mortality rate were further validated using an independent serum cohort (n = 56) and using global correlation mapping analysis with the clinical variables that are associated with COVID-19 severity. Our data provide fundamental insight into humoral immunity during SARS-CoV-2 infection. SARS-CoV-2 immunogenic epitopes identified in this work could also help direct antibody-based COVID-19 treatment and triage patients.
Collapse
Affiliation(s)
- Linlin Cheng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaomei Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Yu Chen
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dan Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Dong Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Songxin Yan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongye Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Meng Xiao
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Te Liang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Meng Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Xin Hou
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jiayu Dai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Xian Wu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Mingyuan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China
| | - Minya Lu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dong Wu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ran Tian
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jing Zhao
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yan Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Cao
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinglan Wang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaowei Yan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiang Zhou
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhengyin Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China.
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing, China.
| | - Shuyang Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
26
|
D'Huyvetter M, Vos JD, Caveliers V, Vaneycken I, Heemskerk J, Duhoux FP, Fontaine C, Vanhoeij M, Windhorst AD, Aa FVD, Hendrikse NH, Eersels JLE, Everaert H, Gykiere P, Devoogdt N, Raes G, Lahoutte T, Keyaerts M. Phase I Trial of 131I-GMIB-Anti-HER2-VHH1, a New Promising Candidate for HER2-Targeted Radionuclide Therapy in Breast Cancer Patients. J Nucl Med 2021; 62:1097-1105. [PMID: 33277400 DOI: 10.2967/jnumed.120.255679] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
131I-GMIB-anti-human epidermal growth factor receptor type 2 (HER2)-VHH1 is a targeted radionuclide theranostic agent directed at HER2-expressing cancers. VHH1 is a single-domain antibody covalently linked to therapeutic 131I via the linker N-succinimidyl 4-guanidino-methyl-3-iodobenzoate (SGMIB). The phase I study was aimed at evaluating the safety, biodistribution, radiation dosimetry, and tumor-imaging potential of 131I-GMIB-anti-HER2-VHH1 in healthy volunteers and breast cancer patients. Methods: In a first cohort, 6 healthy volunteers were included. The biodistribution of 131I-GMIB-anti-HER2-VHH1 was assessed using whole-body (anterior and posterior) planar images obtained at 40 min and at 2, 4, 24, and 72 h after intravenously administered (38 ± 9 MBq) 131I-GMIB-anti-HER2-VHH1. Imaging data were analyzed using OLINDA/EXM software to determine the dosimetry. Blood and urine samples were obtained over 72 h. In the second cohort, 3 patients with metastatic HER2-positive breast cancer were included. Planar whole-body imaging was performed at 2 and 24 h after injection. Additional SPECT/CT images were obtained after the whole-body images at 2 and 24 h if there was relevant uptake in known cancer lesions. Results: No drug-related adverse events were observed throughout the study. The biologic half-life of 131I-GMIB-anti-HER2-VHH1 in healthy subjects was about 8 h. After intravenous administration, the compound was eliminated from the blood with a 2.5-h half-life. The drug was eliminated primarily via the kidneys. The drug was stable in circulation, and there was no increased accumulation in the thyroid or stomach. The absorbed dose to the kidneys was 1.54 ± 0.25 mGy/MBq, and to bone marrow it was 0.03 ± 0.01 mGy/MBq. SPECT/CT imaging in patients with advanced breast cancer showed focal uptake of 131I-GMIB-anti-HER2-VHH1 in metastatic lesions. Conclusion: Because of its favorable toxicity profile and its uptake in HER2-positive lesions, this radiopharmaceutical can offer new therapeutic options to patients who have progressed on trastuzumab, pertuzumab, or trastuzmab emtansine, given its difference in mode-of-action. A dose escalation is planned in a subsequent phase I/II study to assess the therapeutic window of this compound (NCT04467515).
Collapse
Affiliation(s)
- Matthias D'Huyvetter
- Precirix NV/SA, Brussels, Belgium;
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Vicky Caveliers
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
- Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| | - Ilse Vaneycken
- Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| | | | - Francois P Duhoux
- Medical Oncology Department, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | | | - Marian Vanhoeij
- Department of Oncological Surgery, UZ Brussel, Brussels, Belgium
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank van der Aa
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - N Harry Hendrikse
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jos L E Eersels
- Precirix NV/SA, Brussels, Belgium
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | - Nick Devoogdt
- Precirix NV/SA, Brussels, Belgium
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Geert Raes
- Precirix NV/SA, Brussels, Belgium
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; and
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | | | - Marleen Keyaerts
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium;
- Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| |
Collapse
|
27
|
Lucas AT, Moody A, Schorzman AN, Zamboni WC. Importance and Considerations of Antibody Engineering in Antibody-Drug Conjugates Development from a Clinical Pharmacologist's Perspective. Antibodies (Basel) 2021; 10:30. [PMID: 34449544 PMCID: PMC8395454 DOI: 10.3390/antib10030030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/04/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Antibody-drug conjugates (ADCs) appear to be in a developmental boom, with five FDA approvals in the last two years and a projected market value of over $4 billion by 2024. Major advancements in the engineering of these novel cytotoxic drug carriers have provided a few early success stories. Although the use of these immunoconjugate agents are still in their infancy, valuable lessons in the engineering of these agents have been learned from both preclinical and clinical failures. It is essential to appreciate how the various mechanisms used to engineer changes in ADCs can alter the complex pharmacology of these agents and allow the ADCs to navigate the modern-day therapeutic challenges within oncology. This review provides a global overview of ADC characteristics which can be engineered to alter the interaction with the immune system, pharmacokinetic and pharmacodynamic profiles, and therapeutic index of ADCs. In addition, this review will highlight some of the engineering approaches being explored in the creation of the next generation of ADCs.
Collapse
Affiliation(s)
- Andrew T. Lucas
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Amber Moody
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Allison N. Schorzman
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
| | - William C. Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Glolytics, LLC, Chapel Hill, NC 27517, USA
| |
Collapse
|
28
|
Altunay B, Morgenroth A, Beheshti M, Vogg A, Wong NCL, Ting HH, Biersack HJ, Stickeler E, Mottaghy FM. HER2-directed antibodies, affibodies and nanobodies as drug-delivery vehicles in breast cancer with a specific focus on radioimmunotherapy and radioimmunoimaging. Eur J Nucl Med Mol Imaging 2021; 48:1371-1389. [PMID: 33179151 PMCID: PMC8113197 DOI: 10.1007/s00259-020-05094-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of the present paper is to review the role of HER2 antibodies, affibodies and nanobodies as vehicles for imaging and therapy approaches in breast cancer, including a detailed look at recent clinical data from antibody drug conjugates and nanobodies as well as affibodies that are currently under development. RESULTS Clinical and preclinical studies have shown that the use of monoclonal antibodies in molecular imaging is impaired by slow blood clearance, associated with slow and low tumor uptake and with limited tumor penetration potential. Antibody fragments, such as nanobodies, on the other hand, can be radiolabelled with short-lived radioisotopes and provide high-contrast images within a few hours after injection, allowing early diagnosis and reduced radiation exposure of patients. Even in therapy, the small radioactively labeled nanobodies prove to be superior to radioactively labeled monoclonal antibodies due to their higher specificity and their ability to penetrate the tumor. CONCLUSION While monoclonal antibodies are well established drug delivery vehicles, the current literature on molecular imaging supports the notion that antibody fragments, such as affibodies or nanobodies, might be superior in this approach.
Collapse
Affiliation(s)
- Betül Altunay
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
| | - Mohsen Beheshti
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Düsseldorf, Kerpener Str. 62, 50937, Cologne, Germany
- Division of Molecular PET-Imaging and Theranostics , Paracelsus Medical University , Salzburg, 5020, Austria
| | - Andreas Vogg
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
| | | | - Hong Hoi Ting
- Nanomab Technology Limited, Shanghai, People's Republic of China
| | | | - Elmar Stickeler
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Düsseldorf, Kerpener Str. 62, 50937, Cologne, Germany
- Department of Gynecology and Obstetrics, RWTH Aachen, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany.
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Düsseldorf, Kerpener Str. 62, 50937, Cologne, Germany.
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6202, Maastricht, The Netherlands.
| |
Collapse
|
29
|
Zhao L, Ma S, Wang L, Wang Y, Feng X, Liang D, Han L, Li M, Li Q. A polygenic methylation prediction model associated with response to chemotherapy in epithelial ovarian cancer. Mol Ther Oncolytics 2021; 20:545-555. [PMID: 33738340 PMCID: PMC7943968 DOI: 10.1016/j.omto.2021.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/17/2021] [Indexed: 01/07/2023] Open
Abstract
To identify potential aberrantly differentially methylated genes (DMGs) correlated with chemotherapy response (CR) and establish a polygenic methylation prediction model of CR in epithelial ovarian cancer (EOC), we accessed 177 (47 chemo-sensitive and 130 chemo-resistant) samples corresponding to three DNA-methylation microarray datasets from the Gene Expression Omnibus and 306 (290 chemo-sensitive and 16 chemo-resistant) samples from The Cancer Genome Atlas (TCGA) database. DMGs associated with chemotherapy sensitivity and chemotherapy resistance were identified by several packages of R software. Pathway enrichment and protein-protein interaction (PPI) network analyses were constructed by Metascape software. The key genes containing mRNA expressions associated with methylation levels were validated from the expression dataset by the GEO2R platform. The determination of the prognostic significance of key genes was performed by the Kaplan-Meier plotter database. The key genes-based polygenic methylation prediction model was established by binary logistic regression. Among accessed 483 samples, 457 (182 hypermethylated and 275 hypomethylated) DMGs correlated with chemo resistance. Twenty-nine hub genes were identified and further validated. Three genes, anterior gradient 2 (AGR2), heat shock-related 70-kDa protein 2 (HSPA2), and acetyltransferase 2 (ACAT2), showed a significantly negative correlation between their methylation levels and mRNA expressions, which also corresponded to prognostic significance. A polygenic methylation prediction model (0.5253 cutoff value) was established and validated with 0.659 sensitivity and 0.911 specificity.
Collapse
Affiliation(s)
- Lanbo Zhao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China
| | - Sijia Ma
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China
| | - Linconghua Wang
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Yiran Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China
| | - Xue Feng
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China
| | - Dongxin Liang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China
| | - Lu Han
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China
| | - Min Li
- Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha 410083, Hunan, China
| | - Qiling Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China
| |
Collapse
|
30
|
Piramoon M, Khodadust F, Hosseinimehr SJ. Radiolabeled nanobodies for tumor targeting: From bioengineering to imaging and therapy. Biochim Biophys Acta Rev Cancer 2021; 1875:188529. [PMID: 33647388 DOI: 10.1016/j.bbcan.2021.188529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/08/2023]
Abstract
So far, numerous molecules and biomolecules have been evaluated for tumor targeting purposes for radionuclide-based imaging and therapy modalities. Due to the high affinity and specificity against tumor antigens, monoclonal antibodies are appropriate candidates for tumor targeting. However, their large size prevents their comprehensive application in radionuclide-based tumor imaging or therapy, since it leads to their low tumor penetration, low blood clearance, and thus inappropriate tumor-to-background ratio. Nowadays, the variable domain of heavy-chain antibodies from the Camelidae family, known as nanobodies (Nbs), turn into exciting candidates for medical research. Considering several innate advantages of these new tumor-targeting agents, including excellent affinity and specificity toward antigen, high solubility, high stability, fast washout from blood, convenient production, ease of selection, and low immunogenicity, it assumes that they may overcome generic problems of monoclonal antibodies, their fragments, and other vectors used for tumor imaging/therapy. After three decades of Nbs discovery, the increasing number of their preclinical and clinical investigations, which have led to outstanding results, confirm their application for tumor targeting purposes. This review describes Nbs characteristics, the diagnostic and therapeutic application of their radioconjugates, and their recent advances.
Collapse
Affiliation(s)
- Majid Piramoon
- Department of Medicinal Chemistry and Radiopharmacy, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran; Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fatemeh Khodadust
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
31
|
Lamtha T, Tabtimmai L, Bangphoomi K, Kiriwan D, Malik AA, Chaicumpa W, van Bergen En Henegouwen PMP, Choowongkomon K. Generation of a nanobody against HER2 tyrosine kinase using phage display library screening for HER2-positive breast cancer therapy development. Protein Eng Des Sel 2021; 34:6462358. [PMID: 34908139 DOI: 10.1093/protein/gzab030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/08/2021] [Indexed: 01/03/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) protein overexpression is found in ~30% of invasive breast carcinomas and in a high proportion of noninvasive ductal carcinomas in situ. Targeted cancer therapy is based on monoclonal antibodies and kinase inhibitors and reflects a new era of cancer therapy. However, delivery to tumor cells in vivo is hampered by the large size (150 kDa) of conventional antibodies. Furthermore, there are many disadvantages with the current anti-HER2 drug, including drug resistance and adverse effects. Nanobodies (15 kDa), single-domain antibody (sdAb) fragments, can overcome these limitations. This study produced the recombinant sdAb against the HER2-tyrosine kinase (HER2-TK) domain using phage display technology. Three specific anti-HER2-TK sdAbs were selected for further characterization. Hallmark VHH residue identification and amino acid sequence analysis revealed that clone numbers 4 and 22 were VH antibodies, whereas clone number 17 was a VH H antibody (nanobody). The half-maximal inhibitory concentration of VHH17 exhibited significantly greater HER2 kinase-inhibition activity than the other clones. Consistent with these results, several charges and polar residues of the HER2-TK activation loop that were predicted based on mimotope analysis also appeared in the docking result and interacted via the CDR1, CDR2 and CDR3 loops of VHH17. Furthermore, the cell-penetrable VHH17 (R9 VHH17) showed cell-penetrability and significantly decreased HER2-positive cancer cell viability. Thus, the VH H17 could be developed as an effective therapeutic agent to treat HER2-positive breast cancer.
Collapse
Affiliation(s)
- Thomanai Lamtha
- Department of Biochemistry, Faculty of Sciences, Kasetsart University, Laboratory of Protein Engineering and Bioinformatics, Chatuchak, Bangkok 10900, Thailand
| | - Lueacha Tabtimmai
- Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bang Sue, Bangkok 10800, Thailand
| | - Kunan Bangphoomi
- Department of Biochemistry, Faculty of Sciences, Kasetsart University, Laboratory of Protein Engineering and Bioinformatics, Chatuchak, Bangkok 10900, Thailand
| | - Duangnapa Kiriwan
- Department of Biochemistry, Faculty of Sciences, Kasetsart University, Laboratory of Protein Engineering and Bioinformatics, Chatuchak, Bangkok 10900, Thailand
| | - Aijaz A Malik
- Center of Data Mining and Biomedical Informatics, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Laboratory for Research and Technology Development, Bangkok Noi, Bangkok 10700, Thailand
| | - Paul M P van Bergen En Henegouwen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Sciences, Kasetsart University, Laboratory of Protein Engineering and Bioinformatics, Chatuchak, Bangkok 10900, Thailand.,Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
32
|
Liu M, Li L, Jin D, Liu Y. Nanobody-A versatile tool for cancer diagnosis and therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1697. [PMID: 33470555 DOI: 10.1002/wnan.1697] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/19/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
In spite of the successful use of monoclonal antibodies (mAbs) in clinic for tumor treatment, their applications are still hampered in therapeutic development due to limitations, such as tumor penetration and high cost of manufacture. Nanobody, a single domain antibody that holds the strong antigen targeting and binding capacity, has demonstrated various advantages relative to antibody. Nanobody is considered as a next-generation of antibody-derived tool in the antigen related recognition and modulation. A number of nanobodies have been developed and evaluated in different stages of clinical trials for cancer treatment. Here we summarized the current progress of nanobody in tumor diagnosis and therapeutics, particularly on the conjugation of nanobody with functional moieties. The nanobody conjugation of diagnostic agents, such as radionuclide and optical tracers, can achieve specific tumor imaging. The nanobody-drug conjugates can enhance the therapeutic efficacy of anti-tumor drugs and reduce the adverse effects. The decoration of nanobody on nanodrug delivery systems can further improve the drug targeting to specific tumors. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Manman Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Li Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Duo Jin
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, China
| |
Collapse
|
33
|
Bao G, Tang M, Zhao J, Zhu X. Nanobody: a promising toolkit for molecular imaging and disease therapy. EJNMMI Res 2021; 11:6. [PMID: 33464410 PMCID: PMC7815856 DOI: 10.1186/s13550-021-00750-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Nanobodies are the recombinant variable domains of heavy-chain-only antibodies, with many unique properties such as small size, excellent solubility, superior stability, quick clearance from blood, and deep tissue penetration. As a result, nanobodies have become a promising tool for the diagnosis and therapy of diseases. As imaging tracers, nanobodies allow an early acquisition of high-quality images, provide a comprehensive evaluation of the disease, and subsequently enable a personalized precision therapy. As therapeutic agents, nanobodies enable a targeted therapy by lesion-specific delivery of drugs and effector domains, thereby improving the specificity and efficacy of the therapy. Up to date, a wide variety of nanobodies have been developed for a broad range of molecular targets and have played a significant role in patients with a broad spectrum of diseases. In this review, we aim to outline the current state-of-the-art research on the nanobodies for medical applications and then discuss the challenges and strategies for their further clinical translation.
Collapse
Affiliation(s)
- Guangfa Bao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Ming Tang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jun Zhao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
34
|
Feng Y, Zhou Z, McDougald D, Meshaw RL, Vaidyanathan G, Zalutsky MR. Site-specific radioiodination of an anti-HER2 single domain antibody fragment with a residualizing prosthetic agent. Nucl Med Biol 2021; 92:171-183. [PMID: 32448731 PMCID: PMC7657985 DOI: 10.1016/j.nucmedbio.2020.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/28/2022]
Abstract
INTRODUCTION As a consequence of their small size, high stability and high affinity, single domain antibody fragments (sdAbs) are appealing targeting vectors for radiopharmaceutical development. With sdAbs binding to internalizing receptors like HER2, residualizing prosthetic agents can enhance tumor retention of radioiodine, which until now has been done with random labeling approaches. Herein we evaluate a site-specific strategy utilizing a radioiodinated, residualizing maleimido moiety and the anti-HER2 sdAb 5F7 bearing a GGC tail for conjugation. METHODS Maleimidoethyl 3-(guanidinomethyl)-5-iodobenzoate ([131I]MEGMB) and its N-succinimidyl ester analogue, iso-[125I]SGMIB, were labeled by halodestannylation and conjugated with 5F7GGC and 5F7, respectively. Radiochemical purity, immunoreactivity and binding affinity were determined. Paired-label experiments directly compared iso-[125I]SGMIB-5F7 and [131I]MEGMIB-5F7GGC with regard to internalization/residualization and affinity on HER2-expressing SKOV-3 ovarian carcinoma cells as well as biodistribution and metabolite distribution in athymic mice with subcutaneous SKOV-3 xenografts. RESULTS [131I]MEGMIB-5F7GGC had an immunoreactivity of 81.3% and Kd = 0.94 ± 0.27 nM. Internalization assays demonstrated high intracellular trapping for both conjugates, For example, at 1 h, intracellular retention was 50.30 ± 3.36% for [131I]MEGMIB-5F7GGC and 55.95 ± 3.27% for iso-[125I]SGMIB-5F7, while higher retention was seen for iso-[125I]SGMIB-5F7 at later time points. Peak tumor uptake was similar for both conjugates (8.35 ± 2.66%ID/g and 8.43 ± 2.84%ID/g for iso-[125I]SGMIB-5F7 and [131I]MEGMIB-5F7GGC at 1 h, respectively); however, more rapid normal tissue clearance was seen for [131I]MEGMIB-5F7GGC, with a 2-fold higher tumor-to-kidney ratio and a 3-fold higher tumor-to-liver ratio compared with co-injected iso-[125I]SGMIB-5F7. Consisted with this, generation of labeled catabolites in the kidneys was higher for [131I]MEGMIB-5F7GGC. CONCLUSION [131I]MEGMIB-5F7GGC offers similar tumor targeting as iso-[125I]SGMIB-5F7 but with generally lower normal tissue uptake. ADVANCES IN KNOWLEDGE AND IMPLICATION FOR PATIENT CARE The site specific nature of the [131I]MEGMIB reagent may facilitate clinical translation, particularly for sdAb with compromised affinity after random labeling.
Collapse
Affiliation(s)
- Yutian Feng
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zhengyuan Zhou
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Darryl McDougald
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Rebecca L Meshaw
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
35
|
Verhaar ER, Woodham AW, Ploegh HL. Nanobodies in cancer. Semin Immunol 2020; 52:101425. [PMID: 33272897 DOI: 10.1016/j.smim.2020.101425] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/24/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
For treatment and diagnosis of cancer, antibodies have proven their value and now serve as a first line of therapy for certain cancers. A unique class of antibody fragments called nanobodies, derived from camelid heavy chain-only antibodies, are gaining increasing acceptance as diagnostic tools and are considered also as building blocks for chimeric antigen receptors as well as for targeted drug delivery. The small size of nanobodies (∼15 kDa), their stability, ease of manufacture and modification for diverse formats, short circulatory half-life, and high tissue penetration, coupled with excellent specificity and affinity, account for their attractiveness. Here we review applications of nanobodies in the sphere of tumor biology.
Collapse
Affiliation(s)
- Elisha R Verhaar
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States
| | - Andrew W Woodham
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
36
|
Vorobyeva A, Bezverkhniaia E, Konovalova E, Schulga A, Garousi J, Vorontsova O, Abouzayed A, Orlova A, Deyev S, Tolmachev V. Radionuclide Molecular Imaging of EpCAM Expression in Triple-Negative Breast Cancer Using the Scaffold Protein DARPin Ec1. Molecules 2020; 25:molecules25204719. [PMID: 33066684 PMCID: PMC7587533 DOI: 10.3390/molecules25204719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/04/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Efficient treatment of disseminated triple-negative breast cancer (TNBC) remains an unmet clinical need. The epithelial cell adhesion molecule (EpCAM) is often overexpressed on the surface of TNBC cells, which makes EpCAM a potential therapeutic target. Radionuclide molecular imaging of EpCAM expression might permit selection of patients for EpCAM-targeting therapies. In this study, we evaluated a scaffold protein, designed ankyrin repeat protein (DARPin) Ec1, for imaging of EpCAM in TNBC. DARPin Ec1 was labeled with a non-residualizing [125I]I-para-iodobenzoate (PIB) label and a residualizing [99mTc]Tc(CO)3 label. Both imaging probes retained high binding specificity and affinity to EpCAM-expressing MDA-MB-468 TNBC cells after labeling. Internalization studies showed that Ec1 was retained on the surface of MDA-MB-468 cells to a high degree up to 24 h. Biodistribution in Balb/c nu/nu mice bearing MDA-MB-468 xenografts demonstrated specific uptake of both [125I]I-PIB-Ec1 and [99mTc]Tc(CO)3-Ec1 in TNBC tumors. [125I]I-PIB-Ec1 had appreciably lower uptake in normal organs compared with [99mTc]Tc(CO)3-Ec1, which resulted in significantly (p < 0.05) higher tumor-to-organ ratios. The biodistribution data were confirmed by micro-Single-Photon Emission Computed Tomography/Computed Tomography (microSPECT/CT) imaging. In conclusion, an indirectly radioiodinated Ec1 is the preferable probe for imaging of EpCAM in TNBC.
Collapse
Affiliation(s)
- Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (J.G.); (O.V.); (V.T.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia; (E.B.); (A.S.); (A.O.); (S.D.)
- Correspondence:
| | - Ekaterina Bezverkhniaia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia; (E.B.); (A.S.); (A.O.); (S.D.)
- Department of Pharmaceutical Analysis, Siberian State Medical University, 634050 Tomsk, Russia
| | - Elena Konovalova
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Alexey Schulga
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia; (E.B.); (A.S.); (A.O.); (S.D.)
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (J.G.); (O.V.); (V.T.)
| | - Olga Vorontsova
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (J.G.); (O.V.); (V.T.)
| | - Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden;
| | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia; (E.B.); (A.S.); (A.O.); (S.D.)
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden;
- Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| | - Sergey Deyev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia; (E.B.); (A.S.); (A.O.); (S.D.)
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
- Bio-Nanophotonic Lab, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University ‘MEPhI’, 115409 Moscow, Russia
- Center of Biomedical Engineering, Sechenov University, 119991 Moscow, Russia
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (J.G.); (O.V.); (V.T.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia; (E.B.); (A.S.); (A.O.); (S.D.)
| |
Collapse
|
37
|
Czerwińska M, Fracasso G, Pruszyński M, Bilewicz A, Kruszewski M, Majkowska-Pilip A, Lankoff A. Design and Evaluation of 223Ra-Labeled and Anti-PSMA Targeted NaA Nanozeolites for Prostate Cancer Therapy-Part I. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3875. [PMID: 32887308 PMCID: PMC7504699 DOI: 10.3390/ma13173875] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022]
Abstract
Prostate cancer is the second most frequent malignancy in men worldwide. Unfortunately, current therapies often lead to the onset of metastatic castration-resistant prostate cancer (mCRPC), causing significant mortality. Therefore, there is an urgent need for new and targeted therapies that are advantageous over the current ones. Recently, the PSMA-targeted radioligand therapy of mCRPC has shown very promising results. In line with this, we described the synthesis of a new radioimmunoconjugate, 223RaA-silane-PEG-D2B, for targeted mCRPC therapy. The new compound consists of a NaA zeolite nanocarrier loaded with the α-particle emitting Ra-223 radionuclide, functionalized with the anti-PSMA D2B antibody. Physicochemical properties of the synthesized compound were characterized by standard methods (HR-SEM, TEM, XRD, FTIR, EDS, NTA, DLS, BET, TGA). The targeting selectivity, the extent of internalization, and cytotoxicity were determined in LNCaP C4-2 (PSMA+) and DU-145 (PSMA-) cells. Our results supported the 223RaA-silane-PEG-D2B synthesis and revealed that the final product had a diameter ca. 120 nm and specific activity 0.65 MBq/1mg. The product was characterized by a high yield of stability (>95% up to 12 days). The conjugation reaction resulted in approximately 50 antibodies/nanoparticle. The obtained radioimmunoconjugate bound specifically and internalized into PSMA-expressing LNCaP C4-2 cells, but not into PSMA-negative DU-145 cells. 223RaA-silane-PEG-D2B demonstrated also potent cytotoxicity in LNCaP C4-2 cells. These promising results require further in vivo evaluation of 223RaA-silane-PEG-D2B with regard to its toxicity and therapeutic efficacy.
Collapse
Affiliation(s)
- Malwina Czerwińska
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
| | - Giulio Fracasso
- Department of Medicine, University of Verona, Piazzale LA Scuro 10, 37134 Verona, Italy;
| | - Marek Pruszyński
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.P.); (A.B.); (A.M.-P.)
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.P.); (A.B.); (A.M.-P.)
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.P.); (A.B.); (A.M.-P.)
| | - Anna Lankoff
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 24-406 Kielce, Poland
| |
Collapse
|
38
|
Zhou Z, Zalutsky MR, Vaidyanathan G. Labeling a TCO-functionalized single domain antibody fragment with 18F via inverse electron demand Diels Alder cycloaddition using a fluoronicotinyl moiety-bearing tetrazine derivative. Bioorg Med Chem 2020; 28:115634. [PMID: 32773089 DOI: 10.1016/j.bmc.2020.115634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023]
Abstract
Single domain antibody fragments (sdAbs) exhibit a rapid tumor uptake and fast blood clearance amenable for labeling with 18F (t½ = 110 min) but suffer from high kidney accumulation. Previously, we developed a method for 18F-labeling of sdAbs via trans-cyclooctene (TCO)-tetrazine (Tz) inverse electron demand Diel's Alder cycloaddition reaction (IEDDAR) that incorporated a renal brush border enzyme (RBBE)-cleavable linker. Although >15 fold reduction in kidney activity levels was achieved, tumor uptake was compromised. Here we investigate whether replacing the [18F]AlF-NOTA moiety with [18F]fluoronicotinyl would rectify this problem. Anti-HER2 sdAb 5F7 was first derivatized with a TCO-containing agent that included the RBBE-cleavable linker GlyLys (GK) and a PEG chain, and then subjected to IEDDAR with 6-[18F]fluoronicotinyl-PEG4-methyltetrazine to provide [18F]FN-PEG4-Tz-TCO-GK-PEG4-5F7 ([18F]FN-GK-5F7). For comparisons, a control lacking GK linker and 5F7 labeled using residualizing N-succinimidyl 3-guanidinomethyl-5-[125I]iodobenzoate (iso-[125I]SGMIB) also were synthesized. Radiochemical purity, affinity (KD) and immunoreactive fraction of [18F]FN-GK-5F7 were 99%, 5.4 ± 0.7 nM and 72.5 ± 4.3%, respectively. Tumor uptake of [18F]FN-GK-5F7 in athymic mice bearing subcutaneous SKOV3 xenografts (3.7 ± 1.2% ID/g and 3.4 ± 1.0% ID/g at 1 h and 3 h, respectively) was 2- to 3-fold lower than for co-injected iso-[125I]SGMIB-5F7 (6.9 ± 1.9 %ID/g and 8.7 ± 3.0 %ID/g). However, due to its 6-fold lower kidney activity levels, tumor-to-kidney ratios for [18F]FN-GK-5F7 were 3-4 times higher than those for co-injected iso-[125I]SGMIB-5F7 as well as those observed for the 18F conjugate lacking the RBBE-cleavable linker. Micro-PET/CT imaging of [18F]FN-GK-5F7 in mice with SKOV-3 subcutaneous xenografts clearly delineated tumor as early as 1 h with minimal activity in the kidneys; however, there was considerable activity in gallbladder and intestines. Although the tumor uptake of [18F]FN-GK-5F7 was unexpectedly disappointing, incorporating an alternative RBBE-cleavable linker into this labeling strategy may ameliorate this problem.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
39
|
Dekempeneer Y, Caveliers V, Ooms M, Maertens D, Gysemans M, Lahoutte T, Xavier C, Lecocq Q, Maes K, Covens P, Miller BW, Bruchertseifer F, Morgenstern A, Cardinaels T, D’Huyvetter M. Therapeutic Efficacy of 213Bi-labeled sdAbs in a Preclinical Model of Ovarian Cancer. Mol Pharm 2020; 17:3553-3566. [DOI: 10.1021/acs.molpharmaceut.0c00580] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yana Dekempeneer
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Vicky Caveliers
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
- Department of Nuclear Medicine, UZ Brussel, 1090 Brussels, Belgium
| | - Maarten Ooms
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
| | - Dominic Maertens
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
| | - Mireille Gysemans
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
| | - Tony Lahoutte
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
- Department of Nuclear Medicine, UZ Brussel, 1090 Brussels, Belgium
| | - Catarina Xavier
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Peter Covens
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Brian W. Miller
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Frank Bruchertseifer
- Directorate for Nuclear Safety and Security, European Commission−Joint Research Centre, Karlsruhe 76344, Germany
| | - Alfred Morgenstern
- Directorate for Nuclear Safety and Security, European Commission−Joint Research Centre, Karlsruhe 76344, Germany
| | - Thomas Cardinaels
- Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium
- Department of Chemistry, KU Leuven, Heverlee, 3000 Leuven, Belgium
| | - Matthias D’Huyvetter
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| |
Collapse
|
40
|
Ta AN, Tennyson RL, Aceveda DC, McNaughton BR. Disparities between Antibody Occupancy, Orientation, and Cytotoxicity in Immunotherapy. Chembiochem 2020; 21:2435-2439. [PMID: 32274876 DOI: 10.1002/cbic.202000083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/09/2020] [Indexed: 11/07/2022]
Abstract
We report fusion proteins designed to bind spatially distinct epitopes on the extracellular portion of HER2, a breast cancer biomarker and established therapeutic target, and recruit IgG (either anti-His6 or serum IgG) to the cell surface. When the proteins were incubated with anti-His6 antibody and various concentrations of a single HER2-binding protein His6 fusion, we observed interference and a decrease in antibody recruitment at HER2-binding protein concentrations exceeding ∼30 nM. In contrast, concomitant treatment with two or three distinct HER2-binding protein His6 fusions, and anti-His6 , results in increased antibody recruitment, even at relatively high HER2-binding protein concentration. In some instances, increased antibody recruitment leads to increased antibody-dependent cellular cytotoxicity (ADCC) activity. While a fusion protein consisting of a HER2-binding nanobody and Sac7d, a protein evolved to recognize the Fc domain of IgG, binds IgG from serum, antibody recruitment does not lead to ADCC activity. Rationales for these disparities are provided. Collectively, our findings have implications for the design of efficacious targeted immunotherapeutic biologics, and ensembles thereof.
Collapse
Affiliation(s)
- Angeline N Ta
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Rachel L Tennyson
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Diane C Aceveda
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Brian R McNaughton
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- Delaware Institute for Science & Technology, Delaware State University, Dover, DE 19901, USA
| |
Collapse
|
41
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
42
|
Deken MM, Kijanka MM, Beltrán Hernández I, Slooter MD, de Bruijn HS, van Diest PJ, van Bergen En Henegouwen PMP, Lowik CWGM, Robinson DJ, Vahrmeijer AL, Oliveira S. Nanobody-targeted photodynamic therapy induces significant tumor regression of trastuzumab-resistant HER2-positive breast cancer, after a single treatment session. J Control Release 2020; 323:269-281. [PMID: 32330574 PMCID: PMC7116241 DOI: 10.1016/j.jconrel.2020.04.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022]
Abstract
Rationale A substantial number of breast cancer patients with an overexpression of the human epidermal growth factor receptor 2 (HER2) have residual disease after neoadjuvant therapy or become resistant to trastuzumab. Photodynamic therapy (PDT) using nanobodies targeted to HER2 is a promising treatment option for these patients. Here we investigate the in vitro and in vivo antitumor efficacy of HER2-targeted nanobody-photosensitizer (PS) conjugate PDT. Methods Nanobodies targeting HER2 were obtained from phage display selections. Monovalent nanobodies were engineered into a biparatopic construct. The specificity of selected nanobodies was tested in immunofluorescence assays and their affinity was evaluated in binding studies, both performed in a panel of breast cancer cells varying in HER2 expression levels. The selected HER2-targeted nanobodies 1D5 and 1D5-18A12 were conjugated to the photosensitizer IRDye700DX and tested in in vitro PDT assays. Mice bearing orthotopic HCC1954 trastuzumab-resistant tumors with high HER2 expression or MCF-7 tumors with low HER2 expression were intravenously injected with nanobody-PS conjugates. Quantitative fluorescence spectroscopy was performed for the determination of the local pharmacokinetics of the fluorescence conjugates. After nanobody-PS administration, tumors were illuminated to a fluence of 100 J∙cm-2, with a fluence rate of 50 mW∙cm-2, and thereafter tumor growth was measured with a follow-up until 30 days. Results The selected nanobodies remained functional after conjugation to the PS, binding specifically and with high affinity to HER2-positive cells. Both nanobody-PS conjugates potently and selectively induced cell death of HER2 overexpressing cells, either sensitive or resistant to trastuzumab, with low nanomolar LD50 values. In vivo, quantitative fluorescence spectroscopy showed specific accumulation of nanobody-PS conjugates in HCC1954 tumors and indicated 2 h post injection as the most suitable time point to apply light. Nanobody-targeted PDT with 1D5-PS and 1D5-18A12-PS induced significant tumor regression of trastuzumab-resistant high HER2 expressing tumors, whereas in low HER2 expressing tumors only a slight growth delay was observed. Conclusion Nanobody-PS conjugates accumulated selectively in vivo and their fluorescence could be detected through optical imaging. Upon illumination, they selectively induced significant tumor regression of HER2 overexpressing tumors with a single treatment session. Nanobody-targeted PDT is therefore suggested as a new additional treatment for HER2-positive breast cancer, particularly of interest for trastuzumab-resistant HER2-positive breast cancer. Further studies are now needed to assess the value of this approach in clinical practice.
Collapse
Affiliation(s)
- Marion M Deken
- Dept. of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Marta M Kijanka
- Division of Cell Biology, Neurobiology and Biophysics, Dept. of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Irati Beltrán Hernández
- Pharmaceutics, Dept. of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Maxime D Slooter
- Dept. of Radiology, Division of Molecular Imaging, Leiden University Medical Center, Leiden, the Netherlands
| | - Henriette S de Bruijn
- Dept. of Otorhinolaryngology & Head and Neck Surgery, Center for Optical Diagnostics and Therapy, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Paul J van Diest
- Dept. of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paul M P van Bergen En Henegouwen
- Division of Cell Biology, Neurobiology and Biophysics, Dept. of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Clemens W G M Lowik
- Dept. of Radiology, Optical Molecular Imaging, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Dominic J Robinson
- Dept. of Surgery, Leiden University Medical Center, Leiden, the Netherlands; Dept. of Otorhinolaryngology & Head and Neck Surgery, Center for Optical Diagnostics and Therapy, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Sabrina Oliveira
- Division of Cell Biology, Neurobiology and Biophysics, Dept. of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Pharmaceutics, Dept. of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
43
|
Preclinical Targeted α- and β --Radionuclide Therapy in HER2-Positive Brain Metastasis Using Camelid Single-Domain Antibodies. Cancers (Basel) 2020; 12:cancers12041017. [PMID: 32326199 PMCID: PMC7226418 DOI: 10.3390/cancers12041017] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
HER2-targeted therapies have drastically improved the outcome for breast cancer patients. However, when metastasis to the brain is involved, current strategies fail to hold up to the same promise. Camelid single-domain antibody-fragments (sdAbs) have been demonstrated to possess favorable properties for detecting and treating cancerous lesions in vivo using different radiolabeling methods. Here we evaluate the anti-HER2 sdAb 2Rs15d, coupled to diagnostic γ- and therapeutic α- and β−-emitting radionuclides for the detection and treatment of HER2pos brain lesions in a preclinical setting. 2Rs15d was radiolabeled with 111In, 225Ac and 131I using DTPA- and DOTA-based bifunctional chelators and Sn-precursor of SGMIB respectively and evaluated in orthotopic tumor-bearing athymic nude mice. Therapeutic efficacy as well as systemic toxicity were determined for 131I- and 225Ac-labeled sdAbs and compared to anti-HER2 monoclonal antibody (mAb) trastuzumab in two different HER2pos tumor models. Radiolabeled 2Rs15d showed high and specific tumor uptake in both HER2pos SK-OV-3-Luc-IP1 and HER2pos MDA-MB-231Br brain lesions, whereas radiolabeled trastuzumab was unable to accumulate in intracranial SK-OV-3-Luc-IP1 tumors. Administration of [131I]-2Rs15d and [225Ac]-2Rs15d alone and in combination with trastuzumab showed a significant increase in median survival in 2 tumor models that remained largely unresponsive to trastuzumab treatment alone. Histopathological analysis revealed no significant early toxicity. Radiolabeled sdAbs prove to be promising vehicles for molecular imaging and targeted radionuclide therapy of metastatic lesions in the brain. These data demonstrate the potential of radiolabeled sdAbs as a valuable add-on treatment option for patients with difficult-to-treat HER2pos metastatic cancer.
Collapse
|
44
|
Deyev SM, Vorobyeva A, Schulga A, Abouzayed A, Günther T, Garousi J, Konovalova E, Ding H, Gräslund T, Orlova A, Tolmachev V. Effect of a radiolabel biochemical nature on tumor-targeting properties of EpCAM-binding engineered scaffold protein DARPin Ec1. Int J Biol Macromol 2019; 145:216-225. [PMID: 31863835 DOI: 10.1016/j.ijbiomac.2019.12.147] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022]
Abstract
Radionuclide-based imaging of molecular therapeutic targets might facilitate stratifying patients for specific biotherapeutics. New type of imaging probes, based on designed ankyrin repeat proteins (DARPins), have demonstrated excellent contrast of imaging of human epidermal growth factor type 2 (HER2) expression in preclinical models. We hypothesized that labeling approaches, which result in lipophilic radiometabolites (non-residualizing labels), would provide the best imaging contrast for DARPins that internalize slowly after binding to cancer cells. The hypothesis was tested using DARPin Ec1 that binds to epithelial cell adhesion molecule (EpCAM). EpCAM is a promising therapeutic target. Ec1 was labeled with 125I using two methods to obtain the non-residualizing labels, while residualizing labels were obtained by labeling it with 99mTc. All labeled Ec1 variants preserved target specificity and picomolar binding affinity to EpCAM-expressing pancreatic adenocarcinoma BxPC-3 cells. In murine models, all the variants provided similar tumor uptake. However, 125I-PIB-H6-Ec1 had noticeably lower retention in normal tissues, which provided appreciably higher tumor-to-organ ratios. Furthermore, 125I-PIB-H6-Ec1 demonstrated the highest imaging contrast in preclinical models than any other EpCAM-imaging agent tested so far. In conclusion, DARPin Ec1 in combination with a non-residualizing label is a promising probe for imaging EpCAM expression a few hours after injection.
Collapse
Affiliation(s)
- Sergey M Deyev
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Research School of Chemistry and Applied Biomedical Sciences, Research Tomsk Polytechnic University, Tomsk, Russia; Center of Biomedical Engineering, Sechenov University, Moscow, Russia
| | - Anzhelika Vorobyeva
- Research School of Chemistry and Applied Biomedical Sciences, Research Tomsk Polytechnic University, Tomsk, Russia; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Alexey Schulga
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Research School of Chemistry and Applied Biomedical Sciences, Research Tomsk Polytechnic University, Tomsk, Russia
| | - Ayman Abouzayed
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Tyran Günther
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Elena Konovalova
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Haozhong Ding
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Torbjörn Gräslund
- Department of Protein Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Orlova
- Research School of Chemistry and Applied Biomedical Sciences, Research Tomsk Polytechnic University, Tomsk, Russia; Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Research School of Chemistry and Applied Biomedical Sciences, Research Tomsk Polytechnic University, Tomsk, Russia; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
45
|
Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody–Drug Conjugates: A Comprehensive Review. Mol Cancer Res 2019; 18:3-19. [DOI: 10.1158/1541-7786.mcr-19-0582] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/22/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022]
|
46
|
Indirect Radioiodination of DARPin G3 Using N-succinimidyl- Para-Iodobenzoate Improves the Contrast of HER2 Molecular Imaging. Int J Mol Sci 2019; 20:ijms20123047. [PMID: 31234471 PMCID: PMC6627094 DOI: 10.3390/ijms20123047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 02/08/2023] Open
Abstract
Radionuclide molecular imaging of human epidermal growth factor receptor 2 (HER2) in breast and gastroesophageal cancer might be used to stratify patients for HER2-targeted therapy as well as monitor treatment response and disease progression. Designed ankyrin repeat proteins (DARPins) are small engineered scaffold proteins with favorable properties for molecular imaging. Herein we compared two methods for labeling the anti-HER2 DARPin (HE)3-G3, direct and indirect radioiodination. We hypothesized that the use of N-succinimidyl-para-iodobenzoate (SPIB) for radioiodination would facilitate the clearance of radiometabolites and improve the contrast of imaging. Both radiolabeled (HE)3-G3 variants preserved their binding specificity and high affinity to HER2-expressing cells. The specificity of tumor targeting in vivo was also demonstrated. A biodistribution comparison of [125I]I-(HE)3-G3 and [125I]I-PIB-(HE)3-G3, in mice bearing HER2 expressing SKOV3 xenografts, showed rapid clearance of [125I]I-PIB-(HE)3-G3 from normal organs and tissues and low accumulation of activity in organs with NaI-symporter expression. Both radiolabeled (HE)3-G3 variants had equal tumor uptake. Consequently, the indirect label provided higher tumor-to-blood and tumor-to-organ ratios compared with the direct label. Comparative Single Photon Emission Computed Tomography (SPECT)/CT imaging of HER2 expression in SKOV3 xenografts, using both radiolabeled DARPins, demonstrated the superior imaging contrast of the indirect label. Indirect radioiodination of (HE)3-G3 using SPIB could be further applied for SPECT and PET imaging with iodine-123 and iodine-124.
Collapse
|
47
|
De Groof TWM, Bobkov V, Heukers R, Smit MJ. Nanobodies: New avenues for imaging, stabilizing and modulating GPCRs. Mol Cell Endocrinol 2019; 484:15-24. [PMID: 30690070 DOI: 10.1016/j.mce.2019.01.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/30/2022]
Abstract
The family of G protein-coupled receptors (GPCRs) is the largest class of membrane proteins and an important drug target due to their role in many (patho)physiological processes. Besides small molecules, GPCRs can be targeted by biologicals including antibodies and antibody fragments. This review describes the use of antibodies and in particular antibody fragments from camelid-derived heavy chain-only antibodies (nanobodies/VHHs/sdAbs) for detecting, stabilizing, modulating and therapeutically targeting GPCRs. Altogether, it becomes increasingly clear that the small size, structure and protruding antigen-binding loops of nanobodies are favorable features for the development of selective and potent GPCRs-binding molecules. This makes them attractive tools to modulate GPCR activity but also as targeting modalities for GPCR-directed therapeutics. In addition, these antibody-fragments are important tools in the stabilization of particular conformations of these receptors. Lastly, nanobodies, in contrast to conventional antibodies, can also easily be expressed intracellularly which render nanobodies important tools for studying GPCR function. Hence, GPCR-targeting nanobodies are ideal modalities to image, stabilize and modulate GPCR function.
Collapse
Affiliation(s)
- Timo W M De Groof
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Vladimir Bobkov
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands; Argenx BVBA, Industriepark Zwijnaarde 7, 9052, Zwijnaarde, Belgium
| | - Raimond Heukers
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands; QVQ Holding B.V., Yalelaan 1, 3484 CL, Utrecht, the Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands.
| |
Collapse
|
48
|
Debie P, Devoogdt N, Hernot S. Targeted Nanobody-Based Molecular Tracers for Nuclear Imaging and Image-Guided Surgery. Antibodies (Basel) 2019; 8:E12. [PMID: 31544818 PMCID: PMC6640687 DOI: 10.3390/antib8010012] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/29/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
Molecular imaging is paving the way towards noninvasive detection, staging, and treatment follow-up of diseases such as cancer and inflammation-related conditions. Monoclonal antibodies have long been one of the staples of molecular imaging tracer design, although their long blood circulation and high nonspecific background limits their applicability. Nanobodies, unique antibody-binding fragments derived from camelid heavy-chain antibodies, have excellent properties for molecular imaging as they are able to specifically find their target early after injection, with little to no nonspecific background. Nanobody-based tracers using either nuclear or fluorescent labels have been heavily investigated preclinically and are currently making their way into the clinic. In this review, we will discuss different important factors in nanobody-tracer design, as well as the current state of the art regarding their application for nuclear and fluorescent imaging purposes. Furthermore, we will discuss how nanobodies can also be exploited for molecular therapy applications such as targeted radionuclide therapy and photodynamic therapy.
Collapse
Affiliation(s)
- Pieterjan Debie
- Laboratory for in vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Nick Devoogdt
- Laboratory for in vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Sophie Hernot
- Laboratory for in vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
49
|
Zhou Z, McDougald D, Devoogdt N, Zalutsky MR, Vaidyanathan G. Labeling Single Domain Antibody Fragments with Fluorine-18 Using 2,3,5,6-Tetrafluorophenyl 6-[ 18F]Fluoronicotinate Resulting in High Tumor-to-Kidney Ratios. Mol Pharm 2018; 16:214-226. [PMID: 30427188 DOI: 10.1021/acs.molpharmaceut.8b00951] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
ImmunoPET agents are being investigated to assess the status of epidermal growth factor receptor 2 (HER2) in breast cancer patients with the goal of selecting those likely to benefit from HER2-targeted therapies and monitoring their progress after these treatments. We have been exploring the use of single domain antibody fragments (sdAbs) labeled with 18F using residualizing prosthetic agents for this purpose. In this study, we have labeled two sdAbs that bind to different domains on the HER2 receptor, 2Rs15d and 5F7, using 2,3,5,6-tetrafluorophenyl 6-[18F]fluoronicotinate ([18F]TFPFN) and evaluated their HER2 targeting properties in vitro and in vivo. The overall decay-corrected radiochemical yield for the synthesis of [18F]TFPFN-2Rs15d and [18F]TFPFN-5F7 was 5.7 ± 3.6 and 4.0 ± 2.0%, respectively. The radiochemical purity of labeled sdAbs was >95%, immunoreactive fractions were about 60%, and affinity was in the low nanomolar range. Intracellularly trapped activity from [18F]TFPFN-2Rs15d and [18F]TFPFN-5F7 in HER2-expressing SKOV-3 ovarian and BT474M1 breast carcinoma cells were similar to the sdAbs labeled using the previously validated radioiodination residualizing prosthetic agents N-succinimidyl 4-guanidinomethyl-3-[125I]iodobenzoate ([125I]SGMIB) and N-succinimidyl 3-guanidinomethyl-5-[125I]iodobenzoate ( iso-[125I]SGMIB). Intracellular activity was about 2-fold higher for radiolabeled 5F7 compared with 2Rs15d for both 18F and 125I. While tumor uptake of both [18F]TFPFN-2Rs15d and [18F]TFPFN-5F7 was comparable to those for the coadministered 125I-labeled sdAb, renal uptake of the 18F-labeled sdAbs was substantially lower. In microPET images, the tumor was clearly delineated in SKOV-3 and BT474 xenograft-bearing athymic mice with low levels of background activity in normal tissues, except the bladder. These results indicate that the [18F]TFPFN prosthetic group could be a valuable reagent for developing sdAb-based immunoPET imaging agents.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- Department of Radiology , Duke University Medical Center , Durham , North Carolina 27710 , United States
| | - Darryl McDougald
- Department of Radiology , Duke University Medical Center , Durham , North Carolina 27710 , United States
| | - Nick Devoogdt
- In vivo Cellular and Molecular Imaging laboratory , Vrije Universiteit Brussel, (VUB) , 1090 , Brussels , Belgium
| | - Michael R Zalutsky
- Department of Radiology , Duke University Medical Center , Durham , North Carolina 27710 , United States
| | - Ganesan Vaidyanathan
- Department of Radiology , Duke University Medical Center , Durham , North Carolina 27710 , United States
| |
Collapse
|
50
|
Bavelaar BM, Lee BQ, Gill MR, Falzone N, Vallis KA. Subcellular Targeting of Theranostic Radionuclides. Front Pharmacol 2018; 9:996. [PMID: 30233374 PMCID: PMC6131480 DOI: 10.3389/fphar.2018.00996] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022] Open
Abstract
The last decade has seen rapid growth in the use of theranostic radionuclides for the treatment and imaging of a wide range of cancers. Radionuclide therapy and imaging rely on a radiolabeled vector to specifically target cancer cells. Radionuclides that emit β particles have thus far dominated the field of targeted radionuclide therapy (TRT), mainly because the longer range (μm-mm track length) of these particles offsets the heterogeneous expression of the molecular target. Shorter range (nm-μm track length) α- and Auger electron (AE)-emitting radionuclides on the other hand provide high ionization densities at the site of decay which could overcome much of the toxicity associated with β-emitters. Given that there is a growing body of evidence that other sensitive sites besides the DNA, such as the cell membrane and mitochondria, could be critical targets in TRT, improved techniques in detecting the subcellular distribution of these radionuclides are necessary, especially since many β-emitting radionuclides also emit AE. The successful development of TRT agents capable of homing to targets with subcellular precision demands the parallel development of quantitative assays for evaluation of spatial distribution of radionuclides in the nm-μm range. In this review, the status of research directed at subcellular targeting of radionuclide theranostics and the methods for imaging and quantification of radionuclide localization at the nanoscale are described.
Collapse
Affiliation(s)
| | | | | | | | - Katherine A. Vallis
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|