1
|
Jansen S, Cadar D, Hey JC, Helms M, Lange U, Horváth B, Jöst H, Pfitzner WP, Schmidt-Chanasit J, Lühken R, Heitmann A. The impact of temperature and insect-specific viruses on the transmission of alphaviruses by Aedes japonicus japonicus. Microbiol Spectr 2025:e0266824. [PMID: 40304470 DOI: 10.1128/spectrum.02668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Arthropod-borne virus (arbovirus) infections are increasing globally, and invasive mosquito species are spreading. Since the end of the last century, Aedes japonicus has continued to spread in Europe as well as in North America. Aedes japonicus is known to be able to transmit several viruses, but extensive information about the vector competence of Ae. japonicus for alphaviruses is missing. Therefore, we infected field-caught Ae. japonicus mosquitoes from Germany with different alphaviruses that occur in areas with either tropical or moderate temperatures and are clustered as arthritogenic or encephalitic alphaviruses. Additionally, we studied the influence of temperature and natural infections with insect-specific viruses (ISVs) on the vector competence of Ae. japonicus. Transmission of chikungunya virus was exclusively observed at the high-temperature profile of 27° ± 5°C, with a low transmission rate of 2.9%. Transmission of Sindbis virus and western equine encephalitis virus was observed at all investigated temperature profiles with higher transmission rates of 32%-57%. We identified seven different ISVs in the investigated Ae. japonicus mosquitoes, showing that coinfections with ISVs are very common. The interplay between arbovirus infections and concurrent multiple ISV infections is highly complex, and additional research is required to fully elucidate the detailed mechanisms underlying the outcomes of this study. IMPORTANCE The spread of invasive mosquito species like Aedes japonicus poses a significant public health risk, particularly in the context of rising global temperatures and the growing prevalence of arbovirus infections. This study provides critical insights into the ability of Aedes japonicus to transmit alphaviruses such as chikungunya, Sindbis, and western equine encephalitis under different temperature conditions. The identification of multiple insect-specific viruses co-infecting the mosquitoes highlights the complexity of arbovirus transmission and underscores the need for further research. Understanding the interplay between environmental factors like temperature and viral coinfections is essential for predicting and mitigating future outbreaks. This work advances our knowledge of vector competence, which is helpful for developing strategies for risk assessment.
Collapse
Affiliation(s)
- Stephanie Jansen
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Hamburg, Germany
| | - Dániel Cadar
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| | - Jana Christina Hey
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| | - Michelle Helms
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| | - Unchana Lange
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| | - Balázs Horváth
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| | - Wolf-Peter Pfitzner
- Kommunale Aktionsgemeinschaft zur Bekämpfung der Schnakenplage e. V. (KABS), Speyer, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Hamburg, Germany
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| | - Anna Heitmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Hamburg, Germany
| |
Collapse
|
2
|
Rochlin I, Kenney J, Little E, Molaei G. Public health significance of the white-tailed deer (Odocoileus virginianus) and its role in the eco-epidemiology of tick- and mosquito-borne diseases in North America. Parasit Vectors 2025; 18:43. [PMID: 39915849 PMCID: PMC11803971 DOI: 10.1186/s13071-025-06674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
White-tailed deer (Odocoileus virginianus) are a ubiquitous species in North America. Their high reproductive potential leads to rapid population growth, and they exhibit a wide range of biological adaptations that influence their interactions with vectors and pathogens. This review aims to characterize the intricate interplay between white-tailed deer and the transmission cycles of various tick- and mosquito-borne pathogens across their range in the eastern United States and southeastern Canada. The first part offers insights into the biological characteristics of white-tailed deer, their population dynamics, and the consequential impacts on both the environment and public health. This contextual backdrop sets the stage for the two subsequent sections, which delve into specific examples of pathogen transmission involving white-tailed deer categorized by tick and mosquito vectors into tick-borne and mosquito-borne diseases. This classification is essential, as ticks and mosquitoes serve as pivotal elements in the eco-epidemiology of vector-borne diseases, intricately linking hosts, the environment, and pathogens. Through elucidating these associations, this paper highlights the crucial role of white-tailed deer in the transmission dynamics of tick- and mosquito-borne diseases. Understanding the interactions between white-tailed deer, vectors, and pathogens is essential for effective disease management and public health interventions.
Collapse
Affiliation(s)
| | - Joan Kenney
- Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Eliza Little
- Connecticut Department of Public Health, Hartford, CT, USA
| | - Goudarz Molaei
- Connecticut Agricultural Experiment Station, New Haven, CT, USA.
- Yale Uinversity, New Haven, CT, USA.
| |
Collapse
|
3
|
Mogi M, Armbruster PA, Eritja R, Sunahara T, Tuno N. How far do forest container mosquitoes (Diptera: Culicidae) invade rural and urban areas in Japan? - Simple landscape ecology with comparison of the invasive Aedes ecology between native and invasive ranges. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1168-1180. [PMID: 39102891 DOI: 10.1093/jme/tjae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
The distribution of container mosquitoes in relation to distances from forests was studied in temperate Japan. Mosquito larvae were collected between May and September in 4 years from tree holes, bamboo stumps, riverine rock pools, and artificial containers; sampling ranged spatially from the mountain forest across the deforested plain developed as agriculture and urban areas to the seacoast. Although tree holes, bamboo stumps, and artificial containers existed throughout the deforested plain area, 10 container species of 6 genera were found virtually only within 5 km from the nearest forest edge. Worldwide invasive Aedes albopictus (Skuse) and Aedes japonicus (Theobald) of Asian origin showed unique occurrence patterns different from other container species and from each other. Ae. japonicus was dominant in artificial containers in and near the forest but minor in forest natural containers and only occurred within 5 km from the forest. Ae. albopictus was minor in the forest irrespective of container types but not bound to the forest and dominant in natural and artificial containers throughout rural and urban areas. The 5-km range was designated as the circum-forest zone for container mosquitoes (except Ae. albopictus) in Japan, and an expanded concept, circum-boundary zone, is proposed. The widths of these zones primarily depend on the dispersal traits of mosquitoes. Whether the relation of Ae. albopictus and Ae. japonicus to forests we observed are common in the native and invasive ranges is discussed. The study of across-ecosystem dispersal is important for mosquito management under anthropogenically changing environments due to either deforestation or green restoration.
Collapse
Affiliation(s)
- Motoyoshi Mogi
- Division of Parasitology, Faculty of Medicine, Saga University, Saga, Japan (retired)
| | | | - Roger Eritja
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Blanes, Spain
| | - Toshihiko Sunahara
- Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Nobuko Tuno
- Laboratory of Ecology, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
4
|
Petersen V, Santana M, Karina-Costa M, Nachbar JJ, Martin-Martin I, Adelman ZN, Burini BC. Aedes ( Ochlerotatus) scapularis, Aedes japonicus japonicus, and Aedes ( Fredwardsius) vittatus (Diptera: Culicidae): Three Neglected Mosquitoes with Potential Global Health Risks. INSECTS 2024; 15:600. [PMID: 39194805 DOI: 10.3390/insects15080600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
More than 3550 species of mosquitoes are known worldwide, and only a fraction is involved in the transmission of arboviruses. Mosquitoes in sylvatic and semi-sylvatic habitats may rapidly adapt to urban parks and metropolitan environments, increasing human contact. Many of these mosquitoes have been found naturally infected with arboviruses from the Alphaviridae, Flaviviridae, and Bunyaviridae families, with many being the cause of medically important diseases. However, there is a gap in knowledge about the vector status of newly invasive species and their potential threat to human and domestic animal populations. Due to their rapid distribution, adaptation to urban environments, and anthropophilic habits, some neglected mosquito species may deserve more attention regarding their role as secondary vectors. Taking these factors into account, we focus here on Aedes (Ochlerotatus) scapularis (Rondani), Aedes japonicus japonicus (Theobald), and Aedes (Fredwardsius) vittatus (Bigot) as species that have the potential to become important disease vectors. We further discuss the importance of these neglected mosquitoes and how factors such as urbanization, climate change, and globalization profoundly alter the dynamics of disease transmission and may increase the participation of neglected species in propagating diseases.
Collapse
Affiliation(s)
- Vivian Petersen
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA
| | - Micael Santana
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo 05508-000, Brazil
| | - Maria Karina-Costa
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo 05508-000, Brazil
| | - Julia Jardim Nachbar
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Sao Paulo 05508-000, Brazil
| | - Ines Martin-Martin
- National Center for Microbiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Zach N Adelman
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX 77843, USA
| | - Bianca C Burini
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA
| |
Collapse
|
5
|
Lühken R, Brattig N, Becker N. Introduction of invasive mosquito species into Europe and prospects for arbovirus transmission and vector control in an era of globalization. Infect Dis Poverty 2023; 12:109. [PMID: 38037192 PMCID: PMC10687857 DOI: 10.1186/s40249-023-01167-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Mosquito research in Europe has a long history, primarily focused on malaria vectors. In recent years, invasive mosquito species like the Asian tiger mosquito (Aedes albopictus) and the spread of arboviruses like dengue virus, chikungunya virus or bluetongue virus have led to an intensification of research and monitoring in Europe. The risk of further dissemination of exotic species and mosquito-borne pathogens is expected to increase with ongoing globalization, human mobility, transport geography, and climate warming. Researchers have conducted various studies to understand the ecology, biology, and effective control strategies of mosquitoes and associated pathogens. MAIN BODY Three invasive mosquito species are established in Europe: Asian tiger mosquito (Aedes albopictus), Japanese bush mosquito (Ae. japonicus), and Korean bush mosquito (Aedes koreicus). Ae. albopictus is the most invasive species and has been established in Europe since 1990. Over the past two decades, there has been an increasing number of outbreaks of infections by mosquito-borne viruses in particular chikungunya virus, dengue virus or Zika virus in Europe primary driven by Ae. albopictus. At the same time, climate change with rising temperatures results in increasing threat of invasive mosquito-borne viruses, in particular Usutu virus and West Nile virus transmitted by native Culex mosquito species. Effective mosquito control programs require a high level of community participation, going along with comprehensive information campaigns, to ensure source reduction and successful control. Control strategies for container breeding mosquitoes like Ae. albopictus or Culex species involve community participation, door-to-door control activities in private areas. Further measures can involve integration of sterile insect techniques, applying indigenous copepods, Wolbachia sp. bacteria, or genetically modified mosquitoes, which is very unlike to be practiced as standard method in the near future. CONCLUSIONS Climate change and globalization resulting in the increased establishment of invasive mosquitoes in particular of the Asian tiger mosquito Ae. albopictus in Europe within the last 30 years and increasing outbreaks of infections by mosquito-borne viruses warrants intensification of research and monitoring. Further, effective future mosquito control programs require increase in intense community and private participation, applying physical, chemical, biological, and genetical control activities.
Collapse
Affiliation(s)
- Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany.
| | - Norbert Brattig
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Norbert Becker
- Institute for Dipterology, 67346, Speyer, Germany
- Institute for Organismal Studies (COS), University of Heidelberg, 69117, Heidelberg, Germany
| |
Collapse
|
6
|
Day CA, Byrd BD, Trout Fryxell RT. La Crosse virus neuroinvasive disease: the kids are not alright. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:1165-1182. [PMID: 37862102 DOI: 10.1093/jme/tjad090] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 06/26/2023] [Indexed: 10/21/2023]
Abstract
La Crosse virus (LACV) is the most common cause of neuroinvasive mosquito-borne disease in children within the United States. Despite more than 50 years of recognized endemicity in the United States, the true burden of LACV disease is grossly underappreciated, and there remain severe knowledge gaps that inhibit public health interventions to reduce morbidity and mortality. Long-standing deficiencies in disease surveillance, clinical diagnostics and therapeutics, actionable entomologic and environmental risk indices, case response capacity, public awareness, and availability of community support groups clearly frame LACV disease as neglected. Here we synthesize salient prior research and contextualize our findings as an assessment of current gaps and opportunities to develop a framework to prevent, detect, and respond to LACV disease. The persistent burdens of LACV disease clearly require renewed public health attention, policy, and action.
Collapse
Affiliation(s)
- Corey A Day
- Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Brian D Byrd
- Environmental Health Sciences, Western Carolina University, Cullowhee, NC, USA
| | | |
Collapse
|
7
|
Kelly R, Nguyen TVT, McKanna M, Sames WJ. COUNTY RECORDS FOR AEDES JAPONICUS IN GEORGIA. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2023:493440. [PMID: 37270914 DOI: 10.2987/23-7117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Consolidating and updating distributional data for mosquito species within a state is a good practice. These updates have an immediate impact by providing documented species distribution information for public use and by serving as a resource to researchers who need background information about a species's state distribution. In Georgia, Aedes japonicus, an introduced species, was peer review reported from 7 counties (2002-06): Fulton, Habersham, Lumpkin, Rabun, Towns, Union, and White. No further records were found in peer-reviewed journals or in the Symbiota Collections of Arthropods Network. This study consolidated the 7 peer-reviewed county records for Ae. japonicus with 73 new county records from surveillance data collected by the Georgia Department of Public Health. This study documented the presence of Ae. japonicus in 80 of the 159 counties in Georgia.
Collapse
|
8
|
Nanfack-Minkeu F, Delong A, Luri M, Poelstra JW. Invasive Aedes japonicus Mosquitoes Dominate the Aedes Fauna Collected with Gravid Traps in Wooster, Northeastern Ohio, USA. INSECTS 2023; 14:56. [PMID: 36661984 PMCID: PMC9861081 DOI: 10.3390/insects14010056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Aedes japonicus (Diptera: Culicidae), or the Asian rock pool mosquito, is an invasive mosquito in Europe and America. It was first detected outside of Asia in 1990 in Oceania. It has since expanded to North America and Europe in 1998 and 2000, respectively. Even though it is classified as a secondary vector of pathogens, it is competent to several arboviruses and filarial worms, and it is contributing to the transmission of La Crosse virus (LACV) and West Nile virus (WNV). In this study, CDC light, BG-sentinel, and gravid traps were used to collect mosquitoes between June and October 2021, in Wooster, Northeastern Ohio, USA. Morphological identification or/and Sanger sequencing were performed to identify the collected mosquitoes. Our results revealed that (adult) Ae. japonicus mosquitoes were the most abundant mosquito species collected with gravid traps in Wooster in 2021, confirming its establishment in Ohio. Molecular analyses of Ae. japonicus showed 100% nucleotide similarity with Ae. japonicus collected in Iowa (USA) and Canada, suggesting multiple introductions. Its presence may increase the risk of future arbovirus outbreaks in Wooster, Ohio. This study stresses the importance of actively monitoring the density and distribution of all members of the Ae. japonicus complex.
Collapse
Affiliation(s)
| | - Alexander Delong
- Biochemistry & Molecular Biology Program, The College of Wooster, Wooster, OH 44691, USA
| | - Moses Luri
- Departments of Economics, and Mathematical and Computational Sciences, The College of Wooster, Wooster, OH 44691, USA
- Department of Mathematical and Computational Sciences, The College of Wooster, Wooster, OH 44691, USA
| | - Jelmer W. Poelstra
- Molecular and Cellular Imaging Center, Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
9
|
Zettle M, Anderson E, LaDeau SL. Changes in Container-Breeding Mosquito Diversity and Abundance Along an Urbanization Gradient are Associated With Dominance of Arboviral Vectors. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:843-854. [PMID: 35388898 DOI: 10.1093/jme/tjac023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 06/14/2023]
Abstract
Environmental conditions associated with urbanization are likely to influence the composition and abundance of mosquito (Diptera, Culicidae) assemblages through effects on juvenile stages, with important consequences for human disease risk. We present six years (2011-2016) of weekly juvenile mosquito data from distributed standardized ovitraps and evaluate how variation in impervious cover and temperature affect the composition and abundance of container-breeding mosquito species in Maryland, USA. Species richness and evenness were lowest at sites with high impervious cover (>60% in 100-m buffer). However, peak diversity was recorded at sites with intermediate impervious cover (28-35%). Four species were observed at all sites, including two recent invasives (Aedes albopictus Skuse, Ae. japonicus Theobald), an established resident (Culex pipiens L), and one native (Cx. restuans Theobald). All four are viral vectors in zoonotic or human transmission cycles. Temperature was a positive predictor of weekly larval abundance during the growing season for each species, as well as a positive predictor of rapid pupal development. Despite being observed at all sites, each species responded differently to impervious cover. Abundance of Ae. albopictus larvae was positively associated with impervious cover, emphasizing that this medically-important vector not only persists in the warmer, impervious urban landscape but is positively associated with it. Positive temperature effects in our models of larval abundance and pupae occurrence in container habitats suggest that these four vector species are likely to continue to be present and abundant in temperate cities under future temperature scenarios.
Collapse
Affiliation(s)
- MyKenna Zettle
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Elsa Anderson
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | | |
Collapse
|
10
|
Kerkow A, Wieland R, Gethmann JM, Hölker F, Lentz HH. Linking a compartment model for West Nile virus with a flight simulator for vector mosquitoes. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2021.109840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Little EAH, Hutchinson ML, Price KJ, Marini A, Shepard JJ, Molaei G. Spatiotemporal distribution, abundance, and host interactions of two invasive vectors of arboviruses, Aedes albopictus and Aedes japonicus, in Pennsylvania, USA. Parasit Vectors 2022; 15:36. [PMID: 35073977 PMCID: PMC8785538 DOI: 10.1186/s13071-022-05151-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background Aedes albopictus and Aedes japonicus, two invasive mosquito species in the United States, are implicated in the transmission of arboviruses. Studies have shown interactions of these two mosquito species with a variety of vertebrate hosts; however, regional differences exist and may influence their contribution to arbovirus transmission. Methods We investigated the distribution, abundance, host interactions, and West Nile virus infection prevalence of Ae. albopictus and Ae. japonicus by examining Pennsylvania mosquito and arbovirus surveillance data for the period between 2010 and 2018. Mosquitoes were primarily collected using gravid traps and BG-Sentinel traps, and sources of blood meals were determined by analyzing mitochondrial cytochrome b gene sequences amplified in PCR assays. Results A total of 10,878,727 female mosquitoes representing 51 species were collected in Pennsylvania over the 9-year study period, with Ae. albopictus and Ae. japonicus representing 4.06% and 3.02% of all collected mosquitoes, respectively. Aedes albopictus was distributed in 39 counties and Ae. japonicus in all 67 counties, and the abundance of these species increased between 2010 and 2018. Models suggested an increase in the spatial extent of Ae. albopictus during the study period, while that of Ae. japonicus remained unchanged. We found a differential association between the abundance of the two mosquito species and environmental conditions, percent development, and median household income. Of 110 Ae. albopictus and 97 Ae. japonicus blood meals successfully identified to species level, 98% and 100% were derived from mammalian hosts, respectively. Among 12 mammalian species, domestic cats, humans, and white-tailed deer served as the most frequent hosts for the two mosquito species. A limited number of Ae. albopictus acquired blood meals from avian hosts solely or in mixed blood meals. West Nile virus was detected in 31 pools (n = 3582 total number of pools) of Ae. albopictus and 12 pools (n = 977 total pools) of Ae. japonicus. Conclusions Extensive distribution, high abundance, and frequent interactions with mammalian hosts suggest potential involvement of Ae. albopictus and Ae. japonicus in the transmission of human arboviruses including Cache Valley, Jamestown Canyon, La Crosse, dengue, chikungunya, and Zika should any of these viruses become prevalent in Pennsylvania. Limited interaction with avian hosts suggests that Ae. albopictus might occasionally be involved in transmission of arboviruses such as West Nile in the region. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05151-8.
Collapse
Affiliation(s)
- Eliza A H Little
- Department of Entomology, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA.,Center for Vector Biology and Zoonotic Diseases and Northeast Regional Center for Excellence in Vector-Borne Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Michael L Hutchinson
- Pennsylvania Department of Agriculture, 2301 North Cameron Street, Harrisburg, PA, 17110, USA.,Pennsylvania Department of Environmental Protection, 400 Market Street, Harrisburg, PA, 17101, USA
| | - Keith J Price
- Pennsylvania Department of Environmental Protection, 400 Market Street, Harrisburg, PA, 17101, USA
| | - Alyssa Marini
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - John J Shepard
- Center for Vector Biology and Zoonotic Diseases and Northeast Regional Center for Excellence in Vector-Borne Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA.,Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Goudarz Molaei
- Center for Vector Biology and Zoonotic Diseases and Northeast Regional Center for Excellence in Vector-Borne Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA. .,Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA. .,Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA.
| |
Collapse
|
12
|
Cebrián-Camisón S, Martínez-de la Puente J, Figuerola J. A Literature Review of Host Feeding Patterns of Invasive Aedes Mosquitoes in Europe. INSECTS 2020; 11:E848. [PMID: 33260438 PMCID: PMC7760726 DOI: 10.3390/insects11120848] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022]
Abstract
Aedes invasive mosquitoes (AIMs) play a key role as vectors of several pathogens of public health relevance. Four species have been established in Europe, including Aedes aegypti, Aedesalbopictus, Aedes japonicus and Aedes koreicus. In addition, Aedes atropalpus has been repeatedly recorded although it has not yet been established. In spite of their importance in the transmission of endemic (e.g., heartworms) and imported pathogens (e.g., dengue virus), basic information of parameters affecting their vectorial capacity is poorly investigated. The aim of this study is to review the blood feeding patterns of these invasive mosquito species in Europe, summarizing available information from their native and introduced distribution ranges. The feeding patterns of mosquitoes constitute a key parameter affecting the contact rates between infected and susceptible hosts, thus playing a central role in the epidemiology of mosquito-borne pathogens. Our results highlight that these mosquito species feed on the blood of different vertebrate groups from ectotherms to birds and mammals. However, humans represent the most important source of blood for these species, accounting for 36% and 93% of hosts identified for Ae. japonicus and Ae. aegypti, respectively. In spite of that, limited information has been obtained for some particular species, such as Ae. koreicus, or it is restricted to a few particular areas. Given the high vector competence of the four AIM species for the transmission of different emerging arboviruses such as dengue, Chikungunya, Zika or Yellow fever viruses and their high feeding rates on humans, these AIM species may have an important impact on the vectorial capacity for such pathogens on urban and periurban areas. Finally, we propose directions for future research lines based on identified knowledge gaps.
Collapse
Affiliation(s)
- Sonia Cebrián-Camisón
- Estación Biológica de Doñana, Departamento de Ecología de Humedales, Av. Américo Vespucio 26, 41092 Sevilla, Spain;
| | - Josué Martínez-de la Puente
- Departamento de Parasitología, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana, Departamento de Ecología de Humedales, Av. Américo Vespucio 26, 41092 Sevilla, Spain;
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
13
|
Shahhosseini N, Wong G, Frederick C, Kobinger GP. Mosquito Species Composition and Abundance in Quebec, Eastern Canada. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1025-1031. [PMID: 32052030 DOI: 10.1093/jme/tjaa020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Given current and projected changes in the climate, the composition of mosquito species is predicted to shift geographically with implications for the transmission dynamics of vector-borne pathogens. Many mosquito species are rarely collected in Canada and their history is poorly understood; thus assessing their potential role as vectors for pathogenesis is difficult. Mosquitoes were collected from four trapping sites in Quebec Province, Canada, from June to September during 2018 and 2019 using BG sentinel traps. From all morphologically identified female mosquitoes, at least one specimen was selected for identification confirmation using the DNA-barcoding technique. Sequences were subjected to alignment and a Neighbor-Joining (NJ) tree was created using Geneious software. In total, 2,752 female mosquitoes belonging to 20 species over five genera: including Aedes (Ae.), Anopheles (An.), Culex (Cx.), Culiseta (Cu.), Coquillettidia (Cq.) were collected. The predominant mosquito was found to be Ae. cinereus. The highest number of mosquito species was captured in July, followed by August, September, and then June. Five genera were characterized by a distinctive set of cytochrome oxidase I (COI) sequences that formed well-supported clusters in the NJ-tree. The presence of Ae.japonicus in Quebec provides an initial look at the distribution of mosquito species in eastern Canada, which may put Canadians at risk of a wider range of arboviruses.
Collapse
Affiliation(s)
- Nariman Shahhosseini
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec City, Québec, Canada
| | - Gary Wong
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec City, Québec, Canada
- Pasteur Institute of Shanghai, China
| | - Christina Frederick
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec City, Québec, Canada
| | - Gary P Kobinger
- Département de Microbiologie-Infectiologie et d'Immunologie, Université Laval, Québec City, Québec, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
14
|
Cunze S, Kochmann J, Klimpel S. Global occurrence data improve potential distribution models for Aedes japonicus japonicus in non-native regions. PEST MANAGEMENT SCIENCE 2020; 76:1814-1822. [PMID: 31814250 DOI: 10.1002/ps.5710] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/30/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND There is great interest in modelling the distribution of invasive species, particularly from the point of view of management. However, distribution modelling for invasive species using ecological niche models (ENMs) involves multiple challenges. Owing to the short time span since the introduction or arrival of a non-indigenous species and the associated dispersal limitations, applying regular ENMs at an early stage of the invasion process may result in an underestimation of the potential niche in the new ranges. This topic is dealt with here using the example of Aedes japonicus japonicus, a vector competent mosquito species for a number of diseases. RESULTS We found high niche unfilling for the species' non-native range niches in Europe and North America compared with the native range niche, which can be explained by the early stage of the invasion process. Comparing four different ENMs based on: (i) the European and (ii) the North American non-native range occurrence data, (iii) (derived) native range occurrence data, and (iv) all available occurrence data together, we found large differences in the projected climatic suitability, with the global data model projecting larger areas with climatic suitability. CONCLUSION ENM in biological invasions can be challenging, especially when distribution data are only poorly available. We suggest one possible way to project climatic suitability for Aedes j. japonicus despite poor data availability for the non-native ranges and missing occurrences from the native range. We discuss aspects of the lack of information and the associated implications for modelling. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sarah Cunze
- Institute of Ecology, Evolution and Diversity, Goethe-University, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| | - Judith Kochmann
- Institute of Ecology, Evolution and Diversity, Goethe-University, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| | - Sven Klimpel
- Institute of Ecology, Evolution and Diversity, Goethe-University, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| |
Collapse
|
15
|
Chan KK, Auguste AJ, Brewster CC, Paulson SL. Vector competence of Virginia mosquitoes for Zika and Cache Valley viruses. Parasit Vectors 2020; 13:188. [PMID: 32276649 PMCID: PMC7147054 DOI: 10.1186/s13071-020-04042-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/26/2020] [Indexed: 11/25/2022] Open
Abstract
Background Vector-borne diseases are a major public health concern and cause significant morbidity and mortality. Zika virus (ZIKV) is the etiologic agent of a massive outbreak in the Americas that originated in Brazil in 2015 and shows a strong association with congenital ZIKV syndrome in newborns. Cache Valley virus (CVV) is a bunyavirus that causes mild to severe illness in humans and ruminants. In this study, we investigated the vector competence of Virginia mosquitoes for ZIKV and CVV to explore their abilities to contribute to potential outbreaks. Methods To determine vector competence, mosquitoes were fed a blood meal comprised of defibrinated sheep blood and virus. The presence of midgut or salivary gland barriers to ZIKV infection were determined by intrathoracic inoculation vs oral infection. After 14-days post-exposure, individual mosquitoes were separated into bodies, legs and wings, and saliva expectorant. Virus presence was detected by plaque assay to determine midgut infection, dissemination, and transmission rates. Results Transmission rates for Ae. albopictus orally infected (24%) and intrathoracically inoculated (63%) with ZIKV was similar to Ae. aegypti (48% and 71%, respectively). Transmission rates of ZIKV in Ae. japonicus were low, and showed evidence of a midgut infection barrier demonstrated by low midgut infection and dissemination rates from oral infection (3%), but increased transmission rates after intrathoracic inoculation (19%). Aedes triseriatus was unable to transmit ZIKV following oral infection or intrathoracic inoculation. CVV transmission was dose-dependent where mosquitoes fed high titer (ht) virus blood meals developed higher rates of midgut infection, dissemination, and transmission compared to low titer (lt) virus blood meals. CVV was detected in the saliva of Ae. albopictus (ht: 68%, lt: 24%), Ae. triseriatus (ht: 52%, lt: 7%), Ae. japonicus (ht: 22%, lt: 0%) and Ae. aegypti (ht: 10%; lt: 7%). Culex pipiens and Cx. restuans were not competent for ZIKV or CVV. Conclusions This laboratory transmission study provided further understanding of potential ZIKV and CVV transmission cycles with Aedes mosquitoes from Virginia. The ability for these mosquitoes to transmit ZIKV and CVV make them a public health concern and suggest targeted control programs by mosquito and vector abatement districts.![]()
Collapse
Affiliation(s)
- Kevin K Chan
- Department of Entomology, Virginia Tech, Blacksburg, VA, USA
| | | | - Carlyle C Brewster
- Plant and Environmental Sciences Department, Clemson University, Clemson, SC, USA
| | - Sally L Paulson
- Department of Entomology, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
16
|
Mogi M, Armbruster PA, Tuno N. Differences in Responses to Urbanization Between Invasive Mosquitoes, Aedes japonicus japonicus (Diptera: Culicidae) and Aedes albopictus, in Their Native Range, Japan. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:104-112. [PMID: 31586393 DOI: 10.1093/jme/tjz145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 06/10/2023]
Abstract
The Asian mosquitoes, Aedes albopictus (Skuse) and Aedes japonicus japonicus (Theobald), have invaded North America, Europe, and other regions since the late 20th century. In invasive ranges, Ae. albopictus has well been recognized as urban, domestic species, whereas views about the macrohabitats of Ae. j. japonicus are inconsistent. Previous reports in Japan suggest the disappearance of Ae. j. japonicus from metropolises. However, container-mosquito larvae have not been inspected simultaneously for various macro and microhabitats in metropolises in Japan. The current study in Fukuoka City, a metropolis in southwest Japan, confirmed the absence of Ae. j. japonicus irrespective of macrohabitats (temples with graveyards, shrines, public graveyards, cultivated bamboo groves, and urban forests, all within the area densely inhabited by humans) and microhabitats (container types). In contrast, Ae. albopictus was dominant throughout the macro and microhabitats except forest tree holes rich with competitive species. Past records indicate the disappearance of Ae. j. japonicus from metropolitan Fukuoka within the last 70 yr. Based on careful examination of available evidence, we concluded that 1) both species benefit from human-made environments with artificial containers free from competitors, 2) Ae. j. japonicus disappeared due to hot, dry summer conditions facilitated by urban heat-island effects and a decrease in favored mammal hosts, and 3) Ae. albopictus has proliferated with higher tolerance to hot, dry climate and a wider blood-feeding host-range including humans. This difference is important for efficient control of each species as well as predicting and preventing the expansion into new distribution ranges.
Collapse
Affiliation(s)
- Motoyoshi Mogi
- Division of Parasitology, Faculty of Medicine, Saga University, Nabeshima, Saga, Japan (retired)
| | | | - Nobuko Tuno
- Laboratory of Ecology, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
17
|
Active dispersion, habitat requirements and human biting behaviour of the invasive mosquito Aedes japonicus japonicus (Theobald, 1901) in Hungary. Parasitol Res 2019; 119:403-410. [PMID: 31873769 DOI: 10.1007/s00436-019-06582-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022]
Abstract
Aedes japonicus japonicus is endemic in a number of countries in eastern Asia but has been accidently introduced into many regions of the world including Europe. It was first detected in Hungary in 2012. In 2017, robust populations of the species were found at Lake Balaton, one of the most important tourist destinations in Central Europe. Based on the experience gathered in the above localities, habitat requirements, dispersion abilities and human biting behaviour of the species were studied in western Hungary during 2017 and 2018. Our results show that (a) a few years after its detection at the Slovenian-Hungarian border, Ae. j. japonicus is widespread in at least two-thirds of the western half of Hungary; (b) the species spreads quickly in ecological corridors formed by mosaics of rural areas, detached houses, gardens and small forest patches; (c) Ae. j. japonicus occupies artificial containers; (d) expansion of the species into new areas is slowed by extensive closed forest patches.
Collapse
|
18
|
Rochlin I, Faraji A, Healy K, Andreadis TG. West Nile Virus Mosquito Vectors in North America. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:1475-1490. [PMID: 31549725 DOI: 10.1093/jme/tjz146] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Indexed: 05/11/2023]
Abstract
In North America, the geographic distribution, ecology, and vectorial capacity of a diverse assemblage of mosquito species belonging to the genus Culex determine patterns of West Nile virus transmission and disease risk. East of the Mississippi River, mostly ornithophagic Culex pipiens L. complex mosquitoes drive intense enzootic transmission with relatively small numbers of human cases. Westward, the presence of highly competent Culex tarsalis (Coquillett) under arid climate and hot summers defines the regions with the highest human risk. West Nile virus human risk distribution is not uniform geographically or temporally within all regions. Notable geographic 'hotspots' persist with occasional severe outbreaks. Despite two decades of comprehensive research, several questions remain unresolved, such as the role of non-Culex bridge vectors, which are not involved in the enzootic cycle, but may be involved in virus transmission to humans. The absence of bridge vectors also may help to explain the frequent lack of West Nile virus 'spillover' into human populations despite very intense enzootic amplification in the eastern United States. This article examines vectorial capacity and the eco-epidemiology of West Nile virus mosquito vectors in four geographic regions of North America and presents some of the unresolved questions.
Collapse
Affiliation(s)
- Ilia Rochlin
- Center for Vector Biology, Rutgers University, New Brunswick, NJ
| | - Ary Faraji
- Salt Lake City Mosquito Abatement District, Salt Lake City, UT
| | - Kristen Healy
- Department of Entomology, Louisiana State University, Baton Rouge, LA
| | - Theodore G Andreadis
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, CT
| |
Collapse
|
19
|
Ayers VB, Huang YJS, Lyons AC, Park SL, Dunlop JI, Unlu I, Kohl A, Higgs S, Blitvich BJ, Vanlandingham DL. Infection and transmission of Cache Valley virus by Aedes albopictus and Aedes aegypti mosquitoes. Parasit Vectors 2019; 12:384. [PMID: 31366369 PMCID: PMC6670168 DOI: 10.1186/s13071-019-3643-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/25/2019] [Indexed: 12/29/2022] Open
Abstract
Background Cache Valley virus (CVV; Bunyavirales, Peribunyaviridae) is a mosquito-borne arbovirus endemic in North America. Although severe diseases are mainly observed in pregnant ruminants, CVV has also been recognized as a zoonotic pathogen that can cause fatal encephalitis in humans. Human exposures to CVV and its related subtypes occur frequently under different ecological conditions in the New World; however, neurotropic disease is rarely reported. High prevalence rates of neutralizing antibodies have been detected among residents in several Latin American cities. However, zoophilic mosquito species involved in the enzootic transmission are unlikely to be responsible for the transmission leading to human exposures to CVV. Mechanisms that lead to frequent human exposures to CVV remain largely unknown. In this study, competence of two anthropophilic mosquitoes, Aedes albopictus and Ae. aegypti, for CVV was determined using per os infection to determine if these species could play a role in the transmission of CVV in the domestic and peridomestic settings of urban and suburban areas. Results Aedes albopictus were highly susceptible to CVV whereas infection of Ae. aegypti occurred at a significantly lower frequency. Whilst the dissemination rates of CVV were comparable in the two species, the relatively long period to attain maximal infectious titer in Ae. aegypti demonstrated a significant difference in the replication kinetics of CVV in these species. Detection of viral RNA in saliva suggests that both Ae. albopictus and Ae. aegypti are competent vectors for CVV under laboratory conditions. Conclusions Differential susceptibility to CVV was observed in Ae. albopictus and Ae. aegypti, reflecting their relatively different capacities for vectoring CVV in nature. The high susceptibility of Ae. albopictus to CVV observed in this study suggests its potential role as an efficient vector for CVV. Complemented by the reports of multiple CVV isolates derived from Ae. albopictus, our finding provides the basis for how the dispersal of Ae. albopictus across the New World may have a significant impact on the transmission and ecology of CVV.
Collapse
Affiliation(s)
- Victoria B Ayers
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA
| | - Yan-Jang S Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA. .,Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA.
| | - Amy C Lyons
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA
| | - So Lee Park
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA
| | - James I Dunlop
- Centre for Virus Research, MRC-University of Glasgow, Glasgow, G61 1QH, Scotland, UK
| | - Isik Unlu
- Broward County Mosquito Control, Pembroke Pines, FL, 33023, USA.,Center for Vector Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Alain Kohl
- Centre for Virus Research, MRC-University of Glasgow, Glasgow, G61 1QH, Scotland, UK
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Dana L Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA. .,Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
20
|
Janssen N, Werner D, Kampen H. Population genetics of the invasive Asian bush mosquito Aedes japonicus (Diptera, Culicidae) in Germany-a re-evaluation in a time period of separate populations merging. Parasitol Res 2019; 118:2475-2484. [PMID: 31270681 DOI: 10.1007/s00436-019-06376-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/09/2019] [Indexed: 01/08/2023]
Abstract
The Asian bush mosquito Aedes japonicus, endemic to East Asia, is one of the most expansive mosquito species in the world and has as yet established in 15 countries of Europe. Within Germany, the species has been spreading tremendously during the last years, and its four once geographically isolated populations were on the verge of merging in 2017. To reveal relationships and carry-over ways between the various populations, and thus, migration and displacement routes, the genetic make-up of Ae. japonicus from ten different locations throughout its German distribution area was investigated. For this purpose, a part of the mitochondrial DNA (nad4 gene) of collected specimens was sequenced and seven loci of short tandem repeats (microsatellites) were genotyped. When related to similar genetic studies carried out between 2012 and 2015, the results suggest that admixtures had since occurred, but no complete genetic mixture of populations had taken place. At the time of sampling for the present study, the western collection sites were still uniform in their genetic make-up; however, a carry-over of individuals from the southeastern to the northern and southwestern German populations was determined. Further introductions from abroad are possible. In summary, the genetic diversity of Ae. japonicus in Germany had grown considerably, thus increasing ecological variability and adaptability of the species. At this point (10 years after the first detection), it is not possible anymore to draw conclusions on the origins of the populations.
Collapse
Affiliation(s)
- Nele Janssen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493, Greifswald, Insel Riems, Germany.
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research, Muencheberg, Germany
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493, Greifswald, Insel Riems, Germany
| |
Collapse
|
21
|
Peach DAH, Almond M, Pol JC. Modeled distributions of Aedes japonicus japonicus and Aedes togoi (Diptera: Culicidae) in the United States, Canada, and northern Latin America. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2019; 44:119-129. [PMID: 31124225 DOI: 10.1111/jvec.12336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
The Asian bush mosquito, Aedes japonicus japonicus, and the coastal rock pool mosquito, Aedes togoi, are potential disease vectors present in both East Asia and North America. While their ranges are fairly well-documented in Asia, this is not the case for North America. We used maximum entropy modeling to estimate the potential distributions of Ae. togoi and Ae. j. japonicus in the United States, Canada, and northern Latin America under contemporary and future climatic conditions. Our results suggest suitable habitat that is not known to be occupied for Ae. j. japonicus in Atlantic and western Canada, Alaska, the western, midwestern, southern, and northeastern United States, and Latin America, and for Ae. togoi along the Pacific coast of North America and the Hawaiian Islands. Such areas are at risk of future invasion or may already contain undetected populations of these species. Our findings further predict that the limits of suitable habitat for each species will expand northward under future climatic conditions.
Collapse
Affiliation(s)
- Daniel A H Peach
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Max Almond
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Joshua C Pol
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
22
|
Byrd BD, Sither CB, Goggins JA, Kunze-Garcia S, Pesko KN, Bustamante DM, Sither JM, Vonesh JR, O'Meara GF. Aquatic thermal conditions predict the presence of native and invasive rock pool Aedes (Diptera: Culicidae) in the southern Appalachians, U.S.A. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2019; 44:30-39. [PMID: 31124245 DOI: 10.1111/jvec.12326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
The native rock pool mosquito, Aedes atropalpus (Coquillett), and the invasive Aedes japonicus (Theobald) have been found in many types of artificial and natural containers throughout North America. Little is known about the ecology of these two species in habitats where they co-occur, although multiple investigators have reported the decline of the native species concurrent with the introduction and spread of the invasive species. Here we report the results of riverine rock pool collections (n=503) in the southern Appalachian Mountains between 2009-2015. Surface water temperatures strongly predicted the presence of each species across a broad range of observed temperatures (11-39.8° C). For every unit of increase in temperature (°C) the odds of collecting Ae. atropalpus larvae increased by 0.34 while the odds of collecting Ae. japonicus larvae decreased by 0.28. No Ae. japonicus larvae or pupae were collected at temperatures greater than 36° C; however, immature Ae. atropalpus were found in rock pools with temperatures up to 39.8° C. In contrast, Ae. japonicus were highly abundant in cooler rock pools (<17° C) where Ae. atropalpus were infrequent or absent. Our findings suggest that in spite of the successful invasion by Ae. japonicus, Ae. atropalpus remains well established in the southern Appalachian Mountains. Given the strong correlation of temperature with the presence of the two species and the contrasting absence of each species at observed temperature extremes, the role of thermal conditions should be carefully explored in the context of other ecological factors likely influencing the range and abundance of these mosquitoes.
Collapse
Affiliation(s)
- Brian D Byrd
- Mosquito and Vector-borne Infectious Disease Laboratory, College of Health and Human Sciences, Western Carolina University, Cullowhee, NC 28723, U.S.A
| | - Charlie B Sither
- Mosquito and Vector-borne Infectious Disease Laboratory, College of Health and Human Sciences, Western Carolina University, Cullowhee, NC 28723, U.S.A
| | - J Alan Goggins
- Mosquito and Vector-borne Infectious Disease Laboratory, College of Health and Human Sciences, Western Carolina University, Cullowhee, NC 28723, U.S.A
| | - Samantha Kunze-Garcia
- Mosquito and Vector-borne Infectious Disease Laboratory, College of Health and Human Sciences, Western Carolina University, Cullowhee, NC 28723, U.S.A
| | - Kendra N Pesko
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, U.S.A
| | - Dulce M Bustamante
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, U.S.A
| | - John M Sither
- Mosquito and Vector-borne Infectious Disease Laboratory, College of Health and Human Sciences, Western Carolina University, Cullowhee, NC 28723, U.S.A
| | - James R Vonesh
- Center for Environmental Studies, Virginia Commonwealth University, Richmond, VA 23284, U.S.A
| | - George F O'Meara
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, U.S.A
| |
Collapse
|
23
|
Kerkow A, Wieland R, Koban MB, Hölker F, Jeschke JM, Werner D, Kampen H. What makes the Asian bush mosquito Aedes japonicus japonicus feel comfortable in Germany? A fuzzy modelling approach. Parasit Vectors 2019; 12:106. [PMID: 30871595 PMCID: PMC6417263 DOI: 10.1186/s13071-019-3368-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/05/2019] [Indexed: 11/18/2022] Open
Abstract
Background The Asian bush mosquito Aedes japonicus japonicus is an invasive species native to East Asia and has become established in North America and Europe. On both continents, the species has spread over wide areas. Since it is a potential vector of human and livestock pathogens, distribution and dissemination maps are urgently needed to implement targeted surveillance and control in case of disease outbreaks. Previous distribution models for Europe and Germany in particular focused on climate data. Until now, effects of other environmental variables such as land use and wind remained unconsidered. Results In order to better explain the distribution pattern of Ae. j. japonicus in Germany at a regional level, we have developed a nested approach that allows for the combination of data derived from (i) a climate model based on a machine-learning approach; (ii) a landscape model developed by means of ecological expert knowledge; and (iii) wind speed data. The approach is based on the fuzzy modelling technique that enables to precisely define the interactions between the three factors and additionally considers uncertainties with regard to the acceptance of certain environmental conditions. The model combines different spatial resolutions of data for Germany and achieves a much higher degree of accuracy than previous published distribution models. Our results reveal that a well-suited landscape structure can even facilitate the occurrence of Ae. j. japonicus in a climatically unsuitable region. Vice versa, unsuitable land use types such as agricultural landscapes and coniferous forests reduce the occurrence probability in climatically suitable regions. Conclusions The approach has significantly improved existing distribution models of Ae. j. japonicus for the area of Germany. We generated distribution maps with a resolution of 100 × 100 m that can serve as a basis for the design of control measures. All model input data and scripts are open source and freely available, so that the model can easily be applied to other countries or, more generally, to other species.
Collapse
Affiliation(s)
- Antje Kerkow
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany. .,Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195, Berlin, Germany.
| | - Ralf Wieland
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany
| | - Marcel B Koban
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany
| | - Franz Hölker
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195, Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany
| | - Jonathan M Jeschke
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195, Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 34, 14195, Berlin, Germany
| | - Doreen Werner
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374, Müncheberg, Germany
| | - Helge Kampen
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| |
Collapse
|
24
|
Camp JV, Kolodziejek J, Nowotny N. Targeted surveillance reveals native and invasive mosquito species infected with Usutu virus. Parasit Vectors 2019; 12:46. [PMID: 30665453 PMCID: PMC6341546 DOI: 10.1186/s13071-019-3316-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/14/2019] [Indexed: 11/11/2022] Open
Abstract
Background The emergence of Usutu virus (USUV) in Europe was first reported in Austria, 2001, and the virus has since spread to many European countries. Initial outbreaks are marked by a mass die-off of European blackbirds (Turdus merula) and other bird species. During outbreaks, the virus has been detected in pools of Culex pipiens mosquitoes, and these mosquitoes are probably the most important enzootic vectors. Beginning in 2017, a second wave of blackbird deaths associated with USUV was observed in eastern Austria; the affected areas expanded to the Austrian federal states of Styria in the south and to Upper Austria in the west in 2018. We sampled the potential vector population at selected sites of bird deaths in 2018 in order to identify infected mosquitoes. Results We detected USUV RNA in 16 out of 19 pools of Cx. pipiens/Cx. torrentium mosquitoes at sites of USUV-linked blackbird mortality in Linz and Graz, Austria. A disseminated virus infection was detected in individuals from selected pools, suggesting that Cx. pipiens form pipiens was the principal vector. In addition to a high rate of infected Cx. pipiens collected from Graz, a disseminated virus infection was detected in a pool of Aedes japonicus japonicus. Conclusions We show herein that naturally-infected mosquitoes at foci of USUV activity are primarily Cx. pipiens form pipiens. In addition, we report the first natural infection of Ae. j. japonicus with USUV, suggesting that it may be involved in the epizootic transmission of USUV in Europe. Ae. j. japonicus is an invasive mosquito whose range is expanding in Europe.
Collapse
Affiliation(s)
- Jeremy V Camp
- Viral Zoonoses, Emerging and Vector-borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria.
| | - Jolanta Kolodziejek
- Viral Zoonoses, Emerging and Vector-borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria.,Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
25
|
Richards T, Tucker BJ, Hassan H, Bron GM, Bartholomay L, Paskewitz S. First Detection of Aedes albopictus (Diptera: Culicidae) and Expansion of Aedes japonicus japonicus in Wisconsin, United States. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:291-296. [PMID: 30321385 DOI: 10.1093/jme/tjy184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 06/08/2023]
Abstract
The 2015-2016 epidemic of Zika virus in the Americas raised concerns about the range of Aedes albopictus (Skuse) in the United States. In response, the University of Wisconsin Medical Entomology Laboratory coordinated with the Wisconsin Department of Health Services in 2016 to conduct Aedes spp. surveillance and set up an oviposition trap (ovitrap) network operated by local public health partners across southern and western Wisconsin. During 2016, 916 ovitrap events were processed, but only Aedes triseriatus Say (Diptera: Culicidae) and Aedes japonicus japonicus (Theobald) were detected. In 2017, a focused surveillance approach was employed to detect Ae. albopictus near sites with tires stored outdoors. Using this targeted approach, Ae. albopictus was detected from ovitraps in two out of seven counties surveyed during June, July, and August. This is the first record of Ae. albopictus in Wisconsin.
Collapse
Affiliation(s)
| | | | - Hassan Hassan
- Department of Entomology, University of Wisconsin-Madison
| | | | - Lyric Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin-Madison
| | | |
Collapse
|
26
|
Dussault C, Nelder MP, Russell C, Johnson S, Vrbova L. Evaluating the impact of Aedes japonicus invasion on the mosquito community in the Greater Golden Horseshoe region (Ontario, Canada). PLoS One 2018; 13:e0208911. [PMID: 30543700 PMCID: PMC6292619 DOI: 10.1371/journal.pone.0208911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/26/2018] [Indexed: 12/04/2022] Open
Abstract
Background Aedes japonicus was first documented in Ontario, Canada, in 2001. The objective of this study was to determine the effect of Ae. japonicus establishment on the abundance of other mosquitoes in the Greater Golden Horseshoe (GGH) region of Ontario. Methods Adult mosquito data from the Ontario West Nile virus surveillance program were used. Descriptive analyses, linear trends and distribution maps of average trap count per month for six mosquito species of interest were produced. Multivariable negative binomial regression models were constructed to 1) test whether the invasion of Ae. japonicus affected the abundance of other mosquitoes by comparing the time period before Ae. japonicus was identified in an area (pre-detection), to after it was first identified (detection), and subsequently (establishment), and 2) identify the variables that explain the abundance of the various mosquito species. Results The monthly seasonal average (May–October) of Ae. japonicus per trap night increased from 2002 to 2016, peaking in September, when the average of most other mosquitoes decrease. There were increased numbers of Ae. triseriatus/hendersoni (Odds Ratio (OR): 1.40, 95% Confidence Interval (CI): 1.02–1.94) and decreased numbers of Coquillettidia perturbans (OR: 0.43, 95% CI: 0.26–0.73) in the detection period, compared to the pre-detection period. Additionally, there was a decrease in Cx. pipiens/restuans (OR: 0.87, 95% CI: 0.76–0.99) and Cq. perturbans (OR: 0.68, 95% CI: 0.49–0.94) in the establishment period, compared to the pre-detection period. None of the most parsimonious explanatory models included the period of the establishment of Ae. japonicus. Conclusions There is no evidence that the introduction of Ae. japonicus significantly reduced populations of Ae. triseriatus/hendersoni, Cx. pipiens/restuans or An. punctipennis in the GGH. While further research is needed to understand the impact of the Ae. japonicus invasion on other mosquito species, our work indicates that, on a regional scale, little impact has been noted.
Collapse
Affiliation(s)
- Camille Dussault
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Toronto, Ontario, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Mark P. Nelder
- Enteric, Zoonotic and Vector-borne Diseases, Communicable Diseases, Emergency Preparedness and Response, Public Health Ontario; Toronto, Ontario, Canada
| | - Curtis Russell
- Enteric, Zoonotic and Vector-borne Diseases, Communicable Diseases, Emergency Preparedness and Response, Public Health Ontario; Toronto, Ontario, Canada
| | - Steven Johnson
- Analytic Services, Informatics; Knowledge Services, Public Health Ontario, Toronto, Ontario, Canada
| | - Linda Vrbova
- Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
27
|
Jansen S, Heitmann A, Lühken R, Jöst H, Helms M, Vapalahti O, Schmidt-Chanasit J, Tannich E. Experimental transmission of Zika virus by Aedes japonicus japonicus from southwestern Germany. Emerg Microbes Infect 2018; 7:192. [PMID: 30482893 PMCID: PMC6258727 DOI: 10.1038/s41426-018-0195-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023]
Abstract
The invasive mosquito species Aedes japonicus japonicus (Ae. japonicus) is widely distributed in Central Europe and is a known vector of various arboviruses in the laboratory, including flaviviruses such as Japanese Encephalitis virus or West Nile virus. However, the vector competence of Ae. japonicus for the recently emerging Zika virus (ZIKV) has not been determined. Therefore, field-caught Ae. japonicus from Germany were orally infected with ZIKV and incubated at 21, 24, or 27 °C to evaluate the vector competence under climate conditions representative of the temperate regions (21 °C) in the species' main distribution area in Europe and of Mediterranean regions (27 °C). Aedes japonicus was susceptible to ZIKV at all temperatures, showing infection rates between 10.0% (21 °C) and 66.7% (27 °C). However, virus transmission was detected exclusively at 27 °C with a transmission rate of 14.3% and a transmission efficiency of 9.5%. Taking into account the present distribution of Ae. japonicus in the temperate regions of Central Europe, the risk of ZIKV transmission by the studied Ae. japonicus population in Central Europe has to be considered as low. Nevertheless, due to the species' vector competence for ZIKV and other mosquito-borne viruses, in combination with the possibility of further spread to Mediterranean regions, Ae. japonicus must be kept in mind as a potential vector of pathogens inside and outside of Europe.
Collapse
Affiliation(s)
- Stephanie Jansen
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner site Hamburg-Luebeck-Borstel-Riems, 20359, Hamburg, Germany
| | - Anna Heitmann
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany.
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Michelle Helms
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Olli Vapalahti
- University of Helsinki and Helsinki University Hospital, 00100, Helsinki, Finland
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner site Hamburg-Luebeck-Borstel-Riems, 20359, Hamburg, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner site Hamburg-Luebeck-Borstel-Riems, 20359, Hamburg, Germany
| |
Collapse
|
28
|
Goodman H, Egizi A, Fonseca DM, Leisnham PT, LaDeau SL. Primary blood-hosts of mosquitoes are influenced by social and ecological conditions in a complex urban landscape. Parasit Vectors 2018; 11:218. [PMID: 29631602 PMCID: PMC5891940 DOI: 10.1186/s13071-018-2779-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/06/2018] [Indexed: 11/10/2022] Open
Abstract
Background Temperate urban landscapes support persistent and growing populations of Culex and Aedes mosquito vectors. Large urban mosquito populations can represent a significant risk for transmission of emergent arboviral infection. However, even large mosquito populations are only a risk to the animals they bite. The purpose of this study is to identify and assess spatial patterns of host-use in a temperate urban landscape with heterogeneous socio-economic and ecological conditions. Results Mosquito blood meals were collected from neighborhoods categorized along a socio-economic gradient in Baltimore, MD, USA. Blood meal hosts were identified for two Aedes (Ae. albopictus and Ae. japonicus) and three Culex (Cx. pipiens, Cx. restuans and Cx. salinarius) species. The brown rat (Rattus norvegicus) was the most frequently detected host in both Aedes species and Cx. salinarius. Human biting was evident in Aedes and Culex species and the proportion of human blood meals from Ae. albopictus varied significantly with neighborhood socio-economic status. Aedes albopictus was most likely to feed on human blood hosts (at 50%) in residential blocks categorized as having income above the city median, although there were still more total human bites detected from lower income blocks where Ae. albopictus was more abundant. Birds were the most frequently detected Culex blood hosts but were absent from all Aedes sampled. Conclusions This study highlights fine-scale variation in host-use by medically important mosquito vectors and specifically investigates blood meal composition at spatial scales relevant to urban mosquito dispersal and human exposure. Further, the work emphasizes the importance of neighborhood economics and infrastructure management in shaping both the relative abundance of vectors and local blood feeding strategies. The invasive brown rat was an important blood source across vector species and neighborhoods in Baltimore. We show that social and economic conditions can be important predictors of transmission potential in urban landscapes and identify important questions about the role of rodents in supporting urban mosquito populations.
Collapse
Affiliation(s)
- Heather Goodman
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
| | - Andrea Egizi
- Monmouth County Division of Mosquito Control, Tick-Borne Disease Laboratory, New Brunswick, NJ, 08901, USA
| | - Dina M Fonseca
- Center for Vector Biology, Entomology Department, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Paul T Leisnham
- Department of Environmental Science and Technology, University of Maryland, College Park, MD, 20742, USA
| | | |
Collapse
|
29
|
Keller JI, Ballif BA, St. Clair RM, Vincent JJ, Monroy MC, Stevens L. Chagas disease vector blood meal sources identified by protein mass spectrometry. PLoS One 2017; 12:e0189647. [PMID: 29232402 PMCID: PMC5726658 DOI: 10.1371/journal.pone.0189647] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/29/2017] [Indexed: 02/08/2023] Open
Abstract
Chagas disease is a complex vector borne parasitic disease involving blood feeding Triatominae (Hemiptera: Reduviidae) insects, also known as kissing bugs, and the vertebrates they feed on. This disease has tremendous impacts on millions of people and is a global health problem. The etiological agent of Chagas disease, Trypanosoma cruzi (Kinetoplastea: Trypanosomatida: Trypanosomatidae), is deposited on the mammalian host in the insect’s feces during a blood meal, and enters the host’s blood stream through mucous membranes or a break in the skin. Identifying the blood meal sources of triatomine vectors is critical in understanding Chagas disease transmission dynamics, can lead to identification of other vertebrates important in the transmission cycle, and aids management decisions. The latter is particularly important as there is little in the way of effective therapeutics for Chagas disease. Several techniques, mostly DNA-based, are available for blood meal identification. However, further methods are needed, particularly when sample conditions lead to low-quality DNA or to assess the risk of human cross-contamination. We demonstrate a proteomics-based approach, using liquid chromatography tandem mass spectrometry (LC-MS/MS) to identify host-specific hemoglobin peptides for blood meal identification in mouse blood control samples and apply LC-MS/MS for the first time to Triatoma dimidiata insect vectors, tracing blood sources to species. In contrast to most proteins, hemoglobin, stabilized by iron, is incredibly stable even being preserved through geologic time. We compared blood stored with and without an anticoagulant and examined field-collected insect specimens stored in suboptimal conditions such as at room temperature for long periods of time. To our knowledge, this is the first study using LC-MS/MS on field-collected arthropod disease vectors to identify blood meal composition, and where blood meal identification was confirmed with more traditional DNA-based methods. We also demonstrate the potential of synthetic peptide standards to estimate relative amounts of hemoglobin acquired when insects feed on multiple blood sources. These LC-MS/MS methods can contribute to developing Ecohealth control strategies for Chagas disease transmission and can be applied to other arthropod disease vectors.
Collapse
Affiliation(s)
- Judith I. Keller
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| | - Bryan A. Ballif
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
- * E-mail: (LS); (BAB)
| | - Riley M. St. Clair
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| | - James J. Vincent
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| | - M. Carlota Monroy
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
- Laboratorio de Entomología Aplicada y Parasitología, Escuela de Biología, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, Ciudad de Guatemala, Guatemala
| | - Lori Stevens
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
- * E-mail: (LS); (BAB)
| |
Collapse
|
30
|
Riles MT, Smith JP, Burkett-Cadena N, Connelly CR, Morse GW, Byrd BD. First Record of Aedes japonicus In Florida. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2017; 33:340-344. [PMID: 29369021 DOI: 10.2987/17-6696.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The presence of Aedes j. japonicus in Florida is reported for the first time. Four adult females were collected by a Mosquito Magnet® X trap baited with pressurized CO2 in Okaloosa County, FL, in August 2012 and later identified as Ae. japonicus in 2014. Additional adult and larval specimens were collected during 2014-17 from Bay, Leon, Okaloosa, Santa Rosa, or Walton counties, Florida. Notes are provided on the location, general habitats, and mosquito associates that may be found with Ae. japonicus in northwestern Florida. The role of Ae. japonicus in arbovirus transmission within Florida is currently unknown and should be further explored.
Collapse
|
31
|
Bova J, Paulson S, Paulson G. Morphological Differentiation of the Eggs of North American Container-Inhabiting Aedes Mosquitoes. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2016; 32:244-246. [PMID: 27802396 DOI: 10.2987/15-6535.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Aedes aegypti , Ae. albopictus, Ae. japonicus japonicus, and Ae. triseriatus eggs are described with the aid of color images and images from scanning electron microscopy. All eggs were broadly cigar shaped with Ae. triseriatus and Ae. j japonicus eggs being dull or matte black, while Ae. albopictus and Ae. aegypti eggs were shiny jet black. Aedes triseriatus eggs were lighter in color and had a rougher appearance when compared to those of Ae. j. japonicus. Aedes albopictus and Ae. aegypti eggs can be differentiated by the distinct presence of micropylar collars in Ae. aegypti. Our results reduce the need to rear these mosquitoes, reducing labor and time while providing an accurate identification of the vector mosquitoes.
Collapse
|
32
|
Andreadis TG, Armstrong PM, Anderson JF, Main AJ. Spatial-temporal analysis of Cache Valley virus (Bunyaviridae: Orthobunyavirus) infection in anopheline and culicine mosquitoes (Diptera: Culicidae) in the northeastern United States, 1997-2012. Vector Borne Zoonotic Dis 2016; 14:763-73. [PMID: 25325321 DOI: 10.1089/vbz.2014.1669] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cache Valley virus (CVV) is a mosquito-borne bunyavirus (family Bunyaviridae, genus Orthobunyavirus) that is enzootic throughout much of North and Central America. White-tailed deer (Odocoileus virginianus) have been incriminated as important reservoir and amplification hosts. CVV has been found in a diverse array of mosquito species, but the principal vectors are unknown. A 16-year study was undertaken to identify the primary mosquito vectors in Connecticut, quantify seasonal prevalence rates of infection, and define the spatial geographic distribution of CVV in the state as a function of land use and white-tailed deer populations, which have increased substantially over this period. CVV was isolated from 16 mosquito species in seven genera, almost all of which were multivoltine and mammalophilic. Anopheles (An.) punctipennis was incriminated as the most consistent and likely vector in this region on the basis of yearly isolation frequencies and the spatial geographic distribution of infected mosquitoes. Other species exhibiting frequent temporal and moderate spatial geographic patterns of virus isolation within the state included Ochlerotatus (Oc.) trivittatus, Oc. canadensis, Aedes (Ae.) vexans, and Ae. cinereus. New isolation records for CVV were established for An. walkeri, Culiseta melanura, and Oc. cantator. Other species from which CVV was isolated included An. quadrimaculatus, Coquillettidia perturbans, Culex salinarius, Oc. japonicus, Oc. sollicitans, Oc. taeniorhynchus, Oc. triseriatus, and Psorophora ferox. Mosquitoes infected with CVV were equally distributed throughout urban, suburban, and rural locales, and infection rates were not directly associated with the localized abundance of white-tailed deer, possibly due to their saturation throughout the region. Virus activity in mosquitoes was episodic with no consistent pattern from year-to-year, and fluctuations in yearly seasonal infection rates did not appear to be directly impacted by overall mosquito abundance. Virus infection in mosquitoes occurred late in the season that mostly extended from mid-August through September, when adult mosquito populations were visibly declining and were comparatively low. Findings argue for a limited role for vertical transmission for the perpetuation of CVV as occurs with other related bunyaviruses.
Collapse
Affiliation(s)
- Theodore G Andreadis
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station , New Haven, Connecticut
| | | | | | | |
Collapse
|
33
|
Egizi A, Kiser J, Abadam C, Fonseca DM. The hitchhiker's guide to becoming invasive: exotic mosquitoes spread across a US state by human transport not autonomous flight. Mol Ecol 2016; 25:3033-47. [PMID: 27087539 DOI: 10.1111/mec.13653] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/10/2016] [Accepted: 03/31/2016] [Indexed: 02/03/2023]
Abstract
Not all exotic species establish and expand aggressively (i.e. become invasive). As potential vectors of disease agents, invasive mosquitoes can have considerable impact on public health, livestock and wildlife; therefore, understanding the species characteristics and ecological circumstances promoting their invasiveness is important. The mosquito Aedes japonicus japonicus, originally from north-east Asia, was introduced at least two separate times to the north-eastern USA, as surmised from the initial existence of two populations with distinct nuclear and mitochondrial genetic signatures that later intermixed. Since these original introductions in the late 1990s, Ae. j. japonicus has expanded across 31 US states, two Canadian provinces and five European countries. Although some of the expanded range was due to other independent introductions, to understand what drove the postintroduction expansion of Ae. j. japonicus within the north-eastern USA, we performed a high-resolution landscape genetic analysis of 461 specimens collected across Virginia, a state south of the original introductions. All specimens were genotyped at seven pre-optimized microsatellite loci, and a subsample was sequenced at one mitochondrial locus. We concluded that throughout Virginia this species has primarily expanded in association with humans: genetic distance and distance along roads remained correlated after controlling for geographic distance, and proximity to I-95, a major interstate highway, strongly predicted nuclear ancestry. In contrast, there was very limited evidence of diffusion even at distances potentially suitable for autonomous mosquito flight. This implies that its association with humans (rather than innate species characteristics) is the single most important determinant of invasiveness in this mosquito.
Collapse
Affiliation(s)
- Andrea Egizi
- Department of Entomology, Rutgers University, 180 Jones Ave, New Brunswick, NJ, 08901, USA.,Graduate Program in Ecology and Evolution, Rutgers University, New Brunswick, NJ, USA
| | - Jay Kiser
- City of Suffolk Mosquito Control, 866 Carolina Rd., Suffolk, VA, 23434, USA
| | - Charles Abadam
- City of Suffolk Mosquito Control, 866 Carolina Rd., Suffolk, VA, 23434, USA
| | - Dina M Fonseca
- Department of Entomology, Rutgers University, 180 Jones Ave, New Brunswick, NJ, 08901, USA.,Graduate Program in Ecology and Evolution, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
34
|
Schönenberger AC, Wagner S, Tuten HC, Schaffner F, Torgerson P, Furrer S, Mathis A, Silaghi C. Host preferences in host-seeking and blood-fed mosquitoes in Switzerland. MEDICAL AND VETERINARY ENTOMOLOGY 2016; 30:39-52. [PMID: 26685926 DOI: 10.1111/mve.12155] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/22/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
The avian zoonotic agent for West Nile virus (WNV) can cause neuroinvasive disease in horses and humans and is expanding its range in Europe. Analyses of the risk for transmission to these hosts in non-endemic areas are necessary. Host preferences of mosquitoes (Diptera: Culicidae), the main vectors of WNV, were determined in Switzerland using animal-baited trap (horse, chickens) experiments at a natural and a periurban site. This was undertaken on four occasions during May-September 2014. In addition, the hosts of 505 blood-fed mosquitoes collected in a zoo and in the field were determined. Mosquito data obtained in the animal bait experiments were corrected for host weight and body surface area and by Kleiber's scaling factor. Collections of 11-14 different mosquito species were achieved with these approaches. Statistically significant host preferences were identified in three species in both approaches. The other species showed opportunistic feeding behaviours to varying extents. Specifically, the invasive species Hulecoeteomyia japonica (= Aedes japonicus) was identified for the first time as feeding on avians in nature. Abundance data, spatiotemporal activity and laboratory vector competence for WNV suggested that, in addition to the main WNV vector Culex pipiens, H. japonica and Aedimorphus vexans (= Aedes vexans) are the most likely candidate bridge vectors for WNV transmission in Switzerland.
Collapse
Affiliation(s)
- A C Schönenberger
- Vector Entomology Unit, National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science (Vetsuisse), University of Zurich, Zurich, Switzerland
| | - S Wagner
- Vector Entomology Unit, National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science (Vetsuisse), University of Zurich, Zurich, Switzerland
| | - H C Tuten
- Vector Entomology Unit, National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science (Vetsuisse), University of Zurich, Zurich, Switzerland
| | - F Schaffner
- Vector Entomology Unit, National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science (Vetsuisse), University of Zurich, Zurich, Switzerland
| | - P Torgerson
- Section of Epidemiology, Vetsuisse, University of Zurich, Zurich, Switzerland
| | - S Furrer
- Zürich Zoologischer Garten (Zoo Zürich), Zurich, Switzerland
| | - A Mathis
- Vector Entomology Unit, National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science (Vetsuisse), University of Zurich, Zurich, Switzerland
| | - C Silaghi
- Vector Entomology Unit, National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science (Vetsuisse), University of Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Balestrino F, Schaffner F, Forgia DL, Paslaru AI, Torgerson PR, Mathis A, Veronesi E. Field evaluation of baited traps for surveillance of Aedes japonicus japonicus in Switzerland. MEDICAL AND VETERINARY ENTOMOLOGY 2016; 30:64-72. [PMID: 26685872 DOI: 10.1111/mve.12152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/04/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
The efficacy of Centers for Disease Control (CDC) miniature light traps and ovitraps was tested in the outskirts of the city of Zurich in Switzerland for their use in the surveillance of Aedes (Hulecoeteomyia) japonicus japonicus (Theobald) (Diptera: Culicidae), the invasive Asian bush mosquito. Sets of single CDC traps were run overnight (n = 18) in three different environments (forest, suburban and urban) in 3 × 3 Latin square experimental designs. Traps were baited with: (a) carbon dioxide (CO2 ); (b) CO2 plus light, or (c) CO2 plus lure blend [Combi FRC 3003 (iGu® )]. At the same locations, mosquito eggs were collected weekly using standard ovitraps baited with different infusions (oak, hay or tap water) and equipped with different oviposition substrates (a block of extruded polystyrene, a germination paper strip or a wooden stick). Data were analysed using Poisson and negative binomial general linear models. The use of light (P < 0.001) or lure (P < 0.001) significantly increased the attractiveness of CDC traps baited with CO2 . Oak and hay infusions did not increase the attractiveness of ovitraps compared with standing tap water (P > 0.05), and extruded polystyrene blocks were preferred as an oviposition substrate over wooden sticks (P < 0.05) and seed germination paper (P < 0.05). Carbon dioxide-baited CDC miniature light traps complemented with light or iGu® lure and ovitraps containing standing tap water and polystyrene oviposition blocks can be considered as efficient and simple tools for use in Ae. j. japonicus surveillance programmes.
Collapse
Affiliation(s)
- F Balestrino
- Swiss National Centre for Vector Entomology, Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - F Schaffner
- Swiss National Centre for Vector Entomology, Institute of Parasitology, University of Zurich, Zurich, Switzerland
- Avia-GIS, Zoersel, Belgium
| | - D L Forgia
- Swiss National Centre for Vector Entomology, Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - A I Paslaru
- Public Health Department, University of Agricultural Sciences and Veterinary Medicine, Iasi, Romania
| | - P R Torgerson
- Section of Epidemiology, Faculty of Veterinary Science (Vetsuisse), University of Zurich, Zurich, Switzerland
| | - A Mathis
- Swiss National Centre for Vector Entomology, Institute of Parasitology, University of Zurich, Zurich, Switzerland
| | - E Veronesi
- Swiss National Centre for Vector Entomology, Institute of Parasitology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Harris MC, Dotseth EJ, Jackson BT, Zink SD, Marek PE, Kramer LD, Paulson SL, Hawley DM. La Crosse Virus in Aedes japonicus japonicus mosquitoes in the Appalachian Region, United States. Emerg Infect Dis 2015; 21:646-9. [PMID: 25811131 PMCID: PMC4378473 DOI: 10.3201/eid2104.140734] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
La Crosse virus (LACV), a leading cause of arboviral encephalitis in children in the United States, is emerging in Appalachia. For local arboviral surveillance, mosquitoes were tested. LACV RNA was detected and isolated from Aedes japonicus mosquitoes. These invasive mosquitoes may significantly affect LACV range expansion and dynamics.
Collapse
|
37
|
Medlock JM, Hansford KM, Versteirt V, Cull B, Kampen H, Fontenille D, Hendrickx G, Zeller H, Van Bortel W, Schaffner F. An entomological review of invasive mosquitoes in Europe. BULLETIN OF ENTOMOLOGICAL RESEARCH 2015; 105:637-63. [PMID: 25804287 DOI: 10.1017/s0007485315000103] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Among the invasive mosquitoes registered all over the world, Aedes species are particularly frequent and important. As several of them are potential vectors of disease, they present significant health concerns for 21st century Europe. Five species have established in mainland Europe, with two (Aedes albopictus and Aedes japonicus) becoming widespread and two (Ae. albopictus and Aedes aegypti) implicated in disease transmission to humans in Europe. The routes of importation and spread are often enigmatic, the ability to adapt to local environments and climates are rapid, and the biting nuisance and vector potential are both an ecomonic and public health concern. Europeans are used to cases of dengue and chikungunya in travellers returning from the tropics, but the threat to health and tourism in mainland Europe is substantive. Coupled to that are the emerging issues in the European overseas territorities and this paper is the first to consider the impacts in the remoter outposts of Europe. If entomologists and public health authorities are to address the spread of these mosquitoes and mitigate their health risks they must first be prepared to share information to better understand their biology and ecology, and share data on their distribution and control successes. This paper focusses in greater detail on the entomological and ecological aspects of these mosquitoes to assist with the risk assessment process, bringing together a large amount of information gathered through the ECDC VBORNET project.
Collapse
Affiliation(s)
- J M Medlock
- Medical Entomology Group,MRA/BS,Emergency Response Department,Public Health England,Porton Down,Salisbury,UK
| | - K M Hansford
- Medical Entomology Group,MRA/BS,Emergency Response Department,Public Health England,Porton Down,Salisbury,UK
| | - V Versteirt
- Avia-GIS,Risschotlei 33,2980 Zoersel,Belgium
| | - B Cull
- Medical Entomology Group,MRA/BS,Emergency Response Department,Public Health England,Porton Down,Salisbury,UK
| | - H Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health,Südufer 10,17493 Greifswald - Insel Riems,Germany
| | - D Fontenille
- Centre National d'Expertise sur les Vecteurs (CNEV), Institut de recherche pour le développement (IRD), UMR MIVEGEC,BP 64501,34394 Montpellier,France
| | - G Hendrickx
- Avia-GIS,Risschotlei 33,2980 Zoersel,Belgium
| | - H Zeller
- Emerging and Vector-borne Diseases, European Centre for Disease Prevention and Control,Tomtebodavägen 11A,17183 Stockholm,Sweden
| | - W Van Bortel
- Emerging and Vector-borne Diseases, European Centre for Disease Prevention and Control,Tomtebodavägen 11A,17183 Stockholm,Sweden
| | - F Schaffner
- Avia-GIS,Risschotlei 33,2980 Zoersel,Belgium
| |
Collapse
|
38
|
Egizi A, Fefferman NH, Fonseca DM. Evidence that implicit assumptions of 'no evolution' of disease vectors in changing environments can be violated on a rapid timescale. Philos Trans R Soc Lond B Biol Sci 2015; 370:rstb.2014.0136. [PMID: 25688024 DOI: 10.1098/rstb.2014.0136] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Projected impacts of climate change on vector-borne disease dynamics must consider many variables relevant to hosts, vectors and pathogens, including how altered environmental characteristics might affect the spatial distributions of vector species. However, many predictive models for vector distributions consider their habitat requirements to be fixed over relevant time-scales, when they may actually be capable of rapid evolutionary change and even adaptation. We examine the genetic signature of a spatial expansion by an invasive vector into locations with novel temperature conditions compared to its native range as a proxy for how existing vector populations may respond to temporally changing habitat. Specifically, we compare invasions into different climate ranges and characterize the importance of selection from the invaded habitat. We demonstrate that vector species can exhibit evolutionary responses (altered allelic frequencies) to a temperature gradient in as little as 7-10 years even in the presence of high gene flow, and further, that this response varies depending on the strength of selection. We interpret these findings in the context of climate change predictions for vector populations and emphasize the importance of incorporating vector evolution into models of future vector-borne disease dynamics.
Collapse
Affiliation(s)
- Andrea Egizi
- Department of Entomology, Center for Vector Biology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ 08901, USA Graduate Program in Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Nina H Fefferman
- Graduate Program in Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Dina M Fonseca
- Department of Entomology, Center for Vector Biology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ 08901, USA Graduate Program in Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
39
|
Westby KM, Fritzen C, Paulsen D, Poindexter S, Moncayo AC. La Crosse Encephalitis Virus Infection in Field-Collected Aedes albopictus, Aedes japonicus, and Aedes triseriatus in Tennessee. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2015; 31:233-241. [PMID: 26375904 DOI: 10.2987/moco-31-03-233-241.1] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
La Crosse virus (LACV) is a mosquito-borne virus and a major cause of pediatric encephalitis in the USA. La Crosse virus emerged in Tennessee and other states in the Appalachian region in 1997. We investigated LACV infection rates and seasonal abundances of the native mosquito vector, Aedes triseriatus, and 2 recently introduced mosquito species, Ae. albopictus and Ae. japonicus, in an emerging disease focus in Tennessee. Mosquitoes were collected using multiple trapping methods specific for Aedes mosquitoes at recent human case sites. Mosquito pools were tested via reverse transcriptase-polymerase chain reaction (RT-PCR) of the S segment to detect multiple Bunyamwera and California serogroup viruses, including LACV, as well as real-time RT-PCR of the M segment. A total of 54 mosquito pools were positive, including wild-caught adult females and laboratory-reared adults, demonstrating transovarial transmission in all 3 species. Maximum likelihood estimates (per 1,000 mosquitoes) were 2.72 for Ae. triseriatus, 3.01 for Ae. albopictus, and 0.63 for Ae. japonicus. We conclude that Ae. triseriatus and Ae. albopictus are important LACV vectors and that Ae. japonicus also may be involved in virus maintenance and transmission.
Collapse
Affiliation(s)
- Katie M Westby
- 1 Vector-Borne Diseases Section, Tennessee Department of Health, 630 Hart Lane, Nashville, TN 37216
- 3 Present address, Tyson Research Center, Washington University in St. Louis, 6750 Tyson Valley Road, Eureka, MO 63025
| | - Charissa Fritzen
- 1 Vector-Borne Diseases Section, Tennessee Department of Health, 630 Hart Lane, Nashville, TN 37216
| | - Dave Paulsen
- 2 Department of Entomology and Plant Pathology, University of Tennessee, 2505 E.J. Chapman Drive, 370 Plant Biotechnology Building, Knoxville, TN 37996
| | - Stephanie Poindexter
- 1 Vector-Borne Diseases Section, Tennessee Department of Health, 630 Hart Lane, Nashville, TN 37216
| | - Abelardo C Moncayo
- 1 Vector-Borne Diseases Section, Tennessee Department of Health, 630 Hart Lane, Nashville, TN 37216
| |
Collapse
|
40
|
Gaudreault NN, Indran SV, Bryant PK, Richt JA, Wilson WC. Comparison of Rift Valley fever virus replication in North American livestock and wildlife cell lines. Front Microbiol 2015; 6:664. [PMID: 26175725 PMCID: PMC4485352 DOI: 10.3389/fmicb.2015.00664] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/17/2015] [Indexed: 01/26/2023] Open
Abstract
Rift Valley fever virus (RVFV) causes disease outbreaks across Africa and the Arabian Peninsula, resulting in high morbidity and mortality among young domestic livestock, frequent abortions in pregnant animals, and potentially severe or fatal disease in humans. The possibility of RVFV spreading to the United States or other countries worldwide is of significant concern to animal and public health, livestock production, and trade. The mechanism for persistence of RVFV during inter-epidemic periods may be through mosquito transovarial transmission and/or by means of a wildlife reservoir. Field investigations in endemic areas and previous in vivo studies have demonstrated that RVFV can infect a wide range of animals, including indigenous wild ruminants of Africa. Yet no predominant wildlife reservoir has been identified, and gaps in our knowledge of RVFV permissive hosts still remain. In North America, domestic goats, sheep, and cattle are susceptible hosts for RVFV and several competent vectors exist. Wild ruminants such as deer might serve as a virus reservoir and given their abundance, wide distribution, and overlap with livestock farms and human populated areas could represent an important risk factor. The objective of this study was to assess a variety of cell lines derived from North American livestock and wildlife for susceptibility and permissiveness to RVFV. Results of this study suggest that RVFV could potentially replicate in native deer species such as white-tailed deer, and possibly a wide range of non-ruminant animals. This work serves to guide and support future animal model studies and risk model assessment regarding this high-consequence zoonotic pathogen.
Collapse
Affiliation(s)
- Natasha N Gaudreault
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture Manhattan, KS, USA
| | - Sabarish V Indran
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University Manhattan, KS, USA
| | - P K Bryant
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture Manhattan, KS, USA
| | - Juergen A Richt
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University Manhattan, KS, USA
| | - William C Wilson
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture Manhattan, KS, USA
| |
Collapse
|
41
|
Zielke DE, Ibáñez-Justicia A, Kalan K, Merdić E, Kampen H, Werner D. Recently discovered Aedes japonicus japonicus (Diptera: Culicidae) populations in The Netherlands and northern Germany resulted from a new introduction event and from a split from an existing population. Parasit Vectors 2015; 8:40. [PMID: 25608763 PMCID: PMC4311435 DOI: 10.1186/s13071-015-0648-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/08/2015] [Indexed: 11/21/2022] Open
Abstract
Background Originally native to East Asia, Aedes japonicus japonicus, a potential vector of several arboviruses, has become one of the most invasive mosquito species in the world. After having established in the USA, it is now spreading in Europe, with new populations emerging. In contrast to the USA, the introduction pathways and modes of dispersal in Europe are largely obscure. Methods To find out if two recently detected populations of Ae. j. japonicus in The Netherlands and northern Germany go back to new importations or to movements within Europe, the genetic makeup of mosquito specimens from all known European populations was compared. For this purpose, seven microsatellite loci from a representative number of mosquito specimens were genotyped and part of their mitochondrial nad4 gene sequenced. Results A novel nad4 haplotype found in the newly discovered Dutch population of Ae. j. japonicus suggests that this population is not closely related to the other European populations but has emanated from a further introduction event. With five nad4 haplotypes, the Dutch population also shows a very high genetic diversity indicating that either the founder population was very large or multiple introductions took place. By contrast, the recently detected North German population could be clearly assigned to one of the two previously determined European Ae. j. japonicus microsatellite genotypes and shows nad4 haplotypes that are known from West Germany. Conclusion As the European populations of Ae. j. japonicus are geographically separated but genetically mixed, their establishment must be attributed to passive transportation. In addition to intercontinental shipment, it can be assumed that human activities are also responsible for medium- and short-distance overland spread. A better understanding of the processes underlying the introduction and spread of this invasive species will help to increase public awareness of the human-mediated displacement of mosquitoes and to find strategies to avoid it.
Collapse
Affiliation(s)
- Dorothee E Zielke
- Institute for Land Use Systems, Leibniz-Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374, Muencheberg, Germany.
| | - Adolfo Ibáñez-Justicia
- National Centre for Monitoring of Vectors, Netherlands Food and Consumer Product Safety Authority, Ministry of Economic Affairs Wageningen, Wageningen, The Netherlands.
| | | | | | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Insel Riems, Greifswald, Germany.
| | - Doreen Werner
- Institute for Land Use Systems, Leibniz-Centre for Agricultural Landscape Research, Eberswalder Straße 84, 15374, Muencheberg, Germany.
| |
Collapse
|
42
|
Krebs T, Bindler P, L'Ambert G, Toty C, Perrin Y, Jourdain F. First establishment of Aedes japonicus japonicus (Theobald, 1901) (Diptera: Culicidae) in France in 2013 and its impact on public health. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2014; 39:437-440. [PMID: 25424273 DOI: 10.1111/jvec.12119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Thomas Krebs
- Brigade Verte du Haut-Rhin, Service de démoustication, 68360 Soultz, France
| | | | | | | | | | | |
Collapse
|
43
|
Zielke DE, Werner D, Schaffner F, Kampen H, Fonseca DM. Unexpected patterns of admixture in German populations of Aedes japonicus japonicus (Diptera: Culicidae) underscore the importance of human intervention. PLoS One 2014; 9:e99093. [PMID: 24992470 PMCID: PMC4081119 DOI: 10.1371/journal.pone.0099093] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 05/11/2014] [Indexed: 11/19/2022] Open
Abstract
The mosquito Aedes japonicus japonicus, originally restricted to temperate East Asia, is now widespread in North America and more recently has become established in Europe. To ascertain the putative number of separate introductions to Europe and examine patterns of expansion we analyzed the genetic makeup of Ae. j. japonicus populations from five cemeteries in North Rhine-Westphalia and Rhineland-Palatinate, two western German federal states, as well as of specimens from populations in Belgium, Switzerland, and Austria/Slovenia. To do so, we genotyped individual specimens at seven pre-existing polymorphic microsatellite loci and sequenced part of the nad4 mitochondrial locus. We found evidence of two different genotypic signatures associated with different nad4 mitochondrial haplotypes, indicating at least two genetically differentiated populations of Ae. j. japonicus in Europe (i.e. two distinct genotypes). Belgian, Swiss, and Austrian/Slovenian populations all share the same genotypic signature although they have become differentiated since isolation. Contrary to expectations, the German Ae. j. japonicus are not closely related to those in Belgium which are geographically nearest but are also highly inbred. German populations have a unique genotype but also evidence of mixing between the two genotypes. Also unexpectedly, the populations closest to the center of the German infestation had the highest levels of admixture indicating that separate introductions did not expand and merge but instead their expansion was driven by punctuated human-mediated transport. Critically, the resulting admixed populations have higher genetic diversity and appear invasive as indicated by their increased abundance and recent spread across western Germany.
Collapse
Affiliation(s)
- Dorothee E. Zielke
- Leibniz-Centre for Agricultural Landscape Research, Müncheberg, Germany
- * E-mail:
| | - Doreen Werner
- Leibniz-Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Francis Schaffner
- National Centre for Vector Entomology, Institute of Parasitology, University of Zurich, Zurich, Switzerland
- Avia-GIS, Zoersel, Belgium
| | - Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald – Insel Riems, Germany
| | - Dina M. Fonseca
- Center for Vector Biology and Department of Entomology, Rutgers University, New Brunswick, New Jersey, United States of America
| |
Collapse
|
44
|
Damiens D, Ayrinhac A, Van Bortel W, Versteirt V, Dekoninck W, Hance T. Invasive process and repeated cross-sectional surveys of the mosquito Aedes japonicus japonicus establishment in Belgium. PLoS One 2014; 9:e89358. [PMID: 24694576 PMCID: PMC3973670 DOI: 10.1371/journal.pone.0089358] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 01/21/2014] [Indexed: 11/18/2022] Open
Abstract
When accidentally introduced in a new location, a species does not necessarily readily become invasive, but it usually needs several years to adapt to its new environment. In 2009, a national mosquito survey (MODIRISK) reported the introduction and possible establishment of an invasive mosquito species, Aedes j. japonicus, in Belgium. First collected in 2002 in the village of Natoye from a second-hand tire company, then sampled in 2003 and 2004, the presence of adults and larvae was confirmed in 2007 and 2008. A repeated cross-sectional survey of Ae. j. japonicus was then conducted in 2009 in Natoye to study the phenology of the species on two different sites using three kinds of traps: Mosquito Magnet Liberty Plus traps, BG sentinel traps and CDC Gravid traps. An analysis of the blood meals was done on females to assess the epidemiological risks. Five species of mosquitos were caught using the different kind of traps: Culex pipiens, Cx. torrentium, Anopheles claviger, Aedes geniculatus and Ae. j. japonicus, Cx. pipiens being the most abundant. The CDC gravid traps gave the best results. Surprisingly Ae. j. japonicus was only found on one site although both sites seem similar and are only distant of 2.5 km. Its population peak was reached in July. Most of the engorged mosquitoes tested acquired blood meals from humans (60%). No avian blood meals were unambiguously identified. Larvae were also collected, mostly from tires but also from buckets and from one tree hole. Only one larva was found in a puddle at 100 m of the tire storage. A first local treatment of Ae. j. japonicus larvae population was done in May 2012 using Bacillus thuringiensis subsp. israelensis (Bti) and was followed by preventive actions and public information. A monitoring is also presently implemented.
Collapse
Affiliation(s)
- David Damiens
- Université catholique de Louvain, Earth and Life Institute, Biodiversity Research Centre, Louvain-la-Neuve, Belgium
- Insect Pest Control Laboratory, International Atomic Energy Agency, Vienna, Austria
| | - Audrey Ayrinhac
- Université catholique de Louvain, Earth and Life Institute, Biodiversity Research Centre, Louvain-la-Neuve, Belgium
| | - Wim Van Bortel
- Institute of Tropical Medicine, Dept. Parasitology, Antwerpen, Belgium
| | - Veerle Versteirt
- Institute of Tropical Medicine, Dept. Parasitology, Antwerpen, Belgium
- Avia-GIS, Precision Pest Management Unit, Zoersel, Belgium
| | - Wouter Dekoninck
- Royal Belgian Institute of Natural Sciences, KBIN-IRSNB, Brussels, Belgium
| | - Thierry Hance
- Université catholique de Louvain, Earth and Life Institute, Biodiversity Research Centre, Louvain-la-Neuve, Belgium
- * E-mail:
| |
Collapse
|
45
|
Kampen H, Werner D. Out of the bush: the Asian bush mosquito Aedes japonicus japonicus (Theobald, 1901) (Diptera, Culicidae) becomes invasive. Parasit Vectors 2014; 7:59. [PMID: 24495418 PMCID: PMC3917540 DOI: 10.1186/1756-3305-7-59] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/24/2014] [Indexed: 11/24/2022] Open
Abstract
The Asian bush or rock pool mosquito Aedes japonicus japonicus is one of the most expansive culicid species of the world. Being native to East Asia, this species was detected out of its original distribution range for the first time in the early 1990s in New Zealand where it could not establish, though. In 1998, established populations were reported from the eastern US, most likely as a result of introductions several years earlier. After a massive spread the mosquito is now widely distributed in eastern North America including Canada and two US states on the western coast. In the year 2000, it was demonstrated for the first time in Europe, continental France, but could be eliminated. A population that had appeared in Belgium in 2002 was not controlled until 2012 as it did not propagate. In 2008, immature developmental stages were discovered in a large area in northern Switzerland and bordering parts of Germany. Subsequent studies in Germany showed a wide distribution and several populations of the mosquito in various federal states. Also in 2011, the species was found in southeastern Austria (Styria) and neighbouring Slovenia. In 2013, a population was detected in the Central Netherlands, specimens were collected in southern Alsace, France, and the complete northeastern part of Slovenia was found colonized, with specimens also present across borders in adjacent Croatia. Apparently, at the end of 2013 a total of six populations occurred in Europe although it is not clear whether all of them are completely isolated. Similarly, it is not known whether these populations go back to the same number of introductions. While entry ports and long-distance continental migration routes are also obscure, it is likely that the international used tyre trade is the most important mode of intercontinental transportation of the mosquito. Aedes j. japonicus does not only display an aggressive biting behaviour but is suspected to be a vector of various disease agents and to displace indigenous culicid species. Therefore, Aedes j. japonicus might both cause public health problems in the future and have a significant impact on the biodiversity of the invaded territories.
Collapse
Affiliation(s)
- Helge Kampen
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald - Insel Riems 17493, Germany.
| | | |
Collapse
|
46
|
Kaufman MG, Fonseca DM. Invasion biology of Aedes japonicus japonicus (Diptera: Culicidae). ANNUAL REVIEW OF ENTOMOLOGY 2014; 59:31-49. [PMID: 24397520 PMCID: PMC4106299 DOI: 10.1146/annurev-ento-011613-162012] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Aedes japonicus japonicus (Theobald) (Diptera: Culicidae) has recently expanded beyond its native range of Japan and Korea into large parts of North America and Central Europe. Population genetic studies begun immediately after the species was detected in North America revealed genetically distinct introductions that subsequently merged, likely contributing to the successful expansion. Interactions, particularly in the larval stage, with other known disease vectors give this invasive subspecies the potential to influence local disease dynamics. Its successful invasion likely does not involve superior direct competitive abilities, but it is associated with the use of diverse larval habitats and a cold tolerance that allows an expanded seasonal activity range in temperate climates. We predict a continued but slower expansion of Ae. j. japonicus in North America and a continued rapid expansion into other areas as this mosquito will eventually be considered a permanent resident of much of North America, Europe, Asia, and parts of Hawaii.
Collapse
Affiliation(s)
- Michael G. Kaufman
- Department of Entomology, Michigan State University, East Lansing, Michigan 48824
| | - Dina M. Fonseca
- Center for Vector Biology, Rutgers University, New Brunswick, New Jersey 08901
| |
Collapse
|
47
|
Farajollahi A, Price DC. A rapid identification guide for larvae of the most common North American container-inhabiting Aedes species of medical importance. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2013; 29:203-221. [PMID: 24199495 DOI: 10.2987/11-6198r.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mosquitoes are the single most important taxon of arthropods affecting human health globally, and container-inhabiting Aedes are important vectors of arthropod-borne viruses. Desiccation-resistant eggs of container Aedes have facilitated their invasion into new areas, primarily through transportation via the international trade in used tires. The public health threat from an introduced exotic species into a new area is imminent, and proactive measures are needed to identify significant vectors before onset of epidemic disease. In many cases, vector control is the only means to combat exotic diseases. Accurate identification of vectors is crucial to initiate aggressive control measures; however, many vector control personnel are not properly trained to identify introduced species in new geographic areas. We provide updated geographical ranges and a rapid identification guide with detailed larval photographs of the most common container-inhabiting Aedes in North America. Our key includes 5 native species (Aedes atropalpus, Ae. epactius, Ae. hendersoni, Ae. sierrensis, Ae. triseriatus) and 3 invasive species (Ae. aegypti, Ae. albopictus, Ae. japonicus).
Collapse
Affiliation(s)
- Ary Farajollahi
- Center for Vector Biology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
48
|
Andreadis TG, Takaoka H, Otsuka Y, Vossbrinck CR. Morphological and molecular characterization of a microsporidian parasite, Takaokaspora nipponicus n. gen., n. sp. from the invasive rock pool mosquito, Ochlerotatus japonicus japonicus. J Invertebr Pathol 2013; 114:161-72. [PMID: 23932975 DOI: 10.1016/j.jip.2013.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/12/2013] [Accepted: 07/26/2013] [Indexed: 11/25/2022]
Abstract
A new genus and species of Microsporidia, Takaokaspora nipponicus n. gen., n. sp. is described from Ochlerotatus japonicus japonicus (Theobald) and Ochlerotatus hatorii (Yamada) based on light microscope and ultrastructural morphology, developmental features, transmission cycles and comparative sequence analyses of the small subunit ribosomal DNA (SSU rDNA). The microsporidium is both vertically and horizontally transmitted, exhibits dimorphic development alternating between diplokaryotic and monokaryotic stages and produces two morphologically distinct spores, one in larvae and another in adult females. Horizontal transmission of infection to larval mosquitoes occurs via direct oral ingestion of uninucleate spores that are produced in vertically-infected larval hosts. Development in horizontally-infected hosts is diplokaryotic following karyokinesis of uninucleate schizonts and binary fission to produce small (4.3μm × 2.0μm) membrane free, ovoid, binucleate spores that are confined to adult female reproductive tissues (ovariole sheath and oviducts). Vertical transmission of the microsporidium from adult females to larval progeny takes place via surface contamination of the egg (transovum). Microsporidian development in vertically-infected larvae is haplophasic with unpaired nuclei throughout, producing rosette-shaped sporogonial plasmodia contained within a thin non-persistent sporophorous vesicle and culminating in the formation of membrane free, uninucleate, conical spores (7.0μm×2.8μm). Development is confined to host fat body tissue which appears as swollen white masses in the thorax and selected segments of the abdomen causing larvae to appear abnormally distorted and results in death during the third and fourth instar stages. The SSU rDNA sequences obtained from the two morphologically identical microsporidia isolated from Oc. j. japonicus and Oc. hatorii were nearly identical and unique when compared with GenBank entries of all other mosquito-parasitic species. Phylogenetic trees constructed by Maximum Parsimony, Maximum Likelihood and bootstrap analyses using the Neighbor Joining search parameter yielded similar typologies. In each case, the novel microsporidium was the sister group to the clade containing Parathelohania species from Anopheles mosquitoes and the monotypic Novothelohania ovalae from Ochlerotatus caspius showing approximately 10-13% sequence divergence to those two genera providing strong support for establishment as a separate genus.
Collapse
Affiliation(s)
- Theodore G Andreadis
- Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511, USA.
| | | | | | | |
Collapse
|
49
|
Turell MJ, Byrd BD, Harrison BA. Potential for populations of Aedes j. japonicus to transmit Rift Valley fever virus in the USA. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2013; 29:133-137. [PMID: 23923327 DOI: 10.2987/12-6316r.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Aedes japonicus japonicus was introduced into the northeastern USA in 1998 and has since spread to more than 25 states. Because this species has been shown to be a competent laboratory vector of several viruses, readily feeds on large mammals, and has become a pest in several areas, there is concern that it might serve as a vector of Rift Valley fever virus (RVFV) should that virus be introduced into North America. Infection with RVFV causes mortality in > 90% of young domestic ungulates (e.g., calves, kids, and lambs), as well as causing a febrile illness and occasional deaths in humans. Therefore, we evaluated Ae. j. japonicus captured in North Carolina and in Maryland for their ability to serve as potential vectors for RVFV. After feeding on infected adult hamsters, these mosquitoes were tested for infection, dissemination, and the ability to transmit RVFV after incubation at 26 degrees C for 7-28 days. Both the Maryland and North Carolina populations of Ae. j. japonicus were highly efficient laboratory vectors of RVFV, with infection rates > 90% and dissemination rates > 84% for those mosquitoes that fed on hamsters with viremias > or = 10(8.5) plaque-forming units/ml. Thus, Ae. j. japonicus should be targeted for immediate control should RVFV be introduced into an area where this mosquito is now present.
Collapse
Affiliation(s)
- M J Turell
- Virology Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702-5011, USA
| | | | | |
Collapse
|
50
|
Lorenz AR, Walker ED, Kaufman MG. Does autocthonous primary production influence oviposition by Aedes japonicus japonicus (Diptera: Culicidae) in container habitats? JOURNAL OF MEDICAL ENTOMOLOGY 2013; 50:69-78. [PMID: 23427654 PMCID: PMC4106285 DOI: 10.1603/me12083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Aedes (Finlaya) japonicus japonicus (Theobald) (Diptera: Culicidae) is recently invasive in North America and has expanded its range rapidly since 1998. Throughout its native and expanded range, Ae. j. japonicus larvae are commonly observed in many types of natural and artificial water-filled containers that vary in organic matter content and exposure to sunlight. Larvae are most often found in containers with decaying leaf material or algae, and we postulated that the added autocthonous primary production from algae could be both an important food source for larvae and an influential oviposition attractant to adult Ae. j. japonicus. We tested this hypothesis by placing plastic containers with varied levels of shading to manipulate algal density in the field, and then monitored oviposition by natural populations of Ae. j. japonicus. Over 99% of larvae hatching from eggs laid on the walls of our containers were Ae. j. japonicus, indicating that this species is a dominant colonizer of artificial containers in the study areas. Although full shading treatments effectively reduced algal biomass (significant reduction in chlorophyll a levels), at only one of three sites did this appear to affect Ae. j. japonicus oviposition. We conclude that algae in larval habitats are not a major factor in oviposition choices of adult Ae. j. japonicus females except when in situ primary production is high enough to substantially alter overall organic matter content cues.
Collapse
Affiliation(s)
- Amanda R Lorenz
- SDepartment of Entomology, 243 Natural Sciences, Michigan State University, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|