1
|
Floudas CS, Sarkizova S, Ceccarelli M, Zheng W. Leveraging mRNA technology for antigen based immuno-oncology therapies. J Immunother Cancer 2025; 13:e010569. [PMID: 39848687 PMCID: PMC11784169 DOI: 10.1136/jitc-2024-010569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/03/2025] [Indexed: 01/25/2025] Open
Abstract
The application of messenger RNA (mRNA) technology in antigen-based immuno-oncology therapies represents a significant advancement in cancer treatment. Cancer vaccines are an effective combinatorial partner to sensitize the host immune system to the tumor and boost the efficacy of immune therapies. Selecting suitable tumor antigens is the key step to devising effective vaccinations and amplifying the immune response. Tumor neoantigens are de novo epitopes derived from somatic mutations, avoiding T-cell central tolerance of self-epitopes and inducing immune responses to tumors. The identification and prioritization of patient-specific tumor neoantigens are based on advanced computational algorithms taking advantage of the profiling with next-generation sequencing considering factors involved in human leukocyte antigen (HLA)-peptide-T-cell receptor (TCR) complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. This review discusses the development and clinical application of mRNA vaccines in oncology, with a particular focus on recent clinical trials and the computational workflows and methodologies for identifying both shared and individual antigens. While this review centers on therapeutic mRNA vaccines targeting existing tumors, it does not cover preventative vaccines. Preclinical experimental validations are crucial in cancer vaccine development, but we emphasize the computational approaches that facilitate neoantigen selection and design, highlighting their role in advancing mRNA vaccine development. The versatility and rapid development potential of mRNA make it an ideal platform for personalized neoantigen immunotherapy. We explore various strategies for antigen target identification, including tumor-associated and tumor-specific antigens and the computational tools used to predict epitopes capable of eliciting strong immune responses. We address key design considerations for enhancing the immunogenicity and stability of mRNA vaccines, as well as emerging trends and challenges in the field. This comprehensive overview highlights the therapeutic potential of mRNA-based cancer vaccines and underscores ongoing research efforts aimed at optimizing these therapies for improved clinical outcomes.
Collapse
Affiliation(s)
- Charalampos S Floudas
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center, Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Wei Zheng
- Moderna, Inc, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Corica DA, Bell SD, Miller PJ, Kasperbauer DT, Lawler NJ, Wakefield MR, Fang Y. Into the Future: Fighting Melanoma with Immunity. Cancers (Basel) 2024; 16:4002. [PMID: 39682188 DOI: 10.3390/cancers16234002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Immunotherapy offers a novel and promising option in the treatment of late-stage melanoma. By utilizing the immune system to assist in tumor destruction, patients have additional options after tumor progression. Immune checkpoint inhibitors reduce the ability for tumors to evade the immune system by inhibiting key surface proteins used to inactivate T-cells. Without these surface proteins, T-cells can induce cytotoxic responses against tumors. Tumor infiltrating lymphocyte therapy is a form of adoptive cell therapy that takes advantage of a small subset of T-cells that recognize and infiltrate tumors. Isolation and rapid expansion of these colonies assist the immune system in mounting a charged response that can induce remission. Tumor vaccines deliver a high dose of unique antigens expressed by tumor cells to the entire body. The introduction of large quantities of tumor antigens upregulates antigen presenting cells and leads to effective activation of the immune system against tumors. Cytokine therapy introduces high amounts of chemical messengers that are endogenous to the immune system and support T-cell expansion. While other methods of immunotherapy exist, immune checkpoint inhibitors, tumor infiltrating lymphocytes, tumor vaccines, and cytokine therapy are commonly used to treat melanoma. Like many other cancer treatments, immunotherapy is not without adverse effects, as toxicities represent a major obstacle. However, immunotherapy has been efficacious in the treatment of melanoma.
Collapse
Affiliation(s)
- Derek A Corica
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Scott D Bell
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Peyton J Miller
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Daniel T Kasperbauer
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Nicholas J Lawler
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, West Des Moines, IA 50266, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
3
|
Alsalloum A, Shevchenko JA, Sennikov S. NY-ESO-1 antigen: A promising frontier in cancer immunotherapy. Clin Transl Med 2024; 14:e70020. [PMID: 39275923 PMCID: PMC11399778 DOI: 10.1002/ctm2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024] Open
Abstract
Significant strides have been made in identifying tumour-associated antigens over the past decade, revealing unique epitopes crucial for targeted cancer therapy. Among these, the New York esophageal squamous cell carcinoma (NY-ESO-1) protein, a cancer/testis antigen, stands out. This protein is presented on the cell surface by major histocompatibility complex class I molecules and exhibits restricted expression in germline cells and various cancers, marking it as an immune-privileged site. Remarkably, NY-ESO-1 serves a dual role as both a tumour-associated antigen and its own adjuvant, implying a potential function as a damage-associated molecular pattern. It elicits strong humoural immune responses, with specific antibody frequencies significantly correlating with disease progression. These characteristics make NY-ESO-1 an appealing candidate for developing effective and specific immunotherapy, particularly for advanced stages of disease. In this review, we provide a comprehensive overview of NY-ESO-1 as an immunogenic tumour antigen. We then explore the diverse strategies for targeting NY-ESO-1, including cancer vaccination with peptides, proteins, DNA, mRNA, bacterial vectors, viral vectors, dendritic cells and artificial adjuvant vector cells, while considering the benefits and drawbacks of each strategy. Additionally, we offer an in-depth analysis of adoptive T-cell therapies, highlighting innovative techniques such as next-generation NY-ESO-1 T-cell products and the integration with lymph node-targeted vaccines to address challenges and enhance therapeutic efficacy. Overall, this comprehensive review sheds light on the evolving landscape of NY-ESO-1 targeting and its potential implications for cancer treatment, opening avenues for future tailored directions in NY-ESO-1-specific immunotherapy. HIGHLIGHTS: Endogenous immune response: NY-ESO-1 exhibited high immunogenicity, activating endogenous dendritic cells, T cells and B cells. NY-ESO-1-based cancer vaccines: NY-ESO-1 vaccines using protein/peptide, RNA/DNA, microbial vectors and artificial adjuvant vector cells have shown promise in enhancing immune responses against tumours. NY-ESO-1-specific T-cell receptor-engineered cells: NY-ESO-1-targeted T cells, along with ongoing innovations in engineered natural killer cells and other cell therapies, have improved the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Alaa Alsalloum
- Laboratory of Molecular ImmunologyFederal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical ImmunologyNovosibirskRussia
- Faculty of Natural SciencesNovosibirsk State UniversityNovosibirskRussia
| | - Julia A. Shevchenko
- Laboratory of Molecular ImmunologyFederal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical ImmunologyNovosibirskRussia
| | - Sergey Sennikov
- Laboratory of Molecular ImmunologyFederal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical ImmunologyNovosibirskRussia
- Department of ImmunologyV. Zelman Institute for Medicine and PsychologyNovosibirsk State UniversityNovosibirskRussia
| |
Collapse
|
4
|
Wang QT, Liu YX, Wang J, Wang H. Advances in Cancer Nanovaccines: Harnessing Nanotechnology for Broadening Cancer Immune Response. ChemMedChem 2023; 18:e202200673. [PMID: 37088719 DOI: 10.1002/cmdc.202200673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Many advances have been made recently in the field of cancer immunotherapy, particularly with the development of treatments such as immune checkpoint inhibitors and adoptive cellular immunotherapy. The efficacy of immunotherapy is limited, however, owing to high levels of tumor heterogeneity and the immunosuppressive environments of advanced malignant tumors. Therefore, therapeutic anticancer vaccines have gradually become powerful tools for inducing valid antitumor immune responses and regulating the immune microenvironment. Tumor vaccines loaded in nanocarriers have become an indispensable delivery platform for tumor treatment because of their enhanced stability, targeting capability, and high level of safety. Through a unique design, cancer nanovaccines activate innate immunity and tumor-specific immunity simultaneously. For example, the design of cancer vaccines can incorporate strategies such as enhancing the stability and targeting of tumor antigens, combining effective adjuvants, cytokines, and immune microenvironment regulators, and promoting the maturation and cross-presentation of antigen-presenting cells (APCs). In this review, we discuss the design and preparation of nanovaccines for remodeling tumor antigen immunogenicity and regulating the immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Qian-Ting Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Yi-Xuan Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
- University of the Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Jie Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, P. R. China
| |
Collapse
|
5
|
Du JJ, Su Z, Yu H, Qin S, Wang D. From design to clinic: Engineered peptide nanomaterials for cancer immunotherapy. Front Chem 2023; 10:1107600. [PMID: 36733612 PMCID: PMC9887119 DOI: 10.3389/fchem.2022.1107600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Immunotherapy has revolutionized the field of cancer therapy. Nanomaterials can further improve the efficacy and safety of immunotherapy because of their tunability and multifunctionality. Owing to their natural biocompatibility, diverse designs, and dynamic self-assembly, peptide-based nanomaterials hold great potential as immunotherapeutic agents for many malignant cancers, with good immune response and safety. Over the past several decades, peptides have been developed as tumor antigens, effective antigen delivery carriers, and self-assembling adjuvants for cancer immunotherapy. In this review, we give a brief introduction to the use of peptide-based nanomaterials for cancer immunotherapy as antigens, carriers, and adjuvants, and to their current clinical applications. Overall, this review can facilitate further understanding of peptide-based nanomaterials for cancer immunotherapy and may pave the way for designing safe and efficient methods for future vaccines or immunotherapies.
Collapse
Affiliation(s)
- Jing-Jing Du
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Zhenhong Su
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Haoyi Yu
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Sanhai Qin
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Dongyuan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China,*Correspondence: Dongyuan Wang,
| |
Collapse
|
6
|
Liu W, Tang H, Li L, Wang X, Yu Z, Li J. Peptide-based therapeutic cancer vaccine: Current trends in clinical application. Cell Prolif 2021; 54:e13025. [PMID: 33754407 PMCID: PMC8088465 DOI: 10.1111/cpr.13025] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/21/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
The peptide‐based therapeutic cancer vaccines have attracted enormous attention in recent years as one of the effective treatments of tumour immunotherapy. Most of peptide‐based vaccines are based on epitope peptides stimulating CD8+ T cells or CD4+ T helper cells to target tumour‐associated antigens (TAAs) or tumour‐specific antigens (TSAs). Some adjuvants and nanomaterials have been exploited to optimize the efficiency of immune response of the epitope peptide to improve its clinical application. At present, numerous peptide‐based therapeutic cancer vaccines have been developed and achieved significant clinical benefits. Similarly, the combination of peptide‐based vaccines and other therapies has demonstrated a superior efficacy in improving anti‐cancer activity. We delve deeper into the choices of targets, design and screening of epitope peptides, clinical efficacy and adverse events of peptide‐based vaccines, and strategies combination of peptide‐based therapeutic cancer vaccines and other therapies. The review will provide a detailed overview and basis for future clinical application of peptide‐based therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Wensi Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Haichao Tang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Luanfeng Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Xiangyi Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, Liaoning Cancer immune peptide drug Engineering Technology Research Center, Shenyang, China
| | - Jianping Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Transfusion Medicine Institute, Liaoning Blood Center, Shenyang, China.,Transfusion Medicine Institute, Harbin Blood Center, Harbin, China
| |
Collapse
|
7
|
|
8
|
Abstract
Cancer is one of the major leading death causes of diseases. Prevention and treatment of cancer is an important way to decrease the incidence of tumorigenesis and prolong patients' lives. Subversive achievements on cancer immunotherapy have recently been paid much attention after many failures in basic and clinical researches. Based on deep analysis of genomics and proteomics of tumor antigens, a variety of cancer vaccines targeting tumor antigens have been tested in preclinical and human clinical trials. Many therapeutic cancer vaccines alone or combination with other conventional treatments for cancer obtained spectacular efficacy, indicating the tremendously potential application in clinic. With the illustration of underlying mechanisms of cancer immune regulation, valid, controllable, and persistent cancer vaccines will play important roles in cancer treatment, survival extension and relapse and cancer prevention. This chapter mainly summarizes the recent progresses and developments on cancer vaccine research and clinical application, thus exploring the existing obstacles in cancer vaccine research and promoting the efficacy of cancer vaccine.
Collapse
|
9
|
Chen Y, Ayaru L, Mathew S, Morris E, Pereira SP, Behboudi S. Expansion of anti-mesothelin specific CD4+ and CD8+ T cell responses in patients with pancreatic carcinoma. PLoS One 2014; 9:e88133. [PMID: 24520352 PMCID: PMC3919833 DOI: 10.1371/journal.pone.0088133] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/07/2014] [Indexed: 12/11/2022] Open
Abstract
We aimed to assess the status of naturally occurring CD4(+) and CD8(+) T cell responses to a tumour associated antigen, Mesothelin, in patients with pancreatic carcinoma and study the effects of elevated IL-10 on Mesothelin-specific T cell responses. For that sake, short term T cell lines were generated from PBMCs of 16 healthy controls, 15 patients with benign pancreatic diseases and 25 patients with pancreatic carcinoma and Mesothelin-specific CD4(+) and CD8(+) T cell responses were analysed using intracellular cytokine assays for IFN-γ. Plasma levels of IL-10 and Mesothelin were measured using cytometric bead array and ELISA assay, respectively. The blocking assays were performed to assess the effects of IL-10 on Mesothelin-specific T cell responses. Here, we demonstrate that the plasma levels of Mesothelin and IL-10 are significantly increased in patients with pancreatic carcinoma. Additionally, we found that (a) Mesothelin-specific T cell responses are significantly expanded in cancer patients (p = 0.0053), (b) the multifunctional CD4(+) T cell response is directed toward a broad repertoire of epitopes within the Mesothelin protein. (c) Mesothelin-specific CD4+ T cell response is directly inhibited by elevated IL-10 in cancer patients. These data provides evidence for the use of Mesothelin as an immunogen for tumour-specific T cell response.
Collapse
Affiliation(s)
- Yuan Chen
- The Institute for Liver and Digestive Health, University College London, London, United Kingdom
- Institute of Immunity and Transplantation, University College London and the Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Lakshmana Ayaru
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Sanju Mathew
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Emma Morris
- Institute of Immunity and Transplantation, University College London and the Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Stephen P. Pereira
- The Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Shahriar Behboudi
- The Institute for Liver and Digestive Health, University College London, London, United Kingdom
| |
Collapse
|
10
|
Bhattacharya-Chatterjee M, Saha A, Foon KA, Chatterjee SK. Carcinoembryonic antigen transgenic mouse models for immunotherapy and development of cancer vaccines. CURRENT PROTOCOLS IN IMMUNOLOGY 2008; Chapter 20:20.8.1-20.8.12. [PMID: 18432635 DOI: 10.1002/0471142735.im2008s80] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The goal of cancer therapy remains as the long-term eradication of tumor cells without adverse effects on normal tissue. Conventional approaches utilizing chemotherapy and radiotherapy are limited by both their toxicity and lack of specificity. In recent years, investigators have carried out several studies designed to evaluate whether human tumor-associated antigens (TAAs) can be exploited as targets for immunotherapy, specifically for human cancer vaccine development. A major limitation in immunotherapy studies of human cancer is the general lack of appropriate preclinical models. Clinical studies can be difficult to implement, particularly when a clear understanding of the potential efficacy, limitation, and safety of an immunotherapeutic strategy is not available from relevant animal investigations. However, mice carrying a transgene for a human tumor self-antigen may provide a more acceptable experimental model in which knowledge about immunotherapeutic strategies aiming at the TAA of interest can be enhanced prior to initiating clinical trials. Since the different strategies in experimental immunotherapy of cancer have been directed to activate different immune system components, a variety of transgenic mouse models have been generated expressing either TAA, human leukocyte antigen (HLA), oncogene, or immune effector cell molecules. These models may serve as an excellent platform for the identification of novel targets for immunotherapy as well as to evaluate the efficacy of targeted therapies and will lead to the development of clinical trials for cancer patients. In this unit, a brief overview of the generation and study of different vaccine approaches in carcinoembryonic antigen (CEA) transgenic mouse models and the experimental findings in mouse models that spontaneously develop gastrointestinal tumors and express the CEA transgene is provided.
Collapse
MESH Headings
- Animals
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Carcinoembryonic Antigen/genetics
- Carcinoembryonic Antigen/immunology
- Gastrointestinal Neoplasms/genetics
- Gastrointestinal Neoplasms/immunology
- Gastrointestinal Neoplasms/pathology
- Gastrointestinal Neoplasms/therapy
- Humans
- Immunotherapy/methods
- Mice
- Mice, Transgenic
- Models, Animal
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- Vaccines, DNA/therapeutic use
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Subunit/therapeutic use
Collapse
Affiliation(s)
| | - Asim Saha
- University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Kenneth A Foon
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | | |
Collapse
|
11
|
Abstract
This review summarizes clinical experience with infectious disease vaccines and data from animal tumor models that support a paradigm shift for cancer vaccines from therapeutic to prevention applications.
Collapse
Affiliation(s)
- R E Sobol
- Sidney Kimmel Cancer Center, Introgen Therapeutics Inc., Houston, TX 77030, USA.
| |
Collapse
|
12
|
Abstract
The problem with pure recombinant or synthetic antigens used in modern day vaccines is that they are generally far less immunogenic than older style live or killed whole organism vaccines. This has created a major need for improved and more powerful adjuvants for use in these vaccines. With few exceptions, alum remains the sole adjuvant approved for human use in the majority of countries worldwide. Although alum is able to induce a good antibody (Th2) response, it has little capacity to stimulate cellular (Th1) immune responses which are so important for protection against many pathogens. In addition, alum has the potential to cause severe local and systemic side-effects including sterile abscesses, eosinophilia and myofascitis, although fortunately most of the more serious side-effects are relatively rare. There is also community concern regarding the possible role of aluminium in neurodegenerative diseases such as Alzheimer's disease. Consequently, there is a major unmet need for safer and more effective adjuvants suitable for human use. In particular, there is demand for safe and non-toxic adjuvants able to stimulate cellular (Th1) immunity. Other needs in light of new vaccine technologies are adjuvants suitable for use with mucosally-delivered vaccines, DNA vaccines, cancer and autoimmunity vaccines. Each of these areas are highly specialized with their own unique needs in respect of suitable adjuvant technology. This paper reviews the state of the art in the adjuvant field, explores future directions of adjuvant development and finally examines some of the impediments and barriers to development and registration of new human adjuvants.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Autoimmunity Research Unit, ANU Medical School, Australian National University, Canberra, ACT 2061, Australia.
| | | |
Collapse
|
13
|
Purev E, Cai D, Miller E, Swoboda R, Mayer T, Klein-Szanto A, Marincola FM, Mick R, Otvos L, Wunner W, Birebent B, Somasundaram R, Wikstrand CJ, Bigner D, DeMichele A, Acs G, Berlin JA, Herlyn D. Immune responses of breast cancer patients to mutated epidermal growth factor receptor (EGF-RvIII, Delta EGF-R, and de2-7 EGF-R). THE JOURNAL OF IMMUNOLOGY 2004; 173:6472-80. [PMID: 15528389 DOI: 10.4049/jimmunol.173.10.6472] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mutated epidermal growth factor receptor (EGF-RvIII, DeltaEGF-R, and de2-7 EGF-R) is the result of an 801-bp deletion within the extracellular domain of wild-type EGF-R and is expressed by breast carcinomas, but not by normal breast tissues. EGF-RvIII is expressed both on the surface and in the cytoplasm of tumor cells. Thus, EGF-RvIII is a potential tumor-specific target for both Abs and T cells. However, it is not known whether breast cancer patients can raise immune responses to EGF-RvIII expressed by their tumors. The demonstration of EGF-RvIII-specific immune responses in patients would suggest that immunization of patients with EGF-RvIII vaccines is feasible, because these vaccines may boost a pre-existing immune response. We have evaluated humoral and cellular immune responses to EGF-RvIII in 16 breast cancer patients and three healthy donors. Seven of 16 patients developed EGF-RvIII-specific Abs that bound to isolated EGF-RvIII protein or the protein expressed by EGF-RvIII-transfected mouse fibroblasts. The Abs that bound to EGF-RvIII did not bind to wild-type EGF-R, and anti-EGF-RvIII Abs were not found in the sera of healthy donors. Three patients had EGF-RvIII peptide-specific lymphoproliferative responses, and two of these patients also had humoral immune responses. Humoral and cellular immune responses correlated with EGF-RvIII expression by patients' tumors in most cases. These studies demonstrate that breast cancer patients specifically recognize EGF-RvIII with an overall immune response rate of 50%, suggesting that patients may benefit from vaccination against EGF-RvIII, boosting pre-existing immune responses.
Collapse
Affiliation(s)
- Enkhtsetseg Purev
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Herlyn D, Birebent B, Akis N, Purev E, Somasundaram R, Mitchell E, Maguire H, Staib L, Mastrangelo M. Colon cancer antigen and anti-idiotype vaccines. ACTA ACUST UNITED AC 2004; 21:287-98. [PMID: 15338751 DOI: 10.1016/s0921-4410(03)21014-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
|
15
|
Speiser DE, Pittet MJ, Rimoldi D, Guillaume P, Luescher IF, Liénard D, Lejeune F, Cerottini JC, Romero P. Evaluation of melanoma vaccines with molecularly defined antigens by ex vivo monitoring of tumor-specific T cells. Semin Cancer Biol 2004; 13:461-72. [PMID: 15001165 DOI: 10.1016/j.semcancer.2003.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Immunotherapy of melanoma is aimed to mobilize cytolytic CD8+ T cells playing a central role in protective immunity. Despite numerous clinical vaccine trials, only few patients exhibited strong antigen-specific T-cell activation, stressing the need to improve vaccine strategies. For a rational development, we propose to focus on molecularly defined vaccine components, and evaluate their immunogenicity with highly reproducible and standardized methods for ex vivo immune monitoring. Careful immunogenicity comparison of vaccine formulations in phase I/II studies allow to select optimized vaccines for subsequent clinical efficacy testing in large scale phase III trials.
Collapse
Affiliation(s)
- Daniel E Speiser
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Hôpital Orthopédique, Centre Hospitalier Universitaire Vaudois, Niveau 5, Aile Est, Av. Pierre-Decker 4, CH-1005 Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
von Herrath MG, Bot A. Immune responsiveness, tolerance and dsRNA: implications for traditional paradigms. Trends Immunol 2003; 24:289-93. [PMID: 12810099 DOI: 10.1016/s1471-4906(03)00121-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Double-stranded (ds)RNA motifs are central to immune regulation and block tolerance to tumor-associated, self- and foreign antigens. In addition, they could explain why DNA vectors encoding self-replicating mRNA (replicons) are more immunogenic than conventional DNA vaccines. Accumulating evidence on the immunomodulatory roles of dsRNAs warrants a reconsideration of various models of immune homeostasis.
Collapse
Affiliation(s)
- Matthias G von Herrath
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA
| | | |
Collapse
|
17
|
Birebent B, Mitchell E, Akis N, Li W, Somasundaram R, Purev E, Hoey D, Mastrangelo M, Maguire H, Harris DT, Nair S, Cai D, Zhang T, Herlyn DM. Monoclonal anti-idiotypic antibody mimicking the gastrointestinal carcinoma-associated epitope CO17-1A elicits antigen-specific humoral and cellular immune responses in colorectal cancer patients. Vaccine 2003; 21:1601-12. [PMID: 12639481 DOI: 10.1016/s0264-410x(02)00752-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Monoclonal rat anti-idiotypic antibody (Ab2) BR3E4 mimicking the colorectal carcinoma (CRC)-associated epitope CO17-1A induced antigen-specific humoral and cellular immune responses in mice and rabbits. Ab2 BR3E4 was administered in a phase I trial to CRC patients either as intact IgG or as F(ab')(2) coupled to keyhole limpet hemocyanin (KLH). There was a trend for the F(ab')(2)-KLH-immunized patients to show higher immune response rates (18/21 and 5/15 patients with anti-anti-idiotypic antibodies and T cells, respectively) than the IgG-immunized patients (15/23 and 3/15 patients positive). Clinical responses were rare in these patients with liver metastases.
Collapse
Affiliation(s)
- Brigitte Birebent
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
There is reason to believe that the unfolding revolution in molecular biology and translational research will allow selective targeting of tumor cells, and radically change the way general practitioners and pediatric oncologists treat and follow children with cancer. This article highlights some of the most promising approaches being tested in the field. By learning about the underlying biology, the remaining hurdles, the projected timeline, and the possible impact of new therapies on the practice of pediatric oncology, health care professionals and patients should be better prepared for the future of pediatric oncology.
Collapse
Affiliation(s)
- Robert J Arceci
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, 1650 Orleans Street, Room 2M51, Baltimore, Maryland 21231, USA.
| | | |
Collapse
|
19
|
Abstract
In the past two decades, the worldwide steadily rising incidence of melanoma, its dismal prognosis when locally advanced or metastatic, and the absence of clinically effective therapeutic options have prompted studies that generated extensive preclinical knowledge on the biology of melanoma cells and their interaction with the host's immune system. As a consequence, among solid tumors, melanoma represents a "model malignancy" to design and apply in the clinic new bioimmunotherapeutic approaches, that are eventually translated to solid tumors of different histotypes. Despite its waxing and waning appeal as a therapeutic strategy, antibody treatment still represents a promising clinical approach to melanoma. Europe is no exception in the clinical interest for antibodies as therapeutic tools in melanoma patients; European researchers have also focused on preclinical issues that may improve current antibody-based therapeutic approaches on the one hand, while providing novel clinical strategies on the other hand.
Collapse
Affiliation(s)
- Maresa Altomonte
- Cancer Bioimmunotherapy Unit, Department of Medical Oncology, Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | | |
Collapse
|
20
|
Tanaka M, Kaneda Y, Fujii S, Yamano T, Hashimoto K, Huang SKS, Hoon DSB. Induction of a systemic immune response by a polyvalent melanoma-associated antigen DNA vaccine for prevention and treatment of malignant melanoma. Mol Ther 2002; 5:291-9. [PMID: 11863419 DOI: 10.1006/mthe.2002.0537] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies have demonstrated that active-specific immunotherapy has potential for controlling melanoma progression. We developed a polyvalent melanoma gene vaccine using a plasmid vector to deliver the immunogenic human melanoma-associated antigens (MAAs) gp100 and TRP-2. The MAA-containing plasmids were delivered individually in vivo using the hemagglutinating virus Japan (HVJ)-anionic liposome delivery system. C57BL/6 mice were immunized weekly by intramuscular (i.m.) injection or intranasal (i.n.) inoculation for 3 weeks. Although both i.m. and i.n. immunization induced Th1 (T helper) and Th2 cell responses to gp100 and TRP2, the i.m. route induced a better Th1 response. MAA-specific IgG2a, IgG1, and delayed-type hypersensitivity (DTH) responses were induced against both MAAs by i.m. immunization. We assessed the vaccine for its prophylactic and therapeutic effect against the murine B16 F10 melanoma. Animals vaccinated and subsequently challenged with a lethal dose of B16 cells were significantly (P<0.01) protected against tumor progression and had significantly (P<0.01) enhanced survival compared with treatment using control plasmid. We also developed a therapeutic model in which mice were given B16 cells and subsequently immunized with the vaccine or treated with control plasmid. In animals treated with the vaccine, tumor growth was significantly (P<0.01) controlled, and survival was prolonged compared with controls. These studies demonstrate that the polyvalent DNA vaccine induces an effective systemic Th response.
Collapse
Affiliation(s)
- Maki Tanaka
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, California 90404, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhang JK, Li J, Chen HB, Sun JL, Qu YJ, Lu JJ. Antitumor activities of human dendritic cells derived from peripheral and cord blood. World J Gastroenterol 2002; 8:87-90. [PMID: 11833078 PMCID: PMC4656633 DOI: 10.3748/wjg.v8.i1.87] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the biological specialization of human peripheral blood dendritic cells (DC) and cord blood derived DC and its effects on effector cells killing human hepatocarcinoma cell line BEL-7402 in vitro.
METHODS: The DC biological characteristics were detected with immunohistochemical and MTT assay. Two antitumor experimental groups are: peripheral blood DC and cord blood DC groups. Peripheral blood DC groups used LAK cells as the effector cells and BEL-7402 as target cells, while cord blood DC groups used CTL induced by tumor antigen twice pulsed DC as effector cells and BEL-7402 as target cells, additional peripheral blood DC and cord blood DC are added to observe its stimulating activities to effector cells. The effector¡äs cytotoxicity to tumor cells were detected with neutral red colorimetric assay at two effector/ target ratios of 5:1 and 10:1.
RESULTS: Peripheral blood DC and cord blood DC highly expressed HLA-ABC, HLA-DR, HLA-DQ, CD54 and S-100 protein. The stimulating activities to lymphocyte proliferation were compared between experimental groups (DC added) and control group (no DC added), in six experiment subgroups,the DC/lymphocyte ratio was sequentially 0.25:100, 0.5:100, 1:100, 2:100, 4:100 and 8:100, A values(-x±s) were 0.75396 ± 0.009, 0.84916 ± 0.010, 0.90894 ± 0.012, 0.98371 ± 0.007, 1.01299 ± 0.006 and 1.20384 ± 0.006 in peripheral blood DC groups and 0.77650 ± 0.005, 0.83008 ± 0.007, 0. 92725 ± 0.007, 1.05990 ± 0.010, 1.15583 ± 0.011, 1. 22983 ± 0.011 in cord blood DC groups. A value was 0.59517 ± 0.005 in control group. The stimulating activities were higher in experimental groups than in control group (P < 0.01), which were increased when the DC concentration was enlarged (P < 0.01). Two differently derived DCs had the same phenotypes and similar stimulating activities (P > 0.05). In peripheral blood DC groups, the cytotoxicity (-x±s) of the LD groups (experimental groups) and L groups (control group) was 58.16% ± 2.03% (5:1), 46c18% ± 2.25% (10:1) and 38c13% ± 1.29% (5:1) and 65.40% ± 1.56% (10:1) respectively; in cord blood DC groups, TD groups (experimental groups) and T groups (control groups) were 69.71% ± 2.33% (5:1), 77.64% ± 1.94% (10:1) and 56.89% ± 1.82% (5:1) and 60.99% ± 1.42% (10:1) respectively. The cytotoxicity activities were enhanced with increased effector/target ratio (P < 0.01). At the same effector/target ratio, the cytotoxicity of experimental groups were bigger than that of control groups (P < 0.01). The cytotoxicity activities of cord blood DC groups were higher than that of peripheral blood DC groups (P < 0.01).
CONCLUSION: Peripheral blood DC and cord blood DC are mature DC in morphology and function, both can enhance the effector cell killing activities to hepatocarcinoma cells. DC pulsed with tumor antigen can induce higher specific CTL activity than unpulsed DC.
Collapse
Affiliation(s)
- Jin-Kun Zhang
- Cancer Pathology Laboratory, Shantou University Medical College, 22 Xinlinglu, Shantou 515031, Guangdong Province, China.
| | | | | | | | | | | |
Collapse
|
22
|
Goletz S, Christensen PA, Kristensen P, Blohm D, Tomlinson I, Winter G, Karsten U. Selection of large diversities of antiidiotypic antibody fragments by phage display. J Mol Biol 2002; 315:1087-97. [PMID: 11827478 DOI: 10.1006/jmbi.2001.5314] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antiidiotypic antibodies (Ab2) are needed as tools for a better understanding of molecular mimicry and the immunological network, and for many potential applications in the biomedical and pharmaceutical field. Antiidiotypic antibodies mimicking carbohydrate or conformational epitopes (Ab2beta) are of considerable interest as surrogate immunogens for cancer vaccination. However, it has so far been difficult and tedious to produce Ab2s to a given antigen. Here we describe a fast and reliable technique for generating large diversities of antiidiotypic single chain antibody fragments from non-immunized phagemid libraries using phage display. Key elements are a specific elution with the original antigen followed by trypsin treatment of the eluted phages in combination with the protease sensitive helperphage KM13. This novel method was compared with various conventional selection and elution methods, including, specific elution with or without trypsin treatment, elution with glycine at pH 2.2 with or without trypsin treatment, and elution by trypsin treatment only. The results clearly show that specific elution in combination with trypsin treatment of the eluted phages is by far superior to the other conventional methods, enabling for the first time the generation of a large variety of Ab2s after only two to three rounds of selection, thereby maintaining maximum diversity. We obtained 28 to 88 antiidiotypes out of 96 tested clones after two to three rounds of selection with a diversity of 55-90 %. This was achieved for two carbohydrate (di-, and tetrasaccharides) and one conformational protein epitope using two large naïve libraries and their corresponding monoclonal Ab1. The antiidiotypic nature of the selected scFv-phages was verified by ELISA and immunocytochemistry inhibition experiments.
Collapse
Affiliation(s)
- Steffen Goletz
- NEMOD GmbH, Robert-Rössle-Str. 10, Berlin-Buch, D-13125, FRG.
| | | | | | | | | | | | | |
Collapse
|
23
|
Frazer IH, De Kluyver R, Leggatt GR, Guo HY, Dunn L, White O, Harris C, Liem A, Lambert P. Tolerance or immunity to a tumor antigen expressed in somatic cells can be determined by systemic proinflammatory signals at the time of first antigen exposure. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6180-7. [PMID: 11714778 DOI: 10.4049/jimmunol.167.11.6180] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mice transgenic for the E7 tumor Ag of human papillomavirus type 16, driven from a keratin 14 promoter, express E7 in keratinocytes but not dendritic cells. Grafted E7-transgenic skin is not rejected by E7-immunized mice that reject E7-transduced transplantable tumors. Rejection of recently transplanted E7-transgenic skin grafts, but not of control nontransgenic grafts or of established E7-transgenic grafts, is induced by systemic administration of live or killed Listeria monocytogenes or of endotoxin. Graft recipients that reject an E7 graft reject a subsequent E7 graft more rapidly and without further L. monocytogenes exposure, whereas recipients of an E7 graft given without L. monocytogenes do not reject a second graft, even if given with L. monocytogenes. Thus, cross-presentation of E7 from keratinocytes to the adaptive immune system occurs with or without a proinflammatory stimulus, but proinflammatory stimuli at the time of first cross-presentation of Ag can determine the nature of the immune response to the Ag. Furthermore, immune effector mechanisms responsible for rejection of epithelium expressing a tumor Ag in keratinocytes are different from those that reject an E7-expressing transplantable tumor. These observations have implications for immunotherapy for epithelial cancers.
Collapse
MESH Headings
- Animals
- Antigen Presentation/genetics
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/immunology
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Cells, Cultured
- Female
- Graft Rejection/genetics
- Graft Rejection/immunology
- Immune Tolerance/genetics
- Inflammation/genetics
- Inflammation/immunology
- Injections, Intravenous
- Keratinocytes/immunology
- Keratinocytes/metabolism
- Listeriosis/genetics
- Listeriosis/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Oncogene Proteins, Viral/biosynthesis
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/immunology
- Papillomaviridae/genetics
- Papillomaviridae/immunology
- Papillomavirus E7 Proteins
- Signal Transduction/genetics
- Signal Transduction/immunology
- Skin Transplantation/immunology
- Skin Transplantation/methods
- Time Factors
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- I H Frazer
- Centre for Immunology and Cancer Research, University of Queensland, Brisbane, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
McLaughlin PM, Kroesen BJ, Harmsen MC, de Leij LF. Cancer immunotherapy: insights from transgenic animal models. Crit Rev Oncol Hematol 2001; 40:53-76. [PMID: 11578916 DOI: 10.1016/s1040-8428(00)00129-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A wide range of strategies in cancer immunotherapy has been developed in the last decade, some of which are currently being used in clinical settings. The development of these immunotherapeutical strategies has been facilitated by the generation of relevant transgenic animal models. Since the different strategies in experimental immunotherapy of cancer each aim to activate different immune system components, a variety of transgenic animals have been generated either expressing tumor associated, HLA, oncogenic or immune effector cell molecule proteins. This review aims to discuss the existing transgenic mouse models generated to study and develop cancer immunotherapy strategies and the variable results obtained. The potential of the various transgenic animal models regarding the development of anti-cancer immunotherapeutical strategies is evaluated.
Collapse
Affiliation(s)
- P M McLaughlin
- Department of Pathology and Laboratory Medicine, Section of Medical Biology, Tumor Immunology, University Hospital Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | | | |
Collapse
|
25
|
Abstract
Attempts to generate an anticancer immune response in vivo in patients with cancer have taken several forms. Although to date there have been relatively few published studies describing the effects of the approach in hematologic malignancy, that circumstance is expected to change rapidly during the next few years. In solid tumors, it is not known which, if any, of the approaches being explored will be able to produce responses of sufficient effectiveness and duration to be of general clinical value. Despite the documented increase in survival of patients developing an immune response to tumor immunization, no randomized clinical trial has been entirely convincing. As knowledge of the molecular basis of the immune response and of the immune defenses used by cancer cells improves, it is reasonable to expect to see increasing benefits from tumor vaccines, which are likely to complement, long before they replace, conventional therapies.
Collapse
Affiliation(s)
- Peter J. DeMaria
- Genitourinary Malignancies Branch, Center for Cancer Research, National
Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marijo Bilusic
- Genitourinary Malignancies Branch, Center for Cancer Research, National
Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Bergmann-Leitner ES, Abrams SI. Positive and negative consequences of soluble Fas ligand produced by an antigen-specific CD4(+) T cell response in human carcinoma immune interactions. Cell Immunol 2001; 209:49-62. [PMID: 11414736 DOI: 10.1006/cimm.2001.1781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The influence of a human CD4(+) T cell response in anti-carcinoma immune reactions remains largely uncharacterized. Here, we made use of a major histocompatibility complex (MHC) class-II-restricted, anti-ras oncogene-specific CD4(+) T cell line produced previously in vivo from a patient with metastatic carcinoma in a peptide-based phase I trial. Using this patient-derived T cell line as a potentially relevant cell type, we examined the consequences of the anti-carcinoma CD4(+) T cell response, with emphasis on specific lymphokines potentially important for the regulation of Fas/Fas ligand (FasL) interactions. Antigen (Ag)-specific CD4(+) T cells produced substantial amounts of IFN-gamma following recognition of MHC class-II-matched Ag-presenting cells expressing the cognate peptide. The IFN-gamma promoted significant upregulation of Fas on the surface of colon carcinoma cells and sensitized these targets to Fas-mediated apoptosis and Ag-specific CD8(+) cytotoxic T lymphocyte (CTL)-mediated lysis involving a Fas-based effector mechanism. Moreover, Ag-stimulated CD4(+) T cells secreted soluble FasL (sFasL), which induced the death of TNF-resistant/refractory colon, breast, and ovarian carcinoma cells. Interestingly, although CD4(+)-derived sFasL expressed cytotoxic activity, the recovery of carcinoma cells which resisted Fas-mediated lysis displayed enhanced metastatic ability in vivo, compared with the unselected parental population, in an athymic mouse model. Thus, a tumor-specific CD4(+) T cell response may have both positive and negative consequences in human carcinoma via the production of proinflammatory cytokines such as IFN-gamma and/or sFasL that may (1) improve or facilitate CTL-target engagement, contact-independent effector mechanisms, and the overall lytic outcome and (2) potentially select for Fas-resistant tumor cells that escape immune destruction, which may thus impact the metastatic process.
Collapse
Affiliation(s)
- E S Bergmann-Leitner
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, Maryland 20892-1402, USA
| | | |
Collapse
|
27
|
Li J, Pereira S, Van Belle P, Tsui P, Elder D, Speicher D, Deen K, Linnenbach A, Somasundaram R, Swoboda R, Herlyn D. Isolation of the melanoma-associated antigen p23 using antibody phage display. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:432-8. [PMID: 11123321 DOI: 10.4049/jimmunol.166.1.432] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The general responsiveness of human melanoma to immunotherapy has been well established, but active immunotherapy of melanoma has been hampered by insufficient information on the immunogenicity of melanoma-associated Ags in patients. In this study, we isolated a recombinant phage-Fab clone (A10-5) from a phage-Fab library derived from the B cells of a melanoma patient in remission after immunotherapy. Purified A10-5 Fab bound at high levels to cultured melanoma cell lines and to tissue sections of metastatic and vertical growth phase primary melanoma, but not to radial growth phase primary melanoma, nevi, or normal skin. A10-5 Fab bound to both the surface and the cytoplasm of cultured melanoma cells, but only to the cytoplasm of cultured fibroblasts. Western blot analysis revealed A10-5 Fab reactivity with a 33- and a 23-kDa glycoprotein under nonreducing conditions, and with a 23-kDa protein only under reducing conditions. A cDNA with an open reading frame predicted to encode a 23-kDa protein was cloned by screening a melanoma cell cDNA library with A10-5 Fab. This protein (p23) is the human homologue of the murine tumor transplantation Ag P198 that interacts with the cytoplasmic domain of ErbB-3 expressed by melanoma cells. Thus, the Ab phage display method has identified a novel, stage-specific melanoma-associated Ag that may have therapeutic and diagnostic value.
Collapse
Affiliation(s)
- J Li
- The Wistar Institute, Philadelphia, PA 19104
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Walden P. Tumor antigens. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2000:7-22. [PMID: 10943314 DOI: 10.1007/978-3-662-04183-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- P Walden
- Department of Dermatology and Allergy, Medical Faculty Charité, Humboldt University, Berlin, Germany
| |
Collapse
|
29
|
Offringa R, Vierboom MP, van der Burg SH, Erdile L, Melief CJ. p53: a potential target antigen for immunotherapy of cancer. Ann N Y Acad Sci 2000; 910:223-33; discussion 233-6. [PMID: 10911916 DOI: 10.1111/j.1749-6632.2000.tb06711.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Approximately 50% of all human malignancies exhibit mutation and aberrant expression of p53, making this protein an interesting candidate target for immunotherapy of cancer. Mutations in p53 are highly diverse. Therefore, targeting of determinants within the wild-type p53 sequence appears most practical. Despite the fact that p53 is ubiquitously expressed, adoptive immunotherapy of tumor-bearing mice with p53-specific cytotoxic T lymphocytes (CTL) results in eradication of p53-overexpressing tumors in the absence of immunopathological damage to normal tissues. These CTL also eliminate tumors that do not show greatly enhanced expression of p53, indicating that the sensitivity of these tumors for p53-specific CTL is determined by the efficiency by which p53-derived peptides are processed into class I MHC, rather than by the steady state levels of p53. Of note, although p53-specific CTL can readily be isolated from p53-/- mice, tolerance for this self antigen may prevent induction of similarly effective CTL in p53+/+ subjects. The T helper (Th) branch of the p53-specific immune response does not seem to be profoundly affected by tolerance. In addition, more and more evidence is obtained for the pivotal role of tumor-specific Th cells in the induction and effector phases of the antitumor response, also against tumors that lack class II MHC expression. The efficacy of Th cells, specific for a recently identified class II MHC-restricted p53 peptide, against p53-overexpressing tumors is currently being investigated. In addition, natural and induced Th responses are analyzed both in a murine tumor model and in a phase I clinical trial involving p53-specific vaccination of colon cancer patients.
Collapse
Affiliation(s)
- R Offringa
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, The Netherlands.
| | | | | | | | | |
Collapse
|
30
|
Bergmann-Leitner ES, Abrams SI. Differential role of Fas/Fas ligand interactions in cytolysis of primary and metastatic colon carcinoma cell lines by human antigen-specific CD8+ CTL. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:4941-54. [PMID: 10779805 DOI: 10.4049/jimmunol.164.9.4941] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have previously identified mutated ras peptides reflecting the glycine to valine substitution at position 12 as HLA-A2-restricted, CD8+ CTL neo-epitopes. CTL lines produced against these peptide epitopes lysed the HLA-A2+ Ag-bearing SW480 primary colon adenocarcinoma cell line, although IFN-gamma treatment of the targets was necessary to achieve efficient cytotoxicity. Here, we compared the lytic phenotype of the SW480 cell line to its metastatic derivative, SW620, as an in vitro paradigm to further characterize the nature of a HLA class I-restricted, Ag-specific CTL response against neoplastic cell lines of primary and metastatic origin. Although both colon carcinoma cell lines were lysed by these Ag-specific CTL following IFN-gamma pretreatment, the mechanisms of lysis were distinct, which reflected differential levels of sensitivity to the Fas pathway. Whereas IFN-gamma pretreatment rendered SW480 cells sensitive to both Fas-dependent and -independent (perforin) pathways, SW620 cells displayed lytic susceptibility to Fas-independent mechanisms only. Moreover, pretreatment of SW480 cells with the anti-colon cancer agent, 5-fluorouracil (5-FU), led to enhanced Fas and ICAM-1 expression and triggered Ag-specific CTL-mediated lysis via Fas- and perforin-based pathways. In contrast, these phenotypic and functional responses were not observed with SW620 cells. Overall, these data suggested that 1) IFN-gamma and 5-FU may enhance the lytic sensitivity of responsive colon carcinoma cells to immune effector mechanisms, including Fas-induced lysis; 2) the malignant phenotype may associate with resistance to Fas-mediated lysis in response to Ag-specific T cell attack; and 3) if Ag-specific CTL possess diverse lytic capabilities, this may overcome, to some extent, the potential "escape" of Fas-resistant carcinoma cells.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/immunology
- Adenocarcinoma/pathology
- Adenocarcinoma/secondary
- Animals
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- Colonic Neoplasms/secondary
- Cytotoxicity Tests, Immunologic
- Cytotoxicity, Immunologic/drug effects
- Epitopes, T-Lymphocyte/immunology
- Fas Ligand Protein
- Female
- Fluorouracil/pharmacology
- Humans
- Immunity, Innate
- Immunophenotyping
- Ligands
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tumor Cells, Cultured
- fas Receptor/biosynthesis
- fas Receptor/metabolism
- fas Receptor/physiology
Collapse
Affiliation(s)
- E S Bergmann-Leitner
- Laboratory of Tumor Immunology and Biology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
31
|
Affiliation(s)
- E Gilboa
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|