1
|
Wu Y, Li Q, Qi X, Liu Z, Wang C, Zhao X, Ma Y. Molecular characteristics and regulatory role of insulin-like growth factor 1 gene in testicular Leydig cells of Tibetan sheep. Sci Rep 2024; 14:24799. [PMID: 39433555 PMCID: PMC11494144 DOI: 10.1038/s41598-024-75234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
This study aimed to analyze the molecular characteristics of insulin-like growth factor 1 (IGF1) gene in the testes of Tibetan sheep and its role in the testosterone synthesis and cell development. First, we cloned IGF1 gene for bioinformatics analysis, and the primary Leydig cells (LCs) of Tibetan sheep were isolated to explore its effect on the proliferation, apoptosis and function of LCs. Finally, the specific regulatory mechanism of IGF1 on LCs was analyzed by transcriptome sequencing. Results showed that overexpression of IGF1 increased the proliferation rate and decreased apoptosis of LCs. In addition, overexpression of IGF1 altered expression of genes related to testosterone synthesis and transformation and significantly increased amount of the final product testosterone. Mechanistically, IGF1 stimulated the expression of the proliferating cell nuclear antigen and IGF1R and promoted the proliferation of LCs via the PI3K/Akt signaling pathway. Collectively, what should be clear from the results reported here is that IGF1 might play roles in the proliferation or differentiation and testosterone synthesis of LCs. These findings add to our understanding on the regulation of testosterone synthesis in sheep and other mammals.
Collapse
Affiliation(s)
- Yi Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
| | - Qiao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
| | - Xingcai Qi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
| | - Zilong Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
| | - Chunhui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
| | - Xingxu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Ibtisham F, Cham TC, Fayaz MA, Honaramooz A. Effects of Growth Factors on In Vitro Culture of Neonatal Piglet Testicular Tissue Fragments. Cells 2023; 12:2234. [PMID: 37759457 PMCID: PMC10526381 DOI: 10.3390/cells12182234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
In vitro spermatogenesis (IVS) has important applications including fertility preservation of prepubertal cancer patients; however, thus far, IVS has only been achieved using mouse models. To study the effects of growth factors on the maintenance of testicular tissue integrity, germ cell numbers, and potential induction of IVS using a porcine model, we cultured small testicular fragments (~2 mg) from 1-wk-old piglets under six different media conditions (DMEM + 10%KSR alone or supplemented with GDNF, bFGF, SCF, EGF, or a combination of all) for 8 weeks. Overall, tissues supplemented with GDNF and bFGF had the greatest seminiferous tubule integrity and least number of apoptotic cells. GDNF-supplemented tissues had the greatest number of gonocytes per tubule, followed by bFGF-supplemented tissues. There was evidence of gradual Sertoli cell maturation in all groups. Moreover, histological examination and the expression of c-KIT (a marker of differentiating spermatogonia and spermatocytes) and STRA8 (a marker of the pre/meiotic stage germ cells) confirmed the induction of IVS in all groups. However, GDNF- and bFGF-supplemented tissue cultures had greater numbers of seminiferous tubules with spermatocytes compared to other groups. In conclusion, overall, GDNF and bFGF supplementation better maintained the tissue integrity and gonocyte numbers and induced IVS in cultured testicular tissues.
Collapse
Affiliation(s)
| | | | | | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada; (F.I.); (T.-C.C.); (M.A.F.)
| |
Collapse
|
3
|
Voigt AL, de Lima e Martins Lara N, Dobrinski I. Comparing the adult and pre-pubertal testis: Metabolic transitions and the change in the spermatogonial stem cell metabolic microenvironment. Andrology 2023; 11:1132-1146. [PMID: 36690000 PMCID: PMC10363251 DOI: 10.1111/andr.13397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
BACKGROUND Survivors of childhood cancer often suffer from infertility. While sperm cryopreservation is not feasible before puberty, the patient's own spermatogonial stem cells could serve as a germ cell reservoir, enabling these patients to father their own children in adulthood through the isolation, in vitro expansion, and subsequent transplantation of spermatogonial stem cells. However, this approach requires large numbers of stem cells, and methods for successfully propagating spermatogonial stem cells in the laboratory are yet to be established for higher mammals and humans. The improvement of spermatogonial stem cell culture requires deeper understanding of their metabolic requirements and the mechanisms that regulate metabolic homeostasis. AIM This review gives a summary on our knowledge of spermatogonial stem cell metabolism during maintenance and differentiation and highlights the potential influence of Sertoli cell and stem cell niche maturation on spermatogonial stem cell metabolic requirements during development. RESULTS AND CONCLUSIONS Fetal human spermatogonial stem cell precursors, or gonocytes, migrate into the seminiferous cords and supposedly mature to adult stem cells within the first year of human development. However, the spermatogonial stem cell niche does not fully differentiate until puberty, when Sertoli cells dramatically rearrange the architecture and microenvironment within the seminiferous epithelium. Consequently, pre-pubertal and adult spermatogonial stem cells experience two distinct niche environments potentially affecting spermatogonial stem cell metabolism and maturation. Indeed, the metabolic requirements of mouse primordial germ cells and pig gonocytes are distinct from their adult counterparts, and novel single-cell RNA sequencing analysis of human and porcine spermatogonial stem cells during development confirms this metabolic transition. Knowledge of the metabolic requirements and their changes and regulation during spermatogonial stem cell maturation is necessary to implement laboratory-based techniques and enable clinical use of spermatogonial stem cells. Based on the advancement in our understanding of germline metabolism circuits and maturation events of niche cells within the testis, we propose a new definition of spermatogonial stem cell maturation and its amendment in the light of metabolic change.
Collapse
Affiliation(s)
- Anna Laura Voigt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; and Faculty of Veterinary Medicine, University of Calgary, AB, Canada
| | - Nathalia de Lima e Martins Lara
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; and Faculty of Veterinary Medicine, University of Calgary, AB, Canada
| | - Ina Dobrinski
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; and Faculty of Veterinary Medicine, University of Calgary, AB, Canada
| |
Collapse
|
4
|
Voigt AL, Dardari R, Su L, Lara NLM, Sinha S, Jaffer A, Munyoki SK, Alpaugh W, Dufour A, Biernaskie J, Orwig KE, Dobrinski I. Metabolic transitions define spermatogonial stem cell maturation. Hum Reprod 2022; 37:2095-2112. [PMID: 35856882 PMCID: PMC9614685 DOI: 10.1093/humrep/deac157] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Do spermatogonia, including spermatogonial stem cells (SSCs), undergo metabolic changes during prepubertal development? SUMMARY ANSWER Here, we show that the metabolic phenotype of prepubertal human spermatogonia is distinct from that of adult spermatogonia and that SSC development is characterized by distinct metabolic transitions from oxidative phosphorylation (OXPHOS) to anaerobic metabolism. WHAT IS KNOWN ALREADY Maintenance of both mouse and human adult SSCs relies on glycolysis, while embryonic SSC precursors, primordial germ cells (PGCs), exhibit an elevated dependence on OXPHOS. Neonatal porcine SSC precursors reportedly initiate a transition to an adult SSC metabolic phenotype at 2 months of development. However, when and if such a metabolic transition occurs in humans is ambiguous. STUDY DESIGN, SIZE, DURATION To address our research questions: (i) we performed a meta-analysis of publicly available and newly generated (current study) single-cell RNA sequencing (scRNA-Seq) datasets in order to establish a roadmap of SSC metabolic development from embryonic stages (embryonic week 6) to adulthood in humans (25 years of age) with a total of ten groups; (ii) in parallel, we analyzed single-cell RNA sequencing datasets of isolated pup (n = 3) and adult (n = 2) murine spermatogonia to determine whether a similar metabolic switch occurs; and (iii) we characterized the mechanisms that regulate these metabolic transitions during SSC maturation by conducting quantitative proteomic analysis using two different ages of prepubertal pig spermatogonia as a model, each with four independently collected cell populations. PARTICIPANTS/MATERIALS, SETTING, METHODS Single testicular cells collected from 1-year, 2-year and 7-year-old human males and sorted spermatogonia isolated from 6- to 8-day (n = 3) and 4-month (n = 2) old mice were subjected to scRNA-Seq. The human sequences were individually processed and then merged with the publicly available datasets for a meta-analysis using Seurat V4 package. We then performed a pairwise differential gene expression analysis between groups of age, followed by pathways enrichment analysis using gene set enrichment analysis (cutoff of false discovery rate < 0.05). The sequences from mice were subjected to a similar workflow as described for humans. Early (1-week-old) and late (8-week-old) prepubertal pig spermatogonia were analyzed to reveal underlying cellular mechanisms of the metabolic shift using immunohistochemistry, western blot, qRT-PCR, quantitative proteomics, and culture experiments. MAIN RESULTS AND THE ROLE OF CHANCE Human PGCs and prepubertal human spermatogonia show an enrichment of OXPHOS-associated genes, which is downregulated at the onset of puberty (P < 0.0001). Furthermore, we demonstrate that similar metabolic changes between pup and adult spermatogonia are detectable in the mouse (P < 0.0001). In humans, the metabolic transition at puberty is also preceded by a drastic change in SSC shape at 11 years of age (P < 0.0001). Using a pig model, we reveal that this metabolic shift could be regulated by an insulin growth factor-1 dependent signaling pathway via mammalian target of rapamycin and proteasome inhibition. LARGE SCALE DATA New single-cell RNA sequencing datasets obtained from this study are freely available through NCBI GEO with accession number GSE196819. LIMITATIONS, REASONS FOR CAUTION Human prepubertal tissue samples are scarce, which led to the investigation of a low number of samples per age. Gene enrichment analysis gives only an indication about the functional state of the cells. Due to limited numbers of prepubertal human spermatogonia, porcine spermatogonia were used for further proteomic and in vitro analyses. WIDER IMPLICATIONS OF THE FINDINGS We show that prepubertal human spermatogonia exhibit high OXHPOS and switch to an adult-like metabolism only after 11 years of age. Prepubescent cancer survivors often suffer from infertility in adulthood. SSC transplantation could provide a powerful tool for the treatment of infertility; however, it requires high cell numbers. This work provides key insight into the dynamic metabolic requirements of human SSCs across development that would be critical in establishing ex vivo systems to support expansion and sustained function of SSCs toward clinical use. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by the NIH/NICHD R01 HD091068 and NIH/ORIP R01 OD016575 to I.D. K.E.O. was supported by R01 HD100197. S.K.M. was supported by T32 HD087194 and F31 HD101323. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- A L Voigt
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - R Dardari
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - L Su
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - N L M Lara
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - S Sinha
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - A Jaffer
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - S K Munyoki
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - W Alpaugh
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - A Dufour
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - J Biernaskie
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - K E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - I Dobrinski
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
5
|
Nabulindo NW, Nguhiu-Mwangi J, Kipyegon AN, Ogugo M, Muteti C, Christian T, Oatley MJ, Oatley JM, Kemp S. Culture of Kenyan Goat (Capra hircus) Undifferentiated Spermatogonia in Feeder-Free Conditions. Front Vet Sci 2022; 9:894075. [PMID: 35928111 PMCID: PMC9343694 DOI: 10.3389/fvets.2022.894075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
The undifferentiated spermatogonial population in mammalian testes contains a spermatogonial stem cell (SSC) population that can regenerate continual spermatogenesis following transplantation. This capacity has the potential to be exploited as a surrogate sires breeding tool to achieve widespread dissemination of desirable genetics in livestock production. Because SSCs are relatively rare in testicular tissue, the ability to expand a population in vitro would be advantageous to provide large numbers for transplantation into surrogate recipient males. Here, we evaluated conditions that would support long-term in-vitro maintenance of undifferentiated spermatogonia from a goat breed that is endemic to Kenyan livestock production. Single-cell suspensions enriched for undifferentiated spermatogonia from pre-pubertal bucks were seeded on laminin-coated tissue culture plates and maintained in a commercial media based on serum-free composition. The serum-free media was conditioned on goat fetal fibroblasts and supplemented with a growth factor cocktail that included glial cell line-derived neurotrophic factor (GDNF), leukemia inhibitory factor (LIF), stromal cell-derived factor (SDF), and fibroblast growth factor (FGF) before use. Over 45 days, the primary cultures developed a cluster morphology indicative of in-vitro grown undifferentiated spermatogonia from other species and expressed the germ cell marker VASA, as well as the previously defined spermatogonial marker such as promyelocytic leukemia zinc finger (PLZF). Taken together, these findings provide a methodology for isolating the SSC containing undifferentiated spermatogonial population from goat testes and long-term maintenance in defined culture conditions.
Collapse
Affiliation(s)
- Nakami Wilkister Nabulindo
- Centre for Tropical Livestock Genetics and Health Laboratory, International Livestock Research Institute, Nairobi, Kenya
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
- *Correspondence: Nakami Wilkister Nabulindo ;
| | - James Nguhiu-Mwangi
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Ambrose Ng'eno Kipyegon
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Moses Ogugo
- Centre for Tropical Livestock Genetics and Health Laboratory, International Livestock Research Institute, Nairobi, Kenya
| | - Charity Muteti
- Centre for Tropical Livestock Genetics and Health Laboratory, International Livestock Research Institute, Nairobi, Kenya
| | - Tiambo Christian
- Centre for Tropical Livestock Genetics and Health Laboratory, International Livestock Research Institute, Nairobi, Kenya
| | - Melissa J. Oatley
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Jon M. Oatley
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Stephen Kemp
- Centre for Tropical Livestock Genetics and Health Laboratory, International Livestock Research Institute, Nairobi, Kenya
| |
Collapse
|
6
|
Nakami W, Kipyegon AN, Nguhiu-Mwangi J, Tiambo C, Kemp S. Culture of spermatogonial stem cells and use of surrogate sires as a breeding technology to propagate superior genetics in livestock production: A systematic review. Vet World 2021; 14:3235-3248. [PMID: 35153418 PMCID: PMC8829400 DOI: 10.14202/vetworld.2021.3235-3248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Spermatogonial stem cells (SSCs) have previously been isolated from animals’ testes, cultured in vitro, and successfully transplanted into compatible recipients. The SSC unique characteristic has potential for exploitation as a reproductive tool and this can be achieved through SSC intratesticular transplantation to surrogate sires. Here, we aimed at comprehensively analyzing published data on in vitro maintenance of SSC isolated from the testes of livestock animals and their applications. Materials and Methods: The literature search was performed in PubMed, Science Direct, and Google Scholar electronic databases. Data screening was conducted using Rayyan Intelligent Systematic Review software (https://www.rayyan.ai/). Duplicate papers were excluded from the study. Abstracts were read and relevant full papers were reviewed for data extraction. Results: From a total of 4786 full papers screened, data were extracted from 93 relevant papers. Of these, eight papers reported on long-term culture conditions (>1 month) for SSC in different livestock species, 22 papers on short-term cultures (5-15 days), 10 papers on transfection protocols, 18 papers on transplantation using different methods of preparation of livestock recipients, and five papers on donor-derived spermatogenesis. Conclusion: Optimization of SSC long-term culture systems has renewed the possibilities of utilization of these cells in gene-editing technologies to develop transgenic animals. Further, the development of genetically deficient recipients in the endogenous germline layer lends to a future possibility for the utilization of germ cell transplantation in livestock systems.
Collapse
Affiliation(s)
- Wilkister Nakami
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, 29053-00625 Nairobi, Kenya; Livestock Genetics Program International Livestock Research Institute, 30709-00100, Nairobi, Kenya; Centre for Tropical Livestock Genetics and Health (CTLGH)-ILRI, 30709-00100, Nairobi, Kenya
| | - Ambrose Ng'eno Kipyegon
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, 29053-00625 Nairobi, Kenya
| | - James Nguhiu-Mwangi
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, 29053-00625 Nairobi, Kenya
| | - Christian Tiambo
- Livestock Genetics Program International Livestock Research Institute, 30709-00100, Nairobi, Kenya; Centre for Tropical Livestock Genetics and Health (CTLGH)-ILRI, 30709-00100, Nairobi, Kenya
| | - Stephen Kemp
- Livestock Genetics Program International Livestock Research Institute, 30709-00100, Nairobi, Kenya; Centre for Tropical Livestock Genetics and Health (CTLGH)-ILRI, 30709-00100, Nairobi, Kenya
| |
Collapse
|
7
|
The Proliferation of Pre-Pubertal Porcine Spermatogonia in Stirred Suspension Bioreactors Is Partially Mediated by the Wnt/β-Catenin Pathway. Int J Mol Sci 2021; 22:ijms222413549. [PMID: 34948348 PMCID: PMC8708394 DOI: 10.3390/ijms222413549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
Male survivors of childhood cancer are at risk of suffering from infertility in adulthood because of gonadotoxic chemotherapies. For adult men, sperm collection and preservation are routine procedures prior to treatment; however, this is not an option for pre-pubertal children. From young boys, a small biopsy may be taken before chemotherapy, and spermatogonia may be propagated in vitro for future transplantation to restore fertility. A robust system that allows for scalable expansion of spermatogonia within a controlled environment is therefore required. Stirred suspension culture has been applied to different types of stem cells but has so far not been explored for spermatogonia. Here, we report that pre-pubertal porcine spermatogonia proliferate more in bioreactor suspension culture, compared with static culture. Interestingly, oxygen tension provides an avenue to modulate spermatogonia status, with culture under 10% oxygen retaining a more undifferentiated state and reducing proliferation in comparison with the conventional approach of culturing under ambient oxygen levels. Spermatogonia grown in bioreactors upregulate the Wnt/ β-catenin pathway, which, along with enhanced gas and nutrient exchange observed in bioreactor culture, may synergistically account for higher spermatogonia proliferation. Therefore, stirred suspension bioreactors provide novel platforms to culture spermatogonia in a scalable manner and with minimal handling.
Collapse
|
8
|
Binsila B, Selvaraju S, Ranjithkumaran R, Archana SS, Krishnappa B, Ghosh SK, Kumar H, Subbarao RB, Arangasamy A, Bhatta R. Current scenario and challenges ahead in application of spermatogonial stem cell technology in livestock. J Assist Reprod Genet 2021; 38:3155-3173. [PMID: 34661801 DOI: 10.1007/s10815-021-02334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Spermatogonial stem cells (SSCs) are the source for the mature male gamete. SSC technology in humans is mainly focusing on preserving fertility in cancer patients. Whereas in livestock, it is used for mining the factors associated with male fertility. The review discusses the present status of SSC biology, methodologies developed for in vitro culture, and challenges ahead in establishing SSC technology for the propagation of superior germplasm with special reference to livestock. METHOD Published literatures from PubMed and Google Scholar on topics of SSCs isolation, purification, characterization, short and long-term culture of SSCs, stemness maintenance, epigenetic modifications of SSCs, growth factors, and SSC cryopreservation and transplantation were used for the study. RESULT The fine-tuning of SSC isolation and culture conditions with special reference to feeder cells, growth factors, and additives need to be refined for livestock. An insight into the molecular mechanisms involved in maintaining stemness and proliferation of SSCs could facilitate the dissemination of superior germplasm through transplantation and transgenesis. The epigenetic influence on the composition and expression of the biomolecules during in vitro differentiation of cultured cells is essential for sustaining fertility. The development of surrogate males through gene-editing will be historic achievement for the foothold of the SSCs technology. CONCLUSION Detailed studies on the species-specific factors regulating the stemness and differentiation of the SSCs are required for the development of a long-term culture system and in vitro spermatogenesis in livestock. Epigenetic changes in the SSCs during in vitro culture have to be elucidated for the successful application of SSCs for improving the productivity of the animals.
Collapse
Affiliation(s)
- Balakrishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India.
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Rajan Ranjithkumaran
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Santhanahalli Siddalingappa Archana
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Balaganur Krishnappa
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Subrata Kumar Ghosh
- Animal Reproduction Division, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Harendra Kumar
- Animal Reproduction Division, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Raghavendra B Subbarao
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Arunachalam Arangasamy
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Raghavendra Bhatta
- Indian council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| |
Collapse
|
9
|
Binsila BK, Selvaraju S, Ghosh SK, Ramya L, Arangasamy A, Ranjithkumaran R, Bhatta R. EGF, GDNF, and IGF-1 influence the proliferation and stemness of ovine spermatogonial stem cells in vitro. J Assist Reprod Genet 2020; 37:2615-2630. [PMID: 32821972 DOI: 10.1007/s10815-020-01912-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/03/2020] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The objective of the present study was to purify sheep spermatogonial stem cells (SSCs) from testicular isolate using combined enrichment methods and to study the effect of growth factors on SSC stemness during culture. METHODS The testicular cells from prepubertal male sheep were isolated, and SSCs were purified using Ficoll gradients (10 and 12%) followed by differential plating (laminin with BSA). SSCs were cultured with StemPro®-34 SFM, additives, and FBS for 7 days. The various doses (ng/ml) of growth factors, EGF at 10, 15, and 20, GDNF at 40, 70, and 100 and IGF-1 at 50, 100, and 150 were tested for the proliferation and stemness of SSCs in vitro. The stemness in cultured cells was assessed using SSC markers PLZF, ITGA6, and GFRα1. RESULTS Ficoll density gradient separation significantly (p < 0.05) increased the percentage of SSCs in 12% fraction (35.1 ± 3.8 vs 11.2 ± 3.7). Subsequently, purification using laminin with BSA plating further enriched SSCs to 61.7 ± 4.7%. GDNF at 40 ng/ml, EGF at 15 and 20 ng/ml and IGF1 at 100 and 150 ng/ml significantly (p < 0.05) improved proliferation and stemness of SSCs up to 7 days in culture. GDNF at 40 ng/ml outperformed other growth factors tested and could maintain the ovine SSCs proliferation and stemness for 36 days. CONCLUSIONS The combined enrichment method employing density gradient centrifugation and laminin with BSA plating improves the purification efficiency of ovine SSCs. GDNF at 40 ng/ml is essential for optimal proliferation and sustenance of stemness of ovine SSCs in vitro.
Collapse
Affiliation(s)
- B K Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India.
| | - S Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - S K Ghosh
- Animal Reproduction Division, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - L Ramya
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - A Arangasamy
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - R Ranjithkumaran
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - R Bhatta
- Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| |
Collapse
|
10
|
Sharma A, Shah SM, Tiwari M, Roshan M, Singh MK, Singla SK, Palta P, Manik RS, Chauhan MS. Propagation of goat putative spermatogonial stem cells under growth factors defined serum-free culture conditions. Cytotechnology 2020; 72:489-497. [PMID: 32124159 DOI: 10.1007/s10616-020-00386-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
In the present study, we used a serum-free culture media to propagate goat putative spermatogonial stem cells (SSCs) and evaluated the effect of crucial growth factors on relative expression of some SSC markers and self-renewal related genes. The enriched SSCs were cultured on a homologous Sertoli cell feeder layer in KO-DMEM supplemented with 10% KOSR. Putative SSC colonies emerged between day 6 and 10 which were then characterized by the expression of numerous spermatogonial and pluripotency related markers. After 15 days of subculture, the relative mRNA expression study revealed that 40 ng/mL concentration of Glial cell line-derived neurotrophic factor (GDNF) upregulated the expression of BCL6B, ID4, PLZF, and UCHL1. Moreover, the supplementation of GDNF + bFGF up-regulated the expression of PLZF and BCL6B. UCHL1 expression was higher after addition of GDNF + LIF while, THY1 overexpressed in response to the addition of GDNF + CSF1. These results demonstrated that the goat SSCs were efficiently propagated using a KOSR based serum-free media and the growth factor supplementation markedly influences their gene expression profile.
Collapse
Affiliation(s)
- Ankur Sharma
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India.
| | - Syed Mohmad Shah
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Manish Tiwari
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Mayank Roshan
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Manoj Kumar Singh
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Suresh Kumar Singla
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Prabhat Palta
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Radhay Sham Manik
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Manmohan Singh Chauhan
- Embryo Biotechnology Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
11
|
Azizi H, Ranjbar M, Rahaiee S, Govahi M, Skutella T. Investigation of VASA Gene and Protein Expression in Neonate and Adult Testicular Germ Cells in Mice In Vivo and In Vitro. CELL JOURNAL 2019; 22:171-177. [PMID: 31721531 PMCID: PMC6874794 DOI: 10.22074/cellj.2020.6619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/07/2019] [Indexed: 12/14/2022]
Abstract
Objective We aimed to examine the expression levels of the VASA gene and protein in testis sections of neonate and adult mice as well as testicular cell cultures. Materials and Methods In this experimental study, in order to investigate the expression of this germ cell marker gene in more detail, we analyzed the expression of VASA by immunocytochemistry, immunohistochemistry and fluidigm reverse transcription-polymerase chain reaction (RT-PCR). Results The immunohistochemical assays showed that the VASA protein was exclusively expressed in germ cells in the seminiferous tubules of the neonate and adult testis and not in somatic cells. VASA was not detectable in PLZF positive spermatogonial stem cells (SSCs), was weakly expressed in proliferating spermatogonia, and became abundant in spermatocytes and round spermatozoa. Counting VASA-positive cells in the seminiferous tubules of the neonate and adult testis depicted significant higher expression (P<0.05) of VASA in the adult testis in comparison to its neonate counterpart. SSC colonies were established in vitro after digestion of the testis and characterized by immunocytochemistry for CD90 and stage-specific embryonic antigens 3 (SSEA3). Immunocytochemistry confirmed that in contrast to the not detectable signal in vivo, VASA protein was strongly localized in the cytoplasm of both neonate and adult mouse SSCs under in vitro conditions. The results of Fluidigm RT-PCR revealed a significant higher expression of the germ cell gene VASA in adult SSCs in comparison to neonate SSCs in cell culture (P<0.05). Conclusion The VASA protein is, therefore, an extremely specific marker of testicular germ cell differentiation in vivo and mostly expressed in the adult testis in spermatocytes and round spermatids. The immunohistochemical signal in spermatogonia is very low. So, PLZF positive SSCs are negative for VASA in vivo, while in contrast, once isolated from the testicular niche VASA is also strongly expressed in SSCs under in vitro conditions.
Collapse
Affiliation(s)
- Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran. Electronic Address:
| | - Mojtaba Ranjbar
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Somayeh Rahaiee
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Mostafa Govahi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| |
Collapse
|
12
|
Zhao H, Li T, Yang H, Mehmood MU, Lu Y, Liang X, Yang X, Xu H, Lu K, Lu S. The effects of growth factors on proliferation of spermatogonial stem cells from Guangxi Bama mini-pig. Reprod Domest Anim 2019; 54:1574-1582. [PMID: 31544277 DOI: 10.1111/rda.13566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/10/2019] [Accepted: 09/16/2019] [Indexed: 12/25/2022]
Abstract
The objective of this study was to investigate the effects of different growth factors on the proliferation of Bama mini-pig spermatogonial stem cells (SSCs) in vitro. The growth factors glial cell line-derived neurotrophic factor (GDNF), leukaemia inhibitory factor (LIF), GDNF family receptor alpha-1 (GFRα1) and basic fibroblast growth factor (bFGF) were investigated. The SSCs were seeded on SIM mouse embryo-derived thioguanine- and ouabain-resistant (STO) feeder layers. Cultivation of the cells were subjected to a factorial design of the growth factors GDNF + bFGF, GDNF + bFGF + GFRα1, LIF + bFGF and LIF + bFGF + GFRα1. The SSCs could propagate for 25 passages in the medium adding GDNF + bFGF + GFRα1, 22 passages in the medium adding GDNF + bFGF, 6 passages in the medium adding LIF + bFGF, or LIF + bFGF + GFRα1. qRT-PCR analysis showed that the highest mRNA expression levels of NANOG, POU5F, DDX4, GFRα1 and UCHL1 were detected in the group adding GDNF + bFGF + GFRα1. The SSCs from the group adding GDNF + bFGF + GFRα1 also showed UCHL1-, DBA- and CDH1-positive staining. Moreover, Stra8 and Scp3 expression, and haploid peak were detected after induction of the SSCs from the group adding GDNF + bFGF + GFRα1. In conclusion, pig SSCs could be maintained for long term in the presence of GDNF, bFGF, and GFRα1.
Collapse
Affiliation(s)
- Huimin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, China.,College of Life Science and Technology, Guangxi University, Nanning, China
| | - Tingting Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Huan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Muhammad Usman Mehmood
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Huiyan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kehuan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Shengsheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
13
|
Wang G, Li Y, Yang Q, Xu S, Ma S, Yan R, Zhang R, Jia G, Ai D, Yang Q. Gene expression dynamics during the gonocyte to spermatogonia transition and spermatogenesis in the domestic yak. J Anim Sci Biotechnol 2019; 10:64. [PMID: 31338188 PMCID: PMC6624888 DOI: 10.1186/s40104-019-0360-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 05/01/2019] [Indexed: 11/10/2022] Open
Abstract
Background Spermatogenesis is a cellular differentiation process that includes three major events: mitosis of spermatogonia, meiosis of spermatocytes and spermiogenesis. Steady-state spermatogenesis relies on functions of spermatogonial stem cells (SSCs). Establishing and maintaining a foundational SSC pool is essential for continued spermatogenesis in mammals. Currently, our knowledge about SSC and spermatogenesis is severely limited in domestic animals. Results In the present study, we examined transcriptomes of testes from domestic yaks at four different stages (3, 5, 8 and 24 months of age) and attempted to identify genes that are associated with key developmental events of spermatogenesis. Histological analyses showed that the most advanced germ cells within seminiferous tubules of testes from 3, 5, 8 and 24 months old yaks were gonocytes, spermatogonia, spermatocytes and elongated spermatids, respectively. RNA-sequencing (RNA-seq) analyses revealed that 11904, 4381 and 2459 genes were differentially expressed during the gonocyte to spermatogonia transition, the mitosis to meiosis transition and the meiosis to post-meiosis transition. Further analyses identified a list of candidate genes than may regulate these important cellular processes. CXCR4, a previously identified SSC niche factor in mouse, was one of the up-regulated genes in the 5 months old yak testis. Results of immunohistochemical staining confirmed that CXCR4 was exclusively expressed in gonocytes and a subpopulation of spermatogonia in the yak testis. Conclusions Together, these findings demonstrated histological changes of postnatal testis development in the domestic yak. During development of spermatogonial lineage, meiotic and haploid germ cells are supported by dynamic transcriptional regulation of gene expression. Our transcriptomic analyses provided a list of candidate genes that potentially play crucial roles in directing the establishment of SSC and spermatogenesis in yak. Electronic supplementary material The online version of this article (10.1186/s40104-019-0360-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guowen Wang
- 1Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000 Qinghai China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yongchang Li
- 1Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000 Qinghai China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qilin Yang
- 3Department of Veterinary Sciences, Qinghai Vocational and Technical Institute of Animal Husbandry and Veterinary, Qinghai University, Xining, 810016 China
| | - Shangrong Xu
- 4Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016 China
| | - Shike Ma
- 4Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, 810016 China
| | - Rongge Yan
- 1Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000 Qinghai China.,2University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ruina Zhang
- 1Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000 Qinghai China
| | - Gongxue Jia
- 1Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000 Qinghai China
| | - Deqiang Ai
- Animal Husbandry Technology Extension Station of Qinghai Province, Xining, 810001 Qinghai China
| | - Qi'en Yang
- 1Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810000 Qinghai China.,6Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001 Qinghai China.,7CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
14
|
Expression of the alternative splicing variants of bcl6b in medaka Oryzias latipes. Comp Biochem Physiol B Biochem Mol Biol 2018; 227:83-89. [PMID: 30292753 DOI: 10.1016/j.cbpb.2018.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 01/01/2023]
Abstract
Bcl6B, also known as BAZF, plays important roles in the immune response, repression of cancers, and maintenance of spermatogonial stem cells in mammals. In this study, the homologous gene bcl6b and its 5 alternative splicing variants, namely bcl6bX1 to bcl6bX5, were isolated from medaka fish, Oryzias latipes. Medaka bcl6b possesses conserved domains such as BTB domain, RD2 domain and four zinc fingers. Medaka bcl6bX1 to bcl6bX3 possess all three previously mentioned domains with minor differences in sequences. Medaka bcl6bX4 possesses only the BTB domain due to premature stopping, and bcl6bX5 possesses both the BTB domain and zinc fingers without the RD2 domain. Medaka bcl6b was expressed in the tissues including the brain, heart, gill, muscle, spleen, kidney, intestine, ovary and testes of adult fish. Medaka bcl6b was expressed in the embryos from very early stage, and could be detected clearly in the developing eyes by RT-PCR and in situ hybridization. Medaka bcl6b could respond to the stimuli of polyI:C and LPS in the kidney and spleen. Medaka bcl6bX1 to bcl6bX3 were the majority of the variants expressed in the adult tissues and the embryos, and were the major response to the stimulation of polyI:C and LPS in the spleen. These results suggested that bcl6b, including its isoforms, could function in various tissues and embryogenesis. Moreover, bcl6b might be a factor for immune response in medaka.
Collapse
|
15
|
Niu B, Li B, Wu C, Wu J, Yan Y, Shang R, Bai C, Li G, Hua J. Melatonin promotes goat spermatogonia stem cells (SSCs) proliferation by stimulating glial cell line-derived neurotrophic factor (GDNF) production in Sertoli cells. Oncotarget 2018; 7:77532-77542. [PMID: 27769051 PMCID: PMC5363602 DOI: 10.18632/oncotarget.12720] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/05/2016] [Indexed: 12/22/2022] Open
Abstract
Melatonin has been reported to be an important endogenous hormone for regulating neurogenesis, immunityand the biological clock. Recently, the effects of melatonin on neural stem cells (NSCs), mesenchymal stem cells(MSCs), and induced pluripotent stem cells(iPSCs) have been reported; however, the effects of melatonin on spermatogonia stem cells (SSCs) are not clear. Here, 1μM and 1nM melatonin was added to medium when goat SSCs were cultured in vitro, the results showed that melatonin could increase the formation and size of SSC colonies. Real-time quantitative PCR (QRT-PCR) and western blot analysis showed that the expression levels of SSC proliferation and self-renewal markers were up-regulated. Meanwhile, QRT-PCR results showed that melatonin inhibit the mRNA expression level of SSC differentiation markers. ELISA analysis showed an obvious increase in the concentration of GDNF (a niche factor secreted by Sertoli cells) in the medium when treated with melatonin. Meanwhile, the phosphorylation level of AKT, a downstream of GDNF-GFRa1-RET pathway was activated. In conclusion, melatonin promotes goat SSC proliferation by stimulating GDNF production in Sertoli cells.
Collapse
Affiliation(s)
- Bowen Niu
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bo Li
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chongyang Wu
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiang Wu
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuan Yan
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rui Shang
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunling Bai
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Guangpeng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Stem Cell Engineering and Technology Research Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
16
|
Amini Mahabadi J, Sabzalipoor H, Kehtari M, Enderami SE, Soleimani M, Nikzad H. Derivation of male germ cells from induced pluripotent stem cells by inducers: A review. Cytotherapy 2018; 20:279-290. [PMID: 29397308 DOI: 10.1016/j.jcyt.2018.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 11/15/2017] [Accepted: 01/01/2018] [Indexed: 12/29/2022]
Abstract
Induced pluripotent stem cells (iPSCs) refer to stem cells that are artificially produced using a new technology known as cellular reprogramming, which can use gene transduction in somatic cells. There are numerous potential applications for iPSCs in the field of stem cell biology becauase they are able to give rise to several different cell features of lineages such as three-germ layers. Primordial germ cells, generated via in vitro differentiation of iPSCs, have been demonstrated to produce functional gametes. Therefore, in this review we discussed past and recent advances in the in vitro differentiation of germ cells using pluripotent stem cells with an emphasis on iPSCs. Although this domain of research is still in its infancy, exploring development mechanisms of germ cells is promising, especially in humans, to promote future reproductive and developmental engineering technologies. While few studies have evaluated the ability and efficiency of iPSCs to differentiate toward male germ cells in vitro by different inducers, the given effect was investigated in this review.
Collapse
Affiliation(s)
- Javad Amini Mahabadi
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Sabzalipoor
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mousa Kehtari
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Seyed Ehsan Enderami
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masoud Soleimani
- Hematology Department, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Nikzad
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
17
|
Could IGF-I levels play a neuroprotective role in patients with large vestibular schwannomas? Future Sci OA 2017; 4:FSO260. [PMID: 29379636 PMCID: PMC5778376 DOI: 10.4155/fsoa-2017-0103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 09/29/2017] [Indexed: 11/17/2022] Open
Abstract
Aim To evaluate the possible superiority of outcome in patients with elevated IGF-I levels after vestibular schwannoma (VS) resection. Patients & methods This retrospective study included 65 patients (34 male, 52.3%) with VS operated in between January 2009 and April 2014 (follow-up 3.2 ± 0.7 years). Preoperative or postoperative IGF-I levels were identified for each patient. Results Patients were divided into two groups: Group A (small size tumor), 56 patients; and Group B (large size tumor), 9 cases. IGF-I levels in Group A (195.8 ± 32.9 ng/ml) were compared with those of Group B (242.2 ± 22.2 ng/ml) and were found to have statistically significant difference (p = 0.001). Conclusion Increased IGF-I levels could hold a key role in nerve recovery in patients undergoing surgical resection of large VS.
Collapse
|
18
|
Li C, Che LH, Shi L, Yu JL. Suppression of Basic Fibroblast Growth Factor Expression by Antisense Oligonucleotides Inhibits Neural Stem Cell Proliferation and Differentiation in Rat models With Focal Cerebral Infarction. J Cell Biochem 2017; 118:3875-3882. [PMID: 28390174 DOI: 10.1002/jcb.26038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/07/2017] [Indexed: 12/13/2022]
Abstract
This study is designed to investigate the role of basic fibroblast growth factor (bFGF) antisense oligonucleotide (ASODN) on the proliferation and differentiation of neural stem cells (NSCs) in rat models with focal cerebral infarction (CI). Seventy-five Sprague-Dawlay (SD) rats were randomly divided into the control, sham, middle cerebral artery occlusion (MCAO), MCAO + nonsense oligonucleotide (NODN), and MCAO + ASODN groups. Proliferation and differentiation of NSCs were detected by bromodeoxyuridine (BrdU) and immunofluorescence staining, respectively. ELISA was performed to detect the expressions of endogenous factors that include insulin-like growth factor 1 (IGF-1), glial cell line derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), transforming growth factor-α1 (TGF-α1), bFGF, and nerve growth factor (NGF). Results show significant neurological deficits and focal CI in the MCAO and MCAO + NODN groups. An obvious increase of NSC proliferation, reactive proliferation of astrocytes in CI areas, differentiation of newly proliferated NSCs into mature neuronal cells, and expressions of endogenous growth factors exhibited in the MCAO, MCAO + NODN and MCAO + ASODN groups. Compared to the MCAO and MACO + NODN groups, the MCAO + ASODN group showed a significant decrease NSC proliferation and differentiation in CI areas as well as decrease expressions of endogenous growth factors. These findings may offer insight to help us understand more as to how bFGF ASODN can effectively suppress the proliferation and differentiation of NSCs. These findings are expected to help contribute to research for new targets in the treatment of focal CI. J. Cell. Biochem. 118: 3875-3882, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chao Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, 130021, P.R. China
| | - Li-He Che
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, 130021,, P.R. China
| | - Lei Shi
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021,, P.R. China
| | - Jin-Lu Yu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021,, P.R. China
| |
Collapse
|
19
|
Bahadorani M, Hosseini MS, Abbasi H, Abedi P, Nasr-Esfahani MH. Effect of different serum concentrations on short term in vitro culture of goat testicular cells. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416050064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Wang X, Chen T, Zhang Y, Li B, Xu Q, Song C. Isolation and Culture of Pig Spermatogonial Stem Cells and Their in Vitro Differentiation into Neuron-Like Cells and Adipocytes. Int J Mol Sci 2015; 16:26333-46. [PMID: 26556335 PMCID: PMC4661817 DOI: 10.3390/ijms161125958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 12/14/2022] Open
Abstract
Spermatogonial stem cells (SSCs) renew themselves throughout the life of an organism and also differentiate into sperm in the adult. They are multipopent and therefore, can be induced to differentiate into many cells types in vitro. SSCs from pigs, considered an ideal animal model, are used in studies of male infertility, regenerative medicine, and preparation of transgenic animals. Here, we report on a culture system for porcine SSCs and the differentiation of these cells into neuron-like cells and adipocytes. SSCs and Sertoli cells were isolated from neonatal piglet testis by differential adhesion and SSCs were cultured on a feeder layer of Sertoli cells. Third-generation SSCs were induced to differentiate into neuron-like cells by addition of retinoic acid, β-mercaptoethanol, and 3-isobutyl-1-methylxanthine (IBMX) to the induction media and into adipocytes by the addition of hexadecadrol, insulin, and IBMX to the induction media. The differentiated cells were characterized by biochemical staining, qRT-PCR, and immunocytochemistry. The cells were positive for SSC markers, including alkaline phosphatase and SSC-specific genes, consistent with the cells being undifferentiated. The isolated SSCs survived on the Sertoli cells for 15 generations. Karyotyping confirmed that the chromosomal number of the SSCs were normal for pig (2n = 38, n = 19). Pig SSCs were successfully induced into neuron-like cells eight days after induction and into adipocytes 22 days after induction as determined by biochemical and immunocytochemical staining. qPCR results also support this conclusion. The nervous tissue markers genes, Nestin and β-tubulin, were expressed in the neuron-like cells and the adipocyte marker genes, PPARγ and C/EBPα, were expressed in the adipocytes.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China.
| | - Tingfeng Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China.
| | - Yani Zhang
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China.
| | - Bichun Li
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China.
| | - Qi Xu
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China.
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|