1
|
Tiwari RK, Rawat SG, Rai S, Kumar A. Stress regulatory hormones and cancer: the contribution of epinephrine and cancer therapeutic value of beta blockers. Endocrine 2025; 88:359-386. [PMID: 39869294 DOI: 10.1007/s12020-025-04161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
The word "cancer" evokes myriad emotions, ranging from fear and despair to hope and determination. Cancer is aptly defined as a complex and multifaceted group of diseases that has unapologetically led to the loss of countless lives and affected innumerable families across the globe. The battle with cancer is not only a physical battle, but also an emotional, as well as a psychological skirmish for patients and for their loved ones. Cancer has been a part of our history, stories, and lives for centuries and has challenged the ingenuity of health and medical science, and the resilience of the human spirit. From the early days of surgery and radiation therapy to cutting-edge developments in chemotherapeutic agents, immunotherapy, and targeted treatments, the medical field continues to make significant headway in the fight against cancer. However, even after all these advancements, cancer is still among the leading cause of death globally. This urges us to understand the central hallmarks of neoplastic cells to identify novel molecular targets for the development of promising therapeutic approaches. Growing research suggests that stress mediators, including epinephrine, play a critical role in the development and progression of cancer by inducing neoplastic features through activating adrenergic receptors, particularly β-adrenoreceptors. Further, our experimental data has also shown that epinephrine mediates the growth of T-cell lymphoma by inducing proliferation, glycolysis, and apoptosis evasion via altering the expression levels of key regulators of these vital cellular processes. The beauty of receptor-based therapy lies in its precision and higher therapeutic value. Interestingly, the enhanced expression of β-adrenergic receptors (ADRBs), namely ADRB2 (β2-adrenoreceptor) and ADRB3 (β3-adrenoreceptor) has been noted in many cancers, such as breast, colon, gastric, pancreatic, and prostate and has been reported to play a pivotal role in facilitating cancer growth mainly by promoting proliferation, evasion of apoptosis, angiogenesis, invasion and metastasis, and chemoresistance. The present review article is an attempt to summarize the available findings which indicate a distinct relationship between stress hormones and cancer, with a special emphasis on epinephrine, considered as a key stress regulatory molecule. This article also discusses the possibility of using beta-blockers for cancer therapy.
Collapse
Affiliation(s)
- Rajan Kumar Tiwari
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- School of Medicine and Health Sciences, The George Washington University, Washington DC, USA
| | - Shiv Govind Rawat
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- MD Anderson Cancer Center, The University of Texas, Texas, USA
| | - Siddharth Rai
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
2
|
Hansen JL, Carroll JE, Seeman TE, Cole SW, Rentscher KE. Lifetime chronic stress exposures, stress hormones, and biological aging: Results from the Midlife in the United States (MIDUS) study. Brain Behav Immun 2025; 123:1159-1168. [PMID: 39442637 PMCID: PMC11874905 DOI: 10.1016/j.bbi.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024] Open
Abstract
Psychosocial stress and adversity have been linked to accelerated aging and increased risk for age-related diseases. Animal and in vitro studies have shown that exposure to stress hormones (catecholamines, glucocorticoids) can impact biological aging processes such as DNA damage and cellular senescence, suggesting they play a key role in links between stress and aging; however, these associations have not been well investigated in humans. We examined cross-sectional associations between chronic stress exposures, stress hormones, and biological aging markers in midlife adults and whether stress hormones mediated associations between stress and aging. Participants were 531 adults aged 26-78 years (Mage = 53.9, 50.1% female) in the nationally representative Midlife in the United States Refresher cohort. They reported chronic stress exposures in childhood and adulthood (Stressful Life Event Inventory) and provided 12-hour urine samples used to assess norepinephrine, epinephrine, and cortisol. RNA sequencing of peripheral blood mononuclear cells derived aging biomarkers: the DNA damage response (DDR; 30-gene composite), cellular senescence signal p16INK4a (CDKN2A), and the pro-inflammatory senescence-associated secretory phenotype (SASP; 57-gene composite). Regression models adjusting for age, sex, race/ethnicity, BMI, smoking status, alcohol use, and medications revealed that more childhood exposures were associated with higher norepinephrine (β = 0.09, p = 0.04), independent from adult exposures. Higher norepinephrine was associated with elevated DDR expression (β = 0.17, p < 0.001). Higher norepinephrine (β = 0.14, p = 0.003) and epinephrine (β = 0.10, p = 0.02) were both associated with elevated SASP expression. Statistical mediation analyses implicated elevated norepinephrine as a plausible mediator of associations between childhood exposures and both DDR (unstandardized b = 0.005, 95% CI [0.0002, 0.011]) and SASP (b = 0.002, 95% CI [0.0001, 0.05]). Findings provide preliminary evidence in humans that stress hormones may impact key biological aging processes and may be a mechanism linking chronic stress exposures in childhood to accelerated aging later in life.
Collapse
Affiliation(s)
- Jenna L Hansen
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Judith E Carroll
- Norman Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Teresa E Seeman
- Division of Geriatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Steve W Cole
- Norman Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA
| | - Kelly E Rentscher
- Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Norman Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
3
|
Duarte M, Pedrosa SS, Khusial PR, Madureira AR. Exploring the interplay between stress mediators and skin microbiota in shaping age-related hallmarks: A review. Mech Ageing Dev 2024; 220:111956. [PMID: 38906383 DOI: 10.1016/j.mad.2024.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/27/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024]
Abstract
Psychological stress is a major contributing factor to several health problems (e.g., depression, cardiovascular disease). Around 35 % of the world's population suffers from it, including younger generations. Physiologically, stress manifests through neuroendocrine pathways (Hypothalamic-Pituitary-Adrenal (HPA) axis and Sympathetic-Adrenal-Medullary (SAM) system) which culminate in the production of stress mediators like cortisol, epinephrine and norepinephrine. Stress and its mediators have been associated to body aging, through molecular mechanisms such as telomere attrition, mitochondrial dysfunction, cellular senescence, chronic inflammation, and dysbiosis, among others. Regarding its impact in the skin, stress impacts its structural integrity and physiological function. Despite this review focusing on several hallmarks of aging, emphasis was placed on skin microbiota dysbiosis. In this line, several studies, comprising different age groups, demographic contexts and body sites, have reported skin microbiota alterations associated with aging, and some effects of stress mediators on skin microbiota have also been reviewed in this paper. From a different perspective, since it is not a "traditional" stress mediator, oxytocin, a cortisol antagonist, has been related to glucorticoids inhibition and to display positive effects on cellular aging. This hormone dysregulation has been associated to psychological issues such as depression, whereas its upregulation has been linked to positive social interaction.
Collapse
Affiliation(s)
- Marco Duarte
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
| | - Sílvia Santos Pedrosa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal
| | - P Raaj Khusial
- Amyris Biotech INC, 5885 Hollis St Ste 100, Emeryville, CA 94608-2405, USA
| | - Ana Raquel Madureira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto 4169-005, Portugal.
| |
Collapse
|
4
|
Hou S, Li L, Hou H, Zhou T, Zhou H. Establishment of nomogram to predict overall survival and cancer-specific survival of local tumor resection in patients with colorectal cancer liver metastasis with unresectable metastases: a large population-based analysis. Discov Oncol 2024; 15:315. [PMID: 39073708 PMCID: PMC11286894 DOI: 10.1007/s12672-024-01182-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND AND PURPOSE The tumour-node metastasis (TNM) classification is a common model for evaluating the prognostic value of tumour patients. However, few models have been used to predict the survival outcomes of patients with colorectal cancer liver metastasis (CRLM) with unresectable metastases who received the primary local surgery. Thus, we utilized the Surveillance, Epidemiology, and End Results (SEER) database to establish novel nomograms for predicting the overall survival (OS) and cancer-specific survival (CSS) of these patients. METHODS Extracted primary data on CRLM patients by local surgery from SEER database. All prognostic factors of OS and CSS were determined by Cox regression analysis. The concordance index (C-index), receiver operating characteristic (ROC) curves and calibration curves were used to further evaluate the accuracy and discrimination of these nomograms. Decision curve analysis (DCA) was executed to evaluate the nomograms for the clinical net benefit. Risk stratification analysis (RSA) was used to evaluate the reliability of them in clinical. RESULTS 3622 eligible patients were screened and assigned to training cohort (1812) or validation cohort (1810). The age, chemotherapy, tumour grade, primary tumour site, tumour size, lymph node positive rate (LNR), marital status, and carcinoembryonic antigen (CEA) were independent prognostic factors of OS. Additionally, the age, chemotherapy, tumour grade, primary tumour site, tumour size, LNR, and CEA were independent prognostic factors of CSS. The results of C-indexes and ROC curves indicated that the established nomograms exhibited better discrimination power than TNM classification. The calibration curves demonstrated excellent agreement between the predicted and actual survival rates for 1-, 3-, and 5 year OS and CSS. Meanwhile, the validation cohort demonstrated similar results. Background the clinic context, the DCA showed that these nomograms have higher net benefits, and the RSA showed that patients were further divided into low risk, medium risk, and high risk groups according to the predicted scores from nomograms. And, the Kaplan-Meier curve and log-rank test showed that the survival differences among the three groups are statistically significant. CONCLUSIONS The prognostic nomograms showed very high accuracy, identifiability, and clinical practicality in predicting the OS and CSS of CRLM patients with unresectable metastases treated by local surgery at 1-, 3-, and 5 years, which might improve individualized predictions of survival risks and help clinicians formulate treatment plans.
Collapse
Affiliation(s)
- Songlin Hou
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, 1 Maoyuan South Road, Nanchong, 637000, Sichuan, People's Republic of China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China
| | - Lifa Li
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, 1 Maoyuan South Road, Nanchong, 637000, Sichuan, People's Republic of China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China
| | - Huafang Hou
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, 1 Maoyuan South Road, Nanchong, 637000, Sichuan, People's Republic of China
| | - Tong Zhou
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, 1 Maoyuan South Road, Nanchong, 637000, Sichuan, People's Republic of China
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China
| | - He Zhou
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, 1 Maoyuan South Road, Nanchong, 637000, Sichuan, People's Republic of China.
- Institute of Hepatobiliary, Pancreatic and Intestinal Disease, North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China.
| |
Collapse
|
5
|
Radstake WE, Parisi A, Miranda S, Gautam K, Vermeesen R, Rehnberg E, Tabury K, Coppes R, van Goethem MJ, Brandenburg S, Weber U, Fournier C, Durante M, Baselet B, Baatout S. Radiation-induced DNA double-strand breaks in cortisol exposed fibroblasts as quantified with the novel foci-integrated damage complexity score (FIDCS). Sci Rep 2024; 14:10400. [PMID: 38710823 DOI: 10.1038/s41598-024-60912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Without the protective shielding of Earth's atmosphere, astronauts face higher doses of ionizing radiation in space, causing serious health concerns. Highly charged and high energy (HZE) particles are particularly effective in causing complex and difficult-to-repair DNA double-strand breaks compared to low linear energy transfer. Additionally, chronic cortisol exposure during spaceflight raises further concerns, although its specific impact on DNA damage and repair remains unknown. This study explorers the effect of different radiation qualities (photons, protons, carbon, and iron ions) on the DNA damage and repair of cortisol-conditioned primary human dermal fibroblasts. Besides, we introduce a new measure, the Foci-Integrated Damage Complexity Score (FIDCS), to assess DNA damage complexity by analyzing focus area and fluorescent intensity. Our results show that the FIDCS captured the DNA damage induced by different radiation qualities better than counting the number of foci, as traditionally done. Besides, using this measure, we were able to identify differences in DNA damage between cortisol-exposed cells and controls. This suggests that, besides measuring the total number of foci, considering the complexity of the DNA damage by means of the FIDCS can provide additional and, in our case, improved information when comparing different radiation qualities.
Collapse
Affiliation(s)
- Wilhelmina E Radstake
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Alessio Parisi
- Radiation Protection Dosimetry and Calibration Expert Group, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Silvana Miranda
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kiran Gautam
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Randy Vermeesen
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Emil Rehnberg
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Biomedical Engineering, University of South Carolina, Columbia, USA
| | - Rob Coppes
- Department of Biomedical Sciences of Cells and Systems, Section of Molecular Cell Biology, University of Groningen, University Medical Center Groningen, 9713, Groningen, The Netherlands
- Department of Radiation Oncology and Particle Therapy Research Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marc-Jan van Goethem
- Department of Radiation Oncology and Particle Therapy Research Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sytze Brandenburg
- Department of Radiation Oncology and Particle Therapy Research Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ulrich Weber
- Biophysics Division, GSI Helmholtzzentrum Für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Claudia Fournier
- Biophysics Division, GSI Helmholtzzentrum Für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Marco Durante
- Biophysics Division, GSI Helmholtzzentrum Für Schwerionenforschung GmbH, Darmstadt, Germany
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium.
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Seiler A, Milliken A, Leiter RE, Blum D, Slavich GM. The Psychoneuroimmunological Model of Moral Distress and Health in Healthcare Workers: Toward Individual and System-Level Solutions. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2024; 17:100226. [PMID: 38482488 PMCID: PMC10935511 DOI: 10.1016/j.cpnec.2024.100226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 11/02/2024] Open
Abstract
Healthcare is presently experiencing a global workforce crisis, marked by the inability of hospitals to retain qualified healthcare workers. Indeed, poor working conditions and staff shortages have contributed to structural collapse and placed a heavy toll on healthcare workers' (HCWs) well-being, with many suffering from stress, exhaustion, demoralization, and burnout. An additional factor driving qualified HCWs away is the repeated experience of moral distress, or the inability to act according to internally held moral values and perceived ethical obligations due to internal and external constraints. Despite general awareness of this crisis, we currently lack an organized understanding of how stress leads to poor health, wellbeing, and performance in healthcare workers. To address this critical issue, we first review the literature on moral distress, stress, and health in HCWs. Second, we summarize the biobehavioral pathways linking occupational and interpersonal stressors to health in this population, focusing on neuroendocrine, immune, genetic, and epigenetic processes. Third, we propose a novel Psychoneuroimmunological Model of Moral Distress and Health in HCWs based on this literature. Finally, we discuss evidence-based individual- and system-level interventions for preventing stress and promoting resilience at work. Throughout this review, we underscore that stress levels in HCWs are a major public health concern, and that a combination of system-level and individual-level interventions are necessary to address preventable health care harm and foster resilience in this population, including new health policies, mental health initiatives, and additional translational research.
Collapse
Affiliation(s)
- Annina Seiler
- Department of Radiation Oncology and Competence Center for Palliative Care, University Hospital Zurich and University of Zurich, Switzerland
| | - Aimee Milliken
- Harvard Medical School, Boston, MA, United States
- William F. Connell School of Nursing, Boston College, Chestnut Hill, MA, United States
| | - Richard E. Leiter
- Harvard Medical School, Boston, MA, United States
- Department of Psychosocial Oncology and Palliative Care, Dana-Faber Cancer Institute, Boston, MA, United States
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - David Blum
- Department of Radiation Oncology and Competence Center for Palliative Care, University Hospital Zurich and University of Zurich, Switzerland
| | - George M. Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
7
|
Lyons CE, Razzoli M, Bartolomucci A. The impact of life stress on hallmarks of aging and accelerated senescence: Connections in sickness and in health. Neurosci Biobehav Rev 2023; 153:105359. [PMID: 37586578 PMCID: PMC10592082 DOI: 10.1016/j.neubiorev.2023.105359] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/03/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Chronic stress is a risk factor for numerous aging-related diseases and has been shown to shorten lifespan in humans and other social mammals. Yet how life stress causes such a vast range of diseases is still largely unclear. In recent years, the impact of stress on health and aging has been increasingly associated with the dysregulation of the so-called hallmarks of aging. These are basic biological mechanisms that influence intrinsic cellular functions and whose alteration can lead to accelerated aging. Here, we review correlational and experimental literature (primarily focusing on evidence from humans and murine models) on the contribution of life stress - particularly stress derived from adverse social environments - to trigger hallmarks of aging, including cellular senescence, sterile inflammation, telomere shortening, production of reactive oxygen species, DNA damage, and epigenetic changes. We also evaluate the validity of stress-induced senescence and accelerated aging as an etiopathological proposition. Finally, we highlight current gaps of knowledge and future directions for the field, and discuss perspectives for translational geroscience.
Collapse
Affiliation(s)
- Carey E Lyons
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
8
|
Chen X, Wang M, Yu K, Xu S, Qiu P, Lyu Z, Zhang X, Xu Y. Chronic stress-induced immune dysregulation in breast cancer: Implications of psychosocial factors. J Transl Int Med 2023; 11:226-233. [PMID: 37662890 PMCID: PMC10474889 DOI: 10.2478/jtim-2021-0050] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic stress refers to continuous emotional changes and psychological pressure that individuals experience when they are unable to adjust and stabilize the internal environment over an extended period. It can increase the pressure on endocrine mediators and cytokines in the circulation, as well as tissues throughout the hypothalamic-pituitary-adrenaline (HPA) axis and sympathetic nervous system (SNS); thus, evolving the internal environment of the tumor. This review assesses several key issues, involving psychosocial factors, and integrates clinical, cellular, and molecular studies-as well as the latest research progress-to provide a mechanistic understanding regarding breast oncopsychology. We propose that chronic stress contributes to large individual diferences in the prognosis of breast cancer survivors because they change the basic physiological processes of the endocrine and immune systems, which in turn regulate tumor growth. The study of psychological and physiological reactions of breast cancer patients suggests a new idea for psychological intervention and clinical treatment for breast cancer patients.
Collapse
Affiliation(s)
- Xiuyun Chen
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Mozhi Wang
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Keda Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai200032, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin150081, Heilongjiang Province, China
| | - Pengfei Qiu
- Breast Cancer Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, Jinan250117, Shandong Province, China
| | - Zhidong Lyu
- Breast Center, The Affiliated Hospital of Qingdao University, Qingdao266005, Shandong Province, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang110122, Liaoning Province, China
| | - Yingying Xu
- Department of Breast Surgery, the First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| |
Collapse
|
9
|
Zhu Y, Chen J, Li J, Zhou C, Huang X, Chen B. Ginsenoside Rg1 as a promising adjuvant agent for enhancing the anti-cancer functions of granulocytes inhibited by noradrenaline. Front Immunol 2023; 14:1070679. [PMID: 36817446 PMCID: PMC9929943 DOI: 10.3389/fimmu.2023.1070679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Introduction In recent years, numerous studies have confirmed that chronic stress is closely related to the development of cancer. Our previous research showed that high levels of stress hormones secreted in the body during chronic stress could inhibit the cancer-killing activity of granulocytes, which could further promote the development of cancer. Therefore, reversing the immunosuppressive effect of stress hormones on granulocytes is an urgent problem in clinical cancer treatment. Here, we selected noradrenaline (NA) as a representative stress hormone. Methods and results After screening many traditional Chinese herbal medicine active ingredients, a promising compound, ginsenoside Rg1, attracted our attention. We verified the immunoprotective effect of ginsenoside Rg1 on granulocytes in vitro and ex vivo, and attempted to understand its potential immunoprotective mechanism. We confirmed the immunoprotective effect of ginsenoside Rg1 on granulocytes using cell and animal experiments. Cell counting kit-8 (CCK-8) and ex vivo experiments were performed to investigate the immunoprotective effects of ginsenoside Rg1 on the anti-cancer function of granulocytes inhibited by NA. Transcriptome sequencing analysis and qRT-PCR showed that NA elevated the mRNA expression of ARG2, MMP1, S100A4, and RAPSN in granulocytes, thereby reducing the anti-cancer function of granulocytes. In contrast, ginsenoside Rg1 downregulated the mRNA expression of ARG2, MMP1, S100A4, and RAPSN, and upregulated the mRNA expression of LAMC2, DSC2, KRT6A, and FOSB, thereby enhancing the anti-cancer function of granulocytes inhibited by NA. Transwell cell migration experiments were performed to verify that ginsenoside Rg1 significantly enhanced the migration capability of granulocytes inhibited by NA. Tumor-bearing model mice were used to verify the significant immunoprotective effects in vivo. Finally, CCK-8 and hematoxylin and eosin staining experiments indicated that ginsenoside Rg1 exhibited high biosafety in vitro and in vivo. Discussion In future clinical treatments, ginsenoside Rg1 may be used as an adjuvant agent for cancer treatment to alleviate chronic stress-induced adverse events in cancer patients.
Collapse
Affiliation(s)
| | | | | | | | - Xin Huang
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Bingdi Chen
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Li G, Qian Y, Chen Y, Cao M, Yang X, Kong D, Wang G, An H, Yang N, Huang W, Liu Y. Wip1 contributes to the adaptation of HepG2 human liver cancer cells to stress hormone-induced DNA damage. Oncol Lett 2022; 25:31. [PMID: 36589663 PMCID: PMC9773319 DOI: 10.3892/ol.2022.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022] Open
Abstract
Numerous studies have shown that the release of stress hormones resulting from repeated exposure to chronic psychological stress increases DNA damage and promotes tumorigenesis. However, the mechanisms that enable cancerous cells adapt to stress hormone-induced DNA damage and survive remain unclear. The present study aimed to investigate the impact of stress hormones on the survival of liver cancer cells and the underlying mechanism. HepG2 human liver cancer cells were treated with dexamethasone (DEX), epinephrine (EPI) and norepinephrine (NE) and subjected to the testing of DNA damage, cell survival and cell apoptosis by alkaline comet assay, CCK-8 viability assay and flow cytometry, respectively. The protein expression levels of DNA damage response factors were determined by western blotting analysis. The results revealed that treatment of HepG2 cells with DEX, EPI and NE induced DNA damage without affecting cell survival or inducing apoptosis. The protein levels of wild-type p53-induced phosphatase 1 (Wip1), a type 2C family serine/threonine phosphatase, were increased, and the dephosphorylation of DNA damage response factors, including phosphorylated (p-)ataxia-telangiectasia mutated and p-checkpoint kinase 2, occurred following treatment with DEX, EPI and NE. In addition, a cycloheximide chase assay was performed to explore the protein stability under treatment with stress hormones. Compared with vehicle-treated cells, Wip1 exhibited increased protein stability in stress hormone-treated HepG2 cells. Eventually, the depletion of Wip1 using small interfering RNA verified the role of Wip1 in the modulation of stress hormone-induced DNA damage. These findings suggest that cancerous cells likely adapt to stress hormone-induced DNA damage via Wip1 upregulation. The present study provides an insight into the underlying mechanism that links chronic psychological stress with tumor growth and progression.
Collapse
Affiliation(s)
- Gaoxiang Li
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China,Medical College, Tibet University, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Yazhi Qian
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Yuzhu Chen
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Mingyue Cao
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Xiaozhou Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Dexin Kong
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Guiping Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China,Medical College, Tibet University, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Haiyan An
- Department of Anesthesiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Nan Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Wei Huang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China,Correspondence to: Dr Yanyong Liu or Dr Wei Huang, Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Dong-Cheng, Beijing 100005, P.R. China, E-mail: , E-mail:
| | - Yanyong Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China,Medical College, Tibet University, Lhasa, Tibet Autonomous Region 850000, P.R. China,Correspondence to: Dr Yanyong Liu or Dr Wei Huang, Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Dong-Cheng, Beijing 100005, P.R. China, E-mail: , E-mail:
| |
Collapse
|
11
|
The Central Nervous Mechanism of Stress-Promoting Cancer Progression. Int J Mol Sci 2022; 23:ijms232012653. [PMID: 36293510 PMCID: PMC9604265 DOI: 10.3390/ijms232012653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Evidence shows that stress can promote the occurrence and development of tumors. In recent years, many studies have shown that stress-related hormones or peripheral neurotransmitters can promote the proliferation, survival, and angiogenesis of tumor cells and impair the body’s immune response, causing tumor cells to escape the “surveillance” of the immune system. However, the perception of stress occurs in the central nervous system (CNS) and the role of the central nervous system in tumor progression is still unclear, as are the underlying mechanisms. This review summarizes what is known of stress-related CNS-network activation during the stress response and the influence of the CNS on tumors and discusses available adjuvant treatment methods for cancer patients with negative emotional states, such as anxiety and depression.
Collapse
|
12
|
Wang C, Shen Y, Ni J, Hu W, Yang Y. Effect of chronic stress on tumorigenesis and development. Cell Mol Life Sci 2022; 79:485. [PMID: 35974132 PMCID: PMC11071880 DOI: 10.1007/s00018-022-04455-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
Chronic stress activates the sympathetic nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis to aggravates tumorigenesis and development. Although the importance of SNS and HPA in maintaining homeostasis has already attracted much attention, there is still a lot remained unknown about the molecular mechanisms by which chronic stress influence the occurrence and development of tumor. While some researches have already concluded the mechanisms underlying the effect of chronic stress on tumor, complicated processes of tumor progression resulted in effects of chronic stress on various stages of tumor remains elusive. In this reviews we concluded recent research progresses of chronic stress and its effects on premalignancy, tumorigenesis and tumor development, we comprehensively summarized the molecular mechanisms in between. And we highlight the available treatments and potential therapies for stressed patients with tumor.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Yumeng Shen
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Jiaping Ni
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Weiwei Hu
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China.
- Lingang Laboratory, Shanghai, 200032, People's Republic of China.
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Polsky LR, Rentscher KE, Carroll JE. Stress-induced biological aging: A review and guide for research priorities. Brain Behav Immun 2022; 104:97-109. [PMID: 35661679 PMCID: PMC10243290 DOI: 10.1016/j.bbi.2022.05.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/27/2022] [Accepted: 05/29/2022] [Indexed: 01/13/2023] Open
Abstract
Exposure to chronic adverse conditions, and the resultant activation of the neurobiological response cascade, has been associated with an increased risk of early onset of age-related disease and, recently, with an older biological age. This body of research has led to the hypothesis that exposure to stressful life experiences, when occurring repeatedly or over a prolonged period, may accelerate the rate at which the body ages. The mechanisms through which chronic psychosocial stress influences distinct biological aging pathways to alter rates of aging likely involve multiple layers in the physiological-molecular network. In this review, we integrate research using animal, human, and in vitro models to begin to delineate the distinct pathways through which chronic psychosocial stress may impact biological aging, as well as the neuroendocrine mediators (i.e., norepinephrine, epinephrine, and glucocorticoids) that may drive these effects. Findings highlight key connections between stress and aging, namely cellular metabolic activity, DNA damage, telomere length, cellular senescence, and inflammatory response patterns. We conclude with a guiding framework and conceptual model that outlines the most promising biological pathways by which chronic adverse conditions could accelerate aging and point to key missing gaps in knowledge where future research could best answer these pressing questions.
Collapse
Affiliation(s)
- Lilian R Polsky
- Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, United States
| | - Kelly E Rentscher
- Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, United States; Department of Psychiatry and Behavioral Medicine, Medical College of Wisconsin, United States.
| | - Judith E Carroll
- Cousins Center for Psychoneuroimmunology, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, United States
| |
Collapse
|
14
|
Lee S, Ma C, Zhang S, Ou FS, Bainter TM, Niedzwiecki D, Saltz LB, Mayer RJ, Whittom R, Hantel A, Benson A, Atienza D, Kindler H, Gross CP, Irwin ML, Meyerhardt JA, Fuchs CS. Marital Status, Living Arrangement, and Cancer Recurrence and Survival in Patients with Stage III Colon Cancer: Findings from CALGB 89803 (Alliance). Oncologist 2022; 27:e494-e505. [PMID: 35641198 PMCID: PMC9177101 DOI: 10.1093/oncolo/oyab070] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Limited and conflicting findings have been reported regarding the association between social support and colorectal cancer (CRC) outcomes. We sought to assess the influences of marital status and living arrangement on survival outcomes among patients with stage III colon cancer. PATIENTS AND METHODS We conducted a secondary analysis of 1082 patients with stage III colon cancer prospectively followed in the CALGB 89803 randomized adjuvant chemotherapy trial. Marital status and living arrangement were both self-reported at the time of enrollment as, respectively, married, divorced, separated, widowed, or never-married, and living alone, with a spouse or partner, with other family, in a nursing home, or other. RESULTS Over a median follow-up of 7.6 years, divorced/separated/widowed patients experienced worse outcomes relative to those married regarding disease free-survival (DFS) (hazards ratio (HR), 1.44 (95% CI, 1.14-1.81); P =.002), recurrence-free survival (RFS) (HR, 1.35 (95% CI, 1.05-1.73); P = .02), and overall survival (OS) (HR, 1.40 (95% CI, 1.08-1.82); P =.01); outcomes were not significantly different for never-married patients. Compared to patients living with a spouse/partner, those living with other family experienced a DFS of 1.47 (95% CI, 1.02-2.11; P = .04), RFS of 1.34 (95% CI, 0.91-1.98; P = .14), and OS of 1.50 (95% CI, 1.00-2.25; P =.05); patients living alone did not experience significantly different outcomes. CONCLUSION Among patients with stage III colon cancer who received uniform treatment and follow-up within a nationwide randomized clinical trial, being divorced/separated/widowed and living with other family were significantly associated with greater colon cancer mortality. Interventions enhancing social support services may be clinically relevant for this patient population. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT00003835.
Collapse
Affiliation(s)
| | - Chao Ma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sui Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Fang-Shu Ou
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN, USA
| | - Tiffany M Bainter
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN, USA
| | - Donna Niedzwiecki
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | | | - Robert J Mayer
- Department of Medical Oncology, Dana-Farber/Partners CancerCare, Boston, MA, USA
| | | | - Alexander Hantel
- Loyola University Stritch School of Medicine, Naperville, IL, USA
| | - Al Benson
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | | | - Hedy Kindler
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | - Cary P Gross
- Yale School of Medicine, Department of Internal Medicine, New Haven, CT, USA
| | | | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber/Partners CancerCare, Boston, MA, USA
| | - Charles S Fuchs
- Yale Cancer Center, Smilow Cancer Hospital and Yale School of Medicine, New Haven, CT, USA
- Genentech, South San Francisco, CA, USA
| |
Collapse
|
15
|
Lunin SM, Novoselova EG, Glushkova OV, Parfenyuk SB, Novoselova TV, Khrenov MO. Cell Senescence and Central Regulators of Immune Response. Int J Mol Sci 2022; 23:ijms23084109. [PMID: 35456927 PMCID: PMC9028919 DOI: 10.3390/ijms23084109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022] Open
Abstract
Pathways regulating cell senescence and cell cycle underlie many processes associated with ageing and age-related pathologies, and they also mediate cellular responses to exposure to stressors. Meanwhile, there are central mechanisms of the regulation of stress responses that induce/enhance or weaken the response of the whole organism, such as hormones of the hypothalamic-pituitary-adrenal (HPA) axis, sympathetic and parasympathetic systems, thymic hormones, and the pineal hormone melatonin. Although there are many analyses considering relationships between the HPA axis and organism ageing, we found no systematic analyses of relationships between the neuroendocrine regulators of stress and inflammation and intracellular mechanisms controlling cell cycle, senescence, and apoptosis. Here, we provide a review of the effects of neuroendocrine regulators on these mechanisms. Our analysis allowed us to postulate a multilevel system of central regulators involving neurotransmitters, glucocorticoids, melatonin, and the thymic hormones. This system finely regulates the cell cycle and metabolic/catabolic processes depending on the level of systemic stress, stage of stress response, and energy capabilities of the body, shifting the balance between cell cycle progression, cell cycle stopping, senescence, and apoptosis. These processes and levels of regulation should be considered when studying the mechanisms of ageing and the proliferation on the level of the whole organism.
Collapse
|
16
|
Pantziarka P, Blagden S. Inhibiting the Priming for Cancer in Li-Fraumeni Syndrome. Cancers (Basel) 2022; 14:cancers14071621. [PMID: 35406393 PMCID: PMC8997074 DOI: 10.3390/cancers14071621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/20/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Li-Fraumeni Syndrome (LFS) is a rare cancer pre-disposition syndrome associated with a germline mutation in the TP53 tumour suppressor gene. People with LFS have a 90% chance of suffering one or more cancers in their lifetime. No treatments exist to reduce this cancer risk. This paper reviews the evidence for how cancers start in people with LFS and proposes that a series of commonly used non-cancer drugs, including metformin and aspirin, can help reduce that lifetime risk of cancer. Abstract The concept of the pre-cancerous niche applies the ‘seed and soil’ theory of metastasis to the initial process of carcinogenesis. TP53 is at the nexus of this process and, in the context of Li-Fraumeni Syndrome (LFS), is a key determinant of the conditions in which cancers are formed and progress. Important factors in the creation of the pre-cancerous niche include disrupted tissue homeostasis, cellular metabolism and chronic inflammation. While druggability of TP53 remains a challenge, there is evidence that drug re-purposing may be able to address aspects of pre-cancerous niche formation and thereby reduce the risk of cancer in individuals with LFS.
Collapse
Affiliation(s)
- Pan Pantziarka
- The George Pantziarka TP53 Trust, London KT1 2JP, UK
- The Anti-Cancer Fund, Brusselsesteenweg 11, 1860 Meise, Belgium
- Correspondence:
| | - Sarah Blagden
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
| |
Collapse
|
17
|
Valente VB, de Melo Cardoso D, Kayahara GM, Nunes GB, Tjioe KC, Biasoli ÉR, Miyahara GI, Oliveira SHP, Mingoti GZ, Bernabé DG. Stress hormones promote DNA damage in human oral keratinocytes. Sci Rep 2021; 11:19701. [PMID: 34611221 PMCID: PMC8492616 DOI: 10.1038/s41598-021-99224-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Chronic stress increases the systemic levels of stress hormones norepinephrine and cortisol. As well as tobacco-specific carcinogen NNK (4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone), they can induce expressive DNA damage contributing to the cancer development. However, it is unknown whether stress hormones have genotoxic effects in oral keratinocytes. This study investigated the effects of stress hormones on DNA damage in a human oral keratinocyte cell line (NOK-SI). NOK-SI cells stimulated with norepinephrine or cortisol showed higher DNA damage compared to untreated cells. Norepinephrine-induced DNA damage was reversed by pre-treatment with beta-adrenergic blocker propranolol. Cells treated with NNK combined to norepinephrine displayed reduced levels of caspases 3 and 7. Cortisol also reduced the activity of pro-apoptotic enzymes. NNK or norepinephrine promoted single-strand breaks and alkali-label side breaks in the DNA of NOK-SI cells. Pre-treatment of cells with propranolol abolished these effects. Carcinogen NNK in the presence or absence of cortisol also induced DNA damage of these cells. The genotoxic effects of cortisol alone and hormone combined with NNK were blocked partially and totally, respectively, by the glucocorticoid receptor antagonist RU486. DNA damage promoted by NNK or cortisol and carcinogen combined to the hormone led to intracellular γH2AX accumulation. The effects caused by NNK and cortisol were reversed by propranolol and glucocorticoid receptor antagonist RU486, respectively. Propranolol inhibited the oxidation of basis induced by NNK in the presence of DNA-formamidopyrimidine glycosylase. DNA breaks induced by norepinephrine in the presence or absence of NNK resulted in higher 8OHdG cellular levels. This effect was also induced through beta-adrenergic receptors. Together, these findings indicate that stress hormones induce DNA damage of oral keratinocytes and could contribute to oral carcinogenesis.
Collapse
Affiliation(s)
- Vitor Bonetti Valente
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
| | - Diovana de Melo Cardoso
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
| | - Giseli Mitsuy Kayahara
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
| | - Giovana Barros Nunes
- Laboratory of Reproductive Physiology, Department of Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), 793 Clovis Pestana St, Araçatuba, São Paulo, 16050-680, Brazil
| | - Kellen Cristine Tjioe
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
- Laboratory of Immunopharmacology, Department of Basic Sciences, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
| | - Éder Ricardo Biasoli
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
| | - Glauco Issamu Miyahara
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
| | - Sandra Helena Penha Oliveira
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
- Laboratory of Immunopharmacology, Department of Basic Sciences, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil
| | - Gisele Zoccal Mingoti
- Laboratory of Reproductive Physiology, Department of Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), 793 Clovis Pestana St, Araçatuba, São Paulo, 16050-680, Brazil
| | - Daniel Galera Bernabé
- Psychoneuroimmunology Laboratory, Psychosomatic Research Center, Oral Oncology Center, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil.
- Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (Unesp), 1193 José Bonifácio St, Araçatuba, São Paulo, 15050-015, Brazil.
| |
Collapse
|
18
|
Abate M, Citro M, Caputo M, Pisanti S, Martinelli R. Psychological stress and cancer: new evidence of an increasingly strong link. TRANSLATIONAL MEDICINE AT UNISA 2021. [PMID: 33457324 PMCID: PMC8370516 DOI: 10.37825/2239-9747.1010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To date stress, a highly complex process that disrupts homeostasis and involves environmental and psychosocial factors, is considered as one of the most crucial factor that affects our daily life, especially urban dweller’s life. Clinical and experimental studies widely support the notion that adrenergic stimulation due to chronic stress affects inflammation and metabolism. In this work, supported by several recent scientific evidences, we show how stress plays a positive role in cancer initiation, progression and cancer metastasis, a negative role for anti-tumor immune function and therapy response. Understanding the intricacies of this interaction could provide an additional help on how act in cancer prevention and therapy.
Collapse
Affiliation(s)
- M Abate
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy
| | - M Citro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy
| | - M Caputo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy
| | - S Pisanti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy
| | - R Martinelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy
| |
Collapse
|
19
|
Bermúdez-Guzmán L, Blanco-Saborío A, Ramírez-Zamora J, Lovo E. The Time for Chronotherapy in Radiation Oncology. Front Oncol 2021; 11:687672. [PMID: 34046365 PMCID: PMC8144648 DOI: 10.3389/fonc.2021.687672] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022] Open
Abstract
Five decades ago, Franz Halberg conceived the idea of a circadian-based therapy for cancer, given the differential tolerance to treatment derived from the intrinsic host rhythms. Nowadays, different experimental models have demonstrated that both the toxicity and efficacy of several anticancer drugs vary by more than 50% as a function of dosing time. Accordingly, it has been shown that chemotherapeutic regimens optimally timed with the circadian cycle have jointly improved patient outcomes both at the preclinical and clinical levels. Along with chemotherapy, radiation therapy is widely used for cancer treatment, but its effectiveness relies mainly on its ability to damage DNA. Notably, the DNA damage response including DNA repair, DNA damage checkpoints, and apoptosis is gated by the circadian clock. Thus, the therapeutic potential of circadian-based radiotherapy against cancer is mainly dependent upon the control that the molecular clock exerts on DNA repair enzymes across the cell cycle. Unfortunately, the time of treatment administration is not usually considered in clinical practice as it varies along the daytime working hours. Currently, only a few studies have evaluated whether the timing of radiotherapy affects the treatment outcome. Several of these studies show that it is possible to reduce the toxicity of the treatment if it is applied at a specific time range, although with some inconsistencies. In this Perspective, we review the main advances in the field of chronoradiotherapy, the possible causes of the inconsistencies observed in the studies so far and provide some recommendations for future trials.
Collapse
Affiliation(s)
| | | | | | - Eduardo Lovo
- International Cancer Center, Diagnostic Hospital, San Salvador, El Salvador
| |
Collapse
|
20
|
Cui B, Peng F, Lu J, He B, Su Q, Luo H, Deng Z, Jiang T, Su K, Huang Y, Ud Din Z, Lam EWF, Kelley KW, Liu Q. Cancer and stress: NextGen strategies. Brain Behav Immun 2021; 93:368-383. [PMID: 33160090 DOI: 10.1016/j.bbi.2020.11.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/17/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic stress is well-known to cause physiological distress that leads to body balance perturbations by altering signaling pathways in the neuroendocrine and sympathetic nervous systems. This increases allostatic load, which is the cost of physiological fluctuations that are required to cope with psychological challenges as well as changes in the physical environment. Recent studies have enriched our knowledge about the role of chronic stress in disease development, especially carcinogenesis. Stress stimulates the hypothalamic-pituitaryadrenal (HPA) axis and the sympathetic nervous system (SNS), resulting in an abnormal release of hormones. These activate signaling pathways that elevate expression of downstream oncogenes. This occurs by activation of specific receptors that promote numerous cancer biological processes, including proliferation, genomic instability, angiogenesis, metastasis, immune evasion and metabolic disorders. Moreover, accumulating evidence has revealed that β-adrenergic receptor (ADRB) antagonists and downstream target inhibitors exhibit remarkable anti-tumor effects. Psychosomatic behavioral interventions (PBI) and traditional Chinese medicine (TCM) also effectively relieve the impact of stress in cancer patients. In this review, we discuss recent advances in the underlying mechanisms that are responsible for stress in promoting malignancies. Collectively, these data provide approaches for NextGen pharmacological therapies, PBI and TCM to reduce the burden of tumorigenesis.
Collapse
Affiliation(s)
- Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, 651 Dongfeng East Road, Guangzhou, Guangdong Province 510060, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Jinxin Lu
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Bin He
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Qitong Su
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Huandong Luo
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Ziqian Deng
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Tonghui Jiang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Keyu Su
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Yanping Huang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Zaheer Ud Din
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Keith W Kelley
- Department of Pathology, College of Medicine and Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, 212 Edward R. Madigan Laboratory, 1201 West Gregory Drive, Urbana, Il 61801, USA.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, 9 West Section, Lvshun South Road, Dalian, Liaoning Province 116044, China; State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, 651 Dongfeng East Road, Guangzhou, Guangdong Province 510060, China.
| |
Collapse
|
21
|
Wang P, Wang Z, Yan Y, Xiao L, Tian W, Qu M, Meng A, Sun F, Li G, Dong J. Psychological Stress Up-Regulates CD147 Expression Through Beta-Arrestin1/ERK to Promote Proliferation and Invasiveness of Glioma Cells. Front Oncol 2020; 10:571181. [PMID: 33178600 PMCID: PMC7593686 DOI: 10.3389/fonc.2020.571181] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Psychological stress is closely related to the occurrence and prognosis of various malignant tumors, but the underlying mechanisms are not well studied. CD147 has been reported to be expressed in glioma and other malignant tumors. CD147 not only participates in lactic acid transport, but it also plays an important role in the invasion and metastasis of malignant tumor cells by stimulating the production of numerous matrix metalloproteinases (MMPs) and vascular endothelial growth factor by fibroblasts, and could also act as an autocrine factor stimulating MMPs production in metastatic tumor cells. Here, we found that silencing CD147 in chronically stressed nude mice not only inhibited the proliferation of xenografts but also decreased matrix metalloproteinase-2, 9 expression and lactic acid content in tumor tissues. Furthermore, norepinephrine (NE) was significantly increased in the serum of nude mice in glioma stress model. To determine the underlying cellular mechanism, we added exogenous NE into LN229 and U87 cells to simulate the stress environment in vitro. The invasiveness of the glioma cells was subsequently examined using a Matrigel invasion assay. We demonstrated that knockdown of CD147 inhibited glioma invasiveness and metastasis with norepinephrine stimulation. Luciferase reporter gene experiments further demonstrated that the expression of CD147 is up-regulated primarily by norepinephrine via the β-Adrenalin receptor (βAR)-β-arrestin1-ERK1/2-Sp1 pathway. High expression of CD147 promoted the secretion of MMP-2 and the increment of lactic acid, which accelerated the augmented invasion and metastasis of glioma induced by psychological stress. Taken together, these results suggest that psychological stress promotes glioma proliferation and invasiveness by up-regulating CD147 expression. Thus, CD147 might be a potential target site in the treatment of glioma progression induced by chronic psychological stress.
Collapse
Affiliation(s)
- Ping Wang
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Zhenming Wang
- Department of Clinical Laboratory, Weifang City People's Hospital, Weifang, China
| | - Yizhi Yan
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Lin Xiao
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Wenxiu Tian
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China.,Central of Translation Medicine, Zibo Central Hospital, Zibo, China
| | - Meihua Qu
- Translational Medical Center, Weifang Second People's Hospital, Weifang, China
| | - Aixia Meng
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Fengxiang Sun
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Guizhi Li
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Junhong Dong
- Department of Biochemistry, School of Basic Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
22
|
Abate M, Citro M, Caputo M, Pisanti S, Martinelli R. Psychological Stress and Cancer: New Evidence of An Increasingly Strong Link. Transl Med UniSa 2020; 23:53-57. [PMID: 33457324 PMCID: PMC8370516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
To date stress, a highly complex process that disrupts homeostasis and involves environmental and psychosocial factors, is considered as one of the most crucial factor that affects our daily life, especially urban dweller's life. Clinical and experimental studies widely support the notion that adrenergic stimulation due to chronic stress affects inflammation and metabolism. In this work, supported by several recent scientific evidences, we show how stress plays a positive role in cancer initiation, progression and cancer metastasis, a negative role for anti-tumor immune function and therapy response. Understanding the intricacies of this interaction could provide an additional help on how act in cancer prevention and therapy.
Collapse
Affiliation(s)
- M Abate
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy
| | - M Citro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy
| | - M Caputo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy
| | - S Pisanti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy
| | - R Martinelli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana" University of Salerno, Via S. Allende, 84081, Baronissi, Salerno, Italy
| |
Collapse
|
23
|
Beta-adrenergic blocker inhibits oral carcinogenesis and reduces tumor invasion. Cancer Chemother Pharmacol 2020; 86:681-686. [PMID: 32980903 DOI: 10.1007/s00280-020-04149-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Beta-adrenergic signaling can influence cancer progression and the use of beta blockers as adjuvant drugs in oncologic patients has been suggested. However, the involvement of beta-adrenergic blockers in tumorigenesis is poorly understood. This study investigated the action of beta-adrenergic blocker propranolol on tumor onset using a preclinical model of chemically induced oral cancer. METHODS Thirty-two male Wistar rats were subjected to daily subcutaneous injection of beta-blocker propranolol (10 mg/kg; SubQ), while another 32 rats received only a PBS injection (sham group). One week after starting propranolol treatment, all rats were submitted to chemical induction of oral carcinogenesis with 4-nitroquinoline-1-oxide (4NQO). After 16 weeks, they were assessed for occurrence of oral squamous cell carcinoma (OSCC), in addition to measurement of tumor volume and thickness, and tissue levels of cytokines IL-6, TNF-alpha and IL-10 in the tumor microenvironment. RESULTS Propranolol treatment reduced the occurrence of OSCC by 31%, 95% CI ( - 127, 216). Beta-adrenergic blocker significantly decreased thickness of OSCC when compared with PBS. Rats treated with propranolol exhibited a lower tumor volume when compared with control rats, but this result did not reach statistical significance. Tumors from propranolol-treated rats exhibited reduced concentrations of pro-inflammatory cytokines IL-6 and TNF-α. There was no difference in the IL-10 levels between tumors from propranolol- and sham-treated rats. CONCLUSION Beta-adrenergic signaling may be one of the mechanisms associated with chemically induced oral carcinogenesis.
Collapse
|
24
|
Association of Allostatic Load with All-Cause andCancer Mortality by Race and Body Mass Index in theREGARDS Cohort. Cancers (Basel) 2020; 12:cancers12061695. [PMID: 32604717 PMCID: PMC7352652 DOI: 10.3390/cancers12061695] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/18/2022] Open
Abstract
Among 29,701 Black and White participants aged 45 years and older in the Reasons for Geographic and Racial Difference in Stroke (REGARDS) study, allostatic load (AL) was defined as the sum score of established baseline risk-associated biomarkers for which participants exceeded a set cutoff point. Cox proportional hazard regression was utilized to determine the association of AL score with all-cause and cancer-specific mortality, with analyses stratified by body-mass index, age group, and race. At baseline, Blacks had a higher AL score compared with Whites (Black mean AL score: 2.42, SD: 1.50; White mean AL score: 1.99, SD: 1.39; p < 0.001). Over the follow-up period, there were 4622 all-cause and 1237 cancer-specific deaths observed. Every unit increase in baseline AL score was associated with a 24% higher risk of all-cause (HR: 1.24, 95% CI: 1.22, 1.27) and a 7% higher risk of cancer-specific mortality (HR: 1.07, 95% CI: 1.03, 1.12). The association of AL with overall- and cancer-specific mortality was similar among Blacks and Whites and across age-groups, however the risk of cancer-specific mortality was higher among normal BMI than overweight or obese participants. In conclusion, a higher baseline AL score was associated with increased risk of all-cause and cancer-specific mortality among both Black and White participants. Targeted interventions to patient groups with higher AL scores, regardless of race, may be beneficial as a strategy to reduce all-cause and cancer-specific mortality.
Collapse
|
25
|
Lamboy-Caraballo R, Ortiz-Sanchez C, Acevedo-Santiago A, Matta J, N.A. Monteiro A, N. Armaiz-Pena G. Norepinephrine-Induced DNA Damage in Ovarian Cancer Cells. Int J Mol Sci 2020; 21:ijms21062250. [PMID: 32213975 PMCID: PMC7139728 DOI: 10.3390/ijms21062250] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple studies have shown that psychological distress in epithelial ovarian cancer (EOC) patients is associated with worse quality of life and poor treatment adherence. This may influence chemotherapy response and prognosis. Moreover, although stress hormones can reduce cisplatin efficacy in EOC treatment, their effect on the integrity of DNA remains poorly understood. In this study, we investigated whether norepinephrine and epinephrine can induce DNA damage and modulate cisplatin-induced DNA damage in three EOC cell lines. Our data show that norepinephrine and epinephrine exposure led to increased nuclear γ-H2AX foci formation in EOC cells, a marker of double-strand DNA breaks. We further characterized norepinephrine-induced DNA damage by subjecting EOC cells to alkaline and neutral comet assays. Norepinephrine exposure caused DNA double-strand breaks, but not single-strand breaks. Interestingly, pre-treatment with propranolol abrogated norepinephrine-induced DNA damage indicating that its effects may be mediated by β-adrenergic receptors. Lastly, we determined the effects of norepinephrine on cisplatin-induced DNA damage. Our data suggest that norepinephrine reduced cisplatin-induced DNA damage in EOC cells and that this effect may be mediated independently of β-adrenergic receptors. Taken together, these results suggest that stress hormones can affect DNA integrity and modulate cisplatin resistance in EOC cells.
Collapse
Affiliation(s)
- Rocio Lamboy-Caraballo
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Ponce Health Sciences University, Ponce, PR 00716, USA; (R.L.-C.); (J.M.)
| | | | | | - Jaime Matta
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Ponce Health Sciences University, Ponce, PR 00716, USA; (R.L.-C.); (J.M.)
- Division of Cancer Biology, Ponce Research Institute, Ponce, PR 00716, USA;
| | - Alvaro N.A. Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
| | - Guillermo N. Armaiz-Pena
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Ponce Health Sciences University, Ponce, PR 00716, USA; (R.L.-C.); (J.M.)
- Division of Cancer Biology, Ponce Research Institute, Ponce, PR 00716, USA;
- Division of Women’s Health, Ponce Research Institute, Ponce, PR 00716, USA
- Correspondence:
| |
Collapse
|
26
|
Intra-operative norepinephrine administration and cancer-related outcomes following radical cystectomy for bladder cancer: A cohort study. Eur J Anaesthesiol 2020; 37:377-386. [PMID: 31977630 DOI: 10.1097/eja.0000000000001155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The impact of anaesthetic techniques on recurrence of cancers is controversial. Elevated plasma catecholamine levels have been implicated in angiogenesis and metastasis in various cancers. OBJECTIVES To assess the potential association between continuous intra-operative norepinephrine administration and tumour-related outcome in muscle-invasive bladder cancer patients undergoing radical cystectomy with urinary diversion. DESIGN Retrospective observational cohort study. SETTING Single tertiary centre, from 2000 to 2017. PATIENTS We included a consecutive series of 1120 urothelial carcinoma patients undergoing radical cystectomy and urinary diversion, including 411/1120 patients (37%) who received a continuous intra-operative administration of more than 2 μg kg BW h norepinephrine. MAIN OUTCOME MEASURES The primary outcome was time to tumour recurrence within 5 years after surgery, with death as competing outcome. We used inverse probability of treatment weighting to adjust for imbalances between treatment groups, one having received more than 2 μg kg BW h norepinephrine and the other having received less. We furthermore adjusted for intra-operative variables or years of surgery as sensitivity analyses. RESULTS The continuous administration of more than 2 μg kg BW h norepinephrine slightly increased tumour recurrence (hazard ratio: 1.47, 95% CI 0.98 to 2.21; P = 0.061). After adjustment for intra-operative variables, and year of surgery hazard ratios were 1.82 (95% CI 1.13 to 2.91, P = 0.013) and 1.85 (95% CI 1.12 to 3.07, P = 0.017), respectively. Overall mortality (with or without tumour recurrence) was not affected by norepinephrine (hazard ratio: 0.84, 95% CI 0.65 to 1.08, P = 0.170). CONCLUSION Continuous administration of more than 2 μg kg BW h norepinephrine was associated with a slightly increased hazard ratio for tumour recurrence if adjusted for intra-operative variables and year of surgery. This observation could reflect a low potential pro-oncogenic effect of norepinephrine during the intra-operative period. TRIAL REGISTRATION Not applicable.
Collapse
|
27
|
Huang X, Le W, Chen Q, Chen J, Zhu Y, Shi D, Chen B, Cui Z. Suppression of the innate cancer-killing activity in human granulocytes by stress reaction as a possible mechanism for affecting cancer development. Stress 2020; 23:87-96. [PMID: 31311393 DOI: 10.1080/10253890.2019.1645112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Psychological stress may be linked to cancer incidence; however, more direct evidence is required to support this viewpoint. In this study, we investigated the effects of stress on immunosurveillance against cancer cells using a previously established examination stress model. We showed that the cancer killing activity (CKA) of granulocytes (also known as polymorphic nuclear cells, PMNs) is sharply reduced during examination stress stimulation in some donors who are psychologically sensitive to examination stress, with the concentration of plasma stress hormones (cortisone, epinephrine, and norepinephrine) increasing accordingly. The effects of stress hormones on immune cell CKA were also investigated under two in vitro co-incubation conditions, with all three hormones found to exert inhibitory effects on the CKA of PMNs and mononuclear cells. We showed that stress triggered the release of stress hormones which had profound inhibitory effects on the innate anticancer functions of PMNs. These results provide a possible explanation for the relationship between psychological stress and cancer incidence.
Collapse
Affiliation(s)
- Xin Huang
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Wenjun Le
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Qian Chen
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Jingyao Chen
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Yuqian Zhu
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Donglu Shi
- Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, USA
| | - Bingdi Chen
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Zheng Cui
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
28
|
Sp N, Kang DY, Kim DH, Lee HG, Park YM, Kim IH, Lee HK, Cho BW, Jang KJ, Yang YM. Methylsulfonylmethane inhibits cortisol-induced stress through p53-mediated SDHA/HPRT1 expression in racehorse skeletal muscle cells: A primary step against exercise stress. Exp Ther Med 2019; 19:214-222. [PMID: 31853292 PMCID: PMC6909739 DOI: 10.3892/etm.2019.8196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/25/2019] [Indexed: 11/05/2022] Open
Abstract
Cortisol is a hormone involved in stress during exercise. The application of natural compounds is a new potential approach for controlling cortisol-induced stress. Tumour suppressor protein p53 is activated during cellular stress. Succinate dehydrogenase complex subunit A (SDHA) and hypoxanthine phosphoribosyl transferase 1 (HPRT1) are considered to be two of the most stable reference genes when measuring stress during exercise in horses. In the present study cells were considered to be in a 'stressed state' if the levels of these stable genes and the highly stress responsive gene p53 were altered. It was hypothesized that a natural organic sulphur-containing compound, methylsulfonylmethane (MSM), could inhibit cortisol-induced stress in racing horse skeletal muscle cells by regulating SDHA, HPRT1 and p53 expression. After assessing cell viability using MTT assays, 20 µg/ml cortisol and 50 mM MSM were applied to horse skeletal muscle cell cultures. Reverse transcription-quantitative PCR and western blot analysis demonstrated increases in SDHA, HPRT1 and p53 expression in cells in response to cortisol treatment, which was inhibited or normalized by MSM treatment. To determine the relationship between p53 and SDHA/HPRT1 expression at a transcriptional level, horse gene sequences of SDHA and HPRT1 were probed to identify novel binding sites for p53 in the gene promoters, which were confirmed using a chromatin immunoprecipitation assay. The relationship between p53 and SDHA/HPRT1 expression was confirmed using western blot analysis following the application of pifithrin-α, a p53 inhibitor. These results suggested that MSM is a potential candidate drug for the inhibition of cortisol-induced stress in racehorse skeletal muscle cells.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Do Hoon Kim
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Hyo Gun Lee
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Il Ho Kim
- Nara Biotech Co., Ltd., Jeonju, Jeollabuk 54852, Republic of Korea
| | - Hak Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Byung-Wook Cho
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| |
Collapse
|
29
|
Effects of β-Adrenergic Antagonists on Chemoradiation Therapy for Locally Advanced Non-Small Cell Lung Cancer. J Clin Med 2019; 8:jcm8050575. [PMID: 31035526 PMCID: PMC6572477 DOI: 10.3390/jcm8050575] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/19/2019] [Indexed: 01/03/2023] Open
Abstract
Introduction: Locally advanced non-small cell lung cancer (NSCLC) is highly resistant to chemoradiotherapy, and many cancer patients experience chronic stress. Studies that suggest stimulation of β-adrenergic receptors (β-AR) promotes tumor invasion and therapy resistance. We investigated whether β-AR inhibition with beta-blockers acts as a chemotherapy and radiation sensitizer in vitro and in patients treated with chemoradiation for locally advanced NSCLC. Methods: We investigated the effects of the non-selective beta-blocker propranolol on two human lung adenocarcinoma cell lines (PC9, A549) treated with radiation or cisplatin. We retrospectively evaluated 77 patients with Stage IIIA NSCLC who received induction chemoradiation followed by surgery. Pathological and imaging response, metastatic rate, and survival were analyzed using SPSS v22.0 and PrismGraphpad6. Results: Propranolol combined with radiation or cisplatin decreased clonogenic survival of PC9 and A549 cells in vitro (p < 0.05). Furthermore, propranolol decreased expression of phospho-protein kinase A (p-PKA), a β-adrenergic pathway downstream activation target, in both cell lines compared to irradiation or cisplatin alone (p < 0.05). In patients treated for Stage IIIA NSCLC, 16 took beta-blockers, and 61 did not. Beta-blockade is associated with a trend to improved overall survival (OS) at 1 year (81.3% vs 57.4%, p = 0.08) and distant metastasis-free survival (DMFS) (2.6 years vs. 1.3 years, p = 0.16). Although beta-blocker use was associated with decreased distant metastases (risk ratio (RR) 0.19; p = 0.03), it did not affect primary tumor pathological response (p = 0.40) or imaging response (p = 0.36). Conclusions: β-AR blockade enhanced radiation and cisplatin sensitivity of human lung cancer cells in vitro. Use of beta-blockers is associated with decreased distant metastases and potentially improved OS and DMFS. Additional studies are warranted to evaluate the role of beta-blockers as a chemoradiation sensitizer in locally advanced NSCLC.
Collapse
|
30
|
Amaya CN, Perkins M, Belmont A, Herrera C, Nasrazadani A, Vargas A, Khayou T, Montoya A, Ballou Y, Galvan D, Rivas A, Rains S, Patel L, Ortega V, Lopez C, Chow W, Dickerson EB, Bryan BA. Non-selective beta blockers inhibit angiosarcoma cell viability and increase progression free- and overall-survival in patients diagnosed with metastatic angiosarcoma. Oncoscience 2018; 5:109-119. [PMID: 29854879 PMCID: PMC5978448 DOI: 10.18632/oncoscience.413] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/02/2018] [Indexed: 12/18/2022] Open
Abstract
Patients with metastatic angiosarcoma undergoing chemotherapy, radiation, and/or surgery experience a median progression free survival of less than 6 months and a median overall survival of less than 12 months. Given the aggressive nature of this cancer, angiosarcoma clinical responses to chemotherapy or targeted therapeutics are generally very poor. Inhibition of beta adrenergic receptor (β-AR) signaling has recently been shown to decrease angiosarcoma tumor cell viability, abrogate tumor growth in mouse models, and decrease proliferation rates in preclinical and clinical settings. In the current study we used cell and animal tumor models to show that β-AR antagonism abrogates mitogenic signaling and reduces angiosarcoma tumor cell viability, and these molecular alterations translated into patient tumors. We demonstrated that non-selective β-AR antagonists are superior to selective β-AR antagonists at inhibiting angiosarcoma cell viability. A prospective analysis of non- selective β-AR antagonists in a single arm clinical study of metastatic angiosarcoma patients revealed that incorporation of either propranolol or carvedilol into patients' treatment regimens leads to a median progression free and overall survival of 9 and 36 months, respectively. These data suggest that incorporation of non-selective β-AR antagonists into existing therapies against metastatic angiosarcoma can enhance clinical outcomes.
Collapse
Affiliation(s)
- Clarissa N Amaya
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Mariah Perkins
- Department of Biochemistry, Baylor University, Waco, TX, USA
| | - Andres Belmont
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Connie Herrera
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Arezo Nasrazadani
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Alejandro Vargas
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Thuraieh Khayou
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Alexa Montoya
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.,Department of Biology, University of Texas, El Paso, TX, USA
| | - Yessenia Ballou
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Dana Galvan
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Alexandria Rivas
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Steven Rains
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Luv Patel
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Vanessa Ortega
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Christopher Lopez
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - William Chow
- Mohs Micrographic Surgery and Cutaneous Oncology, San Leandro, CA, USA
| | - Erin B Dickerson
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Brad A Bryan
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX, USA.,Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| |
Collapse
|
31
|
Tumor microenvironment in functional adrenocortical adenomas: immune cell infiltration in cortisol-producing adrenocortical adenoma. Hum Pathol 2018; 77:88-97. [PMID: 29596893 DOI: 10.1016/j.humpath.2018.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 12/16/2022]
Abstract
The tumor microenvironment plays pivotal roles in various human neoplasms. However, that of benign tumor, particularly hormone-secreting endocrine tumors, has remained virtually unknown. Therefore, we firstly attempted to analyze the tumor microenvironment of autonomous hormone-secreting adrenocortical adenomas. We first histologically evaluated 21 cortisol-producing adrenocortical adenoma (CPA) and 13 aldosterone-producing adrenocortical adenoma (APA) cases. Quantitative histologic analysis revealed that intratumoral immune cell infiltration (ICI) was more pronounced in CPAs than in APAs. We then evaluated the cytokine and chemokine profiles using polymerase chain reaction arrays in APAs and CPAs. Angiogenic chemokines, C-X-C motif chemokine ligand (CXCL) 1 and CXCL2, were significantly more abundant in CPAs than in APAs using subsequent quantitative polymerase chain reaction and immunohistochemical analyses. We then examined the vascular density between these 2 adenomas, and the density was significantly higher in overt CPAs than in APAs. Of particular interest, CXCL12-positive vessels were detected predominantly in CPAs, and their infiltrating immune cells were C-X-C motif chemokine receptor 4 (CXCR4) positive. These results above indicated that CXCL12-CXCR4 signaling could partly account for ICI detected predominantly in CPAs. We then further explored the etiology of ICI in CPAs by evaluating the senescence of tumor cells possibly caused by excessive cortisol in CPAs. The status of senescence markers, p16 and p21, was significantly more abundant in CPAs than in APAs. In addition, all CPA cases examined were positive for senescence-associated β-galactosidase. These results all indicated that exposure to local excessive cortisol could result in senescence of tumors cells and play essential roles in constituting the characteristic tissue microenvironment of CPAs.
Collapse
|
32
|
Valente VB, Verza FA, Lopes FYK, Ferreira JZ, Dos Santos PSP, Sundefeld MLMM, Biasoli ÉR, Miyahara GI, Soubhia AMP, de Andrade M, de Oliveira SHP, Bernabé DG. Stress hormones concentrations in the normal microenvironment predict risk for chemically induced cancer in rats. Psychoneuroendocrinology 2018; 89:229-238. [PMID: 29150404 DOI: 10.1016/j.psyneuen.2017.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/09/2017] [Accepted: 11/07/2017] [Indexed: 12/25/2022]
Abstract
Evidence show that stress hormones can influence cancer progression, but its role in carcinogenesis is poorly understood. In this study, we used a new method based on oral carcinogenesis model in rats to test the hypothesis that physiological levels of stress hormones in the normal tissue microenvironment would have significant predictive value for chemically induced cancer occurrence. Male Wistar rats were submitted to a tongue biopsy for measuring not-stress induced levels of norepinephrine, corticosterone, adrenocorticotropic hormone (ACTH) and brain-derived neurotrophic factor (BDNF) in the tissue before carcinogenic induction. Rats were treated with the 4-nitroquinoline-1-oxide (4NQO) chemical carcinogen for twenty weeks and then euthanized for microscopic evaluation of the tongue lesions. Increased pre-carcinogen norepinephrine concentrations and reduced basal corticosterone levels in the normal tissue microenvironment were predictive for oral squamous cell carcinoma (OSCC) occurrence. Likewise, increased pre-carcinogen norepinephrine levels in the normal microenvironment were associated a lower expression of pCDKN2a-p16 in OSCCs. Post-carcinogen levels of corticosterone and BDNF in oral leukoplakia tissues (precursor lesion of OSCC) and post-carcinogen corticosterone concentrations in OSCCs were higher than basal levels in the normal mucosa. Increased norepinephrine concentrations in OSCCs were associated to a greater tumor volume and thickness. Furthermore, higher levels of norepinephrine, ACTH and BDNF in OSCCs were associated to a lesser intensity of the lymphoplasmocytic infiltrate. This study shows that pre-carcinogen stress hormones levels in the normal microenvironment may be predictive for chemically induced cancer in rats. Moreover, chemical carcinogenesis can promote stressor-like effects with hormonal changes in the tissue microenvironment, which may be associated to tumor progression.
Collapse
Affiliation(s)
- Vitor Bonetti Valente
- Psychoneuroimmunology Research Center, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, 1193 José Bonifácio St., SP 15050-015, Araçatuba, São Paulo, Brazil
| | - Flávia Alves Verza
- Psychoneuroimmunology Research Center, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, 1193 José Bonifácio St., SP 15050-015, Araçatuba, São Paulo, Brazil
| | - Felipe Yudi Kabeya Lopes
- Psychoneuroimmunology Research Center, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, 1193 José Bonifácio St., SP 15050-015, Araçatuba, São Paulo, Brazil
| | - Joana Zafalon Ferreira
- Department of Animal Clinic, Surgery and Reproduction, São Paulo State University (Unesp), School of Veterinary Medicine, 793 Clóvis Pestana St., SP 16050-680, Araçatuba, São Paulo, Brazil
| | - Paulo Sérgio Patto Dos Santos
- Department of Animal Clinic, Surgery and Reproduction, São Paulo State University (Unesp), School of Veterinary Medicine, 793 Clóvis Pestana St., SP 16050-680, Araçatuba, São Paulo, Brazil
| | - Maria Lúcia Marçal Mazza Sundefeld
- Department of Statistics, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, 1193 José Bonifácio St., SP 15050-015, Araçatuba, São Paulo, Brazil
| | - Éder Ricardo Biasoli
- Psychoneuroimmunology Research Center, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, 1193 José Bonifácio St., SP 15050-015, Araçatuba, São Paulo, Brazil; Department of Pathology and Clinical Propedeutics, São Paulo State University (Unesp), School of Dentistry, 1193 José Bonifácio St., SP 15050-015, Araçatuba, São Paulo, Brazil
| | - Glauco Issamu Miyahara
- Psychoneuroimmunology Research Center, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, 1193 José Bonifácio St., SP 15050-015, Araçatuba, São Paulo, Brazil; Department of Pathology and Clinical Propedeutics, São Paulo State University (Unesp), School of Dentistry, 1193 José Bonifácio St., SP 15050-015, Araçatuba, São Paulo, Brazil
| | - Ana Maria Pires Soubhia
- Department of Pathology and Clinical Propedeutics, São Paulo State University (Unesp), School of Dentistry, 1193 José Bonifácio St., SP 15050-015, Araçatuba, São Paulo, Brazil
| | - Mariza de Andrade
- Department of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, 200 First St. SW, MN 55905, Rochester, MN, USA
| | - Sandra Helena Penha de Oliveira
- Immunopharmacology Laboratory, Department of Basic Sciences, São Paulo State University (Unesp), School of Dentistry, 1193 José Bonifácio St., SP 15050-015, Araçatuba, São Paulo, Brazil
| | - Daniel Galera Bernabé
- Psychoneuroimmunology Research Center, Oral Oncology Center, São Paulo State University (Unesp), School of Dentistry, 1193 José Bonifácio St., SP 15050-015, Araçatuba, São Paulo, Brazil; Department of Pathology and Clinical Propedeutics, São Paulo State University (Unesp), School of Dentistry, 1193 José Bonifácio St., SP 15050-015, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
33
|
Qiao G, Chen M, Bucsek MJ, Repasky EA, Hylander BL. Adrenergic Signaling: A Targetable Checkpoint Limiting Development of the Antitumor Immune Response. Front Immunol 2018; 9:164. [PMID: 29479349 PMCID: PMC5812031 DOI: 10.3389/fimmu.2018.00164] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/18/2018] [Indexed: 12/15/2022] Open
Abstract
An immune response must be tightly controlled so that it will be commensurate with the level of response needed to protect the organism without damaging normal tissue. The roles of cytokines and chemokines in orchestrating these processes are well known, but although stress has long been thought to also affect immune responses, the underlying mechanisms were not as well understood. Recently, the role of nerves and, specifically, the sympathetic nervous system, in regulating immune responses is being revealed. Generally, an acute stress response is beneficial but chronic stress is detrimental because it suppresses the activities of effector immune cells while increasing the activities of immunosuppressive cells. In this review, we first discuss the underlying biology of adrenergic signaling in cells of both the innate and adaptive immune system. We then focus on the effects of chronic adrenergic stress in promoting tumor growth, giving examples of effects on tumor cells and immune cells, explaining the methods commonly used to induce stress in preclinical mouse models. We highlight how this relates to our observations that mandated housing conditions impose baseline chronic stress on mouse models, which is sufficient to cause chronic immunosuppression. This problem is not commonly recognized, but it has been shown to impact conclusions of several studies of mouse physiology and mouse models of disease. Moreover, the fact that preclinical mouse models are chronically immunosuppressed has critical ramifications for analysis of any experiments with an immune component. Our group has found that reducing adrenergic stress by housing mice at thermoneutrality or treating mice housed at cooler temperatures with β-blockers reverses immunosuppression and significantly improves responses to checkpoint inhibitor immunotherapy. These observations are clinically relevant because there are numerous retrospective epidemiological studies concluding that cancer patients who were taking β-blockers have better outcomes. Clinical trials testing whether β-blockers can be repurposed to improve the efficacy of traditional and immunotherapies in patients are on the horizon.
Collapse
Affiliation(s)
- Guanxi Qiao
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Minhui Chen
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Mark J. Bucsek
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Elizabeth A. Repasky
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Bonnie L. Hylander
- Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
34
|
Huang KM, Liang S, Yeung S, Oiyemhonlan E, Cleveland KH, Parsa C, Orlando R, Meyskens FL, Andresen BT, Huang Y. Topically Applied Carvedilol Attenuates Solar Ultraviolet Radiation Induced Skin Carcinogenesis. Cancer Prev Res (Phila) 2017; 10:598-606. [PMID: 28912118 DOI: 10.1158/1940-6207.capr-17-0132] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/20/2017] [Accepted: 08/08/2017] [Indexed: 11/16/2022]
Abstract
In previous studies, the β-blocker carvedilol inhibited EGF-induced epidermal cell transformation and chemical carcinogen-induced mouse skin hyperplasia. As exposure to ultraviolet (UV) radiation leads to skin cancer, the present study examined whether carvedilol can prevent UV-induced carcinogenesis. Carvedilol absorbs UV like a sunscreen; thus, to separate pharmacological from sunscreen effects, 4-hydroxycarbazole (4-OHC), which absorbs UV to the same degree as carvedilol, served as control. JB6 P+ cells, an established epidermal model for studying tumor promotion, were used for evaluating the effect of carvedilol on UV-induced neoplastic transformation. Both carvedilol and 4-OHC (1 μmol/L) blocked transformation induced by chronic UV (15 mJ/cm2) exposure for 8 weeks. However, EGF-mediated transformation was inhibited by only carvedilol but not by 4-OHC. Carvedilol (1 and 5 μmol/L), but not 4-OHC, attenuated UV-induced AP-1 and NF-κB luciferase reporter activity, suggesting a potential anti-inflammatory activity. In a single-dose UV (200 mJ/cm2)-induced skin inflammation mouse model, carvedilol (10 μmol/L), applied topically after UV exposure, reduced skin hyperplasia and the levels of cyclobutane pyrimidine dimers, IL1β, IL6, and COX-2 in skin. In SKH-1 mice exposed to gradually increasing levels of UV (50-150 mJ/cm2) three times a week for 25 weeks, topical administration of carvedilol (10 μmol/L) after UV exposure increased tumor latency compared with control (week 18 vs. 15), decreased incidence and multiplicity of squamous cell carcinomas, while 4-OHC had no effect. These data suggest that carvedilol has a novel chemopreventive activity and topical carvedilol following UV exposure may be repurposed for preventing skin inflammation and cancer. Cancer Prev Res; 10(10); 598-606. ©2017 AACR.
Collapse
Affiliation(s)
- Kevin M Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Sherry Liang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Steven Yeung
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Etuajie Oiyemhonlan
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Kristan H Cleveland
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Cyrus Parsa
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California.,Department of Pathology, Beverly Hospital, Montebello, California
| | - Robert Orlando
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California.,Department of Pathology, Beverly Hospital, Montebello, California
| | - Frank L Meyskens
- Departments of Medicine, Biological Chemistry, Public Health and Epidemiology, Chao Family Comprehensive Cancer Center, University of California, Irvine, California
| | - Bradley T Andresen
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California
| | - Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California.
| |
Collapse
|
35
|
Sutherland AE, Bennett NC, Herst PM. Psychological stress affects the severity of radiation-induced acute skin reactions in breast cancer patients. Eur J Cancer Care (Engl) 2017; 26. [PMID: 28707369 DOI: 10.1111/ecc.12737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2017] [Indexed: 01/25/2023]
Abstract
Psychological stress exacerbates many pathological conditions including inflammatory skin conditions. The effect of psychological stress on acute radiation-induced skin reactions has not been documented before. Here, we aimed to explore if psychological stress could aggravate skin reaction severity in breast cancer patients. We conducted a secondary analysis of patient data obtained during a randomised, controlled clinical trial for acute radiation-induced skin reaction severity in 78 breast cancer patients. Patients were assessed three times a week during treatment. Skin reaction severity was measured using the modified Radiation-Induced Skin Reaction Assessment Scale (RISRAS) and Radiation Therapy Oncology Group grades. Stress levels were determined using a 5-point LIKERT scale to rate physical well-being, managing stress levels, house, family, work and other commitments. A total of 20 patients (26%) of the 78-patient cohort were considered stressed. Skin reaction severity in stressed patients was twice that of non-stressed patients (p < 0.001) and stressed patients were five times more likely to develop moist desquamation. Our results show that psychological stress aggravates skin reaction severity during radiation therapy. This research needs to be validated in a more rigorous manner by incorporating a validated scale such as the Distress Thermometer and Impact Thermometer in future skin trials.
Collapse
Affiliation(s)
- A E Sutherland
- Radiation Oncology Department, Southern Blood and Cancer Centre, Dunedin Hospital, Dunedin, New Zealand
| | - N C Bennett
- Radiation Oncology Department, Southern Blood and Cancer Centre, Dunedin Hospital, Dunedin, New Zealand
| | - P M Herst
- Department of Radiation Therapy, University of Otago, Wellington, New Zealand
| |
Collapse
|
36
|
Marques FZ, Eikelis N, Bayles RG, Lambert EA, Straznicky NE, Hering D, Esler MD, Head GA, Barton DA, Schlaich MP, Lambert GW. A polymorphism in the norepinephrine transporter gene is associated with affective and cardiovascular disease through a microRNA mechanism. Mol Psychiatry 2017; 22:134-141. [PMID: 27046647 DOI: 10.1038/mp.2016.40] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 02/11/2016] [Accepted: 02/17/2016] [Indexed: 12/31/2022]
Abstract
Norepinephrine released from sympathetic nerves is removed from the neuroeffector junction via the action of the norepinephrine transporter (NET). NET impairment is evident in several clinically important conditions including major depressive disorder (MDD), panic disorder (PD), essential hypertension and the postural orthostatic tachycardia syndrome (POTS). We aimed to determine whether a single nucleotide polymorphism (SNP) in the 3' untranslated region (UTR) of the NET gene is associated with NET impairment and to elucidate the mechanisms involved. The analyses were carried out in two cohorts of European ancestry, which included healthy controls and MDD, PD, hypertensive and POTS patients. Compared with controls, cases had significantly higher prevalence of the T allele of rs7194256 (C/T), arterial norepinephrine, depression and anxiety scores, larger left ventricular mass index, higher systolic and diastolic blood pressures, and heart rate. Bioinformatic analysis identified that the microRNA miR-19a-3p could bind preferentially to the sequence created by the presence of the T allele. This was supported by results of luciferase assays. Compared with controls, cases had significantly lower circulating miR-19a-3p, which was associated with pathways related to blood pressure and regulation of neurotransmission. In vitro norepinephrine downregulated miR-19a-3p. In conclusion, the T allele of the rs7194256 SNP in the 3'UTR of the NET gene is more prevalent in diseases where NET impairment is evident. This might be explained by the creation of a binding site for the microRNA miR-19a-3p. A defect in NET function may potentiate the sympathetic neurochemical signal, predisposing individuals with affective diseases to increased risk of cardiovascular disease development.
Collapse
Affiliation(s)
- F Z Marques
- The Heart Failure Research Group, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.,The Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC, Australia
| | - N Eikelis
- The Human Neurotransmitters Laboratories, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - R G Bayles
- The Human Neurotransmitters Laboratories, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - E A Lambert
- The Human Neurotransmitters Laboratories, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.,The Department of Physiology, Monash University, Melbourne, VIC, Australia
| | - N E Straznicky
- The Human Neurotransmitters Laboratories, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - D Hering
- Neurovascular Hypertension & Kidney Disease Laboratories, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.,Dobney Hypertension Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia
| | - M D Esler
- The Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC, Australia.,The Human Neurotransmitters Laboratories, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - G A Head
- Neuropharmacology Laboratories, Baker IDI Heart and Diabetes Research Institute, Melbourne, VIC, Australia.,The Department of Pharmacology, Monash University, Melbourne, VIC, Australia
| | - D A Barton
- The Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC, Australia.,The Human Neurotransmitters Laboratories, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - M P Schlaich
- The Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC, Australia.,Neurovascular Hypertension & Kidney Disease Laboratories, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia.,Dobney Hypertension Centre, School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia
| | - G W Lambert
- The Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC, Australia.,The Human Neurotransmitters Laboratories, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| |
Collapse
|
37
|
Adrenergic DNA damage of embryonic pluripotent cells via β2 receptor signalling. Sci Rep 2015; 5:15950. [PMID: 26516061 PMCID: PMC4626766 DOI: 10.1038/srep15950] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/02/2015] [Indexed: 12/16/2022] Open
Abstract
Embryonic pluripotent cells are sensitive to genotoxicity though they need more stringent genome integrity to avoid compromising multiple cell lineages and subsequent generations. However it remains unknown whether the cells are susceptible to adrenergic stress which can induce somatic cell genome lesion. We have revealed that adrenergic stress mediators cause DNA damage of the cells through the β2 adrenergic receptor/adenylate cyclase/cAMP/PKA signalling pathway involving an induction of intracellular reactive oxygen species (ROS) accumulation. The adrenergic stress agonists adrenaline, noradrenaline, and isoprenaline caused DNA damage and apoptosis of embryonic stem (ES) cells and embryonal carcinoma stem cells. The effects were mimicked by β2 receptor-coupled signalling molecules and abrogated by selective blockade of β2 receptors and inhibition of the receptor signalling pathway. RNA interference targeting β2 receptors of ES cells conferred the cells the ability to resist the DNA damage and apoptosis. In addition, adrenergic stimulation caused a consistent accumulation of ROS in the cells and the effect was abrogated by β2 receptor blockade; quenching of ROS reversed the induced DNA damage. This finding will improve the understanding of the stem cell regulatory physiology/pathophysiology in an adrenergic receptor subtype signalling mechanism.
Collapse
|
38
|
Cole SW, Nagaraja AS, Lutgendorf SK, Green PA, Sood AK. Sympathetic nervous system regulation of the tumour microenvironment. Nat Rev Cancer 2015; 15:563-72. [PMID: 26299593 PMCID: PMC4828959 DOI: 10.1038/nrc3978] [Citation(s) in RCA: 394] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The peripheral autonomic nervous system (ANS) is known to regulate gene expression in primary tumours and their surrounding microenvironment. Activation of the sympathetic division of the ANS in particular modulates gene expression programmes that promote metastasis of solid tumours by stimulating macrophage infiltration, inflammation, angiogenesis, epithelial-mesenchymal transition and tumour invasion, and by inhibiting cellular immune responses and programmed cell death. Haematological cancers are modulated by sympathetic nervous system (SNS) regulation of stem cell biology and haematopoietic differentiation programmes. In addition to identifying a molecular basis for physiologic stress effects on cancer, these findings have also identified new pharmacological strategies to inhibit cancer progression in vivo.
Collapse
Affiliation(s)
- Steven W. Cole
- Department of Medicine, Division of Hematology-Oncology, Geffen School of Medicine, UCLA Molecular Biology Institute, Norman Cousins Center, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles
| | - Archana S. Nagaraja
- Departments of Gynecologic Oncology and Cancer Biology, University of Texas M. D. Anderson Comprehensive Cancer Center
| | - Susan K. Lutgendorf
- Departments of Psychology, Obstetrics and Gynecology, Urology, and Holden Comprehensive Cancer Center, University of Iowa
| | - Paige A. Green
- Basic Biobehavioral and Psychological Sciences Branch, Behavioral Research Program, Division of Cancer Control and Population Sciences, United States National Cancer Institute
| | - Anil K. Sood
- Departments of Gynecologic Oncology and Cancer Biology, University of Texas M. D. Anderson Comprehensive Cancer Center
| |
Collapse
|
39
|
Garry MR, Santamaria AB, Williams AL, DeSesso JM. In utero arsenic exposure in mice and early life susceptibility to cancer. Regul Toxicol Pharmacol 2015; 73:378-90. [PMID: 26239692 DOI: 10.1016/j.yrtph.2015.07.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 07/14/2015] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
Abstract
In its review of the U.S. Environmental Protection Agency's toxicological review of inorganic arsenic (iAs), the National Academy of Sciences identified carcinogenic endpoints among the highest priority health effects of concern and stated the need to consider evidence that early life exposures may increase the risk of adverse health effects. Recent studies in mice suggest that in utero exposure to arsenic increases susceptibility to cancer later in life. These data are striking in light of the general lack of evidence for carcinogenicity in rodents exposed to iAs. To evaluate the transplacental carcinogenic potential of iAs, a detailed analysis of the toxicology literature evaluating the role of in utero arsenic exposure in carcinogenesis was conducted. Bladder, lung, and skin tumors, which are the tumor types most consistently reported in humans exposed to high arsenic levels, were not consistently increased in mouse studies. There was also a lack of concordance across studies for other tumor types not typically reported in humans. Therefore, we considered methodological and other critical issues that may have contributed to variable results and we suggest additional studies to address these issues. It was concluded that the available data do not provide evidence of a causal link between in utero arsenic exposure and cancer or indicate early life-stage susceptibility to arsenic-induced cancer, particularly at environmentally relevant doses.
Collapse
Affiliation(s)
- Michael R Garry
- Exponent, 15375 SE 30th Place, Suite 250, Bellevue, WA, 98007, USA.
| | | | - Amy L Williams
- Exponent, 1800 Diagonal Road, Suite 500, Alexandria, VA, 22314, USA.
| | - John M DeSesso
- Exponent, 1800 Diagonal Road, Suite 500, Alexandria, VA, 22314, USA.
| |
Collapse
|
40
|
BARBIERI ANTONIO, BIMONTE SABRINA, PALMA GIUSEPPE, LUCIANO ANTONIO, REA DOMENICA, GIUDICE ALDO, SCOGNAMIGLIO GIOSUÈ, LA MANTIA ELVIRA, FRANCO RENATO, PERDONÀ SISTO, DE COBELLI OTTAVIO, FERRO MATTEO, ZAPPAVIGNA SILVIA, STIUSO PAOLA, CARAGLIA MICHELE, ARRA CLAUDIO. The stress hormone norepinephrine increases migration of prostate cancer cells in vitro and in vivo. Int J Oncol 2015; 47:527-34. [DOI: 10.3892/ijo.2015.3038] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/23/2015] [Indexed: 11/06/2022] Open
|
41
|
Stress hormones reduce the efficacy of paclitaxel in triple negative breast cancer through induction of DNA damage. Br J Cancer 2015; 112:1461-70. [PMID: 25880007 PMCID: PMC4453678 DOI: 10.1038/bjc.2015.133] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/05/2015] [Accepted: 03/12/2015] [Indexed: 12/31/2022] Open
Abstract
Background: The mechanisms by which stress hormones impact triple-negative breast cancer (TNBC) etiology and treatment are unclear. We have previously shown that stress hormones, cortisol, and catecholamines induce rapid DNA damage and impact DNA repair in NIH 3T3 fibroblasts. This study investigates whether stress hormones increase DNA damage in breast cancer cells and if this impacts drug efficacy. Methods: We first screened a panel of 39 breast cancer cell lines for expression of adrenergic and glucocorticoid receptors and examined if stress hormones induce DNA damage and alter cell cycle regulation in vitro. A TNBC xenograft model was used to assess the impact of restraint stress on tumour growth and chemosensitivity to paclitaxel. Results: We found that stress hormones induced DNA damage, phosphorylation of ATR, which was accompanied by an up-regulation of the G1 cell kinase inhibitor p21 and a cell cycle halt of TNBCs in the G1 phase. p21 knockdown abrogated G1 arrest by stress hormones. We also demonstrated that stress significantly decreased efficacy of paclitaxel. Conclusion: We describe a novel mechanism through which stress hormones can induce drug resistance to paclitaxel, which may have profound implications for treating drug resistance in patients with TNBC.
Collapse
|
42
|
Zhao L, Xu JH. Role of adrenergic receptor signaling pathway in colorectal cancer. Shijie Huaren Xiaohua Zazhi 2014; 22:5285-5290. [DOI: 10.11569/wcjd.v22.i34.5285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the most common malignancies. During the past decades, studies have continued to shed light on the role of adrenergic receptor signaling in cancer. Preclinical studies have shown that adrenergic receptor signaling is involved in colon cancer progression and metastasis and have implicated that stress hormones or behavioral changes are highly associated with tumor formation and progression. Therefore, further understanding of the role of the adrenergic receptor (AR) signaling pathway in colorectal cancer progression and metastasis will be of great value in developing therapeutic strategies for this malignancy.
Collapse
|
43
|
Liu W, Wang X, Gong J, Mei Z, Gao X, Zhao Y, Ma J, Qian L. The stress-related hormone norepinephrine induced upregulation of Nix, contributing to ECM protein expression. Cell Stress Chaperones 2014; 19:903-12. [PMID: 24803315 PMCID: PMC4389852 DOI: 10.1007/s12192-014-0515-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/23/2014] [Accepted: 04/23/2014] [Indexed: 12/27/2022] Open
Abstract
Organ fibrosis has been viewed as a major medical problem that leads to progressive dysfunction of the organ and eventually the death of patients. Stress-related hormone norepinephrine (NE) has been reported to exert fibrogenic actions in the injured organ. Nix plays a critical role in pressure overload-induced cardiac remodeling and heart failure through mediating cardiomyocyte apoptosis. However, cardiac remodeling also includes fibrosis. Whether Nix is involved in stress-induced fibrosis remains unclear. The present study was designed to determine the role of Nix in NE-induced NIH/3T3 fibroblasts. The results showed that Nix was upregulated and closely associated with cell proliferation, collagen and fibronectin expression in NIH/3T3 fibroblasts following NE treatment. Overexpression of Nix promoted collagen and fibronectin expression, whereas the suppression of Nix resulted in a strong reduction in collagen and fibronectin expression. Moreover, the increases in collagen and fibronectin expression induced by NE were successively increased when Nix was overexpressed and reduced when Nix was inhibited. Furthermore, we demonstrated that the PKC activation is responsible for the upregulation of Nix induced by NE. Inhibition of Nix expression with α-adrenoceptor antagonist, β-adrenoceptor antagonist or PKC inhibitor attenuated NE-induced collagen and fibronectin expression. Our data revealed that Nix is a novel mediator of NE-induced fibrosis. Thus, it would provide a new insight into the development of effective preventative measures and therapies of tissue fibrosis.
Collapse
Affiliation(s)
- Weili Liu
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District Beijing, 100850 China
| | - Xinxing Wang
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District Beijing, 100850 China
| | - Jingbo Gong
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District Beijing, 100850 China
| | - Zhusong Mei
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District Beijing, 100850 China
| | - Xiujie Gao
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District Beijing, 100850 China
| | - Yun Zhao
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District Beijing, 100850 China
| | - Jing Ma
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District Beijing, 100850 China
| | - Lingjia Qian
- Department of Stress Medicine, Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Haidian District Beijing, 100850 China
| |
Collapse
|
44
|
Eng JWL, Kokolus KM, Reed CB, Hylander BL, Ma WW, Repasky EA. A nervous tumor microenvironment: the impact of adrenergic stress on cancer cells, immunosuppression, and immunotherapeutic response. Cancer Immunol Immunother 2014; 63:1115-28. [PMID: 25307152 DOI: 10.1007/s00262-014-1617-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/27/2014] [Indexed: 02/06/2023]
Abstract
Long conserved mechanisms maintain homeostasis in living creatures in response to a variety of stresses. However, continuous exposure to stress can result in unabated production of stress hormones, especially catecholamines, which can have detrimental health effects. While the long-term effects of chronic stress have well-known physiological consequences, recent discoveries have revealed that stress may affect therapeutic efficacy in cancer. Growing epidemiological evidence reveals strong correlations between progression-free and long-term survival and β-blocker usage in cancer patients. In this review, we summarize the current understanding of how the catecholamines, epinephrine and norepinephrine, affect cancer cell survival and tumor progression. We also highlight new data exploring the potential contributions of stress to immunosuppression in the tumor microenvironment and the implications of these findings for the efficacy of immunotherapies.
Collapse
Affiliation(s)
- Jason W-L Eng
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | | | | | | | | | | |
Collapse
|
45
|
Jenkins FJ, Van Houten B, Bovbjerg DH. Effects on DNA Damage and/or Repair Processes as Biological Mechanisms Linking Psychological Stress to Cancer Risk. ACTA ACUST UNITED AC 2014; 19:3-23. [PMID: 24891812 DOI: 10.1111/jabr.12019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Considerable research effort in the past several decades has focused on the impact of psychological stress, and stress hormones, on cancer progression. Numerous studies have reported that stress hormone treatment or in vivo stress exposure can enhance the growth of tumor cell lines in vitro, as well as tumors in animal models, and have begun to explore molecular mechanisms. Comparatively little research has focused on the impact of psychological stress and stress hormones on cancer initiation, in part due to inherent methodological challenges, but also because potential underlying biological mechanisms have remained obscure. In this review, we present a testable theoretical model of pathways by which stress may result in cellular transformation and tumorigenesis. This model supports our overarching hypothesis that psychological stress, acting through increased levels of catecholamines and/or cortisol, can increase DNA damage and/or reduce repair mechanisms, resulting in increased risk of DNA mutations leading to carcinogenesis. A better understanding of molecular pathways by which psychological stress can increase the risk of cancer initiation would open new avenues of translational research, bringing together psychologists, neuroscientists, and molecular biologists, potentially resulting in the development of novel approaches for cancer risk reduction at the population level.
Collapse
Affiliation(s)
- Frank J Jenkins
- Department of Pathology, Infectious Diseases and Microbiology, University of Pittsburgh and Biobehavioral Medicine in Oncology Program, University of Pittsburgh Cancer Institute
| | - Bennett Van Houten
- Department of Chemical Biology and Pharmacology, University of Pittsburgh and Molecular and Cellular Cancer Biology Program, University of Pittsburgh Cancer Institute
| | - Dana H Bovbjerg
- Department of Psychiatry, Psychology, and Behavioral and Community Health Sciences, University of Pittsburgh and Biobehavioral Medicine in Oncology Program, University of Pittsburgh Cancer Institute
| |
Collapse
|
46
|
Jia JJ, Zeng XS, Zhou XS, Li Y, Bai J. The induction of thioredoxin-1 by epinephrine withdraws stress via interaction with β-arrestin-1. Cell Cycle 2014; 13:3121-3131. [PMID: 25486571 PMCID: PMC4614835 DOI: 10.4161/15384101.2014.949214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 11/19/2022] Open
Abstract
Stress regulates a panel of important physiological functions and disease states. Epinephrine is produced under stresses threaten to homeostasis. Thioredoxin-1(Trx-1) is a redox regulating protein which is induced to resist stresses and related with various diseases. Thus, it is important to examine whether Trx-1 is induced by epinephrine and to understand the underlying molecular mechanisms that Trx-1 modulates epinephrine stress. Here, we show that the expression of Trx-1 was induced by epinephrine via β-adrenergic receptor/Cyclic AMP/protein kinase A (PKA) signaling pathway in PC12 cells. The down-regulation of Trx-1 by siRNA aggravated accumulation of γ-H2AX and further decreased expression of p53 by epinephrine. Accordingly, Trx-1 overexpression alleviated accumulation of γ-H2AX and restored the expressions of p53 and C/EBP homologous protein (CHOP) in the cortex, hippocampus and thymus of mice. Moreover, Trx-1 overexpression reduced the malondialdehyde concentration by epinephrine. We further explored the mechanism on p53 and γ-H2AX regulated by Trx-1. We found that overexpression of Trx-1 suppressed β-arrestin-1 expression through interaction with β-arrestin-1. Consequently, the downregulation of β-arrestin-1 suppressed the cell viability and the expressions of γ-H2AX and cyclin D1, and increased p53 expression. Taken together, our data suggest that Trx-1/β-arrestin-1 interaction may represent a novel endogenous mechanism on protecting against stress.
Collapse
Key Words
- ASK1, Apoptosis signal-regulating kinase 1
- Abbreviations:
- CHOP
- CHOP, C/EBP homologous protein
- DNA damage
- GPCR, G protein-coupled receptors
- MAPK, Mitogen-activated protein kinase
- MDA, Malondialdehyde
- MDM2, Murine double minute 2
- PKA, Protein Kinase A
- TBP-2, Thioredoxin binding protein-2
- Thioredoxin-1
- Trx-1, Thioredoxin-1
- Txnip, thioredoxin interacting protein
- chronic epinephrine stress
- p53
- β-arrestin-1
- γ-H2AX, Phosphorylation of histone H2AX
Collapse
Affiliation(s)
- Jin-Jing Jia
- College of Life Science and Technology; Kunming University of Science and Technology; Kunming, China
- Laboratory of molecular neurobiology; Medical Faculty; Kunming University of Science and Technology; Kunming, China
| | - Xian-Si Zeng
- College of Life Science and Technology; Kunming University of Science and Technology; Kunming, China
- Laboratory of molecular neurobiology; Medical Faculty; Kunming University of Science and Technology; Kunming, China
| | - Xiao-Shuang Zhou
- Laboratory of molecular neurobiology; Medical Faculty; Kunming University of Science and Technology; Kunming, China
| | - Ye Li
- Laboratory of molecular neurobiology; Medical Faculty; Kunming University of Science and Technology; Kunming, China
| | - Jie Bai
- Laboratory of molecular neurobiology; Medical Faculty; Kunming University of Science and Technology; Kunming, China
| |
Collapse
|
47
|
Jia JJ, Zeng XS, Zhou XS, Li Y, Bai J. The induction of thioredoxin-1 by epinephrine withdraws stress via interaction with β-arrestin-1. Cell Cycle 2014; 13:3121-3131. [PMID: 25486571 DOI: 10.4161/15384101.2014.949214if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Stress regulates a panel of important physiological functions and disease states. Epinephrine is produced under stresses threaten to homeostasis. Thioredoxin-1(Trx-1) is a redox regulating protein which is induced to resist stresses and related with various diseases. Thus, it is important to examine whether Trx-1 is induced by epinephrine and to understand the underlying molecular mechanisms that Trx-1 modulates epinephrine stress. Here, we show that the expression of Trx-1 was induced by epinephrine via β-adrenergic receptor/Cyclic AMP/protein kinase A (PKA) signaling pathway in PC12 cells. The down-regulation of Trx-1 by siRNA aggravated accumulation of γ-H2AX and further decreased expression of p53 by epinephrine. Accordingly, Trx-1 overexpression alleviated accumulation of γ-H2AX and restored the expressions of p53 and C/EBP homologous protein (CHOP) in the cortex, hippocampus and thymus of mice. Moreover, Trx-1 overexpression reduced the malondialdehyde concentration by epinephrine. We further explored the mechanism on p53 and γ-H2AX regulated by Trx-1. We found that overexpression of Trx-1 suppressed β-arrestin-1 expression through interaction with β-arrestin-1. Consequently, the downregulation of β-arrestin-1 suppressed the cell viability and the expressions of γ-H2AX and cyclin D1, and increased p53 expression. Taken together, our data suggest that Trx-1/β-arrestin-1 interaction may represent a novel endogenous mechanism on protecting against stress.
Collapse
Key Words
- ASK1, Apoptosis signal-regulating kinase 1
- Abbreviations:
- CHOP
- CHOP, C/EBP homologous protein
- DNA damage
- GPCR, G protein-coupled receptors
- MAPK, Mitogen-activated protein kinase
- MDA, Malondialdehyde
- MDM2, Murine double minute 2
- PKA, Protein Kinase A
- TBP-2, Thioredoxin binding protein-2
- Thioredoxin-1
- Trx-1, Thioredoxin-1
- Txnip, thioredoxin interacting protein
- chronic epinephrine stress
- p53
- β-arrestin-1
- γ-H2AX, Phosphorylation of histone H2AX
Collapse
Affiliation(s)
- Jin-Jing Jia
- a College of Life Science and Technology ; Kunming University of Science and Technology ; Kunming , China
| | | | | | | | | |
Collapse
|
48
|
DNA damage as a result of psychological stress: implications for breast cancer. Breast Cancer Res 2012; 14:320. [PMID: 23014589 PMCID: PMC4053094 DOI: 10.1186/bcr3189] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Accumulating evidence indicates that psychological stress can have deleterious influences on cancer development and progression, but the mechanisms responsible remain unclear. One possible mechanism is suggested by emerging evidence that DNA damage is increased by exposure to stress and stress hormones (for example, cortisol, catecholamines). Possible molecular mechanisms for such effects were the subject of a recent paper by Hara and colleagues, which suggests that chronic stress, through β-adrenergic stimulation, can induce two synergistic pathways that result in accumulation of DNA damage. Herein, we discuss the potential implications of these findings for breast cancer etiology, progression, and treatment response.
Collapse
|