1
|
Tang M, Wu Y, Olnood CG, Gao Y, Wang F, Zhang Z, Peng C, Zhou X, Huang C, Xiong X, Yin Y. Effects of peroxidized lipids on intestinal morphology, antioxidant capacity and gut microbiome in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:430-443. [PMID: 40034456 PMCID: PMC11875184 DOI: 10.1016/j.aninu.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 03/05/2025]
Abstract
This study investigated the effect of peroxidized lipids on piglets' growth performance, intestinal morphology, inflammatory reactions, oxidative stress in the liver, duodenum, jejunum, ileum, and colon, and ileal microbiota. Twenty piglets (Duroc × [Landrace × Yorkshire]; age = 21 d old, BW = 6.5 ± 1 kg) were randomly assigned to two groups with 10 replicates per group and one piglet per replicate. The control group was fed 6% fresh soybean oil and the peroxidized soybean oil (PSO) group fed 6% PSO. The experimental feeding period lasted 24 d. The study found no impact on ADFI, ADG and gain to feed ratio (P > 0.05). However, the PSO group increased the diarrhea index and the serum levels of lactate dehydrogenase triglycerides, cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol (P < 0.05), along with decreased concentrations of alanine aminotransferase and blood urea nitrogen (P < 0.05). For oxidative enzymes, PSO increased the concentration of F2-isoprostane in urine (P = 0.032), malondialdehyde (MDA) in the duodenum (P = 0.001) and jejunum (P = 0.004), decreased thiobarbituric acid reactive substances (TBARS) in the liver (P = 0.001) but increased TBARS in duodenum (P = 0.001), and carbonylated proteins in the duodenum (P = 0.003). For antioxidant enzymes, PSO decreased superoxide dismutase (SOD) in the liver (P = 0.001), colon (P = 0.002), and jejunum (P = 0.015), along with glutathione peroxidase (GSH-Px) in the liver (P = 0.008) and NAD(P)H:quinone oxidoreductase 1 (NQO1) in ileum (P = 0.001). For inflammatory reactions, PSO increased interleukin (IL)-1β concentrations in the duodenum and colon, and IL-10 in the jejunum, while decreasing IL-4 concentration in the duodenum (P < 0.05). For intestinal morphology and ileal microbiota, PSO increased ileal crypt depth, while decreasing the crypt-to-villus ratio (P < 0.05). Peroxidized soybean oil increased the relative abundance of Prevotella, Clostridium_sensu_stricto_1, Clostridium_sensu_stricto_6, Pasteurella and Klebsiella (P < 0.05). In conclusion, this study revealed that PSO worsened diarrhea, increasing the ileal crypt depth and the relative abundance of harmful microbiota, and induced oxidative stress and inflammation in the intestines and liver, primarily in the jejunum and ileum.
Collapse
Affiliation(s)
- Mengxuan Tang
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yuliang Wu
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Chinese Academy of Sciences, Changsha 410125, China
| | | | - Yundi Gao
- Sichuan Synlight Biotech Ltd., Chengdu 610041, China
| | - Fei Wang
- Sichuan Synlight Biotech Ltd., Chengdu 610041, China
| | - Zicheng Zhang
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Chinese Academy of Sciences, Changsha 410125, China
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Can Peng
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Chinese Academy of Sciences, Changsha 410125, China
| | - Xihong Zhou
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Chinese Academy of Sciences, Changsha 410125, China
| | - Chunxia Huang
- School of Stomatology, Changsha Medical University, Changsha 410219, China
| | - Xia Xiong
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Chinese Academy of Sciences, Changsha 410125, China
- School of Stomatology, Changsha Medical University, Changsha 410219, China
| | - Yulong Yin
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
2
|
Aktar T, Modak S, Majumder D, Maiti D. A detailed insight into macrophages' role in shaping lung carcinogenesis. Life Sci 2024; 352:122896. [PMID: 38972632 DOI: 10.1016/j.lfs.2024.122896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Despite significant advancements in cancer treatment in recent decades, the high mortality rate associated with lung cancer remains a significant concern. The development and proper execution of new targeted therapies needs more deep knowledge regarding the lung cancer associated tumour microenvironment. One of the key component of that tumour microenvironment is the lung resident macrophages. Although in normal physiological condition the lung resident macrophages are believed to maintain lung homeostasis, but they may also initiate a vicious inflammatory response in abnormal conditions which is linked to lung cancer development. Depending on the activation pathway, the lung resident macrophages are either of M1 or M2 sub-type. The M1 and M2 sub-types differ significantly in various prospectuses, from phenotypic markers to metabolic pathways. In addition to this generalized classification, the recent advancement of the multiomics technology is able to identify some other sub-types of lung resident macrophages. Researchers have also observed that these different sub-types can manipulate the pathogenesis of lung carcinogenesis in a context dependent manner and can either promote or inhibit the development of lung carcinogenesis upon receiving proper activation. As proper knowledge about the role played by the lung resident macrophages' in shaping the lung carcinogenesis is limited, so the main purpose of this review is to bring all the available information under the same roof. We also elaborated the different mechanisms involved in maintenance of the plasticity of M1/M2 sub-type, as this plasticity can be a good target for lung cancer treatment.
Collapse
Affiliation(s)
- Tamanna Aktar
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura 799022, India
| | - Snehashish Modak
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura 799022, India
| | - Debabrata Majumder
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura 799022, India; Department of Integrative Immunobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Debasish Maiti
- Immunology Microbiology Lab, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura 799022, India.
| |
Collapse
|
3
|
Homolak J, Varvaras K, Sciacca V, Babic Perhoc A, Virag D, Knezovic A, Osmanovic Barilar J, Salkovic-Petrisic M. Insights into Gastrointestinal Redox Dysregulation in a Rat Model of Alzheimer's Disease and the Assessment of the Protective Potential of D-Galactose. ACS OMEGA 2024; 9:11288-11304. [PMID: 38496956 PMCID: PMC10938400 DOI: 10.1021/acsomega.3c07152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 03/19/2024]
Abstract
Recent evidence suggests that the gut plays a vital role in the development and progression of Alzheimer's disease (AD) by triggering systemic inflammation and oxidative stress. The well-established rat model of AD, induced by intracerebroventricular administration of streptozotocin (STZ-icv), provides valuable insights into the GI implications of neurodegeneration. Notably, this model leads to pathophysiological changes in the gut, including redox dyshomeostasis, resulting from central neuropathology. Our study aimed to investigate the mechanisms underlying gut redox dyshomeostasis and assess the effects of D-galactose, which is known to benefit gut redox homeostasis and alleviate cognitive deficits in this model. Duodenal rings isolated from STZ-icv animals and control groups were subjected to a prooxidative environment using 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) or H2O2 with or without D-galactose in oxygenated Krebs buffer ex vivo. Redox homeostasis was analyzed through protein microarrays and functional biochemical assays alongside cell survival assessment. Structural equation modeling and univariate and multivariate models were employed to evaluate the differential response of STZ-icv and control samples to the controlled prooxidative challenge. STZ-icv samples showed suppressed expression of catalase and glutathione peroxidase 4 (GPX4) and increased baseline activity of enzymes involved in H2O2 and superoxide homeostasis. The altered redox homeostasis status was associated with an inability to respond to oxidative challenges and D-galactose. Conversely, the presence of D-galactose increased the antioxidant capacity, enhanced catalase and peroxidase activity, and upregulated superoxide dismutases in the control samples. STZ-icv-induced gut dysfunction is characterized by a diminished ability of the redox regulatory system to maintain long-term protection through the transcription of antioxidant response genes as well as compromised activation of enzymes responsible for immediate antioxidant defense. D-galactose can exert beneficial effects on gut redox homeostasis under physiological conditions.
Collapse
Affiliation(s)
- Jan Homolak
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Interfaculty
Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, 72074 Tübingen, Germany
| | - Konstantinos Varvaras
- Department
of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vittorio Sciacca
- Faculty
of Medicine, University of Catania, 95131 Catania, Italy
| | - Ana Babic Perhoc
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Davor Virag
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Ana Knezovic
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Melita Salkovic-Petrisic
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Zhang X, Hou L, Guo Z, Wang G, Xu J, Zheng Z, Sun K, Guo F. Lipid peroxidation in osteoarthritis: focusing on 4-hydroxynonenal, malondialdehyde, and ferroptosis. Cell Death Discov 2023; 9:320. [PMID: 37644030 PMCID: PMC10465515 DOI: 10.1038/s41420-023-01613-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Osteoarthritis (OA) is a multifactorial and increasingly prevalent degenerative disease that affects the whole joint. The pathogenesis of OA is poorly understood and there is a lack of therapeutic interventions to reverse the pathological process of this disease. Accumulating studies have shown that the overproduction of reactive oxygen species (ROS) and ROS-induced lipid peroxidation are involved in the pathogenesis of OA. 4-Hydroxy-2-nonenal (4-HNE) and malondialdehyde (MDA) have received considerable attention for their role in cartilage degeneration and subchondral bone remodeling during OA development. Ferroptosis is a form of cell death characterized by a lack of control of membrane lipid peroxidation and recent studies have suggested that chondrocyte ferroptosis contributes to OA progression. In this review, we aim to discuss lipid peroxidation-derived 4-HNE and MDA in the progression of OA. In addition, the therapeutic potential for OA by controlling the accumulation of lipid peroxidation and inhibiting chondrocyte ferroptosis are discussed.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Genchun Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jingting Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zehang Zheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
5
|
Orešić T, Bubanović S, Ramić S, Šarčević B, Čipak Gašparović A. Nuclear localization of NRF2 in stroma of HER2 positive and triple-negative breast cancer. Pathol Res Pract 2023; 248:154662. [PMID: 37421843 DOI: 10.1016/j.prp.2023.154662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
Breast cancer is one of the leading causes of cancer-related mortality in women. During tumor growth, periods of hypoxia are followed by reoxygenation due to neovascularisation leading to disturbed redox homeostasis. ROS (Reactive Oxygen Species) produced under hypoxia activate HIF1α. ROS can also activate the major antioxidant transcription factor NRF2, but also cause damage to biomolecules. Lipids are susceptible to peroxidation, as evidenced by the formation of reactive aldehydes, among which, HNE (4-hydroxynonenal) is the most studied one. Knowing that HIF1α (Hypoxia Inducing Factor 1α) is associated with breast cancer malignancy, we aimed to investigate its correlation with HNE and NRF2 (Nuclear factor erythroid 2-related factor 2). Our results show that HIF1α is activated in breast cancer, indicating an increase in ROS but not followed by HNE production. On the other hand, NRF2 was increased in all types of breast cancer suggesting that oxidative stress is present in these pathologies, but also supporting HIF1α. Interestingly, NRF2 was activated in HER2 positive and TNBC, indicating the role of stromal NRF2 in breast cancer malignancy.
Collapse
Affiliation(s)
- Tomislav Orešić
- University Hospital for Tumors, University Hospital Centre "Sestre milosrdnice", Ilica 197, HR-10000 Zagreb, Croatia.
| | - Sanda Bubanović
- University Hospital for Tumors, University Hospital Centre "Sestre milosrdnice", Ilica 197, HR-10000 Zagreb, Croatia.
| | - Snježana Ramić
- University Hospital for Tumors, University Hospital Centre "Sestre milosrdnice", Ilica 197, HR-10000 Zagreb, Croatia.
| | - Božena Šarčević
- University Hospital for Tumors, University Hospital Centre "Sestre milosrdnice", Ilica 197, HR-10000 Zagreb, Croatia.
| | | |
Collapse
|
6
|
Saha S, Saso L, Armagan G. Cancer Prevention and Therapy by Targeting Oxidative Stress Pathways. Molecules 2023; 28:molecules28114293. [PMID: 37298769 DOI: 10.3390/molecules28114293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 04/28/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Oxidative stress arises from the inadequate production of reactive oxygen species (ROS) which couldn't be neutralized by antioxidant defense [...].
Collapse
Affiliation(s)
- Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, India
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, 00185 Rome, Italy
| | - Guliz Armagan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey
| |
Collapse
|
7
|
Milkovic L, Zarkovic N, Marusic Z, Zarkovic K, Jaganjac M. The 4-Hydroxynonenal–Protein Adducts and Their Biological Relevance: Are Some Proteins Preferred Targets? Antioxidants (Basel) 2023; 12:antiox12040856. [PMID: 37107229 PMCID: PMC10135105 DOI: 10.3390/antiox12040856] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
It is well known that oxidative stress and lipid peroxidation (LPO) play a role in physiology and pathology. The most studied LPO product with pleiotropic capabilities is 4-hydroxynonenal (4-HNE). It is considered as an important mediator of cellular signaling processes and a second messenger of reactive oxygen species. The effects of 4-HNE are mainly attributed to its adduction with proteins. Whereas the Michael adducts thus formed are preferred in an order of potency of cysteine > histidine > lysine over Schiff base formation, it is not known which proteins are the preferred targets for 4-HNE under what physiological or pathological conditions. In this review, we briefly discuss the methods used to identify 4-HNE–protein adducts, the progress of mass spectrometry in deciphering the specific protein targets, and their biological relevance, focusing on the role of 4-HNE protein adducts in the adaptive response through modulation of the NRF2/KEAP1 pathway and ferroptosis.
Collapse
Affiliation(s)
- Lidija Milkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Zlatko Marusic
- Division of Pathology, Clinical Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Kamelija Zarkovic
- Division of Pathology, Clinical Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Morana Jaganjac
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Syamprasad NP, Jain S, Rajdev B, Prasad N, Kallipalli R, Naidu VGM. Aldose reductase and cancer metabolism: The master regulator in the limelight. Biochem Pharmacol 2023; 211:115528. [PMID: 37011733 DOI: 10.1016/j.bcp.2023.115528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
It is strongly established that metabolic reprogramming mediates the initiation, progression, and metastasis of a variety of cancers. However, there is no common biomarker identified to link the dysregulated metabolism and cancer progression. Recent studies strongly advise the involvement of aldose reductase (AR) in cancer metabolism. AR-mediated glucose metabolism creates a Warburg-like effect and an acidic tumour microenvironment in cancer cells. Moreover, AR overexpression is associated with the impairment of mitochondria and the accumulation of free fatty acids in cancer cells. Further, AR-mediated reduction of lipid aldehydes and chemotherapeutics are involved in the activation of factors promoting proliferation and chemo-resistance. In this review, we have delineated the possible mechanisms by which AR modulates cellular metabolism for cancer proliferation and survival. An in-depth understanding of cancer metabolism and the role of AR might lead to the use of AR inhibitors as metabolic modulating agents for the therapy of cancer.
Collapse
Affiliation(s)
- N P Syamprasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Siddhi Jain
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Bishal Rajdev
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Neethu Prasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - Ravindra Kallipalli
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam 781101, India.
| |
Collapse
|
9
|
Kang HB, Lim CK, Kim J, Han SJ. Oxypurinol protects renal ischemia/reperfusion injury via heme oxygenase-1 induction. Front Med (Lausanne) 2023; 10:1030577. [PMID: 36968831 PMCID: PMC10033620 DOI: 10.3389/fmed.2023.1030577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Renal ischemia/reperfusion (I/R) injury is a major cause of acute kidney injury (AKI) by increasing oxidative stress, inflammatory responses, and tubular cell death. Oxypurinol, an active metabolite of allopurinol, is a potent anti-inflammatory and antioxidant agent. To investigate the therapeutic potential and underlying mechanism of oxypurinol in ischemic AKI, C57BL/6 male mice were intraperitoneally injected with oxypurinol and subjected to renal I/R or sham surgery. We found that oxypurinol-treated mice had lower plasma creatinine and blood urea nitrogen levels and tubular damage (hematoxylin-and-eosin staining) compared to vehicle-treated mice after renal I/R injury. Furthermore, oxypurinol treatment reduced kidney inflammation (i.e., neutrophil infiltration and MIP-2 mRNA induction), oxidative stress (i.e., 4-HNE, heme oxygenase-1 [HO-1], 8-OHdG expression, and Catalase mRNA induction), and apoptosis (i.e., TUNEL or cleaved caspase-3-positive renal tubular cells), compared to vehicle-treated mice. Mechanistically, oxypurinol induced protein expressions of HO-1, which is a critical cytoprotective enzyme during ischemic AKI, and oxypurinol-mediated protection against ischemic AKI was completely eliminated by pretreatment with tin protoporphyrin IX, an HO-1 inhibitor. In conclusion, oxypurinol protects against renal I/R injury by reducing oxidative stress, inflammation, and apoptosis via HO-1 induction, suggesting its preventive potential in ischemic AKI.
Collapse
Affiliation(s)
- Hye Bin Kang
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
| | - Chae Kyu Lim
- Department of St. Mary Pathology and Laboratory Medicine, Busan, Republic of Korea
| | - Jongwan Kim
- Department of Medical Laboratory Science, Dong-eui Institute of Technology, Busan, Republic of Korea
| | - Sang Jun Han
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
- *Correspondence: Sang Jun Han
| |
Collapse
|
10
|
Transcriptional Insights of Oxidative Stress and Extracellular Traps in Lung Tissues of Fatal COVID-19 Cases. Int J Mol Sci 2023; 24:ijms24032646. [PMID: 36768969 PMCID: PMC9917045 DOI: 10.3390/ijms24032646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023] Open
Abstract
Neutrophil extracellular traps (NETs) and oxidative stress are considered to be beneficial in the innate immune defense against pathogens. However, defective clearance of NETs in the lung of acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients could lead to severe respiratory syndrome infection, the so-called coronavirus disease 2019 (COVID-19). To elucidate the pathways that are related to NETs within the pathophysiology of COVID-19, we utilized RNA sequencing (RNA-seq) as well as immunofluorescence and immunohistochemistry methods. RNA-seq analysis provided evidence for increased oxidative stress and the activation of viral-related signaling pathways in post-mortem lungs of COVID-19 patients compared to control donors. Moreover, an excess of neutrophil infiltration and NET formation were detected in the patients' lungs, where the extracellular DNA was oxidized and co-localized with neutrophil granule protein myeloperoxidase (MPO). Interestingly, staining of the lipid peroxidation marker 4-hydroxynonenal (4-HNE) depicted high colocalization with NETs and was correlated with the neutrophil infiltration of the lung tissues, suggesting that it could serve as a suitable marker for the identification of NETs and the severity of the disease. Moreover, local inhalation therapy to reduce the excess lipid oxidation and NETs in the lungs of severely infected patients might be useful to ameliorate their clinical conditions.
Collapse
|
11
|
Jaganjac M, Zarkovic N. Lipid Peroxidation Linking Diabetes and Cancer: The Importance of 4-Hydroxynonenal. Antioxid Redox Signal 2022; 37:1222-1233. [PMID: 36242098 DOI: 10.1089/ars.2022.0146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: It is commonly believed that diabetes mellitus may be associated with cancer. Hence, diabetic patients are at higher risk for hepatocellular carcinoma, pancreatic cancer, colorectal cancer, and breast cancer, but the mechanisms that may link these two severe diseases are not well understood. Recent Advances: A number of factors have been suggested to promote tumorigenesis in diabetic patients, including insulin resistance, hyperglycemia, dyslipidemia, inflammation, and elevated insulin-like growth factor-1 (IGF-1), which may also promote pro-oxidants, and thereby alter redox homeostasis. The consequent oxidative stress associated with lipid peroxidation appears to be a possible pathogenic link between cancer and diabetes. Critical Issues: Having summarized the above aspects of diabetes and cancer pathology, we propose that the major bioactive product of oxidative degradation of polyunsaturated fatty acids (PUFAs), the reactive aldehyde 4-hydroxynonenal (4-HNE), which is also considered a second messenger of free radicals, may be the key pathogenic factor linking diabetes and cancer. Future Directions: Because the bioactivities of 4-HNE are cell-type and concentration-dependent, are often associated with inflammation, and are involved in signaling processes that regulate antioxidant activities, proliferation, differentiation, and apoptosis, we believe that further research in this direction could reveal options for better control of diabetes and cancer. Controlling the production of 4-HNE to avoid its cytotoxicity to normal but not cancer cells while preventing its diabetogenic activities could be an important aspect of modern integrative biomedicine. Antioxid. Redox Signal. 37, 1222-1233.
Collapse
Affiliation(s)
- Morana Jaganjac
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
12
|
4-Hydroxynonenal Modulates Blood-Brain Barrier Permeability In Vitro through Changes in Lipid Composition and Oxidative Status of Endothelial Cells and Astrocytes. Int J Mol Sci 2022; 23:ijms232214373. [PMID: 36430852 PMCID: PMC9698020 DOI: 10.3390/ijms232214373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Blood brain barrier (BBB) is a dynamic interface responsible for proper functioning of brain, but also a major obstacle for effective treatment of neurological diseases. Increased levels of free radicals, in high ferrous and high lipid content surrounding, induce lipid peroxidation, leading to production of 4-hydroxynonenal (HNE). HNE modifies all key proteins responsible for proper brain functioning thus playing a major role in the onset of neurological diseases. To investigate HNE effects on BBB permeability, we developed two in vitro BBB models-'physiological' and 'pathological'. The latter mimicked HNE modified extracellular matrix under oxidative stress conditions in brain pathologies. We showed that exogenous HNE induce activation of antioxidative defense systems by increasing catalase activity and glutathione content as well as reducing lipid peroxide levels in endothelial cells and astrocytes of 'physiological' model. While in 'pathological' model, exogenous HNE further increased lipid peroxidation levels of endothelial cells and astrocytes, followed by increase in Nrf2 and glutathione levels in endothelial cells. At lipid composition level, HNE caused increase in ω3 polyunsaturated fatty acid (PUFA) level in endothelial cells, followed by decrease in ω3 PUFA level and increase in monounsaturated fatty acid level in astrocytes. Using these models, we showed for the first time that HNE in 'pathological' model can reduce BBB permeability.
Collapse
|
13
|
Detrimental Effects of Lipid Peroxidation in Type 2 Diabetes: Exploring the Neutralizing Influence of Antioxidants. Antioxidants (Basel) 2022; 11:antiox11102071. [PMID: 36290794 PMCID: PMC9598619 DOI: 10.3390/antiox11102071] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Lipid peroxidation, including its prominent byproducts such as malondialdehyde (MDA) and 4-hydroxy-2-nonenal (4-HNE), has long been linked with worsened metabolic health in patients with type 2 diabetes (T2D). In fact, patients with T2D already display increased levels of lipids in circulation, including low-density lipoprotein-cholesterol and triglycerides, which are easily attacked by reactive oxygen molecules to give rise to lipid peroxidation. This process severely depletes intracellular antioxidants to cause excess generation of oxidative stress. This consequence mainly drives poor glycemic control and metabolic complications that are implicated in the development of cardiovascular disease. The current review explores the pathological relevance of elevated lipid peroxidation products in T2D, especially highlighting their potential role as biomarkers and therapeutic targets in disease severity. In addition, we briefly explain the implication of some prominent antioxidant enzymes/factors involved in the blockade of lipid peroxidation, including termination reactions that involve the effect of antioxidants, such as catalase, coenzyme Q10, glutathione peroxidase, and superoxide dismutase, as well as vitamins C and E.
Collapse
|
14
|
Jaganjac M, Milkovic L, Zarkovic N, Zarkovic K. Oxidative stress and regeneration. Free Radic Biol Med 2022; 181:154-165. [PMID: 35149216 DOI: 10.1016/j.freeradbiomed.2022.02.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/06/2022] [Indexed: 12/19/2022]
Abstract
Regeneration is the process of replacing/restoring a damaged cell/tissue/organ to its full function and is limited respecting complexity of specific organ structures and the level of differentiation of the cells. Unlike physiological cell turnover, this tissue replacement form is activated upon pathological stimuli such as injury and/or disease that usually involves inflammatory response. To which extent will tissue repair itself depends on many factors and involves different mechanisms. Oxidative stress is one of them, either acute, as in case of traumatic brin injury or chronic, as in case of neurodegeneration, oxidative stress within brain involves lipid peroxidation, which generates reactive aldehydes, such as 4-hydroxynonenal (4-HNE). While 4-HNE is certainly neurotoxic and causes disruption of the blood brain barrier in case of severe injuries, it is also physiologically produced by glial cells, especially astrocytes, but its physiological roles within CNS are not understood. Because 4-HNE can regulate the response of the other cells in the body to stress, enhance their antioxidant capacities, proliferation and differentiation, we could assume that it may also have some beneficial role for neuroregeneration. Therefore, future studies on the relevance of 4-HNE for the interaction between neuronal cells, notably stem cells and reactive astrocytes might reveal novel options to better monitor and treat consequences or brain injuries, neurodegeneration and regeneration.
Collapse
Affiliation(s)
- Morana Jaganjac
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress (LabOS), Div. Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Lidija Milkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress (LabOS), Div. Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress (LabOS), Div. Molecular Medicine, Bijenicka 54, Zagreb, Croatia.
| | - Kamelija Zarkovic
- University of Zagreb, School of Medicine, Div. of Pathology, Neuropathology Unit, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| |
Collapse
|
15
|
Gall Trošelj K, Tomljanović M, Jaganjac M, Matijević Glavan T, Čipak Gašparović A, Milković L, Borović Šunjić S, Buttari B, Profumo E, Saha S, Saso L, Žarković N. Oxidative Stress and Cancer Heterogeneity Orchestrate NRF2 Roles Relevant for Therapy Response. Molecules 2022; 27:1468. [PMID: 35268568 PMCID: PMC8912061 DOI: 10.3390/molecules27051468] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/11/2022] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and its end-products, such as 4-hydroxynonenal (HNE), initiate activation of the Nuclear Factor Erythroid 2-Related Factor 2 (NRF2)/Kelch Like ECH Associated Protein 1 (KEAP1) signaling pathway that plays a crucial role in the maintenance of cellular redox homeostasis. However, an involvement of 4-HNE and NRF2 in processes associated with the initiation of cancer, its progression, and response to therapy includes numerous, highly complex events. They occur through interactions between cancer and stromal cells. These events are dependent on many cell-type specific features. They start with the extent of NRF2 binding to its cytoplasmic repressor, KEAP1, and extend to the permissiveness of chromatin for transcription of Antioxidant Response Element (ARE)-containing genes that are NRF2 targets. This review will explore epigenetic molecular mechanisms of NRF2 transcription through the specific molecular anatomy of its promoter. It will explain the role of NRF2 in cancer stem cells, with respect to cancer therapy resistance. Additionally, it also discusses NRF2 involvement at the cross-roads of communication between tumor associated inflammatory and stromal cells, which is also an important factor involved in the response to therapy.
Collapse
Affiliation(s)
- Koraljka Gall Trošelj
- Laboratory for Epigenomics, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Marko Tomljanović
- Laboratory for Epigenomics, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Morana Jaganjac
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Tanja Matijević Glavan
- Laboratory for Personalized Medicine, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia;
| | - Ana Čipak Gašparović
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Lidija Milković
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Suzana Borović Šunjić
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.); (S.S.)
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.); (S.S.)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161 Rome, Italy; (B.B.); (E.P.); (S.S.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00161 Rome, Italy;
| | - Neven Žarković
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (M.J.); (A.Č.G.); (L.M.); (S.B.Š.); (N.Ž.)
| |
Collapse
|
16
|
Perković MN, Milković L, Uzun S, Mimica N, Pivac N, Waeg G, Žarković N. Association of Lipid Peroxidation Product 4-Hydroxynonenal with Post-Traumatic Stress Disorder. Biomolecules 2021; 11:1365. [PMID: 34572578 PMCID: PMC8469760 DOI: 10.3390/biom11091365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/03/2021] [Accepted: 09/11/2021] [Indexed: 12/23/2022] Open
Abstract
Repeated activation of the hypothalamic-pituitary-adrenal axis system, sleep disturbances, and other symptoms related to posttraumatic stress disorder (PTSD) elevate reactive oxygen species, increase inflammation, and accelerate cellular aging, leading to neuroprogression and cognitive decline. However, there is no information about possible involvement of 4-hydroxynonenal (4-HNE), the product of lipid peroxidation associated with stress-associated diseases, in the complex etiology of PTSD. Therefore, the aim of this study was to compare the plasma levels of 4-HNE between war veterans with PTSD (n = 62) and age-, sex- and ethnicity- matched healthy control subjects (n = 58) in order to evaluate the potential of HNE-modified proteins as blood-based biomarker of PTSD. The genuine 4-HNE-Enzyme-Linked Immunosorbent Assay (HNE-ELISA), based on monoclonal antibody specific for HNE-histidine (HNE-His) adducts, was used to determine plasma HNE-protein conjugates. Our results revealed significantly elevated levels of 4-HNE in patients with PTSD. Moreover, the accumulation of plasma 4-HNE seems to increase with aging but in a negative correlation with BMI, showing specific pattern of change for individuals diagnosed with PTSD. These findings suggest that oxidative stress and altered lipid metabolism reflected by increase of 4-HNE might be associated with PTSD. If confirmed with further studies, elevated 4-HNE plasma levels might serve as a potential biomarker of PTSD.
Collapse
Affiliation(s)
- Matea Nikolac Perković
- Laboratory of Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička 54, 10000 Zagreb, Croatia; (M.N.P.); (N.P.)
| | - Lidija Milković
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička 54, 10000 Zagreb, Croatia;
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia; (S.U.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia; (S.U.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nela Pivac
- Laboratory of Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička 54, 10000 Zagreb, Croatia; (M.N.P.); (N.P.)
| | - Georg Waeg
- Institute of Molecular Biosciences, Karl Franzens University of Graz, Heinrichstraße 31/II, 8010 Graz, Austria;
| | - Neven Žarković
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička 54, 10000 Zagreb, Croatia;
| |
Collapse
|
17
|
A Novel Oxygen Carrier (M101) Attenuates Ischemia-Reperfusion Injuries during Static Cold Storage in Steatotic Livers. Int J Mol Sci 2021; 22:ijms22168542. [PMID: 34445250 PMCID: PMC8395216 DOI: 10.3390/ijms22168542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
The combined impact of an increasing demand for liver transplantation and a growing incidence of nonalcoholic liver disease has provided the impetus for the development of innovative strategies to preserve steatotic livers. A natural oxygen carrier, HEMO2life®, which contains M101 that is extracted from a marine invertebrate, has been used for static cold storage (SCS) and has shown superior results in organ preservation. A total of 36 livers were procured from obese Zucker rats and randomly divided into three groups, i.e., control, SCS-24H and SCS-24H + M101 (M101 at 1 g/L), mimicking the gold standard of organ preservation. Ex situ machine perfusion for 2 h was used to evaluate the quality of the livers. Perfusates were sampled for functional assessment, biochemical analysis and subsequent biopsies were performed for assessment of ischemia-reperfusion markers. Transaminases, GDH and lactate levels at the end of reperfusion were significantly lower in the group preserved with M101 (p < 0.05). Protection from reactive oxygen species (low MDA and higher production of NO2-NO3) and less inflammation (HMGB1) were also observed in this group (p < 0.05). Bcl-1 and caspase-3 were higher in the SCS-24H group (p < 0.05) and presented more histological damage than those preserved with HEMO2life®. These data demonstrate, for the first time, that the addition of HEMO2life® to the preservation solution significantly protects steatotic livers during SCS by decreasing reperfusion injury and improving graft function.
Collapse
|
18
|
Extracellular Vesicles under Oxidative Stress Conditions: Biological Properties and Physiological Roles. Cells 2021; 10:cells10071763. [PMID: 34359933 PMCID: PMC8306565 DOI: 10.3390/cells10071763] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
Under physio-pathological conditions, cells release membrane-surrounded structures named Extracellular Vesicles (EVs), which convey their molecular cargo to neighboring or distant cells influencing their metabolism. Besides their involvement in the intercellular communication, EVs might represent a tool used by cells to eliminate unnecessary/toxic material. Here, we revised the literature exploring the link between EVs and redox biology. The first proof of this link derives from evidence demonstrating that EVs from healthy cells protect target cells from oxidative insults through the transfer of antioxidants. Oxidative stress conditions influence the release and the molecular cargo of EVs that, in turn, modulate the redox status of target cells. Oxidative stress-related EVs exert both beneficial or harmful effects, as they can carry antioxidants or ROS-generating enzymes and oxidized molecules. As mediators of cell-to-cell communication, EVs are also implicated in the pathophysiology of oxidative stress-related diseases. The review found evidence that numerous studies speculated on the role of EVs in redox signaling and oxidative stress-related pathologies, but few of them unraveled molecular mechanisms behind this complex link. Thus, the purpose of this review is to report and discuss this evidence, highlighting that the analysis of the molecular content of oxidative stress-released EVs (reminiscent of the redox status of originating cells), is a starting point for the use of EVs as diagnostic and therapeutic tools in oxidative stress-related diseases.
Collapse
|
19
|
Lipid peroxidation in brain tumors. Neurochem Int 2021; 149:105118. [PMID: 34197897 DOI: 10.1016/j.neuint.2021.105118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/15/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022]
Abstract
There is a lot of evidence showing that lipid peroxidation plays very important role in development of various diseases, including neurodegenerative diseases and brain tumors. Lipid peroxidation is achieved by two main pathways, by enzymatic or by non-enzymatic oxidation, respectively. In this paper, we focus on non-enzymatic, self-catalyzed chain reaction of poly-unsaturated fatty acid (PUFA) peroxidation generating reactive aldehydes, notably 4-hydroxynonenal (4-HNE), which acts as second messenger of free radicals and as growth regulating factor. It might originate from astrocytes as well as from blood vessels, even within the blood-brain barrier (BBB), which is in case of brain tumors transformed into the blood-brain-tumor barrier (BBTB). The functionality of the BBB is strongly affected by 4-HNE because it forms relatively stable protein adducts thus allowing the persistence and the spread of lipid peroxidation, as revealed by immunohistochemical findings. Because 4-HNE can act as a regulator of vital functions of normal and of malignant cells acting in the cell type- and concentration-dependent manners, the bioactivities of this product of lipid peroxidation be should further studied to reveal if it acts as a co-factor of carcinogenesis or as natural factor of defense against primary brain tumors and metastatic cancer.
Collapse
|
20
|
AQP3 and AQP5-Potential Regulators of Redox Status in Breast Cancer. Molecules 2021; 26:molecules26092613. [PMID: 33947079 PMCID: PMC8124745 DOI: 10.3390/molecules26092613] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is still one of the leading causes of mortality in the female population. Despite the campaigns for early detection, the improvement in procedures and treatment, drastic improvement in survival rate is omitted. Discovery of aquaporins, at first described as cellular plumbing system, opened new insights in processes which contribute to cancer cell motility and proliferation. As we discover new pathways activated by aquaporins, the more we realize the complexity of biological processes and the necessity to fully understand the pathways affected by specific aquaporin in order to gain the desired outcome-remission of the disease. Among the 13 human aquaporins, AQP3 and AQP5 were shown to be significantly upregulated in breast cancer indicating their role in the development of this malignancy. Therefore, these two aquaporins will be discussed for their involvement in breast cancer development, regulation of oxidative stress and redox signalling pathways leading to possibly targeting them for new therapies.
Collapse
|
21
|
Ulker OC, Panieri E, Suzen S, Jaganjac M, Zarkovic N, Saso L. Short overview on the relevance of microRNA-reactive oxygen species (ROS) interactions and lipid peroxidation for modulation of oxidative stress-mediated signalling pathways in cancer treatment. J Pharm Pharmacol 2021; 74:503-515. [PMID: 33769543 DOI: 10.1093/jpp/rgab045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/18/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Modulation of oxidative stress-mediated signalling pathways is constantly getting more attention as a valuable therapeutic strategy in cancer treatment. Although complexity of redox signalling pathways might represent a major hurdle, the development of advanced -omics technologies allow thorough studies on cancer-specific biology, which is essential to elucidate the impact of these signalling pathways in cancer cells. The scope of our review is to provide updated information about recent developments in cancer treatment. KEY FINDINGS In recent years identifying oxidative stress-mediated signalling pathways is a major goal of cancer research assuming it may provide novel therapeutic approaches through the development of agents that may have better tissue penetration and therefore affect specific redox signalling pathways. In this review, we discuss some recent studies focussed on the modulation of oxidative stress-related signalling pathways as a novel anti-cancer treatment, with a particular emphasis on the induction of lipid peroxidation. CONCLUSIONS Characterization and modulation of oxidative stress-mediated signalling pathways and lipid peroxidation products will continue to foster novel interest and further investigations, which may pave the way for more effective, selective, and personalized integrative biomedicine treatment strategies.
Collapse
Affiliation(s)
- Ozge Cemiloglu Ulker
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey
| | - Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey
| | - Morana Jaganjac
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Modulation by Ozone Therapy of Oxidative Stress in Chemotherapy-Induced Peripheral Neuropathy: The Background for a Randomized Clinical Trial. Int J Mol Sci 2021; 22:ijms22062802. [PMID: 33802143 PMCID: PMC7998838 DOI: 10.3390/ijms22062802] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022] Open
Abstract
(1) Background: Chemotherapy-induced peripheral neuropathy (CIPN) decreases the quality of life of patients and can lead to a dose reduction and/or the interruption of chemotherapy treatment, limiting its effectiveness. Potential pathophysiological mechanisms involved in the pathogenesis of CIPN include chronic oxidative stress and subsequent increase in free radicals and proinflammatory cytokines. Approaches for the treatment of CIPN are highly limited in their number and efficacy, although several antioxidant-based therapies have been tried. On the other hand, ozone therapy can induce an adaptive antioxidant and anti-inflammatory response, which could be potentially useful in the management of CIPN. (2) Methods: The aims of this works are: (a) to summarize the potential mechanisms that could induce CIPN by the most relevant drugs (platinum, taxanes, vinca alkaloids, and bortezomib), with particular focus on the role of oxidative stress; (b) to summarize the current situation of prophylactic and treatment approaches; (c) to describe the action mechanisms of ozone therapy to modify oxidative stress and inflammation with its potential repercussions for CIPN; (d) to describe related experimental and clinical reports with ozone therapy in chemo-induced neurologic symptoms and CIPN; and (e) to show the main details about an ongoing focused clinical trial. (3) Results: A wide background relating to the mechanisms of action and a small number of experimental and clinical reports suggest that ozone therapy could be useful to prevent or improve CIPN. (4) Conclusions: Currently, there are no clinically relevant approaches for the prevention and treatment of stablished CIPN. The potential role of ozone therapy in this syndrome merits further research. Randomized controlled trials are ongoing.
Collapse
|
23
|
Sunjic SB, Gasparovic AC, Jaganjac M, Rechberger G, Meinitzer A, Grune T, Kohlwein SD, Mihaljevic B, Zarkovic N. Sensitivity of Osteosarcoma Cells to Concentration-Dependent Bioactivities of Lipid Peroxidation Product 4-Hydroxynonenal Depend on Their Level of Differentiation. Cells 2021; 10:cells10020269. [PMID: 33572933 PMCID: PMC7912392 DOI: 10.3390/cells10020269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
4-Hydroxynonenal (HNE) is a major aldehydic product of lipid peroxidation known to exert several biological effects. Normal and malignant cells of the same origin express different sensitivity to HNE. We used human osteosarcoma cells (HOS) in different stages of differentiation in vitro, showing differences in mitosis, DNA synthesis, and alkaline phosphatase (ALP) staining. Differentiated HOS cells showed decreased proliferation (3H-thymidine incorporation), decreased viability (thiazolyl blue tetrazolium bromide-MTT), and increased apoptosis and necrosis (nuclear morphology by staining with 4′,6-diamidino-2-phenylindole-DAPI). Differentiated HOS also had less expressed c-MYC, but the same amount of c-FOS (immunocytochemistry). When exposed to HNE, differentiated HOS produced more reactive oxygen species (ROS) in comparison with undifferentiated HOS. To clarify this, we measured HNE metabolism by an HPLC method, total glutathione (GSH), oxidized GSH (ox GSH), glutathione transferase activity (GST), proteasomal activity by enzymatic methods, HNE-protein adducts by genuine ELISA and fatty acid composition by GC-MS in these cell cultures. Differentiated HOS cells had less GSH, lower HNE metabolism, increased formation of HNE-protein adducts, and lower proteasomal activity, in comparison to undifferentiated counterpart cells, while GST and oxGSH were the same. Fatty acids analyzed by GC-MS showed that there is an increase in C20:3 in differentiated HOS while the amount of C20:4 remained the same. The results showed that the cellular machinery responsible for protection against toxicity of HNE was less efficient in differentiated HOS cells. Moreover, differentiated HOS cells contained more C20:3 fatty acid, which might make them more sensitive to free radical-initiated oxidative chain reactions and more vulnerable to the effects of reactive aldehydes such as HNE. We propose that HNE might act as natural promotor of decay of malignant (osteosarcoma) cells in case of their differentiation associated with alteration of the lipid metabolism.
Collapse
Affiliation(s)
- Suzana Borovic Sunjic
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, HR-10000 Zagreb, Croatia; (S.B.S.); (A.C.G.); (M.J.); (B.M.)
| | - Ana Cipak Gasparovic
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, HR-10000 Zagreb, Croatia; (S.B.S.); (A.C.G.); (M.J.); (B.M.)
| | - Morana Jaganjac
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, HR-10000 Zagreb, Croatia; (S.B.S.); (A.C.G.); (M.J.); (B.M.)
| | - Gerald Rechberger
- Institute of Molecular Biosciences, Bio TechMed-Graz, University of Graz, 8010 Graz, Austria; (G.R.); (S.D.K.)
| | - Andreas Meinitzer
- University Clinic of Traumatology, University of Graz, 8010 Graz, Austria;
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany;
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, A-1090 Vienna, Austria
| | - Sepp D. Kohlwein
- Institute of Molecular Biosciences, Bio TechMed-Graz, University of Graz, 8010 Graz, Austria; (G.R.); (S.D.K.)
| | - Branka Mihaljevic
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, HR-10000 Zagreb, Croatia; (S.B.S.); (A.C.G.); (M.J.); (B.M.)
| | - Neven Zarkovic
- Laboratory for Oxidative Stress (LabOS), Division of Molecular Medicine, Rudjer Boskovic Institute, HR-10000 Zagreb, Croatia; (S.B.S.); (A.C.G.); (M.J.); (B.M.)
- Correspondence:
| |
Collapse
|
24
|
de Souza AKL, Colares RR, de Souza ACL. The main uses of ozone therapy in diseases of large animals: A review. Res Vet Sci 2021; 136:51-56. [PMID: 33582314 DOI: 10.1016/j.rvsc.2021.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/04/2021] [Accepted: 01/24/2021] [Indexed: 11/25/2022]
Abstract
Ozone (O3) is a molecule composed of three oxygen atoms, highly unstable, capable of reacting with various substances of the human and animal organism, giving rise to by-products that will participate in biochemical reactions. Thus, O3 has a wide mechanism of action and can be used in different diseases of large animals. In those animals, the therapy is used mainly in reproductive diseases and wound healing.
Collapse
Affiliation(s)
- Ana Karine Lima de Souza
- Veterinary Hospital Wild Animals Sector, Veterinary Institute Medicine, State University of Pará, UFPA-Castanhal, km 61 BR-316, Campus IFPA, Castanhal, PA 68740970, Brazil.
| | - Raquel Ribeiro Colares
- Veterinary Hospital Wild Animals Sector, Veterinary Institute Medicine, State University of Pará, UFPA-Castanhal, km 61 BR-316, Campus IFPA, Castanhal, PA 68740970, Brazil
| | - Ana Clara Lima de Souza
- Veterinary Hospital Wild Animals Sector, Veterinary Institute Medicine, State University of Pará, UFPA-Castanhal, km 61 BR-316, Campus IFPA, Castanhal, PA 68740970, Brazil
| |
Collapse
|
25
|
Jaganjac M, Milkovic L, Gegotek A, Cindric M, Zarkovic K, Skrzydlewska E, Zarkovic N. The relevance of pathophysiological alterations in redox signaling of 4-hydroxynonenal for pharmacological therapies of major stress-associated diseases. Free Radic Biol Med 2020; 157:128-153. [PMID: 31756524 DOI: 10.1016/j.freeradbiomed.2019.11.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
Modern analytical methods combined with the modern concepts of redox signaling revealed 4-hydroxy-2-nonenal (4-HNE) as particular growth regulating factor involved in redox signaling under physiological and pathophysiological circumstances. In this review current knowledge of the relevance of 4-HNE as "the second messenger of reactive oxygen species" (ROS) in redox signaling of representative major stress-associated diseases is briefly summarized. The findings presented allow for 4-HNE to be considered not only as second messenger of ROS, but also as one of fundamental factors of the stress- and age-associated diseases. While standard, even modern concepts of molecular medicine and respective therapies in majority of these diseases target mostly the disease-specific symptoms. 4-HNE, especially its protein adducts, might appear to be the bioactive markers that would allow better monitoring of specific pathophysiological processes reflecting their complexity. Eventually that could help development of advanced integrative medicine approach for patients and the diseases they suffer from on the personalized basis implementing biomedical remedies that would optimize beneficial effects of ROS and 4-HNE to prevent the onset and progression of the illness, perhaps even providing the real cure.
Collapse
Affiliation(s)
- Morana Jaganjac
- Qatar Analytics & BioResearch Lab, Anti Doping Lab Qatar, Sport City Street, Doha, Qatar
| | - Lidija Milkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Agnieszka Gegotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Marina Cindric
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Kamelija Zarkovic
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Elzbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia.
| |
Collapse
|
26
|
Binti Kamaruddin NA, Fong LY, Tan JJ, Abdullah MNH, Singh Cheema M, Bin Yakop F, Yong YK. Cytoprotective Role of Omentin Against Oxidative Stress-Induced Vascular Endothelial Cells Injury. Molecules 2020; 25:E2534. [PMID: 32485974 PMCID: PMC7321413 DOI: 10.3390/molecules25112534] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 01/16/2023] Open
Abstract
Endothelial cell injury caused by reactive oxygen species (ROS) plays a critical role in the pathogenesis of cardiovascular diseases. Omentin, an adipocytokine that is abundantly expressed in visceral fat tissue, has been reported to possess anti-inflammatory and antidiabetic properties. However, endothelial protective effects of omentin against oxidative stress remain unclear. This study aimed to evaluate the protective effect of omentin against hydrogen peroxide (H2O2)-induced cell injury in human umbilical vein endothelial cells (HUVECs). Cytotoxicity and cytoprotective effects of omentin were evaluated using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic activity of HUVECs was detected using Annexin-V/PI and Hoechst 33258 staining methods. Antioxidant activity of omentin was evaluated by measuring both reactive oxygen species (ROS) levels and glutathione peroxidase (GPx) activity. No cytotoxicity effect was observed in HUVECs treated with omentin alone at concentrations of 150 to 450 ng/ml. MTT assay showed that omentin significantly prevented the cell death induced by H2O2 (p < 0.001). Hoechst staining and flow cytometry also revealed that omentin markedly prevented H2O2-induced apoptosis. Moreover, omentin not only significantly inhibited ROS production (p < 0.01) but also significantly (p < 0.01) increased GPx activity in HUVECs. In conclusion, our data suggest that omentin may protect HUVECs from injury induced by H2O2.
Collapse
Affiliation(s)
- Nur Aqilah Binti Kamaruddin
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia
| | - Lai Yen Fong
- Department of Pre-clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia;
| | - Jun Jie Tan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia;
| | - Muhammad Nazrul Hakim Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (M.N.H.A.); (M.S.C.)
| | - Manraj Singh Cheema
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (M.N.H.A.); (M.S.C.)
| | - Fahmi Bin Yakop
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia;
| | - Yoke Keong Yong
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
27
|
Martínez-Sánchez G, Schwartz A, Di Donna V. Potential Cytoprotective Activity of Ozone Therapy in SARS-CoV-2/COVID-19. Antioxidants (Basel) 2020; 9:antiox9050389. [PMID: 32384798 PMCID: PMC7278582 DOI: 10.3390/antiox9050389] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
(1) Background: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) in China at the end of 2019 has caused a large global outbreak. Systemic ozone therapy (OT) could be potentially useful in the clinical management of several complications secondary to SARS-CoV-2. The rationale and mechanism of action has already been proven clinically in other viral infections and has been shown in research studies to be highly effective at decreasing organ damage mediated by inflammation and oxidative stress. This review summarizes the OT studies that illustrate the possible cytoprotective mechanism of action of ozone and its physiological by-products in target organs affected by SARS-CoV-2. (2) Methods: This review encompasses a total of 74 peer-reviewed original articles. It is mainly focused on ozone as a modulator of the NF-κB/Nrf2 pathways and IL-6/IL-1β expression. (3) Results: In experimental models and the few existent clinical studies, homeostasis of the free radical and antioxidant balance by OT was associated with a modulation of NF-κB/Nrf2 balance and IL-6 and IL-1β expression. These molecular mechanisms support the cytoprotective effects of OT against tissue damage present in many inflammatory diseases, including viral infections. (4) Conclusions: The potential cytoprotective role of OT in the management of organ damage induced by COVID-19 merits further research. Controlled clinical trials are needed.
Collapse
|
28
|
Zarkovic N. Roles and Functions of ROS and RNS in Cellular Physiology and Pathology. Cells 2020; 9:cells9030767. [PMID: 32245147 PMCID: PMC7140712 DOI: 10.3390/cells9030767] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
Our common knowledge on oxidative stress has evolved substantially over the years, being focused mostly on the fundamental chemical reactions and the most relevant chemical species involved in human pathophysiology of oxidative stress-associated diseases. Thus, reactive oxygen species and reactive nitrogen species (ROS and RNS) were identified as key players in initiating, mediating, and regulating the cellular and biochemical complexity of oxidative stress either as physiological (acting pro-hormetic) or as pathogenic (causing destructive vicious circles) processes. The papers published in this particular Special Issue of Cells show an impressive range on the pathophysiological relevance of ROS and RNS, including the relevance of second messengers of free radicals like 4-hydroxynonenal, allowing us to assume that the future will reveal even more detailed mechanisms of their positive and negative effects that might improve the monitoring of major modern diseases, and aid the development of advanced integrative biomedical treatments.
Collapse
Affiliation(s)
- Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress (LabOS), Bijenička 54, HR-1000 Zagreb, Croatia
| |
Collapse
|
29
|
Involvement of Metabolic Lipid Mediators in the Regulation of Apoptosis. Biomolecules 2020; 10:biom10030402. [PMID: 32150849 PMCID: PMC7175142 DOI: 10.3390/biom10030402] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is the physiological mechanism of cell death and can be modulated by endogenous and exogenous factors, including stress and metabolic alterations. Reactive oxygen species (ROS), as well as ROS-dependent lipid peroxidation products (including isoprostanes and reactive aldehydes including 4-hydroxynonenal) are proapoptotic factors. These mediators can activate apoptosis via mitochondrial-, receptor-, or ER stress-dependent pathways. Phospholipid metabolism is also an essential regulator of apoptosis, producing the proapoptotic prostaglandins of the PGD and PGJ series, as well as the antiapoptotic prostaglandins of the PGE series, but also 12-HETE and 20-HETE. The effect of endocannabinoids and phytocannabinoids on apoptosis depends on cell type-specific differences. Cells where cannabinoid receptor type 1 (CB1) is the dominant cannabinoid receptor, as well as cells with high cyclooxygenase (COX) activity, undergo apoptosis after the administration of cannabinoids. In contrast, in cells where CB2 receptors dominate, and cells with low COX activity, cannabinoids act in a cytoprotective manner. Therefore, cell type-specific differences in the pro- and antiapoptotic effects of lipids and their (oxidative) products might reveal new options for differential bioanalysis between normal, functional, and degenerating or malignant cells, and better integrative biomedical treatments of major stress-associated diseases.
Collapse
|
30
|
Kopecka J, Trouillas P, Gašparović AČ, Gazzano E, Assaraf YG, Riganti C. Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets. Drug Resist Updat 2020; 49:100670. [DOI: 10.1016/j.drup.2019.100670] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 12/13/2022]
|
31
|
Jaganjac M, Borovic Sunjic S, Zarkovic N. Utilizing Iron for Targeted Lipid Peroxidation as Anticancer Option of Integrative Biomedicine: A Short Review of Nanosystems Containing Iron. Antioxidants (Basel) 2020; 9:E191. [PMID: 32106528 PMCID: PMC7139573 DOI: 10.3390/antiox9030191] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/07/2023] Open
Abstract
Traditional concepts of life sciences consider oxidative stress as a fundamental process of aging and various diseases including cancer, whereas traditional medicine recommends dietary intake of iron to support physiological functions of the organism. However, due to its strong pro-oxidative capacity, if not controlled well, iron can trigger harmful oxidative stress manifested eventually by toxic chain reactions of lipid peroxidation. Such effects of iron are considered to be major disadvantages of uncontrolled iron usage, although ferroptosis seems to be an important defense mechanism attenuating cancer development. Therefore, a variety of iron-containing nanoparticles were developed for experimental radio-, chemo-, and photodynamic as well as magnetic dynamic nanosystems that alter redox homeostasis in cancer cells. Moreover, studies carried over recent decades have revealed that even the end products of lipid peroxidation, represented by 4-hydroxynonenal (4-HNE), could have desirable effects even acting as kinds of selective anticancer substances produced by non-malignant cells for defense again invading cancer. Therefore, advanced nanotechnologies should be developed for using iron to trigger targeted lipid peroxidation as an anticancer option of integrative biomedicine.
Collapse
Affiliation(s)
- Morana Jaganjac
- Qatar Analytics & BioResearch Laboratory, Anti Doping Laboratory Qatar, Doha, Qatar;
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Division of Molecular Medicine, Bijenicka 54, 10000 Zagreb, Croatia;
| | - Suzana Borovic Sunjic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Division of Molecular Medicine, Bijenicka 54, 10000 Zagreb, Croatia;
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Division of Molecular Medicine, Bijenicka 54, 10000 Zagreb, Croatia;
| |
Collapse
|
32
|
Jakovčević A, Žarković K, Jakovčević D, Rakušić Z, Prgomet D, Waeg G, Šunjić SB, Žarković N. The Appearance of 4-Hydroxy-2-Nonenal (HNE) in Squamous Cell Carcinoma of the Oropharynx. Molecules 2020; 25:molecules25040868. [PMID: 32079077 PMCID: PMC7070326 DOI: 10.3390/molecules25040868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/23/2022] Open
Abstract
Tumor growth is associated with oxidative stress, which causes lipid peroxidation. The most intensively studied product of lipid peroxidation is 4-hydroxy-2-nonenal (HNE), which is considered as a “second messenger of free radicals” that binds to proteins and acts as a growth-regulating signaling factor. The incidence of squamous cell carcinoma of the oropharynx is associated with smoking, alcohol and infection of human papilloma virus (HPV), with increasing incidence world-wide. The aim of this retrospective study involving 102 patients was to determine the immunohistochemical appearance of HNE-protein adducts as a potential biomarker of lipid peroxidation in squamous cell carcinoma of the oropharynx. The HNE-protein adducts were detected in almost all tumor samples and in the surrounding non-tumorous tissue, while we found that HNE is differentially distributed in squamous cell carcinomas in dependence of clinical stage and histological grading of these tumors. Namely, the level of HNE-immunopositivity was increased in comparison to the normal oropharyngeal epithelium in well- and in moderately-differentiated squamous cell carcinoma, while it was decreasing in poorly differentiated carcinomas and in advanced stages of cancer. However, more malignant and advanced cancer was associated with the increase of HNE in surrounding, normal tissue. This study confirmed the onset of lipid peroxidation, generating HNE-protein adducts that can be used as a valuable bioactive marker of carcinogenesis in squamous cell carcinoma of the oropharynx, as well as indicating involvement of HNE in pathophysiological changes of the non-malignant tissue in the vicinity of cancer.
Collapse
Affiliation(s)
- Antonia Jakovčević
- Clinical Hospital Centre Zagreb, Clinical Department of Pathology and Cytology, School of Medicine, University of Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-123-880-89
| | - Kamelija Žarković
- Clinical Hospital Centre Zagreb, Clinical Department of Pathology and Cytology, School of Medicine, University of Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia;
| | - Danica Jakovčević
- Department of Pathology, Clinical Hospital “Sv. Duh”, Ul. Sveti Duh 64, 10000 Zagreb, Croatia;
| | - Zoran Rakušić
- Department of Oncology, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia;
| | - Drago Prgomet
- Clinic for Ear, Nose and Throat Diseases and Head and Neck Surgeries, University Hospital Center Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia;
| | - Georg Waeg
- Institute of Molecular Biosciences, Karl Franzens University, Humboldtstrasse 50, A-8010 Graz, Austria;
| | - Suzana Borović Šunjić
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Bijenička cesta 54, 10000 Zagreb, Croatia; (S.B.Š.); (N.Ž.)
| | - Neven Žarković
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Bijenička cesta 54, 10000 Zagreb, Croatia; (S.B.Š.); (N.Ž.)
| |
Collapse
|
33
|
Modulation of Oxidative Stress by Ozone Therapy in the Prevention and Treatment of Chemotherapy-Induced Toxicity: Review and Prospects. Antioxidants (Basel) 2019; 8:antiox8120588. [PMID: 31779159 PMCID: PMC6943601 DOI: 10.3390/antiox8120588] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 12/15/2022] Open
Abstract
(1) Background: Cancer is one of the leading causes of mortality worldwide. Radiotherapy and chemotherapy attempt to kill tumor cells by different mechanisms mediated by an intracellular increase of free radicals. However, free radicals can also increase in healthy cells and lead to oxidative stress, resulting in further damage to healthy tissues. Approaches to prevent or treat many of these side effects are limited. Ozone therapy can induce a controlled oxidative stress able to stimulate an adaptive antioxidant response in healthy tissue. This review describes the studies using ozone therapy to prevent and/or treat chemotherapy-induced toxicity, and how its effect is linked to a modification of free radicals and antioxidants. (2) Methods: This review encompasses a total of 13 peer-reviewed original articles (most of them with assessment of oxidative stress parameters) and some related works. It is mainly focused on four drugs: Cisplatin, Methotrexate, Doxorubicin, and Bleomycin. (3) Results: In experimental models and the few existing clinical studies, modulation of free radicals and antioxidants by ozone therapy was associated with decreased chemotherapy-induced toxicity. (4) Conclusions: The potential role of ozone therapy in the management of chemotherapy-induced toxicity merits further research. Randomized controlled trials are ongoing.
Collapse
|
34
|
Xu YC, Hou JQ, Zhu WJ, Li P. Sjogren-Larsson syndrome associated hypermelanosis. J Cosmet Dermatol 2019; 19:789-798. [PMID: 31697031 DOI: 10.1111/jocd.13209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND/OBJECTIVES Sjogren - Larsson syndrome (SLS) is a rare autosomal recessive disease of the mutation ALDH3A2 that identifies a part of fatty acids for fatty aldehyde dehydrogenase: NAD-oxidoreductase enzyme complex. This study aimed to access variant ALDH3A2 gene coded for FALDH and products regulating pathogenic melanogenesis owing to increased oxidative stress and reactive oxygen species resulting in DNA harm in SLS. By turning them into fatty acids, FALDH avoids the accumulation of toxic fatty aldehydes. The mutation results in the accumulation of aldehyde-modified lipids or fatty alcohols that may interfere with skin and brain function. METHODS In Nov 2018, we performed a literature search in PubMed for clinical studies, clinical trials, case reports, controlled trials, randomized controlled trials, and systemic reviews. The search terms we used were "SJOGREN-LARSSON SYNDROME" AND "HYPERMELANNOSIS" OR "FALDH" (from 1985). The search resulted in 1,289 articles, out of these 95 articles met our inclusion exclusion criteria. Our inclusion criteria included relevant original articles relevant, critical systemic reviews, and crucial referenced articles, ex-clusion criteria included duplicates and articles not published in English language. RESULTS Toxicity of long-chain aldehydes to FALDH-deficient cells owing to accumulation under the profound epidermis layer improves oxidative stress in the cell resulting in keratinocyte hyperproliferation. CONCLUSION While it continues to be determined whether accumulated fatty alcohol and fatty aldehydes obtained from ether glycerolipids and sphingolipids improve the susceptibility of melanocytes and their element accountable for skin hyperpigmentation to biological colour.
Collapse
Affiliation(s)
- Yang-Chun Xu
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
| | - Ji-Qiu Hou
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, China
| | - Wen-Jing Zhu
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Li
- Department of Developmental Pediatrics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
35
|
4-Hydroxy-Trans-2-Nonenal in the Regulation of Anti-Oxidative and Pro-Inflammatory Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5937326. [PMID: 31781341 PMCID: PMC6875399 DOI: 10.1155/2019/5937326] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/13/2019] [Accepted: 08/18/2019] [Indexed: 12/13/2022]
Abstract
Recent studies indicate that 4-hydroxy-trans-2-nonenal (HNE), a major oxidative stress triggered lipid peroxidation-derived aldehyde, plays a critical role in the pathophysiology of various human pathologies including metabolic syndrome, diabetes, cardiovascular, neurological, immunological, and age-related diseases and various types of cancer. HNE is the most abundant and toxic α, β-unsaturated aldehyde formed during the peroxidation of polyunsaturated fatty acids in a series of free radical-mediated reactions. The presence of an aldehyde group at C1, a double bond between C2 and C3 and a hydroxyl group at C4 makes HNE a highly reactive molecule. These strong reactive electrophilic groups favor the formation of HNE adducts with cellular macromolecules such as proteins and nucleic acids leading to the regulation of various cell signaling pathways and processes involved in cell proliferation, differentiation, and apoptosis. Many studies suggest that the cell-specific intracellular concentrations of HNE dictate the anti-oxidative and pro-inflammatory activities of this important molecule. In this review, we focused on how HNE could alter multiple anti-oxidative defense pathways and pro-inflammatory cytotoxic pathways by interacting with various cell-signaling intermediates.
Collapse
|
36
|
Polyphenols in human nutrition: from the in vitro antioxidant capacity to the beneficial effects on cardiometabolic health and related inter-individual variability - an overview and perspective. Br J Nutr 2019; 123:241-254. [PMID: 31658907 DOI: 10.1017/s0007114519002733] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Oxidative damage of cells and tissues is broadly implicated in human pathophysiology, including cardiometabolic diseases. Polyphenols, as important constituents of the human diet and potent in vitro free radical scavengers, have been extensively studied for their beneficial effects on cardiometabolic health. However, it has been demonstrated that the in vivo antioxidant activity of polyphenols is distinct from their in vitro free radical-scavenging capacity. Indeed, bioavailability of nutritional polyphenols is low and conditioned by complex mechanisms of absorption, distribution, metabolism and excretion. Nowadays, it is commonly accepted that the cellular antioxidant activity of polyphenols is mainly carried out via modification of transcription of genes involved in antioxidant defence. Importantly, polyphenols also contribute to cardiometabolic health by modulation of a plethora of cellular processes that are not directly associated with antioxidant enzymes, through nutri(epi)genomic mechanisms. Numerous human intervention studies have demonstrated beneficial effects of polyphenols on the key cardiometabolic risk factors. However, inconsistency of the results of some studies led to identification of the inter-individual variability in response to consumption of polyphenols. In perspective, a detailed investigation of the determinants of this inter-individual variability will potentially lead us towards personalised dietary recommendations. The phenomenon of inter-individual variability is also of relevance for supplementation with antioxidant (pro)vitamins.
Collapse
|
37
|
Wolf C, Zimmermann R, Thaher O, Bueno D, Wüllner V, Schäfer MKE, Albrecht P, Methner A. The Charcot-Marie Tooth Disease Mutation R94Q in MFN2 Decreases ATP Production but Increases Mitochondrial Respiration under Conditions of Mild Oxidative Stress. Cells 2019; 8:cells8101289. [PMID: 31640251 PMCID: PMC6830076 DOI: 10.3390/cells8101289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 01/20/2023] Open
Abstract
Charcot–Marie tooth disease is a hereditary polyneuropathy caused by mutations in Mitofusin-2 (MFN2), a GTPase in the outer mitochondrial membrane involved in the regulation of mitochondrial fusion and bioenergetics. Autosomal-dominant inheritance of a R94Q mutation in MFN2 causes the axonal subtype 2A2A which is characterized by early onset and progressive atrophy of distal muscles caused by motoneuronal degeneration. Here, we studied mitochondrial shape, respiration, cytosolic, and mitochondrial ATP content as well as mitochondrial quality control in MFN2-deficient fibroblasts stably expressing wildtype or R94Q MFN2. Under normal culture conditions, R94Q cells had slightly more fragmented mitochondria but a similar mitochondrial oxygen consumption, membrane potential, and ATP production as wildtype cells. However, when inducing mild oxidative stress 24 h before analysis using 100 µM hydrogen peroxide, R94Q cells exhibited significantly increased respiration but decreased mitochondrial ATP production. This was accompanied by increased glucose uptake and an up-regulation of hexokinase 1 and pyruvate kinase M2, suggesting increased pyruvate shuttling into mitochondria. Interestingly, these changes coincided with decreased levels of PINK1/Parkin-mediated mitophagy in R94Q cells. We conclude that mitochondria harboring the disease-causing R94Q mutation in MFN2 are more susceptible to oxidative stress, which causes uncoupling of respiration and ATP production possibly by a less efficient mitochondrial quality control.
Collapse
Affiliation(s)
- Christina Wolf
- Institute of Molecular Medicine, University Medical Center, Johannes Gutenberg-Universität Mainz, 55131 Mainz, Germany.
| | - Rahel Zimmermann
- Institute of Molecular Medicine, University Medical Center, Johannes Gutenberg-Universität Mainz, 55131 Mainz, Germany.
| | - Osamah Thaher
- Institute of Molecular Medicine, University Medical Center, Johannes Gutenberg-Universität Mainz, 55131 Mainz, Germany.
| | - Diones Bueno
- Institute of Molecular Medicine, University Medical Center, Johannes Gutenberg-Universität Mainz, 55131 Mainz, Germany.
| | - Verena Wüllner
- Institute of Molecular Medicine, University Medical Center, Johannes Gutenberg-Universität Mainz, 55131 Mainz, Germany.
| | - Michael K E Schäfer
- Department of Anesthesiology, Research Center for Immunotherapy (FZI), Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg-Universität Mainz, 55116 Mainz, Germany.
| | - Philipp Albrecht
- Department of Neurology, University Hospital Düsseldorf, 40210 Düsseldorf, Germany.
| | - Axel Methner
- Institute of Molecular Medicine, University Medical Center, Johannes Gutenberg-Universität Mainz, 55131 Mainz, Germany.
| |
Collapse
|
38
|
Bekyarova G, Tzaneva M, Bratoeva K, Ivanova I, Kotzev A, Hristova M, Krastev D, Kindekov I, Mileva M. 4-Hydroxynonenal (HNE) and hepatic injury related to chronic oxidative stress. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1674690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ganka Bekyarova
- Department of Physiology and Pathophysiology, Faculty of Medicine, Medical University of Varna, Varna, Bulgaria
| | - Maria Tzaneva
- Department of General and Clinical Pathology, Forensic Science and Deontology, Faculty of Medicine, Medical University of Varna, Varna, Bulgaria
| | - Kamelia Bratoeva
- Department of Physiology and Pathophysiology, Faculty of Medicine, Medical University of Varna, Varna, Bulgaria
| | - Irina Ivanova
- Second Department of Internal Medicine, Faculty of Medicine, Medical University of Varna, Varna, Bulgaria
| | - Andrei Kotzev
- Gastroenterology Unit, University Hospital “Aleksandrovska”, Sofia, Bulgaria
| | - Minka Hristova
- Department of Physiology and Pathophysiology, Faculty of Medicine, Medical University of Varna, Varna, Bulgaria
| | - Dimo Krastev
- Department of Anatomy and Histology, College of Medicine “Yordanka Filaretova”, Sofia, Bulgaria
| | - Ivan Kindekov
- Hematology Department, Military Medical Academy, Sofia, Bulgaria
| | - Milka Mileva
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
39
|
Mitran MI, Nicolae I, Tampa M, Mitran CI, Caruntu C, Sarbu MI, Ene CD, Matei C, Georgescu SR, Popa MI. Reactive Carbonyl Species as Potential Pro-Oxidant Factors Involved in Lichen Planus Pathogenesis. Metabolites 2019; 9:E213. [PMID: 31623383 PMCID: PMC6836031 DOI: 10.3390/metabo9100213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
The constant generation of reactive carbonyl species (RCSs) by lipid peroxidation during aerobic metabolism denotes their involvement in cell homeostasis. Skin represents the largest organ of the body that is exposed to lipid peroxidation. Previous studies have suggested the involvement of oxidative stress in the development of lichen planus (LP), a chronic inflammatory skin condition with a complex pathogenesis. The aim of our study is to investigate a panel of pro-oxidants (4-hydroxy-nonenal (4-HNE), thiobarbituric acid reactive substances (TBARS), and malondialdehyde (MDA)), the total antioxidant status (TAS), and thiol-disulfide homeostasis parameters (TDHP), including total thiol (TT), native thiol (NT), disulfides (DS), DS/NT ratio, DS/TT ratio, and NT/TT ratio. The comparative determinations of serum levels of 4-HNE, TBARS, and MDA in patients with LP (n = 31) and controls (n = 26) show significant differences between the two groups (4-HNE: 7.81 ± 1.96 µg/mL vs. 6.15 ± 1.17 µg/mL, p < 0.05, TBARS: 4.23 ± 0.59 µmol/L vs. 1.99 ± 0.23 µmol/L, p < 0.05, MDA: 32.3 ± 6.26 ng/mL vs. 21.26 ± 2.36 ng/mL). The serum levels of TAS are lower in LP patients compared to the control group (269.83 ± 42.63 µmol/L vs. 316.46 ± 28.76 µmol/L, p < 0.05). The serum levels of TDHP are altered in LP patients compared to controls (NT: 388.10 ± 11.32 µmol/L vs. 406.85 ± 9.32., TT: 430.23 ± 9.93 µmol/L vs. 445.88 ± 9.01 µmol/L, DS: 21.06 ± 1.76 µmol/L vs. 19.52 ± 0.77µmol/L). Furthermore, a negative association between pro-oxidants and TAS is identified (4-HNE - rho = -0.83, p < 0.01, TBARS - rho = -0.63, p < 0.01, and MDA - rho = -0.69, p < 0.01). Understanding the mechanisms by which bioactive aldehydes exert their biological effects on the skin could help define effective therapeutical strategies to counteract the cytotoxic effects of these reactive metabolic intermediates.
Collapse
Affiliation(s)
- Madalina Irina Mitran
- Department of Microbiology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
- "Cantacuzino" National Medico-Military Institute for Research and Development, 011233 Bucharest, Romania.
| | - Ilinca Nicolae
- "Victor Babes" Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania.
| | - Mircea Tampa
- "Victor Babes" Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania.
- Department of Dermatology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Cristina Iulia Mitran
- Department of Microbiology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
- "Cantacuzino" National Medico-Military Institute for Research and Development, 011233 Bucharest, Romania.
| | - Constantin Caruntu
- Department of Physiology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
- "Prof. N. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania.
| | - Maria Isabela Sarbu
- Department of Dermatology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | | | - Clara Matei
- Department of Dermatology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Simona Roxana Georgescu
- "Victor Babes" Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania.
- Department of Dermatology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Mircea Ioan Popa
- Department of Microbiology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
- "Cantacuzino" National Medico-Military Institute for Research and Development, 011233 Bucharest, Romania.
| |
Collapse
|
40
|
Milkovic L, Cipak Gasparovic A, Cindric M, Mouthuy PA, Zarkovic N. Short Overview of ROS as Cell Function Regulators and Their Implications in Therapy Concepts. Cells 2019; 8:E793. [PMID: 31366062 PMCID: PMC6721558 DOI: 10.3390/cells8080793] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/20/2019] [Accepted: 07/28/2019] [Indexed: 02/07/2023] Open
Abstract
The importance of reactive oxygen species (ROS) has been gradually acknowledged over the last four decades. Initially perceived as unwanted products of detrimental oxidative stress, they have been upgraded since, and now ROS are also known to be essential for the regulation of physiological cellular functions through redox signaling. In the majority of cases, metabolic demands, along with other stimuli, are vital for ROS formation and their actions. In this review, we focus on the role of ROS in regulating cell functioning and communication among themselves. The relevance of ROS in therapy concepts is also addressed here.
Collapse
Affiliation(s)
- Lidija Milkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| | - Ana Cipak Gasparovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Marina Cindric
- Laboratory for Molecular Pathology, Department of Pathology and Cytology, University Hospital Centre Zagreb, Salata 10, 10000 Zagreb, Croatia
| | - Pierre-Alexis Mouthuy
- National Institute for Health Research Oxford Musculoskeletal Biomedical Research Unit, Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| |
Collapse
|
41
|
Lipid Profile and Aquaporin Expression under Oxidative Stress in Breast Cancer Cells of Different Malignancies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2061830. [PMID: 31379986 PMCID: PMC6657669 DOI: 10.1155/2019/2061830] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/11/2019] [Accepted: 06/20/2019] [Indexed: 12/31/2022]
Abstract
Breast cancer is the major cause of tumor-associated mortality in women worldwide, with prognosis depending on the early discovery of the disease and on the type of breast cancer diagnosed. Among many factors, lipids could contribute to breast cancer malignancy by participating in cellular processes. Also, aquaporins are membrane channels found aberrantly expressed in cancer tissues that were correlated with tumor aggressiveness, progression, and metastasis. However, the differences in lipid profile and aquaporin expression between cell types of different malignant potential have never been investigated. Here, we selected three breast cancer cell lines representing the three major breast cancer types (hormone positive, HER2NEU positive, and triple negative) and analyzed their lipid profile and steady state lipid hydroperoxide levels to correlate with cell sensitivity to H2O2. Additionally, the expression profiles of AQP1, AQP3, and AQP5 and the Nrf2 transcription factor were evaluated, before and after oxidative challenge. We found that the lipid profile was dependent on the cell type, with the HER2-positive cells having the lowest level PUFA, whereas the triple negative showed the highest. However, in triple-negative cancer cells, a lower level of the Nrf2 may be responsible for a higher sensitivity to H2O2 challenge. Interestingly, HER2-positive cells showed the highest increase in intracellular ROS after oxidative challenge, concomitant with a significantly higher level of AQP1, AQP3, and AQP5 expression compared to the other cell types, with AQP3 always being the most expressed isoform. The AQP3 gene expression was stimulated by H2O2 treatment in hormone-positive and HER2NEU cells, together with Nrf2 expression, but was downregulated in triple-negative cells that showed instead upregulation of AQP1 and AQP5. The lipid profile and AQP gene expression after oxidative challenge of these particularly aggressive cell types may represent metabolic reprogramming of cancer cells and reflect a role in adaptation to stress and therapy resistance.
Collapse
|
42
|
Martín-Sierra C, Laranjeira P, Domingues MR, Paiva A. Lipoxidation and cancer immunity. Redox Biol 2019; 23:101103. [PMID: 30658904 PMCID: PMC6859558 DOI: 10.1016/j.redox.2019.101103] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/14/2018] [Accepted: 01/08/2019] [Indexed: 12/11/2022] Open
Abstract
Lipoxidation is a well-known reaction between electrophilic carbonyl species, formed during oxidation of lipids, and specific proteins that, in most cases, causes an alteration in proteins function. This can occur under physiological conditions but, in many cases, it has been associated to pathological process, including cancer. Lipoxidation may have an effect in cancer development through their effects in tumour cells, as well as through the alteration of immune components and the consequent modulation of the immune response. The formation of protein adducts affects different proteins in cancer, triggering different mechanism, such as proliferation, cell differentiation and apoptosis, among others, altering cancer progression. The divergent results obtained documented that the formation of lipoxidation adducts can have either anti-carcinogenic or pro-carcinogenic effects, depending on the cell type affected and the specific adduct formed. Moreover, lipoxidation adducts may alter the immune response, consequently causing either positive or negative alterations in cancer progression. Therefore, in this review, we summarize the effects of lipoxidation adducts in cancer cells and immune components and their consequences in the evolution of different types of cancer.
Collapse
Affiliation(s)
- C Martín-Sierra
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC), Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - P Laranjeira
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC), Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - M R Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal; Department of Chemistry & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - A Paiva
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC), Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, Portugal.
| |
Collapse
|
43
|
Beneficial Effects of Vitamins K and D3 on Redox Balance of Human Osteoblasts Cultured with Hydroxyapatite-Based Biomaterials. Cells 2019; 8:cells8040325. [PMID: 30965604 PMCID: PMC6523281 DOI: 10.3390/cells8040325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 02/07/2023] Open
Abstract
Hydroxyapatite-based biomaterials are commonly used in surgery to repair bone damage. However, the introduction of biomaterials into the body can cause metabolic alterations, including redox imbalance. Because vitamins D3 and K (K1, MK-4, MK-7) have pronounced osteoinductive, anti-inflammatory, and antioxidant properties, it is suggested that they may reduce the adverse effects of biomaterials. The aim of this study was to investigate the effects of vitamins D3 and K, used alone and in combination, on the redox metabolism of human osteoblasts (hFOB 1.19 cell line) cultured in the presence of hydroxyapatite-based biomaterials (Maxgraft, Cerabone, Apatos, and Gen-Os). Culturing of the osteoblasts in the presence of hydroxyapatite-based biomaterials resulted in oxidative stress manifested by increased production of reactive oxygen species and decrease of glutathione level and glutathione peroxidase activity. Such redox imbalance leads to lipid peroxidation manifested by an increase of 4-hydroxynonenal level, which is known to influence the growth of bone cells. Vitamins D3 and K were shown to help maintain redox balance and prevent lipid peroxidation in osteoblasts cultured with hydroxyapatite-based biomaterials. The strongest effect was observed for the combination of vitamin D3 and MK-7. Moreover, vitamins promoted growth of the osteoblasts, manifested by increased DNA biosynthesis. Therefore, it is suggested that the use of vitamins D3 and K may protect redox balance and support the growth of osteoblasts affected by hydroxyapatite-based biomaterials.
Collapse
|
44
|
Solati Z, Ravandi A. Lipidomics of Bioactive Lipids in Acute Coronary Syndromes. Int J Mol Sci 2019; 20:ijms20051051. [PMID: 30823404 PMCID: PMC6429306 DOI: 10.3390/ijms20051051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 02/07/2023] Open
Abstract
Acute coronary syndrome (ACS) refers to ischemic conditions that occur as a result of atherosclerotic plaque rupture and thrombus formation. It has been shown that lipid peroxidation may cause plaque instability by inducing inflammation, apoptosis, and neovascularization. There is some evidence showing that these oxidized lipids may have a prognostic value in ACS. For instance, higher levels of oxidized phospholipids on apo B-100 lipoproteins (OxPL/apoB) predicted cardiovascular events independent of traditional risk factors, C-reactive protein (hsCRP), and the Framingham Risk Score (FRS). A recent cross-sectional study showed that levels of oxylipins, namely 8,9-DiHETrE and 16-HETE, were significantly associated with cardiovascular and cerebrovascular events, respectively. They found that with every 1 nmol/L increase in the concentrations of 8,9-DiHETrE, the odds of ACS increased by 454-fold. As lipid peroxidation makes heterogonous pools of secondary products, therefore, rapid multi-analyte quantification methods are needed for their assessment. Conventional lipid assessment methods such as chemical reagents or immunoassays lack specificity and sensitivity. Lipidomics may provide another layer of a detailed molecular level to lipid assessment, which may eventually lead to exploring novel biomarkers and/or new treatment options. Here, we will briefly review the lipidomics of bioactive lipids in ACS.
Collapse
Affiliation(s)
- Zahra Solati
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P5, Canada.
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada.
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 3P5, Canada.
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, 409 Tache Avenue, Winnipeg, MB R2H 2A6, Canada.
| |
Collapse
|
45
|
Jankovic A, Saso L, Korac A, Korac B. Relation of Redox and Structural Alterations of Rat Skin in the Function of Chronological Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2471312. [PMID: 30906501 PMCID: PMC6393874 DOI: 10.1155/2019/2471312] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/09/2018] [Indexed: 11/26/2022]
Abstract
Accumulation of oxidative insults on molecular and supramolecular levels could compromise renewal potency and architecture in the aging skin. To examine and compare morphological and ultrastructural changes with redox alterations during chronological skin aging, activities of antioxidant defense (AD) enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR), thioredoxin reductase (TR), and methionine sulfoxide reductase A (MsrA), and the markers of oxidative damage of biomolecules-4-hydroxynonenal (HNE) and 8-oxoguanine (8-oxoG)-were examined in the rat skin during life (from 3 days to 21 months). As compared to adult 3-month-old skin, higher activities of CAT, GSH-Px, and GR and a decline in expression of MsrA are found in 21-month-old skin. These changes correspond to degenerative changes at structural and ultrastructural levels in epidermal and dermal compartments, low proliferation capacity, and higher levels of HNE-modified protein aldehydes (particularly in basal lamina) and 8-oxoG positivity in nuclei and mitochondria in the sebaceous glands and root sheath. In 3-day-old skin, higher activities of AD enzymes (SOD, CAT, GR, and TR) and MsrA expression correspond to intensive postnatal development and proliferation. In contrast to 21-month-old skin, a high level of HNE in young skin is not accompanied by 8-oxoG positivity or any morphological disturbances. Observed results indicate that increased activity of AD enzymes in elderly rat skin represents the compensatory response to accumulated oxidative damage of DNA and proteins, accompanied by attenuated repair and proliferative capacity, but in young rats the redox changes are necessary and inherent with processes which occur during postnatal skin development. Мorphological and ultrastructurаl changes are in line with the redox profile in the skin of young and old rats.
Collapse
Affiliation(s)
- Aleksandra Jankovic
- Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Serbia
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Italy
| | | | - Bato Korac
- Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Serbia
| |
Collapse
|
46
|
Xu H, Zhang Y, Ren J. ALDH2 and Stroke: A Systematic Review of the Evidence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:195-210. [PMID: 31368105 DOI: 10.1007/978-981-13-6260-6_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cerebral stroke is one of the leading causes of mortality and disability worldwide. The prevalence of cerebral stroke is the result of the synergistic effect of genetic susceptibility and numerous vascular risk factors, including hypertension, diabetes, excessive alcohol intake, obesity, and dyslipidemia. Mitochondrial aldehyde dehydrogenase (ALDH2) is a vital enzyme metabolizing various acetaldehyde and toxic aldehydes. The ALDH2 enzymatic activity is severely decreased in the individuals with ALDH2*2 gene mutation, especially in East Asians. Increasing epidemiological surveys have revealed that ALDH2 genetic polymorphism is closely associated with the increasing incidence of cardiovascular risk factors and cerebral stroke. Evidence from experimental studies has also suggested that ALDH2 facilitates the clearance of reactive aldehydes and reduces the size of cerebral infarct. Therefore, targeting ALDH2 may represent a promising avenue for protection against stroke injury. This review will mainly focus on clinical and epidemiological evidence and the underlying molecular mechanisms involved in the protective effect of ALDH2 in stroke-related injury.
Collapse
Affiliation(s)
- Haixia Xu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China. .,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, USA.
| |
Collapse
|
47
|
Cumaoğlu A, Ağkaya AÖ, Özkul Z. Effect of the Lipid Peroxidation Product 4-Hydroxynonenal on Neuroinflammation in Microglial Cells: Protective Role of Quercetin and Monochloropivaloylquercetin. Turk J Pharm Sci 2018; 16:54-61. [PMID: 32454696 DOI: 10.4274/tjps.58966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/14/2017] [Indexed: 12/30/2022]
Abstract
Objectives The lipid peroxidation-derived aldehyde 4-hydroxynonenal (HNE) has been implicated in a number of oxidative stress-induced inflammatory pathologies such as neurodegenerative diseases and aging. In this regard, we investigated the effects of HNE on neuroinflammatory responses by measuring cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) induction with cytokine production. In addition, we measured nuclear factor erythroid 2-related factor 2 (Nrf-2)/Kelch-like ECH-associated protein 1 (Keap1) signaling proteins, and antioxidant enzymes heme oxygenase-1 (HO-1) and nicotinamide adenine dinucleotide phosphate dehydrogenase, quinone 1 (NQO1), and compared the results with quercetin and monochloropivaloylquercetin (MPQ) pretreated microglial cells. Materials and Methods Cytotoxicity was determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and production of cytokines was determined by cytokine array. Furthermore, intracellular Nfr2/Keap1 signaling proteins, HO-1, NQO1, and COX-2 expression were analyzed by western blot in 2.5 μM HNE treated BV-2 cells. Results Inducible nitric oxide synthase (iNOS) and COX-2 mRNA levels were measured with reverse transcription-quantitative polymerase chain reaction. HNE induced both COX-2 mRNA and protein levels, iNOS mRNA expression, and cytokine production. In addition, HNE markedly increased Keap1 levels and decreased cytoplasmic Nrf-2 expression with antioxidant enzyme HO-1 levels. Quercetin and monochloropivaloylquercetin treatment alleviated neuroinflammatory responses in microglial cells, by decreasing COX-2 mRNA expression. Monochloropivaloylquercetin decreased cytoplasmic Keap1 levels and increased nuclear translocation of Nrf-2 resulted in induction of HO-1 and NQO1 expression. Conclusion These results suggest that HNE could be a link between oxidative stress and inflammation in BV-2 microglia cells. In particular, monochloropivaloylquercetin alleviated inflammation, probably by decreasing the expression of proinflammatory genes and strengthening the antioxidant defense system.
Collapse
Affiliation(s)
- Ahmet Cumaoğlu
- Erciyes University, Faculty of Pharmacy, Department of Biochemistry, Kayseri, Turkey
| | - Aslı Özge Ağkaya
- Erciyes University, Faculty of Pharmacy, Department of Biochemistry, Kayseri, Turkey
| | - Zehra Özkul
- Erciyes University, Faculty of Pharmacy, Department of Biochemistry, Kayseri, Turkey
| |
Collapse
|
48
|
Cesar V, Jozić I, Begović L, Vuković T, Mlinarić S, Lepeduš H, Borović Šunjić S, Žarković N. Cell-Type-Specific Modulation of Hydrogen Peroxide Cytotoxicity and 4-Hydroxynonenal Binding to Human Cellular Proteins In Vitro by Antioxidant Aloe vera Extract. Antioxidants (Basel) 2018; 7:antiox7100125. [PMID: 30241411 PMCID: PMC6210414 DOI: 10.3390/antiox7100125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022] Open
Abstract
Although Aloe vera contains numerous bioactive components, the activity principles of widely used A. vera extracts are uncertain. Therefore, we analyzed the effects of genuine A. vera aqueous extract (AV) on human cells with respect to the effects of hydrogen peroxide (H2O2) and 4-hydroxynonenal (HNE). Fully developed A. vera leaves were harvested and analyzed for vitamin C, carotenoids, total soluble phenolic content, and antioxidant capacity. Furthermore, human cervical cancer (HeLa), human microvascular endothelial cells (HMEC), human keratinocytes (HaCat), and human osteosarcoma (HOS) cell cultures were treated with AV extract for one hour after treatment with H2O2 or HNE. The cell number and viability were determined using Trypan Blue, and endogenous reactive oxygen species (ROS) production was determined by fluorescence, while intracellular HNE–protein adducts were measured for the first time ever by genuine cell-based HNE–His ELISA. The AV extract expressed strong antioxidant capacities (1.1 mmol of Trolox eq/g fresh weight) and cell-type-specific influence on the cytotoxicity of H2O2, as well as on endogenous production of ROS and HNE–protein adducts induced by HNE treatment, while AV itself did not induce production of ROS or HNE–protein adducts at all. This study, for the first time, revealed the importance of HNE for the activity principles of AV. Since HMEC cells were the most sensitive to AV, the effects of AV on microvascular endothelia could be of particular importance for the activity principles of Aloe vera extracts.
Collapse
Affiliation(s)
- Vera Cesar
- Department of Biology, Josip Juraj Strossmyer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia.
- Faculty of Dental Medicine and Health, Josip Juraj Strossmyer University of Osijek, Cara Hadrijana 10/E, 31000 Osijek, Croatia.
| | - Iva Jozić
- Department of Biology, Josip Juraj Strossmyer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia.
| | - Lidija Begović
- Department of Biology, Josip Juraj Strossmyer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia.
| | - Tea Vuković
- Laboratory for Oxidative Stress (LabOS), Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| | - Selma Mlinarić
- Department of Biology, Josip Juraj Strossmyer University of Osijek, Cara Hadrijana 8/A, 31000 Osijek, Croatia.
| | - Hrvoje Lepeduš
- Faculty of Dental Medicine and Health, Josip Juraj Strossmyer University of Osijek, Cara Hadrijana 10/E, 31000 Osijek, Croatia.
- Faculty of Humanities and Social Sciences, Josip Juraj Strossmyer University of Osijek, L. Jägera 9, 31000 Osijek, Croatia.
| | - Suzana Borović Šunjić
- Laboratory for Oxidative Stress (LabOS), Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| | - Neven Žarković
- Laboratory for Oxidative Stress (LabOS), Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| |
Collapse
|
49
|
Milkovic L, Vukovic T, Zarkovic N, Tatzber F, Bisenieks E, Kalme Z, Bruvere I, Ogle Z, Poikans J, Velena A, Duburs G. Antioxidative 1,4-Dihydropyridine Derivatives Modulate Oxidative Stress and Growth of Human Osteoblast-Like Cells In Vitro. Antioxidants (Basel) 2018; 7:antiox7090123. [PMID: 30235855 PMCID: PMC6162383 DOI: 10.3390/antiox7090123] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/06/2018] [Accepted: 09/15/2018] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress has been implicated in pathophysiology of different human stress- and age-associated disorders, including osteoporosis for which antioxidants could be considered as therapeutic remedies as was suggested recently. The 1,4-dihydropyridine (DHP) derivatives are known for their pleiotropic activity, with some also acting as antioxidants. To find compounds with potential antioxidative activity, a group of 27 structurally diverse DHPs, as well as one pyridine compound, were studied. A group of 11 DHPs with 10-fold higher antioxidative potential than of uric acid, were further tested in cell model of human osteoblast-like cells. Short-term combined effects of DHPs and 50 µM H2O2 (1-h each), revealed better antioxidative potential of DHPs if administered before a stressor. Indirect 24-h effect of DHPs was evaluated in cells further exposed to mild oxidative stress conditions induced either by H2O2 or tert-butyl hydroperoxide (both 50 µM). Cell growth (viability and proliferation), generation of ROS and intracellular glutathione concentration were evaluated. The promotion of cell growth was highly dependent on the concentrations of DHPs used, type of stressor applied and treatment set-up. Thiocarbatone III-1, E2-134-1 III-4, Carbatone II-1, AV-153 IV-1, and Diethone I could be considered as therapeutic agents for osteoporosis although further research is needed to elucidate their bioactivity mechanisms, in particular in respect to signaling pathways involving 4-hydroxynoneal and related second messengers of free radicals.
Collapse
Affiliation(s)
- Lidija Milkovic
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| | - Tea Vukovic
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| | - Neven Zarkovic
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| | - Franz Tatzber
- Institute of Pathophysiology and Immunology, Medical University of Graz, A-8036 Graz, Austria.
| | - Egils Bisenieks
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia.
| | - Zenta Kalme
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia.
| | - Imanta Bruvere
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia.
| | - Zaiga Ogle
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia.
| | - Janis Poikans
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia.
| | - Astrida Velena
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia.
| | - Gunars Duburs
- Latvian Institute of Organic Synthesis, 21 Aizkraukles Str., LV-1006 Riga, Latvia.
| |
Collapse
|
50
|
Panisello-Roselló A, Alva N, Flores M, Lopez A, Castro Benítez C, Folch-Puy E, Rolo A, Palmeira C, Adam R, Carbonell T, Roselló-Catafau J. Aldehyde Dehydrogenase 2 (ALDH2) in Rat Fatty Liver Cold Ischemia Injury. Int J Mol Sci 2018; 19:2479. [PMID: 30131474 PMCID: PMC6164398 DOI: 10.3390/ijms19092479] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 12/31/2022] Open
Abstract
Institut George Lopez-1 (IGL-1) and Histidine-tryptophan-ketoglutarate (HTK) solutions are proposed as alternatives to UW (gold standard) in liver preservation. Their composition differs in terms of the presence/absence of oncotic agents such as HES or PEG, and is decisive for graft conservation before transplantation. This is especially so when fatty (steatotic) livers are used since these grafts are more vulnerable to ischemia insult during conservation. Their composition determines the extent of the subsequent reperfusion injury after transplantation. Aldehyde dehydrogenase-2 (ALDH2), a mitochondrial enzyme, has been reported to play a protective role in warm ischemia-reperfusion injury (IRI), but its potential in fatty liver cold ischemic injury has not yet been investigated. We evaluated the relevance of ALDH2 activity in cold ischemia injury when fatty liver grafts from Zucker Obese rats were preserved in UW, HTK, and IGL-1 solutions, in order to study the mechanisms involved. ALDH2 upregulation was highest in livers preserved in IGL-1. It was accompanied by a decrease in transaminases, apoptosis (Caspase 3 and TUNEL assay), and lipoperoxidation, which was concomitant with the effective clearance of toxic aldehydes such as 4-hydroxy-nonenal. Variations in ATP levels were also determined. The results were consistent with levels of NF-E2 p45-related factor 2 (Nrf2), an antioxidant factor. Here we report for the first time the relevance of mitochondrial ALDH2 in fatty liver cold preservation and suggest that ALDH2 could be considered a potential therapeutic target or regulator in clinical transplantation.
Collapse
Affiliation(s)
- Arnau Panisello-Roselló
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Catalonia, Spain.
| | - Norma Alva
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain.
| | - Marta Flores
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain.
| | - Alexandre Lopez
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Paris, France.
| | | | - Emma Folch-Puy
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Catalonia, Spain.
| | - Anabela Rolo
- Center for Neurosscience and Cell Biology, Universidade de Coimbra, 300-370 Coimbra, Portugal.
| | - Carlos Palmeira
- Center for Neurosscience and Cell Biology, Universidade de Coimbra, 300-370 Coimbra, Portugal.
| | - René Adam
- Centre Hépato-Biliaire, AP-PH, Hôpital Paul Brousse, 94800 Paris, France.
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain.
| | - Joan Roselló-Catafau
- Experimental Hepatic Ischemia-Reperfusion Unit, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Catalonia, Spain.
| |
Collapse
|