1
|
Ullah A, Bano A, Khan N. Antinutrients in Halophyte-Based Crops. FRONT BIOSCI-LANDMRK 2024; 29:323. [PMID: 39344318 DOI: 10.31083/j.fbl2909323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 10/01/2024]
Abstract
The cultivation of halophytes is an alternative approach to sustain agricultural productivity under changing climate. They are densely equipped with a diverse group of metabolites that serve multiple functions, such as providing tolerance to plants against extreme conditions, being used as a food source by humans and ruminants and containing bioactive compounds of medicinal importance. However, some metabolites, when synthesized in greater concentration above their threshold level, are considered antinutrients. Widely reported antinutrients include terpenes, saponins, phytate, alkaloids, cyanides, tannins, lectins, protease inhibitors, calcium oxalate, etc. They reduce the body's ability to absorb essential nutrients from the diet and also cause serious health problems. This review focuses on antinutrients found both in wild and edible halophytes and their beneficial as well as adverse effects on human health. Efforts were made to highlight such antinutrients with scientific evidence and describe some processing methods that might help in reducing antinutrients while using halophytes as a food crop in future biosaline agriculture.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Biology, The Peace College, 24420 Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Asghari Bano
- Department of Biosciences, University of Wah, 47000 Wah Cantt, Punjab, Pakistan
| | - Naeem Khan
- Agronomy Department, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
2
|
Liu M, Xu X, Sun C, Zheng X, Zhou Q, Song C, Xu P, Gao Q, Liu B. Tea Tree Oil Improves Energy Metabolism, Non-Specific Immunity, and Microbiota Diversity via the Intestine-Hepatopancreas Axis in Macrobrachium rosenbergii under Low Fish Meal Diet Administration. Antioxidants (Basel) 2023; 12:1879. [PMID: 37891958 PMCID: PMC10604904 DOI: 10.3390/antiox12101879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Tea tree oil (TTO) is an essential plant oil with diverse antibacterial and antioxidant properties; however, whether the role played by TTO in low fish meal (LF) diets induced the observed effects in the farmed crustaceans remains unclear. Therefore, this study used Macrobrachium rosenbergii as the model crustacean, and an 8-week feeding experiment with NF (normal fish meal), LF (soybean meal replacing 40% fish meal), and LFT (LF with 200 mg/kg TTO) diets was conducted to evaluate the positive effects of TTO under the LF diet. Compared to the NF diet, the LF diet reduced hemolymph antioxidant capacity and non-specific immunity, and induced hepatopancreas apoptosis and damage. However, in comparison with LF, LTF significantly ameliorated morphological impairment in the hepatopancreas, improved hepatopancreas energy metabolism by upregulating the Bcl-2/Bax and Akt/mTOR pathways, and enhanced antioxidant and non-specific immune capacity by activating the NF-κB/NO pathway. In addition, LFT repaired intestinal barrier injury and the imbalance of intestinal microbiota induced by the LF diet. Moreover, the Pearson correlation revealed the variations of the above indicators, which were related to the abundance changes of Klebsiella, Clostridium sensu stricto 12, Thermobifida, Bifidobacterium, and Alistipes, indicating that these microbes might serve as prospective targets for the intestine-hepatopancreas axis to affect hepatopancreas apoptosis, metabolism, and non-specific immunity. In summary, 200 mg/kg TTO supplementation mediated gut microbiota and positively improved energy metabolism and non-specific immunity, thereby alleviating hepatopancreas dysplasia and damage induced by the LF diet in M. rosenbergii.
Collapse
Affiliation(s)
- Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Xiaodi Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Cunxin Sun
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Xiaochuan Zheng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Qunlan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Changyou Song
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Qiang Gao
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| |
Collapse
|
3
|
Costa RODA, Passos TS, Silva EMDS, dos Santos NCS, Morais AHDA. Encapsulated Peptides and Proteins with an Effect on Satiety. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1166. [PMID: 37049259 PMCID: PMC10097199 DOI: 10.3390/nano13071166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
The world scenario has undergone a nutritional transition in which some countries have left the reality of malnutrition and now face an epidemic of excess body weight. Researchers have been looking for strategies to reverse this situation. Peptides and proteins stand out as promising molecules with anti-obesity action. However, oral administration and passage through the gastrointestinal tract face numerous physiological barriers that impair their bioactive function. Encapsulation aims to protect the active substance and modify the action, one possibility of potentiating anti-obesity activity. Research with encapsulated peptides and proteins has demonstrated improved stability, delivery, controlled release, and increased bioactivity. However, it is necessary to explore how proteins and peptides affect weight loss and satiety, can impact the nutritional status of obesity, and how encapsulation can enhance the bioactive effects of these molecules. This integrative review aimed to discuss how the encapsulation of protein molecules impacts the nutritional status of obesity. From the studies selected following pre-established criteria, it was possible to infer that the encapsulation of proteins and peptides can contribute to greater efficiency in reducing weight gain, changes in adipose tissue function, and lower hormone levels that modulate appetite and body weight in animals with obesity.
Collapse
Affiliation(s)
- Rafael O. de A. Costa
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Thaís S. Passos
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Eloyse Mikaelly de S. Silva
- Nutrition Course, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | | | - Ana Heloneida de A. Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Nutrition Course, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| |
Collapse
|
4
|
Cid-Gallegos MS, Corzo-Ríos LJ, Jiménez-Martínez C, Sánchez-Chino XM. Protease Inhibitors from Plants as Therapeutic Agents- A Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:20-29. [PMID: 35000105 DOI: 10.1007/s11130-022-00949-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 05/18/2023]
Abstract
Plant-based diets are a great source of protease inhibitors (PIs). Two of the most well-known families of PIs are Bowman-Birk inhibitors (BBI) and Kunitz-type inhibitors (KTI). The first group acts mainly on trypsin, chymotrypsin, and elastase; the second is on serine, cysteine, and aspartic proteases. PIs can retard or inhibit the catalytic action of enzymes; therefore, they are considered non-nutritional compounds; nevertheless, animal studies and cell line experiments showed promising results of PIs in treating human illnesses such as obesity, cardiovascular diseases, autoimmune diseases, inflammatory processes, and different types of cancer (gastric, colorectal, breast, and lung cancer). Anticarcinogenic activity's proposed mechanisms of action comprise several inhibitory effects at different molecular levels, i.e., transcription, post-transcription, translation, post-translation, and secretion of cancer cells. This work reviews the potential therapeutic applications of PIs as anticarcinogenic and anti-inflammatory agents in human diseases and the mechanisms by which they exert these effects.
Collapse
Affiliation(s)
- M S Cid-Gallegos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, México City, C.P. 07738, México
| | - L J Corzo-Ríos
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto S/N, Barrio La Laguna, Col. Ticomán, México City, C.P. 07340, México
| | - C Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa s/n, México City, C.P. 07738, México
| | - X M Sánchez-Chino
- CONACYT, Departamento de Salud, El Colegio de La Frontera Sur-Villahermosa, Tabasco, México.
| |
Collapse
|
5
|
Shan S, Yin R, Shi J, Zhang L, Liu F, Qiao Q, Li Z. Bowman-Birk Major Type Trypsin Inhibitor Derived from Foxtail Millet Bran Attenuate Atherosclerosis via Remodeling Gut Microbiota in ApoE-/- Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:507-519. [PMID: 34989223 DOI: 10.1021/acs.jafc.1c05747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Foxtail millet proteins and their hydrolysates have the potential to prevent atherosclerosis (AS). In our present study, a novel Bowman-Birk type major trypsin inhibitor from foxtail millet bran (FMB-BBTI) with an anti-AS effect was obtained by in vitro gastrointestinal bionic digestion. Further, the anti-AS activity of FMB-BBTI was verified by the classic apoE-/- mice model, characterized by the decreases of the inflammatory cytokines (TNF-α and IL-1β) and atherosclerotic plaque. Importantly, FMB-BBTI remodeled the structure of gut microbiota in apoE-/- mice, including the increase of Firmicutes at the phylum level, and the abundance alteration of five genera at the genus level, especially significant enrichment of Lactobacillus. Collectively, FMB-BBTI markedly restrains the AS progress, suggesting that the remodeling of gut microbiota induced by FMB-BBTI may be the critical factor for its anti-AS activity. This study indicates that FMB-BBTI may serve as a vital functional component contributing to the anti-AS potential of foxtail millet bran.
Collapse
Affiliation(s)
- Shuhua Shan
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Ruopeng Yin
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jiangying Shi
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Lizhen Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Fengming Liu
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Qinqin Qiao
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
6
|
Samtiya M, Aluko RE, Dhewa T. Plant food anti-nutritional factors and their reduction strategies: an overview. FOOD PRODUCTION, PROCESSING AND NUTRITION 2020. [DOI: 10.1186/s43014-020-0020-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Legumes and cereals contain high amounts of macronutrients and micronutrients but also anti-nutritional factors. Major anti-nutritional factors, which are found in edible crops include saponins, tannins, phytic acid, gossypol, lectins, protease inhibitors, amylase inhibitor, and goitrogens. Anti-nutritional factors combine with nutrients and act as the major concern because of reduced nutrient bioavailability. Various other factors like trypsin inhibitors and phytates, which are present mainly in legumes and cereals, reduce the digestibility of proteins and mineral absorption. Anti-nutrients are one of the key factors, which reduce the bioavailability of various components of the cereals and legumes. These factors can cause micronutrient malnutrition and mineral deficiencies. There are various traditional methods and technologies, which can be used to reduce the levels of these anti-nutrient factors. Several processing techniques and methods such as fermentation, germination, debranning, autoclaving, soaking etc. are used to reduce the anti-nutrient contents in foods. By using various methods alone or in combinations, it is possible to reduce the level of anti-nutrients in foods. This review is focused on different types of anti-nutrients, and possible processing methods that can be used to reduce the level of these factors in food products.
Graphical abstract
A brief overview of beneficial effects of anti-nutrients and reduction strategy.
Collapse
|
7
|
Cristina Oliveira de Lima V, Piuvezam G, Leal Lima Maciel B, Heloneida de Araújo Morais A. Trypsin inhibitors: promising candidate satietogenic proteins as complementary treatment for obesity and metabolic disorders? J Enzyme Inhib Med Chem 2019; 34:405-419. [PMID: 30734596 PMCID: PMC6327991 DOI: 10.1080/14756366.2018.1542387] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/16/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022] Open
Abstract
The increase in non-communicable chronic diseases has aroused interest in the research of adjuvants to the classic forms of treatments. Obesity and metabolic syndrome are the main targets of confrontation because they relate directly to other chronic diseases. In this context, trypsin inhibitors, molecules with wide heterologous application, appear as possibilities in the treatment of overweight and obesity due to the action on satiety related mechanisms, mainly in the modulation of satiety hormones, such as cholecystokinin. In addition, trypsin inhibitors have the ability to also act on some biochemical parameters related to these diseases, thus, emerging as potential candidates and promising molecules in the treatment of the obesity and metabolic syndrome. Thus, the present article proposes to approach, through a systematic literature review, the advantages, disadvantages and viabilities for the use of trypsin inhibitors directed to the treatment of overweight and obesity.
Collapse
Affiliation(s)
| | - Grasiela Piuvezam
- Department of Collective Health, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Bruna Leal Lima Maciel
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana Heloneida de Araújo Morais
- Department of Biochemistry, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
8
|
Matias LLR, Costa ROA, Passos TS, Queiroz JLC, Serquiz AC, Maciel BLL, Santos PPA, Camillo CS, Gonçalves C, Amado IR, Pastrana L, Morais AHA. Tamarind Trypsin Inhibitor in Chitosan-Whey Protein Nanoparticles Reduces Fasting Blood Glucose Levels without Compromising Insulinemia: A Preclinical Study. Nutrients 2019; 11:E2770. [PMID: 31739532 PMCID: PMC6893787 DOI: 10.3390/nu11112770] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 01/02/2023] Open
Abstract
In vivo studies show the benefits of the trypsin inhibitor isolated from tamarind (Tamarindusindica L.) (TTI) seeds in satiety and obesity. In the present study, TTI nanoencapsulation (ECW) was performed to potentialize the effect of TTI and allow a controlled release in the stomach. The impact on glycemia, insulin, and lipid profile was evaluated in Wistar rats overfed with a high glycemic index diet (HGLI). Characterization of the nanoparticles and in vitro stability in simulated gastrointestinal conditions, monitored by antitrypsin activity and HPLC, was performed. ECW and empty nanoparticles (CW) were administered by gavage, using 12.5 and 10.0 mg/kg, respectively. Both nanoformulations presented a spherical shape and smooth surface, with an average diameter of 117.4 nm (24.1) for ECW and 123.9 nm (11.3) for CW. ECW maintained the antitrypsin activity (95.5%) in the gastric phase, while TTI was completely hydrolyzed. In Wistar rats, the nanoformulations significantly reduced glycemia and HOMA IR, and ECW increased HDL-c compared to CW (p < 0.05).Pancreas histopathology of animals treated with ECW suggested an onset of tissue repair. Thenanoencapsulation provided TTI protection, gradual release in the desired condition, and improvement of biochemical parameters related to carbohydrate metabolism disorders,without compromising insulinemia.
Collapse
Affiliation(s)
- Lídia L. R. Matias
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil (B.L.L.M.)
| | - Rafael O. A. Costa
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; (R.O.A.C.)
| | - Thaís S. Passos
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil;
| | - Jaluza L. C. Queiroz
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; (R.O.A.C.)
| | - Alexandre C. Serquiz
- Course of Nutrition, Center University of Rio Grande do Norte, Natal, RN 59014-545, Brazil;
| | - Bruna L. L. Maciel
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil (B.L.L.M.)
| | - Pedro P. A. Santos
- Structural and Functional Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil (C.S.C.)
| | - Christina S. Camillo
- Structural and Functional Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil (C.S.C.)
| | - Catarina Gonçalves
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (C.G.); (L.P.)
| | - Isabel R. Amado
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (C.G.); (L.P.)
- Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo, Campus As Lagoas s/n, Ourense, 32004 Galicia, Spain
| | - Lorenzo Pastrana
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (C.G.); (L.P.)
| | - Ana H. A. Morais
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil (B.L.L.M.)
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil; (R.O.A.C.)
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil;
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal; (C.G.); (L.P.)
| |
Collapse
|
9
|
Quan NV, Xuan TD, Tran HD, Ahmad A, Khanh TD, Dat TD. Contribution of momilactones A and B to diabetes inhibitory potential of rice bran: Evidence from in vitro assays. Saudi Pharm J 2019; 27:643-649. [PMID: 31297018 PMCID: PMC6598221 DOI: 10.1016/j.jsps.2019.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/13/2019] [Indexed: 01/20/2023] Open
Abstract
This study was the first to detect the presence of the two compounds momilactone A (MA) and momilactone B (MB) in rice bran using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). By in vitro assays, both MA and MB exhibited potent inhibitory activities on pancreatic α-amylase and α-glucosidase which were significantly higher than γ-oryzanol, a well-known diabetes inhibitor. Remarkably, MA and MB indicated an effective inhibition on trypsin with the IC50 values of 921.55 and 884.03 µg/mL, respectively. By high-performance liquid chromatography (HPLC), quantities of MA (6.65 µg/g dry weight) and MB (6.24 µg/g dry weight) in rice bran were determined. Findings of this study revealed the α-amylase, α-glucosidase and trypsin inhibitors MA and MB contributed an active role to the diabetes inhibitory potential of rice bran.
Collapse
Affiliation(s)
- Nguyen Van Quan
- Division of Development Technology, Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi Hiroshima 739-8529, Japan
| | - Tran Dang Xuan
- Division of Development Technology, Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi Hiroshima 739-8529, Japan
| | - Hoang-Dung Tran
- Department of Biotechnology, NTT Institute of Hi-Technology, Nguyen Tat Thanh University, 298A-300A Nguyen Tat Thanh Street,Ward 13, District 4, Ho Chi Minh 72820, Viet Nam
| | - Ateeque Ahmad
- Process Chemistry and Technology Department, Central Institute of Medicinal and Aromatic Plants, Lucknow 226016, India
| | - Tran Dang Khanh
- Agricultural Genetics Institute, Pham Van Dong Street, Hanoi 122000, Viet Nam
- Center for Expert, Vietnam National University of Agriculture, Hanoi 131000, Viet Nam
| | - Tran Dang Dat
- Khai Xuan International Co. Ltd., Ha Dong District, Duong Noi Ward, LK20A-20B, Khai Xuan Building, Hanoi 152611, Viet Nam
| |
Collapse
|
10
|
Carvalho FMC, Lima VCO, Costa IS, Luz ABS, Ladd FVL, Serquiz AC, Bortolin RH, Silbiger VN, Maciel BLL, Santos EA, Morais AHA. Anti-TNF-α Agent Tamarind Kunitz Trypsin Inhibitor Improves Lipid Profile of Wistar Rats Presenting Dyslipidemia and Diet-induced Obesity Regardless of PPAR-γ Induction. Nutrients 2019; 11:E512. [PMID: 30818882 PMCID: PMC6470745 DOI: 10.3390/nu11030512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 01/07/2023] Open
Abstract
: The increasing prevalence of obesity and, consequently, chronic inflammation and its complications has increased the search for new treatment methods. The effect of the purified tamarind seed trypsin inhibitor (TTIp) on metabolic alterations in Wistar rats with obesity and dyslipidemia was evaluated. Three groups of animals with obesity and dyslipidemia were formed, consuming a high glycemic index and glycemic load (HGLI) diet, for 10 days: Obese/HGLI diet; Obese/standard diet; Obese/HGLI diet + TTIp (730 μg/kg); and one eutrophic group of animals was fed a standard diet. Rats were evaluated daily for food intake and weight gain. On the 11th day, animals were anesthetized and sacrificed for blood and visceral adipose tissue collection. TTIp treated animals presented significantly lower food intake than the untreated group (p = 0.0065), TG (76.20 ± 18.73 mg/dL) and VLDL-C (15.24 ± 3.75 mg/dL). Plasma concentrations and TNF-α mRNA expression in visceral adipose tissue also decreased in obese animals treated with TTIp (p < 0.05 and p = 0.025, respectively) with a negative immunostaining. We conclude that TTIp presented anti-TNF-α activity and an improved lipid profile of Wistar rats with dyslipidemia and obesity induced by a high glycemic index and load diet regardless of PPAR-γ induction.
Collapse
Affiliation(s)
- Fabiana M C Carvalho
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil.
| | - Vanessa C O Lima
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil.
| | - Izael S Costa
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil.
| | - Anna B S Luz
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil.
| | - Fernando V L Ladd
- Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil.
| | - Alexandre C Serquiz
- Course of Nutrition, Center University of Rio Grande do Norte, Natal, RN 59014-545, Brazil.
| | - Raul H Bortolin
- Pharmaceutical Sciences Post Graduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil.
| | - Vivian N Silbiger
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil.
- Pharmaceutical Sciences Post Graduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil.
- Department of Clinical and Toxicological Analysis, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil.
| | - Bruna L L Maciel
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil.
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil.
| | - Elizeu A Santos
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil.
- Department of Biochemistry, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil.
| | - Ana H A Morais
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil.
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil.
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078-970, Brazil.
| |
Collapse
|
11
|
Jafari Azad B, Daneshzad E, Azadbakht L. Peanut and cardiovascular disease risk factors: A systematic review and meta-analysis. Crit Rev Food Sci Nutr 2019; 60:1123-1140. [DOI: 10.1080/10408398.2018.1558395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Banafsheh Jafari Azad
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Daneshzad
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Parca F, Koca YO, Unay A. Nutritional and Antinutritional Factors of Some Pulses Seed and Their Effects on Human Health. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2018. [DOI: 10.21448/ijsm.488651] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
De Queiroz JLC, De Araújo Costa RO, Rodrigues Matias LL, De Medeiros AF, Teixeira Gomes AF, Santos Pais TD, Passos TS, Maciel BLL, Dos Santos EA, De Araújo Morais AH. Chitosan-whey protein nanoparticles improve encapsulation efficiency and stability of a trypsin inhibitor isolated from Tamarindus indica L. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Medeiros AFD, Costa IDS, Carvalho FMCD, Kiyota S, Souza BBPD, Sifuentes DN, Serquiz RP, Maciel BLL, Uchôa AF, Santos EAD, Morais AHDA. Biochemical characterisation of a Kunitz-type inhibitor from Tamarindus indica L. seeds and its efficacy in reducing plasma leptin in an experimental model of obesity. J Enzyme Inhib Med Chem 2018; 33:334-348. [PMID: 29322840 PMCID: PMC6010142 DOI: 10.1080/14756366.2017.1419220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A trypsin inhibitor isolated from tamarind seed (TTI) has satietogenic effects in animals, increasing the cholecystokinin (CCK) in eutrophy and reducing leptin in obesity. We purified TTI (pTTI), characterised, and observed its effect upon CCK and leptin in obese Wistar rats. By HPLC, and after amplification of resolution, two protein fractions were observed: Fr1 and Fr2, with average mass of [M + 14H]+ = 19,594,690 Da and [M + 13H]+ = 19,578,266 Da, respectively. The protein fractions showed 54 and 53 amino acid residues with the same sequence. pTTI presented resistance to temperature and pH variations; IC50 was 2.7 × 10−10 mol.L−1 and Ki was 2.9 × 10−11 mol.L−1. The 2-DE revealed spots with isoelectric points between pH 5 and 6, and one near pH 8. pTTI action on leptin decrease was confirmed. We conclude that pTTI is a Kunitz trypsin inhibitor with possible biotechnological health-related application.
Collapse
Affiliation(s)
- Amanda Fernandes de Medeiros
- a Postgraduate Biochemistry Program, Biosciences Center , Federal University of Rio Grande do Norte , Natal , Brazil
| | - Izael de Sousa Costa
- a Postgraduate Biochemistry Program, Biosciences Center , Federal University of Rio Grande do Norte , Natal , Brazil
| | | | - Sumika Kiyota
- b Laboratory of Protein and Peptide Biochemistry , CPDSA, Biological Institute , São Paulo , Brazil
| | - Beatriz Blenda Pinheiro de Souza
- c Postgraduate Biological Molecular, Institute of Biological Sciences , University of Brasília , Distrito Federal , Brasília , Brazil.,d Embrapa Genetic Resources and Biotechnology , Embrapa , Distrito Federal , Brasília , Brazil
| | | | - Raphael Paschoal Serquiz
- a Postgraduate Biochemistry Program, Biosciences Center , Federal University of Rio Grande do Norte , Natal , Brazil
| | - Bruna Leal Lima Maciel
- e Postgraduate Nutrition Program, Center for Health Sciences , Federal University of Rio Grande do Norte , Natal , Brazil.,f Department of Nutrition, Center for Health Sciences , Federal University of Rio Grande do Norte , Natal , Brazil
| | - Adriana Ferreira Uchôa
- a Postgraduate Biochemistry Program, Biosciences Center , Federal University of Rio Grande do Norte , Natal , Brazil.,g Department of Cell Biology and Genetics, Biosciences Center , Federal University of Rio Grande do Norte , Natal , Brazil
| | - Elizeu Antunes Dos Santos
- a Postgraduate Biochemistry Program, Biosciences Center , Federal University of Rio Grande do Norte , Natal , Brazil.,h Department of Biochemistry, Biosciences Center , Federal University of Rio Grande do Norte , Natal , Brazil
| | - Ana Heloneida de Araújo Morais
- a Postgraduate Biochemistry Program, Biosciences Center , Federal University of Rio Grande do Norte , Natal , Brazil.,e Postgraduate Nutrition Program, Center for Health Sciences , Federal University of Rio Grande do Norte , Natal , Brazil.,f Department of Nutrition, Center for Health Sciences , Federal University of Rio Grande do Norte , Natal , Brazil
| |
Collapse
|
15
|
Costa IS, Medeiros AF, Carvalho FMC, Lima VCO, Serquiz RP, Serquiz AC, Silbiger VN, Bortolin RH, Maciel BLL, Santos EA, Morais AHA. Satietogenic Protein from Tamarind Seeds Decreases Food Intake, Leptin Plasma and CCK-1r Gene Expression in Obese Wistar Rats. Obes Facts 2018; 11:440-453. [PMID: 30537704 PMCID: PMC6341364 DOI: 10.1159/000492733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE This study evaluated the effect of a protein, the isolated Trypsin Inhibitor (TTI) from Tamarindus indica L. seed, as a CCK secretagogue and its action upon food intake and leptin in obese Wistar rats. METHODS Three groups of obese rats were fed 10 days one of the following diets: Standard diet (Labina®) + water; High Glycemic Index and Load (HGLI) diet + water or HGLI diet + TTI. Lean animals were fed the standard diet for the 10 days. Food intake, zoometric measurements, plasma CCK, plasma leptin, relative mRNA expression of intestinal CCK-related genes, and expression of the ob gene in subcutaneous adipose tissue were assessed. RESULTS TTI decreased food intake but did not increase plasma CCK in obese animals. On the other hand, TTI treatment decreased CCK-1R gene expression in obese animals compared with the obese group with no treatment (p = 0.027). Obese animals treated with TTI presented lower plasma leptin than the non-treated obese animals. CONCLUSION We suggest that TTI by decreasing plasma leptin may improve CCK action, regardless of its increase in plasma from obese rats, since food intake was lowest.
Collapse
Affiliation(s)
- Izael S Costa
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Amanda F Medeiros
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Fabiana M C Carvalho
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Vanessa C O Lima
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Raphael P Serquiz
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Vivian N Silbiger
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Clinical and Toxicological Analysis, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Raul H Bortolin
- Department of Clinical and Toxicological Analysis, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Bruna L L Maciel
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Elizeu A Santos
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ana H A Morais
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil,
- Biochemistry Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil,
| |
Collapse
|
16
|
Brandscheid C, Schuck F, Reinhardt S, Schäfer KH, Pietrzik CU, Grimm M, Hartmann T, Schwiertz A, Endres K. Altered Gut Microbiome Composition and Tryptic Activity of the 5xFAD Alzheimer’s Mouse Model. J Alzheimers Dis 2017; 56:775-788. [DOI: 10.3233/jad-160926] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Carolin Brandscheid
- Clinic of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Florian Schuck
- Clinic of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Sven Reinhardt
- Clinic of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Karl-Herbert Schäfer
- Enteric Nervous System Group, University of Applied Sciences Kaiserslautern and Pediatric Surgery, Mannheim-Heidelberg, Germany
| | - Claus U. Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Marcus Grimm
- Deutsches Institut für Demenz Prävention (DIDP), Neurodegeneration and Neurobiology, Saarland University, Homburg/Saar, Germany and Experimental Neurology, Saarland University, Homburg/Saar, Germany
| | - Tobias Hartmann
- Deutsches Institut für Demenz Prävention (DIDP), Neurodegeneration and Neurobiology, Saarland University, Homburg/Saar, Germany and Experimental Neurology, Saarland University, Homburg/Saar, Germany
| | | | - Kristina Endres
- Clinic of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
17
|
Carvalho FMC, Lima VCO, Costa IS, Medeiros AF, Serquiz AC, Lima MCJS, Serquiz RP, Maciel BLL, Uchôa AF, Santos EA, Morais AHA. A Trypsin Inhibitor from Tamarind Reduces Food Intake and Improves Inflammatory Status in Rats with Metabolic Syndrome Regardless of Weight Loss. Nutrients 2016; 8:E544. [PMID: 27690087 PMCID: PMC5083972 DOI: 10.3390/nu8100544] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/08/2016] [Accepted: 08/26/2016] [Indexed: 01/01/2023] Open
Abstract
Trypsin inhibitors are studied in a variety of models for their anti-obesity and anti-inflammatory bioactive properties. Our group has previously demonstrated the satietogenic effect of tamarind seed trypsin inhibitors (TTI) in eutrophic mouse models and anti-inflammatory effects of other trypsin inhibitors. In this study, we evaluated TTI effect upon satiety, biochemical and inflammatory parameters in an experimental model of metabolic syndrome (MetS). Three groups of n = 5 male Wistar rats with obesity-based MetS received for 10 days one of the following: (1) Cafeteria diet; (2) Cafeteria diet + TTI (25 mg/kg); and (3) Standard diet. TTI reduced food intake in animals with MetS. Nevertheless, weight gain was not different between studied groups. Dyslipidemia parameters were not different with the use of TTI, only the group receiving standard diet showed lower very low density lipoprotein (VLDL) and triglycerides (TG) (Kruskal-Wallis, p < 0.05). Interleukin-6 (IL-6) production did not differ between groups. Interestingly, tumor necrosis factor-alpha (TNF-α) was lower in animals receiving TTI. Our results corroborate the satietogenic effect of TTI in a MetS model. Furthermore, we showed that TTI added to a cafeteria diet may decrease inflammation regardless of weight loss. This puts TTI as a candidate for studies to test its effectiveness as an adjuvant in MetS treatment.
Collapse
Affiliation(s)
- Fabiana M C Carvalho
- Postgraduate Nutrition Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
| | - Vanessa C O Lima
- Postgraduate Biochemistry Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
| | - Izael S Costa
- Postgraduate Nutrition Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
| | - Amanda F Medeiros
- Postgraduate Biochemistry Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
| | - Alexandre C Serquiz
- Postgraduate Biochemistry Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
- Course of Nutrition, Potiguar University, Natal RN 59056-000, Brazil.
| | - Maíra C J S Lima
- Course of Veterinary Medicine, Potiguar University, Natal RN 59056-000, Brazil.
| | - Raphael P Serquiz
- Postgraduate Biochemistry Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
- Technical School Health, Potiguar University, Natal RN 59056-000, Brazil.
| | - Bruna L L Maciel
- Postgraduate Nutrition Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
- Tropical Medicine Institute (TMI), Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
| | - Adriana F Uchôa
- Postgraduate Biochemistry Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
- Tropical Medicine Institute (TMI), Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
- Department of Cell Biology and Genetics, Center for Biosciences, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
| | - Elizeu A Santos
- Postgraduate Biochemistry Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
- Tropical Medicine Institute (TMI), Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
- Department of Biochemistry, Center for Biosciences, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
| | - Ana H A Morais
- Postgraduate Nutrition Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal RN 59078-970, Brazil.
| |
Collapse
|