1
|
Li D, Ren T, Wang X, Xiao Z, Sun G, Zhang N, Zhao L, Zhong R. A Tween-80 modified hypoxia/esterase dual stimulus-activated nanomicelle as a delivery platform for carmustine - Design, synthesis, and biological evaluation. Int J Biol Macromol 2024; 274:133404. [PMID: 38925197 DOI: 10.1016/j.ijbiomac.2024.133404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
As a clinical anti-glioma agent, the therapeutic effect of carmustine (BCNU) was largely decreased because of the drug resistance mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and the blood-brain barrier (BBB). To overcome these obstacles, we synthesized a BCNU-loaded hypoxia/esterase dual stimulus-activated nanomicelle, abbreviated as T80-HACB/BCNU NPs. In this nano-system, Tween 80 acts as the functional coating on the surface of the micelle to facilitate transport across the BBB. Hyaluronic acid (HA) with active tumor-targeting capability was linked with the hypoxia-sensitive AGT inhibitors (O6-azobenzyloxycarbonyl group) via an esterase-activated ester bond. The obtained T80-HACB/BCNU NPs had an average particle size of 232.10 ± 10.66 nm, the zeta potential of -18.13 ± 0.91 mV, and it showed high drug loading capacity, eximious biocompatibility and dual activation of hypoxia/esterase drug release behavior. The obtained T80-HACB/BCNU NPs showed enhanced cytotoxicity against hypoxic T98G and SF763 cells with IC50 at 132.2 μM and 133.1 μM, respectively. T80 modification improved the transportation of the micelle across an in vitro BBB model. The transport rate of the T80-HACB/Cou6 NPs group was 12.37 %, which was 7.6-fold (p<0.001) higher than the micelle without T80 modification. T80-HACB/BCNU NPs will contribute to the development of novel CENUs chemotherapies with high efficacy.
Collapse
Affiliation(s)
- Duo Li
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Zhixuan Xiao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Li D, Ren T, Wang X, Xiao Z, Sun G, Zhang N, Zhao L, Zhong R. Development and in vitro evaluation of carmustine delivery platform: A hypoxia-sensitive anti-drug resistant nanomicelle with BBB penetrating ability. Biomed Pharmacother 2023; 167:115631. [PMID: 37804814 DOI: 10.1016/j.biopha.2023.115631] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
Glioma is extremely difficult to be completely excised by surgery due to its invasive nature. Thus, chemotherapy still is the mainstay in the treatment of glioma after surgery. However, the natural blood-brain barrier (BBB) greatly restricts the penetration of chemotherapeutic agents into the central nervous system. As a front-line anti-glioma agent in clinical, carmustine (BCNU) exerts antitumor effect by inducing DNA damage at the O6 position of guanine. However, the therapeutic effect of BCNU was largely decreased because of the drug resistance mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and insufficient local drug concentrations. To overcome these obstacles, we synthesized a BCNU-loaded hypoxia-responsive nano-micelle with BBB penetrating capacity and AGT inhibitory activity, named as T80-HA-AZO-BG/BCNU NPs. In this nano-system, Tween 80 (T80) serves as a functional coating on the surface of the micelle, promoting transportation across the BBB. Hyaluronic acid (HA) with active tumor-targeting capability was linked with the hydrophobic O6-benzylguanine (BG) analog via a hypoxia-sensitive azo bond. Under hypoxic tumor microenvironment, the azo bond selectively breaks to release O6-BG as AGT inhibitor and BCNU as DNA alkylating agent. The synthesized T80-HA-AZO-BG/BCNU NPs showed good stability, favorable biocompatibility and hypoxia-responsive drug-releasing ability. T80 modification improved the transportation of the micelle across an in vitro BBB model. Moreover, T80-HA-AZO-BG/BCNU NPs exhibited significantly enhanced cytotoxicity against glioma cell lines with high AGT expression compared with traditional combined medication of BCNU plus O6-BG. We expect that the tumor-targeting nano-micelle designed for chloroethylnitrosourea will provide new tools for the development of effective glioma therapy.
Collapse
Affiliation(s)
- Duo Li
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Zhixuan Xiao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
3
|
Li D, Wang X, Han K, Sun Y, Ren T, Sun G, Zhang N, Zhao L, Zhong R. Hypoxia and CD44 receptors dual-targeted nano-micelles with AGT-inhibitory activity for the targeting delivery of carmustine. Int J Biol Macromol 2023; 246:125657. [PMID: 37399878 DOI: 10.1016/j.ijbiomac.2023.125657] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/17/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Carmustine (BCNU) is a typical chemotherapy used for treatment of cerebroma and other solid tumors, which exerts antitumor effect by inducing DNA damage at O6 position of guanine. However, the clinical application of BCNU was extremely limited due to the drug resistance mainly mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and absence of tumor-targeting ability. To overcome these limitations, we developed a hypoxia-responsive nanomicelle with AGT inhibitory activity, which was successfully loaded with BCNU. In this nano-system, hyaluronic acid (HA) acts as an active tumor-targeting ligand to bind the overexpressing CD44 receptors on the surface of tumor cells. An azo bond selectively breaks in hypoxic tumor microenvironment to release O6-benzylguanine (BG) as AGT inhibitor and BCNU as DNA alkylating agent. The obtained HA-AZO-BG NPs with shell core structure had an average particle size of 176.98 ± 11.19 nm and exhibited good stability. Meanwhile, HA-AZO-BG NPs possessed a hypoxia-responsive drug release profile. After immobilizing BCNU into HA-AZO-BG NPs, the obtained HA-AZO-BG/BCNU NPs exhibited obvious hypoxia-selectivity and superior cytotoxicity in T98G, A549, MCF-7 and SMMC-7721 cells with IC50 at 189.0, 183.2, 90.1 and 100.1 μm, respectively, under hypoxic condition. Near-infrared imaging in HeLa tumor xenograft models showed that HA-AZO-BG/DiR NPs could effectively accumulate in tumor site at 4 h of post-injection, suggesting its good tumor-targetability. In addition, in vivo anti-tumor efficacy and toxicity evaluation indicated that HA-AZO-BG/BCNU NPs was more effective and less harmful compared to the other groups. After treatment, the tumor weight of HA-AZO-BG/BCNU NPs group was 58.46 % and 63.33 % of the control group and BCNU group, respectively. Overall, HA-AZO-BG/BCNU NPs was expected to be a promising candidate for targeted delivery of BCNU and elimination of chemoresistance.
Collapse
Affiliation(s)
- Duo Li
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Kaishuo Han
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Yaqian Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
4
|
Zhao X, Ye Y, Ge S, Sun P, Yu P. Cellular and Molecular Targeted Drug Delivery in Central Nervous System Cancers: Advances in Targeting Strategies. Curr Top Med Chem 2021; 20:2762-2776. [PMID: 32851962 DOI: 10.2174/1568026620666200826122402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022]
Abstract
Central nervous system (CNS) cancers are among the most common and treatment-resistant diseases. The main reason for the low treatment efficiency of the disorders is the barriers against targeted delivery of anticancer agents to the site of interest, including the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB). BBB is a strong biological barrier separating circulating blood from brain extracellular fluid that selectively and actively prevents cytotoxic agents and majority of anticancer drugs from entering the brain. BBB and BBTB are the major impediments against targeted drug delivery into CNS tumors. Nanotechnology and its allied modalities offer interesting and effective delivery strategies to transport drugs across BBB to reach brain tissue. Integrating anticancer drugs into different nanocarriers improves the delivery performance of the resultant compounds across BBB. Surface engineering of nanovehicles using specific ligands, antibodies and proteins enhances the BBB crossing efficacy as well as selective and specific targeting to the target cancerous tissues in CNS tumors. Multifunctional nanoparticles (NPs) have brought revolutionary advances in targeted drug delivery to brain tumors. This study reviews the main anatomical, physiological and biological features of BBB and BBTB in drug delivery and the recent advances in targeting strategies in NPs-based drug delivery for CNS tumors. Moreover, we discuss advances in using specific ligands, antibodies, and surface proteins for designing and engineering of nanocarriers for targeted delivery of anticancer drugs to CNS tumors. Finally, the current clinical applications and the perspectives in the targeted delivery of therapeutic molecules and genes to CNS tumors are discussed.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacy, Beilun People's Hospital, Ningbo 315800, Zhejiang Province, China
| | - Yun Ye
- Department of Pharmacy, Beilun People's Hospital, Ningbo 315800, Zhejiang Province, China
| | - Shuyu Ge
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Pingping Sun
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| | - Ping Yu
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, Zhejiang Province, China
| |
Collapse
|
5
|
Kavya S, Reghu R. An Overview of High-grade Glioma: Current and Emerging Treatment Approaches. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394716666200721155514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High grade glioma is one of the severe form of tumour that progresses in the glial cells
of the brain and spinal cord. Age, gender, exposure to infections, race, ethnicity, viruses and allergens,
environmental carcinogens, diet, head injury or trauma and ionizing radiation may report
with increased glioma risk. Headache, seizure mainly generalized tonic-clonic seizure, memory
loss and altered sensorium are considered as common symptoms of glioma. Magnetic Resonance
Imaging (MRI), CT scans, neurological examinations and biopsy are considered as the diagnostic
option for glioma. Treatment for glioma mainly depended upon the tumour progression, malignancy,
cell type, age, location of tumour growth and anatomic structure. The standard treatment includes
surgery, radiation therapy and chemotherapy. Temozolomide is usually prescribed at a
dosage of 75 mg/m2 and began in combination with radiation therapy and continued daily. The primary
indicator of hepatotoxicity is the elevation of the liver profiles, i.e. the changes in any of the
liver panels may be considered to be hepatotoxic. Serum glutamic oxaloacetic transaminase (SGOT),
Serum Glutamic Pyruvic Transaminase (SGPT), Alkaline phosphatase (ALP) are rising panels
of the liver, which are elevated during toxicity. In some patients, albumin and globulin levels
may show variations. Treatment for glioma associated symptoms like seizures, depression anxiety
etc. are also mentioned along with supportive care for glioma. New trends in the treatment for glioma
are RINTEGA, an experimental immunotherapeutic agent and bevazizumab, a recombinant
monoclonal, a humanized antibody against the VEGF ligand [VEGF-A (vascular endothelial
growth factor)] in tumor cells.
Collapse
Affiliation(s)
- S.G. Kavya
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - R. Reghu
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| |
Collapse
|
6
|
Structure-activity relationship studies and bioactivity evaluation of 1,2,3-triazole containing analogues as a selective sphingosine kinase-2 inhibitors. Eur J Med Chem 2020; 206:112713. [DOI: 10.1016/j.ejmech.2020.112713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/10/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022]
|
7
|
Jiang L, Chen S, Zhao D, Yan J, Chen J, Yang C, Zheng G. MNX1 reduces sensitivity to anoikis by activating TrkB in human glioma cells. Mol Med Rep 2018; 18:3271-3279. [PMID: 30066929 PMCID: PMC6102707 DOI: 10.3892/mmr.2018.9329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/27/2018] [Indexed: 11/08/2022] Open
Abstract
Glioma is the most common type of malignant intracranial tumor in adults and is associated with the highest mortality rate. Although surgery, radiotherapy, chemotherapy and other treatment methods have progressed, the median survival of patients with glioma is only 14–15 months. Glioma cells are able to penetrate along blood vessels and invade into the surrounding normal brain tissue so that an overall resection of the tumor cannot be performed. In the process of metastasis, the resistance of cancer cells to anoikis has an important role. When tumor cells escape from their original environment, anoikis resistance aids their survival. In the present study, reverse transcription-semi-quantitative polymerase chain reaction (RT-sqPCR), RT-quantitative PCR and western blotting demonstrated that the transcription factor, motor neuron and pancreas homeobox 1 (MNX1), was ectopically expressed in glioma cells compared with normal HUVEC-C human umbilical vein endothelial cells. Furthermore, its expression was higher in more malignant glioma cell lines (T98G and M059K) compared with the less malignant glioma cell line (U-87 MG) and normal HUVEC-C cells. An adhesion assay using fibronectin demonstrated that MNX1 and tyrosine kinase receptor B (TrkB) overexpression in HUVEC-C and U-87 MG cells reduced adhesion and forced them to suspend. Additionally, MNX1 and TrkB overexpression was demonstrated to increase the ability of cells to bypass anoikis. MNX1 and TrkB knockdown increased adhesion and promoted apoptosis after suspension. It was further demonstrated that MNX1 functioned as a transcription factor binding in the upstream regulatory region of TrkB to activate its expression. The results of the present study suggested that MNX1 may suppress the adhesion and apoptosis rates of tumor cells by activating TrkB. The results of the present study suggest that MNX1 may represent a novel therapeutic target for the treatment of gliomas.
Collapse
Affiliation(s)
- Lai Jiang
- Department of Neurosurgery, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Shaojun Chen
- Department of Neurosurgery, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Donggang Zhao
- Department of Neurosurgery, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jun Yan
- Department of Neurosurgery, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jiemin Chen
- Department of Neurosurgery, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Chunlin Yang
- Department of Neurosurgery, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Gang Zheng
- Department of Neurosurgery, The People's Hospital of China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
8
|
Abstract
Most diseases and disorders of the brain require long-term therapy and a constant supply of drugs. Implantable drug-delivery systems provide long-term, sustained drug delivery in the brain. The present review discusses different type of implantable systems such as solid implants, in situ forming implants, in situ forming microparticles, depot formulations, polymeric-lipid implants, sucrose acetate isobutyrate and N-stearoyl L-alanine methyl ester systems for continuous drug delivery into brain for various brain diseases including glioblastomas, medulloblastoma, epilepsy, stroke, schizophrenia and Alzheimer's diseases. Implantable neural probes and microelectrode array systems for brain are also discussed in brief.
Collapse
|
9
|
Mañé JM, Fernández R, Muñoz A, Rubio I, Ferreiro J, López-Argumedo G, Barceló R, López-Vivanco G. Preradiation Chemotherapy with VM-26 and CCNU in Patients with Glioblastoma Multiforme. TUMORI JOURNAL 2018; 90:562-6. [PMID: 15762357 DOI: 10.1177/030089160409000605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Aims and Background The objective of the study was to evaluate the efficacy of combined chemoradiation in patients with newly diagnosed glioblastoma multiforme. The main end points were time to progression and overall survival. Methods Thirty-one patients with glioblastoma multiforme underwent surgery whenever possible and then received intravenous VM26 (120 mg/m2) and oral CCNU (120 mg/m2) for three cycles followed by radiotherapy (60 Gy). Results Surgery consisted of a complete resection in 39% of patients, partial resection in 35% and a biopsy in 26%. Sixteen patients had clinical or radiological evidence of progression during or after chemotherapy. Hematologic toxicity was mild. Forty-five percent of patients received the scheduled dose of radiation. The outcome was disappointing, with a median time to progression of 18 weeks and median survival of 37.17 weeks. Conclusions The survival of patients with glioblastoma multiforme remains disappointing. Multimodal therapy does not seem to modify the evolution of the tumor. Stratification according to prognostic factors might detect a potential benefit of other therapeutic approaches.
Collapse
Affiliation(s)
- Joan M Mañé
- Medical Oncology, Hospital de Cruces, Osakidetza/Servicio Vasco de Salud, Barakaldo (Bizkaia), Spain.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu SJ, Yang TC, Yang ST, Chen YC, Tseng YY. Biodegradable hybrid-structured nanofibrous membrane supported chemoprotective gene therapy enhances chemotherapy tolerance and efficacy in malignant glioma rats. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:515-526. [PMID: 29658349 DOI: 10.1080/21691401.2018.1460374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemotherapy is ineffective for treating malignant glioma (MG) because of the low therapeutic levels of pharmaceuticals in tumour tissues and the well-known tumour resistance. The resistance to alkylators is modulated by the DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT). O6-benzylguanine (O6-BG) can irreversibly inactivate AGT by competing with O6-methylguanine and has been confirmed to increase the therapeutic activity of alkylators. We developed hybrid-structured poly[(d,l)-lactide-co-glycolide] nanofibrous membranes (HSNMs) that enable the sequential and sustained release of O6-BG and two alkylators (carmustine and temozolomide [TMZ]). HSNMs were surgically instilled into the cerebral cavity of pathogen-free rats and F98 glioma-bearing rats. The release behaviours of loaded drugs were quantified by using high-performance liquid chromatography. The treatment results were compared with the rats treated with intraperitoneal injection of O6-BG combined with surgical implantation of carmustine wafer and oral TMZ. The HSNMs revealed a sequential drug release behaviour with the elution of high drug concentrations of O6-BG in the early phase, followed by high levels of two alkylators. All drug concentrations remained high for over 14 weeks. Tumour growth was slower and the mean survival time was significantly prolonged in the HSNM-treated group. Biodegradable HSNMs can enhance therapeutic efficacy and prevent toxic systemic effects.
Collapse
Affiliation(s)
- Shih-Jung Liu
- a Department of Mechanical Engineering , Chang Gung University , Tao-Yuan , Taiwan, ROC.,b Department of Orthopedic Surgery , Chang Gung Memorial Hospital , Tao-Yuan , Taiwan, ROC
| | - Tao-Chieh Yang
- c Department of Neurosurgery , Asia University Hospital , Taichung , Taiwan, ROC
| | - Shun-Tai Yang
- d Division of Neurosurgery, Department of Surgery , Shuang Ho Hospital, Taipei Medical University , Taipei , Taiwan, ROC.,e Department of Surgery, School of Medicine, College of Medicine , Taipei Medical University , Taipei , Taiwan, ROC
| | - Ying-Chun Chen
- a Department of Mechanical Engineering , Chang Gung University , Tao-Yuan , Taiwan, ROC
| | - Yuan-Yun Tseng
- d Division of Neurosurgery, Department of Surgery , Shuang Ho Hospital, Taipei Medical University , Taipei , Taiwan, ROC.,e Department of Surgery, School of Medicine, College of Medicine , Taipei Medical University , Taipei , Taiwan, ROC
| |
Collapse
|
11
|
Abstract
Nanoparticles made of poly(butyl cyanoacrylate) (PBCA) or poly(lactic-co-glycolic acid) (PLGA) coated with polysorbate 80 or poloxamer 188 enable the transport of cytostatics such as doxorubicin across the blood-brain barrier (BBB). Following intravenous injection to rats bearing intracranially the very aggressive glioblastoma 101/8 these particles loaded with doxorubicin significantly increased the survival times and led to a complete tumor remission in 20–40% of the animals. Moreover, these particles considerably reduced the dose-limiting cardiotoxicity and also the testicular toxicity of this drug. The drug transport across the BBB by nanoparticles appears to be due to a receptor-mediated interaction with the brain capillary endothelial cells, which is facilitated by certain plasma apolipoproteins adsorbed by nanoparticles in the blood.
Collapse
Affiliation(s)
- Jörg Kreuter
- Institute for Pharmaceutical Technology, Johann Wolfgang Goethe-University, Frankfurt/Main, Germany
| | | |
Collapse
|
12
|
Kim HJ, Kim YW, Choi SH, Cho BM, Bandu R, Ahn HS, Kim KP. Triolein Emulsion Infusion Into the Carotid Artery Increases Brain Permeability to Anticancer Agents. Neurosurgery 2016; 78:726-33. [PMID: 26540353 DOI: 10.1227/neu.0000000000001104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Triolein emulsion infusion into the carotid artery has been reported to induce temporary and reversible opening of the blood-brain barrier by increasing vascular permeability. OBJECTIVE To evaluate the effect of triolein emulsion infusion on brain permeance by anticancer agents. METHODS In the doxorubicin study. 2.4 mg/kg doxorubicin was injected immediately after triolein emulsion (1%, 1.5%, and 2%) infusion into rabbit carotid arteries. Two hours later, bilateral hemispheres and eyeballs were harvested, and doxorubicin concentrations were measured fluorometrically. Doxorubicin ratios of ipsilateral/contralateral hemispheres were compared with those of doxorubicin controls by use of the Kruskal-Wallis test followed by the Dunn test. In the cisplatin study, 10 mg/kg cisplatin was injected immediately after 2% triolein emulsion infusion into rat carotid arteries. Ipsilateral hemispheres were harvested 2, 6, 12, 24, and 36 hours after treatment. Time-dependent cisplatin concentrations were determined by liquid chromatography/electrospray ionization-tandem mass spectrometry/mass spectrometry. RESULTS Doxorubicin concentrations were significantly higher in ipsilateral hemispheres and eyeballs in all 3 triolein treatment groups than in doxorubicin controls. In the cisplatin study, cisplatin concentrations in the ipsilateral hemispheres peaked at 6 hours after infusion of cisplatin. CONCLUSION Brain permeance to anticancer agents was increased by triolein emulsion infusion, which suggests that triolein infusion might be a useful adjuvant treatment for brain tumors.
Collapse
Affiliation(s)
- Hak Jin Kim
- *Department of Radiology, College of Medicine, Pusan National University, Biomedical Research Institute, Pusan National University Hospital, Pusan, South Korea;‡Department of Preventive Medicine, College of Medicine, Pusan National University, Yangsan, South Korea;§Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yong-in, South Korea
| | | | | | | | | | | | | |
Collapse
|
13
|
Tseng YY, Kau YC, Liu SJ. Advanced interstitial chemotherapy for treating malignant glioma. Expert Opin Drug Deliv 2016; 13:1533-1544. [DOI: 10.1080/17425247.2016.1193153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yuan-Yun Tseng
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chuan Kau
- Department of Anesthesiology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| |
Collapse
|
14
|
Ananta JS, Paulmurugan R, Massoud TF. Temozolomide-loaded PLGA nanoparticles to treat glioblastoma cells: a biophysical and cell culture evaluation. Neurol Res 2016; 38:51-9. [DOI: 10.1080/01616412.2015.1133025] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Drug-loaded bubbles with matched focused ultrasound excitation for concurrent blood-brain barrier opening and brain-tumor drug delivery. Acta Biomater 2015; 15:89-101. [PMID: 25575854 DOI: 10.1016/j.actbio.2014.12.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/07/2014] [Accepted: 12/25/2014] [Indexed: 12/13/2022]
Abstract
Focused ultrasound (FUS) with microbubbles has been used to achieve local blood-brain barrier opening (BBB opening) and increase the penetration of therapeutic drugs into brain tumors. However, inertial cavitation of microbubbles during FUS-induced BBB opening causes intracerebral hemorrhaging (ICH), leading to acute and chronic brain injury and limiting the efficiency of drug delivery. Here we investigated whether induction of drug (1,3-bis(2-chloroethyl)-1-nitrosourea, BCNU)-loaded bubbles (BCNU bubbles) to oscillate at their resonant frequency would reduce inertial cavitation during BBB opening, thereby eliminating ICH and enhancing drug delivery in a rat brain model. FUS was tested at 1 and 10 MHz, over a wide range of pressure (mechanical index ranging from 0.16 to 1.42) in the presence of BCNU bubbles. Excitation of BCNU bubbles by resonance frequency-matched FUS (10 MHz) resulted in predominantly stable cavitation and significantly reduced the occurrence of potential hazards of exposure to biological tissues during the BBB opening process. In addition, the drug release process could be monitored by acoustic emission obtained from ultrasound imaging. In tumor-bearing animals, BCNU bubbles with FUS showed significant control of tumor progression and improved maximum survival from 26 to 35 days. This study provides useful advancements toward the goal of successfully translating FUS theranostic bubble-enhanced brain drug delivery into clinical use.
Collapse
|
16
|
Jia PF, Gu WT, Zhang WF, Li F. Treatment of recurrent malignant gliomas with 13-cis-retinoic acid naphthalene triazole. Neurol Sci 2015; 36:717-21. [PMID: 25560534 DOI: 10.1007/s10072-014-2025-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
Glioblastoma multiforme and anaplastic astrocytoma are challenges to clinical biologists at present. The patients with glioblastoma have median survival of less than 12 months, despite advances in radiotherapeutical, chemotherapeutical and conventional surgical modalities. Retinoic acids are known to effect in vitro proliferation, differentiation, and apoptosis in colon, prostate, lung, and leukemia cancers. Retinoids are known to have anti-proliferation, anti-migration, and anti-invasive activity against human malignant gliomas, suggesting that retinoids are suitable anticancer agents to inhibit progression of tumors. Recurrent malignant cerebral gliomas have been treated with ATRA and 13-cis RA. However, the side effects associated with the use of high doses of retinoic acid demand for some more potent derivative free from such effects. The present clinical trials are undertaken to investigate the clinical safety and possible efficacy of administering retinoic acid naphthalene triazole (RANT) to patients with recurrent malignant gliomas. The toxicities observed in the patients during RANT treatment were mild. These preliminary results suggest that RANT is more potent compared to RA against recurrent malignant gliomas.
Collapse
Affiliation(s)
- Pi-Feng Jia
- Department of Neurosurgery, Rui Jin Hospital North, Shanghai Jiao Tong University School of Medicine, No. 888 Shuangding Road, Shanghai, 201800, China,
| | | | | | | |
Collapse
|
17
|
Kuo YC, Wang CC. Carmustine-loaded catanionic solid lipid nanoparticles with serotonergic 1B receptor subtype antagonist for in vitro targeted delivery to inhibit brain cancer growth. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2014.08.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Yakubov E, Buchfelder M, Eyüpoglu IY, Savaskan NE. Selenium action in neuro-oncology. Biol Trace Elem Res 2014; 161:246-54. [PMID: 25164034 DOI: 10.1007/s12011-014-0111-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/18/2014] [Indexed: 12/31/2022]
Abstract
The trace element selenium and selenocysteine-carrying selenoproteins play a pivotal role in the brain. Beside the essential function during development and maintenance of brain action, selenium has also been associated with several neurological and neuro-oncological conditions. Reliable supply of selenium is important since selenium compounds can affect tumor microenvironment and neoangiogenesis in malignant gliomas (WHO grade III and IV [glioblastoma, GBM]) via induction of apoptosis and alteration of matrix metalloproteinases expression. Here, we summarize recent findings focusing on the anti-toxicity and cancer-preventive properties of selenium and their implication in current multimodal therapies including temozolomide (Temodal), cyclophosphamide (Endoxan), and cisplatin (DDP, Platiblastin, and Platinol). We shed light on unintended side effects in chemotherapy and the developments of novel combinatorial chemotherapeutics with selenium compounds. We found that selenium and selenium compounds have dual action profiles with direct anti-cancer and chemotherapy-intensifier effects as well as neuroprotective and cytoprotective agents. Current selenium trials and selenium supplementation with focus on neuro-oncology will be discussed with regard to low-adequate-to-high/toxic selenium status.
Collapse
Affiliation(s)
- Eduard Yakubov
- Department of Neurosurgery, Universitätsklinikum Erlangen, FAU-Friedrich-Alexander Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | | | | | | |
Collapse
|
19
|
Babaei M, Ardjmand M, Akbarzadeh A, Seyfkordi A. Efficacy comparison of nanoniosomal and pegylated nanoniosomal Cisplatin on A172 cell line. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-014-0024-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
20
|
Ebrahimi Shahmabadi H, Movahedi F, Koohi Moftakhari Esfahani M, Alavi SE, Eslamifar A, Mohammadi Anaraki G, Akbarzadeh A. Efficacy of Cisplatin-loaded polybutyl cyanoacrylate nanoparticles on the glioblastoma. Tumour Biol 2014; 35:4799-806. [PMID: 24443270 DOI: 10.1007/s13277-014-1630-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/06/2014] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma is known as one of the most aggressive human cancers. To gain access of the brain, therapeutic agents must overcome blood-brain barrier (BBB). In this study, Cisplatin (Cispt)-loaded polybutylcyanoacrylate (PBCA) nanoparticles (NPs) were prepared through miniemulsion polymerization technique. They were coated with polysorbate 80 to cross the BBB of glioblastoma-bearing rats. Prepared NPs were characterized with respect to their size, size distribution, zeta potential, drug loading and encapsulation efficiency, cytotoxicity effects, drug release, and stability pattern. Size and zeta potential of nanodrug were found to be 489 nm and -20 mV, while drug loading and encapsulation efficiency were determined to be 5% and 25%, respectively. Release studies demonstrated high retention capability of nanodrug in that 3.18% of Cispt was released from NPs in a period of 51 h. NPs presented acceptable stability after 2 months and lyophilization. Mean survival time in nanodrug receivers was 19.6 days, while it was 17.5 days for free drug receivers. Histological studies demonstrated efficacy of PBCA NPs in reducing side effects. Finally, such preparation can be considered as a promising nanocarrier for other types of tumor.
Collapse
|
21
|
Pradilla G, Azzam T, Wang PP, Domb AJ, Brem H. Gene therapy for malignant brain tumors. Expert Rev Neurother 2014; 3:685-701. [DOI: 10.1586/14737175.3.5.685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Fan CH, Ting CY, Liu HL, Huang CY, Hsieh HY, Yen TC, Wei KC, Yeh CK. Antiangiogenic-targeting drug-loaded microbubbles combined with focused ultrasound for glioma treatment. Biomaterials 2012; 34:2142-55. [PMID: 23246066 DOI: 10.1016/j.biomaterials.2012.11.048] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 11/27/2012] [Indexed: 11/17/2022]
Abstract
Current chemotherapeutic agents do not only kill tumor cells but also induce systemic toxicity that significantly limits their dosage. Focused ultrasound (FUS) in the presence of microbubbles (MBs) is capable of transient and local opening of the blood-brain barrier (BBB) that enhances chemotherapeutic drug delivery into the brain parenchyma for glioma treatment. Our previous results demonstrated the success of combining the use of drug (1,3-bis(2-chloroethyl)-1-nitrosourea, BCNU)-loaded MBs with FUS-induced BBB opening to improve local drug delivery and reduce systemic toxicity. Here we introduce novel VEGF-targeting, drug-loaded MBs that significantly further enhance targeted drug release and reduce tumor progression in a rat model, using the FUS-BBB opening strategy. This study suggests a promising direction for future MB design aimed at targeted brain tumor therapy, and the possible future extension of MB application towards theragnostic use.
Collapse
Affiliation(s)
- Ching-Hsiang Fan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lu YJ, Yang HW, Hung SC, Huang CY, Li SM, Ma CCM, Chen PY, Tsai HC, Wei KC, Chen JP. Improving thermal stability and efficacy of BCNU in treating glioma cells using PAA-functionalized graphene oxide. Int J Nanomedicine 2012; 7:1737-1747. [PMID: 22619524 PMCID: PMC3356218 DOI: 10.2147/ijn.s29376] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), a commercial chemotherapeutic drug for treating malignant brain tumors, has poor thermal stability and a short half-life. Immobilization of BCNU on a nanocarrier might increase the thermal stability of BCNU and extend its half-life. METHODS Nanosized graphene oxide (GO) could be modified by polyacrylic acid (PAA) to improve the aqueous solubility and increase the cell penetration efficacy of the nanocarrier. PAA-GO intended as a drug carrier for BCNU was prepared and characterized in this study. The size and thickness of PAA-GO was investigated by transmission electron microscopy and atomic force microscopy, and the presence of PAA functional groups was confirmed by electron spectroscopy for chemical analysis and thermogravimetric analysis. BCNU was conjugated to PAA-GO by covalent binding for specific killing of cancer cells, which could also enhance the thermal stability of the drug. RESULTS Single layer PAA-GO (about 1.9 nm) with a lateral width as small as 36 nm was successfully prepared. The optimum drug immobilization condition was by reacting 0.5 mg PAA-GO with 0.4 mg BCNU, and the drug-loading capacity and residual drug activity were 198 μg BCNU/mg PAA-GO and 70%, respectively. This nanocarrier significantly prolonged the half-life of bound BCNU from 19 to 43 hours compared with free drug and showed efficient intracellular uptake by GL261 cancer cells. The in vitro anticancer efficacy of PAA-GO-BCNU was demonstrated by a 30% increase in DNA interstrand cross-linking and a 77% decrease in the IC(50) value toward GL261 compared with the same dosage of free drug. CONCLUSION Nanosized PAA-GO serves as an efficient BCNU nanocarrier by covalent binding. This nanocarrier will be a promising new vehicle for an advanced drug delivery system in cancer therapy.
Collapse
Affiliation(s)
- Yu-Jen Lu
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Kwei-San, Taoyuan, Taiwan
| | - Hung-Wei Yang
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan, Taiwan
| | - Sheng-Che Hung
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chiung-Yin Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Kwei-San, Taoyuan, Taiwan
| | - Shin-Ming Li
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Chen-Chi M Ma
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Pin-Yuan Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital, Kwei-San, Taoyuan, Taiwan
| | - Hong-Chieh Tsai
- Department of Neurosurgery, Chang Gung Memorial Hospital, Kwei-San, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital, Kwei-San, Taoyuan, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan, Taiwan
| |
Collapse
|
24
|
Attenello F, Raza SM, Dimeco F, Olivi A. Chemotherapy for brain tumors with polymer drug delivery. HANDBOOK OF CLINICAL NEUROLOGY 2012; 104:339-53. [PMID: 22230452 DOI: 10.1016/b978-0-444-52138-5.00022-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Frank Attenello
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | | | | | | |
Collapse
|
25
|
Tyler B, Wadsworth S, Recinos V, Mehta V, Vellimana A, Li K, Rosenblatt J, Do H, Gallia GL, Siu IM, Wicks RT, Rudek MA, Zhao M, Brem H. Local delivery of rapamycin: a toxicity and efficacy study in an experimental malignant glioma model in rats. Neuro Oncol 2011; 13:700-9. [PMID: 21727209 DOI: 10.1093/neuonc/nor050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rapamycin, an anti-proliferative agent, is effective in the treatment of renal cell carcinoma and recurrent breast cancers. We proposed that this potent mammalian target of rapamycin inhibitor may be useful for the treatment of gliomas as well. We examined the cytotoxicity of rapamycin against a rodent glioma cell line, determined the toxicity of rapamycin when delivered intracranially, and investigated the efficacy of local delivery of rapamycin for the treatment of experimental malignant glioma in vivo. We also examined the dose-dependent efficacy of rapamycin and the effect when locally delivered rapamycin was combined with radiation therapy. Rapamycin was cytotoxic to 9L cells, causing 34% growth inhibition at a concentration of 0.01 µg/mL. No in vivo toxicity was observed when rapamycin was incorporated into biodegradable caprolactone-glycolide (35:65) polymer beads at 0.3%, 3%, and 30% loading doses and implanted intracranially. Three separate efficacy studies were performed to test the reproducibility of the effect of the rapamycin beads as well as the validity of this treatment approach. Animals treated with the highest dose of rapamycin beads tested (30%) consistently demonstrated significantly longer survival durations than the control and placebo groups. All dose-escalating rapamycin bead treatment groups (0.3%, 3% and 30%), treated both concurrently with tumor and in a delayed manner after tumor placement, experienced a significant increase in survival, compared with controls. Radiation therapy in addition to the simultaneous treatment with 30% rapamycin beads led to significantly longer survival duration than either therapy alone. These results suggest that the local delivery of rapamycin for the treatment of gliomas should be further investigated.
Collapse
Affiliation(s)
- Betty Tyler
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Self-protecting core-shell magnetic nanoparticles for targeted, traceable, long half-life delivery of BCNU to gliomas. Biomaterials 2011; 32:6523-32. [PMID: 21645920 DOI: 10.1016/j.biomaterials.2011.05.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 05/16/2011] [Indexed: 11/23/2022]
Abstract
The successful delivery of anti-cancer drugs relies on the simultaneous capability to actively target a specific location, a sufficient lifetime in the active form in the circulation, and traceability and quantification of drug distribution via in vivo medical imaging. Herein, a highly magnetic nanocarrier (HMNC) composed of an Fe(3)O(4) core and an aqueous-stable, self-doped poly[N-(1-one-butyric acid)]aniline (SPAnH) shell was chemically synthesized. This nanocarrier exhibited a high capacity for 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) drug loading. BCNU and o-(2-aminoethyl)polyethylene glycol (EPEG) were covalently immobilized on the surface of the HMNC to form a self-protecting magnetic nanomedicine (i.e., SPMNM) that could simultaneously provide low reticuloendothelial system uptake, high active-targeting, and in vivo magnetic resonance imaging (MRI) traceability. Meanwhile, the SPMNM was found to reduce the phagocytosis by macrophages and reduce the hydrolysis rate of BCNU. The high magnetization (approximately 1.2-fold higher than Resovist) of the HMNC allowed efficient magnetic targeting to the tumor. The synergetic drug delivery approach provided approximately a 3.4-fold improvement of the drug's half-life (from 18 h to 62 h) and significantly prolonged the median survival rate in animals that received a low dose of BCNU, compared with those that received a high dose of free BCNU (63 days for those that received 4.5 mg BCNU/kg carried by the nanocarrier versus 50 days for those that received 13.5 mg of free-BCNU). This improvement could enhance the potential of magnetic targeting therapy in clinical applications of cancer treatments.
Collapse
|
27
|
Siebzehnrubl FA, Reynolds BA, Vescovi A, Steindler DA, Deleyrolle LP. The origins of glioma: E Pluribus Unum? Glia 2011; 59:1135-47. [DOI: 10.1002/glia.21143] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/17/2010] [Indexed: 01/19/2023]
|
28
|
Hua MY, Liu HL, Yang HW, Chen PY, Tsai RY, Huang CY, Tseng IC, Lyu LA, Ma CC, Tang HJ, Yen TC, Wei KC. The effectiveness of a magnetic nanoparticle-based delivery system for BCNU in the treatment of gliomas. Biomaterials 2010; 32:516-27. [PMID: 21030073 DOI: 10.1016/j.biomaterials.2010.09.065] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 09/23/2010] [Indexed: 11/28/2022]
Abstract
This study describes the creation and characterization of drug carriers prepared using the polymer poly[aniline-co-N-(1-one-butyric acid) aniline] (SPAnH) coated on Fe(3)O(4) cores to form three types of magnetic nanoparticles (MNPs); these particles were used to enhance the therapeutic capacity and improve the thermal stability of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), a compound used to treat brain tumors. The average hydrodynamic diameter of the MNPs was 89.2 ± 8.5 nm and all the MNPs displayed superparamagnetic properties. A maximum effective dose of 379.34 μg BCNU could be immobilized on 1 mg of MNP-3 (bound-BCNU-3). Bound-BCNU-3 was more stable than free-BCNU when stored at 4 °C, 25 °C or 37 °C. Bound-BCNU-3 could be concentrated at targeted sites in vitro and in vivo using an externally applied magnet. When applied to brain tumors, magnetic targeting increased the concentration and retention of bound-BCNU-3. This drug delivery system promises to provide more effective tumor treatment using lower therapeutic doses and potentially reducing the side effects of chemotherapy.
Collapse
Affiliation(s)
- Mu-Yi Hua
- Molecular Medicine Research Center, Department of Chemical and Materials Engineering, Chang Gung University, Tao-Yuan, Taiwan, ROC.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sunayama J, Sato A, Matsuda KI, Tachibana K, Suzuki K, Narita Y, Shibui S, Sakurada K, Kayama T, Tomiyama A, Kitanaka C. Dual blocking of mTor and PI3K elicits a prodifferentiation effect on glioblastoma stem-like cells. Neuro Oncol 2010; 12:1205-19. [PMID: 20861085 DOI: 10.1093/neuonc/noq103] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma, the most intractable cerebral tumor, is highly lethal. Recent studies suggest that cancer stem-like cells (CSLCs) have the capacity to repopulate tumors and mediate radio- and chemoresistance, implying that future therapies may need to turn from the elimination of rapidly dividing, but differentiated, tumor cells to specifically targeting the minority of tumor cells that repopulate the tumor. However, the mechanism by which glioblastoma CSLCs maintain their immature stem-like state or, alternatively, become committed to differentiation is poorly understood. Here, we show that the inactivation of mammalian target of rapamycin (mTor) by the mTor inhibitor rapamycin or knockdown of mTor reduced sphere formation and the expression of neural stem cell (NSC)/progenitor markers in CSLCs of the A172 glioblastoma cell line. Interestingly, combination treatment with rapamycin and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, not only reduced the expression of NSC/progenitor markers more efficiently than single-agent treatment, but also increased the expression of βIII-tubulin, a neuronal differentiation marker. Consistent with these results, a dual PI3K/mTor inhibitor, NVP-BEZ235, elicited a prodifferentiation effect on A172 CSLCs. Moreover, A172 CSLCs, which were induced to undergo differentiation by pretreatment with NVP-BEZ235, exhibited a significant decrease in their tumorigenicity when transplanted either subcutaneously or intracranially. Importantly, similar results were obtained when patient-derived glioblastoma CSLCs were used. These findings suggest that the PI3K/mTor signaling pathway is critical for the maintenance of glioblastoma CSLC properties, and targeting both mTor and PI3K of CSLCs may be an effective therapeutic strategy in glioblastoma.
Collapse
Affiliation(s)
- Jun Sunayama
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu Y, Paliwal S, Bankiewicz KS, Bringas JR, Heart G, Mitragotri S, Prausnitz MR. Ultrasound-enhanced drug transport and distribution in the brain. AAPS PharmSciTech 2010; 11:1005-17. [PMID: 20532711 PMCID: PMC2974134 DOI: 10.1208/s12249-010-9458-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 05/13/2010] [Indexed: 11/30/2022] Open
Abstract
Drug delivery in the brain is limited by slow drug diffusion in the brain tissue. This study tested the hypothesis that ultrasound can safely enhance the permeation of drugs in the brain. In vitro exposure to ultrasound at various frequencies (85 kHz, 174 kHz, and 1 MHz) enhanced the permeation of tritium-labeled molecules with molecular weight up to 70 kDa across porcine brain tissue. A maximum enhancement of 24-fold was observed at 85 kHz and 1,200 J/cm(2). In vivo exposure to 1-MHz ultrasound further demonstrated the ability of ultrasound to facilitate molecule distribution in the brain of a non-human primate. Finally, ultrasound under conditions similar to those used in vivo was shown to cause no damage to plasmid DNA, siRNA, adeno-associated virus, and fetal rat cortical neurons over a range of conditions. Altogether, these studies demonstrate that ultrasound can increase drug permeation in the brain in vitro and in vivo under conditions that did not cause detectable damage.
Collapse
Affiliation(s)
- Ying Liu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100 USA
| | - Sumit Paliwal
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106 USA
| | - Krystof S. Bankiewicz
- Department of Neurological Surgery, Brain Tumor Research Center, University to California, San Francisco, California 94103 USA
| | - John R. Bringas
- Department of Neurological Surgery, Brain Tumor Research Center, University to California, San Francisco, California 94103 USA
| | - Gill Heart
- CytoDome, Inc, Atlanta, Georgia 30342 USA
| | - Samir Mitragotri
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106 USA
| | - Mark R. Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100 USA
| |
Collapse
|
31
|
Silva GA. Nanotechnology applications and approaches for neuroregeneration and drug delivery to the central nervous system. Ann N Y Acad Sci 2010; 1199:221-30. [PMID: 20633128 DOI: 10.1111/j.1749-6632.2009.05361.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nanotechnology is the science and engineering concerned with the design, synthesis, and characterization of materials and devices that have a functional organization in at least one dimension on the nanometer (i.e., one billionth of a meter) scale. The potential impact of bottom up self-assembling nanotechnology, custom made molecules that self-assemble or self-organize into higher ordered structures in response to a defined chemical or physical cue, and top down lithographic type technologies where detail is engineered at smaller scales starting from bulk materials, stems from the fact that these nanoengineered materials and devices exhibit emergent mesocale and macroscale chemical and physical properties that are often different than their constituent nanoscale building block molecules or materials. As such, applications of nanotechnology to medicine and biology allow the interaction and integration of cells and tissues with nanoengineered substrates at a molecular (i.e., subcellular) level with a very high degree of functional specificity and control. This review considers applications of nanotechnology aimed at the neuroprotection and functional regeneration of the central nervous system (CNS) following traumatic or degenerative insults, and nanotechnology approaches for delivering drugs and other small molecules across the blood-brain barrier. It also discusses developing platform technologies that may prove to have broad applications to medicine and physiology, including some being developed for rescuing or replacing anatomical and/or functional CNS structures.
Collapse
Affiliation(s)
- Gabriel A Silva
- Departments of Bioengineering, Ophthalmology and Neurosciences Program, University of California, San Diego, California, USA.
| |
Collapse
|
32
|
|
33
|
Kosztowski T, Zaidi HA, Quiñones-Hinojosa A. Applications of neural and mesenchymal stem cells in the treatment of gliomas. Expert Rev Anticancer Ther 2009; 9:597-612. [PMID: 19445577 PMCID: PMC2705652 DOI: 10.1586/era.09.22] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In addition to stem cells providing a better understanding about the biology and origins of gliomas, new therapeutic approaches have been developed based on the use of stem cells as delivery vehicles. The unique ability of stem cells to track down tumor cells makes them a very appealing therapeutic modality. This review introduces neural and mesenchymal stem cells, discusses the advances that have been made in the utilization of these stem cells as therapies and in diagnostic imaging (to track the advancement of the stem cells towards the tumor cells), and concludes by addressing various challenges and concerns regarding these therapies.
Collapse
Affiliation(s)
- Thomas Kosztowski
- The Johns Hopkins Hospital, Department of Neurosurgery, Johns Hopkins University, CRB II, 1550 Orleans Street, Room 247, Baltimore, MD 21231, USA Tel.: +1 410 502 2906
| | - Hasan A Zaidi
- The Johns Hopkins Hospital, Department of Neurosurgery, Johns Hopkins University, CRB II, 1550 Orleans Street, Room 247, Baltimore, MD 21231, USA Tel.: +1 410 502 2906
| | - Alfredo Quiñones-Hinojosa
- The Johns Hopkins Hospital, Department of Neurosurgery, Johns Hopkins University, CRB II, 1550 Orleans Street, Room 247, Baltimore, MD 21231, USA Tel.: +1 410 502 2906
| |
Collapse
|
34
|
Attenello FJ, Mukherjee D, Datoo G, McGirt MJ, Bohan E, Weingart JD, Olivi A, Quinones-Hinojosa A, Brem H. Use of Gliadel (BCNU) Wafer in the Surgical Treatment of Malignant Glioma: A 10-Year Institutional Experience. Ann Surg Oncol 2008; 15:2887-93. [DOI: 10.1245/s10434-008-0048-2] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 06/01/2008] [Accepted: 06/02/2008] [Indexed: 11/18/2022]
|
35
|
Schneider T, Becker A, Ringe K, Reinhold A, Firsching R, Sabel BA. Brain tumor therapy by combined vaccination and antisense oligonucleotide delivery with nanoparticles. J Neuroimmunol 2008; 195:21-7. [PMID: 18304655 DOI: 10.1016/j.jneuroim.2007.12.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 12/04/2007] [Accepted: 12/19/2007] [Indexed: 11/26/2022]
Abstract
We examined a "double-punch" approach to overcome the escape of glioblastoma cells to the immune surveillance: increasing the immune systems activation by an active specific immunization (ASI) with Newcastle-Disease-Virus infected tumor cells and blocking the TGF-beta production by delivery of TGF-beta antisense oligonucleotides using polybutyl cyanoacrylate nanoparticles (NPs). Gene delivery was first evaluated using the CMV-beta-gal plasmid as a reporter gene. Fischer rats received implantation of glioblastoma cells into the brain and were then treated with combined ASI/NP-anti-TGF-beta formulation. Massive staining of tumor cells was seen after NP delivery of the plasmid beta-galactosidase, indicating gene transfer by nanoparticles to tumor cells. When treated with NP-anti-TGF-beta after having been immunized, the rats survived longer than untreated controls, had reduced TGF-beta-levels and showed increased rates of activated CD25+ T cells. In summary, nanoparticles are useful to deliver plasmids and antisense oligonucleotides to brain tumors. A combined immunization/gene delivery of TGF-beta antisense oligonucleotides may be a promising approach for brain tumor therapy.
Collapse
|
36
|
Molinari A, Bombelli C, Mannino S, Stringaro A, Toccacieli L, Calcabrini A, Colone M, Mangiola A, Maira G, Luciani P, Mancini G, Arancia G. m-THPC-mediated photodynamic therapy of malignant gliomas: assessment of a new transfection strategy. Int J Cancer 2007; 121:1149-55. [PMID: 17471562 DOI: 10.1002/ijc.22793] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Malignant gliomas represent the most common primary brain tumor: more than 50% of them are glioblastoma multiforme (GBM). Photodynamic therapy may offer a very good chance of targeted destruction of infiltrating GBM cells, thus increasing the survival time and recurrence-free interval of GBM patients. Among photosensitizing agents, meta-tetrahydroxyphenylchlorin (m-THPC) is promising for the treatment of brain tumors. In previous studies, we investigated the transfection activity of dimyristoyl-sn-glycero-phosphatidylcholine (DMPC) liposomes, containing a cationic gemini surfactant, loaded with m-THPC on human colon adenocarcinoma and glioblastoma cell lines. In this paper, the uptake and the intracellular distribution of m-THPC, loaded in several formulations of cationic liposomes, were analyzed, by making a comparison with those obtained using the same chlorin in the pharmaceutical form (Foscan(R)). Moreover, by cloning efficiency assay the potential therapeutic efficiency of chlorin delivered by liposome formulations was compared with that of the pharmaceutical compound, before and after irradiation with laser light at 652 nm. The obtained results indicated that cationic liposomes (i) transferred m-THPC in glioblastoma cells more efficiently than pharmaceutical formulation; (ii) significantly (p < 0.001) increased the m-THPC cytotoxic effect after laser irradiation; (iii) seemed to exert their cytotoxic action in the early phase of interaction with the cells, during adhesion to the plasma membrane.
Collapse
Affiliation(s)
- Agnese Molinari
- Department of Technology and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Guo WX, Shi Z, Zeng FB, Liang K, Chen XH, Ai YP, Fang M, Sun X, Zhang Z, Hu LX. Antitumor efficacy of poly(dimer acid-dodecanedioic acid) copolymer in mice bearing Sarcoma-180 tumor. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2007; 18:1515-20. [PMID: 17387591 DOI: 10.1007/s10856-007-0126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2005] [Accepted: 03/08/2006] [Indexed: 05/14/2023]
Abstract
The drug release profiles of poly(dimer acid-dodecanedioic acid) P(DA-DDDA) copolymer containing 5% adriamycin hydrochloride (ADM) in vitro were evaluated. The biocompatibility of P(DA-DDDA) under mice skin was also evaluated, macroscopic observation and microscopic analysis demonstrated that the copolymer is biocompatible and well tolerated in vivo. Antitumor efficacy of P(DA-DDDA) copolymers containing 5% adriamycin hydrochloride (ADM) implanted subcutaneously in mice bearing Sarcoma-180 tumor exhibited increased volume doubling time (VDT) (31 +/- 1.5 days) compared to plain subcutaneous injection of ADM (7 +/- 0.9 days). The studies suggest that P(DA-DDDA) copolymer as an effective carrier for antineoplastic drug like adriamycin hydrochloride has a very good prospect in the treatment of noumenon tumors.
Collapse
Affiliation(s)
- Wen-Xun Guo
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Silva GA. Nanotechnology approaches for drug and small molecule delivery across the blood brain barrier. ACTA ACUST UNITED AC 2007; 67:113-6. [PMID: 17254859 DOI: 10.1016/j.surneu.2006.08.033] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 08/21/2006] [Indexed: 11/25/2022]
Abstract
Nanotechnology involves the design, synthesis, and characterization of materials and devices that have a functional organization in at least one dimension on the nanometer (ie, one billionth of a meter) scale. One area in which nanotechnology may have a significant clinical impact in neuroscience is the selective transport and delivery of drugs and other small molecules across the blood brain barrier that cannot cross otherwise. Using a variety of nanoparticles composed of different chemical compositions, different groups are exploring proof-of-concept approaches for the delivery of different antineoplastic drugs, oligonucleotides, genes, and magnetic resonance imaging contrast agents. This review discusses some of the main technical challenges associated with the development of nanotechnologies for delivery across the blood brain barrier and summarizes ongoing work.
Collapse
Affiliation(s)
- Gabriel A Silva
- Department of Bioengineering, University of California, San Diego, CA 92037, USA.
| |
Collapse
|
39
|
Lawson HC, Sampath P, Bohan E, Park MC, Hussain N, Olivi A, Weingart J, Kleinberg L, Brem H. Interstitial chemotherapy for malignant gliomas: the Johns Hopkins experience. J Neurooncol 2006; 83:61-70. [PMID: 17171441 PMCID: PMC4086528 DOI: 10.1007/s11060-006-9303-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
Malignant gliomas are very difficult neoplasms for clinicians to treat. The reason for this is multifaceted. Many treatments that are effective for systemic cancer are unable to cross the blood-brain barrier and/or have unacceptable systemic toxicities. Consequently, in recent years an effort has been placed on trying to develop innovative local treatments that bypass the blood-brain barrier and allow for direct treatment in the central nervous system (CNS)-interstitial treatment. In this paper, we present our extensive experience in using interstitial chemotherapy as a strategy to treat malignant brain tumors at a single institution (The Johns Hopkins Hospital). We provide a comprehensive summary of our preclinical work on interstitial chemotherapy at the Hunterian Neurosurgery Laboratory, reviewing data on rat, rabbit, and monkey studies. Additionally, we present our clinical experience with randomized placebo-controlled studies for the treatment of malignant gliomas. We compare survival statistics for those patients who received placebo versus Gliadel as initial therapy (11.6 months vs. 13.9 months, respectively) and at the time of tumor recurrence (23 weeks vs. and 31 weeks, respectively). We also discuss the positive impact of local therapy in avoiding the toxicities associated with systemic treatments. Furthermore, we provide an overview of newer chemotherapeutic agents and other strategies used in interstitial treatment. Finally, we offer insight into some of the lessons we have learned from our unique perspective.
Collapse
Affiliation(s)
- H. Christopher Lawson
- Department of Neurological Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Prakash Sampath
- Department of Clinical Neurosciences Program in Neurosurgery, Brown Medical School, Rhode Island Hospital, Providence, RI, USA
- Roger Williams Hospital, 825 Chalkstone Avenue, Providence 02908 RI, USA,
| | - Eileen Bohan
- Department of Neurological Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Michael C. Park
- Department of Clinical Neurosciences Program in Neurosurgery, Brown Medical School, Rhode Island Hospital, Providence, RI, USA
| | - Namath Hussain
- Department of Neurosurgery, University of Arizona, Tucson, AZ, USA
| | - Alessandro Olivi
- Department of Neurological Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Jon Weingart
- Department of Neurological Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Lawrence Kleinberg
- Department of Neurological Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Henry Brem
- Department of Neurological Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Radiation Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
40
|
Molinari A, Colone M, Calcabrini A, Stringaro A, Toccacieli L, Arancia G, Mannino S, Mangiola A, Maira G, Bombelli C, Mancini G. Cationic liposomes, loaded with m-THPC, in photodynamic therapy for malignant glioma. Toxicol In Vitro 2006; 21:230-4. [PMID: 17064875 DOI: 10.1016/j.tiv.2006.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 07/14/2006] [Accepted: 09/08/2006] [Indexed: 10/24/2022]
Abstract
In this study we investigated the feasibility of mixed liposomes formed by dimyristoyl-sn-glycero-phosphatidylcholine (DMPC) and cationic gemini surfactant (Gemini 1) loaded with the chlorin m-tetrahydroxyphenylchlorin (m-THPC), in photodynamic therapy (PDT) for glioma. To this aim, an in vitro study was carried out by employing various human glioblastoma cell lines (A172, DBTRG, LN229, U118). The following liposomal formulations were tested: (i) DMPC and Gemini 1; (ii) m-THPC in DMPC in the absence or (iii) in the presence of Gemini 1 in the molar ratio 8:2; 7:3, and 6:4. The presence of Gemini 1 significantly increased the intracellular uptake of chlorin in all cell tested although with a different extent: LN229>U118>A172>DBTRG. The cytotoxicity of chlorin-loaded liposomes was then tested by cloning efficiency performed on different cultures, before and after irradiation with laser light at 652nm, at a Fluence Rate of 200mW/s for 100s, with a total Fluence of 20J/cm(-2). In the absence of irradiation, the different liposomal formulations induced a cytotoxicity in less than 30% of glioblastoma cells. On the contrary, irradiation induced total destruction of all cultures treated with m-THPC/DMPC+Gemini 1 in the ratios 8:2, or 7:3, or 6:4.
Collapse
Affiliation(s)
- A Molinari
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Xu X, Chen X, Xu X, Lu T, Wang X, Yang L, Jing X. BCNU-loaded PEG-PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells. J Control Release 2006; 114:307-16. [PMID: 16891029 DOI: 10.1016/j.jconrel.2006.05.031] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 05/01/2006] [Accepted: 05/29/2006] [Indexed: 11/27/2022]
Abstract
The purpose of the present study was to develop implantable BCNU-loaded poly(ethylene glycol)-poly(L-lactic acid) (PEG-PLLA) diblock copolymer fibers for the controlled release of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU). BCNU was well incorporated and dispersed uniformly in biodegradable PEG-PLLA fibers by using electrospinning method. Environmental Scanning Electron Microscope (ESEM) images indicated that the BCNU-loaded PEG-PLLA fibers looked uniform and their surfaces were reasonably smooth. Their average diameters were below 1500 nm. The release rate of BCNU from the fiber mats increased with the increase of BCNU loading amount. In vitro cytotoxicity assay showed that the PEG-PLLA fibers themselves did not affect the growth of rat Glioma C6 cells. Antitumor activity of the BCNU-loaded fibers against the cells was kept over the whole experiment process, while that of pristine BCNU disappeared within 48 h. These results strongly suggest that the BCNU/PEG-PLLA fibers have an effect of controlled release of BCNU and are suitable for postoperative chemotherapy of cancers.
Collapse
Affiliation(s)
- Xiuling Xu
- State key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Stylli SS, Kaye AH, MacGregor L, Howes M, Rajendra P. Photodynamic therapy of high grade glioma - long term survival. J Clin Neurosci 2006; 12:389-98. [PMID: 15925768 DOI: 10.1016/j.jocn.2005.01.006] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 01/24/2005] [Indexed: 01/02/2023]
Abstract
Haemetaporphyrin derivative (HpD) mediated photodynamic therapy (PDT) has been investigated as an adjuvant treatment for cerebral glioma. This study records the survival of patients at the Royal Melbourne Hospital with residences in the State of Victoria, utilizing the Victorian Cancer Registry database for patients treated with adjuvant PDT following surgical resection of the tumour. For primary (newly diagnosed) tumours, median survival from initial diagnosis was 76.5 months for anaplastic astrocytoma (AA) and 14.3 months for glioblastoma multiforme (GBM). Seventy-three percent of patients with AA and 25% with GBM survived longer than 36 months. For recurrent tumour, median survival from the time of surgery was 66.6 months for AA and 13.5 months for GBM. Fifty-seven percent of patients with recurrent AA and 41% of patients with recurrent GBM survived longer than 36 months. Older age at the time of diagnosis was associated with poorer prognosis. Laser light doses above the sample median of 230 J/cm2 were associated with better prognosis in the 136 patients studied (primary tumour patients - (HR=0.50[0.27,0.95],p=0.033); recurrent tumour patients (HR=0.75[0.42,1.31],p=0.312). There was no mortality directly associated with the therapy, three patients had increased cerebral oedema thought to be related to photodynamic therapy that was controlled with conventional therapies.
Collapse
Affiliation(s)
- Stanley S Stylli
- Department of Neurosurgery, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | | | | | | | | |
Collapse
|
43
|
Galanis E, Buckner JC, Maurer MJ, Reid JM, Kuffel MJ, Ames MM, Scheithauer BW, Hammack JE, Pipoly G, Kuross SA. Phase I/II trial of pyrazoloacridine and carboplatin in patients with recurrent glioma: a North Central Cancer Treatment Group trial. Invest New Drugs 2006; 23:495-503. [PMID: 16133802 DOI: 10.1007/s10637-005-2910-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE Novel therapeutic agents in the treatment of recurrent gliomas are urgently needed. Pyrazoloacridine (PZA), a rationally synthesized acridine derivative, has shown promising antitumor activity against glioma lines in combination with platinum compounds. This phase I/II trial of the PZA/carboplatin combination in recurrent glioma patients consisted of two phase I studies (studies 1 and 2) and a phase II trial (study 3). The objectives of studies 1 and 2 were to (a) assess the safety and toxicity and to establish the phase II dose of the pyrazoloacridine/carboplatin combination for recurrent glioma patients on P450 inducing anticonvulsants, and (b) to confirm the phase II dose for patients not on P450 inducing anticonvulsants. The primary objectives of study 3 were to determine the efficacy of the pyrazoloacridine/carboplatin combination in patients with recurrent gliomas, to further assess the toxicity of the combination, and to evaluate the impact of enzyme-inducing anticonvulsants on the pyrazoloacridine metabolism. EXPERIMENTAL DESIGN Both carboplatin and pyrazoloacridine were administered intravenously every 28 days. Treatment was continued until unacceptable toxicity, tumor progression or patient withdrawal. RESULTS 14 patients were treated in the two phase I studies and 32 patients in the phase II trial. The phase II dose of the combination was PZA 400 mg/m(2) and carboplatin AUC of 5 every 28 days. Neutropenia (4 patients) and dyspnea (1 patient) was the dose limiting toxicity in the phase I studies. In the phase II trial, the most frequent toxicity was myelosuppression with grade 3 and 4 hematologic adverse events being observed in 22 and 19% of the patients, respectively. The antitumor activity of this regimen was limited; the response rate in the phase II trial was 0%, (95% CI:0-11%) while 12 of the 32 patients (38%) had stable disease with a median duration of 2 months. The percentage of phase II patients who were progression free at three months was 22% and at six months was 16%. Median survival from study entry was 5.0 months for phase I patients and 5.8 months for phase II patients. Pharmacokinetic analysis performed in 8 phase I patients demonstrated no significant impact of the enzyme-inducing anticonvulsants on the pharmacokinetics of pyrazoloacridine. CONCLUSIONS The phase II dose of the pyrazoloacridine/carboplatin combination is pyrazoloacridine 400 mg/m(2) in combination with carboplatin AUC of 5. Antitumor activity in patients with recurrent gliomas was limited. Initial disease stabilization occurred in approximately 38% of the patients, with median duration of 2 months. Enzyme-inducing anticonvulsants did not affect the pyrazoloacridine metabolism.
Collapse
|
44
|
Boiardi A, Eoli M, Salmaggi A, Lamperti E, Botturi A, Broggi G, Bissola L, Finocchiaro G, Silvani A. Systemic temozolomide combined with loco-regional mitoxantrone in treating recurrent glioblastoma. J Neurooncol 2006; 75:215-20. [PMID: 16283445 DOI: 10.1007/s11060-005-3030-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Twenty-two recurrent GBM patients were enrolled for second tumor debulking with local positioning of a Rickam reservoir, in order to locally deliver chemotherapy with the aim of controlling local tumor recurrence. We designed a protocol using systemic temozolomide (150 mg/sqm days 1-5 every 28) in association with mitoxantrone, delivered through the reservoir (4 mg/day 1-5 every 28) positioned into the area of tumor exeresis. After re-operation a residual tumor mass no larger than 2 cm was identified in 18/22 patients. The patients were treated with monthly cycles of chemotherapy until evolution of the tumor, but in no case for more than 10 cycles. Responses were evaluated by MRI scans performed every 2 months and images assessed according to MacDonald's criteria. Response rate: no complete responses (CR), 5 partial responses (PR), 13 stable disease (SD) and 4 progressive disease (PD) occurred. The median progression-free survival (PFS) and survival time (ST) of the whole group of treated patients was 7 and 11 months, respectively and more than a quarter of the patients survived over 18 months. During the study, the patients' compliance was complete and no dropouts occurred. Hematological toxicity was mild and after repeated local injections only minor neurological side-effects occurred. Despite some bias in patients' selection not excluded in this pilot study, results are interesting: the PFS was as long as the survival of recurrent GBM reported in the literature.
Collapse
Affiliation(s)
- A Boiardi
- Department of Neuro-Oncology, Istituto Nazionale Neurologico "Carlo Besta", Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Basilico F, Sauerwein W, Pozzi F, Wittig A, Moss R, Mauri PL. Analysis of 10B antitumoral compounds by means of flow-injection into ESI-MS/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:1546-9. [PMID: 16320299 DOI: 10.1002/jms.909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Boron neutron capture therapy (BNCT) is a promising binary treatment for cancer. BNCT is based on the ability of the nonradioactive isotope (10)B to capture, with a very high probability, thermal neutrons. This nuclear reaction results in two particles (an alpha and a lithium nucleus). The particles have a high biological effectiveness, which is limited in tissue to approximately the diameter of one cell. If the reaction can be limited to a tumor cell, the physical characteristic opens up the possibility to selectively destroy cancer cells, while sparing the surrounding healthy tissue. Quality control of (10)B-containing compounds and their distribution at present are very important, and different analytical methods have been developed, such as time-of-flight secondary ion mass spectrometry (TOF-SIMS), electron energy loss spectrometry (EELS), prompt gamma analysis and inductively coupled plasma-optical emission spectrometry (ICP-OES). These methods allow the analyses of (10)B, but it is not possible to characterize the specific molecular compounds containing (10)B. For this reason, we propose a fast and quantitative method that permits the determination of closo-undecahydro-1-mercaptododecaborate (BSH) and (10)boron-phenylalanine (BPA) and their eventual metabolites. In particular, (10)B-containing compounds are detected by means of flow-injection electrospray tandem mass spectrometry (FI/ESI-MS/MS). This approach allows the identification of Boron compounds, BSH and BPA, using tandem mass spectrometry, and quantitative analysis is also possible (c.v. +/-4.7%; n = 5; linear range 10-10,000 ng/ml). Furthermore, (10)B-containing compounds were detected in actual biological sample (urine and plasma, diluted 10,000- and 1,000-fold, respectively) injecting a small volume (1 microl) of diluted samples.
Collapse
Affiliation(s)
- F Basilico
- Istituto Tecnologie Biomediche, via Fratelli Cervi, 93, Segrate, Milan, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Boiardi A, Bartolomei M, Silvani A, Eoli M, Salmaggi A, Lamperti E, Milanesi I, Botturi A, Rocca P, Bodei L, Broggi G, Paganelli G. Intratumoral delivery of mitoxantrone in association with 90-Y radioimmunotherapy (RIT) in recurrent glioblastoma. J Neurooncol 2005; 72:125-31. [PMID: 15925992 DOI: 10.1007/s11060-004-1497-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Twenty-six recurrent Glioblastoma (rGBM) patients sequentially treated at the National Neurological Institute 'C Besta' were enrolled for a second surgery in order to remove recurrent tumor and to place an Ommaya reservoire to allow local delivery of chemotherapy and local pre-targeted radio-immunotherapy (RIT). All patients had partial tumor resection and 75% of them had a residual tumor mass after exeresis larger than 2 cm. After surgery all patients were managed with a second line systemic chemotherapy (PCV). Moreover the protocol scheduled two cycles of local RIT (90 Yttrium 5- 25 mCi per cycle) with a 10 week interval. Locoregional mitoxantrone chemotherapy was locally delivered as a single dose of 4 mg every 20 days. Responses to treatment were assessed by monthly neurological examination and by MRI or contrast-enhanced CT scan performed every 2 months. For the whole group of patients the PFS after second surgery at 6 and 12 months was 61% and 22%, respectively and survival after recurrence at 6, 12 and 18 months was 80%, 53% and 42%, respectively. Neither major side effects occurred systemically nor related on the place of local injections. The percentage of long-term survivors was very high: 42% of patients were still alive at 18 months. We stress the concept that the combined treatments could be more effective if delivered into a smaller residual tumor mass and probably in an adjuvant setting, before tumour recurrence.
Collapse
Affiliation(s)
- Amerigo Boiardi
- Department of Neuro-oncology, Istituto Nazionale Neurologico, C. Besta, Via Celoria 11, 20133, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The therapy of brain tumors has been limited by a lack of effective methods of drug delivery to the brain. Systemic administration is often associated with toxic side effects and ultimately fails to achieve therapeutic concentrations within a tumor. An attractive strategy that has gained importance in brain tumor therapy has relied on local and controlled delivery of chemotherapeutic agents by biodegradable polymers. This technique allows direct exposure of tumor cells to a therapeutic agent for a prolonged period of time and has been shown to prolong the survival of patients with malignant brain tumors. The use of polymers for local drug delivery greatly expands the spectrum of drugs available for the treatment of malignant brain tumors. This review discusses the rationale for local drug delivery, describes the development of currently available polymer-based therapeutic agents, and highlights examples of promising non-polymer based drug delivery methods for use in the treatment of malignant brain tumors.
Collapse
Affiliation(s)
- Maciej S Lesniak
- Division of Neurosurgery, The University of Chicago Pritzker School of Medicine, 5841 South Maryland Avenue, Chicago, Illinois 60637, USA.
| |
Collapse
|
48
|
Guo WX, Huang KX, Tang R, Xu HB. Synthesis, characterization of novel injectable drug carriers and the antitumor efficacy in mice bearing Sarcoma-180 tumor. J Control Release 2005; 107:513-22. [PMID: 16157412 DOI: 10.1016/j.jconrel.2005.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 06/11/2005] [Accepted: 06/17/2005] [Indexed: 10/25/2022]
Abstract
New unsaturated polyesters of poly(fumaric acid-glycol-dodecanedioic acid) P(FA-GLY-DDDA) copolymers, poly(fumaric acid-glycol-brassylic acid) P(FA-GLY-BA) copolymers, poly(fumaric acid-glycol-tetradecanedioic acid) P(FA-GLY-TA) copolymers and poly(fumaric acid-glycol-pentadecanedioic acid) P(FA-GLY-PA) copolymers were prepared by melt polycondensation of the corresponding mixed monomers: fumaric acid, glycol and one of C(12-15) dibasic acids. The copolymers were characterized by FT-IR, gel permeation chromatography (GPC), and the surface structure of unsaturated polyesters after solidify were studied by atomic force microscopy (AFM). The molecular structure and composition of the unsaturated polyesters were determined by 1H NMR spectroscopy. In vitro studies showed that some of the copolymers are degradable in phosphate buffer at 37 degrees C and have properly drug release rate as drug carriers. The biocompatibility of P(FA-GLY-DDDA) and P(FA-GLY-BA) copolymers under mice skin was also evaluated, macroscopic observation and microscopic analysis demonstrated that the copolymer is biocompatible and well tolerated in vivo. Antitumor efficacy of P(FA-GLY-DDDA) copolymers and P(FA-GLY-BA) copolymers containing 5% adriamycin hydrochloride (ADM) in mice bearing Sarcoma-180 tumor exhibited increased volume doubling time (VDT) (22+/-1.5 days and 24+/-2.5 days) compared to plain subcutaneous injection of ADM (7+/-0.9 days). The antitumor efficacy of injecting P(FA-GLY-DDDA)-ADM inside tumor twice intervened in 22 days exhibited an especially increased cytotoxic effect as revealed by increased VDT (33+/-2.5 days), and the antitumor efficacy of injecting P(FA-GLY-BA)-ADM inside tumor twice intervened in 24 days exhibited an especially increased cytotoxic effect as revealed by increased VDT (35+/-1.5 days). The studies suggested that P(FA-GLY-DDDA) copolymers and P(FA-GLY-BA) copolymers as effective and injectable carriers for antineoplastic drug like adriamycin hydrochloride have a very good foreground in the treatment of noumenon tumor.
Collapse
Affiliation(s)
- Wen-xun Guo
- Department of Chemistry, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | | | | | | |
Collapse
|
49
|
Li Y, Ho Duc HL, Tyler B, Williams T, Tupper M, Langer R, Brem H, Cima MJ. In vivo delivery of BCNU from a MEMS device to a tumor model. J Control Release 2005; 106:138-45. [PMID: 16167384 DOI: 10.1016/j.jconrel.2005.04.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A drug delivery micrcoelectromechanical systems (MEMS) device was used to locally deliver a chemotherapeutic agent (BCNU) to an experimental tumor in rats. This MEMS device consists of an array of reservoirs etched into the silicon substrate. The drug release is achieved by the electrochemical dissolution of the gold membranes covering the reservoirs. A new Pyrex package was developed to improve the BCNU release kinetics and enhance device capacity. Co-formulation of BCNU with polyethylene glycol (PEG) led to complete and rapid release of drug in vivo. BCNU delivered from the MEMS device showed dose-dependent inhibiting effect on the tumor growth in the BCNU dosage range of 0.67 approximately 2 mg. BCNU delivered from the activated devices was as effective as equipotent subcutaneous injections of BCNU in inhibiting tumor growth. Further optimization using this MEMS device to deliver BCNU in combination with other therapeutic agents against the tumor challenge is possible because of the unique capability of the device to precisely control the temporal release profiles of multiple substances.
Collapse
Affiliation(s)
- Yawen Li
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Galanis E, Buckner JC, Maurer MJ, Kreisberg JI, Ballman K, Boni J, Peralba JM, Jenkins RB, Dakhil SR, Morton RF, Jaeckle KA, Scheithauer BW, Dancey J, Hidalgo M, Walsh DJ. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 2005; 23:5294-304. [PMID: 15998902 DOI: 10.1200/jco.2005.23.622] [Citation(s) in RCA: 525] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Temsirolimus (CCI-779) is a small-molecule inhibitor of the mammalian target of rapamycin (mTOR) and represents a rational therapeutic target against glioblastoma multiforme (GBM). METHODS Recurrent GBM patients with < or = 1 chemotherapy regimen for progressive disease were eligible. Temsirolimus was administered in a 250-mg intravenous dose weekly. RESULTS Sixty-five patients were treated. The incidence of grade 3 or higher nonhematologic toxicity was 51%, and consisted mostly of hypercholesterolemia (11%), hypertriglyceridemia (8%), and hyperglycemia (8%). Grade 3 hematologic toxicity was observed in 11% of patients. Temsirolimus peak concentration (Cmax), and sirolimus Cmax and area under the concentration-time curve were decreased in patients receiving p450 enzyme-inducing anticonvulsants (EIACs) by 73%, 47%, and 50%, respectively, but were still within the therapeutic range of preclinical models. Twenty patients (36%) had evidence of improvement in neuroimaging, consisting of decrease in T2 signal abnormality +/- decrease in T1 gadolinium enhancement, on stable or reduced steroid doses. Progression-free survival at 6 months was 7.8% and median overall survival was 4.4 months. Median time to progression (TTP) for all patients was 2.3 months and was significantly longer for responders (5.4 months) versus nonresponders (1.9 months). Development of grade 2 or higher hyperlipidemia in the first two treatment cycles was associated with a higher percentage of radiographic response (71% v 31%; P = .04). Significant correlation was observed between radiographic improvement and high levels of phosphorylated p70s6 kinase in baseline tumor samples (P = .04). CONCLUSION Temsirolimus is well tolerated in recurrent GBM patients. Despite the effect of EIACs on temsirolimus metabolism, therapeutic levels were achieved. Radiographic improvement was observed in 36% of temsirolimus-treated patients, and was associated with significantly longer TTP. High levels of phosphorylated p70s6 kinase in baseline tumor samples appear to predict a patient population more likely to derive benefit from treatment. These findings should be validated in other studies of mTOR inhibitors.
Collapse
Affiliation(s)
- Evanthia Galanis
- Mayo Clinic and Mayo Foundation, 200 First St SW, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|