1
|
Karakaya D, Lampe K, Encinas JL, Duru S, Peiro L, Oge HK, Sanchez-Margallo FM, Oria M, Peiro JL. Neurogenesis and glial impairments in congenital hydrocephalus: insights from a BioGlue-induced fetal lamb model. Fluids Barriers CNS 2025; 22:20. [PMID: 39994758 PMCID: PMC11849300 DOI: 10.1186/s12987-025-00630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Congenital hydrocephalus (HCP) is a prevalent condition, that leads to fetal cerebral ventricle dilation and increased intracranial pressure. It is associated with significant neurological impairments, partly due to the disruption of neurogenesis and gliogenesis. This study aims to investigate alterations in the proliferation and differentiation of neural progenitor cells (NPCs) in a fetal lamb model of obstructive HCP induced by intracisternal BioGlue injection, to identify the potential optimal intervention time for prenatal surgery. METHODS This study involved 22 fetal lambs, divided into control (n = 10) and HCP (n = 12) groups with hydrocephalus induced at approximately 85-90 gestational days. Histological and molecular techniques, including hematoxylin and eosin staining, triple immunofluorescence, Western blot analysis, and RT-qPCR, were utilized to assess changes in NPCs, astrocytes, and oligodendrocytes across three different gestational stages (E105, E125, and E140). The analysis of data was done by using multiple (unpaired) two-sample t-test and was represented as mean and standard deviation. RESULTS HCP led to significant disruptions in the ventricular zone (VZ), with the translocation of NPCs into the intraventricular CSF and formation of periventricular heterotopias. This study revealed an initial surge in the expression of NPC markers (Pax6 and Sox2), which decreased as HCP progressed. Astroglia reaction intensified, as indicated by increased expression of GFAP, vimentin, and aquaporin 4, particularly at later stages of pregnancy (p < 0.001, p < 0.001 and p < 0.001, control and HCP E140, respectively). Myelin formation was also adversely affected, with reduced expression of oligodendrocyte markers (Olig2 and Sox10, p = 0.01 and p = 0.009, control and HCP E140, respectively) and myelin proteins (MOBP, MOG and MBP, p = 0.02, p = 0.049 and p = 0.02 control and HCP E140, respectively). CONCLUSIONS This study contributed to clarify the profound impact of congenital HCP on neurogenesis and gliogenesis in an experimental fetal lamb model. The VZ disruption and altered expression of key neurogenic and glial markers suggested a significant pathological process underlying neurodevelopmental abnormalities. The findings suggested a potential window for prenatal surgical intervention between E105 and E125 in the sheep model, offering new avenues for prenatal therapeutic approaches and improving surgical outcomes in affected fetuses and neonates.
Collapse
Affiliation(s)
- Dicle Karakaya
- The Center for Fetal and Placental Research, Cincinnati Children'S Hospital Medical Center (CCHMC), 3333 Burnet Avenue, MLC 11025, T8.605, Cincinnati, OH, 45229-3039, USA
- Department of Neurosurgery, Hacettepe University, Ankara, Turkey
| | - Kristin Lampe
- The Center for Fetal and Placental Research, Cincinnati Children'S Hospital Medical Center (CCHMC), 3333 Burnet Avenue, MLC 11025, T8.605, Cincinnati, OH, 45229-3039, USA
| | - Jose L Encinas
- Pediatric Surgery Division, Hospital Universitario La Paz, Madrid, Spain
| | - Soner Duru
- The Center for Fetal and Placental Research, Cincinnati Children'S Hospital Medical Center (CCHMC), 3333 Burnet Avenue, MLC 11025, T8.605, Cincinnati, OH, 45229-3039, USA
| | - Lucas Peiro
- The Center for Fetal and Placental Research, Cincinnati Children'S Hospital Medical Center (CCHMC), 3333 Burnet Avenue, MLC 11025, T8.605, Cincinnati, OH, 45229-3039, USA
| | - Halil Kamil Oge
- Department of Neurosurgery, Hacettepe University, Ankara, Turkey
| | | | - Marc Oria
- The Center for Fetal and Placental Research, Cincinnati Children'S Hospital Medical Center (CCHMC), 3333 Burnet Avenue, MLC 11025, T8.605, Cincinnati, OH, 45229-3039, USA
- Department of Radiation Oncology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
- University of Cincinnati Cancer Center (UCCC), Cincinnati, OH, USA
- University of Cincinnati Brain Tumor Center (BTC), Cincinnati, OH, USA
| | - Jose L Peiro
- The Center for Fetal and Placental Research, Cincinnati Children'S Hospital Medical Center (CCHMC), 3333 Burnet Avenue, MLC 11025, T8.605, Cincinnati, OH, 45229-3039, USA.
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Uyanıkgil Y, Turgut M, Baka M. Effects of Melatonin on the Cerebellum of Infant Rat Following Kaolin-Induced Hydrocephalus: a Histochemical and Immunohistochemical Study. THE CEREBELLUM 2017; 16:142-150. [PMID: 27113349 DOI: 10.1007/s12311-016-0778-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrocephalus is a developmental disorder causing abnormally collected cerebrospinal fluid within the cerebral ventricles. It leads to bigger skulls and many dysfunctions related to the nervous system. Here, we addressed whether exogenous melatonin administration could reverse the clinical features of kaolin-induced hydrocephalus in infantile rats. A controlled double-blinded study was conducted in 2-week-old 45 Wistar albino rats, which were divided into three groups: Group A, the control group, received intracisternal sham injection with solely the needle insertion; group B, the hydrocephalus group, was treated with isotonic NaCl after kaolin injection; and group C, the hydrocephalus + melatonin group, was given i.p. exogenous melatonin at a dose of 0.5 mg/100 g body weight after kaolin injection. Histological and immunohistochemical analyses were performed after the induction of hydrocephalus and melatonin administration. Glial fibrillary acidic protein was stained by immunohistochemical method. TUNEL method was used to define and quantitate apoptosis in the cerebellar tissues. Statistical analysis was performed by nonparametric Kruskal-Wallis H test, and once significance was determined among means, post hoc pairwise comparisons were carried out using Mann-Whitney U test. We found that melatonin administration significantly ameliorated ratio of substantia grisea area/substantia alba area in the cerebellum of infantile rats. Histologically, there was a significant reduction in the number of cerebellar apoptotic cells after the hydrocephalus induced by kaolin (P < 0.05). Our results clearly revealed that the histopathological changes in the cerebellum were reversed by systemic melatonin administration in infantile rats with kaolin-induced hydrocephalus. Nevertheless, further studies are needed to suggest melatonin as a candidate protective drug in children with hydrocephalus.
Collapse
Affiliation(s)
- Yiğit Uyanıkgil
- Department of Histology and Embryology, Ege University School of Medicine, Izmir, Turkey.,Cord Blood, Cell-Tissue Research and Application Center, Ege University, Izmir, Turkey
| | - Mehmet Turgut
- Department of Neurosurgery, Adnan Menderes University School of Medicine, Aydın, Turkey. .,, Cumhuriyet Mahallesi, Adnan Menderes Bulvarı, Haltur Apartmanı, No: 6 Daire: 7, TR-09020, Aydın, Turkey.
| | - Meral Baka
- Department of Histology and Embryology, Ege University School of Medicine, Izmir, Turkey.,Cord Blood, Cell-Tissue Research and Application Center, Ege University, Izmir, Turkey
| |
Collapse
|
3
|
Environmental enrichment reduces brain damage in hydrocephalic immature rats. Childs Nerv Syst 2017; 33:921-931. [PMID: 28382436 DOI: 10.1007/s00381-017-3403-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 03/27/2017] [Indexed: 01/12/2023]
Abstract
PURPOSE We investigate the effects of environmental enrichment (EE) on morphological alterations in different brain structures of pup rats submitted to hydrocephalus condition. METHODS Hydrocephalus was induced in 7-day-old pup rats by injection of 20% kaolin into the cisterna magna. Ventricular dilatation and magnetization transfer to analyze myelin were assessed by magnetic resonance. Hydrocephalic and control rats exposed to EE (n = 10 per group) were housed in cages with a tunnel, ramp, and colored plastic balls that would emit sound when touched. The walls of the housing were decorated with colored adhesive tape. Moreover, tactile and auditory stimulation was performed daily throughout the experiment. Hydrocephalic and control rats not exposed to EE (n = 10 per group) were allocated singly in standard cages. All animals were weighed daily and exposed to open-field conditions every 2 days until the end of the experiment when they were sacrificed and the brains removed for histology and immunohistochemistry. Solochrome cyanine staining was performed to assess the thickness of the corpus callosum. The glial fibrillary acidic protein method was used to evaluate reactive astrocytes, and the Ki67 method to assess cellular proliferation in the subventricular zone. RESULTS The hydrocephalic animals exposed to EE showed better performance in Open Field tests (p < 0.05), while presenting lower weight gain. In addition, these animals showed better myelination as revealed by magnetization transfer (p < 0.05). Finally, the EE group showed a reduction in reactive astrocytes by means of glial fibrillary acidic protein immunostaining and preservation of the proliferation potential of progenitor cells. CONCLUSION The results suggest that EE can protect the developing brain against damaging effects caused by hydrocephalus.
Collapse
|
4
|
Are Shunt Revisions Associated with IQ in Congenital Hydrocephalus? A Meta -Analysis. Neuropsychol Rev 2016; 26:329-339. [PMID: 27815765 PMCID: PMC9996637 DOI: 10.1007/s11065-016-9335-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 10/10/2016] [Indexed: 01/26/2023]
Abstract
Although it is generally acknowledged that shunt revisions are associated with reductions in cognitive functions in individuals with congenital hydrocephalus, the literature yields mixed results and is inconclusive. The current study used meta-analytic methods to empirically synthesize studies addressing the association of shunt revisions and IQ in individuals with congenital hydrocephalus. Six studies and three in-house datasets yielded 11 independent samples for meta-analysis. Groups representing lower and higher numbers of shunt revisions were coded to generate effect sizes for differences in IQ scores. Mean effect size across studies was statistically significant, but small (Hedges' g = 0.25, p < 0.001, 95 % CI [0.08, 0.43]) with more shunt revisions associated with lower IQ scores. Results show an association of lower IQ and more shunt revisions of about 3 IQ points, a small effect, but within the error of measurement associated with IQ tests. Although clinical significance of this effect is not clear, results suggest that repeated shunt revisions because of shunt failure is associated with a reduction in cognitive functions.
Collapse
|
5
|
Eskandari R, Abdullah O, Mason C, Lloyd KE, Oeschle AN, McAllister JP. Differential vulnerability of white matter structures to experimental infantile hydrocephalus detected by diffusion tensor imaging. Childs Nerv Syst 2014; 30:1651-61. [PMID: 25070594 DOI: 10.1007/s00381-014-2500-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/14/2014] [Indexed: 12/22/2022]
Abstract
PURPOSE The differential vulnerability of white matter (WM) to acute and chronic infantile hydrocephalus and the related effects of early and late reservoir treatment are unknown, but diffusion tensor imaging (DTI) could provide this information. Thus, we characterized WM integrity using DTI in a clinically relevant model. METHODS Obstructive hydrocephalus was induced in 2-week-old felines by intracisternal kaolin injection. Ventricular reservoirs were placed 1 (early) or 2 (late) weeks post-kaolin and tapped frequently based solely on neurological deficit. Hydrocephalic and age-matched control animals were sacrificed 12 weeks postreservoir. WM integrity was evaluated in the optic system, corpus callosum, and internal capsule prereservoir and every 3 weeks using DTI. Analyses were grouped as acute (<6 weeks) or chronic (≥6 weeks). RESULTS In the corpus callosum during acute stages, fractional anisotropy (FA) decreased significantly with early and late reservoir placement (p = 0.0008 and 0.0008, respectively), and diffusivity increased significantly in early (axial, radial, and mean diffusivity, p = 0.0026, 0.0012, and 0.0002, respectively) and late (radial and mean diffusivity, p = 0.01 and 0.0038, respectively) groups. Chronically, the corpus callosum was thinned and not detectable by DTI. FA was significantly lower in the optic chiasm and tracts (p = 0.0496 and 0.0052, respectively) with late but not early reservoir placement. In the internal capsule, FA in both reservoir groups increased significantly with age (p < 0.05) but diffusivity remained unchanged. CONCLUSIONS All hydrocephalic animals treated with intermittent ventricular reservoir tapping demonstrated progressive ventriculomegaly. Both reservoir groups demonstrated WM integrity loss, with the CC the most vulnerable and the optic system the most resilient.
Collapse
Affiliation(s)
- Ramin Eskandari
- Stanford Children's Health, Lucile Packard Children's Hospital, 725 Welch Road, Palo Alto, CA, USA,
| | | | | | | | | | | |
Collapse
|
6
|
Williams MT, Braun AA, Amos-Kroohs RM, McAllister JP, Lindquist DM, Mangano FT, Vorhees CV, Yuan W. Kaolin-induced ventriculomegaly at weaning produces long-term learning, memory, and motor deficits in rats. Int J Dev Neurosci 2014; 35:7-15. [PMID: 24594360 DOI: 10.1016/j.ijdevneu.2014.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/21/2014] [Accepted: 02/21/2014] [Indexed: 11/25/2022] Open
Abstract
Ventriculomegaly occurs when there is imbalance between creation and absorption of cerebrospinal fluid (CSF); even when treated, long-term behavioral changes occur. Kaolin injection in the cisterna magna of rats produces an obstruction of CSF outflow and models one type of hydrocephalus. Previous research with this model shows that neonatal onset has mixed effects on Morris water maze (MWM) and motoric performance; we hypothesized that this might be because the severity of ventricular enlargement was not taken into consideration. In the present experiment, rats were injected with kaolin or saline on postnatal day (P)21 and analyzed in subgroups based on Evan's ratios (ERs) of the severity of ventricular enlargement at the end of testing to create 4 subgroups from least to most severe: ER0.4-0.5, ER0.51-0.6, ER0.61-0.7, and ER0.71-0.82, respectively. Locomotor activity (dry land and swimming), acoustic startle with prepulse inhibition (PPI), and MWM performance were tested starting on P28 (122cm maze) and again on P42 (244cm maze). Kaolin-treated animals weighed significantly less than controls at all times. Differences in locomotor activity were seen at P42 but not P28. On P28 there was an increase in PPI for all but the least severe kaolin-treated group, but no difference at P42 compared with controls. In the MWM at P28, all kaolin-treated groups had longer path lengths than controls, but comparable swim speeds. With the exception of the least severe group, probe trial performance was worse in the kaolin-treated animals. On P42, only the most severely affected kaolin-treated group showed deficits compared with control animals. This group showed no MWM learning and no memory for the platform position during probe trial testing. Swim speed was unaffected, indicating motor deficits were not responsible for impaired learning and memory. These findings indicate that kaolin-induced ventriculomegaly in rats interferes with cognition regardless of the final enlargement of the cerebral ventricles, but final size critically determines whether lasting locomotor, learning, and memory impairments occur.
Collapse
Affiliation(s)
- Michael T Williams
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States.
| | - Amanda A Braun
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States
| | - Robyn M Amos-Kroohs
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States
| | - James P McAllister
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| | - Diana M Lindquist
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States; Division of Radiology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States
| | - Francesco T Mangano
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States; Division of Pediatric Neurosurgery, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States
| | - Charles V Vorhees
- Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States; University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States
| | - Weihong Yuan
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, United States; Division of Radiology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States
| |
Collapse
|
7
|
Yuan W, McAllister JP, Lindquist DM, Gill N, Holland SK, Henkel D, Rajagopal A, Mangano FT. Diffusion tensor imaging of white matter injury in a rat model of infantile hydrocephalus. Childs Nerv Syst 2012; 28:47-54. [PMID: 21994049 DOI: 10.1007/s00381-011-1590-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 10/16/2022]
Abstract
OBJECTIVE Diffusion tensor imaging (DTI) is a non-invasive MRI technique that has been used to quantify white matter (WM) abnormality in both clinical and experimental hydrocephalus (HCP). However, no DTI study has been conducted to characterize anisotropic diffusion properties in an animal model of infantile HCP. This DTI study was designed to investigate a rat model of HCP induced at postnatal day 21, a time developmentally equivalent to the human infancy. METHODS DTI data were acquired at approximately 4 weeks after the induction of HCP with kaolin injection. Using a 7 Tesla small animal MRI scanner we performed high-resolution DTI on 12 rats with HCP and 6 saline controls. Regions of interest (ROI) examined with quantitative comparisons include the genu, body, and splenium of the corpus callosum (gCC, bCC, and sCC, respectively), anterior, middle, and posterior external capsule (aEC, mEC, and pEC, respectively), internal capsule (IC), and fornix (FX). For each ROI, DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Dax), and radial diffusivity (Drad) were calculated. RESULTS We found that the anisotropic diffusion properties were abnormal across multiple WM regions in the brains of the HCP rats. Statistically significant differences included: (1) decreased FA and increased MD and Drad values in the gCC and bCC; (2) increased Dax in the sCC; (3) increased FA and Dax in the aEC; (4) increased FA in the mEC; (5) increased MD and Drad in the pEC; (6) increased FA and Dax in IC; (7) increased FA in FX. CONCLUSIONS These preliminary results provide the first evidence of WM injury quantified by DTI in a rat model of infantile HCP. Our data showed that DTI is a sensitive tool to characterize patterns of WM abnormalities and support the notion that WM impairment is region specific in response to HCP.
Collapse
Affiliation(s)
- Weihong Yuan
- Department of Radiology, Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 44529, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Eskandari R, Harris CA, McAllister JP. Reactive astrocytosis in feline neonatal hydrocephalus: acute, chronic, and shunt-induced changes. Childs Nerv Syst 2011; 27:2067-76. [PMID: 21847645 DOI: 10.1007/s00381-011-1552-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 07/29/2011] [Indexed: 10/17/2022]
Abstract
PURPOSE Reactive astrocytosis has been implicated in injury and recovery patterns associated with hydrocephalus. To investigate temporal changes in astrogliosis during the early progression of hydrocephalus, after shunting, and after long-term ventriculomegaly, glial fibrillary protein (GFAP) levels were analyzed in a feline model. METHODS Obstructive hydrocephalus was induced in 10-day-old kittens by intracisternal injections of 25% kaolin. Acute non-shunted animals were killed 15 days post-kaolin injection to represent the pre-shunt condition. Shunt-treated animals received ventriculoperitoneal shunts 15 days post-injection and were killed 10 or 60 days later to represent short- and long-term recovery periods. Chronic untreated animals had Ommaya reservoirs implanted 15 days post-kaolin, which were tapped intermittently until they were killed 60 days later. Ventriculomegaly was monitored by neuroimaging before and after shunting and at death. RNA and total protein from primary visual cortex were analyzed by Northern and Western blotting. RESULTS GFAP RNA and protein levels for acute and chronic non-shunted hydrocephalic animals were 77% and 247% (p < 0.01) and 659% (p < 0.05) and 871% (p < 0.05) higher than controls, respectively. Shunted animals with short-term recovery demonstrated a mismatch in GFAP levels, with RNA expression decreasing 26% and protein increasing 335% (p < 0.01). Shunted animals with a long-term recovery exhibited GFAP RNA and protein levels 201% and 357% above normal, respectively. CONCLUSIONS These results indicate that a reactive astrocytic response continues to rise dramatically in chronic hydrocephalus, suggesting ongoing gliosis and potential damage. Shunting partially ameliorates the continuation of astrogliosis, but does not completely reverse this inflammatory reaction even after a long recovery.
Collapse
Affiliation(s)
- Ramin Eskandari
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University of Utah, 175 North Medical Drive, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
9
|
Idowu O, Olumide A. Etiology and cranial CT scan profile of nontumoral hydrocephalus in a tertiary black African hospital. J Neurosurg Pediatr 2011; 7:397-400. [PMID: 21456912 DOI: 10.3171/2011.1.peds10481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Hydrocephalus is a common condition in the pediatric population. The cause of hydrocephalus, Evans ratio, ventricular index, and cerebral mantle thickness are some of the factors associated with poor surgical outcome. This study was conducted to evaluate the profile of these factors in the authors' patient population. METHODS The authors conducted a prospective study from the August 1, 2006, to May 30, 2010. The consecutive patients were all 6 years of age or younger. The demographic information, cause of hydrocephalus, and cranial computerized measurements were taken (including widths of the frontal/occipital horns, third ventricle, and cerebral mantle thickness) and entered into the procedural forms. RESULTS One hundred thirty-seven patients presented to the unit over the stipulated period. The male/female ratio was 1.1:1. The median age at presentation was 4 months (mean 7.3 months, range 4 days to 6 years). Myelomeningocele-associated hydrocephalus, aqueductal stenosis, and postmeningitic hydrocephalus accounted for 30.7%, 22.6%, and 17.5%, respectively, of the cases. The mean Evans ratio was 0.56 (range 0.43-0.70), the mean ventricular index was 197.18 (range 135.0-245.3), and the mean cerebral mantle was 10.8 mm (10-14 mm). CONCLUSIONS This study shows that the congenital form of hydrocephalus is the predominant variety in the authors' population. Myelomeningocele-associated hydrocephalus, aqueductal stenosis, Dandy-Walker malformation, and postmeningitic hydrocephalus are common causes of hydrocephalus.
Collapse
Affiliation(s)
- Olufemi Idowu
- Neurosurgery Unit, Department of Surgery, Lagos State University College of Medicine, and Lagos State University Teaching Hospital, Ikeja, Lagos, Nigeria.
| | | |
Collapse
|
10
|
Abstract
In the context of spina bifida, hydrocephalus is usually caused by crowding of the posterior fossa with obstruction to cerebrospinal fluid flow from the forth ventricle, and less often by malformation of the cerebral aqueduct. Enlargement of the cerebral ventricles causes gradual destruction of periventricular white matter axons. Motor, sensory, visual, and memory systems may be disturbed through involvement of the long projection axons, periventricular structures including the corpus callosum, and the fimbria-fornix pathway. Secondary changes occur in neuronal cell bodies and synapses, but there is minimal death of neurons. The clinical syndrome of hydrocephalic brain dysfunction is thus due to subcortical disconnection. Some of the brain dysfunction is reversible by shunting, probably through restoration of cerebral blood flow and normalization of the extracellular environment. However, destroyed axons cannot be restored.
Collapse
Affiliation(s)
- Marc R Del Bigio
- Department of Pathology, University of Manitoba, and Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada.
| |
Collapse
|
11
|
Disruption of the neurogenic niche in the subventricular zone of postnatal hydrocephalic hyh mice. J Neuropathol Exp Neurol 2009; 68:1006-20. [PMID: 19680142 DOI: 10.1097/nen.0b013e3181b44a5a] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neural stem cells persist after embryonic development in the subventricular zone (SVZ) niche and produce new neural cells during postnatal life; ependymal cells are a key component associated with this neurogenic niche. In the animal model of human hydrocephalus, the hyh mouse, the ependyma of the lateral ventricles is progressively lost during late embryonic and early postnatal life and disappears from most of the ventricular surface throughout its life span. To determine the potential consequences of this loss on the SVZ, we characterized the abnormalities in this neurogenic niche in hyh mice. There was overall disorganization and a marked reduction of proliferative cells in the SVZ of both newborn and adult hyh hydrocephalic mice in vivo; neuroblasts were displaced to the ventricular surface, and their migration through the rostral migratory stream was reduced. The numbers of resident neural progenitor cells in hyh mice were also markedly reduced, but they were capable of proliferating, forming neurospheres, and differentiating into neurons and glia in vitro in a manner indistinguishable from that of wild-type progenitor cells. These findings suggest that the reduction of proliferative activity observed in vivo is not caused by a cell autonomous defect of SVZ progenitors but is a consequence of a reduced number of these cells. Furthermore, the overall tissue disorganization of the SVZ and displacement of neuroblasts imply alterations in the neurogenic niche of postnatal hyh mice.
Collapse
|
12
|
Lollis SS, Hoopes PJ, Kane S, Paulsen K, Weaver J, Roberts DW. Low-dose kaolin-induced feline hydrocephalus and feline ventriculostomy: an updated model. J Neurosurg Pediatr 2009; 4:383-8. [PMID: 19834994 PMCID: PMC3759808 DOI: 10.3171/2009.5.peds0941] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Intracisternal injection of kaolin is a well-described model of feline hydrocephalus. Its principal disadvantage is a high rate of procedure-related morbidity and mortality. The authors describe a series of modifications to a commonly used protocol, intended to ameliorate animal welfare concerns without compromising the degree of ventricular enlargement. METHODS In 11 adult cats, hydrocephalus was induced by injection of kaolin into the cisterna magna. Kaolin doses were reduced to 10 mg, compared with historical doses of ~ 200 mg, and high-dose dexamethasone was used to reduce the severity of meningeal irritation. A control cohort of 6 additional animals received injections of isotonic saline into the cisterna magna. RESULTS The mean ventricular volume increased from a baseline of 0.183 ± 0.068 ml to 1.43 ± 0.184 ml. Two animals were killed prior to completion of the study. Of the remaining animals, all were ambulatory by postinjection Day 1, and all had resumed normal oral intake by postinjection Day 3. Two animals required subcutaneous fluid supplementation. Ventriculostomy using anatomical landmarks was performed to ascertain intraventricular pressure. The mean intraventricular pressure after hydrocephalus was 15 cm H2O above the ear (range 11–20 cm H2O). CONCLUSIONS Reduction in kaolin dosage and the postoperative administration of high-dose corticosteroid therapy appear to reduce morbidity and mortality rates compared with historical experiences. Hydrocephalus is radiographically evident as soon as 3 days after injection, but it does not substantially interfere with feeding and basic self-care. To the extent that animal welfare concerns may have limited the use of this model in recent years, the procedures described in the present study may offer some guidance for its future use.
Collapse
Affiliation(s)
- S. Scott Lollis
- Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon
| | - P. Jack Hoopes
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon
| | - Susan Kane
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon
| | - Keith Paulsen
- Department of Biomedical Engineering, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - John Weaver
- Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon
| | - David W. Roberts
- Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon
| |
Collapse
|
13
|
The behavioral change of locomotor activity in a kaolin-induced hydrocephalus rat model: Evaluation of the effect on the dopaminergic system with progressive ventricle dilatation. Neurosci Lett 2009; 462:198-202. [DOI: 10.1016/j.neulet.2009.07.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 06/29/2009] [Accepted: 07/13/2009] [Indexed: 11/19/2022]
|
14
|
Bashir Z, Miller J, Miyan JA, Thorniley MS. A near infrared spectroscopy study investigating oxygen utilisation in hydrocephalic rats. Exp Brain Res 2006; 175:127-38. [PMID: 16733697 DOI: 10.1007/s00221-006-0541-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 04/26/2006] [Indexed: 11/26/2022]
Abstract
Determination of hydrocephalus and its severity is important for optimal management of the condition. We have used near infrared spectroscopy (NIRS) to assess changes in concentrations of oxygenated (O2Hb), deoxygenated (HHb), total haemoglobin (tHb) and cytochrome c oxidase (Caa3) in normal and hydrocephalic Texas (HTx) rats in response to a 5 min head down tilt and a sodium pentobarbitone (NaPB) challenge. The former was used to test vascular responses and the latter to test metabolic responses. The haemoglobin oxygenation index (HbD) was derived which provides information regarding oxygen utilisation ([HbD]=[O2Hb]-[HHb]). With the tilt challenge, a significant (P=0.001) difference was observed in [HbD] between normal (n=24) and hydrocephalic (n=14) rats (-3.50 (-6.00 to 0.00) microM cm(-1 )and 7.50 (0.75 to 14.25) microM cm(-1), respectively). In another experiment we tested the response of ten rats to NaPB administration and observed a significant difference (P=0.008) in [Caa3] between normal (n=5) and hydrocephalic (n=5) rats (-6.60 (-7.55 to -5.50) microM cm(-1 )and -2.20 (-5.60 to -1.05) microM cm(-1), respectively). Coronal sections of these ten rat brains were analysed and significant (P<0.05) relationships were found between some of the NIRS parameters and cortical thickness or lateral ventricle area measurements. Our studies demonstrate that a significant difference in cerebral oxygenation and haemodynamics can be observed between normal and hydrocephalic HTx rats using NIRS.
Collapse
Affiliation(s)
- Zareen Bashir
- School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, M60 1QD, UK.
| | | | | | | |
Collapse
|
15
|
Agren-Wilsson A, Eklund A, Koskinen LOD, Bergenheim AT, Malm J. Brain energy metabolism and intracranial pressure in idiopathic adult hydrocephalus syndrome. J Neurol Neurosurg Psychiatry 2005; 76:1088-93. [PMID: 16024885 PMCID: PMC1739732 DOI: 10.1136/jnnp.2004.042838] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND The symptoms in idiopathic adult hydrocephalus syndrome (IAHS) are consistent with pathology involving the periventricular white matter, presumably reflecting ischaemia and CSF hydrodynamic disturbance. OBJECTIVE To investigate whether a change in intracranial pressure (ICP) can affect energy metabolism in deep white matter. METHODS A microdialysis catheter, a brain tissue oxygen tension probe, and an ICP transducer were inserted into the periventricular white matter 0-7 mm from the right frontal horn in 10 patients with IAHS. ICP and intracerebral Ptio2 were recorded continuously during lumbar CSF constant pressure infusion test. ICP was raised to pressure levels of 35 and 45 mm Hg for 10 minutes each, after which CSF drainage was undertaken. Microdialysis samples were collected every three minutes and analysed for glucose, lactate, pyruvate, and glutamate. RESULTS When raising the ICP, a reversible drop in the extracellular concentrations of glucose, lactate, and pyruvate was found. Comparing the values during baseline to values at the highest pressure level, the fall in glucose, lactate, and pyruvate was significant (p < 0.05, Wilcoxon sign rank). There was no change in glutamate or the lactate to pyruvate ratio during ICP elevation. Ptio2 did not decrease during ICP elevation, but was significantly increased following CSF drainage. CONCLUSIONS Raising intracranial pressure induces an immediate and reversible change in energy metabolism in periventricular white matter, without any sign of ischaemia. Theoretically, frequent ICP peaks (B waves) over a long period could eventually cause persisting axonal disturbance and subsequently the symptoms noted in IAHS.
Collapse
Affiliation(s)
- A Agren-Wilsson
- Department of Clinical Neuroscience, Umeå University, S-901 85 Umeå, Sweden.
| | | | | | | | | |
Collapse
|
16
|
Abstract
The literature concerning brain damage due to hydrocephalus, especially in children and animal models, is reviewed. The following conclusions are reached: 1. Hydrocephalus has a deleterious effect on brain that is dependent on magnitude and duration of ventriculomegaly and modified by the age of onset. 2. Animal models have many histopathological similarities to humans and can be used to understand the pathogenesis of brain damage. 3. Periventricular axons and myelin are the primary targets of injury. The pathogenesis has similarities to traumatic and ischemic white matter injury. Secondary changes in neurons reflect compensation to the stress or ultimately the disconnection. 4. Altered efflux of extracellular fluid could result in accumulation of waste products that might interfere with neuron function. Further research is needed in this as well as the blood-brain barrier in hydrocephalus. 5. Some, but not all, of the changes are preventable by shunting CSF. However, axon loss cannot be reversed, therefore shunting in a given case must be considered carefully. 6. Experimental work has so far failed to show any benefit in reducing CSF production. Pharmacologic protection of the brain, at least as a temporary measure, holds some promise but more pre-clinical research is required.
Collapse
Affiliation(s)
- Marc R Del Bigio
- Department of Pathology, University of Manitoba, and Manitoba Institute for Child Health, Winnipeg, Canada.
| |
Collapse
|
17
|
Cherian SS, Love S, Silver IA, Porter HJ, Whitelaw AGL, Thoresen M. Posthemorrhagic ventricular dilation in the neonate: development and characterization of a rat model. J Neuropathol Exp Neurol 2003; 62:292-303. [PMID: 12638733 DOI: 10.1093/jnen/62.3.292] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intraventricular hemorrhage is a common complication of prematurity. Posthemorrhagic ventricular dilation (PHVD) has a high rate of disability and no safe and effective treatment. Its pathogenesis is poorly understood, largely because of the lack of a satisfactory animal model. We have developed a model of neonatal PHVD in the rat. Seven-day-old (P7) Wistar rat pups were given 80-microl injections of citrated rat blood or artificial cerebrospinal fluid (CSF) into alternate lateral ventricles on P7 and P8. Intracranial pressure was monitored and increased briefly by over 8-fold. Some rats received further 10-microl intraventricular injections of India ink on P21. Animals were weighed daily and simple neurologic tests performed. On P21 (or P22 if India ink had been injected), the rats were perfusion-fixed and blocks processed for paraffin histology. Sixty-five percent of pups injected with blood and 50% injected with artificial CSF developed dilated lateral ventricles, with patchy loss of ependyma, marked astrocytic gliosis, and rarefaction of periventricular white matter. India ink injection revealed slow transit of CSF from the dilated lateral ventricles but eventual passage into the subarachnoid space. Pups that had received intraventricular injections but did not develop ventricular dilation nonetheless had lighter brains than littermate controls (p < 0.001). Body weights were not significantly different from controls. Hydrocephalic animals had reduced motor performance as assessed by a grip traction test (p = 0.0002). This model is well suited to studying the pathogenesis of PHVD.
Collapse
Affiliation(s)
- Shobha S Cherian
- Division of Child Health, St. Michael's Hospital, Bristol, United Kingdom
| | | | | | | | | | | |
Collapse
|
18
|
Agren-Wilsson A, Roslin M, Eklund A, Koskinen LOD, Bergenheim AT, Malm J. Intracerebral microdialysis and CSF hydrodynamics in idiopathic adult hydrocephalus syndrome. J Neurol Neurosurg Psychiatry 2003; 74:217-21. [PMID: 12531954 PMCID: PMC1738283 DOI: 10.1136/jnnp.74.2.217] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND In idiopathic adult hydrocephalus syndrome (IAHS), a pathophysiological model of "chronic ischaemia" caused by an arteriosclerotic process in association with a CSF hydrodynamic disturbance has been proposed. OBJECTIVE To investigate whether CSF hydrodynamic manipulation has an impact on biochemical markers related to ischaemia, brain tissue oxygen tension (PtiO(2)), and intracranial pressure. METHODS A microdialysis catheter, a PtiO(2) probe, and an intracerebral pressure catheter were inserted into the periventricular white matter 0-7 mm from the right frontal horn in 10 patients with IAHS. A subcutaneous microdialysis probe was used as reference. Intracranial pressure and intracerebral PtiO(2) were recorded continuously. Samples were collected for analysis between 2 and 4 pm on day 1 (baseline) and at the same time on day 2, two to four hours after a lumbar CSF hydrodynamic manipulation. The concentrations of glucose, lactate, pyruvate, and glutamate on day 1 and 2 were compared. RESULTS After CSF drainage, there was a significant rise in the intracerebral concentration of lactate and pyruvate. The lactate to pyruvate ratio was increased and remained unchanged after drainage. There was a trend towards a lowering of glucose and glutamate. Mean intracerebral PtiO(2) was higher on day 2 than on day 1 in six of eight patients. CONCLUSIONS There is increased glucose metabolism after CSF drainage, as expected in a situation of postischaemic recovery. These new invasive techniques are promising tools in the future study of the pathophysiological processes in IAHS.
Collapse
Affiliation(s)
- A Agren-Wilsson
- Department of Clinical Neuroscience, Umeå University, S-901 85 Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
19
|
Lopes LDS, Machado HR, Lachat JJ. Study of corpus callosum in experimental hydrocephalic wistar rats. Acta Cir Bras 2003. [DOI: 10.1590/s0102-86502003001200005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PURPOSE: Hydrocephalus causes countless cerebral damages, especially on the structures around the ventricles. Hydrocephalic children present deficiencies in the nonverbal skills more than in the verbal skills, and not always revertible with an early treatment. As the corpus callosum has an important role in the nonverbal acquisition it is possible that the injuries in this structure are responsible for the cognitive dysfunctions of these children. This present study tries to establish the alterations caused by hydrocephalus on the corpus callosum of developing Wistar rats, induced by intracisternal injection of kaolin. METHODS : Seven, fourteen and twenty one days after the injection, the animals were killed, and the corpus callosum was dissected and prepared for the study of the axonal fibers. RESULTS AND CONCLUSION: The seven-day old rats in hydrocephalus development presented a delay in myelination in relation to the control rats. With the fourteen-day old rats in hydrocephalus development the corpus callosum showed a recovery of myelin, but with the twenty one-day old rats in hydrocephalus development the axonal fibers were damaged and reduced in number.
Collapse
|
20
|
Balasubramaniam J, Del Bigio MR. Analysis of age-dependant alteration in the brain gene expression profile following induction of hydrocephalus in rats. Exp Neurol 2002; 173:105-13. [PMID: 11771943 DOI: 10.1006/exnr.2001.7831] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydrocephalus is associated with gradual progressive impairment and destruction of cerebral axons and neurons. To provide a comprehensive analysis of gene expression changes in brain due to experimental hydrocephalus we used a DNA microarray screening technique. Hydrocephalus was induced in 3-week-old and 8- to 10-week-old rats by injection of kaolin into cisterna magna. Following induction of hydrocephalus, samples of frontoparietal cerebrum were studied 3 and 36 weeks later in young rats and 1.5 weeks later in adult rats. At the transcriptional level, young rats with subacute hydrocephalus showed overexpression of genes involved in synaptic transmission in parallel to genes associated with protective and compensatory mechanisms. Those with chronic hydrocephalus exhibited some similar changes among synapse-related genes but suppression of other neuronal genes. Expression of myelin-related genes was increased in both groups of rats with early onset hydrocephalus but suppressed in adult rats with acute hydrocephalus. Changes in genes related to extracellular matrix molecules suggest that there might be remodeling in this compartment. Adult rats showed elevated expression of inflammatory genes, likely related to kaolin-induced inflammation, but they failed to show changes in genes involved in compensatory or protective mechanisms. These results indicate that there is an age- and duration-dependent difference in the gene expression profiles of kaolin-induced hydrocephalus and they present avenues for future research.
Collapse
Affiliation(s)
- Janani Balasubramaniam
- Department of Pathology, University of Manitoba, Manitoba Institute for Child Health, Winnipeg, MB R3E 0W3 Canada
| | | |
Collapse
|
21
|
Tani K, Taga A, Itamoto K, Iwanaga T, Une S, Nakaichi M, Taura Y. Hydrocephalus and syringomyelia in a cat. J Vet Med Sci 2001; 63:1331-4. [PMID: 11789613 DOI: 10.1292/jvms.63.1331] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A 3-month-old male Japanese cat with feline parvovirus infection, showing central and cervical nerve abnormalities, was diagnosed as hydrocephalus and syringomyelia by use of magnetic resonance imaging (MRI). The cat was maintained clinically by medical treatment even though he could not stand. The MRI scans obtained about 5 months later showed that the ventricles had increased in size and the cervical syrinx had extended into the thoracic spinal cord. Ventriculoperitoneal (VP) shunt was performed. One week after surgery, neurological conditions had improved. At the postoperative MR images, the ventricles had decreased in size and the syrinx in the cervical and thoracic spinal cord could no longer be seen. The cat was still alive and was able to walk well.
Collapse
Affiliation(s)
- K Tani
- Department of Veterinary Surgery, Faculty of Agriculture, Yamaguchi University, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- P Chumas
- Departments of Neurosurgery and Paediatric Neurology, Division of Paediatric Neurosciences Leeds General Infirmary, Leeds LS1 3EX, UK
| | | | | |
Collapse
|
23
|
|
24
|
Del Bigio MR, Massicotte EM. Protective effect of nimodipine on behavior and white matter of rats with hydrocephalus. J Neurosurg 2001; 94:788-94. [PMID: 11354411 DOI: 10.3171/jns.2001.94.5.0788] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Hydrocephalus, a pathological dilation of the ventricles of the brain, causes damage to periventricular white matter, at least in part, through chronic ischemia. The authors tested the hypothesis that treatment with nimodipine, an L-type calcium channel-blocking agent with demonstrated efficacy in a range of cerebral ischemic disorders, would ameliorate the adverse effects of experimental hydrocephalus. METHODS Hydrocephalus was induced in 3-week-old rats by injection of kaolin into the cisterna magna. The rats were treated by continuous administration of nimodipine or control vehicle for 2 weeks, beginning 2 weeks after induction of hydrocephalus. During the treatment period, the animals underwent repeated tests of motor and cognitive behavior. At the end of the treatment period, the rat brains were analyzed by histopathological and biochemical means. Nimodipine treatment prevented the declines in motor and cognitive behavior that were observed in untreated control rats. During the treatment period, ventricular enlargement, determined by magnetic resonance imaging, was equal in the two groups, although the corpus callosum was thicker in the treated rats. Myelin content in white matter and synaptophysin content in gray matter, an indicator of synapses, did not differ. CONCLUSIONS The protective effect of nimodipine is most likely based on improved blood flow, although prevention of calcium influx-mediated proteolytic processes in axons cannot be excluded. Adjunctive pharmacological therapy may be beneficial to patients with hydrocephalus.
Collapse
Affiliation(s)
- M R Del Bigio
- Department of Pathology, University of Manitoba, Winnipeg, Canada.
| | | |
Collapse
|
25
|
Soul JS, Taylor GA, Wypij D, Duplessis AJ, Volpe JJ. Noninvasive detection of changes in cerebral blood flow by near-infrared spectroscopy in a piglet model of hydrocephalus. Pediatr Res 2000; 48:445-9. [PMID: 11004233 DOI: 10.1203/00006450-200010000-00005] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Formulation of rational interventions in infantile hydrocephalus is limited by the inability to monitor cerebral hemodynamics quantitatively, continuously, and noninvasively. Near-infrared spectroscopy (NIRS) measures changes in cerebral concentration of oxygenated and deoxygenated hemoglobin (HbO(2) and Hb); HbD is the derived difference between HbO(2) and Hb. Our previous work showed that HbD reflected cerebral blood flow (CBF) measured by radioactive microspheres in a piglet model of systemic hypotension. This study was designed to determine whether NIRS detected important changes in cerebral perfusion and oxygenation in a piglet model of hydrocephalus and whether changes in HbD accurately reflected changes in CBF. Acute hydrocephalus was produced in neonatal piglets by intraventricular infusion of "mock cerebrospinal fluid." Intracranial pressure (ICP) was maintained for several minutes at approximately 10, 20, and 30 mm Hg above the baseline ICP. CBF was measured in cerebral cortex, white matter, and basal ganglia at each ICP by radioactive microspheres. Changes in HbO(2) and Hb were measured continuously by NIRS. Cerebral perfusion pressure declined with increasing ICP, and this decline was accompanied by significant decreases in HbD measured by NIRS and CBF measured by radioactive microspheres. There was a strong correlation between changes in HbD and individual changes in CBF in cerebral cortex, white matter, and basal ganglia (all p < 0.0001). This study demonstrates that changes in HbD reflect changes in CBF over a wide range of ICP in a model of acute hydrocephalus. This reproducible and easily obtained measurement by NIRS could facilitate considerably decisions concerning therapeutic interventions.
Collapse
Affiliation(s)
- J S Soul
- Department of Neurology, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
26
|
Lactate dehydrogenase enzyme as a metabolic marker for the evaluation of shunting in infants with non-tumoral hydrocephalus. Neurocirugia (Astur) 2000. [DOI: 10.1016/s1130-1473(00)70760-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Cohen AR, Leifer DW, Zechel M, Flaningan DP, Lewin JS, Lust WD. Characterization of a model of hydrocephalus in transgenic mice. J Neurosurg 1999; 91:978-88. [PMID: 10584844 DOI: 10.3171/jns.1999.91.6.0978] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The purpose of this study was to elucidate the pathophysiological characteristics of hydrocephalus in a new transgenic model of mice created to overproduce the cytokine transforming growth factor-beta1 (TGFbeta1) in the central nervous system (CNS). METHODS Galbreath and colleagues generated transgenic mice that overexpressed TGFbeta1 in the CNS in an effort to examine the role of this cytokine in the response of astrocytes to injury. Unexpectedly, the animals developed severe hydrocephalus and died. The authors have perpetuated this transgenic colony to serve as a model of congenital hydrocephalus, breeding asymptomatic carrier males that are heterozygous for the transgene with wild-type females. One hundred twelve (49.6%) of 226 mice developed clinical manifestations of hydrocephalus, characterized by dorsal doming of the calvaria, spasticity, limb tremors, ataxia, and, ultimately, death. The presence of the TGFbeta1 transgene was determined by performing polymerase chain reaction (PCR) analysis of sample tail slices. Animals with the hydrocephalic phenotype consistently carried the transgene, although some animals with the transgene did not develop hydrocephalus. Animals without the transgene did not develop hydrocephalus. Alterations in brain structure were characterized using magnetic resonance (MR) imaging, gross and light microscopic analysis, and immunocytochemical studies. Magnetic resonance imaging readily distinguished hydrocephalic animals from nonhydrocephalic controls and demonstrated an obstruction at the outlets of the fourth ventricle. Gross and light microscopic examination confirmed the MR findings. The results of immunofluorescent staining of brain tissue slices revealed the presence of the TGFbeta1 cytokine and its receptor preferentially in the meninges and subarachnoid space in both hydrocephalic and control mice. Reverse transcriptase-PCR analysis demonstrated tissue-specific expression of the TGFbeta1, gene in the brains of transgenic mice, and enzyme-linked immunosorbent assay confirmed overexpression of the TGFbeta1 cytokine in brain, cerebrospinal fluid, and plasma. CONCLUSIONS The transgenic murine model provides a reproducible representation of congenital hydrocephalus. The authors hypothesize that overexpression of TGFbeta1 in the CNS causes hydrocephalus by altering the environment of the extracellular matrix and interfering with the circulation of cerebrospinal fluid. A model of hydrocephalus in which the genetic basis is known should be useful for evaluating hypotheses regarding the pathogenesis of this disorder and should also help in the search for new treatment strategies.
Collapse
Affiliation(s)
- A R Cohen
- Rainbow Babies and Children's Hospital, Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
28
|
Cohen AR, Leifer D, Zechel M, Flaningan DP, Lewin JS, Lust WD. Characterization of a model of hydrocephalus in transgenic mice. Neurosurg Focus 1999. [DOI: 10.3171/foc.1999.7.4.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The purpose of this study was to elucidate the pathophysiology of hydrocephalus in a new transgenic model of mice created to overproduce the cytokine, transforming growth factor-ß1 (TGFß1), in the central nervous system (CNS).
Galbreath and colleagues generated transgenic mice that overexpressed TGFß1 in the CNS in an effort to examine the role of this cytokine in the astrocytic response to injury. Unexpectedly, the animals developed severe hydrocephalus and died. The authors perpetuated this transgenic colony to serve as a model of congenital hydrocephalus, breeding asymptomatic carrier males that were heterozygous for the transgene with wild-type females.
One hundred twelve (49.6%) of 226 mice developed clinical manifestations of hydrocephalus, which was characterized by dorsal doming of the calvaria, spasticity, limb tremors, ataxia, and ultimately death. The presence of the TGFß1 transgene was determined by performing polymerase chain reaction (PCR) analysis of sample cuts of tail. The animals with the hydrocephalic phenotype consistently carried the transgene, although some animals with the transgene did not develop hydrocephalus. Animals without the transgene did not develope hydrocephalus.
Alterations in brain structure were characterized using magnetic resonance (MR) imaging, gross and light microscopic analysis, and immunocytochemistry. Magnetic resonance imaging readily distinguished hydrocephalic animals from nonhydrocephalic controls, and it demonstrated an obstruction at the outlets of the fourth ventricle. Gross and light microscopic examination confirmed the MR findings. The results of immunofluorescent staining of brain tissue slices revealed the presence of the TGFß1 cytokine and its receptor preferentially in the meninges and subarachnoid space in both hydrocephalic and control mice. Reverse transcriptase-PCR analysis demonstrated tissue-specific expression of the TGFß1 gene in the brains of transgenic mice, and enzyme-linked immunosorbent assay confirmed the occurrence of overexpression of the TGFß1 cytokine in brain, cerebrospinal fluid, and plasma.
The transgenic murine model provides a reproducible representation of congenital hydrocephalus. The authors hypothesize that overexpression of TGFß1 in the CNS causes hyrdocephalus by altering the environment of the extracellular matrix and interfering with the circulation of cerebrospinal fluid. A model of hydrocephalus in which the genetic basis is known should be useful for evaluating hypotheses regarding the pathogenesis of this disorder and additionally, should help in the search for novel treatment strategies.
Collapse
|
29
|
Braun KP, van Eijsden P, Vandertop WP, de Graaf RA, Gooskens RH, Tulleken KA, Nicolay K. Cerebral metabolism in experimental hydrocephalus: an in vivo 1H and 31P magnetic resonance spectroscopy study. J Neurosurg 1999; 91:660-8. [PMID: 10507389 DOI: 10.3171/jns.1999.91.4.0660] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Brain damage in patients with hydrocephalus is caused by mechanical forces and cerebral ischemia. The severity and localization of impaired cerebral blood flow and metabolism are still largely unknown. Magnetic resonance (MR) spectroscopy offers the opportunity to investigate cerebral energy metabolism and neuronal damage noninvasively and longitudinally. Previous 1H MR spectroscopy studies have shown an increased lactate resonance that is suggestive of anaerobic glycolysis. The aim of this study was to assess cerebral damage and energy metabolism in kaolin-induced hydrocephalus in adult rats by using in vivo 1H and 31P MR spectroscopy. The presence of lactate was correlated with high-energy phosphate metabolism and intracellular pH. The measurement of relative concentrations of N-acetyl aspartate (NAA), choline (Cho), and total creatine (tCr) served to assess neuronal damage. METHODS Hydrocephalus was induced in adult rats by surgical injection of kaolin into the cisterna magna. Magnetic resonance studies, using a 4.7-tesla magnet, were performed longitudinally in hydrocephalic animals at 1 (10 rats), 8 (six rats), and 16 weeks (six rats) thereafter, as well as in eight control animals. To evaluate ventricular size and white matter edema T2-weighted MR imaging was performed. The 1H MR spectra were acquired from a 240-microl voxel, positioned centrally in the brain, followed by localized 31P MR spectroscopy on a two-dimensional column that contained the entire brain but virtually no extracranial muscles. The 1H and 31P MR spectroscopy peak ratios were calculated after fitting the spectra in the time domain, intracellular pH was estimated from the inorganic phosphate (Pi) chemical shift, and T2 relaxation times of 1H metabolites were determined from the signal decay at increasing echo times. CONCLUSIONS In hydrocephalic rats, ventricular expansion stabilized after 8 weeks. White matter edema was most pronounced during acute hydrocephalus. Lactate peaks were increased at all time points, without a decrease in phosphocreatine (PCr)/Pi and PCr/adenosine triphosphate (ATP) peak ratios, or pH. Possibly lactate production is restricted to periventricular brain tissue, followed by its accumulation in cerebrospinal fluid, which is supported by the long lactate T2 relaxation time. Alternatively, lactate production may precede impairment of ATP homeostasis. The NAA/Cho and tCr/Cho ratios significantly decreased during the acute and chronic stages of hydrocephalus. These changes were not caused by alterations in metabolite T2 relaxation time. The decreases in the NAA/Cho and tCr/Cho ratios implicate neuronal loss/dysfunction or changes in membrane phospholipid metabolism, as in myelin damage or gliosis. It is suggested that 1H MR spectroscopy can be of additional value in the assessment of energy metabolism and cerebral damage in clinical hydrocephalus.
Collapse
Affiliation(s)
- K P Braun
- Department of Neurology, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
30
|
McAllister JP, Wood AS, Johnson MJ, Connelly RW, Skarupa DJ, Secic M, Luciano MG, Harris NG, Jones HC. Decreased c-fos expression in experimental neonatal hydrocephalus: evidence for reduced neuronal activation. Neurosurg Focus 1999. [DOI: 10.3171/foc.1999.7.4.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although neonatal hydrocephalus often results in residual neurological impairments, little is known about the cellular mechanisms responsible for these deficits. The immediate early gene, fos (c-fos), functions as a “third messenger” to regulate protein synthesis and is a good marker for neuronal activation. To identify functional changes in neurons at the cellular level, the authors quantified fos RNA expression and localized fos protein in the H-Tx rat model of congenital hydrocephalus. Tissue samples from sensorimotor and auditory regions were obtained from hydrocephalic rats and age-matched, normal litter mates at 1, 6, 12, and 21 days of age (four-six animals in each group) and processed for immunohistochemical analysis of fos and Northern blot analysis of RNA. At 12 days of age, hydrocephalic animals exhibited significant decreases in the ratio of fos immunoreactive cells to Nissl-stained neurons from both cortical regions, but no statistical differences were noted in fos expression. At 21 days of age, both the ratio of fos immunoreactive cells to Nissl-stained neurons and fos expression decreased significantly. The number of fos-positive neurons decreased in all cortical layers but was most prominent in layers V through VI. This decrease did not appear to be caused by neuronal death because examination of Nissl-stained sections revealed many viable neurons within the areas where fos immunoreactivity was absent. These results suggest that progressive neonatal hydrocephalus reduces the capacity for neuronal activation in the cerebral cortex, primarily in those neurons that provide corticofugal projections, and that this impairment may begin during relatively early stages of ventriculomegaly.
Collapse
|
31
|
Braun KP, de Graaf RA, Vandertop WP, Gooskens RH, Tulleken KA, Nicolay K. In vivo 1H MR spectroscopic imaging and diffusion weighted MRI in experimental hydrocephalus. Magn Reson Med 1998; 40:832-9. [PMID: 9840827 DOI: 10.1002/mrm.1910400608] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The severity and progression of ventricular enlargement, the occurrence of cerebral edema, and the localization of ischemic metabolic changes were investigated in a rat model of hydrocephalus, using in vivo 1H MR spectroscopic imaging (SI) and diffusion weighted MRI (DW MRI). Hydrocephalic rats were studied 1, 2, 4, and 8 weeks after injection of kaolin into the cisterna magna. Parametric images of the apparent diffusion coefficient (ADC) revealed a varying degree of ventriculomegaly in all rats, with different time courses of ventricular expansion. Extracellular white matter edema was observed during the early stages of hydrocephalus, most extensively in cases of progressive ventriculomegaly. In gray matter regions, ADC values were not changed, compared with controls. In case of fatal hydrocephalus, high lactate levels were observed throughout the whole brain. In all other rats, at all time points after kaolin injection, lactate was detected only in voxels containing cerebrospinal fluid. This suggests accumulation of lactate in the ventricles, and/or an ongoing periventricular production of lactate as a consequence of cerebral ischemia in experimental hydrocephalus.
Collapse
Affiliation(s)
- K P Braun
- Department of Neurology, University Hospital Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Del Bigio MR, Zhang YW. Cell death, axonal damage, and cell birth in the immature rat brain following induction of hydrocephalus. Exp Neurol 1998; 154:157-69. [PMID: 9875277 DOI: 10.1006/exnr.1998.6922] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that hydrocephalus can cause death of brain cells and that generation of new brain cells might compensate for the cell loss. Hydrocephalus was induced in 3-week-old rats by injection of kaolin into the cisterna magna. The brains were studied 1 to 4 weeks later by histochemical, immunochemical, and ultrastructural methods. The ventricles enlarged progressively. Some axons in the corpus callosum were injured as early as 1 week, but axonal damage was not prevalent until 4 weeks when ventriculomegaly became severe. Dying cells detected by DNA end labeling and often identified as oligodendrocytes by electron microscopy were evident in white matter. Late-stage hydrocephalus was associated with a significant increase in the quantity of dying cells. Hydrocephalus was associated with increased Ki67 labeling and bromodeoxyuridine incorporation in the subependymal zone. Reactive changes were identified among astrocytes, oligodendroglia, and microglia. We conclude that hydrocephalus causes, in addition to axonal injury, gradual cell death in the cerebrum, particularly the white matter. The brain response includes production of new glial cells, but whether the new cells play any beneficial role remains unknown.
Collapse
Affiliation(s)
- M R Del Bigio
- Department of Pathology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
33
|
du Plessis AJ. Posthemorrhagic hydrocephalus and brain injury in the preterm infant: dilemmas in diagnosis and management. Semin Pediatr Neurol 1998; 5:161-79. [PMID: 9777675 DOI: 10.1016/s1071-9091(98)80032-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Advances in neonatal critical care have reduced the incidence of intraventricular hemorrhage (IVH) in the newborn. Paradoxically, however, the prevalence of the complications of IVH including posthemorrhagic hydrocephalus (PHHC) has increased. By virtue of its association with long-term neurodevelopmental disability, posthemorrhagic hydrocephalus is an ominous diagnosis in the premature infant. Animal models have demonstrated that ventricular distention may cause direct cerebral parenchymal injury. Evidence for secondary parenchymal injury in the premature infant with PHHC is by necessity indirect. The precise impact of secondary parenchymal injury on the overall neurological outcome of premature infants with PHHC remains unclear in large part because of the vulnerability of the immature brain to other forms of injury (e.g., periventricular leukomalacia) that may be difficult to distinguish from injury due to distention. Furthermore, parenchymal injury due to PVL may cause ventricular enlargement that does not benefit from CSF diversion. Because these primary and secondary mechanisms of injury may operate concurrently, the precise or dominant cause of ventricular enlargement is often difficult to establish with certainty in the neonatal period. These diagnostic dilemmas have in turn impeded the development and evaluation of therapies specifically aimed at reversing ventricular distention and preventing secondary parenchymal injury. This article focuses on the current dilemmas in diagnosis and management of this potentially reversible form of injury as well as on potential future strategies for its prevention.
Collapse
Affiliation(s)
- A J du Plessis
- Children's Hospital, Department of Neurology, Boston, MA 02115, USA
| |
Collapse
|
34
|
|
35
|
Tashiro Y, Drake JM, Chakrabortty S, Hattori T. Functional injury of cholinergic, GABAergic and dopaminergic systems in the basal ganglia of adult rat with kaolin-induced hydrocephalus. Brain Res 1997; 770:45-52. [PMID: 9372201 DOI: 10.1016/s0006-8993(97)00742-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Structural and/or functional injury of the basal ganglia can lead to motor functional disabilities, abnormal gait and posture, and intellectual/emotional impairment, disorders also frequently seen in hydrocephalus. Previous reports have documented changes in dopamine levels in the neostriatum in experimental hydrocephalus. The present study was designed to investigate possible functional injury of cholinergic, GABAergic and dopaminergic systems in the basal ganglia immunohistochemically in a model of kaolin-induced hydrocephalus. Hydrocephalus was induced in 12 Wistar rats by intracisternal injection of 0.05 ml volume of 25% kaolin solution under microscopic guidance. Four controls received an equal volume of sterile saline. The animals were killed at 2, 4 and 8 weeks after injection. The numbers of choline acetyltransferase (ChAT)- and glutamic acid decarboxylase (GAD)-immunoreactive (IR) neostriatal neurons and tyrosine hydroxylase (TH)-IR nigral neurons, were counted in 60-micron thick representative sections and the IR cellular densities (counted cell number/neostriatal area) were calculated in the neostriatum. The number of total neostriatal neurons was also counted in 15-micron thick sections stained by cresyl violet (Nissl staining) to calculate the cellular density. The number and cellular density of neostriatal ChAT-IR neurons were significantly reduced at 2, 4, and 8 weeks after injection (P < 0.05), while those of GAD-IR neurons decreased at 4 and 8 weeks (P < 0.05). There was a linear correlation between degree of ventricular enlargement, and reduction in number of ChAT- and GAD-IR neurons (P < 0.001) as well as in the cellular density (P < 0.001). However, Nissl staining revealed no reduction in the cellular density of total neostriatal neurons (P < 0.001). TH immunoreactivity was reduced in neostriatal axons and in nigral compacta neurons, particularly in the medial portion of the dopaminergic nigrostriatal pathway. These findings suggest that progressive hydrocephalus results in functional injuries of cholinergic and GABAergic neurons in the neostriatum and dopaminergic neurons in the substantia nigra compacta by mechanical distortion. The disturbance in balance of these neurotransmitter systems in the basal ganglia may explain some of motor functional disabilities in hydrocephalus.
Collapse
Affiliation(s)
- Y Tashiro
- Division of Neurosurgery, Hospital for Sick Children, Faculty of Medicine, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
36
|
Jones HC, Harris NG, Rocca JR, Andersohn RW. Progressive changes in cortical metabolites at three stages of infantile hydrocephalus studied by in vitro NMR spectroscopy. J Neurotrauma 1997; 14:587-602. [PMID: 9337122 DOI: 10.1089/neu.1997.14.587] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Infantile hydrocephalus is most often caused by an obstruction in the cerebrospinal fluid flow pathway and results in ventricular dilatation and chronic trauma to the surrounding brain. Surgical treatment alleviates the condition but does not cure or prevent neurological deficits. The H-Tx rat has severe hydrocephalus due to a spontaneous aqueduct obstruction in late gestation. In order to determine how hydrocephalus affects brain metabolism in tissue adjacent to the expanded ventricles, cortical extracts have been made from groups of hydrocephalic and control littermates with early, intermediate, and advanced hydrocephalus at 4, 11, and 21 days after birth. Extracts were analyzed with 1H and 31P NMR spectroscopy and metabolite peaks were quantified using an external standard. Metabolite concentrations were calculated relative to tissue wet weight and subsequently expressed relative to tissue dry weight, using values for water content obtained from additional groups of rats. In early hydrocephalus there was a significant decrease in the phosphomonoester phosphorylcholine, and there were small, nonsignificant changes in other compounds. By 11 days, in addition to phosphomonoesters, there were significant decreases in ATP, phosphocreatine, and in inorganic phosphate, but with no change in lactate. By 21 days there were also substantial decreases in cholines, inositol, creatine, glutamate, glutamine, aspartate, N-acetylaspartate, alanine, and taurine. It is concluded that the sequence of pathological events starts with changes in membrane lipids. This is followed by reductions in energy metabolite which leads to cell swelling with loss of intracellular osmolytes and neurotransmitters. These changes are discussed in relation to hydrocephalus pathophysiology and to prevention and reversibility with shunt treatment.
Collapse
Affiliation(s)
- H C Jones
- Department of Pharmacology, University of Florida Brain Institute, University of Florida, Gainesville 32610, USA
| | | | | | | |
Collapse
|
37
|
Braun KP, Dijkhuizen RM, de Graaf RA, Nicolay K, Vandertop WP, Gooskens RH, Tulleken KA. Cerebral ischemia and white matter edema in experimental hydrocephalus: a combined in vivo MRI and MRS study. Brain Res 1997; 757:295-8. [PMID: 9200761 DOI: 10.1016/s0006-8993(97)00345-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
T2 and diffusion weighted MRI, as well as 31P and 1H MRS were performed in kaolin-induced hydrocephalic rats. Extracellular white matter edema was detected in the early stages of progressive hydrocephalus. Phosphocreatine (PCr)/inorganic phosphate (Pi) ratios in hydrocephalic animals were decreased compared to controls, and lactate was detected during the acute and chronic stages of hydrocephalus. These MR spectroscopic results are indicative of a compromised energy metabolism and suggest the occurrence of cerebral ischemia in experimental hydrocephalus.
Collapse
Affiliation(s)
- K P Braun
- Department of Neurology, University Hospital Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
38
|
Del Bigio MR, Cardoso ER, Halliday WC. Neuropathological changes in chronic adult hydrocephalus: cortical biopsies and autopsy findings. Can J Neurol Sci 1997; 24:121-6. [PMID: 9164688 DOI: 10.1017/s0317167100021442] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The cortical changes resulting from chronic hydrocephalus in adults are not well defined. METHODS Retrospective analysis of twenty-one patients (age 64-88 years) with a clinical diagnosis of "normal pressure hydrocephalus" who underwent cortical biopsy at the time of intracranial pressure monitoring or shunt insertion, and eight patients who were biopsied but not shunted. Eleven brains (age 26-92 years), seven from patients who could be considered to have "normal pressure hydrocephalus", were also examined following autopsy. Age- and sex-matched control brains with small ventricles and no history of dementia were compared to the hydrocephalic brains. Senile plaques and neurofibrillary tangles were assessed semiquantitatively and a non-parametric statistical analysis was employed. RESULTS Five biopsies exhibited both senile plaques and rare neurofibrillary tangles, while two had only neurofibrillary tangles. Neurofibrillary tangles were more prevalent in hydrocephalic brains than in controls. There was no difference in the prevalence of senile plaques between the two groups. Grumose bodies in the substantia nigra were identified in five autopsy brains, a prevalence higher than in control brains. CONCLUSIONS These pathological features are not specific for hydrocephalus; however, they suggest that long-standing ventriculomegaly is associated with degenerative brain changes in sites beyond the periventricular white matter. The presence of senile plaques in cortical biopsies from hydrocephalic patients does not appear to be a contraindication to shunting; however a prospective study in patients undergoing intracranial pressure monitoring would better address the issue.
Collapse
Affiliation(s)
- M R Del Bigio
- Department of Pathology, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
39
|
Bluml S, McComb JG, Ross BD. Differentiation between cortical atrophy and hydrocephalus using 1H MRS. Magn Reson Med 1997; 37:395-403. [PMID: 9055230 DOI: 10.1002/mrm.1910370317] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Quantitative 1H MRS to determine cerebral metabolite patterns and MRI to determine CSF flow were applied to 12 patients with ventricular dilation-Group A, cortical atrophy (N = 5); or Group B, hydrocephalus (N = 7)- and in 9 normal controls. While mean brain water (Group A = 80% +/- 6; Group B = 86% +/- 5; normal = 85% +/- 4) did not differ between the two groups of patients and controls, 1H MRS distinguished those patients with cortical atrophy (Group A) (N-acetylaspartate/ creatine (NAA/Cr) = 0.69 +/- 0.17, versus normal = 1.06 +/- 0.16; P < 0.002; [NAA] = 5.9 +/- 1.3 mmoles/kg, versus normal 8.0 +/- 1.4; P < 0.02) from those with hydrocephalus (Group B) (NAA/Cr = 1.16 +/- 0.11; [NAA] = 9.2 +/- 1.2; P > 0.13 and P > 0.07). Lactate levels were elevated in 3/5 patients with cortical atrophy, but in 0/7 of those with hydrocephalus. Mean absolute concentrations (mmoles/kg) of the five major cerebral osmolytes were 41 +/- 4 (Group A), 43 +/- 6 (Group B), and 42 +/- 4 (normal), so that despite massive brain deformation, constant osmolality was maintained. 1H MRS may directly benefit surgical planning in hydrocephalus infants by clearly identifying those with cortical atrophy who do not require CSF diversion. Thinning of the cortical mantle in hydrocephalus may result from osmotically driven reduction in individual cell volumes, (shrinkage), rather than brain-compression.
Collapse
Affiliation(s)
- S Bluml
- Magnetic Resonance Spectroscopy Unit, Huntington Medical Research Institutes, Pasadena, California 91105, USA
| | | | | |
Collapse
|
40
|
Tashiro Y, Chakrabortty S, Drake JM, Hattori T. Progressive loss of glutamic acid decarboxylase, parvalbumin, and calbindin D28K immunoreactive neurons in the cerebral cortex and hippocampus of adult rat with experimental hydrocephalus. J Neurosurg 1997; 86:263-71. [PMID: 9010428 DOI: 10.3171/jns.1997.86.2.0263] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The authors investigated functional neuronal changes in experimental hydrocephalus using immunohistochemical techniques for glutamic acid decarboxylase (GAD) and two neuronal calcium-binding proteins: parvalbumin (PV) and calbindin D28K (CaBP). Hydrocephalus was induced in 16 adult Wistar rats by intracisternal injection of a kaolin solution, which was confirmed microscopically via atlantooccipital dural puncture. Four control rats received the same volume of sterile saline. Immunohistochemical staining for GAD, PV, and CaBP, and Nissl staining were performed at 1, 2, 3, and 4 weeks after the injection. Hydrocephalus occurred in 90% of kaolin-injected animals with various degrees of ventricular dilation. In the cerebral cortex, GAD-, PV-, and CaBP-immunoreactive (IR) interneurons initially lost their stained processes together with a concomitant loss of homogeneous neuropil staining, followed by the reduction of their total number. With progressive ventricular dilation, GAD- and PV-IR axon terminals on the cortical pyramidal cells disappeared, whereas the number of CaBP-IR pyramidal cells decreased, and ultimately in the most severe cases of hydrocephalus, GAD, PV, and CaBP immunoreactivity were almost entirely diminished. In the hippocampus, GAD-, PV-, and CaBP-IR interneurons demonstrated a reduction of their processes and terminals surrounding the pyramidal cells, with secondary reduction of CaBP-IR pyramidal and granular cells. On the other hand, Nissl staining revealed almost no morphological changes induced by ischemia or neuronal degeneration even in the most severe cases of hydrocephalus. Hydrocephalus results in the progressive functional impairment of GAD-, PV-, and CaBP-IR neuronal systems in the cerebral cortex and hippocampus, often before there is evidence of morphological injury. The initial injury of cortical and hippocampal interneurons suggests that the functional deafferentation from intrinsic projection fibers may be the initial neuronal event in hydrocephalic brain injury. Although the mechanism of this impairment is still speculative, these findings emphasize the importance of investigating the neuronal pathophysiology in hydrocephalus.
Collapse
Affiliation(s)
- Y Tashiro
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
41
|
Affiliation(s)
- B D Ross
- Magnetic Resonance Spectroscopy Unit, Huntington Medical Research Institutes, Pasadena, CA 91105, USA
| | | |
Collapse
|
42
|
Tashiro Y, Chakrabortty S, Drake JM, Hattori T. Progressive loss of glutamic acid decarboxylase, parvalbumin, and calbindin D28K immunoreactive neurons in the cerebral cortex and hippocampus of adult rat with experimental hydrocephalus. Neurosurg Focus 1996. [DOI: 10.3171/foc.1996.1.3.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The authors investigated functional neuronal changes in experimental hydrocephalus using immunohistochemical techniques for glutamic acid decarboxylase (GAD) and two neuronal calcium-binding proteins: parvalbumin (PV) and calbindin D28K (CaBP).
Hydrocephalus was induced in 16 adult Wistar rats by intracisternal injection of a kaolin solution, which was confirmed microscopically via atlantooccipital dural puncture. Four control rats received the same volume of sterile saline. Immunohistochemical staining for GAD, PV, and CaBP and Nissl staining were performed at 1, 2, 3, and 4 weeks after the injection. Hydrocephalus occurred in 90% of kaolin-injected animals with various degrees of ventricular dilation. In the cerebral cortex, GAD-, PV-, and CaBP-immunoreactive (IR) interneurons initially lost their stained processes together with a concomitant loss of homogeneous neuropil staining, followed by the reduction of their total number. With progressive ventricular dilation, GAD- and PV-IR axon terminals on the cortical pyramidal cells disappeared, whereas the number of CaBP-IR pyramidal cells decreased, and ultimately in the most severe cases of hydrocephalus, GAD, PV, and CaBP immunoreactivity was almost entirely diminished. In the hippocampus, GAD-, PV-, and CaBP-IR interneurons demonstrated a reduction of their processes and terminals surrounding the pyramidal cells, with secondary reduction of CaBP-IR pyramidal and granular cells. On the other hand, Nissl staining revealed almost no morphological changes induced by ischemia or neuronal degeneration even in the most severe cases of hydrocephalus.
Hydrocephalus results in the progressive functional impairment of GAD-, PV-, and CaBP-IR neuronal systems in the cerebral cortex and hippocampus, often before there is evidence of morphological injury. The initial injury of cortical and hippocampal interneurons suggests that the functional deafferentation from intrinsic projection fibers may be the initial neuronal event in hydrocephalic brain injury. Although the mechanism of this impairment is still speculative, these findings emphasize the importance of investigating the neuronal pathophysiology in hydrocephalus.
Collapse
|
43
|
da Silva MC, Michowicz S, Drake JM, Chumas PD, Tuor UI. Reduced local cerebral blood flow in periventricular white matter in experimental neonatal hydrocephalus-restoration with CSF shunting. J Cereb Blood Flow Metab 1995; 15:1057-65. [PMID: 7593338 DOI: 10.1038/jcbfm.1995.132] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The extent to which the reduction in CBF occurring in hydrocephalus is a primary or secondary event in the pathogenesis of the brain injury that ensues has not been clearly established. This is particularly true in neonatal hydrocephalus, where the disorder is most common, and where timing of the treatment of the developing nervous system is so important. We investigated the changes in local CBF (lCBF) in an animal model of severe progressive neonatal hydrocephalus before and after CSF shunting. Hydrocephalus was induced in 27 1-week-old kittens by percutaneous injection of 0.05 ml of 25% kaolin into the cisterna magna. Fourteen littermates acted as controls. The lCBF was measured by 14C-iodoantipyrine quantitative autoradiography after 1 week in 15 animals (8 hydrocephalic, 7 controls) and after 3 weeks in 26 animals (19 hydrocephalic, 7 controls) following induction of hydrocephalus. Twelve of the 3-week hydrocephalic group received a ventriculoperitoneal shunt 10 days following kaolin injection. At 1 week following induction of hydrocephalus, lCBF was globally reduced in cortical gray matter and white matter as well as deep subcortical structures. The maximum reduction was in the parietal white matter, to 37% of control levels. At 3 weeks a significant reduction in lCBF persisted only in the white matter (parietal, occipital, and corpus callosum; average, 42% of control levels), whereas cortical gray and deep subcortical structures had returned to normal levels spontaneously.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M C da Silva
- Division of Neurosurgery, Hospital for Sick Children, University of Toronto, Canada
| | | | | | | | | |
Collapse
|
44
|
Del Bigio MR, da Silva MC, Drake JM, Tuor UI. Acute and chronic cerebral white matter damage in neonatal hydrocephalus. Neurol Sci 1994; 21:299-305. [PMID: 7874613 DOI: 10.1017/s0317167100040865] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The neonatal cat model of kaolin-induced hydrocephalus is associated with progressive and severe ventriculomegaly. In this experiment we studied the evolution of the histopathological changes in hydrocephalic (n = 23) cats from 5-168 days after the induction of hydrocephalus along with age-matched controls (n = 10). In the periventricular white matter, extracellular edema and axonal damage were present within days of the onset of hydrocephalus. This was followed by reactive gliosis, white matter atrophy, and in some animals gross cavitation of the white matter. Even in the chronic, apparently compensated state there was ongoing glial cell death. Six cats were shunted an average of 23.6 +/- 6.5 days after the induction of hydrocephalus because they were no longer able to feed independently. In spite of clinical improvement the white matter changes persisted. Overt cortical changes were minimal except where areas of white matter destruction encroached upon the deep layers. The white matter changes are very similar to those seen in periventricular leukomalacia and suggest that ischemia plays a role in neonatal brain injury caused by hydrocephalus.
Collapse
Affiliation(s)
- M R Del Bigio
- Division of Neuropathology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
45
|
da Silva MC, Drake JM, Lemaire C, Cross A, Tuor UI. High-energy phosphate metabolism in a neonatal model of hydrocephalus before and after shunting. J Neurosurg 1994; 81:544-53. [PMID: 7931588 DOI: 10.3171/jns.1994.81.4.0544] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The authors studied the effects of hydrocephalus on the high-energy phosphate metabolism of the brain and the impact of ventriculoperitoneal (VP) shunting on these changes in an experimental model of hydrocephalus. High-energy phosphate metabolism was analyzed using in vivo magnetic resonance (MR) imaging and 31P MR spectroscopy. Hydrocephalus was produced in 34 1-week-old kittens by cisternal injection of 0.05 ml of a 25% kaolin solution. Sixteen litter mates were used as controls. A VP shunt with a distal slit valve was implanted in 17 of the 34 hydrocephalic animals 10 days after induction of hydrocephalus. Both MR imaging and 31P MR spectroscopy were obtained 1 and 3 weeks after either kaolin or distilled water injection. Untreated hydrocephalic animals had marked dilatation of the lateral ventricles and periventricular edema. Magnetic resonance spectroscopy showed a significant decrease in the energy index ratio of phosphocreatine (PCR): inorganic phosphate (PI) and an increase in the PI:adenosine triphosphate (ATP) ratio. There was a direct correlation between the decrease in the energy index and ventricular size. Compared with preoperative scans, shunted animals showed no periventricular edema, and the ventricles decreased in size. Also, PCR:PI and PI:ATP ratios were within the levels of controls. This study suggests that neonatal hydrocephalus results in a mild hypoxic/ischemic insult that is treatable by VP shunting.
Collapse
Affiliation(s)
- M C da Silva
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|