1
|
Rolfe NW, Dadario NB, Canoll P, Bruce JN. A Review of Therapeutic Agents Given by Convection-Enhanced Delivery for Adult Glioblastoma. Pharmaceuticals (Basel) 2024; 17:973. [PMID: 39204078 PMCID: PMC11357193 DOI: 10.3390/ph17080973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Glioblastoma remains a devastating disease with a bleak prognosis despite continued research and numerous clinical trials. Convection-enhanced delivery offers researchers and clinicians a platform to bypass the blood-brain barrier and administer drugs directly to the brain parenchyma. While not without significant technological challenges, convection-enhanced delivery theoretically allows for a wide range of therapeutic agents to be delivered to the tumoral space while preventing systemic toxicities. This article provides a comprehensive review of the antitumor agents studied in clinical trials of convection-enhanced delivery to treat adult high-grade gliomas. Agents are grouped by classes, and preclinical evidence for these agents is summarized, as is a brief description of their mechanism of action. The strengths and weaknesses of each clinical trial are also outlined. By doing so, the difficulty of untangling the efficacy of a drug from the technological challenges of convection-enhanced delivery is highlighted. Finally, this article provides a focused review of some therapeutics that might stand to benefit from future clinical trials for glioblastoma using convection-enhanced delivery.
Collapse
Affiliation(s)
- Nathaniel W. Rolfe
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, NY 10032, USA;
| | - Nicholas B. Dadario
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, NY 10032, USA;
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, NY 10032, USA;
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, NY 10032, USA;
| |
Collapse
|
2
|
Bhunia S, Kolishetti N, Vashist A, Yndart Arias A, Brooks D, Nair M. Drug Delivery to the Brain: Recent Advances and Unmet Challenges. Pharmaceutics 2023; 15:2658. [PMID: 38139999 PMCID: PMC10747851 DOI: 10.3390/pharmaceutics15122658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 12/24/2023] Open
Abstract
Brain cancers and neurodegenerative diseases are on the rise, treatments for central nervous system (CNS) diseases remain limited. Despite the significant advancement in drug development technology with emerging biopharmaceuticals like gene therapy or recombinant protein, the clinical translational rate of such biopharmaceuticals to treat CNS disease is extremely poor. The blood-brain barrier (BBB), which separates the brain from blood and protects the CNS microenvironment to maintain essential neuronal functions, poses the greatest challenge for CNS drug delivery. Many strategies have been developed over the years which include local disruption of BBB via physical and chemical methods, and drug transport across BBB via transcytosis by targeting some endogenous proteins expressed on brain-capillary. Drug delivery to brain is an ever-evolving topic, although there were multiple review articles in literature, an update is warranted due to continued growth and new innovations of research on this topic. Thus, this review is an attempt to highlight the recent strategies employed to overcome challenges of CNS drug delivery while emphasizing the necessity of investing more efforts in CNS drug delivery technologies parallel to drug development.
Collapse
Affiliation(s)
- Sukanya Bhunia
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Nagesh Kolishetti
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Arti Vashist
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Adriana Yndart Arias
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Deborah Brooks
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, FL 33199, USA
- Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
3
|
Targeting Glioblastoma: Advances in Drug Delivery and Novel Therapeutic Approaches. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000124] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Shafiee F, Aucoin MG, Jahanian-Najafabadi A. Targeted Diphtheria Toxin-Based Therapy: A Review Article. Front Microbiol 2019; 10:2340. [PMID: 31681205 PMCID: PMC6813239 DOI: 10.3389/fmicb.2019.02340] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/25/2019] [Indexed: 12/26/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide. Conventional therapeutic strategies usually offer limited specificity, resulting in severe side effects and toxicity to normal tissues. Targeted cancer therapy, on the other hand, can improve the therapeutic potential of anti-cancer agents and decrease unwanted side effects. Targeted applications of cytolethal bacterial toxins have been found to be especially useful for the specific eradication of cancer cells. Targeting is either mediated by peptides or by protein-targeting moieties, such as antibodies, antibody fragments, cell-penetrating peptides (CPPs), growth factors, or cytokines. Together with a toxin domain, these molecules are more commonly referred to as immunotoxins. Targeting can also be achieved through gene delivery and cell-specific expression of a toxin. Of the available cytolethal toxins, diphtheria toxin (DT) is one of the most frequently used for these strategies. Of the many DT-based therapeutic strategies investigated to date, two immunotoxins, OntakTM and TagraxofuspTM, have gained FDA approval for clinical application. Despite some success with immunotoxins, suicide-gene therapy strategies, whereby controlled tumor-specific expression of DT is used for the eradication of malignant cells, are gaining prominence. The first part of this review focuses on DT-based immunotoxins, and it then discusses recent developments in tumor-specific expression of DT.
Collapse
Affiliation(s)
- Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marc G Aucoin
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Stine CA, Munson JM. Convection-Enhanced Delivery: Connection to and Impact of Interstitial Fluid Flow. Front Oncol 2019; 9:966. [PMID: 31632905 PMCID: PMC6783516 DOI: 10.3389/fonc.2019.00966] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/11/2019] [Indexed: 01/08/2023] Open
Abstract
Convection-enhanced delivery (CED) is a method used to increase transport of therapeutics in and around brain tumors. CED works through locally applying a pressure differential to drive fluid flow throughout the tumor, such that convective forces dominate over diffusive transport. This allows therapies to bypass the blood brain barrier that would otherwise be too large or solely rely on passive diffusion. However, this also drives fluid flow out through the tumor bulk into surrounding brain parenchyma, which results in increased interstitial fluid (IF) flow, or fluid flow within extracellular spaces in the tissue. IF flow has been associated with altered transport of molecules, extracellular matrix rearrangement, and triggering of cellular motility through a number of mechanisms. Thus, the results of a simple method to increase drug delivery may have unintended consequences on tissue morphology. Clinically, prediction of dispersal of agents via CED is important to catheter design, placement, and implementation to optimize contact of tumor cells with therapeutic agent. Prediction software can aid in this problem, yet we wonder if there is a better way to predict therapeutic distribution based simply on IF flow pathways as determined from pre-intervention imaging. Overall, CED based therapy has seen limited success and we posit that integration and appreciation of altered IF flow may enhance outcomes. Thus, in this manuscript we both review the current state of the art in CED and IF flow mechanistic understanding and relate these two elements to each other in a clinical context.
Collapse
Affiliation(s)
| | - Jennifer M. Munson
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
6
|
Lonser RR. Obituary. Edward H. Oldfield, MD, 1947–2017. J Neurosurg 2018; 128:645-648. [DOI: 10.3171/2017.9.jns172226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Systems engineers’ role in biomedical research. Convection-enhanced drug delivery. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-444-63964-6.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
8
|
Lueshen E, Tangen K, Mehta AI, Linninger A. Backflow-free catheters for efficient and safe convection-enhanced delivery of therapeutics. Med Eng Phys 2017; 45:15-24. [DOI: 10.1016/j.medengphy.2017.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/15/2017] [Accepted: 02/26/2017] [Indexed: 10/19/2022]
|
9
|
Muro K, Das S, Raizer JJ. Convection-Enhanced and Local Delivery of Targeted Cytotoxins in the Treatment of Malignant Gliomas. Technol Cancer Res Treat 2016; 5:201-13. [PMID: 16700617 DOI: 10.1177/153303460600500304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Despite advances in our knowledge about the genesis, molecular biology, and natural history of malignant gliomas and the use of a multi-disciplinary approach to their treatment, patients harboring this diagnosis continue to face a grim prognosis. At the time of diagnosis, patients typically undergo surgery for the establishment of a histologic diagnosis, the reduction of tumor burden, and the relief of mass effect, with the maintenance of the patient's neurological function in mind. This is followed by the administration of adjuvant therapeutics, including radiation therapy and chemotherapy. Many investigational agents with laboratory evidence of efficacy against malignant gliomas have not met their promise in the clinical setting, largely due to the barriers that they must overcome to reach the tumor at a therapeutically meaningful concentration for a durable period of time. The relevant aspects of the blood-brain barrier, blood-tumor barrier, and blood-cerebrospinal fluid barrier, as they pertain to the delivery of agents to the tumor, will be discussed along with the strategies devised to circumvent them. This discussion will be followed by a description of agents currently in preclinical and clinical development, many of which are the result of intense ongoing research into the molecular biology of gliomas.
Collapse
Affiliation(s)
- Kenji Muro
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Abbott Hall, Suite 1123, 710 N Lake Shore Drive, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
10
|
Lueshen E, LaRiviere M, Yamini B, Linninger A. Computer simulations and in vivo convection-enhanced delivery of fluorescent nanoparticles demonstrate variable distribution geometry. Comput Chem Eng 2014. [DOI: 10.1016/j.compchemeng.2014.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Tortorella S, Karagiannis TC. Transferrin Receptor-Mediated Endocytosis: A Useful Target for Cancer Therapy. J Membr Biol 2014; 247:291-307. [DOI: 10.1007/s00232-014-9637-0] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/11/2014] [Indexed: 12/19/2022]
|
12
|
Chandramohan V, Mitchell DA, Johnson LA, Sampson JH, Bigner DD. Antibody, T-cell and dendritic cell immunotherapy for malignant brain tumors. Future Oncol 2014; 9:977-90. [PMID: 23837761 DOI: 10.2217/fon.13.47] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Modest improvement in brain tumor patient survival has been achieved through advances in surgical, adjuvant radiation and chemotherapeutic strategies. However, these traditional approaches have been unsuccessful in permanently controlling these aggressive tumors, with recurrence being quite common. Hence, there is a need for novel therapeutic approaches that specifically target the molecularly diverse brain tumor cell population. The ability of the immune system to recognize altered tumor cells while avoiding surrounding normal cells offers an enormous advantage over the nonspecific nature of the conventional treatment schemes. Therefore, immunotherapy represents a promising approach that may supplement the standard therapies in eliminating the residual brain tumor cells. This review summarizes different immunotherapeutic approaches currently being tested for malignant brain tumor treatment.
Collapse
|
13
|
Antignani A, FitzGerald D. Immunotoxins: the role of the toxin. Toxins (Basel) 2013; 5:1486-502. [PMID: 23965432 PMCID: PMC3760048 DOI: 10.3390/toxins5081486] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/30/2013] [Accepted: 08/06/2013] [Indexed: 02/07/2023] Open
Abstract
Immunotoxins are antibody-toxin bifunctional molecules that rely on intracellular toxin action to kill target cells. Target specificity is determined via the binding attributes of the chosen antibody. Mostly, but not exclusively, immunotoxins are purpose-built to kill cancer cells as part of novel treatment approaches. Other applications for immunotoxins include immune regulation and the treatment of viral or parasitic diseases. Here we discuss the utility of protein toxins, of both bacterial and plant origin, joined to antibodies for targeting cancer cells. Finally, while clinical goals are focused on the development of novel cancer treatments, much has been learned about toxin action and intracellular pathways. Thus toxins are considered both medicines for treating human disease and probes of cellular function.
Collapse
Affiliation(s)
- Antonella Antignani
- Authors to whom correspondence should be addressed; E-Mail: (A.A.); (D.F.); Tel.: +1-301-496-9457 (D.F.); Fax: +1-301-402-1344 (D.F.)
| | - David FitzGerald
- Authors to whom correspondence should be addressed; E-Mail: (A.A.); (D.F.); Tel.: +1-301-496-9457 (D.F.); Fax: +1-301-402-1344 (D.F.)
| |
Collapse
|
14
|
Cimini A, Mei S, Benedetti E, Laurenti G, Koutris I, Cinque B, Cifone MG, Galzio R, Pitari G, Di Leandro L, Giansanti F, Lombardi A, Fabbrini MS, Ippoliti R. Distinct cellular responses induced by saporin and a transferrin-saporin conjugate in two different human glioblastoma cell lines. J Cell Physiol 2012; 227:939-51. [PMID: 21503892 DOI: 10.1002/jcp.22805] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumour in adults, with a median survival of ~12-18 months post-diagnosis. GBM usually recurs within 12 months post-resection, with poor prognosis. Thus, novel therapeutic strategies to target and kill GBM cells are urgently needed. The marked difference of tumour cells with respect to normal brain cells renders glioblastoma a good candidate for selective targeted therapies. Recent experimental strategies focus on over expressed cell surface receptors. Targeted toxins represent a new class of selective molecules composed by a potent protein toxin and a carrier ligand. Targeted toxins approaches against glioblastoma were under investigation in phase I and II clinical trials with several immunotoxins (IT)/ligand toxins such as IL4-Pseudomonas aeruginosa exotoxin A (IL4-PE, NBI-3001), tumour growth factor fused to PE38, a shorter PE variant, (TGF)alpha-TP-38, IL13-PE38, and a transferrin-C diphtheriae toxin mutant (Tf-CRM107). In this work, we studied the effects of the plant ribosome-inactivating saporin and of its chimera transferrin-saporin against two different GBM cell lines. The data obtained here indicate that cell proliferation is affected by the toxin treatments but that different mechanisms are used, directly linked to the presence of an active or inactive p53. A model is proposed for these alternative intracellular pathways.
Collapse
Affiliation(s)
- A Cimini
- Department of Basic and Applied Biology, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Toxin-based targeted therapy for malignant brain tumors. Clin Dev Immunol 2012; 2012:480429. [PMID: 22400035 PMCID: PMC3287048 DOI: 10.1155/2012/480429] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/03/2011] [Indexed: 01/06/2023]
Abstract
Despite advances in conventional treatment modalities for malignant brain tumors-surgery, radiotherapy, and chemotherapy-the prognosis for patients with high-grade astrocytic tumor remains dismal. The highly heterogeneous and diffuse nature of astrocytic tumors calls for the development of novel therapies. Advances in genomic and proteomic research indicate that treatment of brain tumor patients can be increasingly personalized according to the characteristics of the targeted tumor and its environment. Consequently, during the last two decades, a novel class of investigative drug candidates for the treatment of central nervous system neoplasia has emerged: recombinant fusion protein conjugates armed with cytotoxic agents targeting tumor-specific antigens. The clinical applicability of the tumor-antigen-directed cytotoxic proteins as a safe and viable therapy for brain tumors is being investigated. Thus far, results from ongoing clinical trials are encouraging, as disease stabilization and patient survival prolongation have been observed in at least 109 cases. This paper summarizes the major findings pertaining to treatment with the different antiglioma cytotoxins at the preclinical and clinical stages.
Collapse
|
16
|
Daniels TR, Bernabeu E, Rodríguez JA, Patel S, Kozman M, Chiappetta DA, Holler E, Ljubimova JY, Helguera G, Penichet ML. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta Gen Subj 2011; 1820:291-317. [PMID: 21851850 DOI: 10.1016/j.bbagen.2011.07.016] [Citation(s) in RCA: 535] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/19/2011] [Accepted: 07/28/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND Traditional cancer therapy can be successful in destroying tumors, but can also cause dangerous side effects. Therefore, many targeted therapies are in development. The transferrin receptor (TfR) functions in cellular iron uptake through its interaction with transferrin. This receptor is an attractive molecule for the targeted therapy of cancer since it is upregulated on the surface of many cancer types and is efficiently internalized. This receptor can be targeted in two ways: 1) for the delivery of therapeutic molecules into malignant cells or 2) to block the natural function of the receptor leading directly to cancer cell death. SCOPE OF REVIEW In the present article we discuss the strategies used to target the TfR for the delivery of therapeutic agents into cancer cells. We provide a summary of the vast types of anti-cancer drugs that have been delivered into cancer cells employing a variety of receptor binding molecules including Tf, anti-TfR antibodies, or TfR-binding peptides alone or in combination with carrier molecules including nanoparticles and viruses. MAJOR CONCLUSIONS Targeting the TfR has been shown to be effective in delivering many different therapeutic agents and causing cytotoxic effects in cancer cells in vitro and in vivo. GENERAL SIGNIFICANCE The extensive use of TfR for targeted therapy attests to the versatility of targeting this receptor for therapeutic purposes against malignant cells. More advances in this area are expected to further improve the therapeutic potential of targeting the TfR for cancer therapy leading to an increase in the number of clinical trials of molecules targeting this receptor. This article is part of a Special Issue entitled Transferrins: molecular mechanisms of iron transport and disorders.
Collapse
Affiliation(s)
- Tracy R Daniels
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li YM, Hall WA. Targeted toxins in brain tumor therapy. Toxins (Basel) 2010; 2:2645-62. [PMID: 22069569 PMCID: PMC3153175 DOI: 10.3390/toxins2112645] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 10/20/2010] [Accepted: 10/27/2010] [Indexed: 11/30/2022] Open
Abstract
Targeted toxins, also known as immunotoxins or cytotoxins, are recombinant molecules that specifically bind to cell surface receptors that are overexpressed in cancer and the toxin component kills the cell. These recombinant proteins consist of a specific antibody or ligand coupled to a protein toxin. The targeted toxins bind to a surface antigen or receptor overexpressed in tumors, such as the epidermal growth factor receptor or interleukin-13 receptor. The toxin part of the molecule in all clinically used toxins is modified from bacterial or plant toxins, fused to an antibody or carrier ligand. Targeted toxins are very effective against cancer cells resistant to radiation and chemotherapy. They are far more potent than any known chemotherapy drug. Targeted toxins have shown an acceptable profile of toxicity and safety in early clinical studies and have demonstrated evidence of a tumor response. Currently, clinical trials with some targeted toxins are complete and the final results are pending. This review summarizes the characteristics of targeted toxins and the key findings of the important clinical studies with targeted toxins in malignant brain tumor patients. Obstacles to successful treatment of malignant brain tumors include poor penetration into tumor masses, the immune response to the toxin component and cancer heterogeneity. Strategies to overcome these limitations are being pursued in the current generation of targeted toxins.
Collapse
Affiliation(s)
- Yan Michael Li
- Department of Neurosurgery, State University of New York Upstate Medical University, Syracuse, New York 13210, NY, USA.
| | | |
Collapse
|
18
|
Arko L, Katsyv I, Park GE, Luan WP, Park JK. Experimental approaches for the treatment of malignant gliomas. Pharmacol Ther 2010; 128:1-36. [PMID: 20546782 PMCID: PMC2939300 DOI: 10.1016/j.pharmthera.2010.04.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 04/28/2010] [Indexed: 12/13/2022]
Abstract
Malignant gliomas, which include glioblastomas and anaplastic astrocytomas, are the most common primary tumors of the brain. Over the past 30 years, the standard treatment for these tumors has evolved to include maximal safe surgical resection, radiation therapy and temozolomide chemotherapy. While the median survival of patients with glioblastomas has improved from 6 months to 14.6 months, these tumors continue to be lethal for the vast majority of patients. There has, however, been recent substantial progress in our mechanistic understanding of tumor development and growth. The translation of these genetic, epigenetic and biochemical findings into therapies that have been tested in clinical trials is the subject of this review.
Collapse
Affiliation(s)
- Leopold Arko
- Surgical and Molecular Neuro-oncology Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
19
|
Yoon DJ, Kwan BH, Chao FC, Nicolaides TP, Phillips JJ, Lam GY, Mason AB, Weiss WA, Kamei DT. Intratumoral therapy of glioblastoma multiforme using genetically engineered transferrin for drug delivery. Cancer Res 2010; 70:4520-7. [PMID: 20460527 PMCID: PMC2893299 DOI: 10.1158/0008-5472.can-09-4311] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal primary brain tumor with median survival of only 12 to 15 months under the current standard of care. To both increase tumor specificity and decrease nonspecific side effects, recent experimental strategies in the treatment of GBM have focused on targeting cell surface receptors, including the transferrin (Tf) receptor, that are overexpressed in many cancers. A major limitation of Tf-based therapeutics is the short association of Tf within the cell to deliver its payload. We previously developed two mutant Tf molecules, K206E/R632A Tf and K206E/K534A Tf, in which iron is locked into each of the two homologous lobes. Relative to wild-type Tf, we showed enhanced delivery of diphtheria toxin (DT) from these mutants to a monolayer culture of HeLa cells. Here, we extend the application of our Tf mutants to the treatment of GBM. In vitro treatment of Tf mutants to a monolayer culture of glioma cells showed enhanced cellular association as well as enhanced delivery of conjugated DT. Treatment of GBM xenografts with mutant Tf-conjugated DT resulted in pronounced regression in vivo, indicating their potential use as drug carriers.
Collapse
Affiliation(s)
- Dennis J. Yoon
- Department of Bioengineering, University of California, Los Angeles, CA 90095 U.S.A
| | - Byron H. Kwan
- Department of Bioengineering, University of California, Los Angeles, CA 90095 U.S.A
| | - Felix C. Chao
- Department of Bioengineering, University of California, Los Angeles, CA 90095 U.S.A
| | - Theodore P. Nicolaides
- Department of Neurology, Pediatrics, Neurological Surgery, and Brain Tumor Research Center, University of California, San Francisco, CA 94158 U.S.A
| | - Joanna J. Phillips
- Department of Pathology, University of California, San Francisco, CA 94158 U.S.A
| | - Gretchen Y. Lam
- Department of Bioengineering, University of California, Los Angeles, CA 90095 U.S.A
| | - Anne B. Mason
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, VT 05405 U.S.A
| | - William A. Weiss
- Department of Neurology, Pediatrics, Neurological Surgery, and Brain Tumor Research Center, University of California, San Francisco, CA 94158 U.S.A
| | - Daniel T. Kamei
- Department of Bioengineering, University of California, Los Angeles, CA 90095 U.S.A
| |
Collapse
|
20
|
Kuijlen JMA, Bremer E, Mooij JJA, den Dunnen WFA, Helfrich W. Review: on TRAIL for malignant glioma therapy? Neuropathol Appl Neurobiol 2010; 36:168-82. [PMID: 20102513 DOI: 10.1111/j.1365-2990.2010.01069.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glioblastoma (GBM) is a devastating cancer with a median survival of around 15 months. Significant advances in treatment have not been achieved yet, even with a host of new therapeutics under investigation. Therefore, the quest for a cure for GBM remains as intense as ever. Of particular interest for GBM therapy is the selective induction of apoptosis using the pro-apoptotic tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL signals apoptosis via its two agonistic receptors TRAIL-R1 and TRAIL-R2. TRAIL is normally present as homotrimeric transmembrane protein, but can also be processed into a soluble trimeric form (sTRAIL). Recombinant sTRAIL has strong tumouricidal activity towards GBM cells, with no or minimal toxicity towards normal human cells. Unfortunately, GBM is a very heterogeneous tumour, with multiple genetically aberrant clones within one tumour. Consequently, any single agent therapy is likely to be not effective enough. However, the anti-GBM activity of TRAIL can be synergistically enhanced by a variety of conventional and novel targeted therapies, making TRAIL an ideal candidate for combinatorial strategies. Here we will, after briefly detailing the biology of TRAIL/TRAIL receptor signalling, focus on the promises and pitfalls of recombinant TRAIL as a therapeutic agent alone and in combinatorial therapeutic approaches for GBM.
Collapse
Affiliation(s)
- J M A Kuijlen
- Department of Neurosurgery, University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Solomon VR, Lee H. Chloroquine and its analogs: a new promise of an old drug for effective and safe cancer therapies. Eur J Pharmacol 2009; 625:220-33. [PMID: 19836374 DOI: 10.1016/j.ejphar.2009.06.063] [Citation(s) in RCA: 393] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/12/2009] [Accepted: 06/22/2009] [Indexed: 02/03/2023]
Abstract
Chloroquine (CQ), N'-(7-chloroquinolin-4-yl)-N,N-diethyl-pentane-1,4-diamine, is widely used as an effective and safe anti-malarial and anti-rheumatoid agent. CQ was discovered 1934 as "Resochin" by Andersag and co-workers at the Bayer laboratories. Ironically, CQ was initially ignored for a decade because it was considered too toxic to use in humans. CQ was "re-discovered" during World War II in the United States in the course of anti-malarial drug development. The US government-sponsored clinical trials during this period showed unequivocally that CQ has a significant therapeutic value as an anti-malarial drug. Consequently, CQ was introduced into clinical practice in 1947 for the prophylaxis treatment of malaria (Plasmodium vivax, ovale and malariae). CQ still remains the drug of choice for malaria chemotherapy because it is highly effective and well tolerated by humans. In addition, CQ is widely used as an anti-inflammatory agent for the treatment of rheumatoid arthritis, lupus erythematosus and amoebic hepatitis. More recently, CQ has been studied for its potential as an enhancing agent in cancer therapies. Accumulating lines of evidence now suggest that CQ can effectively sensitize cell-killing effects by ionizing radiation and chemotherapeutic agents in a cancer-specific manner. The lysosomotrophic property of CQ appears to be important for the increase in efficacy and specificity. Although more studies are needed, CQ may be one of the most effective and safe sensitizers for cancer therapies. Taken together, it appears that the efficacy of conventional cancer therapies can be dramatically enhanced if used in combination with CQ and its analogs.
Collapse
Affiliation(s)
- V Raja Solomon
- Tumor Biology Group, Northeastern Ontario Regional Cancer Program at the Sudbury Regional Hospital, 41 Ramsey Lake Road, Sudbury, Ontario, Canada P3E 5J1
| | | |
Collapse
|
22
|
Sampson JH, Akabani G, Archer GE, Berger MS, Coleman RE, Friedman AH, Friedman HS, Greer K, Herndon JE, Kunwar S, McLendon RE, Paolino A, Petry NA, Provenzale JM, Reardon DA, Wong TZ, Zalutsky MR, Pastan I, Bigner DD. Intracerebral infusion of an EGFR-targeted toxin in recurrent malignant brain tumors. Neuro Oncol 2008; 10:320-9. [PMID: 18403491 DOI: 10.1215/15228517-2008-012] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study is to determine the maximum tolerated dose (MTD), dose-limiting toxicity (DLT), and intracerebral distribution of a recombinant toxin (TP-38) targeting the epidermal growth factor receptor in patients with recurrent malignant brain tumors using the intracerebral infusion technique of convection-enhanced delivery (CED). Twenty patients were enrolled and stratified for dose escalation by the presence of residual tumor from 25 to 100 ng/ml in a 40-ml infusion volume. In the last eight patients, coinfusion of (123)I-albumin was performed to monitor distribution within the brain. The MTD was not reached in this study. Dose escalation was stopped at 100 ng/ml due to inconsistent drug delivery as evidenced by imaging the coinfused (123)I-albumin. Two DLTs were seen, and both were neurologic. Median survival after TP-38 was 28 weeks (95% confidence interval, 26.5-102.8). Of 15 patients treated with residual disease, two (13.3%) demonstrated radiographic responses, including one patient with glioblastoma multiforme who had a nearly complete response and remains alive >260 weeks after therapy. Coinfusion of (123)I-albumin demonstrated that high concentrations of the infusate could be delivered >4 cm from the catheter tip. However, only 3 of 16 (19%) catheters produced intraparenchymal infusate distribution, while the majority leaked infusate into the cerebrospinal fluid spaces. Intracerebral CED of TP-38 was well tolerated and produced some durable radiographic responses at doses <or=100 ng/ml. CED has significant potential for enhancing delivery of therapeutic macromolecules throughout the human brain. However, the potential efficacy of drugs delivered by this technique may be severely constrained by ineffective infusion in many patients.
Collapse
Affiliation(s)
- John H Sampson
- Division of Neurosurgery, Department of Surgery, Box 3050, Room 220 Sands Building, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Haber A, Agadjanian H, Medina-Kauwe LK, Gross Z. Corroles that bind with high affinity to both apo and holo transferrin. J Inorg Biochem 2008; 102:446-57. [DOI: 10.1016/j.jinorgbio.2007.10.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Revised: 09/30/2007] [Accepted: 10/12/2007] [Indexed: 10/22/2022]
|
24
|
Morokoff AP, Novak U. Targeted therapy for malignant gliomas. J Clin Neurosci 2008; 11:807-18. [PMID: 15519855 DOI: 10.1016/j.jocn.2004.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Accepted: 03/01/2004] [Indexed: 12/31/2022]
Abstract
The identification of markers that are associated with tumour but not normal tissue has allowed the development of highly-specific targeted therapies. Monoclonal antibodies, either alone or linked to radioisotopes or toxins, have provided a powerful tool for research, as well as the basis for promising therapeutic agents with less side effects than standard radiotherapy or chemotherapy. A new class of drugs, the tyrosine kinase inhibitors, which interfere with the function of key molecules in cancer-promoting pathways, have had a dramatic effect in haematological malignancy and are being trialled in solid tumours, including glioma. Although the problem of achieving specific, high-level delivery of these various agents to tumours in the brain remains a major issue, encouraging early results with some targeted agents support the attractive theoretical principles of this new paradigm. Further work to identify new molecular targets and to develop agents exploiting them, is needed, as well as confirmation of their safety and efficacy by clinical trials.
Collapse
Affiliation(s)
- Andrew P Morokoff
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia.
| | | |
Collapse
|
25
|
Sampson JH, Brady ML, Petry NA, Croteau D, Friedman AH, Friedman HS, Wong T, Bigner DD, Pastan I, Puri RK, Pedain C. Intracerebral infusate distribution by convection-enhanced delivery in humans with malignant gliomas: descriptive effects of target anatomy and catheter positioning. Neurosurgery 2007; 60:ONS89-98; discussion ONS98-9. [PMID: 17297371 DOI: 10.1227/01.neu.0000249256.09289.5f] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Convection-enhanced delivery (CED) holds tremendous potential for drug delivery to the brain. However, little is known about the volume of distribution achieved within human brain tissue or how target anatomy and catheter positioning influence drug distribution. The primary objective of this study was to quantitatively describe the distribution of a high molecular weight agent by CED relative to target anatomy and catheter position in patients with malignant gliomas. METHODS Seven adult patients with recurrent malignant gliomas underwent intracerebral infusion of the tumor-targeted cytotoxin, cintredekin besudotox, concurrently with 123I-labeled human serum albumin. High-resolution single-photon emission computed tomographic images were obtained at 24 and 48 hours and were coregistered with magnetic resonance imaging scans. The distribution of 123I-labeled human serum albumin relative to target anatomy and catheter position was analyzed. RESULTS Intracerebral CED infusions were well-tolerated and some resulted in a broad distribution of 123I-labeled human serum albumin, but target anatomy and catheter positioning had a significant influence on infusate distribution even within non-contrast-enhancing areas of brain. Intratumoral infusions were anisotropic and resulted in limited coverage of the enhancing tumor area and adjacent peritumoral regions. CONCLUSIONS CED has the potential to deliver high molecular weight agents into tumor-infiltrated brain parenchyma with volumes of distribution that are clinically relevant. Target tissue anatomy and catheter position are critical parameters in optimizing drug delivery.
Collapse
Affiliation(s)
- John H Sampson
- Department of Surgery, Division of Neurosurgery, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sampson JH, Raghavan R, Brady ML, Provenzale JM, Herndon JE, Croteau D, Friedman AH, Reardon DA, Coleman RE, Wong T, Bigner DD, Pastan I, Rodríguez-Ponce MI, Tanner P, Puri R, Pedain C. Clinical utility of a patient-specific algorithm for simulating intracerebral drug infusions. Neuro Oncol 2007; 9:343-53. [PMID: 17435179 PMCID: PMC1907410 DOI: 10.1215/15228517-2007-007] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 09/21/2006] [Indexed: 11/19/2022] Open
Abstract
Convection-enhanced delivery (CED) is a novel drug delivery technique that uses positive infusion pressure to deliver therapeutic agents directly into the interstitial spaces of the brain. Despite the promise of CED, clinical trials have demonstrated that target-tissue anatomy and patient-specific physiology play a major role in drug distribution using this technique. In this study, we retrospectively tested the ability of a software algorithm using MR diffusion tensor imaging to predict patient-specific drug distributions by CED. A tumor-targeted cytotoxin, cintredekin besudotox (interleukin 13-PE38QQR), was coinfused with iodine 123-labeled human serum albumin (123I-HSA), in patients with recurrent malignant gliomas. The spatial distribution of 123I-HSA was then compared to a drug distribution simulation provided by the software algorithm. The algorithm had a high sensitivity (71.4%) and specificity (100%) for identifying the high proportion (7 of 14) of catheter trajectories that failed to deliver drug into the desired anatomical region (p = 0.021). This usually occurred when catheter trajectories crossed deep sulci, resulting in leak of the infusate into the subarachnoid cerebrospinal fluid space. The mean concordance of the volume of distribution at the 50% isodose level between the actual 123I-HSA distribution and simulation was 65.75% (95% confidence interval [CI], 52.0%-79.5%), and the mean maximal inplane deviation was less than 8.5 mm (95% CI, 4.0-13.0 mm). The use of this simulation algorithm was considered clinically useful in 84.6% of catheters. Routine use of this algorithm, and its further developments, should improve prospective selection of catheter trajectories, and thereby improve the efficacy of drugs delivered by this promising technique.
Collapse
Affiliation(s)
- John H Sampson
- Department of Surgery, Division of Neurosurgery, Duke university Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Muldoon LL, Soussain C, Jahnke K, Johanson C, Siegal T, Smith QR, Hall WA, Hynynen K, Senter PD, Peereboom DM, Neuwelt EA. Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 2007; 25:2295-305. [PMID: 17538176 DOI: 10.1200/jco.2006.09.9861] [Citation(s) in RCA: 315] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE This review assesses the current state of knowledge regarding preclinical and clinical pharmacology for brain tumor chemotherapy and evaluates relevant brain tumor pharmacology studies before October 2006. RESULTS Chemotherapeutic regimens in brain tumor therapy have often emerged from empirical clinical studies with retrospective pharmacologic explanations, rather than prospective trials of rational chemotherapeutic approaches. Brain tumors are largely composed of CNS metastases of systemic cancers. Primary brain tumors, such as glioblastoma multiforme or primary CNS lymphomas, are less common. Few of these tumors have well-defined optimal treatment. Brain tumors are protected from systemic chemotherapy by the blood-brain barrier (BBB) and by intrinsic properties of the tumors. Pharmacologic studies of delivery of conventional chemotherapeutics and novel therapeutics showing actual tumor concentrations and biologic effect are lacking. CONCLUSION In this article, we review drug delivery across the BBB, as well as blood-tumor and -cerebrospinal fluid (CSF) barriers, and mechanisms to increase drug delivery to CNS and CSF tumors. Because of the difficulty in treating CNS tumors, innovative treatments and alternative delivery techniques involving brain/cord capillaries, choroid plexus, and CSF are needed.
Collapse
Affiliation(s)
- Leslie L Muldoon
- Department of Neurology, Oregon Health and Science University, Portland, and the Veterans Administration Medical Center, OR 97239-3098, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sampson JH, Raghavan R, Provenzale JM, Croteau D, Reardon DA, Coleman RE, Rodríguez Ponce I, Pastan I, Puri RK, Pedain C. Induction of hyperintense signal on T2-weighted MR images correlates with infusion distribution from intracerebral convection-enhanced delivery of a tumor-targeted cytotoxin. AJR Am J Roentgenol 2007; 188:703-9. [PMID: 17312057 DOI: 10.2214/ajr.06.0428] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Convection-enhanced delivery is a promising approach to intracerebral drug delivery in which a fluid pressure gradient is used to infuse therapeutic macromolecules through an indwelling catheter into the interstitial spaces of the brain. Our purpose was to test the hypothesis that hyperintense signal changes on T2-weighted images produced by such infusions can be used to track drug distribution. SUBJECTS AND METHODS Seven adults with recurrent malignant glioma underwent concurrent intracerebral infusions of the tumor-targeted cytotoxin cintredekin besudotox and 123I-labeled human serum albumin. The agents were administered through a total of 18 catheters among the seven patients. Adequacy of distribution of drug was determined by evidence of distribution of 123I-labeled human serum albumin on SPECT images coregistered with MR images. Qualitative analysis was performed by three blinded observers. Quantitative analysis also was performed. RESULTS Infusions into 12 catheters produced intraparenchymal distribution as seen on SPECT images, but infusions into six catheters did not. At qualitative assessment of signal changes on MR images, reviewers correctly predicted which catheters would produce extraparenchymal distribution and which catheters would produce parenchymal distribution. Of the 12 infusions that produced intraparenchymal distribution, four catheters had been placed in regions of relatively normal signal intensity and produced regions of newly increased signal intensity, the volume of which highly correlated with the volume and geometry of distribution on SPECT (r2 = 0.9502). Eight infusions that produced intraparenchymal distribution were performed in regions of preexisting hyperintense signal. In these brains, additional signal changes were always produced, but quantitative correlations between areas of newly increased signal intensity and the volume and geometry of distribution on SPECT could not be established. CONCLUSION Convection-enhanced infusions frequently do not provide intraparenchymal drug distribution, and these failures can be identified with MRI soon after infusion. When infusions are performed into regions of normal signal intensity, development of hyperintense signal change strongly correlates with the volume and geometry of distribution of infusate.
Collapse
Affiliation(s)
- John H Sampson
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
An improved understanding of the molecular characteristics of gliomas has led to the recognition of potential antigen targets and monoclonal antibody (mAb) therapies for these challenging tumors. The design of glioma mAbs--including species, construct, immunoglobulin isotype and conjugate--affects their delivery, efficacy and toxicities. mAbs that are under study for glioma therapy include some mAbs that are currently approved for use in the treatment of other cancers, as well as novel molecules. Although the greatest experience so far is with locally administered, radiolabeled mAbs, systemic unconjugated mAbs are being studied increasingly for glioma treatment. Previous experience with mAbs in other malignancies may provide guidance for their use in the treatment of CNS malignancies.
Collapse
Affiliation(s)
- David E Gerber
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Baltimore, Maryland, USA
| | | |
Collapse
|
30
|
Rustamzadeh E, Hall WA, Todhunter DA, Vallera VD, Low WC, Liu H, Panoskaltsis-Mortari A, Vallera DA. Intracranial therapy of glioblastoma with the fusion protein DTAT in immunodeficient mice. Int J Cancer 2007; 120:411-9. [PMID: 17075792 DOI: 10.1002/ijc.22278] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A gene splicing technique was used to create a hybrid fusion protein DTAT encoding the 390 amino acid portion of diphtheria toxin (DT(390)), a linker, and the downstream 135-amino terminal fragment portion of human urokinase plasminogen activator. DTAT was assembled to target human glioblastoma cell lines in a murine intracranial model. Previously published in vitro studies demonstrated that DTAT was highly selective and toxic to human glioblastoma cell lines in a flank tumor model. The purpose of this study was to determine the toxicity, specificity and possible therapeutic efficacy of DTAT in an intracranial model. Convection enhanced delivery of DTAT resulted in about a 16-fold increase in maximum tolerated dose. Intracranial administration of DTAT on an every-other-day basis in nude mice with established U87 MG brain tumors resulted in significant reductions in tumor volume and significantly prolonged survival (p < 0.0001). Magnetic resonance imaging proved to be a powerful tool in mice and rats for demonstrating tumor growth in a xenograft intracranial model, assessing the efficacy of DTAT in tumor volume reduction and detecting DTAT-associated intracranial toxicity and vascular damage. These results suggest that the DTAT recombinant fusion protein is highly effective in an intracranial model and DTAT might be an effective treatment for glioblastoma.
Collapse
Affiliation(s)
- Edward Rustamzadeh
- Department of Neurosurgery, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kioi M, Husain SR, Croteau D, Kunwar S, Puri RK. Convection-enhanced delivery of interleukin-13 receptor-directed cytotoxin for malignant glioma therapy. Technol Cancer Res Treat 2006; 5:239-50. [PMID: 16700620 DOI: 10.1177/153303460600500307] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The treatment of patients with malignant brain tumors, in particular glioblastoma multiforme (GBM) is very challenging because of their diffuse infiltrative nature and the cytological heterogeneity. The median survival of patients with newly diagnosed GBM is only 12-15 months, and only 8-12% of them survive for two years. Novel approaches for brain tumor therapy are needed. Recently, targeted therapies have emerged as promising modality for cancer targeting. We have discovered that high affinity plasma membrane receptor for interleukin-13 (IL-13), an immune regulatory cytokine, is over-expressed in 60-80% of malignant brain tumors. To target these IL-13R, we generated a chimeric fusion protein, composed of human IL-13 and mutated Pseudomonas exotoxin (PE), termed IL-13 cytotoxin (IL13-PE), and tested its cytotoxicity to IL-13R-expressing GBM cells. IL-13 cytotoxin was highly potent and selective in killing IL-13R-expressing GBM cells. In contrast, normal cells including brain, immune, and endothelial cells were generally not affected by this cytotoxin due to no or low expression of IL-13R. In vivo pre-clinical studies for safety and toxicity were also performed in mice, rats, and monkeys, and IL-13 cytotoxin was found to be well tolerated by both systemic and intracerebral administrations. IL-13 cytotoxin was found to mediate remarkable efficacy in animal models of human brain tumors. Encouraged by these pre-clinical studies, four Phase 1/2 clinical trials in adult patients with recurrent malignant glioma have been completed. These clinical trials involved convection-enhanced delivery (CED) of IL-13 cytotoxin either intratumoral or intraparenchymal after resection of tumor. CED is a novel loco-regional drug delivery method for intracranial tumors that relies on a continuous pressure gradient to distribute drug into interstitial space. This route of IL-13 cytotoxin administration appears to be very well tolerated and have a good risk-benefit profile. Most recently, a randomized controlled Phase 3 clinical trial (PRECISE) with intraparenchymal IL-13 cytotoxin administration was completed and subjects are being monitored for safety and survival.
Collapse
Affiliation(s)
- Mitomu Kioi
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, 29 Lincoln Drive MSC 4555, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
32
|
Daniels TR, Delgado T, Helguera G, Penichet ML. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin Immunol 2006; 121:159-76. [PMID: 16920030 DOI: 10.1016/j.clim.2006.06.006] [Citation(s) in RCA: 383] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 06/16/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
Traditional anti-cancer treatments consist of chemotherapeutic drugs that effectively eliminate rapidly dividing tumor cells. However, in many cases chemotherapy fails to eliminate the tumor and even when chemotherapy is successful, its systemic cytotoxicity often results in detrimental side effects. To overcome these problems, many laboratories have focused on the design of novel therapies that exhibit tumor specific toxicity. The transferrin receptor (TfR), a cell membrane-associated glycoprotein involved in iron homeostasis and cell growth, has been explored as a target to deliver therapeutics into cancer cells due to its increased expression on malignant cells, accessibility on the cell surface, and constitutive endocytosis. The TfR can be targeted by direct interaction with conjugates of its ligand transferrin (Tf) or by monoclonal antibodies specific for the TfR. In this review we summarize the strategies of targeting the TfR in order to deliver therapeutic agents into tumor cells by receptor-mediated endocytosis.
Collapse
Affiliation(s)
- Tracy R Daniels
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Malignant gliomas represent a difficult treatment challenge for the neuro-oncologist and the neurosurgeon. These tumours continue to be refractory to standard therapies, such as surgery, radiotherapy and conventional chemotherapy, and new therapeutic options are clearly needed. Therefore, investigators have recently taken a new direction and started to engineer compounds such as recombinant cytotoxins, antiangiogenesis factors and genetic delivery vectors. However, these promising new agents are all dependent on an effective distribution method in order to bypass the blood-brain barrier. Convection-enhanced delivery (CED) allows for the administration of targeted toxins and other agents directly into the brain at the site of a tumour via catheters placed with the aid of stereotactic or image-guided surgery. The use of this technique is gaining momentum as a newly accepted treatment modality where little else has produced durable results in the fight against gliomas. Direct intratumoural infusion was first performed in nude mouse flank tumour models of human malignant glioma. After significant testing in preclinical animal studies, this method of delivery was followed by the successful demonstration of in vivo efficacy in Phase I and II clinical trials. Currently, this technique is being used in the investigational setting at academic medical centres where investigators are starting to define the best practice for CED. Fundamental issues in this method of delivery such as rate of infusion, cannula size, infusate concentration and tissue-cannula sealing time shape the current discussion in the literature. Targeted toxin therapy represents one of the newest and most promising treatments for this unfortunate patient population, with proven clinical efficacy administered through CED, which is a novel approach to drug delivery.
Collapse
Affiliation(s)
- Walter A Hall
- Department of Neurosurgery, University of Minnesota Medical School, MMC 96, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
34
|
Sampson JH, Akabani G, Friedman AH, Bigner D, Kunwar S, Berger MS, Bankiewicz KS. Comparison of intratumoral bolus injection and convection-enhanced delivery of radiolabeled antitenascin monoclonal antibodies. Neurosurg Focus 2006; 20:E14. [PMID: 16709019 DOI: 10.3171/foc.2006.20.4.9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Convection-enhanced delivery (CED) is a novel technique used to deliver agents to the brain parenchyma for treatment of neoplastic, infectious, and degenerative conditions. The purpose of this study was to determine if CED would provide a larger volume of distribution (Vd) of a radiolabeled monoclonal antibody (mAb) than a bolus injection. METHODS Patients harboring a recurrent glioblastoma multiforme that reacted with the antitenascin mAb 81C6 during immunohistochemical analysis were randomized to receive an intratumoral injection of the human-murine chimeric mAb Ch81C6, which had been labeled with the 123I tracer. The mAb was administered by either a bolus injection or CED via a stereotactically placed catheter; between 48 and 72 hours later the mAb was again administered using the other technique. Injections of escalating doses of a 131I-labeled therapeutic mAb were then delivered using the technique shown to produce the largest Vd by single-photon emission computerized tomography. CONCLUSIONS Convection-enhanced delivery has enormous potential for administering drugs to sites within the central nervous system. For the relatively small volumes injected in this study, however, CED did not provide a significant increase in the Vd when compared with the bolus injection. Nevertheless, a clear cross-over effect was seen, which was probably related to the temporal proximity of the two infusions.
Collapse
Affiliation(s)
- John H Sampson
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Vandergrift WA, Patel SJ, Nicholas JS, Varma AK. Convection-enhanced delivery of immunotoxins and radioisotopes for treatment of malignant gliomas. Neurosurg Focus 2006; 20:E13. [PMID: 16709018 DOI: 10.3171/foc.2006.20.4.8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
✓ The treatment of malignant gliomas has advanced significantly in the past 15 years. The simultaneous development of new targeting agents and techniques to deliver these high-molecular-weight compounds has led to improved efficacy and promising results in Phase III trials. Convection-enhanced delivery (CED) of macromolecules has emerged as the leading delivery technique for the treatment of malignant gliomas. A summary of the basic principles of CED and a review of the current human trials of protein targeting agents are provided.
Collapse
Affiliation(s)
- William A Vandergrift
- Division of Neurosurgery, Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | |
Collapse
|
36
|
Abstract
For many types of childhood brain tumors, including malignant gliomas, disease progression at the primary site is the predominant mode of treatment failure. Accordingly, interest has been directed during the last decade on exploring strategies to enhance the delivery of therapeutically active agents into the tumor microenvironment. Two approaches that have been the focus of considerable attention in the treatment of adult malignant brain tumors include interstitial administration of chemotherapeutic agents using time-release polymers and convection-enhanced delivery of immunotoxin conjugates targeted to receptors overexpressed in brain tumors relative to normal brain cells. Although it remains to be determined whether these approaches will lead to meaningful improvements in disease control and long-term prognosis in children with brain tumors, the encouraging results from studies in adults support the rationale for further exploring these strategies in the pediatric setting.
Collapse
Affiliation(s)
- Ian F Pollack
- Department of Neurosurgery, Children's Hospital of Pittsburgh, University of Pittsburgh Brain Tumor Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
37
|
Lizzi AR, D'Alessandro AM, Zeolla N, Brisdelli F, D'Andrea G, Pitari G, Oratore A, Bozzi A, Ippoliti R. The effect of AZT and chloroquine on the activities of ricin and a saporin-transferrin chimeric toxin. Biochem Pharmacol 2005; 70:560-9. [PMID: 15982641 DOI: 10.1016/j.bcp.2005.04.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 04/25/2005] [Indexed: 11/23/2022]
Abstract
This study deals with the combination of chloroquine (CQ, an anti-malaric drug) and 3'-azido-3'-deoxythymidine (AZT, anti-human immuno-deficiency virus (HIV) drug) with a chimeric toxin (TS) obtained by chemical linking of saporin (a ribosome inactivating protein from the plant Saponaria officinalis) and human transferrin, in the intoxication of the human chronic myeloid leukaemia cells (K562). Our data demonstrate that AZT, at concentrations comparable to those reached in the blood of HIV-infected patients under pharmacological treatment with this drug, can increase the toxicity of TS in cooperation with CQ inducing an increased effect on protein synthesis in K562 cells ( approximately 50% inhibition of protein synthesis for TS alone, and TS with AZT and approximately 70% with both AZT and CQ). Furthermore, pre-treatment of cells with AZT alone can induce an increase of apoptosis in K562 cells intoxicated with TS. By comparing data obtained with the model toxin ricin, we get indications that the two toxins partially differ in their intracellular routes, also suggesting that chimeric constructs containing ricin-like toxins (i.e. immunotoxins) could be coupled with the use of common and cheap drugs for the treatment of cancer in HIV-infected patients.
Collapse
Affiliation(s)
- A R Lizzi
- Department of Biomedical Sciences and Technologies, University of L'Aquila, Via Vetoio snc., loc. Coppito, 67010 L'Aquila, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gomme PT, McCann KB, Bertolini J. Transferrin: structure, function and potential therapeutic actions. Drug Discov Today 2005; 10:267-73. [PMID: 15708745 DOI: 10.1016/s1359-6446(04)03333-1] [Citation(s) in RCA: 335] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There are many proteins that can multi-task. Transferrin, widely known as an iron-binding protein, is one such example of a multi-tasking protein. In this review, the multiple biological actions of transferrin, including its growth and cytoprotective activities, are discussed with the view of highlighting the potential therapeutic applications of this protein.
Collapse
Affiliation(s)
- Peter T Gomme
- Research and Development, CSL Ltd., Bioplasma Division, 189-209 Camp Road, Broadmeadows, Victoria 3047, Australia.
| | | | | |
Collapse
|
39
|
Boskovitz A, Wikstrand CJ, Kuan CT, Zalutsky MR, Reardon DA, Bigner DD. Monoclonal antibodies for brain tumour treatment. Expert Opin Biol Ther 2005; 4:1453-71. [PMID: 15335313 DOI: 10.1517/14712598.4.9.1453] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Conventional treatment of brain tumours includes surgical, radiotherapeutic and chemotherapeutic modalities. Nonetheless, the outcome of patients with brain tumours, in particular glioblastoma, remains poor. Immunotherapy with armed or unarmed monoclonal antibodies targeting tumour-specific antigens has emerged in the last two decades as a novel potential adjuvant treatment for all types of neoplasia. Many challenges to its implementation as a safe and viable therapy for brain tumours still need to be addressed; nevertheless, results from ongoing Phase I/II clinical trials are encouraging, as disease stabilisation and patient survival prolongation have been observed. Advances in preclinical and clinical research indicate that treatment of brain tumours with monoclonal antibodies can be increasingly adjusted to the characteristics of the targeted tumour and its environment. This aspect relies on the careful selection of the target antigen and corresponding specific monoclonal antibody, and antibody format (size, class, affinity), conjugation to the appropriate toxin or radioactive isotope (half-life, range), and proper compartmental administration.
Collapse
Affiliation(s)
- Abraham Boskovitz
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
40
|
Vavra M, Ali MJ, Kang EWY, Navalitloha Y, Ebert A, Allen CV, Groothuis DR. Comparative pharmacokinetics of 14C-sucrose in RG-2 rat gliomas after intravenous and convection-enhanced delivery. Neuro Oncol 2004; 6:104-12. [PMID: 15134624 PMCID: PMC1871980 DOI: 10.1215/s1152851703000449] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Accepted: 10/28/2003] [Indexed: 11/19/2022] Open
Abstract
We compared tissue and plasma pharmacokinetics of 14C-sucrose in subcutaneous RG-2 rat gliomas after administration by 3 routes, intravenous bolus (i.v.-B; 50 microCi over 30 s), continuous i.v. infusion (i.v.-C, 50 microCi at a constant rate), and convection-enhanced delivery (CED, 5 microCi infused at a rate of 0.5 microl/min), and for 3 experimental durations, 0.5, 2, and 4 h. Plasma, tumor, and other tissue samples were obtained to measure tissue radioactivity. Plasma radioactivity in the CED group increased exponentially and lagged only slightly behind the IV-C group. After 90 min, plasma values were similar in all. Mean tumor radioactivity was 100 to 500 times higher in the CED group at each time point than in the i.v.-B and i.v.-C groups. Tumor radioactivity was homogeneous in the i.v. groups at 0.5 h and inhomogeneous at 1 and 2 h. In CED, radioactivity distribution was inhomogeneous at all 3 time points; highest concentrations were in tissue around tumor and in necrosis, while viable tumor contained the lowest and sometimes negligible amounts of isotope. Systemic tissue radioactivity values were similar in all groups. Efflux of 14C-sucrose from tumors was evaluated in intracerebral tumors (at 0.5, 1, 2, and 4 h) and subcutaneous tumors (at 0 to 0.5 h). Less than 5% of 14C activity remained in intracerebral tumors at each time point. The efflux half-time from the subcutaneous tumors was 7.3 +/- 0.7 min. These results indicate rapid efflux of drug from brain tumor and marked heterogeneity of drug distribution within tumor after CED administration, both of which may be potentially limiting factors in drug delivery by this method.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dennis R. Groothuis
- Send correspondence to Dennis R. Groothuis, Department of Neurology, Evanston Northwestern Healthcare, 2650 Ridge Avenue, Evanston, IL 60201, USA (
)
| |
Collapse
|
41
|
Morse MA, Lyerly H, Clay TM, Abdel-Wahab O, Chui SY, Garst J, Gollob J, Grossi PM, Kalady M, Mosca PJ, Onaitis M, Sampson JH, Seigler HF, Toloza EM, Tyler D, Vieweg J, Yang Y. How does the immune system attack cancer? Curr Probl Surg 2004. [DOI: 10.1016/j.cpsurg.2003.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
42
|
Kim KU, Xiao J, Ni HT, Cho KH, Spellman SR, Low WC, Hall WA. Changes in expression of transferrin, insulin-like growth factor 1, and interleukin 4 receptors after irradiation of cells of primary malignant brain tumor cell lines. Radiat Res 2003; 160:224-31. [PMID: 12859234 DOI: 10.1667/rr3040] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Various immunotoxins have been developed for the treatment of cancer. The toxin is internalized by target cells through cell-surface receptors, and it is essential for these receptors to be expressed for the immunotoxin to have specific anti-tumor activity. Radiation therapy is one of the main treatment modalities for primary malignant brain tumors. The purpose of this study was to determine whether radiation influences the expression of cell-surface receptors. Cells of one human medulloblastoma (Daoy) and two glioblastoma (U373-MG and T98-G) cell lines were tested by exposing the cells to a single dose of 5 Gy gamma rays. Expression of transferrin receptors, type-1 insulin-like growth factor receptors (IGF1R), and interleukin 4 receptors (IL4R) was measured by flow cytometry analysis on unirradiated cells and on cells 3 to 120 h after irradiation. In Daoy cells, the absolute expression index of transferrin receptors increased during the 24 h after irradiation with the greatest change of 26% above control at 9 h. The absolute expression index of IGF1R increased 26.5% above control at 12 h. The absolute expression index of IL4R decreased 9 h after irradiation. In U373-MG cells the absolute expression index of transferrin receptors increased during the 24 h after irradiation, and the greatest increase was 45% above control at 9 h. The absolute expression index of IGF1R increased during the 12 h after irradiation with a maximum increase of 33% above control at 6 h. The absolute expression index of IL4R decreased with time after irradiation. In T98-G cells, the absolute expression index of both transferrin receptors and IL4R decreased after irradiation. The results suggest that the expression of growth factor receptors on brain tumor cells may be influenced by radiation. The effect of ionizing radiation on receptor expression should be considered when administration of targeted toxin is combined with radiation. Similar studies with other growth factor receptors used in targeted toxin therapy are recommended.
Collapse
MESH Headings
- Brain Neoplasms/metabolism
- Brain Neoplasms/pathology
- Flow Cytometry/methods
- Gene Expression Regulation, Neoplastic/radiation effects
- Glioblastoma/metabolism
- Glioblastoma/pathology
- Medulloblastoma/metabolism
- Medulloblastoma/pathology
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Interleukin-4/genetics
- Receptors, Interleukin-4/metabolism
- Receptors, Transferrin/genetics
- Receptors, Transferrin/metabolism
- Transferrin
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/radiation effects
Collapse
Affiliation(s)
- Ki-Uk Kim
- Department of Neurosurgery, Therapeutic Radiology-Radiation Oncology, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Weber F, Asher A, Bucholz R, Berger M, Prados M, Chang S, Bruce J, Hall W, Rainov NG, Westphal M, Warnick RE, Rand RW, Floeth F, Rommel F, Pan H, Hingorani VN, Puri RK. Safety, tolerability, and tumor response of IL4-Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma. J Neurooncol 2003; 64:125-37. [PMID: 12952293 DOI: 10.1007/bf02700027] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE This was an open-label, dose-escalation trial of intratumoral administration of IL-4 Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma. PATIENTS AND METHODS A total of 31 patients with histologically verified supratentorial grades 3 and 4 astrocytoma were studied. Of these, 25 patients were diagnosed with glioblastoma multiforme (GBM) while six were diagnosed with anaplastic astrocytoma. Patients were over 18 years of age and had Karnofsky performance scores > or = 60. Patients were assigned to one of four dose groups in a dose-escalation fashion: 6 microg/ml x 40 ml, 9 microg/ml x 40 ml, 15 microg/ml x 40 ml, or 9 microg/ml x 100 ml of NBI-3001 administered via convection-enhanced delivery intratumorally using stereotactically placed catheters. Patients were followed with serial MRI scans and clinical assessments every four weeks for the first 16 weeks and then every eight weeks until week 26. RESULTS No drug-related systemic toxicity, as evident by lack of hematological or serum chemical changes, was apparent in any patients; treatment-related adverse effects were limited to the central nervous system. No deaths were attributable to treatment. Drug-related grade 3 or 4 toxicity was seen in 39% of patients in all dose groups and 22% of patients at the maximum tolerated dose of 6 microg/ml x 40 ml. The overall median survival was 8.2 months with a median survival of 5.8 months for the GBM patients. Six-month survival was 52% and 48%, respectively. Gadolinium-enhanced magnetic resonance imaging of the brain showed areas of decreased signal intensity within the tumor consistent with tumor necrosis following treatment in many patients. CONCLUSIONS NBI-3001 appears to have an acceptable safety and toxicity profile when administered intratumorally in patients with recurrent malignant glioma.
Collapse
Affiliation(s)
- Friedrich Weber
- Department of Neurological Surgery, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The poor prognosis associated with the current management of malignant gliomas has led investigators to develop alternative treatments such as targeted toxin therapy. The optimal method for administering these agents is under development but appears to be convection-enhanced delivery (CED).
The direct intratumoral infusion of targeted toxins was first performed in nude mouse flank tumor models of human malignant glioma. After the demonstration of in vivo efficacy, these potent cytotoxic compounds were tested in Phase I and Phase II clinical trials.
Using a high-flow microinfusion technique, volumes of up to 180 ml were infused by CED through catheters placed directly into brain tumors. Minor systemic toxicity was seen in the form of hepatic enzyme elevation. Neural toxicity manifested as seizure activity and hemiparesis resulted from peritumoral edema that followed the completion of the infusion. Peritumoral toxicity was believed to be more related to the concentration of the infused immunotoxin than to the infusion volume. In approximately half of patients treated with CED a stable disease course, a partial response, or a complete response was demonstrated in some clinical trials.
Targeted toxin therapy has clinical efficacy in patients with malignant gliomas. Convection-enhanced delivery appears to represent an effective method for administering these agents in patients with malignant brain tumors.
Collapse
Affiliation(s)
- Walter A Hall
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
45
|
Weber FW, Floeth F, Asher A, Bucholz R, Berger M, Prados M, Chang S, Bruce J, Hall W, Rainov NG, Westphal M, Warnick RE, Rand RW, Rommell F, Pan H, Hingorani VN, Puri RK. Local convection enhanced delivery of IL4-Pseudomonas exotoxin (NBI-3001) for treatment of patients with recurrent malignant glioma. ACTA NEUROCHIRURGICA. SUPPLEMENT 2003; 88:93-103. [PMID: 14531567 DOI: 10.1007/978-3-7091-6090-9_15] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE This was an open-label, dose-escalation trial of intratumoral administration of IL-4 Pseudomonas Exotoxin (NBI-3001) in patients with recurrent malignant glioma. PATIENTS AND METHODS A total of 31 patients with histologically verified supratentorial grade 3 and 4 astrocytoma were studied. Of these, twenty-five patients were diagnosed with glioblastoma multiforme (GBM) while six were diagnosed with anaplastic astrocytoma (AA). Patients were over 18 years of age and had Karnofsky performance scores > or = 60. Patients were assigned to one of four dose groups in a dose-escalation fashion: 6 microg/ml x 40 ml, 9 microg/ml x 40 ml, 15 microg/ml x 40 ml, or 9 microg/ml x 100 ml of NBI-3001 administered intratumorally via stereotactically placed catheters. Patients were followed with serial MRI scans and clinical assessments every four weeks for the first 16 weeks and then every eight weeks until week 26. RESULTS No drug-related systemic toxicity, as evident by lack of hematological or serum chemical changes, was apparent in any patients; treatment-related adverse effects were limited to the central nervous system. No deaths were attributable to treatment. Drug-related Grade 3 or 4 toxicity was seen in 39% of patients in all dose groups and 22% of patients at the maximum tolerated dose of 6 microg/ml x 40 ml. The overall median survival was 8.2 months with a median survival of 5.8 months for the GBM patients. Six-month survival was 52% and 48%, respectively. Gadolinium-enhanced magnetic resonance imaging of the brain showed areas of decreased signal intensity within the tumor consistent with tumor necrosis following treatment in many patients. CONCLUSIONS NBI-3001 appears to have an acceptable safety and toxicity profile when administered intratumorally in patients with recurrent malignant glioma.
Collapse
Affiliation(s)
- F W Weber
- Department of Neurological Surgery, Heinrich Heine University, Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Abstract
High-grade astrocytomas (HGA) are the most prevalent brain tumors that represent a unique pharmaceutical challenge. Their cerebral localization and characteristic features of tumor progression primarily dictate this challenge. Targeted chimera conjugate/fusion cytotoxic proteins have become the newest class of investigative drug candidates for the treatment of HGA due to their inherent properties that are compatible with drug deliveries to brain tumors. A conjugate of a human transferrin with bacterial toxin, Diphtheria toxin, has shown clinical efficacy in Phase I and II trials when administered intratumorally through convection-enhanced delivery. This immunotoxin belongs to the first group of immunotoxins that started to live up to early expectations. Other anti-brain tumor cytotoxins have entered or will enter the clinic shortly. The clinical applicability of targeted bacterial toxin-containing cytotoxins in the treatment of brain tumors warrants further development and careful clinical evaluation.
Collapse
Affiliation(s)
- Waldemar Debinski
- Section of Neurosurgery/H110, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA.
| |
Collapse
|
48
|
Kraemer DF, Fortin D, Neuwelt EA. Chemotherapeutic dose intensification for treatment of malignant brain tumors: recent developments and future directions. Curr Neurol Neurosci Rep 2002; 2:216-24. [PMID: 11937000 DOI: 10.1007/s11910-002-0080-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Despite a large amount of research on malignant brain tumors over the past 70 years, the prognosis for most tumor types is poor. One current focus of research is increasing dose intensity of chemotherapeutic agents. Various ways to increase dose intensity include high-dose chemotherapy followed by stem cell rescue (eg, bone marrow transplant), blood-brain barrier disruption or use of RMP7 to increase transvascular drug delivery, local delivery of chemotherapeutic agents (convection enhancement or clysis, antibody conjugates, and biodegradable polymers), chemoprotective agents, and tumor sensitizers. Improved identification of patients likely to respond to a given regimen may also increase the effectiveness of chemotherapy. We also discuss approaches to improve the design of nonrandomized trials by identifying and controlling potential confounding variables. This will improve the quality of individual studies and perhaps the comparability across studies.
Collapse
Affiliation(s)
- Dale F Kraemer
- Department of Neurology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97201, USA
| | | | | |
Collapse
|
49
|
Li C, Hall WA, Jin N, Todhunter DA, Panoskaltsis-Mortari A, Vallera DA. Targeting glioblastoma multiforme with an IL-13/diphtheria toxin fusion protein in vitro and in vivo in nude mice. Protein Eng Des Sel 2002; 15:419-27. [PMID: 12034862 DOI: 10.1093/protein/15.5.419] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fusion proteins composed of tumor binding agents and potent catalytic toxins show promise for intracranial therapy of brain cancer and an advantage over systemic therapy. Glioblastoma multiforme (GBM) is the most common form of brain cancer and overexpresses IL-13R. Thus, we developed an interleukin-13 receptor targeting fusion protein, DT(390)IL13, composed of human interleukin-13 and the first 389 amino acids of diphtheria toxin. To measure its ability to inhibit GBM, DT(390)IL13 was tested in vitro and found to inhibit selectively the U373 MG GBM cell line with an IC(50) around 12 pmol/l. Cytotoxicity was neutralized by anti-human-interleukin-13 antibody, but not by control antibodies. In vivo, small U373 MG glioblastoma xenografts in nude mice completely regressed in most animals after five intratumoral injections of 1 microg of DT(390)IL13 q.o.d., but not by the control fusion protein DT(390)IL-2. DT(390)IL13 was also tested against primary explant GBM cells of a patient's excised tumor and the IC(50) was similar to that measured for U373 MG. Further studies showed a therapeutic window for DT(390)IL13 of 1-30 microg/injection and histology studies and enzyme measurements showed that the maximum tolerated dose of DT(390)IL13 had little effect on kidney, liver, spleen, lung and heart in non-tumor-bearing immunocompetent mice. Together, these data suggest that DT(390)IL13 may provide an important, alternative therapy for brain cancer.
Collapse
Affiliation(s)
- Chunbin Li
- Department of Therapeutic Radiology-Radiation Oncology, Section on Experimental Cancer Immunology, University of Minnesota Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
50
|
Gosselaar PH, van-Dijk AJG, de-Gast GC, Polito L, Bolognesi A, Vooijs WC, Verheul AFM, Krouwer HGJ, Marx JJM. Transferrin toxin but not transferrin receptor immunotoxin is influenced by free transferrin and iron saturation. Eur J Clin Invest 2002; 32 Suppl 1:61-9. [PMID: 11886434 DOI: 10.1046/j.1365-2362.2002.0320s1061.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cytotoxic agents can be targeted successfully to cancer cells. The efficacy of such novel and potent anticancer strategies may be influenced by variables of iron metabolism. METHODS The in vitro cytotoxicity against glioma cells of transferrin (Tf)-based targeted toxins was compared with that of alpha-transferrin receptor (TfR)-immunotoxin. RESULTS Of four Tf-based targeted toxins, Tf-gelonin, Tf-pokeweed antiviral protein, Tf-momordin and Tf-saporin, inhibitory concentration 50% values against glioma-derived cell lines HS683 and U251, ranged from [4.8 +/- 1.5] x 10(-10) m for Tf-saporin to [26.9 +/- 15.3] x 10(-10) m for Tf-gelonin in [(3)H]-leucine incorporation assays. Tf-saporin and alpha-TfR-saporin-immunotoxin had similar efficacy, even in the more quantitative clonogenic assay (4-5 log kill with 1 x 10(-9) m) using the myeloma cell line RPMI 8226 and glioma cell line U251. However, on RPMI 8226, the efficacy of Tf-saporin 1 x 10(-9) m was reduced by 90% in the presence of 150 microg mL(-1)(=20% of normal plasma value) competing diferric transferrin, whereas the efficacy of the corresponding immunotoxin was affected only marginally. In addition, the efficacy of Tf-based conjugates will depend on their iron saturation state. Iron desaturation of Tf-saporin was demonstrated by [(59)Fe]-labelling, subsequent CM-Sepharose chromatography and SDS-PAGE. Desaturation led to virtually complete loss of affinity for the transferrin receptor, as determined by flow cytometry, which could be largely restored upon resaturation. CONCLUSION Transferrin-based toxin conjugates are strongly influenced by the presence of free transferrin and the iron saturation state. The corresponding alpha-transferrin receptor-immunotoxin does not show these disadvantages, has similar efficacy and should be preferred for further experiments.
Collapse
Affiliation(s)
- P H Gosselaar
- University Medical Centre Utrecht, Eijkman Winkler Institute G04.614, Heidelberglaan 100, PO Box 85500, 3508GA Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|