1
|
McClure J, Powell J. Homogenization Reveals Large-Scale Dynamics in the Spread of Chronic Wasting Disease. Bull Math Biol 2025; 87:79. [PMID: 40392434 DOI: 10.1007/s11538-025-01456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/24/2025] [Indexed: 05/22/2025]
Abstract
Thresholds in environmental transmission can significantly alter the dynamics of disease spread in wildlife. However, the impact of thresholds in landscapes with high spatial variability is not well understood. We investigate this phenomenon in chronic wasting disease (CWD), a degenerative cervid illness exhibiting direct transmission between individuals and indirect transmission through environmental hazard. The indirect pathway exhibits threshold behavior analogous to a strong Allee effect. We derive a partial differential equation (PDE) model for CWD on the scale of hours and tens of meters. Leveraging highly variable landscape structure, we homogenize this model to yield an asymptotically accurate approximal model on the scale of years and kilometers. Our homogenized model describes the aggregate effect of thresholded transmission on large scales - to our knowledge, the first time such a description has been identified. The model predicts that direct transmission in CWD will lead to pulled fronts, whereas indirect transmission generates pushed fronts. Pushed fronts allow CWD to spread even when infectives infect less than one susceptible on average. We use a hypothetical binary distribution of habitat types to showcase the homogenized model's ability to predict how distribution of cover in a landscape can influence CWD spread and potential mitigation efforts.
Collapse
Affiliation(s)
- Jen McClure
- Department of Mathematics and Statistics, Utah State University, Logan, UT, 84341, USA.
| | - James Powell
- Department of Mathematics and Statistics, Utah State University, Logan, UT, 84341, USA
| |
Collapse
|
2
|
Sun Z, Wen P, Yang D, Li J, Li Z, Zhao M, Wang D, Gou F, Wang J, Fan Q, Dai Y, Ji Y, Li X, Tu Y, Ma T, Wang X, Zhao D, Yang L. Idebenone improves mitochondrial respiratory activity and attenuates oxidative damage via the SIRT3-SOD2 pathway in a prion disease cell model. Life Sci 2025; 366-367:123481. [PMID: 39983818 DOI: 10.1016/j.lfs.2025.123481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/26/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Prion diseases are neurodegenerative diseases that are transmitted between humans and animals, which cause spongiform brain degeneration and neuronal death. Prion diseases are difficult to treat. Mitochondrial damage and oxidative stress occurring early in disease progression. Reducing oxidative stress is a therapeutic strategy for disease. Idebenone (IDE) is an antioxidant that enhances electron transfer in the mitochondrial respiratory chain. To investigate IDE protection mechanisms in prion neuron models, we examined IDE effects on apoptosis, mitochondrial dysfunction, cellular respiratory chain damage, and oxidative stress in N2a cells treated with the prion toxic peptide PrP106-126. IDE effectively alleviated apoptosis and mitochondrial dysfunction, reduced mitochondrial reactive oxygen species (ROS), attenuated lipid peroxidation, improved glutathione percentages, increased important antioxidant enzyme (superoxide dismutase (SOD) and catalase) activities, and elevated mitochondrial DNA levels. IDE also modulated SOD2 deacetylation and oxidative damage by regulating SIRT3. Overall, IDE exerted significant antioxidant effects in our prion disease cell model and may have therapeutic applications for prion disease.
Collapse
Affiliation(s)
- Zhixin Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Pei Wen
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dongming Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jie Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhiping Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengyang Zhao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dongdong Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Fengting Gou
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingjing Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qing Fan
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuexin Dai
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yilan Ji
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xueyuan Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yingxin Tu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tianying Ma
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoyu Wang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture and Rural Affairs, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Do K, Benavente R, Catumbela CSG, Khan U, Kramm C, Soto C, Morales R. Adaptation of the protein misfolding cyclic amplification (PMCA) technique for the screening of anti-prion compounds. FASEB J 2024; 38:e23843. [PMID: 39072789 PMCID: PMC11453167 DOI: 10.1096/fj.202400614r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Prion diseases result from the misfolding of the physiological prion protein (PrPC) to a pathogenic conformation (PrPSc). Compelling evidence indicates that prevention and/or reduction of PrPSc replication are promising therapeutic strategies against prion diseases. However, the existence of different PrPSc conformations (or strains) associated with disease represents a major problem when identifying anti-prion compounds. Efforts to identify strain-specific anti-prion molecules are limited by the lack of biologically relevant high-throughput screening platforms to interrogate compound libraries. Here, we describe adaptations to the protein misfolding cyclic amplification (PMCA) technology (able to faithfully replicate PrPSc strains) that increase its throughput to facilitate the screening of anti-prion molecules. The optimized PMCA platform includes a reduction in sample and reagents, as well as incubation/sonication cycles required to efficiently replicate and detect rodent-adapted and cervid PrPSc strains. The visualization of PMCA products was performed via dot blots, a method that contributed to reduced processing times. These technical changes allowed us to evaluate small molecules with previously reported anti-prion activity. This proof-of-principle screening was evaluated for six rodent-adapted prion strains. Our data show that these compounds targeted either none, all or some PrPSc strains at variable concentrations, demonstrating that this PMCA system is suitable to test compound libraries for putative anti-prion molecules targeting specific PrPSc strains. Further analyses of a small compound library against deer prions demonstrate the potential of this new PMCA format to identify strain-specific anti-prion molecules. The data presented here demonstrate the use of the PMCA technique in the selection of prion strain-specific anti-prion compounds.
Collapse
Affiliation(s)
- Katherine Do
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rebeca Benavente
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Celso S. G. Catumbela
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Uffaf Khan
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Carlos Kramm
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Claudio Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| |
Collapse
|
4
|
Mierkiewicz M, Dzikowski A, Anusz K. CWD as a New Health Threat in Europe and the Adequacy and Effectiveness of Instruments of Legal Response from a Comparative Legal Perspective. Animals (Basel) 2024; 14:2027. [PMID: 39061487 PMCID: PMC11273877 DOI: 10.3390/ani14142027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Prions cause infectious and fatal neurodegenerative diseases in mammals. Chronic wasting disease (CWD) affects wild and farmed cervids. The increasing number of cases in Europe, the resistance of prions to external conditions, and the persistence period threaten not only wild cervid populations but also the economy. The possible zoonotic potential of CWD is of growing concern. CWD is a relevant issue as far as the idea of "one health" is concerned, which is a fundamental principle of European veterinary law. Methods of legal text analysis and interpretation are used for this comparative legal study. Research reveals that countries struggling to tackle CWD employ different normative approaches to the problem and use different control and eradication schemes. The results of this study indicate that it is reasonable to issue uniform regulations in the European Union at the common, rather than national, level. The European legislation should creatively draw on the experience of North American countries that have been struggling with the discussed disease for a long time.
Collapse
Affiliation(s)
| | - Andrzej Dzikowski
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 159 Nowoursynowska St., 02-787 Warsaw, Poland; (M.M.); (K.A.)
| | | |
Collapse
|
5
|
Vaske JJ, Miller CA. Changes in Illinois hunters' beliefs about chronic wasting disease management between 2012 and 2022. WILDLIFE SOC B 2023. [DOI: 10.1002/wsb.1434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Ufer DJ, Christensen SA, Pomeranz E, Ortega DL. A behavioral economic assessment of the role of stakeholder preferences in managing an infectious wildlife disease. WILDLIFE SOC B 2022. [DOI: 10.1002/wsb.1411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Danielle J. Ufer
- Department of Agricultural, Food and Resource Economics Michigan State University 446 W Circle Drive East Lansing MI 48824 USA
| | - Sonja A. Christensen
- Department of Fisheries and Wildlife Michigan State University 480 Wilson Road East Lansing MI 48824 USA
| | - Emily Pomeranz
- Michigan Department of Natural Resources 4166 Legacy Parkway Lansing MI 48911 USA
| | - David L. Ortega
- Department of Agricultural, Food and Resource Economics Michigan State University 446 W Circle Drive East Lansing MI 48824 USA
| |
Collapse
|
7
|
Perrin-Stowe TI, Ishida Y, Reed DM, Terrill EE, Ryder OA, Novakofski JE, Mateus-Pinilla NE, Pukazhenthi BS, Roca AL. Extrapolating the susceptibility of Eld’s deer (Rucervus eldii thamin) to chronic wasting disease from prion protein gene (PRNP) polymorphisms. FRONTIERS IN CONSERVATION SCIENCE 2022. [DOI: 10.3389/fcosc.2022.1007100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chronic wasting disease (CWD) is a prion disease of North American cervids. The transmission of CWD to endangered cervid species is of concern for captive breeding programs. Trans-species transmission could occur via direct contact with infected wild deer, or via prion contaminated fomites. Variation in the prion protein gene, PRNP, is associated with differences in CWD susceptibility among cervids. We therefore sequenced PRNP in 36 endangered Eld’s deer (Rucervus eldii thamin), detecting five synonymous and two non-synonymous SNPs. Three haplotypes were inferred, suggesting that genetic management in captive breeding programs has been effective at maintaining PRNP diversity. The haplotypes encoded two PrP protein variants. The more common Eld’s deer PrP variant encodes methionine at codon 208 and glutamine at codon 226. Because this protein variant is identical to a common PrP variant in white-tailed deer and mule deer and is especially common in white-tailed deer positive for CWD, we recommend reducing the frequency of this variant in the breeding stock, while implementing strict management practices to avoid exposure to wild North American cervids. The frequency of the other PrP variant, which differs from variants present in these North American cervids, was low. It has the potential to reduce susceptibility to CWD and thus could be increased in frequency. While PRNP haplotype frequencies should be shifted, genetic diversity should be maintained. Ultimately protein diversity may be protective should CWD infect the species, and trans-species polymorphisms are suggestive of past balancing selection and a potential fitness advantage for PRNP diversity.
Collapse
|
8
|
Adil S, Altaf M, Hussain T, Umair M, Ni J, Abbasi AM, Bussmann RW, Ashraf S. Cultural and Medicinal Use of Amphibians and Reptiles by Indigenous People in Punjab, Pakistan with Comments on Conservation Implications for Herpetofauna. Animals (Basel) 2022; 12:ani12162062. [PMID: 36009651 PMCID: PMC9405124 DOI: 10.3390/ani12162062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Humans have interacted with reptile and amphibian species for millennia. The current study was designed to collect knowledge about the use of amphibian and reptile species by the native peoples residing along the Jhelum and Chenab rivers in Punjab, Pakistan. To the best of our knowledge, this is the first quantitative assessment of the cultural uses of amphibian and reptile species in the study area. However, hunting, trade, and cultural use are the greatest threats to the diversity of the amphibians and reptiles in the studied area. These threats can potentially lead to their extinction. It is important to protect the highly endangered and vulnerable species employed in therapeutic medications, more specifically in terms of their conservation. Abstract Amphibians and reptiles have interacted with humans for millennia. However, humans interact with amphibian and reptile species in different manners, which depend on their culture and traditions. This study was designed to better understand the interactions between amphibian and reptile species and their usage among the native peoples in the vicinity of the Jhelum and Chenab rivers, Pakistan. Information was collected through semi-structured interviews and questionnaires, and was analyzed by using different indices, including the frequency of citation, corrected fidelity level, fidelity level, relative importance level, and informant major ailment. Two amphibians and twenty-six reptile species were used in therapeutic medicine in the study area. Based on the cultural analysis, we found that Naja naja (black cobra) was highly cited across all cultural groups. A 100% Fidelity Level was calculated for the following species: Naja naja (eye infection), Varanus bengalensis (joint pain), Eurylepis taeniolatus (cataract), and Acanthodactylus cantoris (cancer). We found five endangered species in the study area, i.e., Aspideretes gangeticus, A. hurum, Chitra indica, Varanus flavescens, and Geoclemys hamiltonii, that were used to cure joint pain, muscle stretching and pain, backbone pain, paralysis, and psoriasis, respectively. Likewise, Lissemys punctata andersoni, a vulnerable species as labelled by the International Union for Conservation of Nature, was extensively used for the treatment of joint pain, body pain, paralysis, and arthritis in the study area. In terms of conservation, it is critical to protect the highly vulnerable and endangered species that are being used in therapeutic medicines. Our findings may be helpful for the conservation of amphibian and reptile species by helping to make an effective plan to prevent their extinction. The main threats to the diversity of amphibian and reptile species in the area are hunting, trading, and cultural use. These threats could potentially lead to the extinction of these species. Therefore, with the involvement of concerned authorities, e.g., local stakeholders, the Ministry of Climate Change, provincial wildlife departments, academia, and conservation managers, immediate conservation measures should be taken for the protection and sustainable utilization of medicinal species.
Collapse
Affiliation(s)
- Saba Adil
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Department of Zoology, Sargodha Campus, University of Lahore, Sargodha 40100, Pakistan
| | - Muhammad Altaf
- Department of Forestry, Range and Wildlife Management, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tanveer Hussain
- Department of Forestry, Range and Wildlife Management, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Umair
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Correspondence:
| | - Jian Ni
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Arshad Mehmood Abbasi
- Department of Environment Sciences, Abbottabad Campus, COMSATS University Islamabad, Abbottabad 22060, Pakistan
| | - Rainer W. Bussmann
- Department of Ethnobotany, Institute of Botany and Bakuriani Alpine Botanical Garden, Ilia State University, Tbilisi 0105, Georgia
| | - Sana Ashraf
- Department of Zoology, Sargodha Campus, University of Lahore, Sargodha 40100, Pakistan
| |
Collapse
|
9
|
Gilch S. Chronic wasting disease - A prion disease through a One Health lens. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2022; 63:431-433. [PMID: 35368398 PMCID: PMC8922376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Sabine Gilch
- Dr. Gilch is an Associate Professor and Canada Research Chair in Prion Disease Research in the Department of Comparative Biology and Experimental Medicine in the Faculty of Veterinary Medicine, University of Calgary
| |
Collapse
|
10
|
Transmission of cervid prions to humanized mice demonstrates the zoonotic potential of CWD. Acta Neuropathol 2022; 144:767-784. [PMID: 35996016 PMCID: PMC9468132 DOI: 10.1007/s00401-022-02482-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 01/28/2023]
Abstract
Prions cause infectious and fatal neurodegenerative diseases in mammals. Chronic wasting disease (CWD), a prion disease of cervids, spreads efficiently among wild and farmed animals. Potential transmission to humans of CWD is a growing concern due to its increasing prevalence. Here, we provide evidence for a zoonotic potential of CWD prions, and its probable signature using mice expressing human prion protein (PrP) as an infection model. Inoculation of these mice with deer CWD isolates resulted in atypical clinical manifestation with prion seeding activity and efficient transmissible infectivity in the brain and, remarkably, in feces, but without classical neuropathological or Western blot appearances of prion diseases. Intriguingly, the protease-resistant PrP in the brain resembled that found in a familial human prion disease and was transmissible upon second passage. Our results suggest that CWD might infect humans, although the transmission barrier is likely higher compared to zoonotic transmission of cattle prions. Notably, our data suggest a different clinical presentation, prion signature, and tissue tropism, which causes challenges for detection by current diagnostic assays. Furthermore, the presence of infectious prions in feces is concerning because if this occurs in humans, it is a source for human-to-human transmission. These findings have strong implications for public health and CWD management.
Collapse
|
11
|
Perrin-Stowe TIN, Ishida Y, Terrill EE, Beetem D, Ryder OA, Novakofski JE, Mateus-Pinilla NE, Roca AL. Variation in the PRNP gene of Pere David’s deer (Elaphurus davidianus) may impact genetic vulnerability to chronic wasting disease. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Virus Infection, Genetic Mutations, and Prion Infection in Prion Protein Conversion. Int J Mol Sci 2021; 22:ijms222212439. [PMID: 34830321 PMCID: PMC8624980 DOI: 10.3390/ijms222212439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 01/04/2023] Open
Abstract
Conformational conversion of the cellular isoform of prion protein, PrPC, into the abnormally folded, amyloidogenic isoform, PrPSc, is an underlying pathogenic mechanism in prion diseases. The diseases manifest as sporadic, hereditary, and acquired disorders. Etiological mechanisms driving the conversion of PrPC into PrPSc are unknown in sporadic prion diseases, while prion infection and specific mutations in the PrP gene are known to cause the conversion of PrPC into PrPSc in acquired and hereditary prion diseases, respectively. We recently reported that a neurotropic strain of influenza A virus (IAV) induced the conversion of PrPC into PrPSc as well as formation of infectious prions in mouse neuroblastoma cells after infection, suggesting the causative role of the neuronal infection of IAV in sporadic prion diseases. Here, we discuss the conversion mechanism of PrPC into PrPSc in different types of prion diseases, by presenting our findings of the IAV infection-induced conversion of PrPC into PrPSc and by reviewing the so far reported transgenic animal models of hereditary prion diseases and the reverse genetic studies, which have revealed the structure-function relationship for PrPC to convert into PrPSc after prion infection.
Collapse
|
13
|
Vaske JJ, Needham MD, Miller CA. Wildlife Agency Trust and Perceived Risks From Chronic Wasting Disease. WILDLIFE SOC B 2021. [DOI: 10.1002/wsb.1224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jerry J. Vaske
- Colorado State University, Human Dimensions of Natural Resources Department Fort Collins CO 80523 USA
| | - Mark D. Needham
- Oregon State University, Department of Forest Ecosystems and Society Corvallis OR 97331 USA
| | - Craig A. Miller
- University of Illinois, Illinois Natural History Survey Champaign IL 61820 USA
| |
Collapse
|
14
|
Bravo-Risi F, Soto P, Eckland T, Dittmar R, Ramírez S, Catumbela CSG, Soto C, Lockwood M, Nichols T, Morales R. Detection of CWD prions in naturally infected white-tailed deer fetuses and gestational tissues by PMCA. Sci Rep 2021; 11:18385. [PMID: 34526562 PMCID: PMC8443553 DOI: 10.1038/s41598-021-97737-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/30/2021] [Indexed: 11/09/2022] Open
Abstract
Chronic wasting disease (CWD) is a prevalent prion disease affecting cervids. CWD is thought to be transmitted through direct animal contact or by indirect exposure to contaminated environmental fomites. Other mechanisms of propagation such as vertical and maternal transmissions have also been suggested using naturally and experimentally infected animals. Here, we describe the detection of CWD prions in naturally-infected, farmed white-tailed deer (WTD) fetal tissues using the Protein Misfolding Cyclic Amplification (PMCA) technique. Prion seeding activity was identified in a variety of gestational and fetal tissues. Future studies should demonstrate if prions present in fetuses are at sufficient quantities to cause CWD after birth. This data confirms previous findings in other animal species and furthers vertical transmission as a relevant mechanism of CWD dissemination.
Collapse
Affiliation(s)
- Francisca Bravo-Risi
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | - Paulina Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | - Thomas Eckland
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | | | - Santiago Ramírez
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | - Celso S G Catumbela
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | - Claudio Soto
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA
| | | | - Tracy Nichols
- United States Department of Agriculture, Animal Plant Health Inspection Service, Veterinary Services, Fort Collins, CO, 80526, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, 6431 Fannin St. MSB 7.128, Houston, TX, 77030, USA. .,Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
15
|
Perrin-Stowe TIN, Ishida Y, Terrill EE, Hamlin BC, Penfold L, Cusack LM, Novakofski J, Mateus-Pinilla NE, Roca AL. Prion Protein Gene (PRNP) Sequences Suggest Differing Vulnerability to Chronic Wasting Disease for Florida Key Deer (Odocoileus virginianus clavium) and Columbian White-Tailed Deer (O. v. leucurus). J Hered 2021; 111:564-572. [PMID: 32945850 DOI: 10.1093/jhered/esaa040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Chronic wasting disease (CWD) is a fatal, highly transmissible spongiform encephalopathy caused by an infectious prion protein. CWD is spreading across North American cervids. Studies of the prion protein gene (PRNP) in white-tailed deer (WTD; Odocoileus virginianus) have identified non-synonymous substitutions associated with reduced CWD frequency. Because CWD is spreading rapidly geographically, it may impact cervids of conservation concern. Here, we examined the genetic vulnerability to CWD of 2 subspecies of WTD: the endangered Florida Key deer (O. v. clavium) and the threatened Columbian WTD (O. v. leucurus). In Key deer (n = 48), we identified 3 haplotypes formed by 5 polymorphisms, of which 2 were non-synonymous. The polymorphism c.574G>A, unique to Key deer (29 of 96 chromosomes), encodes a non-synonymous substitution from valine to isoleucine at codon 192. In 91 of 96 chromosomes, Key deer carried c.286G>A (G96S), previously associated with substantially reduced susceptibility to CWD. Key deer may be less genetically susceptible to CWD than many mainland WTD populations. In Columbian WTD (n = 13), 2 haplotypes separated by one synonymous substitution (c.438C>T) were identified. All of the Columbian WTD carried alleles that in other mainland populations are associated with relatively high susceptibility to CWD. While larger sampling is needed, future management plans should consider that Columbian WTD are likely to be genetically more vulnerable to CWD than many other WTD populations. Finally, we suggest that genetic vulnerability to CWD be assessed by sequencing PRNP across other endangered cervids, both wild and in captive breeding facilities.
Collapse
Affiliation(s)
- Tolulope I N Perrin-Stowe
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL.,School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Emily E Terrill
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Brian C Hamlin
- United States Fish and Wildlife Service Office of Law Enforcement National Fish and Wildlife Forensic Laboratory, Ashland, OR
| | - Linda Penfold
- South-East Zoo Alliance for Reproduction and Conservation, Yulee, FL
| | - Lara M Cusack
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Naples, FL
| | - Jan Novakofski
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Nohra E Mateus-Pinilla
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Alfred L Roca
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
16
|
Zhu S, Buckles E, Bunting E, Hynes K, Schuler K. Diagnostic evaluation of unknown white-tailed deer morbidity and mortality in New York State: 2011–2017. WILDLIFE BIOLOGY 2021. [DOI: 10.2981/wlb.00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Sophie Zhu
- S. Zhu (https://orcid.org/0000-0002-8694-4058) ✉ , E. Bunting and K. Schuler, Dept of Population Medicine and Diagnostic Sciences, Cornell Univ., Ithaca, NY, USA
| | - Elizabeth Buckles
- E. Buckles, Dept of Biomedical Sciences, Cornell Univ., Ithaca, NY, USA
| | - Elizabeth Bunting
- S. Zhu (https://orcid.org/0000-0002-8694-4058) ✉ , E. Bunting and K. Schuler, Dept of Population Medicine and Diagnostic Sciences, Cornell Univ., Ithaca, NY, USA
| | - Kevin Hynes
- Kevin Hynes, Wildlife Health Unit, New York State Dept of Environmental Conservation, Delmar, NY, USA
| | - Krysten Schuler
- S. Zhu (https://orcid.org/0000-0002-8694-4058) ✉ , E. Bunting and K. Schuler, Dept of Population Medicine and Diagnostic Sciences, Cornell Univ., Ithaca, NY, USA
| |
Collapse
|
17
|
Ritchie DL, Barria MA. Prion Diseases: A Unique Transmissible Agent or a Model for Neurodegenerative Diseases? Biomolecules 2021; 11:biom11020207. [PMID: 33540845 PMCID: PMC7912988 DOI: 10.3390/biom11020207] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
The accumulation and propagation in the brain of misfolded proteins is a pathological hallmark shared by many neurodegenerative diseases such as Alzheimer's disease (Aβ and tau), Parkinson's disease (α-synuclein), and prion disease (prion protein). Currently, there is no epidemiological evidence to suggest that neurodegenerative disorders are infectious, apart from prion diseases. However, there is an increasing body of evidence from experimental models to suggest that other pathogenic proteins such as Aβ and tau can propagate in vivo and in vitro in a prion-like mechanism, inducing the formation of misfolded protein aggregates such as amyloid plaques and neurofibrillary tangles. Such similarities have raised concerns that misfolded proteins, other than the prion protein, could potentially transmit from person-to-person as rare events after lengthy incubation periods. Such concerns have been heightened following a number of recent reports of the possible inadvertent transmission of Aβ pathology via medical and surgical procedures. This review will provide a historical perspective on the unique transmissible nature of prion diseases, examining their impact on public health and the ongoing concerns raised by this rare group of disorders. Additionally, this review will provide an insight into current evidence supporting the potential transmissibility of other pathogenic proteins associated with more common neurodegenerative disorders and the potential implications for public health.
Collapse
|
18
|
Maloney M, Merkle JA, Aadland D, Peck D, Horan RD, Monteith KL, Winslow T, Logan J, Finnoff D, Sims C, Schumaker B. Chronic wasting disease undermines efforts to control the spread of brucellosis in the Greater Yellowstone Ecosystem. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02129. [PMID: 32223053 DOI: 10.1002/eap.2129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/20/2019] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Wildlife diseases pose a substantial threat to the provisioning of ecosystem services. We use a novel modeling approach to study the potential loss of these services through the imminent introduction of chronic wasting disease (CWD) to elk populations in the Greater Yellowstone Ecosystem (GYE). A specific concern is that concentrating elk at feedgrounds may exacerbate the spread of CWD, whereas eliminating feedgrounds may increase the number of elk on private ranchlands and the transmission of a second disease, brucellosis, from elk to cattle. To evaluate the consequences of management strategies given the threat of two concurrent wildlife diseases, we develop a spatiotemporal bioeconomic model. GPS data from elk and landscape attributes are used to predict migratory behavior and population densities with and without supplementary feeding. We use a 4,800 km2 area around Pinedale, Wyoming containing four existing feedgrounds as a case study. For this area, we simulate welfare estimates under a variety of management strategies. Our results indicate that continuing to feed elk could result in substantial welfare losses for the case-study region. Therefore, to maximize the present value of economic net benefits generated by the local elk population upon CWD's arrival in the region, wildlife managers may wish to consider discontinuing elk feedgrounds while simultaneously developing new methods to mitigate the financial impact to ranchers of possible brucellosis transmission to livestock. More generally, our methods can be used to weigh the costs and benefits of human-wildlife interactions in the presence of multiple disease risks.
Collapse
Affiliation(s)
- Matthew Maloney
- HS Strategy Department 01114, University of Utah Health Sciences, 102 S 200 E, Salt Lake City, Utah, 84109, USA
| | - Jerod A Merkle
- Department of Zoology and Physiology, University of Wyoming, 1000 East University Avenue, Laramie, Wyoming, 82071, USA
| | - David Aadland
- Department of Economics, University of Wyoming, 1000 E. University Avenue, Laramie, Wyoming, 82072, USA
| | - Dannele Peck
- USDA Agricultural Research Service, 1701 Centre Avenue, Fort Collins, Colorado, 80526, USA
| | - Richard D Horan
- Department of Agricultural, Food, and Resource Economics, Justin S Morrill Hall of Agriculture, Michigan State University, 446 W. Circle Drive, Rm 303B, East Lansing, Michigan, 48824, USA
| | - Kevin L Monteith
- Haub School of Environment and Natural Resources, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Bim Kendall House, 804 East Fremont Street, Laramie, Wyoming, 82072, USA
| | - Thach Winslow
- Wyoming Livestock Board, 1934 Wyott Drive, Cheyenne, Wyoming, 82002, USA
| | - Jim Logan
- Wyoming Livestock Board, 1934 Wyott Drive, Cheyenne, Wyoming, 82002, USA
| | - David Finnoff
- Department of Economics, University of Wyoming, 1000 E. University Avenue, Laramie, Wyoming, 82072, USA
| | - Charles Sims
- Howard H. Baker Jr. Center for Public Policy and Department of Economics, The University of Tennessee, 1640 Cumberland Avenue, Knoxville, Tennessee, 37996, USA
| | - Brant Schumaker
- Department of Veterinary Sciences, College of Agriculture & Natural Resources, University of Wyoming, 1174 Snowy Range Road, Laramie, Wyoming, 82070, USA
| |
Collapse
|
19
|
Cojocaru MG, Migot T, Jaber A. Controlling infection in predator-prey systems with transmission dynamics. Infect Dis Model 2020; 5:1-11. [PMID: 31891013 PMCID: PMC6933197 DOI: 10.1016/j.idm.2019.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/07/2019] [Accepted: 12/07/2019] [Indexed: 11/30/2022] Open
Abstract
We propose in this paper a prophylactic treatment strategy for a predator-prey system. The objective is to fight against the propagation of an infectious disease within two populations, one of which preys on the other. This propagation is modeled by means of an SIS (susceptible-infectious-susceptible) epidemic model with vital dynamics and infection propagation in both species through contact and predation, including mortality rates in both populations due directly to the disease. Treatment strategies are represented by new parameters modeling the uptake rates in the populations. We analyze the effect of various treatment strategy scenarios (prey only, predator only, or both) via their uptake rates and possible cost structures, on the size of the infected populations. We illustrate if and when applying such preventive treatments lead to a disease prevalence drop in both populations. We conduct our study using an optimal control model seeking to minimize the treatment cost(s), subject to the transmission dynamics and predator-prey dynamics.
Collapse
Affiliation(s)
- M-G Cojocaru
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - T Migot
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - A Jaber
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, N1G 2W1, Canada.,Department of Mathematics, College of Science, University of Al-Mustansiriyah, Baghdad, Iraq
| |
Collapse
|
20
|
Bistaffa E, Vuong TT, Cazzaniga FA, Tran L, Salzano G, Legname G, Giaccone G, Benestad SL, Moda F. Use of different RT-QuIC substrates for detecting CWD prions in the brain of Norwegian cervids. Sci Rep 2019; 9:18595. [PMID: 31819115 PMCID: PMC6901582 DOI: 10.1038/s41598-019-55078-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic wasting disease (CWD) is a highly contagious prion disease affecting captive and free-ranging cervid populations. CWD has been detected in United States, Canada, South Korea and, most recently, in Europe (Norway, Finland and Sweden). Animals with CWD release infectious prions in the environment through saliva, urine and feces sustaining disease spreading between cervids but also potentially to other non-cervids ruminants (e.g. sheep, goats and cattle). In the light of these considerations and due to CWD unknown zoonotic potential, it is of utmost importance to follow specific surveillance programs useful to minimize disease spreading and transmission. The European community has already in place specific surveillance measures, but the traditional diagnostic tests performed on nervous or lymphoid tissues lack sensitivity. We have optimized a Real-Time Quaking-Induced Conversion (RT-QuIC) assay for detecting CWD prions with high sensitivity and specificity to try to overcome this problem. In this work, we show that bank vole prion protein (PrP) is an excellent substrate for RT-QuIC reactions, enabling the detection of trace-amounts of CWD prions, regardless of prion strain and cervid species. Beside supporting the traditional diagnostic tests, this technology could be exploited for detecting prions in peripheral tissues from live animals, possibly even at preclinical stages of the disease.
Collapse
Affiliation(s)
- Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | | | - Federico Angelo Cazzaniga
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | - Linh Tran
- Norwegian Veterinary Institute, Oslo, Norway
| | - Giulia Salzano
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Laboratory of Prion Biology, Department of Neuroscience, Trieste, Italy
| | - Giuseppe Legname
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Laboratory of Prion Biology, Department of Neuroscience, Trieste, Italy
| | - Giorgio Giaccone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy
| | | | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Division of Neurology 5 and Neuropathology, Milano, Italy.
| |
Collapse
|
21
|
The Effect of Chronic Wasting Disease on Resident Deer Hunting Permit Demand in Wisconsin. Animals (Basel) 2019; 9:ani9121096. [PMID: 31817847 PMCID: PMC6941111 DOI: 10.3390/ani9121096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 11/17/2022] Open
Abstract
Chronic wasting disease (CWD) has had a negative impact on deer license demand in Wisconsin since it was first found in the state in 2002. Prior work evaluates the effect of CWD on hunting permit sales, but only in the period immediately after the disease was discovered. We use data on hunting permit sales, permit price, and other demand shifters to estimate a model of deer permit demand for the period 1966-2015. We use the estimated model to quantify the effect of CWD on (1) hunter demand for deer permits; (2) hunter surplus from hunting; and (3) lost hunting permit revenues. Hunter participation declined by 5.4% after CWD was detected in 2002. Hunter surplus decreased by $96 million over this period, while permit revenues declined by nearly $17 million. The effect of CWD was greater on demand for firearm permits than for archery permits. We also find that the effects of CWD diminish over time in absolute terms. This is because permit demand would have started to decline in 2008 even in the absence of CWD. This finding implies efforts to control CWD and efforts at hunter recruitment are economic complements and should be pursued jointly to maximize hunter welfare.
Collapse
|
22
|
Haley NJ, Merrett K, Buros Stein A, Simpson D, Carlson A, Mitchell G, Staskevicius A, Nichols T, Lehmkuhl AD, Thomsen BV. Estimating relative CWD susceptibility and disease progression in farmed white-tailed deer with rare PRNP alleles. PLoS One 2019; 14:e0224342. [PMID: 31790424 PMCID: PMC6886763 DOI: 10.1371/journal.pone.0224342] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic wasting disease is a prion disease affecting both free-ranging and farmed cervids in North America and Scandinavia. A range of cervid species have been found to be susceptible, each with variations in the gene for the normal prion protein, PRNP, reportedly influencing both disease susceptibility and progression in the respective hosts. Despite the finding of several different PRNP alleles in white-tailed deer, the majority of past research has focused on two of the more common alleles identified-the 96G and 96S alleles. In the present study, we evaluate both infection status and disease stage in nearly 2100 farmed deer depopulated in the United States and Canada, including 714 CWD-positive deer and correlate our findings with PRNP genotype, including the more rare 95H, 116G, and 226K alleles. We found significant differences in either likelihood of being found infected or disease stage (and in many cases both) at the time of depopulation in all genotypes present, relative to the most common 96GG genotype. Despite high prevalence in many of the herds examined, infection was not found in several of the reported genotypes. These findings suggest that additional research is necessary to more properly define the role that these genotypes may play in managing CWD in both farmed and free-ranging white-tailed deer, with consideration for factors including relative fitness levels, incubation periods, and the kinetics of shedding in animals with these rare genotypes.
Collapse
Affiliation(s)
- Nicholas J. Haley
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, Arizona
| | - Kahla Merrett
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, Arizona
| | - Amy Buros Stein
- Office of Research and Sponsored Programs, Midwestern University, Glendale, Arizona
| | - Dennis Simpson
- Simpson Whitetails Genetic Testing, Belleville, Michigan
| | - Andrew Carlson
- Simpson Whitetails Genetic Testing, Belleville, Michigan
| | - Gordon Mitchell
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa Laboratory-Fallowfield, Ottawa, Ontario, Canada
| | - Antanas Staskevicius
- National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa Laboratory-Fallowfield, Ottawa, Ontario, Canada
| | - Tracy Nichols
- United States Department of Agriculture, APHIS, Veterinary Services, Cervid Health Program, Fort Collins, Colorado, United States of America
| | - Aaron D. Lehmkuhl
- United States Department of Agriculture, APHIS, Veterinary Services, National Veterinary Services Laboratories, Ames, Iowa, United States of America
| | - Bruce V. Thomsen
- United States Department of Agriculture, APHIS, Veterinary Services, National Veterinary Services Laboratories, Ames, Iowa, United States of America
- United States Department of Agriculture, APHIS, Veterinary Services, Center for Veterinary Biologics, Ames, Iowa, United States of America
| |
Collapse
|
23
|
Slapšak U, Salzano G, Ilc G, Giachin G, Bian J, Telling G, Legname G, Plavec J. Unique Structural Features of Mule Deer Prion Protein Provide Insights into Chronic Wasting Disease. ACS OMEGA 2019; 4:19913-19924. [PMID: 31788624 PMCID: PMC6882122 DOI: 10.1021/acsomega.9b02824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Chronic wasting disease (CWD) is a highly infectious prion disease of cervids. Accumulation of prions, the disease-specific structural conformers of the cellular prion protein (PrPC), in the central nervous system, is the key pathological event of the disorder. The analysis of cervid PrPC sequences revealed the existence of polymorphism at position 226, in which deer PrP contains glutamine (Q), whereas elk PrP contains glutamate (E). The effects of this polymorphism on CWD are still unknown. We determined the high-resolution nuclear magnetic resonance structure of the mule deer prion protein that was compared to previously published PrP structures of elk and white-tailed deer. We found that the polymorphism Q226E could influence the long-range intramolecular interactions and packing of the β2-α2 loop and the C-terminus of the α3 helix of cervid PrP structures. This solvent-accessible epitope is believed to be involved in prion conversion. Additional differences were observed at the beginning of the well-defined C-terminus domain, in the α2-α3 region, and in its interactions with the α1 helix. Here, we highlight the importance of the PrP structure in prion susceptibility and how single amino acid differences might influence the overall protein folding.
Collapse
Affiliation(s)
- Urška Slapšak
- Slovenian NMR Centre, National Institute of Chemistry, SI-1000 Ljubljana, Ljubljana, Slovenia
| | - Giulia Salzano
- Laboratory of Prion Biology, Department
of Neuroscience, Scuola Internazionale Superiore
di Studi Avanzati (SISSA), Via Bonomea 265, I-34136 Trieste, Trieste, Italy
| | - Gregor Ilc
- Slovenian NMR Centre, National Institute of Chemistry, SI-1000 Ljubljana, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, SI-1000 Ljubljana, Ljubljana, Slovenia
| | - Gabriele Giachin
- Laboratory of Prion Biology, Department
of Neuroscience, Scuola Internazionale Superiore
di Studi Avanzati (SISSA), Via Bonomea 265, I-34136 Trieste, Trieste, Italy
- Structural
Biology Group, European Synchrotron Radiation
Facility (ESRF), 38000 Grenoble, Auvergne-Rhône-Alpes, France
| | - Jifeng Bian
- Prion Research Center (PRC) and Department of Microbiology,
Immunology and Pathology, Colorado State
University, Fort Collins, Colorado 80525, United States
| | - Glenn Telling
- Prion Research Center (PRC) and Department of Microbiology,
Immunology and Pathology, Colorado State
University, Fort Collins, Colorado 80525, United States
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department
of Neuroscience, Scuola Internazionale Superiore
di Studi Avanzati (SISSA), Via Bonomea 265, I-34136 Trieste, Trieste, Italy
- ELETTRA-Sincrotrone Trieste S.C.p.A, 34149 Trieste, Friuli Venezia Giulia, Italy
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, SI-1000 Ljubljana, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, SI-1000 Ljubljana, Ljubljana, Slovenia
- Department of Chemistry and Biochemistry, Faculty of Chemistry and
Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
24
|
Moreno JA, Telling GC. Molecular Mechanisms of Chronic Wasting Disease Prion Propagation. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a024448. [PMID: 28193766 DOI: 10.1101/cshperspect.a024448] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Prion disease epidemics, which have been unpredictable recurrences, are of significant concern for animal and human health. Examples include kuru, once the leading cause of death among the Fore people in Papua New Guinea and caused by mortuary feasting; bovine spongiform encephalopathy (BSE) and its subsequent transmission to humans in the form of variant Creutzfeldt-Jakob disease (vCJD), and repeated examples of large-scale prion disease epidemics in animals caused by contaminated vaccines. The etiology of chronic wasting disease (CWD), a relatively new and burgeoning prion epidemic in deer, elk, and moose (members of the cervid family), is more enigmatic. The disease was first described in captive and later in wild mule deer and subsequently in free-ranging as well as captive Rocky Mountain elk, white-tailed deer, and most recently moose. It is therefore the only recognized prion disorder of both wild and captive animals. In addition to its expanding range of hosts, CWD continues to spread to new geographical areas, including recent cases in Norway. The unparalleled efficiency of the contagious transmission of the disease combined with high densities of deer in certain areas of North America complicates strategies for controlling CWD and raises concerns about its potential spread to new species. Because there is a high prevalence of CWD in deer and elk, which are commonly hunted and consumed by humans, the possibility of zoonotic transmission is particularly concerning. Here, we review the current status of naturally occurring CWD and describe advances in our understanding of its molecular pathogenesis, as shown by studies of CWD prions in novel in vivo and in vitro systems.
Collapse
Affiliation(s)
- Julie A Moreno
- Prion Research Center (PRC) and the Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80525
| | - Glenn C Telling
- Prion Research Center (PRC) and the Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80525
| |
Collapse
|
25
|
Pitarch JL, Raksa HC, Arnal MC, Revilla M, Martínez D, Fernández de Luco D, Badiola JJ, Goldmann W, Acín C. Low sequence diversity of the prion protein gene (PRNP) in wild deer and goat species from Spain. Vet Res 2018; 49:33. [PMID: 29631620 PMCID: PMC5892000 DOI: 10.1186/s13567-018-0528-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/12/2018] [Indexed: 11/10/2022] Open
Abstract
The first European cases of chronic wasting disease (CWD) in free-ranging reindeer and wild elk were confirmed in Norway in 2016 highlighting the urgent need to understand transmissible spongiform encephalopathies (TSEs) in the context of European deer species and the many individual populations throughout the European continent. The genetics of the prion protein gene (PRNP) are crucial in determining the relative susceptibility to TSEs. To establish PRNP gene sequence diversity for free-ranging ruminants in the Northeast of Spain, the open reading frame was sequenced in over 350 samples from five species: Iberian red deer (Cervus elaphus hispanicus), roe deer (Capreolus capreolus), fallow deer (Dama dama), Iberian wild goat (Capra pyrenaica hispanica) and Pyrenean chamois (Rupicapra p. pyrenaica). Three single nucleotide polymorphisms (SNPs) were found in red deer: a silent mutation at codon 136, and amino acid changes T98A and Q226E. Pyrenean chamois revealed a silent SNP at codon 38 and an allele with a single octapeptide-repeat deletion. No polymorphisms were found in roe deer, fallow deer and Iberian wild goat. This apparently low variability of the PRNP coding region sequences of four major species in Spain resembles previous findings for wild mammals, but implies that larger surveys will be necessary to find novel, low frequency PRNP gene alleles that may be utilized in CWD risk control.
Collapse
Affiliation(s)
- José Luis Pitarch
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Helen Caroline Raksa
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - María Cruz Arnal
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Miguel Revilla
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - David Martínez
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Daniel Fernández de Luco
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Wilfred Goldmann
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Cristina Acín
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
26
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Skandamis P, Snary E, Speybroeck N, Kuile BT, Threlfall J, Wahlström H, Benestad S, Gavier-Widen D, Miller MW, Telling GC, Tryland M, Latronico F, Ortiz-Pelaez A, Stella P, Simmons M. Scientific opinion on chronic wasting disease (II). EFSA J 2018; 16:e05132. [PMID: 32625679 PMCID: PMC7328883 DOI: 10.2903/j.efsa.2018.5132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The European Commission asked EFSA for a scientific opinion on chronic wasting disease in two parts. Part one, on surveillance, animal health risk-based measures and public health risks, was published in January 2017. This opinion (part two) addresses the remaining Terms of Reference, namely, 'are the conclusions and recommendations in the EFSA opinion of June 2004 on diagnostic methods for chronic wasting disease still valid? If not, an update should be provided', and 'update the conclusions of the 2010 EFSA opinion on the results of the European Union survey on chronic wasting disease in cervids, as regards its occurrence in the cervid population in the European Union'. Data on the performance of authorised rapid tests in North America are not comprehensive, and are more limited than those available for the tests approved for statutory transmissible spongiform encephalopathies surveillance applications in cattle and sheep. There are no data directly comparing available rapid test performances in cervids. The experience in Norway shows that the Bio-Rad TeSeE™ SAP test, immunohistochemistry and western blotting have detected reindeer, moose and red deer cases. It was shown that testing both brainstem and lymphoid tissue from each animal increases the surveillance sensitivity. Shortcomings in the previous EU survey limited the reliability of inferences that could be made about the potential disease occurrence in Europe. Subsequently, testing activity in Europe was low, until the detection of the disease in Norway, triggering substantial testing efforts in that country. Available data neither support nor refute the conclusion that chronic wasting disease does not occur widely in the EU and do not preclude the possibility that the disease was present in Europe before the survey was conducted. It appears plausible that chronic wasting disease could have become established in Norway more than a decade ago.
Collapse
|
27
|
Affiliation(s)
- Samia Hannaoui
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Canada
| | - Hermann M. Schatzl
- Calgary Prion Research Unit, University of Calgary, Calgary, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Sabine Gilch
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Calgary Prion Research Unit, University of Calgary, Calgary, Canada
- * E-mail:
| |
Collapse
|
28
|
Haley NJ, Richt JA. Evolution of Diagnostic Tests for Chronic Wasting Disease, a Naturally Occurring Prion Disease of Cervids. Pathogens 2017; 6:pathogens6030035. [PMID: 28783058 PMCID: PMC5617992 DOI: 10.3390/pathogens6030035] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 12/23/2022] Open
Abstract
Since chronic wasting disease (CWD) was first identified nearly 50 years ago in a captive mule deer herd in the Rocky Mountains of the United States, it has slowly spread across North America through the natural and anthropogenic movement of cervids and their carcasses. As the endemic areas have expanded, so has the need for rapid, sensitive, and cost effective diagnostic tests—especially those which take advantage of samples collected antemortem. Over the past two decades, strategies have evolved from the recognition of microscopic spongiform pathology and associated immunohistochemical staining of the misfolded prion protein to enzyme-linked immunoassays capable of detecting the abnormal prion conformer in postmortem samples. In a history that parallels the diagnosis of more conventional infectious agents, both qualitative and real-time amplification assays have recently been developed to detect minute quantities of misfolded prions in a range of biological and environmental samples. With these more sensitive and semi-quantitative approaches has come a greater understanding of the pathogenesis and epidemiology of this disease in the native host. Because the molecular pathogenesis of prion protein misfolding is broadly analogous to the misfolding of other pathogenic proteins, including Aβ and α-synuclein, efforts are currently underway to apply these in vitro amplification techniques towards the diagnosis of Alzheimer’s disease, Parkinson’s disease, and other proteinopathies. Chronic wasting disease—once a rare disease of Colorado mule deer—now represents one of the most prevalent prion diseases, and should serve as a model for the continued development and implementation of novel diagnostic strategies for protein misfolding disorders in the natural host.
Collapse
Affiliation(s)
- Nicholas J Haley
- Department of Microbiology and Immunology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA.
| | - Jürgen A Richt
- College of Veterinary Medicine, Kansas State University (KSU), Manhattan, KS 66506, USA.
| |
Collapse
|
29
|
Haus JM, Eyler TB, Duda MD, Bowman JL. Hunter perceptions toward chronic wasting disease: Implications for harvest and management. WILDLIFE SOC B 2017. [DOI: 10.1002/wsb.761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jacob M. Haus
- Department of Entomology and Wildlife EcologyUniversity of Delaware531 S College AvenueNewarkDE19716USA
| | - T. Brian Eyler
- Maryland Department of Natural Resources14038 Blairs Valley RoadClear SpringMD21722USA
| | - Mark D. Duda
- Responsive Management130 Franklin StreetHarrisonburgVA22801USA
| | - Jacob L. Bowman
- Department of Entomology and Wildlife EcologyUniversity of Delaware531 S College AvenueNewarkDE19716USA
| |
Collapse
|
30
|
Abstract
Prion diseases are a group of invariably fatal and transmissible neurodegenerative disorders that are associated with the misfolding of the normal cellular prion protein, with the misfolded conformers constituting an infectious unit referred to as a "prion". Prions can spread within an affected organism by directly propagating this misfolding within and between cells and can transmit disease between animals of the same and different species. Prion diseases have a range of clinical phenotypes in humans and animals, with a principle determinant of this attributed to different conformations of the misfolded protein, referred to as prion strains. This chapter will describe the different clinical manifestations of prion diseases, the evidence that these diseases can be transmitted by an infectious protein and how the misfolding of this protein causes disease.
Collapse
|
31
|
Transmissible Spongiform Encephalopathies of Humans and Animals. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Gironés R, Herman L, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Sanaa M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Benestad S, Gavier-Widen D, Miller MW, Ru G, Telling GC, Tryland M, Ortiz Pelaez A, Simmons M. Chronic wasting disease (CWD) in cervids. EFSA J 2017; 15:e04667. [PMID: 32625260 PMCID: PMC7010154 DOI: 10.2903/j.efsa.2017.4667] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In April and May of 2016, Norway confirmed two cases of chronic wasting disease (CWD) in a wild reindeer and a wild moose, respectively. In the light of this emerging issue, the European Commission requested EFSA to recommend surveillance activities and, if necessary, additional animal health risk-based measures to prevent the introduction of the disease and the spread into/within the EU, specifically Estonia, Finland, Iceland, Latvia, Lithuania, Norway, Poland and Sweden, and considering seven wild, semidomesticated and farmed cervid species (Eurasian tundra reindeer, Finnish (Eurasian) forest reindeer, moose, roe deer, white-tailed deer, red deer and fallow deer). It was also asked to assess any new evidence on possible public health risks related to CWD. A 3-year surveillance system is proposed, differing for farmed and wild or semidomesticated cervids, with a two-stage sampling programme at the farm/geographically based population unit level (random sampling) and individual level (convenience sampling targeting high-risk animals). The current derogations of Commission Implementing Decision (EU) 2016/1918 present a risk of introduction of CWD into the EU. Measures to prevent the spread of CWD within the EU are dependent upon the assumption that the disease is already present; this is currently unknown. The measures listed are intended to contain (limit the geographic extent of a focus) and/or to control (actively stabilise/reduce infection rates in an affected herd or population) the disease where it occurs. With regard to the zoonotic potential, the human species barrier for CWD prions does not appear to be absolute. These prions are present in the skeletal muscle and other edible tissues, so humans may consume infected material in enzootic areas. Epidemiological investigations carried out to date make no association between the occurrence of sporadic Creutzfeldt-Jakob disease in humans and exposure to CWD prions.
Collapse
|
33
|
Moreno JA, Telling GC. Insights into Mechanisms of Transmission and Pathogenesis from Transgenic Mouse Models of Prion Diseases. Methods Mol Biol 2017; 1658:219-252. [PMID: 28861793 DOI: 10.1007/978-1-4939-7244-9_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prions represent a new paradigm of protein-mediated information transfer. In the case of mammals, prions are the cause of fatal, transmissible neurodegenerative diseases, sometimes referred to as transmissible spongiform encephalopathies (TSEs), which frequently occur as epidemics. An increasing body of evidence indicates that the canonical mechanism of conformational corruption of cellular prion protein (PrPC) by the pathogenic isoform (PrPSc) that is the basis of prion formation in TSEs is common to a spectrum of proteins associated with various additional human neurodegenerative disorders, including the more common Alzheimer's and Parkinson's diseases. The peerless infectious properties of TSE prions, and the unparalleled tools for their study, therefore enable elucidation of mechanisms of template-mediated conformational propagation that are generally applicable to these related disease states. Many unresolved issues remain including the exact molecular nature of the prion, the detailed cellular and molecular mechanisms of prion propagation, and the means by which prion diseases can be both genetic and infectious. In addition, we know little about the mechanism by which neurons degenerate during prion diseases. Tied to this, the physiological role of the normal form of the prion protein remains unclear and it is uncertain whether or not loss of this function contributes to prion pathogenesis. The factors governing the transmission of prions between species remain unclear, in particular the means by which prion strains and PrP primary structure interact to affect interspecies prion transmission. Despite all these unknowns, advances in our understanding of prions have occurred because of their transmissibility to experimental animals, and the development of transgenic (Tg) mouse models has done much to further our understanding about various aspects of prion biology. In this review, we will focus on advances in our understanding of prion biology that occurred in the past 8 years since our last review of this topic.
Collapse
Affiliation(s)
- Julie A Moreno
- Cell and Molecular Biology Graduate Program, Molecular, Cellular and Integrative Neuroscience Graduate Program, Department of Microbiology, Immunology and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, 80523, USA
| | - Glenn C Telling
- Cell and Molecular Biology Graduate Program, Molecular, Cellular and Integrative Neuroscience Graduate Program, Department of Microbiology, Immunology and Pathology, Prion Research Center, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
34
|
Brandt AL, Kelly AC, Green ML, Shelton P, Novakofski J, Mateus-Pinilla NE. Prion protein gene sequence and chronic wasting disease susceptibility in white-tailed deer (Odocoileus virginianus). Prion 2016; 9:449-62. [PMID: 26634768 PMCID: PMC4964855 DOI: 10.1080/19336896.2015.1115179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The sequence of the prion protein gene (PRNP) affects susceptibility to spongiform encephalopathies, or prion diseases in many species. In white-tailed deer, both coding and non-coding single nucleotide polymorphisms have been identified in this gene that correlate to chronic wasting disease (CWD) susceptibility. Previous studies examined individual nucleotide or amino acid mutations; here we examine all nucleotide polymorphisms and their combined effects on CWD. A 626 bp region of PRNP was examined from 703 free-ranging white-tailed deer. Deer were sampled between 2002 and 2010 by hunter harvest or government culling in Illinois and Wisconsin. Fourteen variable nucleotide positions were identified (4 new and 10 previously reported). We identified 68 diplotypes comprised of 24 predicted haplotypes, with the most common diplotype occurring in 123 individuals. Diplotypes that were found exclusively among positive or negative animals were rare, each occurring in less than 1% of the deer studied. Only one haplotype (C, odds ratio 0.240) and 2 diplotypes (AC and BC, odds ratios of 0.161 and 0.108 respectively) has significant associations with CWD resistance. Each contains mutations (one synonymous nucleotide 555C/T and one nonsynonymous nucleotide 286G/A) at positions reported to be significantly associated with reduced CWD susceptibility. Results suggest that deer populations with higher frequencies of haplotype C or diplotypes AC and BC might have a reduced risk for CWD infection – while populations with lower frequencies may have higher risk for infection. Understanding the genetic basis of CWD has improved our ability to assess herd susceptibility and direct management efforts within CWD infected areas.
Collapse
Affiliation(s)
- Adam L Brandt
- a Illinois Natural History Survey ; University of Illinois at Urbana-Champaign ; Urbana , IL USA
| | - Amy C Kelly
- a Illinois Natural History Survey ; University of Illinois at Urbana-Champaign ; Urbana , IL USA
| | - Michelle L Green
- a Illinois Natural History Survey ; University of Illinois at Urbana-Champaign ; Urbana , IL USA ;,b Department of Animal Sciences ; University of Illinois at Urbana-Champaign ; Urbana , IL USA
| | - Paul Shelton
- c Illinois Department of Natural Resources ; Division of Wildlife Resources ; Springfield , IL USA
| | - Jan Novakofski
- b Department of Animal Sciences ; University of Illinois at Urbana-Champaign ; Urbana , IL USA
| | - Nohra E Mateus-Pinilla
- a Illinois Natural History Survey ; University of Illinois at Urbana-Champaign ; Urbana , IL USA ;,b Department of Animal Sciences ; University of Illinois at Urbana-Champaign ; Urbana , IL USA
| |
Collapse
|
35
|
Tyshenko MG, Oraby T, Darshan S, Westphal M, Croteau MC, Aspinall W, Elsaadany S, Krewski D, Cashman N. Expert elicitation on the uncertainties associated with chronic wasting disease. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:729-45. [PMID: 27556566 DOI: 10.1080/15287394.2016.1174007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A high degree of uncertainty exists for chronic wasting disease (CWD) transmission factors in farmed and wild cervids. Evaluating the factors is important as it helps to inform future risk management strategies. Expert opinion is often used to assist decision making in a number of health, science, and technology domains where data may be sparse or missing. Using the "Classical Model" of elicitation, a group of experts was asked to estimate the most likely values for several risk factors affecting CWD transmission. The formalized expert elicitation helped structure the issues and hence provide a rational basis for estimating some transmission risk factors for which evidence is lacking. Considered judgments regarding environmental transmission, latency of CWD transmission, management, and species barrier were provided by the experts. Uncertainties for many items were determined to be large, highlighting areas requiring more research. The elicited values may be used as surrogate values until research evidence becomes available.
Collapse
Affiliation(s)
- Michael G Tyshenko
- a McLaughlin Centre for Population Health Risk Assessment , Institute of Population Health, University of Ottawa , Ottawa , Ontario , Canada
| | - Tamer Oraby
- b Department of Mathematics , University of Texas-Pan American , Edinburg , Texas , USA
| | - Shalu Darshan
- a McLaughlin Centre for Population Health Risk Assessment , Institute of Population Health, University of Ottawa , Ottawa , Ontario , Canada
| | - Margit Westphal
- a McLaughlin Centre for Population Health Risk Assessment , Institute of Population Health, University of Ottawa , Ottawa , Ontario , Canada
| | - Maxine C Croteau
- a McLaughlin Centre for Population Health Risk Assessment , Institute of Population Health, University of Ottawa , Ottawa , Ontario , Canada
| | - Willy Aspinall
- c Aspinall and Associates , Tisbury , United Kingdom
- d School of Earth Sciences and Cabot Institute , University of Bristol , Bristol , United Kingdom
| | - Susie Elsaadany
- e Professional Guidelines and Public Health Practice Division, Centre for Infectious Disease Prevention and Control , Public Health Agency of Canada , Ottawa , Ontario , Canada
| | - Daniel Krewski
- a McLaughlin Centre for Population Health Risk Assessment , Institute of Population Health, University of Ottawa , Ottawa , Ontario , Canada
- f Department of Epidemiology and Community Medicine , University of Ottawa , Ottawa , Ontario , Canada
| | - Neil Cashman
- g Brain Research Centre , University of British Columbia , Vancouver , British Columbia , Canada
| |
Collapse
|
36
|
Oraby T, Tyshenko MG, Westphal M, Darshan S, Croteau MC, Aspinall W, Elsaadany S, Cashman N, Krewski D. Using expert judgments to improve chronic wasting disease risk management in Canada. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:713-728. [PMID: 27556565 DOI: 10.1080/15287394.2016.1174005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
ABSTARCT Chronic wasting disease (CWD) is a neurodegenerative, protein misfolding disease affecting cervids in North America in epidemic proportions. While the existence of CWD has been known for more than 40 years, risk management efforts to date have not been able to curtail the spread of this condition. An expert elicitation exercise was carried out in May 2011 to obtain the views of international experts on both the etiology of CWD and possible CWD risk management strategies. This study presents the results of the following three components of the elicitation exercise: (1) expert views of the most likely scenarios for the evolution of the CWD among cervid populations in Canada, (2) ranking analyses of the importance of direct and indirect transmission routes, and (3) rating analyses of CWD control measures in farmed and wild cervids. The implications of these findings for the development of CWD risk management strategies are described in a Canadian context.
Collapse
Affiliation(s)
- Tamer Oraby
- a Department of Mathematics , University of Texas Rio Grande Valley , Edinburg , Texas , USA
| | - Michael G Tyshenko
- b McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health , University of Ottawa , Ottawa , Ontario , Canada
| | - Margit Westphal
- b McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health , University of Ottawa , Ottawa , Ontario , Canada
| | - Shalu Darshan
- b McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health , University of Ottawa , Ottawa , Ontario , Canada
| | - Maxine C Croteau
- b McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health , University of Ottawa , Ottawa , Ontario , Canada
| | - Willy Aspinall
- c Aspinall and Associates , Tisbury , United Kingdom
- h Risk Sciences International , Ottawa , Ontario , Canada
| | - Susie Elsaadany
- d School of Earth Sciences and Cabot Institute , University of Bristol , Bristol , United Kingdom
| | - Neil Cashman
- e Blood Safety Surveillance and Health Care Acquired Infections Division , Centre for Infectious Disease Prevention and Control, Public Health Agency of Canada , Ottawa , Ontario , Canada
| | - Daniel Krewski
- b McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health , University of Ottawa , Ottawa , Ontario , Canada
- f Brain Research Centre , University of British Columbia , Vancouver , British Columbia , Canada
- g Department of Epidemiology and Community Medicine, Faculty of Medicine , University of Ottawa , Ottawa , Ontario , Canada
| |
Collapse
|
37
|
Berry D, Giles K, Oehler A, Bhardwaj S, DeArmond SJ, Prusiner SB. Use of a 2-aminothiazole to Treat Chronic Wasting Disease in Transgenic Mice. J Infect Dis 2015; 212 Suppl 1:S17-25. [PMID: 26116725 DOI: 10.1093/infdis/jiu656] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Treatment with the 2-aminothiazole IND24 extended the survival of mice infected with mouse-adapted scrapie but also resulted in the emergence of a drug-resistant prion strain. Here, we determined whether IND24 extended the survival of transgenic mice infected with prions that caused scrapie in sheep or prions that caused chronic wasting disease (CWD; hereafter "CWD prions") in deer, using 2 isolates for each disease. IND24 doubled the incubation times for mice infected with CWD prions but had no effect on the survival of those infected with scrapie prions. Biochemical, neuropathologic, and cell culture analyses were used to characterize prion strain properties following treatment, and results indicated that the CWD prions were not altered by IND24, regardless of survival extension. These results suggest that IND24 may be a viable candidate for treating CWD in infected captive cervid populations and raise questions about why some prion strains develop drug resistance whereas others do not.
Collapse
Affiliation(s)
| | - Kurt Giles
- Institute for Neurodegenerative Diseases Department of Neurology, University of California San Francisco
| | | | | | | | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases Department of Neurology, University of California San Francisco
| |
Collapse
|
38
|
|
39
|
Taschuk R, Marciniuk K, Määttänen P, Madampage C, Hedlin P, Potter A, Lee J, Cashman NR, Griebel PJ, Napper S. Safety, specificity and immunogenicity of a PrP(Sc)-specific prion vaccine based on the YYR disease specific epitope. Prion 2015; 8:51-9. [PMID: 24509522 DOI: 10.4161/pri.27962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prions are a novel form of infectivity based on the misfolding of a self-protein (PrP(C)) into a pathological, infectious isomer (PrP(Sc)). The current uncontrolled spread of chronic wasting disease in cervids, coupled with the demonstrated zoonotic nature of select livestock prion diseases, highlights the urgent need for disease management tools. While there is proof-of-principle evidence for a prion vaccine, these efforts are complicated by the challenges and risks associated with induction of immune responses to a self-protein. Our priority is to develop a PrP(Sc)-specific prion vaccine based on epitopes that are uniquely exposed upon misfolding. These disease specific epitopes (DSEs) have the potential to enable specific targeting of the pathological species through immunotherapy. Here we review outcomes of the translation of a prion DSE into a PrP(Sc)-specific vaccine based on the criteria of immunogenicity, safety and specificity.
Collapse
|
40
|
Race B, Meade-White KD, Phillips K, Striebel J, Race R, Chesebro B. Chronic wasting disease agents in nonhuman primates. Emerg Infect Dis 2014; 20:833-7. [PMID: 24751215 PMCID: PMC4012792 DOI: 10.3201/eid2005.130778] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chronic wasting disease is a prion disease of cervids. Assessment of its zoonotic potential is critical. To evaluate primate susceptibility, we tested monkeys from 2 genera. We found that 100% of intracerebrally inoculated and 92% of orally inoculated squirrel monkeys were susceptible, but cynomolgus macaques were not, suggesting possible low risk for humans.
Collapse
|
41
|
Saá P, Cervenakova L. Protein misfolding cyclic amplification (PMCA): Current status and future directions. Virus Res 2014; 207:47-61. [PMID: 25445341 DOI: 10.1016/j.virusres.2014.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/05/2014] [Accepted: 11/06/2014] [Indexed: 12/26/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) most commonly known as prion diseases are invariably fatal neurological disorders that affect humans and animals. These disorders differ from other neurodegenerative conformational diseases caused by the accumulation in the brain of misfolded proteins, sometimes with amyloid properties, in their ability to infect susceptible species by various routes. While the infectious properties of amyloidogenic proteins, other than misfolded prion protein (PrP(TSE)), are currently under scrutiny, their potential to transmit from cell to cell, one of the intrinsic properties of the prion, has been recently shown in vitro and in vivo. Over the decades, various cell culture and laboratory animal models have been developed to study TSEs. These assays have been widely used in a variety of applications but showed to be time consuming and entailed elevated costs. Novel economic and fast alternatives became available with the development of in vitro assays that are based on the property of conformationally abnormal PrP(TSE) to recruit normal cellular PrP(C) to misfold. These include the cell-free conversion assay, protein misfolding cyclic amplification (PMCA) and quaking induced conversion assay (QuIC), of which the PMCA has been the only technology shown to generate infectious prions. Moreover, it allows indefinite amplification of PrP(TSE) with strain-specific biochemical and biological properties of the original molecules and under certain conditions may give rise to new spontaneously generated prions. The method also allows addressing the species barrier phenomena and assessing possible risks of animal-to-animal and animal-to-human transmission. Additionally, its unprecedented sensitivity has made possible the detection of as little as one infectious dose of PrP(TSE) and the biochemical identification of this protein in different tissues and biological fluids, including blood, cerebral spinal fluid (CSF), semen, milk, urine and saliva during the pre-clinical and clinical phases of the disease. The mechanistic similarities between TSEs and other conformational disorders have resulted in the adaptation of the PMCA to the amplification and detection of various amyloidogenic proteins. Here we provide a compelling discussion of the different applications of this technology to the study of TSEs and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Paula Saá
- Transmissible Diseases Department, American National Red Cross, Biomedical Services, Holland Laboratory, 15601 Crabbs Branch Way, Rockville, MD 20855, United States.
| | - Larisa Cervenakova
- Transmissible Diseases Department, American National Red Cross, Biomedical Services, Holland Laboratory, 15601 Crabbs Branch Way, Rockville, MD 20855, United States
| |
Collapse
|
42
|
Bradford BM, Piccardo P, Ironside JW, Mabbott NA. Human prion diseases and the risk of their transmission during anatomical dissection. Clin Anat 2014; 27:821-32. [PMID: 24740900 DOI: 10.1002/ca.22403] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 01/09/2023]
Abstract
Prion diseases (or transmissible spongiform encephalopathies) are a unique group of fatal progressive neurodegenerative diseases of the central nervous system. The infectious agent is hypothesized to consist solely of a highly protease-resistant misfolded isoform of the host prion protein. Prions display a remarkable degree of resistance to chemical and physical decontamination. Many common forms of decontamination or neutralization used in infection control are ineffective against prions, except chaotropic agents that specifically disrupt proteins. Human cadaveric prosection or dissection for the purposes of teaching and demonstration of human anatomy has a distinguished history and remains one of the fundamentals of medical education. Iatrogenic transmission of human prion diseases has been demonstrated from the inoculation or implantation of human tissues. Therefore, although the incidence of human prion diseases is rare, restrictions exist upon the use of tissues from patients reported with dementia, specifically the brain and other central nervous system material. A current concern is the potential for asymptomatic variant Creutzfeldt-Jakob disease transmission within the UK population. Therefore, despite the preventative measures, the transmission of prion disease through human tissues remains a potential risk to those working with these materials. In this review, we aim to summarize the current knowledge on human prion disease relevant to those working with human tissues in the context of anatomical dissection.
Collapse
Affiliation(s)
- Barry M Bradford
- The Roslin Institute and R(D)SVS The University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | | | | | | |
Collapse
|
43
|
Manjerovic MB, Green ML, Mateus-Pinilla N, Novakofski J. The importance of localized culling in stabilizing chronic wasting disease prevalence in white-tailed deer populations. Prev Vet Med 2014; 113:139-45. [DOI: 10.1016/j.prevetmed.2013.09.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 09/11/2013] [Accepted: 09/14/2013] [Indexed: 01/23/2023]
|
44
|
Chapron Y, Charlet L, Sahai N. Fate of pathological prion (PrP(sc)92-138) in soil and water: prion-clay nanoparticle molecular dynamics. J Biomol Struct Dyn 2013; 32:1802-16. [PMID: 24152238 DOI: 10.1080/07391102.2013.836461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pathogenic prion protein scrapie (PrP(sc)) may contaminate soils for decades and remain in water in colloidal suspension, providing infection pathways for animals through the inhalation of ingested dust and soil particles, and drinking water. We used molecular dynamics simulations to understand the strong binding mechanism of this pathogenic peptide with clay mineral surfaces and compared our results to experimental works. We restricted our model to the moiety PrP(92-138), which is a portion of the whole PrP(sc) molecule responsible for infectivity and modeled it using explicit solvating water molecules in contact with a pyrophyllite cleavage plane. Pyrophyllite is taken as a model for common soil clay, but it has no permanent structural charge. However, partial residual negative charges occur on the cleavage plane slab surface due to a slab charge unbalance. The charge is isotropic in 2D and it was balanced with K(+) ions. After partially removing potassium ions, the peptide anchors to the clay surface via up to 10 hydrogen bonds, between protonated lysine or histidine residues and the oxygen atoms of the siloxane cavities. Our results provide insight to the mechanism responsible for the strong association between the PrP(sc) peptide and clay nanoparticles and the associations present in contaminated soil and water which may lead to the infection of animals.
Collapse
Affiliation(s)
- Yves Chapron
- a AIED, Research , 108 rue du puy, La Terrasse , 38660 , France
| | | | | |
Collapse
|
45
|
Evidence for prion-like mechanisms in several neurodegenerative diseases: potential implications for immunotherapy. Clin Dev Immunol 2013; 2013:473706. [PMID: 24228054 PMCID: PMC3817797 DOI: 10.1155/2013/473706] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/11/2013] [Accepted: 07/02/2013] [Indexed: 12/12/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are fatal, untreatable neurodegenerative diseases. While the impact of TSEs on human health is relatively minor, these diseases are having a major influence on how we view, and potentially treat, other more common neurodegenerative disorders. Until recently, TSEs encapsulated a distinct category of neurodegenerative disorder, exclusive in their defining characteristic of infectivity. It now appears that similar mechanisms of self-propagation may underlie other proteinopathies such as Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, and Huntington's disease. This link is of scientific interest and potential therapeutic importance as this route of self-propagation offers conceptual support and guidance for vaccine development efforts. Specifically, the existence of a pathological, self-promoting isoform offers a rational vaccine target. Here, we review the evidence of prion-like mechanisms within a number of common neurodegenerative disorders and speculate on potential implications and opportunities for vaccine development.
Collapse
|
46
|
Oraby T, Vasilyeva O, Krewski D, Lutscher F. Modeling seasonal behavior changes and disease transmission with application to chronic wasting disease. J Theor Biol 2013; 340:50-9. [PMID: 24035840 DOI: 10.1016/j.jtbi.2013.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 07/11/2013] [Accepted: 09/03/2013] [Indexed: 01/17/2023]
Abstract
Behavior and habitat of wildlife animals change seasonally according to environmental conditions. Mathematical models need to represent this seasonality to be able to make realistic predictions about the future of a population and the effectiveness of human interventions. Managing and modeling disease in wild animal populations requires particular care in that disease transmission dynamics is a critical consideration in the etiology of both human and animal diseases, with different transmission paradigms requiring different disease risk management strategies. Since transmission of infectious diseases among wildlife depends strongly on social behavior, mechanisms of disease transmission could also change seasonally. A specific consideration in this regard confronted by modellers is whether the contact rate between individuals is density-dependent or frequency-dependent. We argue that seasonal behavior changes could lead to a seasonal shift between density and frequency dependence. This hypothesis is explored in the case of chronic wasting disease (CWD), a fatal disease that affects deer, elk and moose in many areas of North America. Specifically, we introduce a strategic CWD risk model based on direct disease transmission that accounts for the seasonal change in the transmission dynamics and habitats occupied, guided by information derived from cervid ecology. The model is composed of summer and winter susceptible-infected (SI) equations, with frequency-dependent and density-dependent transmission dynamics, respectively. The model includes impulsive birth events with density-dependent birth rate. We determine the basic reproduction number as a weighted average of two seasonal reproduction numbers. We parameterize the model from data derived from the scientific literature on CWD and deer ecology, and conduct global and local sensitivity analyses of the basic reproduction number. We explore the effectiveness of different culling strategies for the management of CWD: although summer culling seems to be an effective disease eradication strategy, the total culling rate is limited by the requirement to preserve the herd.
Collapse
Affiliation(s)
- Tamer Oraby
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
47
|
Luers L, Bannach O, Stöhr J, Wördehoff MM, Wolff M, Nagel-Steger L, Riesner D, Willbold D, Birkmann E. Seeded fibrillation as molecular basis of the species barrier in human prion diseases. PLoS One 2013; 8:e72623. [PMID: 23977331 PMCID: PMC3748051 DOI: 10.1371/journal.pone.0072623] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/11/2013] [Indexed: 12/04/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies in humans and animals, including scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle, chronic wasting disease (CWD) in deer, and Creutzfeldt-Jakob disease (CJD) in humans. The hallmark of prion diseases is the conversion of the host-encoded prion protein (PrPC) to its pathological isoform PrPSc, which is accompanied by PrP fibrillation. Transmission is not restricted within one species, but can also occur between species. In some cases a species barrier can be observed that results in limited or unsuccessful transmission. The mechanism behind interspecies transmissibility or species barriers is not completely understood. To analyse this process at a molecular level, we previously established an in vitro fibrillation assay, in which recombinant PrP (recPrP) as substrate can be specifically seeded by PrPSc as seed. Seeding with purified components, with no additional cellular components, is a direct consequence of the “prion-protein-only” hypothesis. We therefore hypothesise, that the species barrier is based on the interaction of PrPC and PrPSc. Whereas in our earlier studies, the interspecies transmission in animal systems was analysed, the focus of this study lies on the transmission from animals to humans. We therefore combined seeds from species cattle, sheep and deer (BSE, scrapie, CWD) with human recPrP. Homologous seeding served as a control. Our results are consistent with epidemiology, other in vitro aggregation studies, and bioassays investigating the transmission between humans, cattle, sheep, and deer. In contrast to CJD and BSE seeds, which show a seeding activity we can demonstrate a species barrier for seeds from scrapie and CWD in vitro. We could show that the seeding activity and therewith the molecular interaction of PrP as substrate and PrPSc as seed is sufficient to explain the phenomenon of species barriers. Therefore our data supports the hypothesis that CWD is not transmissible to humans.
Collapse
Affiliation(s)
- Lars Luers
- Institute of Physical Biology, Heinrich-Heine University, Düsseldorf, Germany
| | - Oliver Bannach
- Institute of Physical Biology, Heinrich-Heine University, Düsseldorf, Germany
| | - Jan Stöhr
- Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, California, United States of America
| | | | - Martin Wolff
- Institute of Physical Biology, Heinrich-Heine University, Düsseldorf, Germany
- Institute of Complex Systems (ICS-6), Research Centre Juelich, Juelich, Germany
| | - Luitgard Nagel-Steger
- Institute of Physical Biology, Heinrich-Heine University, Düsseldorf, Germany
- Institute of Complex Systems (ICS-6), Research Centre Juelich, Juelich, Germany
| | - Detlev Riesner
- Institute of Physical Biology, Heinrich-Heine University, Düsseldorf, Germany
| | - Dieter Willbold
- Institute of Physical Biology, Heinrich-Heine University, Düsseldorf, Germany
- Institute of Complex Systems (ICS-6), Research Centre Juelich, Juelich, Germany
| | - Eva Birkmann
- Institute of Physical Biology, Heinrich-Heine University, Düsseldorf, Germany
- Institute of Complex Systems (ICS-6), Research Centre Juelich, Juelich, Germany
- * E-mail:
| |
Collapse
|
48
|
Storm DJ, Samuel MD, Rolley RE, Shelton P, Keuler NS, Richards BJ, Van Deelen TR. Deer density and disease prevalence influence transmission of chronic wasting disease in white-tailed deer. Ecosphere 2013. [DOI: 10.1890/es12-00141.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
49
|
Matsumoto T, Samuel MD, Bollinger T, Pybus M, Coltman DW. Association mapping of genetic risk factors for chronic wasting disease in wild deer. Evol Appl 2012; 6:340-52. [PMID: 23467626 PMCID: PMC3586622 DOI: 10.1111/eva.12003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 07/11/2012] [Indexed: 01/06/2023] Open
Abstract
Chronic wasting disease (CWD) is a fatal transmissible spongiform encephalopathy affecting North American cervids. We assessed the feasibility of association mapping CWD genetic risk factors in wild white-tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus) using a panel of bovine microsatellite markers from three homologous deer linkage groups predicted to contain candidate genes. These markers had a low cross-species amplification rate (27.9%) and showed weak linkage disequilibrium (<1 cM). Markers near the prion protein and the neurofibromin 1 (NF1) genes were suggestively associated with CWD status in white-tailed deer (P = 0.006) and mule deer (P = 0.02), respectively. This is the first time an association between the NF1 region and CWD has been reported.
Collapse
Affiliation(s)
- Tomomi Matsumoto
- Department of Biological Sciences, University of Alberta Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
50
|
Daus ML, Beekes M. Chronic wasting disease: fingerprinting the culprit in risk assessments. Prion 2012; 6:17-22. [PMID: 22453172 DOI: 10.4161/pri.6.1.17776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transmissible spongiform encephalopathies (prion diseases) in animals may be associated with a zoonotic risk potential for humans as shown by the occurrence of variant Creutzfeldt-Jakob disease in the wake of the bovine spongiform encephalopathy epidemic. Thus, the increasing exposure of humans in North America to cervid prions of chronic wasting disease (CWD) in elk and deer has prompted comprehensive risk assessments. The susceptibility of humans to CWD infections is currently under investigation in different studies using macaques as primate models. The necessity for such studies was recently reinforced when disease-associated prion protein and its seeding activity were detected in muscles of clinically inconspicuous CWD-infected white-tailed deer. Increasing evidence points to the existence of different CWD strains, and CWD prions may also change or newly emerge over time. Therefore, CWD isolates examined in macaques should be characterized as precisely as possible for their molecular identity. On this basis other CWD field samples collected in the past, present or future could be systematically compared with macaque-tested inocula in order to assess whether they are covered by the ongoing risk assessments in primates. CWD typing by Fourier transform-infrared spectroscopy of pathological prion protein may provide a method of choice for this purpose.
Collapse
Affiliation(s)
- Martin L Daus
- P24-Transmissible Spongiform Encephalopathies, Robert Koch-Institut, Berlin, Germany
| | | |
Collapse
|