1
|
Song KR, Chapagain RH, Tamrakar D, Shrestha R, Kanodia P, Chaudhary S, Wartel TA, Yang JS, Kim DR, Lee J, Park EL, Cho H, Lee J, Thaisrivichai P, Vemula S, Kim BM, Gupta B, Saluja T, Pansuriya RK, Ganapathy R, Baik YO, Lee YJ, Jeon S, Park Y, Her HL, Park Y, Lynch JA. Safety and immunogenicity of the Euvichol-S oral cholera vaccine for prevention of Vibrio cholerae O1 infection in Nepal: an observer-blind, active-controlled, randomised, non-inferiority, phase 3 trial. Lancet Glob Health 2024; 12:e826-e837. [PMID: 38614631 PMCID: PMC11027156 DOI: 10.1016/s2214-109x(24)00059-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND In October, 2017, WHO launched a strategy to eliminate cholera by 2030. A primary challenge in meeting this goal is the limited global supply capacity of oral cholera vaccine and the worsening of cholera outbreaks since 2021. To help address the current shortage of oral cholera vaccine, a WHO prequalified oral cholera vaccine, Euvichol-Plus was reformulated by reducing the number of components and inactivation methods. We aimed to evaluate the immunogenicity and safety of Euvichol-S (EuBiologics, Seoul, South Korea) compared with an active control vaccine, Shanchol (Sanofi Healthcare India, Telangana, India) in participants of various ages in Nepal. METHODS We did an observer-blind, active-controlled, randomised, non-inferiority, phase 3 trial at four hospitals in Nepal. Eligible participants were healthy individuals aged 1-40 years without a history of cholera vaccination. Individuals with a history of hypersensitivity reactions to other preventive vaccines, severe chronic disease, previous cholera vaccination, receipt of blood or blood-derived products in the past 3 months or other vaccine within 4 weeks before enrolment, and pregnant or lactating women were excluded. Participants were randomly assigned (1:1:1:1) by block randomisation (block sizes of two, four, six, or eight) to one of four groups (groups A-D); groups C and D were stratified by age (1-5, 6-17, and 18-40 years). Participants in groups A-C were assigned to receive two 1·5 mL doses of Euvichol-S (three different lots) and participants in group D were assigned to receive the active control vaccine, Shanchol. All participants and site staff (with the exception of those who prepared and administered the study vaccines) were masked to group assignment. The primary immunogenicity endpoint was non-inferiority of immunogenicity of Euvichol-S (group C) versus Shanchol (group D) at 2 weeks after the second vaccine dose, measured by the seroconversion rate, defined as the proportion of participants who had achieved seroconversion (defined as ≥four-fold increase in V cholerae O1 Inaba and Ogawa titres compared with baseline). The primary immunogenicity endpoint was assessed in the per-protocol analysis set, which included all participants who received all their planned vaccine administrations, had no important protocol deviations, and who provided blood samples for all immunogenicity assessments. The primary safety endpoint was the number of solicited adverse events, unsolicited adverse events, and serious adverse events after each vaccine dose in all ages and each age stratum, assessed in all participants who received at least one dose of the Euvichol-S or Shanchol. Non-inferiority of Euvichol-S compared with Shanchol was shown if the lower limit of the 95% CI for the difference between the seroconversion rates in Euvichol-S group C versus Shanchol group D was above the predefined non-inferiority margin of -10%. The trial was registered at ClinicalTrials.gov, NCT04760236. FINDINGS Between Oct 6, 2021, and Jan 19, 2022, 2529 healthy participants (1261 [49·9%] males; 1268 [50·1%] females), were randomly assigned to group A (n=330; Euvichol-S lot number ES-2002), group B (n=331; Euvichol-S ES-2003), group C (n=934; Euvichol-S ES-2004]), or group D (n=934; Shanchol). Non-inferiority of Euvichol-S versus Shanchol in seroconversion rate for both serotypes at 2 weeks after the second dose was confirmed in all ages (difference in seroconversion rate for V cholerae O1 Inaba -0·00 [95% CI -1·86 to 1·86]; for V cholerae O1 Ogawa -1·62 [-4·80 to 1·56]). Treatment-emergent adverse events were reported in 244 (9·7%) of 2529 participants in the safety analysis set, with a total of 403 events; 247 events were reported among 151 (9·5%) of 1595 Euvichol-S recipients and 156 events among 93 (10·0%) of 934 Shanchol recipients. Pyrexia was the most common adverse event in both groups (57 events among 56 [3·5%] of 1595 Euvichol-S recipients and 37 events among 35 [3·7%] of 934 Shanchol recipients). No serious adverse events were deemed to be vaccine-related. INTERPRETATION A two-dose regimen of Euvichol-S vaccine was non-inferior to the active control vaccine, Shanchol, in terms of seroconversion rates 2 weeks after the second dose. The simplified formulation and production requirements of the Euvichol-S vaccine have the potential to increase the supply of oral cholera vaccine and reduce the gap between the current oral cholera vaccine supply and demand. FUNDING The Bill & Melinda Gates Foundation. TRANSLATION For the Nepali translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Katerina Rok Song
- Clinical, Assessment, Regulatory, Evaluation Unit, International Vaccine Institute, Seoul, South Korea.
| | - Ram Hari Chapagain
- Department of Pediatric Medicine, Kanti Children's Hospital, Kathmandu, Nepal
| | - Dipesh Tamrakar
- Center for Clinical Trial Studies, Dhulikhel Hospital, Kathmandu University Hospital, Dhulikhel, Nepal
| | - Rajeev Shrestha
- Center for Clinical Trial Studies, Dhulikhel Hospital, Kathmandu University Hospital, Dhulikhel, Nepal
| | - Piush Kanodia
- Department of Pediatrics and Neonatology, Nepalgunj Medical College, Nepalgunj, Nepal
| | - Shipra Chaudhary
- Department of Pediatrics and Adolescent Medicine, BP Koirala Institute of Health Sciences, Dharan, Nepal
| | - T Anh Wartel
- International Vaccine Institute, Stockholm, Sweden
| | - Jae Seung Yang
- Science Unit, International Vaccine Institute, Seoul, South Korea
| | - Deok Ryun Kim
- Department of Biostatistics and Data Management, International Vaccine Institute, Seoul, South Korea
| | - Jinae Lee
- Department of Biostatistics and Data Management, International Vaccine Institute, Seoul, South Korea
| | - Eun Lyeong Park
- Department of Biostatistics and Data Management, International Vaccine Institute, Seoul, South Korea
| | - Haeun Cho
- Department of Biostatistics and Data Management, International Vaccine Institute, Seoul, South Korea
| | - Jiyoung Lee
- Department of Biostatistics and Data Management, International Vaccine Institute, Seoul, South Korea
| | | | - Sridhar Vemula
- Clinical, Assessment, Regulatory, Evaluation Unit, International Vaccine Institute, Seoul, South Korea
| | - Bo Mi Kim
- Clinical, Assessment, Regulatory, Evaluation Unit, International Vaccine Institute, Seoul, South Korea
| | - Birendra Gupta
- Clinical, Assessment, Regulatory, Evaluation Unit, International Vaccine Institute, Seoul, South Korea
| | - Tarun Saluja
- Clinical, Assessment, Regulatory, Evaluation Unit, International Vaccine Institute, Seoul, South Korea
| | - Ruchir Kumar Pansuriya
- Vaccine Process Development Unit, International Vaccine Institute, Seoul, South Korea; Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Ravi Ganapathy
- Research and Development, Hilleman Laboratories, Singapore
| | - Yeong Ok Baik
- Research and Development Division, EuBiologics, Seoul, South Korea
| | - Young Jin Lee
- Research and Development Division, EuBiologics, Seoul, South Korea
| | - Suhi Jeon
- Production Division, EuBiologics, Seoul, South Korea
| | | | - Howard L Her
- Research and Development Division, EuBiologics, Seoul, South Korea
| | | | - Julia A Lynch
- Clinical, Assessment, Regulatory, Evaluation Unit, International Vaccine Institute, Seoul, South Korea
| |
Collapse
|
2
|
Ayyappan MV, Kishore P, Panda SK, Kumar A, Uchoi D, Nadella RK, Priyadarshi H, Obaiah MC, George D, Hamza M, Ramannathan SK, Ravishankar CN. Emergence of multidrug resistant, ctx negative seventh pandemic Vibrio cholerae O1 El Tor sequence type (ST) 69 in coastal water of Kerala, India. Sci Rep 2024; 14:2031. [PMID: 38263228 PMCID: PMC10805778 DOI: 10.1038/s41598-023-50536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Seventh pandemic Vibrio choleare O1 El Tor strain is responsible for the on-going pandemic outbreak of cholera globally. This strain evolved from non-pathogenic V. cholerae by acquiring seventh pandemic gene (VC 2346), pandemic Islands (VSP1 and VSP2), pathogenicity islands (VP1 and VP2) and CTX prophage region. The cholera toxin production is mainly attributed to the presence of ctx gene in these strains. However, several variants of this strain emerged as hybrid strains or atypical strains. The present study aimed to assess the aquatic environment of Cochin, India, over a period of 5 years for the emergence of multidrug resistant V. cholerae and its similarity with seventh pandemic strain. The continuous surveillance and monitoring resulted in the isolation of ctx negative, O1 positive V. cholerae isolate (VC6) from coastal water, Cochin, Kerala. The isolate possessed the biotype specific O1 El Tor tcpA gene and lacked other biotype specific ctx, zot, ace and rst genes. Whole genome analysis revealed the isolate belongs to pandemic sequence type (ST) 69 with the possession of pandemic VC2346 gene, pathogenic island VPI1, VPI2, and pandemic island VSP1 and VSP2. The isolate possessed several insertion sequences and the SXT/R391 family related Integrative Conjugative Elements (ICEs). In addition to this, the isolate genome carried virulence genes such as VgrG, mshA, ompT, toxR, ompU, rtxA, als, VasX, makA, and hlyA and antimicrobial resistance genes such as gyrA, dfrA1, strB, parE, sul2, parC, strA, VC1786ICE9-floR, and catB9. Moreover, the phylogenetic analysis suggests that the isolate genome is more closely related to seventh pandemic V. cholerae O1 N16961 strain. This study reports the first incidence of environmental ctx negative seventh pandemic V. choleare O1 El Tor isolate, globally and its presence in the aquatic system likely to induce toxicity in terms of public health point of view. The presence of this isolate in the aquatic environment warns the strict implementation of the epidemiological surveillance on the occurrence of emerging strains and the execution of flagship program for the judicious use of antibiotics in the aquatic ecosystem.
Collapse
Affiliation(s)
| | - Pankaj Kishore
- ICAR-Central Institute of Fisheries Technology, Kochi, India.
| | | | - Anuj Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Devananda Uchoi
- ICAR-Central Institute of Fisheries Technology, Kochi, India
| | | | | | | | - Dybin George
- Kerala University of Fisheries and Ocean Studies, Kochi, India
| | - Muneeb Hamza
- Cochin University of Science and Technology, Kochi, India
| | | | - C N Ravishankar
- ICAR-Central Institute of Fisheries Education, Mumbai, India
| |
Collapse
|
3
|
Igere BE, Onohuean H, Iwu DC, Igbinosa EO. Polymyxin sensitivity/resistance cosmopolitan status, epidemiology and prevalence among O1/O139 and non-O1/non-O139 Vibrio cholerae: A meta-analysis. INFECTIOUS MEDICINE 2023; 2:283-293. [PMID: 38205176 PMCID: PMC10774663 DOI: 10.1016/j.imj.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/12/2023] [Accepted: 11/11/2023] [Indexed: 01/12/2024]
Abstract
Resistance/sensitivity to polymyxin-B (PB) antibiotic has been employed as one among other epidemiologically relevant biotyping-scheme for Vibrio cholerae into Classical/El Tor biotypes. However, recent studies have revealed some pitfalls bordering on PB-sensitivity/resistance (PBR/S) necessitating study. Current study assesses the PBR/S cosmopolitan prevalence, epidemiology/distribution among O1/O139 and nonO1/nonO139 V. cholerae strains. Relevant databases (Web of Science, Scopus and PubMed) were searched to retrieve data from environmental and clinical samples employing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Random-effect-model (REM) and common-effect-model (CEM) of meta-analysis was performed to determine prevalence of PBR/S V. cholerae strains, describe the cosmopolitan epidemiological potentials and biotype relevance. Heterogeneity was determined by meta-regression and subgroup analyses. The pooled analyzed isolates from articles (7290), with sensitive and resistance are 2219 (30.44%) and 5028 (69.56%). Among these PB-sensitive strains, more than 1944 (26.67%) were O1 strains, 132 (1.81%) were nonO1 strains while mis-reported Classical biotype were 2080 (28.53) respectively indicating potential spread of variant/dual biotype. A significant PB-resistance was observed in the models (CEM = 0.66, 95% CI [0.65; 0.68], p-value = 0.001; REM = 0.83 [0.74; 0.90], p = 0.001) as both models had a high level of heterogeneity (I2 = 98.0%; d f = 33 2 = 1755.09 , Q p = 2.4932 ). Egger test (z = 5.4017, p < 0.0001) reveal publication bias by funnel plot asymmetry. The subgroup analysis for continents (Asia, Africa) and sources (acute diarrhea) revealed (98% CI (0.73; 0.93); 55% CI (0.20; 0.86)), and 92% CI (0.67; 0.98). The Epidemiological prevalence for El tor/variant/dual biotype showed 88% CI (0.78; 0.94) with O1 strains at 88% CI (0.78; 0.94). Such global prevalence, distribution/spread of phenotypes/genotypes necessitates updating the decades-long biotype classification scheme. An antibiotic stewardship in the post antibiotic era is suggestive/recommended. Also, there is need for holistic monitoring/evaluation of clinical/epidemiological relevance of the disseminating strains in endemic localities.
Collapse
Affiliation(s)
- Bright E. Igere
- Department of Biological Sciences, Microbiology Unit, Dennis Osadebay University, Asaba 320242, Nigeria
- Biotechnology and Emerging Environmental Infections Pathogens Research Group (BEEIPREG), Department of Biological Sciences, Microbiology Unit, Dennis Osadebay University, Asaba 320242, Nigeria
| | - Hope Onohuean
- Biopharmaceutics unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University Ishaka-Bushenyi Campus, Ishaka-Bushenyi 10101, Uganda
| | - Declan C. Iwu
- Department of Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - Etinosa O. Igbinosa
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin 300213, Nigeria
| |
Collapse
|
4
|
Abioye OE, Nontongana N, Osunla CA, Okoh AI. Antibiotic resistance and virulence genes profiling of Vibrio cholerae and Vibrio mimicus isolates from some seafood collected at the aquatic environment and wet markets in Eastern Cape Province, South Africa. PLoS One 2023; 18:e0290356. [PMID: 37616193 PMCID: PMC10449182 DOI: 10.1371/journal.pone.0290356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
The current study determines the density of Vibrio spp. and isolates V. cholerae and Vibrio mimicus from fish-anatomical-sites, prawn, crab and mussel samples recovered from fish markets, freshwater and brackish water. Virulence and antibiotic resistance profiling of isolates were carried out using standard molecular and microbiology techniques. Vibrio spp. was detected in more than 90% of samples [134/144] and its density was significantly more in fish than in other samples. Vibrio. cholerae and V. mimicus were isolated in at least one sample of each sample type with higher isolation frequency in fish samples. All the V. cholerae isolates belong to non-O1/non-O139 serogroup. One or more V. cholerae isolates exhibited intermediate or resistance against each of the eighteen panels of antibiotics used but 100% of the V. mimicus were susceptible to amikacin, gentamycin and chloramphenicol. Vibrio cholerae exhibited relatively high resistance against polymyxin, ampicillin and amoxicillin/clavulanate while V. mimicus isolates exhibited relatively high resistance against nitrofurantoin, ampicillin and polymixin. The multiple-antibiotic-resistance-index [MARI] for isolates ranges between 0 and 0.67 and 48% of the isolates have MARI that is >0.2 while 55% of the isolates exhibit MultiDrug Resistance Phenotypes. The percentage detection of acc, ant, drf18, sul1, mcr-1, blasvh, blaoxa, blatem, blaoxa48, gyrA, gyrB and parC resistance-associated genes were 2%, 9%, 14%, 7%, 2%, 25%, 7%, 2%, 2%, 32%, 25% and 27% respectively while that for virulence-associated genes in increasing other was ace [2%], tcp [11%], vpi [16%], ompU [34%], toxR [43%], rtxC [70%], rtxA [73%] and hyla [77%]. The study confirmed the potential of environmental non-O1/non-O139 V. cholerae and V. mimicus to cause cholera-like infection and other vibriosis which could be difficult to manage with commonly recommended antibiotics. Thus, regular monitoring of the environment to create necessary awareness for this kind of pathogens is important in the interest of public health.
Collapse
Affiliation(s)
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Charles A. Osunla
- Department of Microbiology, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Anthony I. Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
5
|
Shaw S, Samanta P, Chowdhury G, Ghosh D, Dey TK, Deb AK, Ramamurthy T, Miyoshi SI, Ghosh A, Dutta S, Mukhopadhyay AK. Altered Molecular Attributes and Antimicrobial Resistance Patterns of Vibrio cholerae O1 El Tor Strains Isolated from the Cholera Endemic Regions of India. J Appl Microbiol 2022; 133:3605-3616. [PMID: 36000378 DOI: 10.1111/jam.15794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/18/2022] [Accepted: 08/20/2022] [Indexed: 11/28/2022]
Abstract
AIMS The present study aimed to document the comparative analysis of differential hyper-virulent features of Vibrio cholerae O1 strains isolated during 2018 from cholera endemic regions in Gujarat and Maharashtra (Western India) and West Bengal (Eastern India). METHODS AND RESULTS A total of 87 V. cholerae O1 clinical strains from Western India and 48 from Eastern India were analyzed for a number of biotypic and genotypic features followed by antimicrobial resistance (AMR) profile. A novel PCR was designed to detect a large fragment deletion in the Vibrio seventh pandemic island II (VSP-II) genomic region, which is a significant genetic feature of the V. cholerae strains that has caused Yemen cholera outbreak. All the strains from Western India were belong to the Ogawa serotype, polymyxin B-sensitive, hemolytic, had a deletion in VSP-II (VSP-IIC) region and carried Haitian genetic alleles of ctxB, tcpA and rtxA. Conversely, 14.6% (7/48) of the strains from Eastern India belonged to the Inaba serotype, polymyxin B-resistant, non-hemolytic, harbored VSP-II other than VSP-IIC type, classical ctxB, Haitian tcpA and El Tor rtxA alleles. Resistance to tetracycline and chloramphenicol has been observed in strains from both the regions. CONCLUSIONS This study showed hyper-virulent, polymyxin B-sensitive epidemic causing strains in India along with the strains with polymyxin B-resistant and non-hemolytic traits that may spread and cause serious disease outcome in future. SIGNIFICANCE AND IMPACT OF THE STUDY The outcomes of this study can help to improve the understanding of the hyper-pathogenic property of recently circulating pandemic V. cholerae strains in India. A special attention is also needed on the monitoring of AMR surveillance because V. cholerae strains are losing susceptibility to many antibiotics used as a second line of defense in the treatment of cholera.
Collapse
Affiliation(s)
- Sreeja Shaw
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Prosenjit Samanta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Debjani Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Tanmoy Kumar Dey
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Alok Kumar Deb
- Division of Epidemiology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shin-Ichi Miyoshi
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-NICED, Kolkata, India.,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Amit Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
6
|
Matimba HH, Joachim A, Mizinduko MM, Maseke IA, Nyanga SK, Kelly ME, Nyanga AS, Mghamba JM, Majigo MV, Mohamed AA. Genetic relatedness, virulence factors and antibiotics susceptibility pattern of Vibrio cholerae isolates from various regions during cholera outbreak in Tanzania. PLoS One 2022; 17:e0265868. [PMID: 35333909 PMCID: PMC8956160 DOI: 10.1371/journal.pone.0265868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/09/2022] [Indexed: 11/29/2022] Open
Abstract
Background Cholera continues to cause morbidity and mortality in developing countries, including Tanzania. Since August 2015, Tanzania Mainland has experienced cholera outbreaks affecting 26 regions and a 1.6% case fatality rate. The current study determined the virulence factors, genetic relatedness and antimicrobial susceptibility patterns of the Vibrio cholerae isolated from different regions in Tanzania. Methods A cross-sectional study that involved the genetic characterization of V. cholerae isolates from eleven regions in Tanzania was carried out. There were 99 V. cholerae isolates collected between January 2016 and December 2017. The study perfomed a Multi-locus Variable-number tandem-repeat analysis for genetic relatedness and Mismatch Amplification Mutation Analysis polymerase chain reaction for analyzing toxin genes. All the isolates were tested for antimicrobial susceptibility using the Kirby Bauer disk diffusion method. Data were generally analyzed using Microsoft excel, where genetic relatedness was analyzed using eBurst software v3. Results All isolates were V. cholerae O1. Ogawa was the most predominant 97(98%) serotype. Isolates were genetically related with a small genetic diversity and were positive for ctxA, tcpA El Tor virulence genes. All isolates (100%) were sensitive to doxycycline, trimethoprim-sulphamethoxazole, tetracycline, ceftriaxone, and chloramphenicol, while 87.8% were sensitive to ciprofloxacin. A high resistance rate (100%) was detected towards erythromycin, nalidixic acid, amoxicillin, and ampicillin. Conclusion The V.cholerae O1 serotypes Ogawa, El Tor variant predominantly caused cholera outbreaks in Tanzania with strains clonally related regardless of the place and time of the outbreak. Most of the isolates were susceptible to the antibiotic regimen currently used in Tanzania. The high resistance rate detected for the other common antibiotics calls for continuous antimicrobial susceptibility testing during outbreaks.
Collapse
Affiliation(s)
- Hamza Hamad Matimba
- Department of Epidemiology and Biostatistics, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Tanzania Field Epidemiology and Laboratory Training Program, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- * E-mail: (HHM); (AJ)
| | - Agricola Joachim
- Department Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- * E-mail: (HHM); (AJ)
| | - Mucho Michael Mizinduko
- Department of Epidemiology and Biostatistics, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Irene Anthony Maseke
- National Health Laboratory, Quality Assurance, and Training Centre, Dar es Salaam, Tanzania
| | - Salum Kassim Nyanga
- National Health Laboratory, Quality Assurance, and Training Centre, Dar es Salaam, Tanzania
| | - Maria Ezekiely Kelly
- National Health Laboratory, Quality Assurance, and Training Centre, Dar es Salaam, Tanzania
| | - Ali Said Nyanga
- Ministry of Health, Community Development, Gender, Elderly and Children, Dar es Salaam, Tanzania
| | - Janneth Maridadi Mghamba
- Tanzania Field Epidemiology and Laboratory Training Program, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Ministry of Health, Community Development, Gender, Elderly and Children, Dar es Salaam, Tanzania
| | - Mtebe Venance Majigo
- Department Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Ahmed Abade Mohamed
- Tanzania Field Epidemiology and Laboratory Training Program, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
7
|
Igere BE, Okoh AI, Nwodo UU. Atypical and dual biotypes variant of virulent SA-NAG-Vibrio cholerae: an evidence of emerging/evolving patho-significant strain in municipal domestic water sources. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-021-01661-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Introduction and purpose
The recent cholera spread, new cases, and fatality continue to arouse concern in public health systems; however, interventions on control is at its peak yet statistics show continuous report. This study characterized atypical and patho-significant environmental Vibrio cholerae retrieved from ground/surface/domestic water in rural-urban-sub-urban locations of Amathole District municipality and Chris Hani District municipality, Eastern Cape Province, South Africa.
Methods
Domestic/surface water was sampled and 759 presumptive V. cholerae isolates were retrieved using standard microbiological methods. Virulence phenotypic test: toxin co-regulated pili (tcp), choleragen red, protease production, lecithinase production, and lipase test were conducted. Serotyping using polyvalent antisera (Bengal and Ogawa/Inaba/Hikojima) and molecular typing: 16SrRNA, OmpW, serogroup (Vc-O1/O139), biotype (tcpAClas/El Tor, HlyAClas/El Tor, rstRClas/El Tor, RS1, rtxA, rtxC), and virulence (ctxA, ctxB, zot, ace, cep, prt, toxR, hlyA) genes were targeted.
Result
Result of 16SrRNA typing confirmed 508 (66.9%) while OmpW detected/confirmed 61 (12.01%) V. cholerae strains. Phenotypic-biotyping scheme showed positive test to polymyxin B (68.9%), Voges proskauer (6.6%), and Bengal serology (11.5%). Whereas Vc-O1/O139 was negative, yet two of the isolates harbored the cholera toxin with a gene-type ctxB and hlyAClas: 2/61, revealing atypical/unusual/dual biotype phenotypic/genotypic features. Other potential atypical genotypes detected include rstR: 7/61, Cep: 15/61, ace: 20/61, hlyAElTor: 53/61, rtxA: 30/61, rtxC: 11/61, and prtV: 15/61 respectively.
Conclusion
Although additional patho-significant/virulent genotypes associated with epidemic/sporadic cholera cases were detected, an advanced, bioinformatics, and post-molecular evaluation is necessary. Such stride possesses potential to adequately minimize future cholera cases associated with dynamic/atypical environmental V. cholerae strains.
Collapse
|
8
|
Saha GK, Ganguly NK. Spread and Endemicity of Cholera in India: Factors Beyond the Numbers. J Infect Dis 2021; 224:S710-S716. [PMID: 34550374 PMCID: PMC8687089 DOI: 10.1093/infdis/jiab436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cholera outbreaks currently account for 1.3 to 4.0 million cases and cause between 21 000 and 143 000 deaths worldwide. Cholera is preventable by proper sanitization and immunization; however, in many developing nations such as India, cholera disease is endemic. The surveillance system in India does not adequately capture the actual number of cases. As a result, it is important to utilize limited public health resources correctly in India and other developing counties more effectively to reach vulnerable communities. In this study, we analyze how studies make sense of cholera transmission and spread in India from 1996 to 2015. Furthermore, we analyze how a more sensitive surveillance system can contribute to cholera eradication by giving rise to outbreak preparedness.
Collapse
Affiliation(s)
- Gautam K Saha
- Apollo Hospitals Educational and Research Foundation
| | | |
Collapse
|
9
|
Laboratory evaluation of the rapid diagnostic tests for the detection of Vibrio cholerae O1 using diarrheal samples. PLoS Negl Trop Dis 2021; 15:e0009521. [PMID: 34129602 PMCID: PMC8232436 DOI: 10.1371/journal.pntd.0009521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/25/2021] [Accepted: 05/30/2021] [Indexed: 11/19/2022] Open
Abstract
Background Cholera, an acute diarrheal disease is a major public health problem in many developing countries. Several rapid diagnostic tests (RDT) are available for the detection of cholera, but their efficacies are not compared in an endemic setting. In this study, we have compared the specificity and sensitivity of three RDT kits for the detection of Vibrio cholerae O1 and compared their efficiency with culture and polymerase chain reaction (PCR) methods. Methods Five hundred six diarrheal stool samples collected from patients from two different hospitals in Kolkata, India were tested using SD Bioline Cholera, SMART-II Cholera O1 and Crystal-VC RDT kits. All the stool samples were screened for the presence of V. cholerae by direct and enrichment culture methods. Stool DNA-based PCR assay was made to target the cholera toxin (ctxAB) and O1 somatic antigen (rfb) encoding genes. Statistical evaluation of the RDTs has been made using STATA software with stool culture and PCR results as the gold standards. The Bayesian latent class model (LCM) was used to evaluate the diagnostic tests in the absence of the gold standard. Results Involving culture technique as gold standard, the sensitivity and specificity of the cholera RDT kits in the direct testing of stools was highest with SAMRT-II (86.1%) and SD-Cholera (94.4%), respectively. The DNA based PCR assays gave very high sensitivity (98.4%) but the specificity was comparatively low (75.3%). After enrichment, the high sensitivity and specificity was detected with SAMRT-II (78.8%) and SD-Cholera (99.1%), respectively. Considering PCR as the gold standard, the sensitivity and specificity of the RDTs remained between 52.3–58.2% and 92.3–96.8%, respectively. In the LCM, the sensitivity of direct and enrichment testing was high in SAMRT-II (88% and 92%, respectively), but the specificity was high in SD cholera for both the methods (97% and 100%, respectively). The sensitivity/specificity of RDTs and direct culture have also been analyzed considering the age, gender and diarrheal disease severity of the patients. Conclusion Overall, the performance of the RDT kits remained almost similar in terms of specificity and sensitivity. Performance of PCR was superior to the antibody-based RDTs. The RTDs are very useful in identifying cholera cases during outbreak/epidemic situations and for making them as a point-of-care (POC) testing tool needs more improvement. Cholera is caused by toxigenic Vibrio cholerae, which induces massive fluid accumulation in the host’s gut and secretory diarrhea. Cholera deaths can be prevented by timely diagnosis and early treatment of the patients using rehydration therapy. Outbreaks of cholera are often reported in several countries due to poor quality of drinking water and lack of sanitation. Early diagnosis of cholera outbreaks is highly useful for the enforcement of control measures. In many cholera endemic countries, laboratory resources in detecting the cholera cases are limited. Even though the conventional culture methods of the isolation and identification V. cholerae are useful for cholera diagnosis, its sensitivity is not superior compared to antibody and DNA-based techniques. Several antibody-based cholera rapid diagnostic kits (RTDs) are designed for use as a point-of-care (POC) device or field conditions. Using the diarrheal stool samples, we compared the performance of three cholera RDTs with bacterial culture and PCR assays. Applying culture and PCR results as the gold standards and also in the absence of a gold standard, appropriate statistical analysis has been made for diagnostic test evaluations. We have also considered the presence of other pathogens in the stools and clinical characteristics of the patients in the analysis. Though the cholera RDT kits highly useful for the detection of V. cholerae O1, even in the presence of other pathogens in the stools, they cannot be considered as a POC tool due to lack of required specificity.
Collapse
|
10
|
Emergence and spread of different ctxB alleles of Vibrio cholerae O1 in Odisha, India. Int J Infect Dis 2021; 105:730-732. [PMID: 33741484 DOI: 10.1016/j.ijid.2021.03.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/23/2022] Open
Abstract
This study reports variants of the ctxB allele of Vibrio cholerae O1 isolated between 1995 and 2019 in Odisha, India. ctxB1 genotypes dominated from 1995 to 2016. The Haitian variant and El Tor ctxB3 genotypes of V. cholerae O1 emerged in 1999, and were most common in 2018-2019 and 2005-2011, respectively. The ctxB7 genotype of the Haitian variant of V. cholerae O1 was quiescent from 2000 to 2006, but further spread was noted from 2007 to 2019.
Collapse
|
11
|
Bhandari M, Jennison AV, Rathnayake IU, Huygens F. Evolution, distribution and genetics of atypical Vibrio cholerae - A review. INFECTION GENETICS AND EVOLUTION 2021; 89:104726. [PMID: 33482361 DOI: 10.1016/j.meegid.2021.104726] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
Vibrio cholerae is the etiological agent of cholera, a severe diarrheal disease, which can occur as either an epidemic or sporadic disease. Cholera pandemic-causing V. cholerae O1 and O139 serogroups originated from the Indian subcontinent and spread globally and millions of lives are lost each year, mainly in developing and underdeveloped countries due to this disease. V. cholerae O1 is further classified as classical and El Tor biotype which can produce biotype specific cholera toxin (CT). Since 1961, the current seventh pandemic El Tor strains replaced the sixth pandemic strains resulting in the classical biotype strain that produces classical CT. The ongoing evolution of Atypical El Tor V. cholerae srains encoding classical CT is of global concern. The severity in the pathophysiology of these Atypical El Tor strains is significantly higher than El Tor or classical strains. Pathogenesis of V. cholerae is a complex process that involves coordinated expression of different sets of virulence-associated genes to cause disease. We are yet to understand the complete virulence profile of V. cholerae, including direct and indirect expression of genes involved in its survival and stress adaptation in the host. In recent years, whole genome sequencing has paved the way for better understanding of the evolution and strain distribution, outbreak identification and pathogen surveillance for the implementation of direct infection control measures in the clinic against many infectious pathogens including V. cholerae. This review provides a synopsis of recent studies that have contributed to the understanding of the evolution, distribution and genetics of the seventh pandemic Atypical El Tor V. cholerae strains.
Collapse
Affiliation(s)
- Murari Bhandari
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia; Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, QLD, Australia
| | - Amy V Jennison
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, QLD, Australia
| | - Irani U Rathnayake
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, QLD, Australia
| | - Flavia Huygens
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
12
|
Mahboobi M, Mirnejad R, Sedighian H, Piranfar V, Imani Fooladi AA. Genetic Diversity of ctxB Gene Among Classical O1 and El Tor Strains of Vibrio cholerae using High-Resolution Melting Curve Analysis. IRANIAN JOURNAL OF PATHOLOGY 2020; 15:320-325. [PMID: 32944045 PMCID: PMC7477675 DOI: 10.30699/ijp.2020.127793.2393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/07/2020] [Indexed: 11/06/2022]
Abstract
Background & Objective: Vibrio cholerae is a natural inhabitant of the environment and causes severe diarrhea ailments (cholera) that affects thousands of people each year worldwide. The most important virulence factors of this pathogen are cholera toxin (cholera toxin CT) and Type IV pili (toxin co-regulated pili TCP), which are encoded within the genome of the filamentous bacteriophage CTXφ. In the present study, according to researchers’ report on genotypic variations of cholera toxin, we evaluated the sequence of ctxB subunit obtained from 100 strains of patients infected with cholera in Iran. Methods: The evaluation of genotype variations of cholera toxin was made by high-resolution melting curve analysis illustrating a single nucleotide change. Then, ctxB gene sequencing was performed. Through this analysis and the sequencing process, two standard samples were studied. Results: Using serologic tests, all the strains analyzed in this study were identified to be in O1 serotype. However, there have been differences in sequences of ctxB as some were similar to V. cholerae O1 biovar El Tor str. N16961 while others were similar to the genotype of V. cholerae ATCC 14035. We did not observe any particular pattern within the process of mutation. Conclusion: The analysis of the new samples of ctxB showed that they were potentially different. It seems that these complicated species were affected by a new genetic exchange of El Tor and classic genotypes.
Collapse
Affiliation(s)
- Mahdieh Mahboobi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Mirnejad
- Molecular Biology Research Center Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Vahhab Piranfar
- Research and Development Department, Farname Inc, Thornhill, Canada
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Baranova DE, Chen L, Destrempes M, Meade H, Mantis NJ. Passive Immunity to Vibrio cholerae O1 Afforded by a Human Monoclonal IgA1 Antibody Expressed in Milk. Pathog Immun 2020; 5:89-116. [PMID: 34136728 PMCID: PMC8204294 DOI: 10.20411/pai.v5i1.370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background: In cholera epidemics, the spread of disease can easily outpace vaccine
control measures. The advent of technologies enabling the expression of
recombinant proteins, including antibodies, in the milk of transgenic
animals raises the prospect of developing a self-administered and
cost-effective monoclonal antibody (MAb)-based prophylactic to reduce the
incidence of Vibrio cholerae infection. Methods: We generated a transgenic mouse line in which the heavy and light chain
variable regions (Fv) specific for a conserved epitope in the core/lipid A
of V. cholerae O1 lipopolysaccharide were expressed as a
full-length human dimeric IgA1 (ZAC-3) and secreted into the milk of
lactating dams. Milk containing ZAC-3 IgA1 was assessed for the ability to
passively protect against experimental cholera infection in a newborn mouse
model and to impact bacterial swimming behavior. Results: Newborn mice that were passively administered ZAC-3 IgA1 containing milk, or
that suckled on dams expressing ZAC-3 IgA1, were immune to experimental
cholera infection, as measured by a reduction of V.
cholerae O1 colony forming units recovered from intestinal
lysates 12 hours after oral challenge. In vitro analysis
revealed that ZAC-3 hIgA1-containing milk arrested V.
cholerae motility in soft agar and liquid media and was
effective at promoting bacterial agglutination, possibly accounting for the
observed reduction in bacterial colonization in vivo. Conclusions: These results demonstrate that consumption of milk-derived antibodies may
serve as a strategy to passively protect against cholera and possibly other
enteric pathogens.
Collapse
Affiliation(s)
- Danielle E Baranova
- Department of Biomedical Sciences; University at Albany; Albany, New York.,Division of Infectious Diseases; Wadsworth Center; New York State Department of Health; Albany, New York
| | | | | | | | - Nicholas J Mantis
- Department of Biomedical Sciences; University at Albany; Albany, New York.,Division of Infectious Diseases; Wadsworth Center; New York State Department of Health; Albany, New York
| |
Collapse
|
14
|
Naha A, Mandal RS, Samanta P, Saha RN, Shaw S, Ghosh A, Chatterjee NS, Dutta P, Okamoto K, Dutta S, Mukhopadhyay AK. Deciphering the possible role of ctxB7 allele on higher production of cholera toxin by Haitian variant Vibrio cholerae O1. PLoS Negl Trop Dis 2020; 14:e0008128. [PMID: 32236098 PMCID: PMC7112172 DOI: 10.1371/journal.pntd.0008128] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
Cholera continues to be an important public health concern in developing countries where proper hygiene and sanitation are compromised. This severe diarrheal disease is caused by the Gram-negative pathogen Vibrio cholerae belonging to serogroups O1 and O139. Cholera toxin (CT) is the prime virulence factor and is directly responsible for the disease manifestation. The ctxB gene encodes cholera toxin B subunit (CTB) whereas the A subunit (CTA) is the product of ctxA gene. Enzymatic action of CT depends on binding of B pentamers to the lipid-based receptor ganglioside GM1. In recent years, emergence of V. cholerae Haitian variant strains with ctxB7 allele and their rapid spread throughout the globe has been linked to various cholera outbreaks in Africa and Asia. These strains produce classical type (WT) CTB except for an additional mutation in the signal sequence region where an asparagine (N) residue replaces a histidine (H) at the 20th amino acid position (H20N) of CTB precursor (pre-CTB). Here we report that Haitian variant V. cholerae O1 strains isolated in Kolkata produced higher amount of CT compared to contemporary O1 El Tor variant strains under in vitro virulence inducing conditions. We observed that the ctxB7 allele, itself plays a pivotal role in higher CT production. Based on our in silico analysis, we hypothesized that higher accumulation of toxin subunits from ctxB7 allele might be attributed to the structural alteration at the CTB signal peptide region of pre-H20N CTB. Overall, this study provides plausible explanation regarding the hypertoxigenic phenotype of the Haitian variant strains which have spread globally, possibly through positive selection for increased pathogenic traits.
Collapse
Affiliation(s)
- Arindam Naha
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Rahul Shubhra Mandal
- Biomedical Informatics Center, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Prosenjit Samanta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Rudra Narayan Saha
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sreeja Shaw
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Amit Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | - Pujarini Dutta
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases at NICED, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
- * E-mail:
| |
Collapse
|
15
|
Deen J, Mengel MA, Clemens JD. Epidemiology of cholera. Vaccine 2020; 38 Suppl 1:A31-A40. [DOI: 10.1016/j.vaccine.2019.07.078] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 07/06/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
|
16
|
Shaikh H, Lynch J, Kim J, Excler JL. Current and future cholera vaccines. Vaccine 2019; 38 Suppl 1:A118-A126. [PMID: 31879125 DOI: 10.1016/j.vaccine.2019.12.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 11/08/2019] [Accepted: 12/06/2019] [Indexed: 01/21/2023]
Abstract
Cholera remains a major global public health problem that is primarily linked to insufficient access to safe water and proper sanitation. Oral Cholera Vaccine (OCV) has been recommended as an additional public health tool along with WASH in cholera endemic countries and in areas at risk for outbreaks. The new generation OCV is safe and offers good protection in older children and adults while limited protection in younger children less than five years of age has been observed. The combination of direct vaccine protection and vaccine herd immunity effects makes OCV highly cost-effective and, therefore, attractive for use in developing countries. Additionally, in recent studies OCV was safe in pregnant women, supporting its use in pregnant women in cholera endemic countries. However, knowledge need to be developed for current vaccines for their prolonged duration of protection and vaccines need improvements for better immune response in younger children. A single dose vaccination regimen would be more cost-effective and easier to deliver. Recent approaches have focused on designing genetically attenuated cholera strains for use in single-dose cholera vaccines. The global demand for OCV has been boosted by the WHO recommendation to use OCV and is driven largely by epidemics and outbreaks and has been increasing due to the availability of cheaper easy-to-use vaccines, feasibility of mass OCV vaccination campaigns, demonstration of protection to underserved population in precarious situations, and vaccine costs being borne by Gavi (Vaccine Alliance). For rapid access in emergency and equitable distribution of OCV in cholera-endemic low-income countries, a global OCV stockpile was established in 2013 with support from the Global Alliance for Vaccines and Immunization. The three WHO-prequalified vaccines are Dukoral®, Shanchol™, Euvichol® (and Euvichol® Plus presentation), the latter two being included in the stockpile.
Collapse
Affiliation(s)
- Hanif Shaikh
- International Vaccine Institute, Seoul, Republic of Korea; K.E.M. Hospital Research Centre, Pune, Maharashtra, India.
| | - Julia Lynch
- International Vaccine Institute, Seoul, Republic of Korea
| | - Jerome Kim
- International Vaccine Institute, Seoul, Republic of Korea
| | | |
Collapse
|
17
|
Rijal N, Acharya J, Adhikari S, Upadhaya BP, Shakya G, Kansakar P, Rajbhandari P. Changing epidemiology and antimicrobial resistance in Vibrio cholerae: AMR surveillance findings (2006-2016) from Nepal. BMC Infect Dis 2019; 19:801. [PMID: 31510925 PMCID: PMC6739981 DOI: 10.1186/s12879-019-4432-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 08/30/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND In Nepal, cases of Cholera occur annually either as sporadic or as outbreaks claiming the lives of many in rural areas. The present study is a laboratory based surveillance which aims to analyze the changing epidemiology and antimicrobial susceptibility trend of V. cholerae strains isolated or referred to National Public Health Laboratory (NPHL) over a period of 11 years (2006-2016). METHODS Specimens of fresh stool /rectal swab either received at sentinel sites or NPHL were processed following standard microbiological techniques. Suspected colonies on selective medium were identified using routine biochemical tests and confirmed by serotyping. Antimicrobial susceptibility testing was performed following Kirby Baeur disc diffusion method. RESULTS Of the 836 confirmed isolates, 87% (728/836) were V.cholerae O1 Ogawa,12% (103/836) were V.cholerae O1 Inaba and only 6 isolates were V.cholerae O1 Hikojima. In 2006 all the Vibrio isolates were of Inaba serotype, followed by all 3 serotypes during 2007.During 2008-2014 only Ogawa serotype was isolated while few cases of Inaba again surfaced in 2015. Resistance to ampicillin decreased from 93% in 2006 to 18% by 2010 and again raised to 100% by 2016.Cotrimoxazole resistance remained at constant range (77-100%).Nalidixic acid resistance was 100% since 2006.Ciprofloxacin and tetracycline resistance emerged in 2007, reached a peak during 2010-2012 and declined to 0 by 2016.Susceptibility to Furazolidone has re-emerged.63.6% of the isolates were Multi drug resistant. CONCLUSION With changing epidemiology and antibiogram of V.cholerae in Nepal, the present study reflects the importance of continuous monitoring, which could be used by policy makers and health professionals for better management of outbreaks. Decline in tetracycline and ciprofloxacin resistance along with emerging sensitivity to furazolidone shows that these drugs could make an effective comeback in future.
Collapse
Affiliation(s)
- Nisha Rijal
- National Public Health Laboratory, Kathmandu, Nepal
| | | | | | | | - Geeta Shakya
- National Public Health Laboratory, Kathmandu, Nepal
| | | | | |
Collapse
|
18
|
Gangopadhyay A, Chakraborty HJ, Datta A. Employing virtual screening and molecular dynamics simulations for identifying hits against the active cholera toxin. Toxicon 2019; 170:1-9. [PMID: 31494206 DOI: 10.1016/j.toxicon.2019.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/22/2019] [Accepted: 09/01/2019] [Indexed: 12/24/2022]
Abstract
Cholera is a major global threat, affecting millions each year. The ADP ribosyltransferase activity of the active cholera toxin catalyses the massive loss of water and electrolytes during cholera infections. The active toxin heterodimer comprises the A1 subunit from Vibrio cholerae and ARF (ADP Ribosylation Factor) from the human host. Although the active toxin is a potential target for drug discovery against cholera, it has been scarcely targeted to date. The A1-ARF interface contains a potential druggable site for small molecule inhibitors. By combining a sequential docking and scoring strategy with molecular dynamics (MD) simulations, this study identified hits against the protein-protein interface (PPI) of the active cholera toxin from an in-house library of 9,175 ADMET-screened alkaloids. The docking algorithms and scoring functions of Glide SP, Glide XP, and AutoDock were employed for initial library screening. Three alkaloids were initially selected by docking-based virtual screening. The stability of the hit-toxin complexes was validated by MD simulations. Two of the three hits, namely, A6225 (7-formyldehydrothalicsimidine) and A16503 (1,2,7,8-tetrahydroxy dibenz[cd,f]indol-4(5H)-one), formed stable complexes with the toxin. Analyses of the hydrogen bond occupancies revealed that the hits formed stable hydrogen bonds with the toxin PPI. The hits identified herein can serve as reference compounds for drug discovery against cholera in the future.
Collapse
Affiliation(s)
- Aditi Gangopadhyay
- Department of Chemical Technology, University of Calcutta, 92, APC Road, Kolkata 700009, West Bengal, India; DBT Centre for Bioinformatics, Presidency University, Kolkata 700073, West Bengal, India.
| | - Hirak Jyoti Chakraborty
- DBT Centre for Bioinformatics, Presidency University, Kolkata 700073, West Bengal, India; Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Abhijit Datta
- DBT Centre for Bioinformatics, Presidency University, Kolkata 700073, West Bengal, India; Department of Botany, Jhargram Raj College, Jhargram 721507, Paschim Medinipur, India
| |
Collapse
|
19
|
Ramamurthy T, Das B, Chakraborty S, Mukhopadhyay AK, Sack DA. Diagnostic techniques for rapid detection of Vibrio cholerae O1/O139. Vaccine 2019; 38 Suppl 1:A73-A82. [PMID: 31427135 DOI: 10.1016/j.vaccine.2019.07.099] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/11/2019] [Accepted: 07/31/2019] [Indexed: 01/25/2023]
Abstract
Cholera caused by the toxigenic Vibrio cholerae is still a major public health problem in many countries. This disease is mainly due to poor sanitation, hygiene and consumption of unsafe water. Several recent epidemics of cholera showed its increasing intensity, duration and severity of the illness. This indicates an urgent need for effective management and preventive measures in controlling the outbreaks and epidemics. In preventing and spread of epidemic cholera, rapid diagnostic tests (RDTs) are useful in screening suspected stool specimens, water/food samples. Several RDTs developed recently are considered as investigative tools in confirming cholera cases, as the culture techniques are difficult to establish and/or maintain. The usefulness of RDTs will be more at the point-of-care facilities as it helps to make appropriate decisions in the management of outbreaks or epidemiological surveillance by the public health authorities. Apart from RDTs, several other tests are available for the direct detection of either V. cholerae or its cholera toxin. Viable but non-culturable (VBNC) state of V. cholerae poses a great challenge in developing RDTs. The aim of this article is to provide an overview of current knowledge about RDT and other techniques with reference to their status and future potentials in detecting cholera/V. cholerae.
Collapse
Affiliation(s)
| | - Bhabatosh Das
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Subhra Chakraborty
- Department of International Health Program in Global Disease Epidemiology and Control, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Asish K Mukhopadhyay
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - David A Sack
- Department of International Health Program in Global Disease Epidemiology and Control, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
20
|
Ha SM, Chalita M, Yang SJ, Yoon SH, Cho K, Seong WK, Hong S, Kim J, Kwak HS, Chun J. Comparative Genomic Analysis of the 2016 Vibrio cholerae Outbreak in South Korea. Front Public Health 2019; 7:228. [PMID: 31475130 PMCID: PMC6707086 DOI: 10.3389/fpubh.2019.00228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/30/2019] [Indexed: 11/13/2022] Open
Abstract
In August 2016, South Korea experienced a cholera outbreak that caused acute watery diarrhea in three patients. This outbreak was the first time in 15 years that an outbreak was not linked to an overseas source. To identify the cause and to study the epidemiological implications of this outbreak, we sequenced the whole genome of Vibrio cholerae isolates; three from each patient and one from a seawater sample. Herein we present comparative genomic data which reveals that the genome sequences of these four isolates are very similar. Interestingly, these isolates form a monophyletic clade with V. cholerae strains that caused an outbreak in the Philippines in 2011. The V. cholerae strains responsible for the Korean and Philippines outbreaks have almost identical genomes in which two unique genomic islands are shared, and they both lack SXT elements. Furthermore, we confirm that seawater is the likely source of this outbreak, which suggests the necessity for future routine surveillance of South Korea's seashore.
Collapse
Affiliation(s)
- Sung-Min Ha
- School of Biological Sciences, Seoul National University, Seoul, South Korea.,ChunLab Inc., Seoul, South Korea
| | - Mauricio Chalita
- ChunLab Inc., Seoul, South Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | | | | | | | - Won Keun Seong
- Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control, Cheongju-si, South Korea.,Centers for Disease Control and Prevention, Korea Centers for Disease Control, Cheongju-si, South Korea
| | - Sahyun Hong
- Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control, Cheongju-si, South Korea
| | - Junyoung Kim
- Center for Laboratory Control of Infectious Diseases, Korea Centers for Disease Control, Cheongju-si, South Korea
| | - Hyo-Sun Kwak
- Food Microbiology Division, National Institute of Food and Drug Safety Evaluation, Chungcheongbuk-do, South Korea
| | - Jongsik Chun
- School of Biological Sciences, Seoul National University, Seoul, South Korea.,ChunLab Inc., Seoul, South Korea.,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| |
Collapse
|
21
|
Oral immunization with a probiotic cholera vaccine induces broad protective immunity against Vibrio cholerae colonization and disease in mice. PLoS Negl Trop Dis 2019; 13:e0007417. [PMID: 31150386 PMCID: PMC6561597 DOI: 10.1371/journal.pntd.0007417] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/12/2019] [Accepted: 04/28/2019] [Indexed: 01/08/2023] Open
Abstract
Oral cholera vaccines (OCVs) are being increasingly employed, but current killed formulations generally require multiple doses and lack efficacy in young children. We recently developed a new live-attenuated OCV candidate (HaitiV) derived from a Vibrio cholerae strain isolated during the 2010 Haiti cholera epidemic. HaitiV exhibited an unexpected probiotic-like activity in infant rabbits, preventing intestinal colonization and disease by wild-type V. cholerae before the onset of adaptive immunity. However, it remained unknown whether HaitiV would behave similarly to other OCVs to stimulate adaptive immunity against V. cholerae. Here, we orally immunized adult germ-free female mice to test HaitiV’s immunogenicity. HaitiV safely and stably colonized vaccinated mice and induced known adaptive immune correlates of cholera protection within 14 days of administration. Pups born to immunized mice were protected against lethal challenges of both homologous and heterologous V. cholerae strains. Cross-fostering experiments revealed that protection was not dependent on vaccine colonization in or transmission to the pups. These findings demonstrate the protective immunogenicity of HaitiV and support its development as a new tool for limiting cholera. Oral cholera vaccines are increasingly used as public health tools for prevention of cholera and curtailing the spread of outbreaks. However, current killed vaccines provide minimal protection in young children, who are especially susceptible to this diarrheal disease, and require ~7–14 days between vaccination and development of protective immunity. We recently created HaitiV, a live-attenuated oral cholera vaccine candidate derived from a clinical isolate from the Haiti cholera outbreak. Unexpectedly, HaitiV protected against cholera-like illness in infant rabbits within 24 hours of administration, before the onset of adaptive immunity. However, HaitiV’s capacity to stimulate adaptive immune responses against the cholera pathogen were not investigated. Here, we report that HaitiV induces immunological correlates of protection against cholera in adult germ-free mice and leads to protection against disease in their offspring. Protection against disease was transferable through the milk of the immunized mice and was not due to transmission or colonization of HaitiV in this model. Coupling the immunogenicity data presented here with our previous observation that HaitiV can protect from cholera prior to the induction of adaptive immunity, we propose that HaitiV may provide both rapid-onset short-term protection from disease while eliciting stable and long-lasting immunity against cholera.
Collapse
|
22
|
Piper betel Compounds Piperidine, Eugenyl Acetate, and Chlorogenic Acid Are Broad-Spectrum Anti- Vibrio Compounds that Are Also Effective on MDR Strains of the Pathogen. Pathogens 2019; 8:pathogens8020064. [PMID: 31086061 PMCID: PMC6631886 DOI: 10.3390/pathogens8020064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 12/25/2022] Open
Abstract
The natural population of the aquatic environment supports a diverse aquatic biota and a robust seafood industry. However, this environment also provides an appropriate niche for the growth of pathogenic bacteria that cause problems for human health. For example, species of the genus Vibrio inhabit marine and estuarine environments. This genus includes species that are pathogenic to aquaculture, invertebrates, and humans. In humans, they can cause prominent diseases like gastroenteritis, wound infections, and septicemia. The increased number of multidrug resistant (MDR) Vibrio strains has drawn the attention of the scientific community to develop new broad-spectrum antibiotics. Hence, in this paper we report the bactericidal effects of compounds derived from Piper betel plants: piperidine, chlorogenic acid, and eugenyl acetate, against various strains of Vibrio species. The different MIC90 values were approximately in a range of 2–6 mg/mL, 5–16 mg/mL, 5–20 mg/mL, and 30–80 mg/mL, for piperidine, chlorogenic acid, and eugenyl acetate, respectively. Piperidine showed the best anti-Vibrio effect against the five Vibrio species tested. Interestingly, combinations of sub-inhibitory concentrations of piperidine, chlorogenic acid, and eugenyl acetate showed inhibitory effects in the Vibrio strains. Furthermore, these compounds showed synergism or partial synergism effects against MDR strains of the Vibrio species when they were incubated with antibiotics (ampicillin and chloramphenicol).
Collapse
|
23
|
Ghosh P, Sinha R, Samanta P, Saha DR, Koley H, Dutta S, Okamoto K, Ghosh A, Ramamurthy T, Mukhopadhyay AK. Haitian Variant Vibrio cholerae O1 Strains Manifest Higher Virulence in Animal Models. Front Microbiol 2019; 10:111. [PMID: 30804907 PMCID: PMC6370728 DOI: 10.3389/fmicb.2019.00111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 01/18/2019] [Indexed: 11/13/2022] Open
Abstract
Vibrio cholerae causes fatal diarrheal disease cholera in humans due to consumption of contaminated water and food. To instigate the disease, the bacterium must evade the host intestinal innate immune system; penetrate the mucus layer of the small intestine, adhere and multiply on the surface of microvilli and produce toxin(s) through the action of virulence associated genes. V. cholerae O1 that has caused a major cholera outbreak in Haiti contained several unique genetic signatures. These novel traits are used to differentiate them from the canonical El Tor strains. Several studies reported the spread of these Haitian variant strains in different parts of the world including Asia and Africa, but there is a paucity of information on the clinical consequence of these genetic changes. To understand the impact of these changes, we undertook a study involving mice and rabbit models to evaluate the pathogenesis. The colonization ability of Haitian variant strain in comparison to canonical El Tor strain was found to be significantly more in both suckling mice and rabbit model. Adult mice also displayed the same results. Besides that, infection patterns of Haitian variant strains showed a completely different picture. Increased mucosal damaging, colonization, and inflammatory changes were observed through hematoxylin-eosin staining and transmission electron microscopy. Fluid accumulation ability was also significantly higher in rabbit model. Our study indicated that these virulence features of the Haitian variant strain may have some association with the severe clinical outcome of the cholera patients in different parts of the world.
Collapse
Affiliation(s)
- Priyanka Ghosh
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ritam Sinha
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Prosenjit Samanta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Dhira Rani Saha
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Hemanta Koley
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases in India, Kolkata, India
| | - Amit Ghosh
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - T. Ramamurthy
- Center for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, India
| | - Asish K. Mukhopadhyay
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
24
|
|
25
|
Zaw MT, Emran NA, Ibrahim MY, Suleiman M, Awang Mohd TA, Yusuff AS, Naing KS, Myint T, Jikal M, Salleh MA, Lin Z. Genetic diversity of toxigenic Vibrio cholerae O1 from Sabah, Malaysia 2015. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2018; 52:563-570. [PMID: 29428381 DOI: 10.1016/j.jmii.2018.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/01/2017] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cholera is an important health problem in Sabah, a Malaysian state in northern Borneo; however, Vibrio cholerae in Sabah have never been characterized. Since 2002, serogroup O1 strains having the traits of both classical and El Tor biotype, designated as atypical El Tor biotype, have been increasingly reported as the cause of cholera worldwide. These variants are believed to produce clinically more severe disease like classical strains. PURPOSE The purpose of this study is to investigate the genetic diversity of V.cholerae in Sabah and whether V.cholerae in Sabah belong to atypical El Tor biotype. METHODS ERIC-PCR, a DNA fingerprinting method for bacterial pathogens based on the enterobacterial repetitive intergenic consensus sequence, was used to study the genetic diversity of 65 clinical V.cholerae O1 isolates from 3 districts (Kudat, Beluran, Sandakan) in Sabah and one environmental isolate from coastal sea water in Kudat district. In addition, we studied the biotype-specific genetic traits in these isolates to establish their biotype. RESULTS Different fingerprint patterns were seen in isolates from these three districts but one of the patterns was seen in more than one district. Clinical isolates and environmental isolate have different patterns. In addition, Sabah isolates harbor genetic traits specific to both classical biotype (ctxB-1, rstRCla) and El Tor biotype (rstRET, rstC, tcpAET, rtxC, VC2346). CONCLUSION This study revealed that V.cholerae in Sabah were genetically diverse and were atypical El Tor strains. Fingerprint patterns of these isolates will be useful in tracing the origin of this pathogen in the future.
Collapse
Affiliation(s)
- Myo Thura Zaw
- Pathobiological and Medical Diagnostics Department, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Nor Amalina Emran
- Pathobiological and Medical Diagnostics Department, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Mohd Yusof Ibrahim
- Department of Community Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Maria Suleiman
- Sabah State Health Department, Jalan Tunku Abdul Rahman, Bandaran, 88000 Kota Kinabalu, Sabah, Malaysia
| | - Tajul Ariffin Awang Mohd
- Kota Kinabalu Public Health Laboratory, Bukit Padang, Jalan Kolam, 88850 Kota Kinabalu, Sabah, Malaysia
| | - Aza Sherin Yusuff
- Department of Community Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Khin Saw Naing
- Department of Community Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Than Myint
- Department of Community Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | | | - Mohd Azmi Salleh
- Pathology Department, Hospital Duchess of Kent, KM3.2 Jalan Utara, 9000 Sandakan, Sabah, Malaysia
| | - Zaw Lin
- Pathobiological and Medical Diagnostics Department, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
26
|
Clemens JD, Nair GB, Ahmed T, Qadri F, Holmgren J. Cholera. Lancet 2017; 390:1539-1549. [PMID: 28302312 DOI: 10.1016/s0140-6736(17)30559-7] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/01/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022]
Abstract
Cholera is an acute, watery diarrhoeal disease caused by Vibrio cholerae of the O1 or O139 serogroups. In the past two centuries, cholera has emerged and spread from the Ganges Delta six times and from Indonesia once to cause global pandemics. Rational approaches to the case management of cholera with oral and intravenous rehydration therapy have reduced the case fatality of cholera from more than 50% to much less than 1%. Despite improvements in water quality, sanitation, and hygiene, as well as in the clinical treatment of cholera, the disease is still estimated to cause about 100 000 deaths every year. Most deaths occur in cholera-endemic settings, and virtually all deaths occur in developing countries. Contemporary understanding of immune protection against cholera, which results from local intestinal immunity, has yielded safe and protective orally administered cholera vaccines that are now globally stockpiled for use in the control of both epidemic and endemic cholera.
Collapse
Affiliation(s)
- John D Clemens
- International Centre for Diarrhoeal Disease Research, Bangladesh, Centre for Health and Population Research, Dhaka, Bangladesh; UCLA Fielding School of Public Health, Los Angeles, CA, USA; Korea University School of Medicine, Seoul, Korea.
| | | | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh, Centre for Health and Population Research, Dhaka, Bangladesh
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh, Centre for Health and Population Research, Dhaka, Bangladesh
| | | |
Collapse
|
27
|
Sambe-Ba B, Diallo MH, Seck A, Wane AA, Constantin de Magny G, Boye CSB, Sow AI, Gassama-Sow A. Identification of Atypical El TorV. cholerae O1 Ogawa Hosting SXT Element in Senegal, Africa. Front Microbiol 2017; 8:748. [PMID: 28555129 PMCID: PMC5430043 DOI: 10.3389/fmicb.2017.00748] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 04/11/2017] [Indexed: 11/13/2022] Open
Abstract
Vibrio cholerae O1 is the causative agent of cholera with classical and El Tor, two well-established biotypes. In last 20 years, hybrid strains of classical and El Tor and variant El Tor which carry classical ctxB have emerged worldwide. In 2004-2005, Senegal experienced major cholera epidemic with a number of cases totalling more than 31719 with approximately 458 fatal outcomes (CFR, 1.44%). In this retrospective study, fifty isolates out of a total of 403 V. cholerae biotype El Tor serovar Ogawa isolates from all areas in Senegal during the 2004-2005 cholera outbreak were randomly selected. Isolates were characterized using phenotypic and genotypic methods. The analysis of antibiotic resistance patterns revealed the predominance of the S-Su-TCY-Tsu phenotype (90% of isolates). The molecular characterization of antibiotic resistance revealed the presence of the SXT element, a self-transmissible chromosomally integrating element in all isolates. Most of V. cholerae isolates had an intact virulence cassette (86%) (ctx, zot, ace genes). All isolates tested gave amplification with primers for classical CT, and 10/50 (20%) of isolates carried classical and El Tor ctxB. The study reveals the presence of atypical V. cholerae O1 El Tor during cholera outbreak in Senegal in 2004-2005.
Collapse
Affiliation(s)
- Bissoume Sambe-Ba
- Unité de Bactériologie Expérimentale, Institut Pasteur DakarDakar, Sénégal
| | - Mamadou H Diallo
- Unité de Bactériologie Expérimentale, Institut Pasteur DakarDakar, Sénégal
| | - Abdoulaye Seck
- Laboratoire de Microbiologie Fondamentale et Appliquée, Faculté de Médecine et Pharmacie et d'Odontologie, Université Cheikh Anta DiopDakar, Sénégal.,Laboratoire de Biologie Médicale, Institut Pasteur de DakarDakar, Sénégal
| | - Abdoul A Wane
- Unité de Bactériologie Expérimentale, Institut Pasteur DakarDakar, Sénégal
| | - Guillaume Constantin de Magny
- Unité de Bactériologie Expérimentale, Institut Pasteur DakarDakar, Sénégal.,UMR IRD 224 - CNRS 5290 - Université de Montpellier - MIGEVEC, Centre IRD de MontpellierMontpellier, France
| | - Cheikh S-B Boye
- Laboratoire de Microbiologie Fondamentale et Appliquée, Faculté de Médecine et Pharmacie et d'Odontologie, Université Cheikh Anta DiopDakar, Sénégal
| | - Ahmad I Sow
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire National de FannDakar, Sénégal
| | - Amy Gassama-Sow
- Unité de Bactériologie Expérimentale, Institut Pasteur DakarDakar, Sénégal.,Laboratoire de Microbiologie Fondamentale et Appliquée, Faculté de Médecine et Pharmacie et d'Odontologie, Université Cheikh Anta DiopDakar, Sénégal.,Département de Génie Chimique et Biologie Appliquée, Ecole Supérieure Polytechnique, Université Cheikh Anta DiopDakar, Sénégal
| |
Collapse
|
28
|
Bhotra T, Das MM, Pal BB, Singh DV. Genomic profile of antibiotic resistant, classical ctxB positive Vibrio cholerae O1 biotype El Tor isolated in 2003 and 2005 from Puri, India: A retrospective study. Indian J Med Microbiol 2017; 34:462-470. [PMID: 27934824 DOI: 10.4103/0255-0857.195356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To examine eight strains of Vibrio cholerae O1 isolated in 2003 and 2005 from Puri, India, for antibiotic susceptibility, presence of virulence and regulatory genes, cholera toxin (CT) production, CTX arrangement and genomic profiles. MATERIALS AND METHODS Bacterial strains were tested for antibiotic susceptibility using disc diffusion assay. Polymerase chain reaction determined the presence of antibiotic resistance, virulence and regulatory genes. To determine the type of cholera toxin subunit B (ctxB), nucleotide sequencing was performed. Southern hybridisation determined the number and arrangement of CTXΦ. Ribotyping and pulsed-field gel electrophoresis (PFGE) were used to determine the genomic profile of isolates. RESULTS All the eight strains, except one strain, showed resistant to nalidixic acid, sulphamethoxazole, streptomycin and trimethoprim and possessed the sullI, strB, dfrA1 and int SXT genes. All the strains carried the toxin-co-regulated pilus pathogenicity island, the CTX genetic element, the repeat in toxin and produced CT. Restriction fragment length polymorphism (RFLP) analysis showed that V. cholerae O1 possess a single copy of the CTX element flanked by tandemly arranged RS element. Nucleotide sequencing of the ctxB gene showed the presence of classical ctxB. RFLP analysis of conserved rRNA gene showed two ribotype patterns. PFGE analysis also showed at least three PFGE patterns, irrespective of year of isolations, indicating the genomic relatedness among them. CONCLUSION Overall, these data suggest that classical ctxB-positive V. cholerae O1 El Tor strains that appeared in 2003 continue to cause infection in 2005 in Puri, India, and belong to identical ribotype(s) and/or pulsotype(s). There is need to continuous monitor the emergence of variant of El Tor because it will improve our understanding of the evolution of new clones of variant of V. cholerae.
Collapse
Affiliation(s)
- T Bhotra
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - M M Das
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - B B Pal
- Department of Infectious Disease Biology, Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - D V Singh
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
29
|
Siriphap A, Leekitcharoenphon P, Kaas RS, Theethakaew C, Aarestrup FM, Sutheinkul O, Hendriksen RS. Characterization and Genetic Variation of Vibrio cholerae Isolated from Clinical and Environmental Sources in Thailand. PLoS One 2017; 12:e0169324. [PMID: 28103259 PMCID: PMC5245877 DOI: 10.1371/journal.pone.0169324] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/15/2016] [Indexed: 11/29/2022] Open
Abstract
Cholera is still an important public health problem in several countries, including Thailand. In this study, a collection of clinical and environmental V. cholerae serogroup O1, O139, and non-O1/non-O139 strains originating from Thailand (1983 to 2013) was characterized to determine phenotypic and genotypic traits and to investigate the genetic relatedness. Using a combination of conventional methods and whole genome sequencing (WGS), 78 V. cholerae strains were identified. WGS was used to determine the serogroup, biotype, virulence, mobile genetic elements, and antimicrobial resistance genes using online bioinformatics tools. In addition, phenotypic antimicrobial resistance was determined by the minimal inhibitory concentration (MIC) test. The 78 V. cholerae strains belonged to the following serogroups O1: (n = 44), O139 (n = 16) and non-O1/non-O139 (n = 18). Interestingly, we found that the typical El Tor O1 strains were the major cause of clinical cholera during 1983–2000 with two Classical O1 strains detected in 2000. In 2004–2010, the El Tor variant strains revealed genotypes of the Classical biotype possessing either only ctxB or both ctxB and rstR while they harbored tcpA of the El Tor biotype. Thirty O1 and eleven O139 clinical strains carried CTXϕ (Cholera toxin) and tcpA as well four different pathogenic islands (PAIs). Beside non-O1/non-O139, the O1 environmental strains also presented chxA and Type Three Secretion System (TTSS). The in silico MultiLocus Sequence Typing (MLST) discriminated the O1 and O139 clinical strains from other serogroups and environmental strains. ST69 was dominant in the clinical strains belonging to the 7th pandemic clone. Non-O1/non-O139 and environmental strains showed various novel STs indicating genetic variation. Multidrug-resistant (MDR) strains were observed and conferred resistance to ampicillin, azithromycin, nalidixic acid, sulfamethoxazole, tetracycline, and trimethoprim and harboured variants of the SXT elements. For the first time since 1986, the presence of V. cholerae O1 Classical was reported causing cholera outbreaks in Thailand. In addition, we found that V. cholerae O1 El Tor variant and O139 were pre-dominating the pathogenic strains in Thailand. Using WGS and bioinformatic tools to analyze both historical and contemporary V. cholerae circulating in Thailand provided a more detailed understanding of the V. cholerae epidemiology, which ultimately could be applied for control measures and management of cholera in Thailand.
Collapse
Affiliation(s)
- Achiraya Siriphap
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Pimlapas Leekitcharoenphon
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Rolf S Kaas
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Chonchanok Theethakaew
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | - Frank M Aarestrup
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Orasa Sutheinkul
- Faculty of Public Health, Thammasat University, Rangsit Center, Pathumthani, Thailand
| | - Rene S Hendriksen
- National Food Institute, Technical University of Denmark, Research Group for Genomic Epidemiology, WHO Collaborating Center for Antimicrobial Resistance in Foodborne Pathogens and Genomics and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| |
Collapse
|
30
|
Characterization of Vibrio cholerae isolates from 1976 to 2013 in Shandong Province, China. Braz J Microbiol 2016; 48:173-179. [PMID: 27780663 PMCID: PMC5221356 DOI: 10.1016/j.bjm.2016.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 06/09/2016] [Indexed: 11/22/2022] Open
Abstract
Cholera continues to be a serious public health issue in developing countries. We analyzed the epidemiological data of cholera from 1976 to 2013 in Shandong Province, an eastern coastal area of China. A total of 250 Vibrio cholerae isolates were selected for PCR analysis of virulence genes and pulsed-field gel electrophoresis (PFGE). The analysis of the virulence genes showed that the positive rates for tcpA and tcpI were the highest among strains from the southwest region, which had the highest incidence rate of cholera. Low positive rates for tcpA, tcpI and ctxAB among isolates from after 2000 may be an influencing factor contributing to the contemporary decline in cholera incidence rates. Spatiotemporal serotype shifts (Ogawa, Inaba, Ogawa, Inaba and O139) generally correlated with the variations in the PFGE patterns (PIV, PIIIc, PIa, PIIIb, PIIIa, PIb, and PII). O1 strains from different years or regions also had similar PFGE patterns, while O139 strains exclusively formed one cluster and differed from all other O1 strains. These data indicate that V. cholerae isolates in Shandong Province have continually undergone spatiotemporal changes. The serotype switching between Ogawa and Inaba originated from indigenous strains, while the emergence of serogroup O139 appeared to be unrelated to endemic V. cholerae O1 strains.
Collapse
|
31
|
Ghosh R, Sharma NC, Halder K, Bhadra RK, Chowdhury G, Pazhani GP, Shinoda S, Mukhopadhyay AK, Nair GB, Ramamurthy T. Phenotypic and Genetic Heterogeneity in Vibrio cholerae O139 Isolated from Cholera Cases in Delhi, India during 2001-2006. Front Microbiol 2016; 7:1250. [PMID: 27555841 PMCID: PMC4977278 DOI: 10.3389/fmicb.2016.01250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 07/27/2016] [Indexed: 11/29/2022] Open
Abstract
Incidence of epidemic Vibrio cholerae serogroup O139 has declined in cholera endemic countries. However, sporadic cholera caused by V. cholerae O139 with notable genetic changes is still reported from many regions. In the present study, 42 V. cholerae O139 strains isolated from 2001 to 2006 in Delhi, India, were retrospectively analyzed to understand their phenotype and molecular characteristics. The majority of isolates were resistant to ampicillin, furazolidone and nalidixic acid. Though the integrative conjugative element was detected in all the O139 isolates, the 2004–2006 isolates remained susceptible to co-trimoxazole, chloramphenicol, and streptomycin. Cholera toxin genotype 1 was present in the majority of the O139 isolates while few had type 3 or a novel type 4. In the cholera toxin encoding gene (ctx) restriction fragment length polymorphism, the majority of the isolates harbored three copies of CTX element, of which one was truncated. In this study, the ctx was detected for the first time in the small chromosome of V. cholerae O139 and one isolate harbored 5 copies of CTX element, of which 3 were truncated. The ribotype BII pattern was found in most of the O139 isolates. Three V. cholerae O139 isolated in 2001 had a new ribotype BVIII. Pulsed-field gel electrophoresis analysis revealed clonal variation in 2001 isolates compared to the 2004–2006 isolates. Molecular changes in V. cholerae O139 have to be closely monitored as this information may help in understanding the changing genetic features of this pathogen in relation to the epidemiology of cholera.
Collapse
Affiliation(s)
- Raikamal Ghosh
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases Kolkata, India
| | | | - Kalpataru Halder
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology Kolkata, India
| | - Rupak K Bhadra
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology Kolkata, India
| | - Goutam Chowdhury
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases Kolkata, India
| | - Gururaja P Pazhani
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases Kolkata, India
| | - Sumio Shinoda
- Collaborative Research Center of Okayama University for Infectious Diseases in India, National Institute of Cholera and Enteric Diseases Kolkata, India
| | - Asish K Mukhopadhyay
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases Kolkata, India
| | - G Balakrish Nair
- Center for Human Microbial Ecology, Translational Health Science and Technology Institute Faridabad, India
| | - Thadavarayan Ramamurthy
- Center for Human Microbial Ecology, Translational Health Science and Technology Institute Faridabad, India
| |
Collapse
|
32
|
Nguyen DT, Ngo TC, Le TH, Nguyen HT, Morita M, Arakawa E, Ohnishi M, Nguyen BM, Izumiya H. Molecular epidemiology of Vibrio cholerae O1 in northern Vietnam (2007-2009), using multilocus variable-number tandem repeat analysis. J Med Microbiol 2016; 65:1007-1012. [PMID: 27452304 DOI: 10.1099/jmm.0.000317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cholera is an infectious disease of major concern in Vietnam and other Asian countries. In 2009, there was a large outbreak of cholera in northern Vietnam. To investigate relationships among isolates of the causative pathogen Vibrio cholerae in this region since 2007, we carried out a multilocus variable-number tandem repeat analysis (MLVA) of 170 isolates collected between 2007 and 2009. A total of 24 MLVA types were identified using seven loci. Five clones (1-5) were identified using five loci of the large V. cholerae chromosome; clones 1 and 2 were major, and the others were minor. Clone 1 isolates were responsible for the 2009 outbreak. A shift in the predominant clone occurred between 2007 and 2009, with clone 1 likely derived from clone 2. Moreover, the former was less diverse than the latter, suggesting a single source of cholera dissemination. Epidemiological data indicated a wavelet prior to the large outbreak, suggesting that drinking water source or food chain became contaminated during dissemination. Our results reveal the utility of MLVA for analysis of V. cholerae isolates within a relatively short period and broaden our understanding of its transmission and response to cholera.
Collapse
Affiliation(s)
- Dong Tu Nguyen
- Department of Bacteriology, National Institute for Hygiene and Epidemiology, Hanoi, Vietnam
| | - Tuan Cuong Ngo
- Department of Bacteriology, National Institute for Hygiene and Epidemiology, Hanoi, Vietnam
| | - Thanh Huong Le
- Department of Bacteriology, National Institute for Hygiene and Epidemiology, Hanoi, Vietnam
| | - Hoai Thu Nguyen
- Department of Bacteriology, National Institute for Hygiene and Epidemiology, Hanoi, Vietnam
| | - Masatomo Morita
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Eiji Arakawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Binh Minh Nguyen
- Department of Bacteriology, National Institute for Hygiene and Epidemiology, Hanoi, Vietnam
| | - Hidemasa Izumiya
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| |
Collapse
|
33
|
Abstract
An outbreak of cholera occurred in 1991 in Mexico, where it had not been reported for more than a century and is now endemic. Vibrio cholerae O1 prototype El Tor and classical strains coexist with altered El Tor strains (1991 to 1997). Nontoxigenic (CTX−) V. cholerae El Tor dominated toxigenic (CTX+) strains (2001 to 2003), but V. cholerae CTX+ variant El Tor was isolated during 2004 to 2008, outcompeting CTX−V. cholerae. Genomes of six Mexican V. cholerae O1 strains isolated during 1991 to 2008 were sequenced and compared with both contemporary and archived strains of V. cholerae. Three were CTX+ El Tor, two were CTX− El Tor, and the remaining strain was a CTX+ classical isolate. Whole-genome sequence analysis showed the six isolates belonged to five distinct phylogenetic clades. One CTX− isolate is ancestral to the 6th and 7th pandemic CTX+V. cholerae isolates. The other CTX− isolate joined with CTX− non-O1/O139 isolates from Haiti and seroconverted O1 isolates from Brazil and Amazonia. One CTX+ isolate was phylogenetically placed with the sixth pandemic classical clade and the V. cholerae O395 classical reference strain. Two CTX+ El Tor isolates possessing intact Vibrio seventh pandemic island II (VSP-II) are related to hybrid El Tor isolates from Mozambique and Bangladesh. The third CTX+ El Tor isolate contained West African-South American (WASA) recombination in VSP-II and showed relatedness to isolates from Peru and Brazil. Except for one isolate, all Mexican isolates lack SXT/R391 integrative conjugative elements (ICEs) and sensitivity to selected antibiotics, with one isolate resistant to streptomycin. No isolates were related to contemporary isolates from Asia, Africa, or Haiti, indicating phylogenetic diversity. Sequencing of genomes of V. cholerae is critical if genetic changes occurring over time in the circulating population of an area of endemicity are to be understood. Although cholera outbreaks occurred rarely in Mexico prior to the 1990s, genetically diverse V. cholerae O1 strains were isolated between 1991 and 2008. Despite the lack of strong evidence, the notion that cholera was transmitted from Africa to Latin America has been proposed in the literature. In this study, we have applied whole-genome sequence analysis to a set of 124 V. cholerae strains, including six Mexican isolates, to determine their phylogenetic relationships. Phylogenetic analysis indicated the six V. cholerae O1 isolates belong to five phylogenetic clades: i.e., basal, nontoxigenic, classical, El Tor, and hybrid El Tor. Thus, the results of phylogenetic analysis, coupled with CTXϕ array and antibiotic susceptibility, do not support single-source transmission of cholera to Mexico from African countries. The association of indigenous populations of V. cholerae that has been observed in this study suggests it plays a significant role in the dynamics of cholera in Mexico.
Collapse
|
34
|
Curtis A, Blackburn JK, Smiley SL, Yen M, Camilli A, Alam MT, Ali A, Morris JG. Mapping to Support Fine Scale Epidemiological Cholera Investigations: A Case Study of Spatial Video in Haiti. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:187. [PMID: 26848672 PMCID: PMC4772207 DOI: 10.3390/ijerph13020187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/22/2015] [Accepted: 01/26/2016] [Indexed: 11/21/2022]
Abstract
The cartographic challenge in many developing world environments suffering a high disease burden is a lack of granular environmental covariates suitable for modeling disease outcomes. As a result, epidemiological questions, such as how disease diffuses at intra urban scales are extremely difficult to answer. This paper presents a novel geospatial methodology, spatial video, which can be used to collect and map environmental covariates, while also supporting field epidemiology. An example of epidemic cholera in a coastal town of Haiti is used to illustrate the potential of this new method. Water risks from a 2012 spatial video collection are used to guide a 2014 survey, which concurrently included the collection of water samples, two of which resulted in positive lab results “of interest” (bacteriophage specific for clinical cholera strains) to the current cholera situation. By overlaying sample sites on 2012 water risk maps, a further fifteen proposed water sample locations are suggested. These resulted in a third spatial video survey and an additional “of interest” positive water sample. A potential spatial connection between the “of interest” water samples is suggested. The paper concludes with how spatial video can be an integral part of future fine-scale epidemiological investigations for different pathogens.
Collapse
Affiliation(s)
- Andrew Curtis
- GIS, Health & Hazards Lab, Department of Geography, Kent State University, Kent, OH 44242, USA.
| | - Jason K Blackburn
- Spatial Epidemiology and Ecology Research Laboratory, Department of Geography, University of Florida, Gainesville, FL 32611, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA.
| | - Sarah L Smiley
- GIS, Health & Hazards Lab, Department of Geography, Kent State University at Salem, Salem, OH 44460, USA.
| | - Minmin Yen
- Department of Molecular Biology and Microbiology, Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Meer Taifur Alam
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA.
| | - Afsar Ali
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA.
| | - J Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
35
|
Bhattacharya D, Dey S, Pazhani GP, Ramamurthy T, Parande MV, Kholkute SD, Roy S. Vibrio cholerae O1 El Tor variant and emergence of Haitian ctxB variant in the strains isolated from South India. Med Microbiol Immunol 2015; 205:195-200. [PMID: 26337047 DOI: 10.1007/s00430-015-0433-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/21/2015] [Indexed: 10/23/2022]
Abstract
Cholera still continues to be an important cause of human infection, especially in developing countries that lack access to safe drinking water and proper sanitation. In the present study, we report the emergence of new variant form of V. cholerae O1 El Tor biotype with a novel mutation in ctxB in strains isolated from various outbreaks during 2010-2014 in Belgaum situated in north-west Karnataka, India. A total of 14 occurrences of cholera were documented from Belgaum Division of North Karnataka during the 4-year period from 2010 to 2014. All the V. cholerae O1 isolates were subjected to DAMA PCR to detect the three different allelic subtypes of ctxB and PCR-based detection of virulent genes, and subsequently, 14 strains (one strain from each outbreak or sporadic case) were subjected to ctxB gene sequence and pulsed-field gel electrophoresis (PFGE) analysis. A total of 54 V. cholerae O1 strains were obtained of which 21 strains isolated during 2010-2011 had classical ctxB and remaining 33 strains isolated during 2012-2014 belonged to Haitian variant. In the cluster analysis, the PFGE profiles were divided into clades A with and B. Clade A contained eight strains with 94 % similarity and Haitian type of ctxB. Clade B contained six strains and had Haitian type of ctxB except one with classical ctxB. To the best of our knowledge, this is the first report of the Haitian variant of V. cholerae O1 Ogawa causing outbreaks and sporadic cases of cholera in South India.
Collapse
Affiliation(s)
- Debdutta Bhattacharya
- Regional Medical Research Centre (Indian Council of Medical Research, Department of Health Research, Government of India), Chandrasekharpur, Nandankanan Road, Bhubaneswar, 751023, Odisha, India.,Regional Medical Research Centre (Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Government of India), Nehru Nagar, Belgaum, 590010, India
| | - Shuchismita Dey
- Regional Medical Research Centre (Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Government of India), Nehru Nagar, Belgaum, 590010, India
| | - Gururaja Perumal Pazhani
- Centre for Drug Discovery and Development, Sathabama University, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai, 600 119, Tamil Nadu, India.,Division of Bacteriology, National Institute of Cholera and Enteric Diseases (Indian Council of Medical Research, Department of Health Research, Government of India), P-33, C.I.T. Road, Scheme XM, Beleghata, Kolkata, 700010, West Bengal, India
| | - Thandavarayan Ramamurthy
- Centre for Drug Discovery and Development, Sathabama University, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai, 600 119, Tamil Nadu, India
| | - Mahantesh V Parande
- Belgaum Institute of Medical Sciences (Government Medical College), Belgaum, 590010, India
| | - Sanjiva D Kholkute
- Regional Medical Research Centre (Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Government of India), Nehru Nagar, Belgaum, 590010, India
| | - Subarna Roy
- Regional Medical Research Centre (Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Government of India), Nehru Nagar, Belgaum, 590010, India.
| |
Collapse
|
36
|
Bakhshi B, Mahmoudi-Aznaveh A, Salimi-Khorashad A. Clonal Dissemination of a Single Vibrio cholerae O1 Biotype El Tor Strain in Sistan-Baluchestan Province of Iran During 2013. Curr Microbiol 2015; 71:163-9. [PMID: 25862465 DOI: 10.1007/s00284-015-0806-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/16/2015] [Indexed: 10/23/2022]
Abstract
Although much is known about the mechanisms affecting cholera spread, cholera outbreaks occur annually in Iran. The aim of this study was to characterize and assess the clonal correlation of strains obtained from an outbreak in 2013 in Iran. Thirty-three strains of Vibrio cholerae were isolated from stool sample of patients majority of them belonged to Afghan nationality. PCR and sequencing analysis was performed to characterize virulence and resistance associates genes and cassettes. Clonality of isolates was assessed by Pulsed-field gel electrophoresis (PFGE) method. The ctx, zot, and tcp genes were present in 100 % of isolates. The wbeT gene was absent in all V. cholerae outbreak isolates, integrity of which is essential for Ogawa phenotype. This correlates with Inaba phenotype of all isolates under study. Sequencing of the ctxB (+) strains revealed that all isolates (El Tor strains) possessed the ctxB sequence of classical biotype allele known as El Tor variant strains. No class 1 or 2 integrons were detected among the isolates which indicate that in spite of high rate of resistance, integrons do not play an important role in V. cholerae resistance. All isolates were chloramphenicol sensitive all of which showed resistance to tetracycline and harbored the tetB resistance gene. PFGE analysis showed identical pulsotypes indicative of clonal dissemination of a single V. cholerae strain among the patients under study. Clonal cholera outbreak in boarder cities is alarming due to fear of import and spread of V. cholerae strains from out of the country which may lead to more spreading epidemics.
Collapse
Affiliation(s)
- Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran,
| | | | | |
Collapse
|
37
|
Kar SK, Pal BB, Khuntia HK, Achary KG, Khuntia CP. Emergence and spread of tetracycline resistant Vibrio cholerae O1 El Tor variant during 2010 cholera epidemic in the tribal areas of Odisha, India. Int J Infect Dis 2014; 33:45-9. [PMID: 25543097 DOI: 10.1016/j.ijid.2014.12.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 12/11/2014] [Accepted: 12/11/2014] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES The epidemics of cholera were reported in the Kashipur, K.singhpur, B cuttack blocks of Rayagada district and Mohana block of Gajapati district of Odisha during 2010. The present study was carried out to isolate the bacterial pathogen, its drug sensitivity pattern and to describe the spread of the disease in those areas. METHODS A total of 68 rectal swabs collected from patients with severe diarrhea, admitted to different health centers and diarrhea affected villages were bacteriologically analyzed. Similarly 22 water samples collected from different villages from nala, chua, etc were tested for the presence of V cholerae. RESULTS Out of 68 rectal swabs tested 35 (51.5%) were V cholerae O1 Ogawa and 14(20.6%) were E coli; which might be commensals. All water samples were negative for V cholerae. The V cholerae strains were sensitive to gentamicin, norfloxacin, ciprofloxacin, azithromycin and ofloxacin; but were resistant to ampicillin, tetracycline, nalidixic acid, furazolidone, streptomycin, erythromycin, co-trimoxazole, neomycin and chloramphenicol. All V cholerae strains were 100% resistant to tetracycline and they were El Tor variants harboring ctxB gene of classical strain. CONCLUSIONS The present study indicated the emergence and spread of tetracycline resistant V cholerae O1 El Tor variant in the tribal areas which needs close monitoring.
Collapse
Affiliation(s)
- Santanu Kumar Kar
- Microbiology Division, Regional Medical Research Centre, (ICMR), Bhubaneswar, Odisha, India
| | - Bibhuti Bhusan Pal
- Microbiology Division, Regional Medical Research Centre, (ICMR), Bhubaneswar, Odisha, India.
| | - Hemanta Kumar Khuntia
- Microbiology Division, Regional Medical Research Centre, (ICMR), Bhubaneswar, Odisha, India
| | - K Gopinath Achary
- Microbiology Division, Regional Medical Research Centre, (ICMR), Bhubaneswar, Odisha, India
| | | |
Collapse
|
38
|
High-frequency rugose exopolysaccharide production by Vibrio cholerae strains isolated in Haiti. PLoS One 2014; 9:e112853. [PMID: 25390633 PMCID: PMC4229229 DOI: 10.1371/journal.pone.0112853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/15/2014] [Indexed: 11/19/2022] Open
Abstract
In October, 2010, epidemic cholera was reported for the first time in Haiti in over 100 years. Establishment of cholera endemicity in Haiti will be dependent in large part on the continued presence of toxigenic V. cholerae O1 in aquatic reservoirs. The rugose phenotype of V. cholerae, characterized by exopolysaccharide production that confers resistance to environmental stress, is a potential contributor to environmental persistence. Using a microbiologic medium promoting high-frequency conversion of smooth to rugose (S-R) phenotype, 80 (46.5%) of 172 V. cholerae strains isolated from clinical and environmental sources in Haiti were able to convert to a rugose phenotype. Toxigenic V. cholerae O1 strains isolated at the beginning of the epidemic (2010) were significantly less likely to shift to a rugose phenotype than clinical strains isolated in 2012/2013, or environmental strains. Frequency of rugose conversion was influenced by incubation temperature and time. Appearance of the biofilm produced by a Haitian clinical rugose strain (altered biotype El Tor HC16R) differed from that of a typical El Tor rugose strain (N16961R) by confocal microscopy. On whole-genome SNP analysis, there was no phylogenetic clustering of strains showing an ability to shift to a rugose phenotype. Our data confirm the ability of Haitian clinical (and environmental) strains to shift to a protective rugose phenotype, and suggest that factors such as temperature influence the frequency of transition to this phenotype.
Collapse
|
39
|
Mukhopadhyay AK, Takeda Y, Balakrish Nair G. Cholera outbreaks in the El Tor biotype era and the impact of the new El Tor variants. Curr Top Microbiol Immunol 2014; 379:17-47. [PMID: 24710767 DOI: 10.1007/82_2014_363] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Vibrio cholerae O1, the causative agent of the disease cholera, has two biotypes namely the classical and El Tor. Biotype is a subspecific taxonomic classification of V. cholerae O1. Differentiation of V. cholerae strains into biotype does not alter the clinical management of cholera but is of immense public health and epidemiological importance in identifying the source and spread of infection, particularly when V. cholerae is first isolated in a country or geographic area. From recorded history, till date, the world has experienced seven pandemics of cholera. Among these, the first six pandemics are believed to have been caused by the classical biotype whereas the ongoing seventh pandemic is caused by the El Tor biotype. In recent years, new pathogenic variants of V. cholerae have emerged and spread throughout many Asian and African countries with corresponding cryptic changes in the epidemiology of cholera. In this chapter, we describe the outbreaks during the seventh pandemic El Tor biotype era spanning more than five decades along with the recent advances in our understanding of the development, evolution, spread, and impact of the new variants of El Tor strains.
Collapse
Affiliation(s)
- Asish K Mukhopadhyay
- National Institute of Cholera and Enteric Diseases, P 33, CIT Road, Scheme XM, Beliaghata, Kolkata, 700010, India,
| | | | | |
Collapse
|
40
|
Dutta S, Pazhani GP, Nataro JP, Ramamurthy T. Heterogenic virulence in a diarrheagenic Escherichia coli: evidence for an EPEC expressing heat-labile toxin of ETEC. Int J Med Microbiol 2014; 305:47-54. [PMID: 25465159 DOI: 10.1016/j.ijmm.2014.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 10/12/2014] [Accepted: 10/20/2014] [Indexed: 01/29/2023] Open
Abstract
We have encountered an Escherichia coli strain isolated from a child with acute diarrhea. This strain harbored eae and elt genes encoding for E. coli attaching and effacing property and heat-labile enterotoxin of EPEC and ETEC, respectively. Due to the presence of these distinct virulence factors, we named this uncommon strain as EPEC/ETEC hybrid. The elt gene was identified in a conjugally transferable plasmid of the EPEC/ETEC hybrid. In addition, several virulence genes in the locus of enterocyte effacement have been identified, which confirms that the EPEC/ETEC has an EPEC genetic background. The hybrid nature of this strain was further confirmed by using tissue culture assays. In the multi locus sequence typing (MLST) analysis, the EPEC/ETEC belonged to the sequence type ST328 and was belonging to ST278 Cplx. Sequence analysis of the plasmid DNA revealed presence of six large contigs with several insertion sequences. A phage integrase gene and the prophages of gp48 and gp49 have been found in the upstream of eltAB. In the downstream of elt, an urovirulence loci adhesion encoding (pap) cluster containing papG, and papC were also identified. Similar to other reports, we have identified a heterogenic virulence in a diarrheagenic E. coli but with different combination of genes.
Collapse
Affiliation(s)
- Sanjucta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Gururaja P Pazhani
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - James P Nataro
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
| | | |
Collapse
|
41
|
Dixit SM, Johura FT, Manandhar S, Sadique A, Rajbhandari RM, Mannan SB, Rashid MU, Islam S, Karmacharya D, Watanabe H, Sack RB, Cravioto A, Alam M. Cholera outbreaks (2012) in three districts of Nepal reveal clonal transmission of multi-drug resistant Vibrio cholerae O1. BMC Infect Dis 2014; 14:392. [PMID: 25022982 PMCID: PMC4223374 DOI: 10.1186/1471-2334-14-392] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 07/11/2014] [Indexed: 11/23/2022] Open
Abstract
Background Although endemic cholera causes significant morbidity and mortality each year in Nepal, lack of information about the causal bacterium often hinders cholera intervention and prevention. In 2012, diarrheal outbreaks affected three districts of Nepal with confirmed cases of mortality. This study was designed to understand the drug response patterns, source, and transmission of Vibrio cholerae associated with 2012 cholera outbreaks in Nepal. Methods V. cholerae (n = 28) isolated from 2012 diarrhea outbreaks {n = 22; Kathmandu (n = 12), Doti (n = 9), Bajhang (n = 1)}, and surface water (n = 6; Kathmandu) were tested for antimicrobial response. Virulence properties and DNA fingerprinting of the strains were determined by multi-locus genetic screening employing polymerase chain reaction, DNA sequencing, and pulsed-field gel electrophoresis (PFGE). Results All V. cholerae strains isolated from patients and surface water were confirmed to be toxigenic, belonging to serogroup O1, Ogawa serotype, biotype El Tor, and possessed classical biotype cholera toxin (CTX). Double-mismatch amplification mutation assay (DMAMA)-PCR revealed the V. cholerae strains to possess the B-7 allele of ctx subunit B. DNA sequencing of tcpA revealed a point mutation at amino acid position 64 (N → S) while the ctxAB promoter revealed four copies of the tandem heptamer repeat sequence 5'-TTTTGAT-3'. V. cholerae possessed all the ORFs of the Vibrio seventh pandemic island (VSP)-I but lacked the ORFs 498–511 of VSP-II. All strains were multidrug resistant with resistance to trimethoprim-sulfamethoxazole (SXT), nalidixic acid (NA), and streptomycin (S); all carried the SXT genetic element. DNA sequencing and deduced amino acid sequence of gyrA and parC of the NAR strains (n = 4) revealed point mutations at amino acid positions 83 (S → I), and 85 (S → L), respectively. Similar PFGE (NotI) pattern revealed the Nepalese V. cholerae to be clonal, and related closely with V. cholerae associated with cholera in Bangladesh and Haiti. Conclusions In 2012, diarrhea outbreaks in three districts of Nepal were due to transmission of multidrug resistant V. cholerae El Tor possessing cholera toxin (ctx) B-7 allele, which is clonal and related closely with V. cholerae associated with cholera in Bangladesh and Haiti.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Munirul Alam
- International Centre for Diarrheal Disease Research, GPO Box 128, 1000 Dhaka, Bangladesh.
| |
Collapse
|
42
|
Occurrence in Mexico, 1998-2008, of Vibrio cholerae CTX+ El Tor carrying an additional truncated CTX prophage. Proc Natl Acad Sci U S A 2014; 111:9917-22. [PMID: 24958870 DOI: 10.1073/pnas.1323408111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The seventh cholera pandemic caused by Vibrio cholerae O1 El Tor (ET) has been superseded in Asia and Africa by altered ET possessing the cholera toxin (CTX) gene of classical (CL) biotype. The CL biotype of V. cholerae was isolated, along with prototypic and altered ET, during the 1991 cholera epidemic in Mexico and subsequently remained endemic until 1997. Microbiological, molecular, and phylogenetic analyses of clinical and environmental V. cholerae isolated in Mexico between 1998 and 2008 revealed important genetic events favoring predominance of ET over CL and altered ET. V. cholerae altered ET was predominant after 1991 but not after 2000. V. cholerae strains isolated between 2001 and 2003 and a majority isolated in 2004 lacked CTX prophage (Φ) genes encoding CTX subunits A and B and repeat sequence transcriptional regulators of ET and CL biotypes: i.e., CTXΦ(-). Most CTXΦ(-) V. cholerae isolated in Mexico between 2001 and 2003 also lacked toxin coregulated pili tcpA whereas some carried either tcpA(ET) or a variant tcpA with noticeable sequence dissimilarity from tcpA(CL). The tcpA variants were not detected in 2005 after CTXΦ(+) ET became dominant. All clinical and environmental V. cholerae O1 strains isolated during 2005-2008 in Mexico were CTXΦ(+) ET, carrying an additional truncated CTXΦ instead of RS1 satellite phage. Despite V. cholerae CTXΦ(-) ET exhibiting heterogeneity in pulsed-field gel electrophoresis patterns, CTXΦ(+) ET isolated during 2004-2008 displayed homogeneity and clonal relationship with V. cholerae ET N16961 and V. cholerae ET isolated in Peru.
Collapse
|
43
|
Okada K, Na-Ubol M, Natakuathung W, Roobthaisong A, Maruyama F, Nakagawa I, Chantaroj S, Hamada S. Comparative genomic characterization of a Thailand-Myanmar isolate, MS6, of Vibrio cholerae O1 El Tor, which is phylogenetically related to a "US Gulf Coast" clone. PLoS One 2014; 9:e98120. [PMID: 24887199 PMCID: PMC4045137 DOI: 10.1371/journal.pone.0098120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/29/2014] [Indexed: 12/17/2022] Open
Abstract
Background The cholera outbreaks in Thailand during 2007–2010 were exclusively caused by the Vibrio cholerae O1 El Tor variant carrying the cholera toxin gene of the classical biotype. We previously isolated a V. cholerae O1 El Tor strain from a patient with diarrhea and designated it MS6. Multilocus sequence-typing analysis revealed that MS6 is most closely related to the U. S. Gulf Coast clone with the exception of two novel housekeeping genes. Methodology/Principal Findings The nucleotide sequence of the genome of MS6 was determined and compared with those of 26 V. cholerae strains isolated from clinical and environmental sources worldwide. We show here that the MS6 isolate is distantly related to the ongoing seventh pandemic V. cholerae O1 El Tor strains. These strains differ with respect to polymorphisms in housekeeping genes, seventh pandemic group-specific markers, CTX phages, two genes encoding predicted transmembrane proteins, the presence of metY (MS6_A0927) or hchA/luxR in a highly conserved region of the V. cholerae O1 serogroup, and a superintegron (SI). We found that V. cholerae species carry either hchA/luxR or metY and that the V. cholerae O1 clade commonly possesses hchA/luxR, except for MS6 and U. S. Gulf Coast strains. These findings illuminate the evolutionary relationships among V. cholerae O1 strains. Moreover, the MS6 SI carries a quinolone-resistance gene cassette, which was closely related with those present in plasmid-borne integrons of other gram-negative bacteria. Conclusions/Significance Phylogenetic analysis reveals that MS6 is most closely related to a U. S. Gulf Coast clone, indicating their divergence before that of the El Tor biotype strains from a common V. cholerae O1 ancestor. We propose that MS6 serves as an environmental aquatic reservoir of V. cholerae O1.
Collapse
Affiliation(s)
- Kazuhisa Okada
- Thailand–Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail:
| | - Mathukorn Na-Ubol
- Thailand–Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand
| | - Wirongrong Natakuathung
- Thailand–Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand
| | - Amonrattana Roobthaisong
- Thailand–Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand
| | - Fumito Maruyama
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ichiro Nakagawa
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Siriporn Chantaroj
- National Institute of Health, Department of Medical Sciences (DMSc), Ministry of Public Health, Nonthaburi, Thailand
| | - Shigeyuki Hamada
- Thailand–Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Nonthaburi, Thailand
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
44
|
Haley BJ, Choi SY, Grim CJ, Onifade TJ, Cinar HN, Tall BD, Taviani E, Hasan NA, Abdullah AH, Carter L, Sahu SN, Kothary MH, Chen A, Baker R, Hutchinson R, Blackmore C, Cebula TA, Huq A, Colwell RR. Genomic and phenotypic characterization of Vibrio cholerae non-O1 isolates from a US Gulf Coast cholera outbreak. PLoS One 2014; 9:e86264. [PMID: 24699521 PMCID: PMC3974666 DOI: 10.1371/journal.pone.0086264] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/11/2013] [Indexed: 01/23/2023] Open
Abstract
Between November 2010, and May 2011, eleven cases of cholera, unrelated to a concurrent outbreak on the island of Hispaniola, were recorded, and the causative agent, Vibrio cholerae serogroup O75, was traced to oysters harvested from Apalachicola Bay, Florida. From the 11 diagnosed cases, eight isolates of V. cholerae were isolated and their genomes were sequenced. Genomic analysis demonstrated the presence of a suite of mobile elements previously shown to be involved in the disease process of cholera (ctxAB, VPI-1 and -2, and a VSP-II like variant) and a phylogenomic analysis showed the isolates to be sister taxa to toxigenic V. cholerae V51 serogroup O141, a clinical strain isolated 23 years earlier. Toxigenic V. cholerae O75 has been repeatedly isolated from clinical cases in the southeastern United States and toxigenic V. cholerae O141 isolates have been isolated globally from clinical cases over several decades. Comparative genomics, phenotypic analyses, and a Caenorhabditis elegans model of infection for the isolates were conducted. This analysis coupled with isolation data of V. cholerae O75 and O141 suggests these strains may represent an underappreciated clade of cholera-causing strains responsible for significant disease burden globally.
Collapse
Affiliation(s)
- Bradd J. Haley
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | | | - Christopher J. Grim
- Food and Drug Administration, USFDA/CFSAN/DVA, Laurel, Maryland, United States of America
| | - Tiffiani J. Onifade
- Florida Department of Health Bureau of Environmental Public Health Medicine, Tallahassee, Florida, United States of America
| | - Hediye N. Cinar
- Food and Drug Administration, USFDA/CFSAN/DVA, Laurel, Maryland, United States of America
| | - Ben D. Tall
- Food and Drug Administration, USFDA/CFSAN/DVA, Laurel, Maryland, United States of America
| | - Elisa Taviani
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Nur A. Hasan
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- CosmosID, College Park, Maryland, United States of America
| | | | - Laurenda Carter
- Food and Drug Administration, USFDA/CFSAN/DVA, Laurel, Maryland, United States of America
| | - Surasri N. Sahu
- Food and Drug Administration, USFDA/CFSAN/DVA, Laurel, Maryland, United States of America
| | - Mahendra H. Kothary
- Food and Drug Administration, USFDA/CFSAN/DVA, Laurel, Maryland, United States of America
| | - Arlene Chen
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Ron Baker
- Florida Department of Health Bureau of Public Health Laboratories, Jacksonville, Florida, United States of America
| | - Richard Hutchinson
- Florida Department of Health Bureau of Environmental Public Health Medicine, Tallahassee, Florida, United States of America
| | - Carina Blackmore
- Florida Department of Health Bureau of Environmental Public Health Medicine, Tallahassee, Florida, United States of America
| | - Thomas A. Cebula
- CosmosID, College Park, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, United States of America
| | - Rita R. Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- CosmosID, College Park, Maryland, United States of America
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, United States of America
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
45
|
Banerjee R, Das B, Balakrish Nair G, Basak S. Dynamics in genome evolution of Vibrio cholerae. INFECTION GENETICS AND EVOLUTION 2014; 23:32-41. [PMID: 24462909 DOI: 10.1016/j.meegid.2014.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 01/09/2014] [Accepted: 01/11/2014] [Indexed: 12/31/2022]
Abstract
Vibrio cholerae, the etiological agent of the acute secretary diarrheal disease cholera, is still a major public health concern in developing countries. In former centuries cholera was a permanent threat even to the highly developed populations of Europe, North America, and the northern part of Asia. Extensive studies on the cholera bug over more than a century have made significant advances in our understanding of the disease and ways of treating patients. V. cholerae has more than 200 serogroups, but only few serogroups have caused disease on a worldwide scale. Until the present, the evolutionary relationship of these pandemic causing serogroups was not clear. In the last decades, we have witnessed a shift involving genetically and phenotypically varied pandemic clones of V. cholerae in Asia and Africa. The exponential knowledge on the genome of several representatives V. cholerae strains has been used to identify and analyze the key determinants for rapid evolution of cholera pathogen. Recent comparative genomic studies have identified the presence of various integrative mobile genetic elements (IMGEs) in V. cholerae genome, which can be used as a marker of differentiation of all seventh pandemic clones with very similar core genome. This review attempts to bring together some of the important researches in recent times that have contributed towards understanding the genetics, epidemiology and evolution of toxigenic V. cholerae strains.
Collapse
Affiliation(s)
- Rachana Banerjee
- Department of Bio-Physics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Bhabatosh Das
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, 496, Phase III, Udyog Vihar, Gurgaon 122016, Haryana, India
| | - G Balakrish Nair
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, 496, Phase III, Udyog Vihar, Gurgaon 122016, Haryana, India
| | - Surajit Basak
- Department of Molecular Biology & Bioinformatics, Tripura University, Suryamaninagar 799 022, Tripura, India; Bioinformatics Centre, Tripura University, Suryamaninagar 799 022, Tripura, India.
| |
Collapse
|
46
|
Zebrafish as a natural host model for Vibrio cholerae colonization and transmission. Appl Environ Microbiol 2013; 80:1710-7. [PMID: 24375135 DOI: 10.1128/aem.03580-13] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The human diarrheal disease cholera is caused by the aquatic bacterium Vibrio cholerae. V. cholerae in the environment is associated with several varieties of aquatic life, including insect egg masses, shellfish, and vertebrate fish. Here we describe a novel animal model for V. cholerae, the zebrafish. Pandemic V. cholerae strains specifically colonize the zebrafish intestinal tract after exposure in water with no manipulation of the animal required. Colonization occurs in close contact with the intestinal epithelium and mimics colonization observed in mammals. Zebrafish that are colonized by V. cholerae transmit the bacteria to naive fish, which then become colonized. Striking differences in colonization between V. cholerae classical and El Tor biotypes were apparent. The zebrafish natural habitat in Asia heavily overlaps areas where cholera is endemic, suggesting that zebrafish and V. cholerae evolved in close contact with each other. Thus, the zebrafish provides a natural host model for the study of V. cholerae colonization, transmission, and environmental survival.
Collapse
|
47
|
Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E, Thompson FL. Microbial genomic taxonomy. BMC Genomics 2013; 14:913. [PMID: 24365132 PMCID: PMC3879651 DOI: 10.1186/1471-2164-14-913] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/18/2013] [Indexed: 01/23/2023] Open
Abstract
A need for a genomic species definition is emerging from several independent studies worldwide. In this commentary paper, we discuss recent studies on the genomic taxonomy of diverse microbial groups and a unified species definition based on genomics. Accordingly, strains from the same microbial species share >95% Average Amino Acid Identity (AAI) and Average Nucleotide Identity (ANI), >95% identity based on multiple alignment genes, <10 in Karlin genomic signature, and > 70% in silico Genome-to-Genome Hybridization similarity (GGDH). Species of the same genus will form monophyletic groups on the basis of 16S rRNA gene sequences, Multilocus Sequence Analysis (MLSA) and supertree analysis. In addition to the established requirements for species descriptions, we propose that new taxa descriptions should also include at least a draft genome sequence of the type strain in order to obtain a clear outlook on the genomic landscape of the novel microbe. The application of the new genomic species definition put forward here will allow researchers to use genome sequences to define simultaneously coherent phenotypic and genomic groups.
Collapse
Affiliation(s)
- Cristiane C Thompson
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | | | | | | | | | | |
Collapse
|
48
|
Rebaudet S, Sudre B, Faucher B, Piarroux R. Environmental determinants of cholera outbreaks in inland Africa: a systematic review of main transmission foci and propagation routes. J Infect Dis 2013; 208 Suppl 1:S46-54. [PMID: 24101645 DOI: 10.1093/infdis/jit195] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cholera is generally regarded as the prototypical waterborne and environmental disease. In Africa, available studies are scarce, and the relevance of this disease paradigm is questionable. Cholera outbreaks have been repeatedly reported far from the coasts: from 2009 through 2011, three-quarters of all cholera cases in Africa occurred in inland regions. Such outbreaks are either influenced by rainfall and subsequent floods or by drought- and water-induced stress. Their concurrence with global climatic events has also been observed. In lakes and rivers, aquatic reservoirs of Vibrio cholerae have been evocated. However, the role of these reservoirs in cholera epidemiology has not been established. Starting from inland cholera-endemic areas, epidemics burst and spread to various environments, including crowded slums and refugee camps. Human displacements constitute a major determinant of this spread. Further studies are urgently needed to better understand these complex dynamics, improve water and sanitation efforts, and eliminate cholera from Africa.
Collapse
|
49
|
PAL BB, KHUNTIA HK, SAMAL SK, KERKETTA AS, KAR SK, KARMAKAR M, PATTNAIK B. Large outbreak of cholera caused by El Tor variant Vibrio cholerae O1 in the eastern coast of Odisha, India during 2009. Epidemiol Infect 2013; 141:2560-7. [PMID: 23461927 PMCID: PMC9151365 DOI: 10.1017/s0950268813000368] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 08/24/2012] [Accepted: 01/30/2013] [Indexed: 11/07/2022] Open
Abstract
A large outbreak of cholera reported during April-July 2009 in the Kendrapada district of Odisha, India was investigated. Forty-one rectal swabs and 41 water samples, collected from diarrhoeal patients and from different villages were bacteriologically analysed for the isolation of bacterial enteriopathogens, antibiogram profile and detection of various toxic genes. The bacteriological analysis of rectal swabs and environmental water samples revealed the presence of V. cholerae O1 Ogawa biotype El Tor. The V. cholerae strains were resistant to ciprofloxacin, co-trimoxazole, chloramphenicol, streptomycin, ampicillin, furazolidone and nalidixic acid. The multiplex polymerase chain reaction (PCR) assay on V. cholerae strains revealed the presence of ctxA and tcpA genes. The mismatch amplification of mutation assay (MAMA) PCR on clinical and environmental isolates of V. cholerae revealed that the strains were El Tor biotype, which harboured the ctxB gene of the classical strain. The random amplified polymorphic DNA PCR analysis and pulsed-field gel electrophoresis results indicated that the V. cholerae isolates belonged to the same clone. This investigation gives a warning that the El Tor variant of V. cholerae has spread to the coastal district causing a large outbreak that requires close monitoring and surveillance on diarrhoeal outbreaks in Odisha.
Collapse
Affiliation(s)
- B. B. PAL
- Microbiology Division, Regional Medical Research Centre, ICMR, Odisha, India
| | - H. K. KHUNTIA
- Microbiology Division, Regional Medical Research Centre, ICMR, Odisha, India
| | - S. K. SAMAL
- Microbiology Division, Regional Medical Research Centre, ICMR, Odisha, India
| | - A. S. KERKETTA
- Microbiology Division, Regional Medical Research Centre, ICMR, Odisha, India
| | - S. K. KAR
- Microbiology Division, Regional Medical Research Centre, ICMR, Odisha, India
| | - M. KARMAKAR
- National Rural Health Mission, Bhubaneswar, Odisha, India
| | - B. PATTNAIK
- Integrated Disease Surveillance Project, Directorate of Health Services, Government of Odisha, India
| |
Collapse
|
50
|
Valia R, Taviani E, Spagnoletti M, Ceccarelli D, Cappuccinelli P, Colombo MM. Vibrio cholerae O1 epidemic variants in Angola: a retrospective study between 1992 and 2006. Front Microbiol 2013; 4:354. [PMID: 24348465 PMCID: PMC3842873 DOI: 10.3389/fmicb.2013.00354] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/07/2013] [Indexed: 11/24/2022] Open
Abstract
Cholera is still a major public health concern in many African countries. In Angola, after a decade of absence, cholera reemerged in 1987, spreading throughout the country until 1996, with outbreaks recurring in a seasonal pattern. In 2006 Angola was hit by one of the most severe outbreaks of the last decade, with ca. 240,000 cases reported. We analyzed 21 clinical strains isolated between 1992 and 2006 from several provinces throughout the country: Benguela, Bengo, Luanda, Cuando Cubango, and Cabinda. We used two multiplex PCR assays to investigate discriminatory mobile genetic elements (MGE) [Integrative Conjugative Elements (ICEs), VSP-II, GI12, GI14, GI15, K, and TLC phages] and we compared the profiles obtained with those of different reference V. cholerae O1 variants (prototypical, altered, and hybrid), responsible for the ongoing 7th pandemic. We also tested the strains for the presence of specific VSP-II variants and for the presence of a genomic island (GI) (WASA-1), correlated with the transmission of seventh pandemic cholera from Africa to South America. Based on the presence/absence of the analyzed genetic elements, five novel profiles were detected in the epidemic strains circulating in the 1990s. The most frequent profiles, F and G, were characterized by the absence of ICEs and the three GIs tested, and the presence of GI WASA-1 and the WASA variant of the VSP-II island. Our results identified unexpected variability within the 1990s epidemic, showing different rearrangements in a dynamic part of the genome not present in the prototypical V. cholerae O1 N16961. Moreover the 2006 strains differed from the current pandemic V. cholerae O1 strain. Taken together, our results highlight the role of horizontal gene transfer (HGT) in diversifying the genetic background of V. cholerae within a single epidemic.
Collapse
Affiliation(s)
- Romy Valia
- Dipartimento di Biologia e Biotecnologie C. Darwin, Università di Roma Sapienza Rome, Italy
| | - Elisa Taviani
- Dipartimento di Biologia e Biotecnologie C. Darwin, Università di Roma Sapienza Rome, Italy ; Centro de Biotecnologia, Universidade E. Mondlane Maputo Mozambique
| | - Matteo Spagnoletti
- Department of Genetics, University College London Genetics Institute, Evolution and Environment, University College London London, UK
| | - Daniela Ceccarelli
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland College Park, MD, USA
| | | | - Mauro M Colombo
- Dipartimento di Biologia e Biotecnologie C. Darwin, Università di Roma Sapienza Rome, Italy ; Centro de Biotecnologia, Universidade E. Mondlane Maputo Mozambique
| |
Collapse
|