1
|
Uršič T, Lusa L, Strle F, Pokorn M, Mrvič T, Grosek Š, Petrovec M, Virant MJ. Acute Human Bocavirus 1 Infection in Children Hospitalized for Acute Bronchiolitis: A 2-Year Prospective Study. Pediatr Infect Dis J 2025; 44:195-199. [PMID: 39637297 PMCID: PMC11812650 DOI: 10.1097/inf.0000000000004613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND The objective of this prospective study was to assess the proportion and clinical consequences of human bocavirus 1 (HBoV1) replication in children hospitalized for acute bronchiolitis (AB) with HBoV1 DNA in the nasopharynx (NP). METHODS For this purpose, we detected HBoV1 DNA and mRNA (evidence of viral replication and viable virus) in NP in cases and healthy control children. This research allowed us to distinguish active HBoV1 infections from inactive ones. RESULTS HBoV1 DNA was detected in the NP of 37 of 307 patients with AB (12.1%) and 9 of 150 children in a healthy control group (6%) with a high codetection rate with other respiratory viruses in AB patients, 28 of 37 (75.7%). Only 9 of 37 HBoV1 DNA-positive NP swabs (24.3%) with high DNA load were also HBoV1 mRNA positive, moreover, HBoV1 DNA was also detected in the plasma of these patients. CONCLUSIONS Based on the results of our study, we can conclude that children with AB acute HBoV1 infection has a high HBoV1 DNA load in NP samples together with detected HBoV1 mRNA and detected HBoV1 DNA in plasma.
Collapse
Affiliation(s)
- Tina Uršič
- From the Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Lara Lusa
- Department of Mathematics, Faculty of Mathematics, Natural Sciences, and Information Technologies, University of Primorska, Koper, Slovenia
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Marko Pokorn
- Department of Infectious Diseases
- Division of Pediatrics, Ljubljana University Medical Center, Ljubljana, Slovenia
- Department of Pediatrics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Štefan Grosek
- Department of Pediatrics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Neonatology Section, Division of Obstetrics and Gynecology, Department of Perinatology
- Division of Pediatrics, Department of Pediatric Intensive Therapy, Ljubljana University Medical Center, Ljubljana, Slovenia
| | - Miroslav Petrovec
- From the Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Monika Jevšnik Virant
- From the Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Mijač M, Meštrović T, Ivković-Jureković I, Tot T, Vraneš J, Ljubin-Sternak S. The Role of Quantitative PCR in Evaluating the Clinical Significance of Human Bocavirus Detection in Children. Viruses 2024; 16:1637. [PMID: 39459969 PMCID: PMC11512256 DOI: 10.3390/v16101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Human bocavirus (HBoV) has emerged as a significant pathogen primarily associated with respiratory infections in children. This study aimed to evaluate the clinical relevance of HBoV infection by quantifying viral loads in nasopharyngeal swabs from hospitalized children with acute respiratory infections (ARIs) and investigating correlations with clinical outcomes. A total of 957 children were tested, with HBoV detected in 73 cases (7.6%), either as a sole infection or co-infection with other respiratory viruses. Quantitative polymerase chain reaction (qPCR) was employed to measure viral load, and a threshold of 104 copies/mL was used to differentiate high and low viral concentrations. Results have shown that children with lower respiratory tract infections (LRTIs) had significantly higher viral loads, most notably in cases where HBoV was the sole pathogen. Additionally, children with pre-existing health conditions were more likely to have elevated HBoV concentrations compared to those who were previously healthy. Children with higher viral loads were more likely to require oxygen supplementation and receive empirical antibiotic therapy, indicating a more severe clinical course. This study underscores the importance of considering HBoV viral load in clinical diagnostics, as higher concentrations were associated with more severe presentations, including the need for oxygen support. Future research should focus on refining diagnostic thresholds and exploring HBoV's role in co-infections to enhance patient care strategies.
Collapse
Affiliation(s)
- Maja Mijač
- Clinical Microbiology Service, Dr. Andrija Štampar Teaching Institute of Public Health, 10000 Zagreb, Croatia; (M.M.); (J.V.); (S.L.-S.)
- Medical Microbiology Department, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA 98195, USA
- Department for Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Irena Ivković-Jureković
- Department of Pulmonology, Allergy, Immunology and Rheumatology, Children’s Hospital Zagreb, 10000 Zagreb, Croatia;
- Faculty for Dental Medicine and Healthcare, School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tatjana Tot
- Department of Microbiology, General Hospital Karlovac, 47000 Karlovac, Croatia;
| | - Jasmina Vraneš
- Clinical Microbiology Service, Dr. Andrija Štampar Teaching Institute of Public Health, 10000 Zagreb, Croatia; (M.M.); (J.V.); (S.L.-S.)
- Medical Microbiology Department, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sunčanica Ljubin-Sternak
- Clinical Microbiology Service, Dr. Andrija Štampar Teaching Institute of Public Health, 10000 Zagreb, Croatia; (M.M.); (J.V.); (S.L.-S.)
- Medical Microbiology Department, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Karaaslan C, Wirz O, Tan G, Globinska A, Boonpiyathad T, Hedman K, Vaselek S, Venermo MS, Jartti T, Akdis M, Akdis CA. B cell immune response to human bocaviruses. Clin Exp Allergy 2024; 54:388-401. [PMID: 38321724 DOI: 10.1111/cea.14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Human bocaviruses (HBoVs) have been demonstrated in respiratory and gastrointestinal infections; however, the immune response to them has not been studied in detail. In this study, we investigated the B cell immune responses to HBoV1 and HBoV2, representing two different species of bocaviruses in humans. METHODS We analyzed the effects of stimulations with HBoV1 and 2 virus-like particles (VLPs) and of co-stimulation with HBoV1-rhinovirus (RV) on cells of the immune system by flow cytometry, transcriptomics, and luminometric immune assays. RESULTS Human B cells, and particularly B regulatory cells (Breg cells), showed an increased immune response to HBoV1-VLPs stimulation. These immune responses were also supported by increased IL-1RA and PDL1 expressions in IL-10+ B cells from peripheral blood mononuclear cells (PBMCs) stimulated with HBoV1-VLPs. In addition, increased levels of IL-10 and IL-1RA were determined in the supernatants of PBMCs following HBoV1-VLPs stimulation. HBoV1-VLPs and RV co-stimulation increased the IL-10+ B cell population. Transcriptome analysis by next-generation RNA sequencing showed an increased expression of IL-10 signalling and Breg cell markers in PBMCs stimulated with HBoV1-VLPs. Furthermore, TGF-β and chemoattractants MIP-1α, MIP-1β and IP10 protein levels were high in the supernatants of PBMCs stimulated with HBoV1-VLPs. CONCLUSIONS The findings demonstrate that in Breg cells, IL-10 signalling pathways, and anti-inflammatory activity are induced by HBoV1, which can explain the often mild nature of the disease. In addition, the immune regulatory response induced by HBoV1-VLPs may indicate a potential immunomodulatory role of HBoV1 on the immune system and may represent an immune regulatory strategy.
Collapse
Affiliation(s)
- Cagatay Karaaslan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Molecular Biology Section, Biology Department, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Oliver Wirz
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Anna Globinska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Tadech Boonpiyathad
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Klaus Hedman
- Department of Virology, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital Diagnostics Center, Helsinki, Finland
| | - Slavica Vaselek
- Molecular Biology Section, Biology Department, Faculty of Science, Hacettepe University, Ankara, Turkey
| | | | - Tuomas Jartti
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Oulu University Hospital, Oulu, Finland
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
4
|
Qian W, Wang X, Wang T, Huang J, Zhang Q, Li Y, Chen S. Development of RPA-Cas12a-fluorescence assay for rapid and reliable detection of human bocavirus 1. Animal Model Exp Med 2024; 7:179-188. [PMID: 36794352 PMCID: PMC11079142 DOI: 10.1002/ame2.12298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/24/2022] [Indexed: 02/17/2023] Open
Abstract
Human bocavirus (HBoV) 1 is considered an important pathogen that mainly affects infants aged 6-24 months, but preventing viral transmission in resource-limited regions through rapid and affordable on-site diagnosis of individuals with early infection of HBoV1 remains somewhat challenging. Herein, we present a novel faster, lower cost, reliable method for the detection of HBoV1, which integrates a recombinase polymerase amplification (RPA) assay with the CRISPR/Cas12a system, designated the RPA-Cas12a-fluorescence assay. The RPA-Cas12a-fluorescence system can specifically detect target gene levels as low as 0.5 copies of HBoV1 plasmid DNA per microliter within 40 min at 37°C without the need for sophisticated instruments. The method also demonstrates excellent specificity without cross-reactivity to non-target pathogens. Furthermore, the method was appraised using 28 clinical samples, and displayed high accuracy with positive and negative predictive agreement of 90.9% and 100%, respectively. Therefore, our proposed rapid and sensitive HBoV1 detection method, the RPA-Cas12a-fluorescence assay, shows promising potential for early on-site diagnosis of HBoV1 infection in the fields of public health and health care. The established RPA-Cas12a-fluorescence assay is rapid and reliable method for human bocavirus 1 detection. The RPA-Cas12a-fluorescence assay can be completed within 40 min with robust specificity and sensitivity of 0.5 copies/μl.
Collapse
Affiliation(s)
- Weidong Qian
- School of Food and Biological EngineeringShaanxi University of Science and TechnologyXi'anP. R. China
| | - Xuefei Wang
- School of Food and Biological EngineeringShaanxi University of Science and TechnologyXi'anP. R. China
| | - Ting Wang
- School of Food and Biological EngineeringShaanxi University of Science and TechnologyXi'anP. R. China
| | - Jie Huang
- School of Food and Biological EngineeringShaanxi University of Science and TechnologyXi'anP. R. China
| | - Qian Zhang
- Department of DermatologyHuazhong University of Science and Technology Union Shenzhen HospitalShenzhenP. R. China
| | - Yongdong Li
- Ningbo Municipal Center for Disease Control and PreventionNingboP. R. China
| | - Si Chen
- Medical College of Shenzhen UniversityShenzhenP. R. China
| |
Collapse
|
5
|
Dong J, Ismail N, Fitts E, Walker DH. Molecular testing in emerging infectious diseases. DIAGNOSTIC MOLECULAR PATHOLOGY 2024:175-198. [DOI: 10.1016/b978-0-12-822824-1.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
6
|
Mohanty M, Mishra B, Satapathy AK, Gulla KM, Das RR, Dwibedi B, Gupta K, Mamidi P, Panda S. Human Bocavirus infection in childhood acute respiratory infection: Is it an innocent bystander? Indian J Med Microbiol 2023; 46:100436. [PMID: 37945128 DOI: 10.1016/j.ijmmb.2023.100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 09/18/2023]
Abstract
PURPOSE Acute respiratory infection (ARI) is one of the major attributing factors of under-five mortality and morbidity all over the world. Viruses are the most common cause of ARI. Due to the availability of molecular techniques, new viruses are getting isolated from children with ARI. With the above background, the present study was conducted to enlighten on the pathogenic role of human bocavirus (HBoV) in children with ARI. METHODOLOGY This retrospective study was conducted over a period of >3 years duration. The clinical and laboratory data of the patients with signs and symptoms of ARI were retrieved and analyzed. Clinical profiles and outcome of the patients detected of having HBoV mono or co-infections were further analyzed in details. RESULTS A total of 237 respiratory samples were subjected to respiratory panel by fast track diagnosis (FTD) multiplex polymerase chain reaction (multiplex PCR), of which 10 samples (mono-infection = 4) were detected with the presence of HBoV. The clinical details of 8 cases were studied in details (details of rest 2 cases were missing). All the children were less than 3 years of age, with different co-morbid conditions such as low birth weight (n = 4), cholestatic jaundice (n = 1), operated case of congenital diaphragmatic hernia (n = 1), pancytopenia (n = 1), and primary immune deficiency (n = 1). Their clinical course did not improve following antibiotic administration, 2 succumbed to death while the rest 6 cases were discharged. CONCLUSION The present study highlights the fact that HBoV may not be an innocent bystander in the childhood ARI. Larger studies employing appropriate diagnostic modalities are needed to emboss it as a true pathogen and not merely a bystander.
Collapse
Affiliation(s)
- Monalisa Mohanty
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, 751019, Odisha, India.
| | - Baijayantimala Mishra
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, 751019, Odisha, India.
| | - Amit Kumar Satapathy
- Department of Pediatrics, All India Institute of Medical Sciences, Bhubaneswar, 751019, Odisha, India.
| | - Krishna Mohan Gulla
- Department of Pediatrics, All India Institute of Medical Sciences, Bhubaneswar, 751019, Odisha, India.
| | - Rashmi Ranjan Das
- Department of Pediatrics, All India Institute of Medical Sciences, Bhubaneswar, 751019, Odisha, India.
| | - Bhagirathi Dwibedi
- Department of Pediatrics, All India Institute of Medical Sciences, Bhubaneswar, 751019, Odisha, India.
| | - Kavita Gupta
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, 751019, Odisha, India.
| | - Prabhudutta Mamidi
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, 751019, Odisha, India.
| | - Sailendra Panda
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, 751019, Odisha, India.
| |
Collapse
|
7
|
Colazo Salbetti MB, Boggio GA, Moreno L, Adamo MP. Human bocavirus respiratory infection: Tracing the path from viral replication and virus-cell interactions to diagnostic methods. Rev Med Virol 2023; 33:e2482. [PMID: 37749807 DOI: 10.1002/rmv.2482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
Human bocaviruses were first described between 2005 and 2010, identified in respiratory and enteric tract samples of children. Screening studies have shown worldwide distribution. Based on phylogenetic analysis, they were classified into four genotypes (HBoV1-4). From a clinical perspective, human bocavirus 1 (HBoV1) is considered the most relevant, since it can cause upper and lower acute respiratory tract infection, mainly in infants, including common cold, bronchiolitis, and pneumonia, as well as wheezing in susceptible patients. However, the specific processes leading to structural, biochemical, and functional changes resulting in the different clinical presentations have not been elucidated yet. This review surveys the interactions between the virus and target cells that can potentially explain disease-causing mechanisms. It also summarises the clinical phenotype of cases, stressing the role of HBoV1 as an aetiological agent of lower acute respiratory infection in infants, together with laboratory tests for detection and diagnosis. By exploring the current knowledge on the epidemiology of HBoV1, insights into the complex scenario of paediatric respiratory infections are presented, as well as the potential effects that changes in the circulation can have on the dynamics of respiratory agents, spotlighting the benefits of comprehensively increase insights into incidence, interrelationships with co-circulating agents and potential control of HBoV1.
Collapse
Affiliation(s)
- María Belén Colazo Salbetti
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Gabriel Amilcar Boggio
- Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - Laura Moreno
- Cátedra de Clínica Pediátrica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - María Pilar Adamo
- Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| |
Collapse
|
8
|
Jalving HT, Heimdal I, Valand J, Risnes K, Krokstad S, Nordbø SA, Døllner H, Christensen A. The Burden of Human Bocavirus 1 in Hospitalized Children With Respiratory Tract Infections. J Pediatric Infect Dis Soc 2023; 12:282-289. [PMID: 37099765 PMCID: PMC10231390 DOI: 10.1093/jpids/piad027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/27/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Human bocavirus 1 (HBoV1) is frequently codetected with other viruses, and detected in asymptomatic children. Thus, the burden of HBoV1 respiratory tract infections (RTI) has been unknown. Using HBoV1-mRNA to indicate true HBoV1 RTI, we assessed the burden of HBoV1 in hospitalized children and the impact of viral codetections, compared with respiratory syncytial virus (RSV). METHODS Over 11 years, we enrolled 4879 children <16 years old admitted with RTI. Nasopharyngeal aspirates were analyzed with polymerase chain reaction for HBoV1-DNA, HBoV1-mRNA, and 19 other pathogens. RESULTS HBoV1-mRNA was detected in 2.7% (130/4850) samples, modestly peaking in autumn and winter. Forty-three percent with HBoV1 mRNA were 12-17 months old, and only 5% were <6 months old. A total of 73.8% had viral codetections. It was more likely to detect HBoV1-mRNA if HBoV1-DNA was detected alone (odds ratio [OR]: 3.9, 95% confidence interval [CI]: 1.7-8.9) or with 1 viral codetection (OR: 1.9, 95% CI: 1.1-3.3), compared to ≥2 codetections. Codetection of severe viruses like RSV had lower odds for HBoV1-mRNA (OR: 0.34, 95% CI: 0.19-0.61). The yearly lower RTI hospitalization rate per 1000 children <5 years was 0.7 for HBoV1-mRNA and 8.7 for RSV. CONCLUSIONS True HBoV1 RTI is most likely when HBoV1-DNA is detected alone, or with 1 codetected virus. Hospitalization due to HBoV1 LRTI is 10-12 times less common than RSV.
Collapse
Affiliation(s)
- Hedda Trømborg Jalving
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Inger Heimdal
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jonas Valand
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Kari Risnes
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Children’s Department, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Sidsel Krokstad
- Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Svein Arne Nordbø
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Henrik Døllner
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Children’s Department, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Andreas Christensen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
9
|
Saha S, Fozzard N, Lambert SB, Ware RS, Grimwood K. Human bocavirus-1 infections in Australian children aged < 2 years: a birth cohort study. Eur J Clin Microbiol Infect Dis 2023; 42:99-108. [PMID: 36434280 PMCID: PMC9702687 DOI: 10.1007/s10096-022-04529-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
To determine human bocavirus-1 (HBoV1) infection characteristics in young Australian children. Data were from the Observational Research in Childhood Infectious Diseases (ORChID) study, a Brisbane, Australia-based birth cohort of healthy, term, newborns followed prospectively for 2 years. Parents recorded daily symptoms, maintained an illness-burden diary, and collected weekly nasal swabs, which were tested for 17 respiratory viruses, including HBoV1, by real-time polymerase chain reaction (PCR) assays. Main outcomes measured were infection incidence, risk factors, symptoms, and healthcare use. One hundred fifty-eight children in the ORChID cohort provided 11,126 weekly swabs, of which 157 swabs were HBoV1 positive involving 107 incident episodes. Co-detections were observed in 65/157 (41.4%) HBoV1-positive swabs (or 41/107 [38.3%] infection episodes), principally with rhinovirus. Shedding duration was 1 week in 64.5% of episodes. The incidence of HBoV1 infections in the first 2 years of life was 0.58 episodes per child-year (95% confidence interval [CI] 0.47-0.71), including 0.38 episodes per child-year (95% CI 0.30-0.49) associated with respiratory symptoms. Recurrent episodes occurred in 18/87 (20.7%) children following their primary infection. In the first 2 years of life, incidence of HBoV1 episodes increased with age, during winter and with childcare attendance. Overall, 64.2% of HBoV1 episodes were symptomatic, with 26.4% having healthcare contact. Viral load estimates were higher when children were symptomatic than when asymptomatic (mean difference = 3.4; 95% CI 1.0-5.7 PCR cycle threshold units). After age 6 months, HBoV1 is detected frequently in the first 2 years of life, especially during winter. Symptoms are usually mild and associated with higher viral loads.
Collapse
Affiliation(s)
- Sumanta Saha
- School of Medicine and Dentistry, Griffith University, Gold Coast campus, Gold Coast, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Gold Coast, Queensland, Australia
| | - Nicolette Fozzard
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Gold Coast, Queensland, Australia
| | - Stephen B Lambert
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
- National Centre for Immunisation Research and Surveillance of Vaccine Preventable Diseases, Sydney, NSW, Australia
| | - Robert S Ware
- School of Medicine and Dentistry, Griffith University, Gold Coast campus, Gold Coast, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Gold Coast, Queensland, Australia
| | - Keith Grimwood
- School of Medicine and Dentistry, Griffith University, Gold Coast campus, Gold Coast, Queensland, Australia.
- Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Gold Coast, Queensland, Australia.
- Departments of Infectious Diseases and Paediatrics, Gold Coast Health, Gold Coast, Queensland, Australia.
| |
Collapse
|
10
|
Mathisen M, Basnet S, Christensen A, Sharma AK, Tylden G, Krokstad S, Valentiner-Branth P, Strand TA. Viral and Atypical Bacterial Detection in Young Nepalese Children Hospitalized with Severe Pneumonia. Microbiol Spectr 2021; 9:e0055121. [PMID: 34704788 PMCID: PMC8549725 DOI: 10.1128/spectrum.00551-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/22/2021] [Indexed: 11/20/2022] Open
Abstract
Respiratory viruses cause a substantial proportion of respiratory tract infections in children but are underrecognized as a cause of severe pneumonia hospitalization in low-income settings. We employed 22 real-time PCR assays and retrospectively reanalyzed 610 nasopharyngeal aspirate specimens from children aged 2 to 35 months with severe pneumonia (WHO definition) admitted to Kanti Childrens' Hospital in Kathmandu, Nepal, from January 2006 through June 2008. Previously, ≥1 of 7 viruses had been detected by multiplex reverse transcription-PCR in 30% (188/627) of cases. Reanalyzing the stored specimens, we detected ≥1 pathogens, including 18 respiratory viruses and 3 atypical bacteria, in 98.7% (602/610) of cases. Rhinovirus (RV) and respiratory syncytial virus (RSV) were the most common, detected in 318 (52.1%) and 299 (49%) cases, respectively, followed by adenovirus (AdV) (10.6%), human metapneumovirus (hMPV) (9.7%), parainfluenza virus type 3 (8.4%), and enterovirus (7.7%). The remaining pathogens were each detected in less than 5%. Mycoplasma pneumoniae was most common among the atypical bacteria (3.7%). Codetections were observed in 53.3% of cases. Single-virus detection was more common for hMPV (46%) and RSV (41%) than for RV (22%) and AdV (6%). The mean cycle threshold value for detection of each pathogen tended to be lower in single-pathogen detections than in codetections. This finding was significant for RSV, RV, and AdV. RSV outbreaks occurred at the end of the monsoon or during winter. An expanded diagnostic PCR panel substantially increased the detection of respiratory viruses in young Nepalese children hospitalized with severe pneumonia. IMPORTANCE Respiratory viruses are an important cause of respiratory tract infections in children but are underrecognized as a cause of pneumonia hospitalization in low-income settings. Previously, we detected at least one of seven respiratory viruses by PCR in 30% of young Nepalese children hospitalized with severe pneumonia over a period of 36 months. Using updated PCR assays detecting 21 different viruses and atypical bacteria, we reanalyzed 610 stored upper-respiratory specimens from these children. Respiratory viruses were detected in nearly all children hospitalized for pneumonia. RSV and rhinovirus were the predominant pathogens detected. Detection of two or more pathogens was observed in more than 50% of the pneumonia cases. Single-virus detection was more common for human metapneumovirus and RSV than for rhinovirus and adenovirus. The concentration of virus was higher (low cycle threshold [CT] value) for single detected pathogens, hinting at a high viral load as a marker of clinical significance.
Collapse
Affiliation(s)
- Maria Mathisen
- Department of Medical Microbiology, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Sudha Basnet
- Department of Pediatrics, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Andreas Christensen
- Department of Medical Microbiology, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Arun K. Sharma
- Department of Pediatrics, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal
| | - Garth Tylden
- Department of Microbiology and Infection control, University Hospital of North Norway, Tromsø, Norway
| | - Sidsel Krokstad
- Department of Medical Microbiology, St. Olav’s Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Palle Valentiner-Branth
- Statens Serum Institut, Department of Infectious Disease Epidemiology and Prevention, Infectious Disease Preparedness, Copenhagen, Denmark
| | - Tor A. Strand
- Department of Research, Innlandet Hospital Trust, Lillehammer, Norway
| |
Collapse
|
11
|
Polo D, Lema A, Gándara E, Romalde JL. Prevalence of human bocavirus infections in Europe. A systematic review and meta-analysis. Transbound Emerg Dis 2021; 69:2451-2461. [PMID: 34250765 DOI: 10.1111/tbed.14233] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/18/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022]
Abstract
Human bocaviruses (HBoVs) are recently described as human emergent viruses, especially in young children. In this study, we undertook a systematic review and meta-analysis to estimate their prevalence in Europe. PubMed, Web of Science and Scopus databases were systematically screened for clinical studies, up to October 2020. Study eligibility criteria were primary full-text articles from clinical studies, conducted using valid screening test methods and published in peer-reviewed journals, in English or Spanish and from European countries. The overall pooled prevalence, prevalence by country as well as the prevalence of HBoV as a single or co-pathogen were estimated using a random-effects model. Sub-group and meta-regression analyses explored potential sources of heterogeneity in the data. A total of 35 studies involving 32,656 subjects from 16 European countries met the inclusion criteria. Heterogeneity (I2 = 97.0%, p < .01) was seen among studies; HBoV prevalence varied from 2.0 to 45.69% with a pooled estimate of 9.57% (95%CI 7.66-11.91%). The HBoV prevalence both as a single infection (3.99%; 95%CI 2.99-5.31%) or as co-infection with other viruses (5.06%; 95%CI 3.88-6.58%) was also analysed. On a geographic level, prevalence by country did not show statistical differences, ranging from 3.24% (Greece) to 21.05% (Denmark). An odds ratio analysis was also included in order to evaluate the relevance of the variable 'age' as a risk factor of HBoV infection in children <5 years old. The OR value of 1.77 (95%CI 1.13-2.77; p < .01) indicated that being <5 years old is a risk factor for HBoV infection. This study showed that HBoV has a moderate prevalence among European countries.
Collapse
Affiliation(s)
- David Polo
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology & CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alberto Lema
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology & CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Enia Gándara
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology & CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology & CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
12
|
Ivaska LE, Silvoniemi A, Palomares O, Turunen R, Waris M, Mikola E, Puhakka T, Söderlund‐Venermo M, Akdis M, Akdis CA, Jartti T. Persistent human bocavirus 1 infection and tonsillar immune responses. Clin Transl Allergy 2021; 11:e12030. [PMID: 34435757 PMCID: PMC8459348 DOI: 10.1002/clt2.12030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/19/2021] [Accepted: 04/11/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Persistent human bocavirus 1 (HBoV1) infection is a common finding in patients suffering from chronic tonsillar disease. However, the associations between HBoV1 infection and specific immune reactions are not completely known. We aimed to compare in vivo expression of T-cell cytokines, transcription factors, and type I/III interferons in human tonsils between HBoV1-positive and -negative tonsillectomy patients. METHODS Tonsil tissue samples, nasopharyngeal aspirate (NPA), and serum samples were obtained from 143 immunocompetent adult and child tonsillectomy patients. HBoV1 and 14 other respiratory viruses were detected in NPAs and tonsil tissues by polymerase chain reaction (PCR). Serology and semi-quantitative PCR were used for diagnosing HBoV1 infections. Expression of 14 cytokines and transcription factors (IFN-α, IFN-β, IFN-γ, IL-10, IL-13, IL-17, IL-28, IL-29, IL-37, TGF-β, FOXP3, GATA3, RORC2, Tbet) was analyzed by quantitative reverse-transcription (RT)-PCR in tonsil tissues. RESULTS HBoV1 was detected by PCR in NPA and tonsils from 25 (17%) study patients. Serology results indicated prior nonacute infections in 81% of cases. Tonsillar cytokine responses were affected by HBoV1 infection. The suppression of two transcription factors, RORC2 and FOXP3, was associated with HBoV1 infection (p < 0.05). Furthermore, intratonsillar HBoV1-DNA loads correlated negatively with IFN-λ family cytokines and IL-13. CONCLUSIONS Our study shows distinctively decreased T-helper17 and T-regulatory type immune responses in local lymphoid tissue in HBoV1-positive tonsillectomy patients. HBoV1 may act as a suppressive immune modulator.
Collapse
Affiliation(s)
- Lotta E. Ivaska
- Department of Otorhinolaryngology – Head and Neck SurgeryTurku University Hospital and University of TurkuTurkuFinland
| | - Antti Silvoniemi
- Department of Otorhinolaryngology – Head and Neck SurgeryTurku University Hospital and University of TurkuTurkuFinland
| | - Oscar Palomares
- Swiss Institute of Allergy and Asthma ResearchUniversity of ZürichDavosSwitzerland
- Christine Kühne‐Center for Allergy Research and EducationDavosSwitzerland
- Department of Biochemistry and Molecular BiologySchool of ChemistryComplutense University of MadridMadridSpain
| | - Riitta Turunen
- Department of Pediatrics and Adolescent MedicineTurku University Hospital and University of TurkuTurkuFinland
- Children's HospitalHelsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Matti Waris
- Clinical MicrobiologyTurku University HospitalTurkuFinland
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Emilia Mikola
- Department of Otorhinolaryngology – Head and Neck SurgeryTurku University Hospital and University of TurkuTurkuFinland
- Department of OtorhinolaryngologySatakunta Central HospitalPoriFinland
| | - Tuomo Puhakka
- Department of Otorhinolaryngology – Head and Neck SurgeryTurku University Hospital and University of TurkuTurkuFinland
- Department of OtorhinolaryngologySatakunta Central HospitalPoriFinland
| | | | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma ResearchUniversity of ZürichDavosSwitzerland
- Christine Kühne‐Center for Allergy Research and EducationDavosSwitzerland
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma ResearchUniversity of ZürichDavosSwitzerland
- Christine Kühne‐Center for Allergy Research and EducationDavosSwitzerland
| | - Tuomas Jartti
- Department of Pediatrics and Adolescent MedicineTurku University Hospital and University of TurkuTurkuFinland
- Department of PediatricsOulu University Hospital and University of OuluOuluFinland
| |
Collapse
|
13
|
Yan Z, Deng X, Qiu J. Human Bocavirus 1 Infection of Well-Differentiated Human Airway Epithelium. ACTA ACUST UNITED AC 2021; 58:e107. [PMID: 32639683 DOI: 10.1002/cpmc.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human bocavirus 1 (HBoV1) is a small DNA virus that belongs to the Bocaparvovirus genus of the Parvoviridae family. HBoV1 is a common respiratory pathogen that causes mild to life-threatening acute respiratory tract infections in children and immunocompromised individuals, infecting both the upper and lower respiratory tracts. HBoV1 infection causes death of airway epithelial cells, resulting in airway injury and inflammation. In vitro, HBoV1 only infects well-differentiated (polarized) human airway epithelium cultured at an air-liquid interface (HAE-ALI), but not any dividing human cells. A full-length HBoV1 genome of 5543 nucleotides has been cloned from DNA extracted from a human nasopharyngeal swab into a plasmid called HBoV1 infectious clone pIHBoV1. Transfection of pIHBoV1 replicates efficiently in human embryonic kidney 293 (HEK293) cells and produces virions that are highly infectious. This article describes protocols for production of HBoV1 in HEK293 cells, generation of HAE-ALI cultures, and infection with HBoV1 in HAE-ALI. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Human bocavirus 1 production in HEK293 cells Support Protocol 1: HEK293 cell culture and transfection Support Protocol 2: Quantification of human bocavirus 1 using real-time quantitative PCR Basic Protocol 2: Differentiation of human airway cells at an air-liquid interface Support Protocol 3: Expansion of human airway epithelial cell line CuFi-8 Support Protocol 4: Expansion of human airway basal cells Support Protocol 5: Coating of plastic dishes and permeable membranes of inserts Support Protocol 6: Transepithelial electrical resistance measurement Basic Protocol 3: Human bocavirus 1 infection in human airway epithelium cultured at an air-liquid interface Support Protocol 7: Isolation of infected human airway epithelium cells from inserts Basic Protocol 4: Transduction of airway basal cells with lentiviral vector.
Collapse
Affiliation(s)
- Ziying Yan
- Department of Anatomy, University of Iowa, Iowa City, Iowa
| | - Xuefeng Deng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
14
|
Ivaska LE, Christensen A, Waris M, Puhakka T, Vuorinen T, Allander T, Söderlund-Venermo M, Jartti T. No Correlation Between Nasopharyngeal Human Bocavirus 1 Genome Load and mRNA Detection or Serology in Adeno-/Tonsillectomy Patients. J Infect Dis 2020; 220:589-593. [PMID: 31001641 DOI: 10.1093/infdis/jiz166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/07/2019] [Indexed: 12/16/2022] Open
Abstract
Human bocavirus 1 (HBoV1) can persist in nasopharynx and tonsils. Using HBoV1 serology, reverse-transcription polymerase chain reaction (PCR) for detecting messenger RNA (mRNA) and quantitative PCR for HBoV1 genome load count, we studied to what extent the HBoV1 DNA loads in nasopharynx correlate with acute infection markers. Tonsillar tissue, nasopharyngeal aspirate, and serum were obtained from 188 elective adeno-/tonsillectomy patients. Relatively high loads of HBoV1 DNA were detected in the nasopharynx of 14 (7%) primarily asymptomatic subjects with negative mRNA and/or serodiagnostic results. Quantitative HBoV1 DNA PCR may have lower specificity than HBoV1 mRNA detection for diagnosing symptomatic infection.
Collapse
Affiliation(s)
- Lotta E Ivaska
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital and University of Turku, Finland
| | - Andreas Christensen
- Department of Laboratory Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Clinical Microbiology, St Olavs Hospital, Trondheim University Hospital, Norway
| | - Matti Waris
- Department of Virology and Clinical Virology, Turku University Hospital and University of Turku, Finland
| | - Tuomo Puhakka
- Department of Otorhinolaryngology - Head and Neck Surgery, Turku University Hospital and University of Turku, Finland
| | - Tytti Vuorinen
- Department of Virology and Clinical Virology, Turku University Hospital and University of Turku, Finland
| | - Tobias Allander
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Tuomas Jartti
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, Finland
| |
Collapse
|
15
|
Nelson PP, Rath BA, Fragkou PC, Antalis E, Tsiodras S, Skevaki C. Current and Future Point-of-Care Tests for Emerging and New Respiratory Viruses and Future Perspectives. Front Cell Infect Microbiol 2020; 10:181. [PMID: 32411619 PMCID: PMC7202255 DOI: 10.3389/fcimb.2020.00181] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
The availability of pathogen-specific treatment options for respiratory tract infections (RTIs) increased the need for rapid diagnostic tests. Besides, retrospective studies, improved lab-based detection methods and the intensified search for new viruses since the beginning of the twenty-first century led to the discovery of several novel respiratory viruses. Among them are human bocavirus (HBoV), human coronaviruses (HCoV-HKU1, -NL63), human metapneumovirus (HMPV), rhinovirus type C (RV-C), and human polyomaviruses (KIPyV, WUPyV). Additionally, new viruses like SARS coronavirus (SARS-CoV), MERS coronavirus (MERS-CoV), novel strains of influenza virus A and B, and (most recently) SARS coronavirus 2 (SARS-CoV-2) have emerged. Although clinical presentation may be similar among different viruses, associated symptoms may range from a mild cold to a severe respiratory illness, and thus require a fast and reliable diagnosis. The increasing number of commercially available rapid point-of-care tests (POCTs) for respiratory viruses illustrates both the need for this kind of tests but also the problem, i.e., that the majority of such assays has significant limitations. In this review, we summarize recently published characteristics of POCTs and discuss their implications for the treatment of RTIs. The second key aspect of this work is a description of new and innovative diagnostic techniques, ranging from biosensors to novel portable and current lab-based nucleic acid amplification methods with the potential future use in point-of-care settings. While prototypes for some methods already exist, other ideas are still experimental, but all of them give an outlook of what can be expected as the next generation of POCTs.
Collapse
Affiliation(s)
- Philipp P Nelson
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL) Marburg, Marburg, Germany
| | - Barbara A Rath
- Vienna Vaccine Safety Initiative - Pediatric Infectious Diseases and Vaccines, Berlin, Germany.,UMR Chrono-Environnement, Université Bourgogne Franche-Comté, Besançon, France.,ESCMID Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
| | - Paraskevi C Fragkou
- ESCMID Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland.,4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Antalis
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Tsiodras
- ESCMID Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland.,4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, German Center for Lung Research (DZL) Marburg, Marburg, Germany.,ESCMID Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
| |
Collapse
|
16
|
Ziemele I, Xu M, Vilmane A, Rasa-Dzelzkaleja S, Hedman L, Hedman K, Söderlund-Venermo M, Nora-Krukle Z, Murovska M, Gardovska D. Acute human bocavirus 1 infection in child with life-threatening bilateral bronchiolitis and right-sided pneumonia: a case report. J Med Case Rep 2019; 13:290. [PMID: 31519214 PMCID: PMC6744643 DOI: 10.1186/s13256-019-2222-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/08/2019] [Indexed: 01/04/2023] Open
Abstract
Background Human bocavirus 1 is a commonly detected human parvovirus. Many studies have shown human bocavirus 1 as a pathogen in association with acute respiratory tract infections in children. However, because human bocavirus 1 persists in the upper airways for extensive time periods after acute infection, the definition and diagnostics of acute human bocavirus 1 infection is challenging. Until now, detection of human bocavirus 1 exclusively, high viral load in respiratory samples, and viremia have been associated with a clinical picture of acute respiratory illness. There are no studies showing detection of human bocavirus 1 messenger ribonucleic acid in the peripheral blood mononuclear cells as a diagnostic marker for acute lower respiratory tract infection. Case presentation We report the case of a 17-month-old Latvian boy who presented in intensive care unit with acute bilateral bronchiolitis, with a history of rhinorrhea and cough for 6 days and fever for the last 2 days prior to admission, followed by severe respiratory distress and tracheal intubation. Human bocavirus 1 was the only respiratory virus detected by a qualitative multiplex polymerase chain reaction panel. For the diagnosis of acute human bocavirus 1 infection, both molecular and serological approaches were used. Human bocavirus 1 deoxyribonucleic acid (DNA) was detected simultaneously in nasopharyngeal aspirate, stool, and blood, as well as in the corresponding cell-free blood plasma by qualitative and quantitative polymerase chain reaction, revealing high DNA-copy numbers in nasopharyngeal aspirate and stool. Despite a low-load viremia, human bocavirus 1 messenger ribonucleic acid was found in the peripheral blood mononuclear cells. For detection of human bocavirus 1-specific antibodies, non-competitive immunoglobulin M and competitive immunoglobulin G enzyme immunoassays were used. The plasma was positive for both human bocavirus 1-specific immunoglobulin M and immunoglobulin G antibodies. Conclusions The presence of human bocavirus 1 genomic DNA in blood plasma and human bocavirus 1 messenger ribonucleic acid in peripheral blood mononuclear cells together with human bocavirus 1-specific immunoglobulin M are markers of acute human bocavirus 1 infection that may cause life-threatening acute bronchiolitis.
Collapse
Affiliation(s)
- Inga Ziemele
- Children's Clinical University Hospital, Riga, Latvia. .,Department of Pediatrics Rīga Stradiņš University, Riga, Latvia.
| | - Man Xu
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Anda Vilmane
- Institute of Microbiology and Virology, Rīga Stradiņš University Riga, Riga, Latvia
| | | | - Lea Hedman
- Department of Virology, University of Helsinki, Helsinki, Finland.,Helsinki University Hospital Laboratory Service, Helsinki, Finland
| | - Klaus Hedman
- Department of Virology, University of Helsinki, Helsinki, Finland.,Helsinki University Hospital Laboratory Service, Helsinki, Finland
| | | | - Zaiga Nora-Krukle
- Institute of Microbiology and Virology, Rīga Stradiņš University Riga, Riga, Latvia
| | - Modra Murovska
- Institute of Microbiology and Virology, Rīga Stradiņš University Riga, Riga, Latvia
| | - Dace Gardovska
- Children's Clinical University Hospital, Riga, Latvia.,Department of Pediatrics Rīga Stradiņš University, Riga, Latvia
| |
Collapse
|
17
|
Comparison of phenotypic and genotypic diagnosis of acute human bocavirus 1 infection in children. J Clin Virol 2019; 120:17-19. [PMID: 31521013 PMCID: PMC7106360 DOI: 10.1016/j.jcv.2019.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/05/2019] [Accepted: 09/03/2019] [Indexed: 01/19/2023]
Abstract
Diagnosis of HBoV1 has been based on detection of DNA or mRNA. Rapid HBoV1 antigen detection is beneficial for diagnosing acute HBoV1 infections. HBoV1 antigen detection is attractive for point-of-care use.
Background Diagnosis of human bocavirus 1 (HBoV1) has been based on qualitative PCRs detecting HBoV1 DNA or detection of HBoV1 mRNA. Objective This study aims to assess whether a rapid and automated HBoV1 antigen test is suitable for diagnosis of acute HBoV1 infection. Study design HBoV1 antigen detection has been compared with quantitative HBoV1 DNA PCR and HBoV1 mRNA RT-PCR. Results and conclusion We conclude that HBoV1 antigen detection has higher clinical specificity and positive predictive value than HBoV1 DNA qualitative PCRs, yet a lower sensitivity than HBoV1 mRNA detection. Additionally, HBoV1 antigen detection is beneficial in its rapidity and availability as a point-of-care test.
Collapse
|
18
|
Abstract
Parvoviruses are structurally simple viruses with linear single-stranded DNA genomes and nonenveloped icosahedral capsids. They infect a wide range of animals from insects to humans. Parvovirus B19 is a long-known human pathogen, whereas adeno-associated viruses are nonpathogenic. Since 2005, many parvoviruses have been discovered in human-derived samples: bocaviruses 1-4, parvovirus 4, bufavirus, tusavirus, and cutavirus. Some human parvoviruses have already been shown to cause disease during acute infection, some are associated with chronic diseases, and others still remain to be proven clinically relevant-or harmless commensals, a distinction not as apparent as it might seem. One initially human-labeled parvovirus might not even be a human virus, whereas another was originally overlooked due to inadequate diagnostics. The intention of this review is to follow the rocky road of emerging human parvoviruses from discovery of a DNA sequence to current and future clinical status, highlighting the perils along the way.
Collapse
|
19
|
Christensen A, Kesti O, Elenius V, Eskola AL, Døllner H, Altunbulakli C, Akdis CA, Söderlund-Venermo M, Jartti T. Human bocaviruses and paediatric infections. THE LANCET CHILD & ADOLESCENT HEALTH 2019; 3:418-426. [PMID: 30948251 DOI: 10.1016/s2352-4642(19)30057-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/16/2022]
Abstract
Human bocavirus 1 (HBoV1), belonging to the Parvoviridae family, was discovered in 2005, in nasopharyngeal samples from children with respiratory tract infections. Three additional bocaviruses, HBoV2-4, were discovered in 2009-10. These viruses have mainly been found in faecal samples and their role in human diseases is still uncertain. HBoV1 causes a wide spectrum of respiratory diseases in children, including common cold, acute otitis media, pneumonia, bronchiolitis, and asthma exacerbations. HBoV1 DNA can persist in airway secretions for months after an acute infection. Consequently, acute HBoV1 infection cannot be diagnosed with standard DNA PCR; quantitative PCR and serology are better diagnostic approaches. Because of their high clinical specificity, diagnostic developments such as HBoV1 mRNA and antigen detection have shown promising results. This Review summarises the knowledge on human bocaviruses, with a special focus on HBoV1.
Collapse
Affiliation(s)
- Andreas Christensen
- Department of Medical Microbiology, St Olavs Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Olli Kesti
- Department of Paediatrics, Turku University Hospital and University of Turku, Turku, Finland
| | - Varpu Elenius
- Department of Paediatrics, Turku University Hospital and University of Turku, Turku, Finland
| | - Anna L Eskola
- Department of Education, University of Turku, Turku, Finland
| | - Henrik Døllner
- Department of Pediatrics, St Olavs Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Can Altunbulakli
- Swiss Institute of Allergy and Asthma Research, University of Zürich and Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zürich and Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | | | - Tuomas Jartti
- Department of Paediatrics, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
20
|
Nascimento-Carvalho AC, Vilas-Boas AL, Fontoura MSH, Xu M, Vuorinen T, Söderlund-Venermo M, Ruuskanen O, Nascimento-Carvalho CM. Serologically diagnosed acute human bocavirus 1 infection in childhood community-acquired pneumonia. Pediatr Pulmonol 2018; 53:88-94. [PMID: 29028159 PMCID: PMC7167785 DOI: 10.1002/ppul.23891] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/14/2017] [Indexed: 01/07/2023]
Abstract
AIM To assess the role of human bocavirus 1 (HBoV1) as a causative agent of non-severe community-acquired pneumonia (CAP) in children. METHODS Patients aged 2-59 months with non-severe CAP (respiratory complaints and radiographic pulmonary infiltrate/consolidation) attending a University Hospital in Salvador, Brazil were enrolled in a prospective cohort. From 820 recruited children in a clinical trial (ClinicalTrials.gov NCT01200706), nasopharyngeal aspirate (NPA), and acute and convalescent serum samples were obtained from 759 (92.6%) patients. NPAs were tested for 16 respiratory viruses by PCR. Acute HBoV1 infection was confirmed by measuring specific IgM and IgG responses in paired serum samples. RESULTS Respiratory viruses were detected in 693 (91.3%; 95%CI: 89.1-93.2) CAP cases by PCR. HBoV1-DNA was detected in 159 (20.9%; 95%CI: 18.2-24.0) cases. Of these 159 PCR positive cases, acute HBoV1 infection was confirmed serologically in 38 cases (23.9%; 95%CI: 17.8-31.0). Overall, acute HBoV1 infection was confirmed in 5.0% (38/759) of non-severe CAP patients. HBoV1 was detected in 151 cases with at least one other virus making 31.7% of all multiple virus (n = 477) detections. Among all 759 cases, 216 had one respiratory virus detected, and sole HBoV1 was detected in only 8 (3.7%). Acute HBoV1 infection was serologically diagnosed in 34 (22.5%) HBoV1-DNA-positive cases with another virus, compared to 4 (50.0%) cases with sole virus detection (p = 0.09). CONCLUSION HBoV1 was detected by PCR in one fifth of the children with non-severe CAP and acute HBoV1 infection was serologically confirmed in one quarter of these cases.
Collapse
Affiliation(s)
| | - Ana-Luisa Vilas-Boas
- Department of Pediatrics, Federal University of Bahia School of Medicine, Salvador, Brazil
| | | | - Man Xu
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Tytti Vuorinen
- Department of Clinical Virology Turku University Hospital and Department of Virology, University of Turku, Turku, Finland
| | | | - Olli Ruuskanen
- Department of Pediatrics, University of Turku, Turku, Finland
| | | | -
- Department of Pediatrics, Federal University of Bahia School of Medicine, Salvador, Brazil
| |
Collapse
|
21
|
Tang YW, Stratton CW. The Role of the Human Bocavirus (HBoV) in Respiratory Infections. ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY 2018. [PMCID: PMC7120174 DOI: 10.1007/978-3-319-95111-9_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The human bocavirus is one of the most common respiratory viruses and occurs in all age groups. Because Koch’s postulates have been fulfilled unintendedly, it is currently accepted that the virus is a real pathogen associated with upper and lower respiratory tract infections causing clinical symptoms ranging from a mild common cold to life-threatening respiratory diseases. In order to exclude a viremia, serological analysis should be included during laboratory diagnostics, as acute and chronic infections cannot be differentiated by detection of viral nucleic acids in respiratory specimen alone due to prolonged viral shedding. Besides its ability to persist, the virus appears to trigger chronic lung disease and increases clinical symptoms by causing fibrotic lung diseases. Due to the lack of an animal model, clinical trials remain the major method for studying the long-term effects of HBoV infections.
Collapse
Affiliation(s)
- Yi-Wei Tang
- Departments of Laboratory Medicine and Internal Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Charles W. Stratton
- Department of Pathology, Microbiology and Immunology and Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
22
|
Schlaberg R, Ampofo K, Tardif KD, Stockmann C, Simmon KE, Hymas W, Flygare S, Kennedy B, Blaschke A, Eilbeck K, Yandell M, McCullers JA, Williams DJ, Edwards K, Arnold SR, Bramley A, Jain S, Pavia AT. Human Bocavirus Capsid Messenger RNA Detection in Children With Pneumonia. J Infect Dis 2017; 216:688-696. [PMID: 28934425 PMCID: PMC5853397 DOI: 10.1093/infdis/jix352] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/19/2017] [Indexed: 12/14/2022] Open
Abstract
Background The role of human bocavirus (HBoV) in respiratory illness is uncertain. HBoV genomic DNA is frequently detected in both ill and healthy children. We hypothesized that spliced viral capsid messenger RNA (mRNA) produced during active replication might be a better marker for acute infection. Methods As part of the Etiology of Pneumonia in the Community (EPIC) study, children aged <18 years who were hospitalized with community-acquired pneumonia (CAP) and children asymptomatic at the time of elective outpatient surgery (controls) were enrolled. Nasopharyngeal/oropharyngeal specimens were tested for HBoV mRNA and genomic DNA by quantitative polymerase chain reaction. Results HBoV DNA was detected in 10.4% of 1295 patients with CAP and 7.5% of 721 controls (odds ratio [OR], 1.4 [95% confidence interval {CI}, 1.0–2.0]); HBoV mRNA was detected in 2.1% and 0.4%, respectively (OR, 5.1 [95% CI, 1.6–26]). When adjusted for age, enrollment month, and detection of other respiratory viruses, HBoV mRNA detection (adjusted OR, 7.6 [95% CI, 1.5–38.4]) but not DNA (adjusted OR, 1.2 [95% CI, .6–2.4]) was associated with CAP. Among children with no other pathogens detected, HBoV mRNA (OR, 9.6 [95% CI, 1.9–82]) was strongly associated with CAP. Conclusions Detection of HBoV mRNA but not DNA was associated with CAP, supporting a pathogenic role for HBoV in CAP. HBoV mRNA could be a useful target for diagnostic testing.
Collapse
Affiliation(s)
- Robert Schlaberg
- Department of Pathology.,ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah
| | | | - Keith D Tardif
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah
| | | | | | - Weston Hymas
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, Utah
| | | | | | | | | | - Mark Yandell
- Department of Human Genetics, University of Utah
| | - Jon A McCullers
- Department of Pediatrics, University of Tennessee Health Sciences Center.,Nashville and Le Bonheur Children's Hospital.,St. Jude Children's Research Hospital, Memphis
| | - Derek J Williams
- Vanderbilt University School of Medicine.,Division of Infectious Diseases, Department of Pediatrics, Monroe Carell Jr. Children's Hospital, Vanderbilt University.,Vanderbilt Vaccine Research Program, Nashville, Tennessee
| | - Kathryn Edwards
- Division of Infectious Diseases, Department of Pediatrics, Monroe Carell Jr. Children's Hospital, Vanderbilt University.,Vanderbilt Vaccine Research Program, Nashville, Tennessee
| | - Sandra R Arnold
- Department of Pediatrics, University of Tennessee Health Sciences Center.,Nashville and Le Bonheur Children's Hospital
| | - Anna Bramley
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Seema Jain
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | |
Collapse
|
23
|
Xu M, Arku B, Jartti T, Koskinen J, Peltola V, Hedman K, Söderlund-Venermo M. Comparative Diagnosis of Human Bocavirus 1 Respiratory Infection With Messenger RNA Reverse-Transcription Polymerase Chain Reaction (PCR), DNA Quantitative PCR, and Serology. J Infect Dis 2017; 215:1551-1557. [DOI: 10.1093/infdis/jix169] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/29/2017] [Indexed: 01/05/2023] Open
|
24
|
Abstract
Parvovirus B19 (B19V) and human bocavirus 1 (HBoV1), members of the large Parvoviridae family, are human pathogens responsible for a variety of diseases. For B19V in particular, host features determine disease manifestations. These viruses are prevalent worldwide and are culturable in vitro, and serological and molecular assays are available but require careful interpretation of results. Additional human parvoviruses, including HBoV2 to -4, human parvovirus 4 (PARV4), and human bufavirus (BuV) are also reviewed. The full spectrum of parvovirus disease in humans has yet to be established. Candidate recombinant B19V vaccines have been developed but may not be commercially feasible. We review relevant features of the molecular and cellular biology of these viruses, and the human immune response that they elicit, which have allowed a deep understanding of pathophysiology.
Collapse
Affiliation(s)
- Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
25
|
Abstract
It was widely believed in the late 1960s that infectious diseases had been conquered by vaccines and antibiotics and humans were no longer under threat by microbial pathogens. Yet, since that time more than 60 pathogens have been discovered that can cause serious emerging infectious diseases. Molecular methods have played critical roles in the discovery, monitoring, and clinical diagnostics of emerging pathogens. In this chapter, we present well-recognized emerging pathogens. We provide examples of the utility of molecular assays in research and clinical care of emerging infectious diseases. We also discuss some theoretical and practical limitations of molecular tests and the future prospects of expanding molecular diagnostics for emerging pathogens based on new advances of knowledge and technologies.
Collapse
|
26
|
Moe N, Pedersen B, Nordbø SA, Skanke LH, Krokstad S, Smyrnaios A, Døllner H. Respiratory Virus Detection and Clinical Diagnosis in Children Attending Day Care. PLoS One 2016; 11:e0159196. [PMID: 27433803 PMCID: PMC4951077 DOI: 10.1371/journal.pone.0159196] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/28/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Respiratory viruses often have been studied in children with respiratory tract infection (RTI), but less knowledge exists about viruses in asymptomatic children. We have studied the occurrence of a broad panel of respiratory viruses in apparently healthy children attending day care, taking into account the influence of possible confounding factors, such as age, clinical signs of respiratory tract infection (RTI), location (day-care section) and season. METHODS We have studied 161 children in two day-care centers, each with separate sections for younger and older children, during four autumn and winter visits over a two-year period. A total of 355 clinical examinations were performed, and 343 nasopharyngeal samples (NPS) were analyzed by semi-quantitative, real-time, polymerase chain reaction (PCR) tests for 19 respiratory pathogens. RESULT Forty-three percent of all NPS were PCR-positive for ≥ 1 of 13 virus species, with high species variation during visits. Rhinovirus 26% (88/343 NPS), enterovirus 12% (40/343) and parechovirus 9% (30/343) were detected in every visit, and the rates varied in relation to age, day-care section and season. Ten other viruses were detected in ≤ 3% of the NPS. Generally, viruses occurred together in the NPS. In 24% (79/331) of the clinical examinations with available NPS, the children had clear signs of RTI, while in 41% (135/331) they had mild signs, and in 35% (117/331) the children had no signs of RTI. Moreover, viruses were found in 70% (55/79) of children with clear signs of RTI, in 41% (55/135) with mild signs and in 30% (35/117) without any signs of RTI (p < 0.001). CONCLUSIONS Positive PCR tests for respiratory viruses, particularly picornaviruses, were frequently detected in apparently healthy children attending day care. Virus detection rates were related to age, presence of clinical signs of RTI, location in day care and season.
Collapse
Affiliation(s)
- Nina Moe
- Department of Pediatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- * E-mail:
| | - Bård Pedersen
- Norwegian Institute for Nature Research, Trondheim, Norway
| | - Svein Arne Nordbø
- Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lars Høsøien Skanke
- Department of Pediatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sidsel Krokstad
- Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anastasios Smyrnaios
- Department of Pediatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Henrik Døllner
- Department of Pediatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
27
|
Etiology of Pneumonia in a Pediatric Population with High Pneumococcal Vaccine Coverage: A Prospective Study. Pediatr Infect Dis J 2016; 35:e69-75. [PMID: 26599568 DOI: 10.1097/inf.0000000000001009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Improved Childhood Immunizations Programs, especially the introduction of pneumococcal vaccination, better diagnostic methods and the importance of reduced antibiotic misuse, make this a critical time to increase knowledge on the etiology of pediatric pneumonia. Our main objective was to identify the contribution of various microbiological species that causes pneumonia in previously healthy children and adolescents in a population with high pneumococcal conjugate vaccine coverage. METHODS This prospective, observational study enrolled patients with clinical and radiological signs of pneumonia over a 2-year period. Both inpatients and outpatients were included. Paired sera, nasopharyngeal polymerase chain reaction and bacterial cultures from blood and pleura were analyzed to detect potential viral and bacterial causative pathogens. RESULTS TWO HUNDRED AND SIXTY-FIVE: cases of clinical and radiological verified pneumonia were identified. The pneumococcal vaccine coverage was 85%. We identified a causative pathogen in 84.2% of all cases; 63.4% with single viral etiology, 11.3% with pneumococcus and 7.5% with mycoplasma infection. Respiratory syncytial virus was the most common pathogen in children younger than 5 years, whereas mycoplasma was the most common in older children. CONCLUSIONS We identified the majority of 265 cases with radiology proven pneumonia as single viral infections, predominantly respiratory syncytial virus and a much lower proportion of bacterial causes. These findings may impact pneumonia management guidelines in areas where widespread pneumococcal vaccination is provided and contribute to reduced antibiotic overuse in pediatric pneumonia.
Collapse
|
28
|
Bruning AHL, Susi P, Toivola H, Christensen A, Söderlund-Venermo M, Hedman K, Aatola H, Zvirbliene A, Koskinen JO. Detection and monitoring of human bocavirus 1 infection by a new rapid antigen test. New Microbes New Infect 2016; 11:17-9. [PMID: 27014463 PMCID: PMC4789334 DOI: 10.1016/j.nmni.2016.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 01/24/2023] Open
Abstract
Clinically relevant diagnosis of human bocavirus 1 (HBoV1) is challenging, as the virus is frequently detected in asymptomatic patients, and cofindings with other respiratory viruses are common. The clinical value of current diagnostic methods, such as PCR, is therefore low, and alternative diagnostic strategies are needed. We describe for the first time the use of an antigen detection assay for the rapid identification of HBoV1 in a paediatric patient with respiratory tract infection symptoms. We estimate the duration of active HBoV1 infection to be 6 days.
Collapse
Affiliation(s)
- A H L Bruning
- Department of Pediatric Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | - P Susi
- Department of Virology, University of Turku and Biomaterials and Diagnostics Group, Turku University of Applied Sciences, Turku, Finland
| | - H Toivola
- ArcDia International Oy Ltd., Turku, Finland
| | - A Christensen
- Trondheim University Hospital and Norwegian University of Science and Technology, Trondheim, Norway
| | - M Söderlund-Venermo
- Department of Virology, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
| | - K Hedman
- Department of Virology, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
| | - H Aatola
- ArcDia International Oy Ltd., Turku, Finland
| | - A Zvirbliene
- Department of Immunology and Cell Biology, Institute of Biotechnology, Vilnius University, Lithuania
| | | |
Collapse
|
29
|
Replication of an Autonomous Human Parvovirus in Non-dividing Human Airway Epithelium Is Facilitated through the DNA Damage and Repair Pathways. PLoS Pathog 2016; 12:e1005399. [PMID: 26765330 PMCID: PMC4713420 DOI: 10.1371/journal.ppat.1005399] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/22/2015] [Indexed: 01/11/2023] Open
Abstract
Human bocavirus 1 (HBoV1) belongs to the genus Bocaparvovirus of the Parvoviridae family, and is an emerging human pathogenic respiratory virus. In vitro, HBoV1 infects well-differentiated/polarized primary human airway epithelium (HAE) cultured at an air-liquid interface (HAE-ALI). Although it is well known that autonomous parvovirus replication depends on the S phase of the host cells, we demonstrate here that the HBoV1 genome amplifies efficiently in mitotically quiescent airway epithelial cells of HAE-ALI cultures. Analysis of HBoV1 DNA in infected HAE-ALI revealed that HBoV1 amplifies its ssDNA genome following a typical parvovirus rolling-hairpin DNA replication mechanism. Notably, HBoV1 infection of HAE-ALI initiates a DNA damage response (DDR) with activation of all three phosphatidylinositol 3-kinase–related kinases (PI3KKs). We found that the activation of the three PI3KKs is required for HBoV1 genome amplification; and, more importantly, we identified that two Y-family DNA polymerases, Pol η and Pol κ, are involved in HBoV1 genome amplification. Overall, we have provided an example of de novo DNA synthesis (genome amplification) of an autonomous parvovirus in non-dividing cells, which is dependent on the cellular DNA damage and repair pathways. Parvovirus is unique among DNA viruses. It has a single stranded DNA genome of ~5.5 kb in length. Autonomous parvoviruses, which replicate autonomously in cells, rely on the S phase cell cycle for genome amplification. In the current study, we demonstrated that human bocavirus 1 (HBoV1), an autonomous human Bocaparvovirus, replicates its genome in well-differentiated (non-dividing) primary human airway epithelial cells. HBoV1 infection of non-dividing human airway epithelial cells induces a DNA damage response. We provide evidence that HBoV1 genome amplification in non-dividing airway epithelial cells is facilitated by the DNA damage response-mediated signaling pathways. Importantly, we discovered that two Y-family DNA repair polymerases, but not cellular DNA replication polymerases, are directly involved in HBoV1 genome amplification. Therefore, our study is innovative because it is the first to show that an autonomous parvovirus amplifies its genome in non-dividing cells, and that the DNA repair polymerases are involved in viral genome amplification.
Collapse
|
30
|
Schildgen O, Schildgen V. Respiratory infections of the human bocavirus. THE MICROBIOLOGY OF RESPIRATORY SYSTEM INFECTIONS 2016. [PMCID: PMC7149820 DOI: 10.1016/b978-0-12-804543-5.00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The human bocavirus is one of the most common respiratory viruses and occurs in all age groups. It is associated with upper and lower respiratory tract infections, and causes clinical symptoms from the mild common cold to life threatening respiratory diseases. Besides its ability to persist the virus appears to trigger chronic lung disease and increase the clinical symptoms, while being a putative trigger for fibrotic lung diseases. Laboratory diagnostics should include serological diagnostics in order to rule out a viremia because due to prolonged viral shedding acute and chronic infections cannot be differentiated on the detection of viral nucleic acids in respiratory specimen alone. Although Koch’s postulates cannot be formally fulfilled due to the lack of an animal model and the chance for clinical trials with volunteers are limited due to the long term effects of HBoV infections, there is no doubt that the virus is a serious pathogen and requires attention. The aim of the chapter is to present an overview of our current knowledge on respiratory infections with the human bocavirus, and to provide basic and essential information on clinical features, molecular diagnostics, and epidemiologic challenges arising with this pathogen.
Collapse
|
31
|
A novel primer set for improved direct gene sequencing of human bocavirus genotype-1 from clinical samples. J Virol Methods 2015; 228:108-13. [PMID: 26658621 DOI: 10.1016/j.jviromet.2015.11.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/27/2015] [Accepted: 11/29/2015] [Indexed: 02/07/2023]
Abstract
Human bocavirus genotype (HBoV-1) is a parvovirus associated with respiratory tract infections in children with different degrees of severity. The current study intended to improve the direct gene sequencing of the HBoV-1 using a newly developed primer set. Screening the presence of human bocavirus infection among in-patients children suffering from lower respiratory tract infections was another aim of the current study. Nasopharyngeal swab samples from in-patients children suffering from lower respiratory tract infections were examined. The real-time polymerase chain reaction was used for the initial screening as a highly sensitive method to detect the HBoV. Genotyping of real-time positive samples was attempted by direct sequencing of PCR amplicons using NP, VP1/2 and the newly developed VP/NC primers. HBoV-1 was present in 56.8% of the examined children. The newly developed primer set successfully amplified all real-time PCR positive samples, however, the other primer pairs did not reliably detect real-time PCR positive samples. The gene sequences of the detected HBoV-1 showed conserved sequences to each other with a low rate of discrepancies. The high rate of infection and the similarity between the detected strains strongly suggest nosocomial infections.
Collapse
|
32
|
Kantola K, Hedman L, Tanner L, Simell V, Mäkinen M, Partanen J, Sadeghi M, Veijola R, Knip M, Ilonen J, Hyöty H, Toppari J, Simell O, Hedman K, Söderlund-Venermo M. B-Cell Responses to Human Bocaviruses 1-4: New Insights from a Childhood Follow-Up Study. PLoS One 2015; 10:e0139096. [PMID: 26418064 PMCID: PMC4587975 DOI: 10.1371/journal.pone.0139096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/08/2015] [Indexed: 01/04/2023] Open
Abstract
Human bocaviruses (HBoVs) 1-4 are recently discovered, antigenically similar parvoviruses. We examined the hypothesis that the antigenic similarity of these viruses could give rise to clinically and diagnostically important immunological interactions. IgG and IgM EIAs as well as qPCR were used to study ~2000 sera collected from infancy to early adolescence at 3-6-month intervals from 109 children whose symptoms were recorded. We found that HBoV1-4-specific seroprevalences at age 6 years were 80%, 48%, 10%, and 0%, respectively. HBoV1 infections resulted in significantly weaker IgG responses among children who had pre-existing HBoV2 IgG, and vice versa. Furthermore, we documented a complete absence of virus type-specific immune responses in six viremic children who had pre-existing IgG for another bocavirus, indicating that not all HBoV infections can be diagnosed serologically. Our results strongly indicate that interactions between consecutive HBoV infections affect HBoV immunity via a phenomenon called "original antigenic sin", cross-protection, or both; however, without evident clinical consequences but with important ramifications for the serodiagnosis of HBoV infections. Serological data is likely to underestimate human exposure to these viruses.
Collapse
Affiliation(s)
- Kalle Kantola
- University of Helsinki, Department of Virology, Helsinki, Finland
- * E-mail:
| | - Lea Hedman
- University of Helsinki, Department of Virology, Helsinki, Finland
- Helsinki University Hospital Laboratory Services, Helsinki, Finland
| | - Laura Tanner
- Turku University Hospital, Department of Pediatrics, Turku, Finland
| | | | | | - Juulia Partanen
- University of Helsinki, Department of Virology, Helsinki, Finland
| | | | - Riitta Veijola
- University of Oulu, Department of Pediatrics, Oulu, Finland
| | - Mikael Knip
- University of Helsinki and Helsinki University Hospital, Children's Hospital and Research Programs Unit, Diabetes and Obesity, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Tampere University Hospital, Tampere Center for Child Health Research, Tampere, Finland
| | - Jorma Ilonen
- Turku University Hospital, Department of Pediatrics, Turku, Finland
- Medicity, University of Turku, Turku, Finland
- University of Eastern Finland, Department of Clinical Microbiology, Kuopio, Finland
- University of Turku, Immunogenetics Laboratory, Turku, Finland
| | - Heikki Hyöty
- University of Tampere, Department of Virology, Tampere, Finland
| | - Jorma Toppari
- Turku University Hospital, Department of Pediatrics, Turku, Finland
- Medicity, University of Turku, Turku, Finland
| | - Olli Simell
- Medicity, University of Turku, Turku, Finland
| | - Klaus Hedman
- University of Helsinki, Department of Virology, Helsinki, Finland
- Helsinki University Hospital Laboratory Services, Helsinki, Finland
| | | |
Collapse
|
33
|
Li X, Kantola K, Hedman L, Arku B, Hedman K, Söderlund-Venermo M. Original antigenic sin with human bocaviruses 1-4. J Gen Virol 2015. [PMID: 26224569 DOI: 10.1099/jgv.0.000253] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human bocavirus (HBoV) 1 is a widespread parvovirus causing acute respiratory disease in young children. In contrast, HBoV2 occurs in the gastrointestinal tract and is potentially associated with gastroenteritis, whilst HBoV3 and -4 infections are less frequent and have not yet been linked with human disease. Due to HBoV1 DNA persistence in the nasopharynx, serology has been advocated as a better alternative for diagnosing acute infections. In constitutionally healthy children, we previously noted that pre-existing HBoV2 immunity in a subsequent HBoV1 infection typically resulted in low or non-existent HBoV1-specific antibody responses. A phenomenon describing such immunological events among related viruses has been known since the 1950s as 'original antigenic sin' (OAS). The aim of this study was to characterize this putative OAS phenomenon in a more controlled setting. Follow-up sera of 10 rabbit pairs, inoculated twice with HBoV1-4 virus-like particles (VLPs) or control antigens, in various combinations, were analysed with HBoV1-4 IgG enzyme immunoassays with and without depletion of heterotypic HBoV antibodies. There were no significant IgG boosts after the second inoculation in either the heterologously or the homologously HBoV-inoculated rabbits, but a clear increase in cross-reactivity was seen with time. We could, however, distinguish a distinct OAS pattern from plain cross-reactivity: half of the heterologously inoculated rabbits showed IgG patterns representative of the OAS hypothesis, in line with our prior results with naturally infected children. HBoVs are the first parvoviruses to show the possible existence of OAS. Our findings provide new information on HBoV1-4 immunity and emphasize the complexity of human bocavirus diagnosis.
Collapse
Affiliation(s)
- Xuemeng Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China.,Department of Virology, University of Helsinki, Helsinki, Finland
| | - Kalle Kantola
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Lea Hedman
- Department of Virology, University of Helsinki, Helsinki, Finland.,Helsinki University Hospital, Helsinki, Finland
| | - Benedict Arku
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Klaus Hedman
- Department of Virology, University of Helsinki, Helsinki, Finland.,Helsinki University Hospital, Helsinki, Finland
| | | |
Collapse
|
34
|
Martin ET, Kuypers J, McRoberts JP, Englund JA, Zerr DM. Human Bocavirus 1 Primary Infection and Shedding in Infants. J Infect Dis 2015; 212:516-24. [PMID: 25632039 DOI: 10.1093/infdis/jiv044] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/09/2014] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Human bocavirus 1 (HBoV-1) is frequently detected in young children. The role of HBoV-1 in respiratory illness is unclear, owing to frequent detection in asymptomatic children. METHODS Weekly oral fluid samples from a longitudinal cohort of infants were tested by quantitative polymerase chain reaction for HBoV-1 DNA. Symptoms during HBoV-1 primary shedding events were compared to those during 14-day control periods occurring 1 month prior to and following the primary event. Eight single-nucleotide polymorphisms were analyzed to assess HBoV-1 variants. RESULTS Sixty-six of 87 children (76%), followed for at least 18 months from birth, had a primary HBoV-1 infection. HBoV-1 was consistently detected for >1 month (maximum duration, 402 days) following 42 of 66 primary shedding events. Children were more likely to experience new cough symptoms (odds ratio [OR], 2.7; 95% confidence interval [CI], 1.4-5.5) and to visit a healthcare provider (OR, 2.8; 95% CI, 1.02-7.7) during the 14 days surrounding the time of initial detection of HBoV-1. Recurrent HBoV-1 shedding events were found in 33 children (50%). Twelve of 48 children with HBoV-1 variant data had multiple viral allelic patterns over time. CONCLUSIONS HBoV-1 primary shedding events are associated with mild respiratory illness with subsequent prolonged detection of HBoV-1 DNA for up to a year. HBoV-1 reinfection contributes to long-term shedding.
Collapse
Affiliation(s)
| | | | | | - Janet A Englund
- University of Washington Seattle Children's Research Institute, Washington
| | - Danielle M Zerr
- University of Washington Seattle Children's Research Institute, Washington
| |
Collapse
|
35
|
Zhou L, Zheng S, Xiao Q, Ren L, Xie X, Luo J, Wang L, Huang A, Liu W, Liu E. Single detection of human bocavirus 1 with a high viral load in severe respiratory tract infections in previously healthy children. BMC Infect Dis 2014; 14:424. [PMID: 25078257 PMCID: PMC4125703 DOI: 10.1186/1471-2334-14-424] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/15/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Human bocavirus is a newly discovered parvovirus. Multiple studies have confirmed the presence of human bocavirus1 (HBoV1) in respiratory tract samples of children. The viral load, presentation of single detection and its role as a causative agent of severe respiratory tract infections have not been thoroughly elucidated. METHODS We investigated the presence of HBoV1 by quantitative polymerase chain reaction (PCR) of nasopharyngeal aspirate specimens from 1229 children hospitalized for respiratory tract infections. The samples were analyzed for 15 respiratory viruses by PCR and 7 respiratory viruses by viral culture. RESULTS At least one virus was detected in 652 (53.1%) of 1229 children, and two or more viruses were detected in 266 (21.6%) children. HBoV1 was detected in 127 children (10.3%), in which 66/127 (52%) of the cases were the only HBoV1 virus detected. Seasonal variation was observed with a high HBoV1 infection rate in summer. A cutoff value of 107 copies/mL was used to distinguish high and low HBoV1 viral loads in the nasopharyngeal aspirates. High viral loads of HBoV1 were noted predominantly in the absence of other viral agents (28/39, 71.8%) whereas there was primarily co-detection in cases of low HBoV1 viral loads (50/88, 56.8%). There were no differences in the clinical symptoms and severity between HBoV1 single detection and co-detection. In cases of HBoV1 single detection, the high viral load group was more prevalent among children with dyspnea and wheezing than was the low viral load group (42.9% vs. 23.7%, P = 0.036; 60.7% vs. 31.6%, P = 0.018). In clinical severity, a significant difference was recorded (25.0% vs. 5.3%, P = 0.003) between high viral load and low viral load groups. Of the HBoV1 positive patients associated with severe respiratory tract infections, 10/18 (55.6%) patients belonged to the HBoV1 high viral load group, and 7/10 (70%) patients had cases of HBoV1 single detection. CONCLUSIONS HBoV1 at a high viral load is not frequently found in co-detection with other respiratory viruses, and a single detection with a high viral load could be an etiological agent of severe respiratory tract infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Enmei Liu
- Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 400014, P, R, China.
| |
Collapse
|
36
|
Abstract
Human bocavirus 1 (HBoV1) is associated with respiratory infections worldwide, mainly in children. Similar to other parvoviruses, it is believed that HBoV1 can persist for long periods of time in humans, probably through maintaining concatemers of the virus single-stranded DNA genome in the nuclei of infected cells. Recently, HBoV-1 was detected in high rates in adenoid and palatine tonsils samples from patients with chronic adenotonsillar diseases, but nothing is known about the virus replication levels in those tissues. A 3-year prospective hospital-based study was conducted to detect and quantify HBoV1 DNA and mRNAs in samples of the adenoids (AD), palatine tonsils (PT), nasopharyngeal secretions (NPS), and peripheral blood (PB) from patients undergoing tonsillectomy for tonsillar hypertrophy or recurrent tonsillitis. HBoV1 was detected in 25.3% of the AD samples, while the rates of detection in the PT, NPS, and PB samples were 7.2%, 10.5%, and 1.7%, respectively. The viral loads were higher in AD samples, and 27.3% of the patients with HBoV had mRNA detectable in this tissue. High viral loads and detectable mRNA in the AD were associated with HBoV1 detection in the other sample sites. The adenoids are an important site of HBoV1 replication and persistence in children with tonsillar hypertrophy. The adenoids contain high HBoV1 loads and are frequently positive for HBoV mRNA, and this is associated with the detection of HBoV1 in secretions.
Collapse
|
37
|
Abstract
Non-influenza respiratory virus infections are common worldwide and contribute to morbidity and mortality in all age groups. The recently identified Middle East respiratory syndrome coronavirus has been associated with rapidly progressive pneumonia and high mortality rate. Adenovirus 14 has been increasingly recognized in severe acute respiratory illness in both military and civilian individuals. Rhinovirus C and human bocavirus type 1 have been commonly detected in infants and young children with respiratory tract infection and studies have shown a positive correlation between respiratory illness and high viral loads, mono-infection, viremia, and/or serologically-confirmed primary infection.
Collapse
Affiliation(s)
- James J Dunn
- Department of Pathology and Laboratory Medicine, Cook Children's Medical Center, 801 Seventh Avenue, Fort Worth, TX 76104, USA.
| | - Melissa B Miller
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Campus Box 7525, Chapel Hill, NC 27599-7525, USA
| |
Collapse
|
38
|
Human bocavirus 1 infects commercially available primary human airway epithelium cultures productively. J Virol Methods 2013; 195:112-9. [PMID: 24134939 PMCID: PMC3855471 DOI: 10.1016/j.jviromet.2013.10.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/29/2013] [Accepted: 10/01/2013] [Indexed: 01/11/2023]
Abstract
Human bocavirus 1 (HBoV1), a human parvovirus, belongs to the genus Bocavirus of the Parvoviridae family. It causes wheezing in young children with acute respiratory tract infections. HBoV1 has been shown to infect polarized human airway epithelium (HAE) made in house, and induces airway epithelial damage. In this study, two commercially available HAE cultures, EpiAirway and MucilAir HAE, were examined for HBoV1 infection. Both HAE cultures support fully productive HBoV1 infection. Infected EpiAirway and MucilAir HAE cultures showed loss of cilia, disruption of the tight junction barrier, and a significant decrease in transepithelial electrical resistance. Notably, HBoV1 persistent infection was demonstrated by maintaining HBoV1-infected EpiAirway HAE for as long as 50 days. After 2 days post-infection, progeny virus was produced consistently daily at a level of over 2×10(8) viral genome copies per culture (0.6 cm(2)). This study is the first to use commercial sources of HAE cultures for HBoV1 infection. The availability of these cultures will enable a wide range of laboratories to study HBoV1 infection.
Collapse
|