1
|
Hsu CY, Moradkasani S, Suliman M, Uthirapathy S, Zwamel AH, Hjazi A, Vashishth R, Beig M. Global patterns of antibiotic resistance in group B Streptococcus: a systematic review and meta-analysis. Front Microbiol 2025; 16:1541524. [PMID: 40342597 PMCID: PMC12060732 DOI: 10.3389/fmicb.2025.1541524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/14/2025] [Indexed: 05/11/2025] Open
Abstract
Objectives Streptococcus agalactiae, or group B Streptococcus (GBS), is a significant pathogen associated with severe infections in neonates, particularly sepsis and meningitis. The increasing prevalence of antibiotic resistance among GBS strains is a growing public health concern, necessitating a comprehensive meta-analysis to evaluate the prevalence of this resistance globally. Methods We conducted a comprehensive systematic search across four major scientific databases: Scopus, PubMed, Web of Science, and EMBASE, targeting articles published until December 13, 2023. This meta-analysis focused on studies that examined antibiotic resistance in GBS strains. The Joanna Briggs Institute tool was employed to assess the quality of the included studies. This meta-analysis applied a random-effects model to synthesize data on antibiotic resistance in GBS, incorporating subgroup analyses and regression techniques to explore heterogeneity and trends in resistance rates over time. Outliers and influential studies were identified using statistical methods such as Cook's distance, and funnel plot asymmetry was assessed to evaluate potential publication bias. All analyses were conducted using R software (version 4.2.1) and the metafor package (version 3.8.1). Results This study included 266 studies from 57 countries, revealing significant variability in GBS antibiotic resistance rates. The highest resistance rates were observed for tetracycline (80.1, 95% CI: 77.1-82.8%), while tedizolid (0.1, 95% CI: 0.0-0.8%) showed the lowest resistance rates. Significant heterogeneity in resistance rates was observed, particularly for antibiotics such as azithromycin and gentamicin (I 2 = 97.29%), variability across studies. On the other hand, tigecycline and ceftaroline exhibited no heterogeneity (I 2 = 0%), suggesting consistent resistance patterns. Subgroup analyses revealed disparities in resistance rates based on country, continent, and methodological categories. Significant increase in resistance rates for several antibiotics over time, including clindamycin, erythromycin, ceftriaxone, cefuroxime, ciprofloxacin, levofloxacin, moxifloxacin, chloramphenicol, and ofloxacin. Ofloxacin and cefuroxime showed particularly steep trends. Conversely, a declining resistance trend was observed for oxacillin. Conclusion This study emphasizes the growing issue of antibiotic resistance in GBS strains. Notable resistance to older and newer antibiotics, increasing resistance over time, regional disparities, and methodological variations are noted. Rising resistance trends for multiple antibiotics underscore the urgent need for global surveillance and improved antibiotic stewardship. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/view/CRD42024566269, CRD42024566269.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, United States
| | | | - Muath Suliman
- Department of Laboratory Medicine, School of Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Subasini Uthirapathy
- Pharmacy Department Tishk International University Erbil, Kurdistan Region, Iraq
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Imperi M, Gherardi G, Alfarone G, Creti R. Group B Streptococcus Infections in Non-Pregnant Adults, Italy, 2015-2019. Pathogens 2024; 13:807. [PMID: 39338998 PMCID: PMC11434888 DOI: 10.3390/pathogens13090807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/29/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Group B Streptococcus (GBS, Streptococcus agalactiae) is a pathogen of increasing importance in adults. Severe and invasive cases in non-pregnant adults were collected during the period 2015-2019 by voluntary-based surveillance. In total, 108 GBS strains were phenotypically and genotypically characterized for the serotype, antimicrobial resistance, pili, surface protein genes, and the hyper-virulent adhesin hvgA. Patients were divided into two age groups: adults (18-64 years; n = 32) and older adults (≥65 years; n = 72). The average age was 70.8 years, with a male/female ratio of 1.7. Most isolates were recovered from cases of bacteremia (blood, n = 93), and a higher frequency of invasive GBS infections (iGBS) was found among older adults (66.7%). Serotype III was the most frequent (n = 41, 38%), followed by type Ia and type V (n = 20 each, 18.5%). Serotypes Ia, Ib, II, III, IV, and V accounted for all but one isolates (99.1%). The iGBS isolates were universally susceptible to penicillin, while the prevalence of resistance to clindamycin, erythromycin, tetracycline, and high-level gentamicin resistance was 26.8%, 24.1%, 85.2%, and 5.5%, respectively, with the predominance of the erm(B) gene for macrolide resistance and the tet(M) gene for tetracycline resistance. The associations between the serotypes/antimicrobial resistance/virulence traits underlined the increasing importance of serotype III and its contribution to antimicrobial resistance as well as the steady increase over time of serotype IV. This nationwide study confirmed the need for monitoring the GBS epidemiology in non-pregnant adults through continuous surveillance of GBS infections.
Collapse
Affiliation(s)
| | | | | | - Roberta Creti
- Department of Infectious Diseases, Antibiotic Resistance and Special Pathogens Unit, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (G.G.); (G.A.)
| |
Collapse
|
3
|
Choi JH, Kim TH, Kim ET, Kim YR, Lee H. Molecular epidemiology and virulence factors of group B Streptococcus in South Korea according to the invasiveness. BMC Infect Dis 2024; 24:740. [PMID: 39060964 PMCID: PMC11282841 DOI: 10.1186/s12879-024-09625-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Group B Streptococcus (GBS) causes invasive infections in newborns and elderly individuals, but is a noninvasive commensal bacterium in most immunocompetent people. Recently, the incidence of invasive GBS infections has increased worldwide, and there is growing interest in the molecular genetic characteristics of invasive GBS strains. Vaccines against GBS are expected in the near future. Here, we aimed to analyze the molecular epidemiology of GBS according to the invasiveness in South Korea. METHODS We analyzed GBS isolates collected and stored in two hospitals in South Korea between January 2015 and December 2020. The invasiveness of these isolates was determined via a retrospective review of clinical episodes. Totally, 120 GBS isolates from 55 children and 65 adults were analyzed. Serotype and sequence type (ST) were determined using multiplex polymerase chain reaction (PCR) and multilocus sequence typing, respectively. Fourteen virulence factor-encoding genes of GBS were analyzed using multiplex PCR. RESULTS Forty one (34.2%) were invasive infection-related GBS isolates (iGBS). The most frequently detected serotype was III (39/120, 32.5%), and it accounted for a high proportion of iGBS (21/41, 51.2%). The most frequent ST was ST19 (18/120, 15.0%), followed by ST2 (17/120, 14.2%). Serotype III/ST17 was predominant in iGBS (12/41, 29.3%), and all 17 ST2 strains were noninvasive. The distribution of most of the investigated virulence factors was not significantly related to invasiveness; noteworthily, most of the serotype III/ST17 iGBS carried pilus island (PI) 2b (10/12, 83.3%), and the prevalence of fbsB was significantly low compared with noninvasive GBS isolates (P = 0.004). Characteristically, the combination of bca(+)-cspA(+)-pavA(+)-fbsB(-)-rib(+)-bac(-) was predominant in iGBS (24.4%, 10/41). CONCLUSIONS Serotype III/ST17 GBS carrying PI-2b was frequently detected in iGBS. There was no significant association between invasiveness and the pattern of virulence factors; however, a specific combination of virulence factors was predominant in iGBS.
Collapse
Affiliation(s)
- Jae Hong Choi
- Pediatrics, Jeju National University College of Medicine, Jeju, Republic of Korea
- Pediatrics, Jeju National University Hospital, Jeju, Republic of Korea
| | - Tae Hyoung Kim
- Biomedicine and Drug Development, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Eui Tae Kim
- Biomedicine and Drug Development, Jeju National University College of Medicine, Jeju, Republic of Korea
- Microbiology and Immunology, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Young Ree Kim
- Laboratory Medicine, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Hyunju Lee
- Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
- Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Founou LL, Khan UB, Medugu N, Pinto TCA, Darboe S, Chendi Z, Founou RC, To KN, Jamrozy D, Karampatsas K, Carr VR, Pepper K, Dangor Z, Ip M, Le Doare K, Bentley SD. Molecular epidemiology of Streptococcus agalactiae in non-pregnant populations: a systematic review. Microb Genom 2023; 9. [PMID: 38019122 DOI: 10.1099/mgen.0.001140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Streptococcus agalactiae (group B Streptococcus, GBS) has recently emerged as an important pathogen among adults. However, it is overlooked in this population, with all global efforts being directed towards its containment among pregnant women and neonates. This systematic review assessed the molecular epidemiology and compared how the lineages circulating among non-pregnant populations relate to those of pregnant and neonatal populations worldwide. A systematic search was performed across nine databases from 1 January 2000 up to and including 20 September 2021, with no language restrictions. The Joanna Briggs Institute (JBI) Prevalence Critical Appraisal Tool (PCAT) was used to assess the quality of included studies. The global population structure of GBS from the non-pregnant population was analysed using in silico typing and phylogenetic reconstruction tools. Twenty-four articles out of 13 509 retrieved across 9 databases were eligible. Most studies were conducted in the World Health Organization European region (12/24, 50 %), followed by the Western Pacific region (6/24, 25 %) and the Americas region (6/24, 25 %). Serotype V (23%, 2310/10240) and clonal complex (CC) 1 (29 %, 2157/7470) were the most frequent serotype and CC, respectively. The pilus island PI1 : PI2A combination (29 %, 3931/13751) was the most prevalent surface protein gene, while the tetracycline resistance tetM (55 %, 5892/10624) was the leading antibiotic resistance gene. This study highlights that, given the common serotype distribution identified among non-pregnant populations (V, III, Ia, Ib, II and IV), vaccines including these six serotypes will provide broad coverage. The study indicates advanced molecular epidemiology studies, especially in resource-constrained settings for evidence-based decisions. Finally, the study shows that considering all at-risk populations in an inclusive approach is essential to ensure the sustainable containment of GBS.
Collapse
Affiliation(s)
- Luria Leslie Founou
- Reproductive, Maternal, Newborn and Child Health (ReMARCH) Research Unit, Centre of Expertise and Biological Diagnostic of Cameroon Research Institute (CEDBCAM-RI), Yaoundé, Cameroon
- Bioinformatics and Applied Machine Learning Research Unit, EDEN Biosciences Research Institute (EBRI), EDEN Foundation, Yaoundé, Cameroon
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4041, South Africa
| | - Uzma Basit Khan
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Nubwa Medugu
- Department of Medical Microbiology and Parasitology, National Hospital Abuja, Abuja, Nigeria
| | - Tatiana C A Pinto
- Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Saffiatou Darboe
- Medical Research Council Unit at London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Zhu Chendi
- Department of Microbiology, the Chinese University of Hong Kong, Hong Kong, PR China
| | - Raspail Carrel Founou
- Antibiotic Resistance Infectious Diseases (ARID) Research Unit, Centre of Expertise and Biological Diagnostic of Cameroon Research Institute (CEDBCAM-RI), Yaoundé, Cameroon
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4041, South Africa
- Department of Microbiology, Hematology and Immunology, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
| | - Ka-Ning To
- Institute of Infection and Immunity, St George's University of London, London, UK
| | - Dorota Jamrozy
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | | | - Victoria R Carr
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Kevin Pepper
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Ziyaad Dangor
- Vaccines and Infectious Diseases Analytics (VIDA) Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Margaret Ip
- Department of Microbiology, the Chinese University of Hong Kong, Hong Kong, PR China
| | - Kirsty Le Doare
- Medical Research Council Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Stephen D Bentley
- Department of Pathology, University of Cambridge, Cambridge, UK
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| |
Collapse
|
5
|
Hanze Villavicencio KL, Job MJ, Burghard AC, Taffet A, Banda FM, Vurayai M, Mokomane M, Arscott-Mills T, Mazhani T, Nchingane S, Thomas B, Steenhoff AP, Ratner AJ. Genomic Analysis of Group B Streptococcus Carriage Isolates From Botswana Reveals Distinct Local Epidemiology and Identifies Novel Strains. Open Forum Infect Dis 2023; 10:ofad496. [PMID: 37869411 PMCID: PMC10588617 DOI: 10.1093/ofid/ofad496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
In pregnant people colonized with group B Streptococcus (GBS) in Botswana, we report the presence/expansion of sequence types 223 and 109, a low rate of erythromycin resistance, and 3 novel sequence types. These data highlight the importance of local epidemiologic studies of GBS, a significant source of neonatal disease.
Collapse
Affiliation(s)
- Karen L Hanze Villavicencio
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Megan J Job
- Department of Pediatrics, NewYork University Grossman School of Medicine, New York, New York, USA
| | - Anne Claire Burghard
- Department of Pediatrics, NewYork University Grossman School of Medicine, New York, New York, USA
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NewYork, USA
| | - Allison Taffet
- Department of Pediatrics, NewYork University Grossman School of Medicine, New York, New York, USA
| | - Francis M Banda
- Department of Pediatrics & Adolescent Health, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | - Moses Vurayai
- School of Allied Health Professionals, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Margaret Mokomane
- School of Allied Health Professionals, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Tonya Arscott-Mills
- Department of Pediatrics & Adolescent Health, Faculty of Medicine, University of Botswana, Gaborone, Botswana
- Botswana-UPenn Partnership, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
- Global Health Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Tiny Mazhani
- Department of Pediatrics & Adolescent Health, Faculty of Medicine, University of Botswana, Gaborone, Botswana
| | | | - Brady Thomas
- Department of Pediatrics, Stead Family Children's Hospital, University of Iowa, Iowa City, Iowa, USA
| | - Andrew P Steenhoff
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Pediatrics & Adolescent Health, Faculty of Medicine, University of Botswana, Gaborone, Botswana
- Botswana-UPenn Partnership, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
- Global Health Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Adam J Ratner
- Department of Pediatrics, NewYork University Grossman School of Medicine, New York, New York, USA
- Department of Microbiology, NewYork University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
6
|
Hilt EE, Ferrieri P. Next Generation and Other Sequencing Technologies in Diagnostic Microbiology and Infectious Diseases. Genes (Basel) 2022; 13:genes13091566. [PMID: 36140733 PMCID: PMC9498426 DOI: 10.3390/genes13091566] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have become increasingly available for use in the clinical microbiology diagnostic environment. There are three main applications of these technologies in the clinical microbiology laboratory: whole genome sequencing (WGS), targeted metagenomics sequencing and shotgun metagenomics sequencing. These applications are being utilized for initial identification of pathogenic organisms, the detection of antimicrobial resistance mechanisms and for epidemiologic tracking of organisms within and outside hospital systems. In this review, we analyze these three applications and provide a comprehensive summary of how these applications are currently being used in public health, basic research, and clinical microbiology laboratory environments. In the public health arena, WGS is being used to identify and epidemiologically track food borne outbreaks and disease surveillance. In clinical hospital systems, WGS is used to identify multi-drug-resistant nosocomial infections and track the transmission of these organisms. In addition, we examine how metagenomics sequencing approaches (targeted and shotgun) are being used to circumvent the traditional and biased microbiology culture methods to identify potential pathogens directly from specimens. We also expand on the important factors to consider when implementing these technologies, and what is possible for these technologies in infectious disease diagnosis in the next 5 years.
Collapse
|
7
|
Kulik T, Molcan T, Fiedorowicz G, van Diepeningen A, Stakheev A, Treder K, Olszewski J, Bilska K, Beyer M, Pasquali M, Stenglein S. Whole-genome single nucleotide polymorphism analysis for typing the pandemic pathogen Fusarium graminearum sensu stricto. Front Microbiol 2022; 13:885978. [PMID: 35923405 PMCID: PMC9339996 DOI: 10.3389/fmicb.2022.885978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Recent improvements in microbiology and molecular epidemiology were largely stimulated by whole- genome sequencing (WGS), which provides an unprecedented resolution in discriminating highly related genetic backgrounds. WGS is becoming the method of choice in epidemiology of fungal diseases, but its application is still in a pioneer stage, mainly due to the limited number of available genomes. Fungal pathogens often belong to complexes composed of numerous cryptic species. Detecting cryptic diversity is fundamental to understand the dynamics and the evolutionary relationships underlying disease outbreaks. In this study, we explore the value of whole-genome SNP analyses in identification of the pandemic pathogen Fusarium graminearum sensu stricto (F.g.). This species is responsible for cereal diseases and negatively impacts grain production worldwide. The fungus belongs to the monophyletic fungal complex referred to as F. graminearum species complex including at least sixteen cryptic species, a few among them may be involved in cereal diseases in certain agricultural areas. We analyzed WGS data from a collection of 99 F.g. strains and 33 strains representing all known cryptic species belonging to the FGSC complex. As a first step, we performed a phylogenomic analysis to reveal species-specific clustering. A RAxML maximum likelihood tree grouped all analyzed strains of F.g. into a single clade, supporting the clustering-based identification approach. Although, phylogenetic reconstructions are essential in detecting cryptic species, a phylogenomic tree does not fulfill the criteria for rapid and cost-effective approach for identification of fungi, due to the time-consuming nature of the analysis. As an alternative, analysis of WGS information by mapping sequence data from individual strains against reference genomes may provide useful markers for the rapid identification of fungi. We provide a robust framework for typing F.g. through the web-based PhaME workflow available at EDGE bioinformatics. The method was validated through multiple comparisons of assembly genomes to F.g. reference strain PH-1. We showed that the difference between intra- and interspecies variability was at least two times higher than intraspecific variation facilitating successful typing of F.g. This is the first study which employs WGS data for typing plant pathogenic fusaria.
Collapse
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- *Correspondence: Tomasz Kulik,,
| | - Tomasz Molcan
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAN), Warsaw, Poland
| | - Grzegorz Fiedorowicz
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anne van Diepeningen
- Biointeractions and Plant Health, Wageningen Plant Research, Wageningen, Netherlands
| | - Alexander Stakheev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Kinga Treder
- Department of Agriculture Systems, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | - Katarzyna Bilska
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marco Beyer
- Agro-Environmental Systems, Environmental Monitoring and Sensing Unit, Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Sebastian Stenglein
- National Scientific and Technical Research Council, Godoy Cruz, Argentina
- Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| |
Collapse
|
8
|
Feuerschuette OHM, Alves EV, Scheffer MC, Vilela APP, Barazzetti FH, Feuerschuette HM, Cancelier ACL, Bazzo ML. Genetic diversity and antimicrobial resistance of invasive, noninvasive and colonizing group B Streptococcus isolates in southern Brazil. Access Microbiol 2022; 4:acmi000370. [PMID: 36004365 PMCID: PMC9394672 DOI: 10.1099/acmi.0.000370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction. Group B
Streptococcus
(GBS) is a human commensal bacterium that is also associated with infection in pregnant and non-pregnant adults, neonates and elderly people.
Gap Statement. The authors hypothesize that knowledge of regional GBS genetic patterns may allow the use of prevention and treatment measures to reduce the burden of streptococcal disease.
Aim. The aim was to report the genotypic diversity and antimicrobial sensitivity profiles of invasive, noninvasive urinary and colonizing GBS strains, and evaluate the relationships between these findings.
Methodology. The study included consecutive and non-duplicated GBS isolates recovered in southern Brazil from 2015 to 2017. We performed multiple-locus variable-number tandem repeat analysis (MLVA) and PCR analyses to determine capsular serotypes and identify the presence of the resistance genes mefA/E, ermB and ermA/TR, and also antibiotic susceptibility testing.
Results. The sample consisted of 348 GBS strains, 42 MLVA types were identified, and 4 of them represented 64 % of isolates. Serotype Ia was the most prevalent (42.2 %) and was found in a higher percentage associated with colonization, followed by serotypes V (24.4 %), II (17.8 %) and III (7.8 %). Serotype V was associated with invasive isolates and serotypes II and III with noninvasive isolates, without significant differences. All isolates were susceptible to penicillin. GBS 2018/ hvgA was observed in 17 isolates, with 11 belonging to serogroup III. The Hunter–Gaston diversity index was calculated as 0.879. The genes mefA/E, erm/B and erm/A/TR were found in 45, 19 and 46 isolates.
Conclusion. This report suggests that the circulating GBS belong to a limited number of genetic lineages. The most common genotypes were Ia/MT12 and V/MT18, which are associated with high resistance to macrolides and the presence of the genes mefA/E and ermA/TR. Penicillin remains the antibiotic of choice. Implementation of continuous surveillance of GBS infections will be essential to assess GBS epidemiology and develop accurate GBS prevention, especially strategies associated with vaccination.
Collapse
Affiliation(s)
- Otto Henrique May Feuerschuette
- Universidade do Sul de Santa Catarina – UNISUL, Tubarão, Brazil
- Hospital Universitário Professor Polydoro Ernani de São Thiago, HU/UFSC, Florianópolis, Brazil
| | - Eduardo Venâncio Alves
- Laboratório de Biologia Molecular, Microbiologia e Sorologias, HU/UFSC, Florianópolis, Brazil
| | - Mara Cristina Scheffer
- Laboratório de Biologia Molecular, Microbiologia e Sorologias, HU/UFSC, Florianópolis, Brazil
- Hospital Universitário Professor Polydoro Ernani de São Thiago, HU/UFSC, Florianópolis, Brazil
| | - Ana Paula Pessoa Vilela
- Laboratório de Biologia Molecular, Microbiologia e Sorologias, HU/UFSC, Florianópolis, Brazil
| | | | | | | | - Maria Luiza Bazzo
- Laboratório de Biologia Molecular, Microbiologia e Sorologias, HU/UFSC, Florianópolis, Brazil
| |
Collapse
|
9
|
|
10
|
Abstract
Group B Streptococcus (GBS) is a leading cause of invasive neonatal disease. Epidemiological surveillance of GBS is important to determine cumulative incidence, antimicrobial resistance rates, and maternal and neonatal disease prevention. In this study, we present an update on GBS epidemiology in Alberta, Canada, from 2014 to 2020. Over the 7-year period, 1,556 GBS isolates were submitted to the Alberta Public Health Laboratory for capsular polysaccharide (CPS) typing and antimicrobial susceptibility testing. We analyzed the distribution of CPS types in Alberta and found CPS types III (23.6%), Ia (16.0%), Ib (14.8%), II (13.3%), V (12.7%), IV (12.5%), and VI (2.38%) to be the most prevalent. Less than 1% each of CPS types VII, VIII, and IX were identified. In agreement with historical data, the presence of CPS type IV continued to rise across Alberta, particularly in cases of adult infection, where a 2-fold increase was observed. Cumulative incidences of GBS cases per 100,000 population and late-onset disease per 1,000 live births increased from 4.43 to 5.36 and 0.38 to 0.41, respectively, from 2014 to 2020. However, the incidence of early-onset disease decreased during the 7-year period from 0.2 to 0.07, suggestive of successful intrapartum chemoprophylaxis treatment programs. All GBS isolates were susceptible to penicillin and vancomycin. However, nonsusceptibility to erythromycin increased significantly, from 36.85% to 50.8%, from 2014 to 2020. Similarly, nonsusceptibility to clindamycin also increased significantly, from 21.0% to 45.8%. In comparison to historical data, the overall rates of GBS infection and antimicrobial resistance have increased and the predominant CPS types have changed. IMPORTANCE This work describes the epidemiology of invasive infections caused by the bacterium group B Streptococcus (GBS) in Alberta, Canada. We show that rates of invasive GBS disease have increased from 2014 to 2020 for both adult disease and late-onset disease in neonates, whereas the rate of early onset disease in neonates has decreased. We also show that the rate of resistance to erythromycin (an antibiotic used to treat GBS) has also increased in this time.
Collapse
MESH Headings
- Adolescent
- Adult
- Alberta/epidemiology
- Anti-Bacterial Agents/therapeutic use
- Bacterial Typing Techniques
- Blood Culture
- Canada/epidemiology
- Child
- Child, Preschool
- Clindamycin/therapeutic use
- Drug Resistance, Multiple, Bacterial/genetics
- Erythromycin/therapeutic use
- Female
- Humans
- Infant
- Infant, Newborn
- Infant, Newborn, Diseases/drug therapy
- Infant, Newborn, Diseases/epidemiology
- Infant, Newborn, Diseases/microbiology
- Male
- Microbial Sensitivity Tests
- Middle Aged
- Polysaccharides, Bacterial/analysis
- Streptococcal Infections/drug therapy
- Streptococcal Infections/epidemiology
- Streptococcus agalactiae/classification
- Streptococcus agalactiae/drug effects
- Streptococcus agalactiae/isolation & purification
- Young Adult
Collapse
Affiliation(s)
- Angela Ma
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, University of Albertagrid.17089.37, Edmonton, Canada
| | - L Alexa Thompson
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, University of Albertagrid.17089.37, Edmonton, Canada
| | - Thomas Corsiatto
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, University of Albertagrid.17089.37, Edmonton, Canada
| | - Donna Hurteau
- Alberta Precision Laboratories-Provincial Laboratory for Public Health, Edmonton, Canada
| | - Gregory J Tyrrell
- Division of Diagnostic and Applied Microbiology, Department of Laboratory Medicine and Pathology, University of Albertagrid.17089.37, Edmonton, Canada
- Alberta Precision Laboratories-Provincial Laboratory for Public Health, Edmonton, Canada
| |
Collapse
|
11
|
Epidemiological Characterization of Group B Streptococcus Infections in Alberta, Canada: An Update from 2014 to 2020. Microbiol Spectr 2021; 9:e0128321. [PMID: 34762517 PMCID: PMC8585492 DOI: 10.1128/spectrum.01283-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Group B Streptococcus (GBS) is a leading cause of invasive neonatal disease. Epidemiological surveillance of GBS is important to determine cumulative incidence, antimicrobial resistance rates, and maternal and neonatal disease prevention. In this study, we present an update on GBS epidemiology in Alberta, Canada, from 2014 to 2020. Over the 7-year period, 1,556 GBS isolates were submitted to the Alberta Public Health Laboratory for capsular polysaccharide (CPS) typing and antimicrobial susceptibility testing. We analyzed the distribution of CPS types in Alberta and found CPS types III (23.6%), Ia (16.0%), Ib (14.8%), II (13.3%), V (12.7%), IV (12.5%), and VI (2.38%) to be the most prevalent. Less than 1% each of CPS types VII, VIII, and IX were identified. In agreement with historical data, the presence of CPS type IV continued to rise across Alberta, particularly in cases of adult infection, where a 2-fold increase was observed. Cumulative incidences of GBS cases per 100,000 population and late-onset disease per 1,000 live births increased from 4.43 to 5.36 and 0.38 to 0.41, respectively, from 2014 to 2020. However, the incidence of early-onset disease decreased during the 7-year period from 0.2 to 0.07, suggestive of successful intrapartum chemoprophylaxis treatment programs. All GBS isolates were susceptible to penicillin and vancomycin. However, nonsusceptibility to erythromycin increased significantly, from 36.85% to 50.8%, from 2014 to 2020. Similarly, nonsusceptibility to clindamycin also increased significantly, from 21.0% to 45.8%. In comparison to historical data, the overall rates of GBS infection and antimicrobial resistance have increased and the predominant CPS types have changed. IMPORTANCE This work describes the epidemiology of invasive infections caused by the bacterium group B Streptococcus (GBS) in Alberta, Canada. We show that rates of invasive GBS disease have increased from 2014 to 2020 for both adult disease and late-onset disease in neonates, whereas the rate of early onset disease in neonates has decreased. We also show that the rate of resistance to erythromycin (an antibiotic used to treat GBS) has also increased in this time.
Collapse
|
12
|
Population genomics reveals distinct temporal association with the emergence of ST1 serotype V Group B Streptococcus and macrolide resistance in North America. Antimicrob Agents Chemother 2021; 66:e0071421. [PMID: 34633844 DOI: 10.1128/aac.00714-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identified in the 1970s as the leading cause of invasive bacterial disease in neonates and young infants, Group B Streptococcus (GBS) is now also recognized as a significant cause of morbidity and mortality among adults with underlying medical conditions and the elderly. Concomitant with the increasing incidence of GBS invasive disease in adults is the rise of resistance among GBS isolates to second line antibiotics. Previous research shows that among serotype V GBS - one of the most common capsular types causing adult invasive disease - sequence type 1 (ST1) - accounts for an overwhelming majority of adult invasive disease isolates and frequently harbors macrolide resistance. In this study, using whole genome sequencing data from strains isolated in the USA and Canada over a 45-year period, we examined the association of antimicrobial resistance with the emergence of invasive serotype V ST1 GBS. Our findings show a strong temporal association between increased macrolide resistance and the emergence of serotype V ST1 GBS subpopulations that currently co-circulate to cause adult as well as young infant invasive disease. ST1 GBS subpopulations are defined, in part, by the presence of macrolide resistance genes in mobile genetic elements. Increased frequency of macrolide resistance-encoding mobile genetic elements among invasive GBS ST1 strains suggests the presence of such elements contributes to GBS virulence. Our work provides a foundation for the investigation of genetic features contributing to the increasing prevalence and pathogenesis of serotype V GBS in adult invasive disease.
Collapse
|
13
|
McGee L, Chochua S, Li Z, Mathis S, Rivers J, Metcalf B, Ryan A, Alden N, Farley MM, Harrison LH, Snippes Vagnone P, Lynfield R, Smelser C, Muse A, Thomas AR, Schrag S, Beall BW. Multistate, Population-Based Distributions of Candidate Vaccine Targets, Clonal Complexes, and Resistance Features of Invasive Group B Streptococci Within the United States, 2015-2017. Clin Infect Dis 2021; 72:1004-1013. [PMID: 32060499 DOI: 10.1093/cid/ciaa151] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Group B Streptococcus (GBS) is a leading cause of neonatal sepsis and meningitis and an important cause of invasive infections in pregnant and nonpregnant adults. Vaccines targeting capsule polysaccharides and common proteins are under development. METHODS Using whole genome sequencing, a validated bioinformatics pipeline, and targeted antimicrobial susceptibility testing, we characterized 6340 invasive GBS isolates recovered during 2015-2017 through population-based Active Bacterial Core surveillance (ABCs) in 8 states. RESULTS Six serotypes accounted for 98.4% of isolates (21.8% Ia, 17.6% V, 17.1% II, 15.6% III, 14.5% Ib, 11.8% IV). Most (94.2%) isolates were in 11 clonal complexes (CCs) comprised of multilocus sequence types identical or closely related to sequence types 1, 8, 12, 17, 19, 22, 23, 28, 88, 452, and 459. Fifty-four isolates (0.87%) had point mutations within pbp2x associated with nonsusceptibility to 1 or more β-lactam antibiotics. Genes conferring resistance to macrolides and/or lincosamides were found in 56% of isolates; 85.2% of isolates had tetracycline resistance genes. Two isolates carrying vanG were vancomycin nonsusceptible (minimum inhibitory concentration = 2 µg/mL). Nearly all isolates possessed capsule genes, 1-2 of the 3 main pilus gene clusters, and 1 of 4 homologous alpha/Rib family determinants. Presence of the hvgA virulence gene was primarily restricted to serotype III/CC17 isolates (465 isolates), but 8 exceptions (7 IV/CC452 and 1 IV/CC17) were observed. CONCLUSIONS This first comprehensive, population-based quantitation of strain features in the United States suggests that current vaccine candidates should have good coverage. The β-lactams remain appropriate for first-line treatment and prophylaxis, but emergence of nonsusceptibility warrants ongoing monitoring.
Collapse
Affiliation(s)
- Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sopio Chochua
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zhongya Li
- IHRC Inc, Contractor to Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Saundra Mathis
- IHRC Inc, Contractor to Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joy Rivers
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Benjamin Metcalf
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alison Ryan
- California Emerging Infections Program, Oakland, California, USA
| | - Nisha Alden
- Colorado Department of Public Health and Environment, Denver, Colorado, USA
| | - Monica M Farley
- Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
| | - Lee H Harrison
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Ruth Lynfield
- Minnesota Department of Health, Saint Paul, Minnesota, USA
| | - Chad Smelser
- New Mexico Department of Public Health, Santa Fe, New Mexico, USA
| | - Alison Muse
- New York State Department of Health, Albany, New York, USA
| | - Ann R Thomas
- Oregon Department of Human Services, Portland, Oregon, USA
| | - Stephanie Schrag
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bernard W Beall
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
14
|
Mudzana R, Mavenyengwa RT, Gudza-Mugabe M. Analysis of virulence factors and antibiotic resistance genes in group B streptococcus from clinical samples. BMC Infect Dis 2021; 21:125. [PMID: 33509097 PMCID: PMC7844887 DOI: 10.1186/s12879-021-05820-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/19/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Streptococcus agalacticae (Group B Streptococcus, GBS) is one of the most important causative agents of serious infections among neonates. This study was carried out to identify antibiotic resistance and virulence genes associated with GBS isolated from pregnant women. METHODS A total of 43 GBS isolates were obtained from 420 vaginal samples collected from HIV positive and negative women who were 13-35 weeks pregnant attending Antenatal Care at Chitungwiza and Harare Central Hospitals in Zimbabwe. Identification tests of GBS isolates was done using standard bacteriological methods and molecular identification testing. Antibiotic susceptibility testing was done using the modified Kirby-Bauer method and E-test strips. The boiling method was used to extract DNA and Polymerase Chain Reaction (PCR) was used to screen for 13 genes. Data was fed into SPSS 24.0. RESULTS Nine distinct virulence gene profiles were identified and hly-scpB-bca-rib 37.2% (16/43) was common. The virulence genes identified were namely hly 97.8% (42/43), scpB 90.1% (39/43), bca 86.0% (37/43), rib 69.8% (30/43) and bac 11.6% (5/43). High resistance to tetracycline 97.7% (42/43) was reported followed by 72.1% (31/43) cefazolin, 69.8% (30/43) penicillin G, 58.1% (25/43) ampicillin, 55.8% (24/43) clindamycin, 46.5% (20/43) ceftriaxone, 34.9% (15/43) chloramphenicol, and 30.2% (13/43) for both erythromycin and vancomycin using disk diffusion. Antibiotic resistance genes among the resistant and intermediate-resistant isolates showed high frequencies for tetM 97.6% (41/42) and low frequencies for ermB 34.5% (10/29), ermTR 10.3% (3/29), mefA 3.4% (1/29), tetO 2.4% (1/42) and linB 0% (0/35). The atr housekeeping gene yielded 100% (43/43) positive results, whilst the mobile genetic element IS1548 yielded 9.3% (4/43). CONCLUSION The study showed high prevalence of hly, scpB, bca and rib virulence genes in S. agalactiae strains isolated from pregnant women. Tetracycline resistance was predominantly caused by the tetM gene, whilst macrolide resistance was predominantly due to the presence of erm methylase, with the ermB gene being more prevalent. Multi-drug resistance coupled with the recovery of resistant isolates to antimicrobial agents such as penicillins indicates the importance of GBS surveillance and susceptibility tests. It was also observed that in vitro phenotypic resistance is not always accurately predicted by resistance genotypes.
Collapse
Affiliation(s)
- Raymond Mudzana
- Department of Medical Microbiology, National Polio Laboratory, University of Zimbabwe College of Health Sciences, P. O. Box A178, Avondale, Harare, Zimbabwe
| | - Rooyen T. Mavenyengwa
- Department of Medical Microbiology, National Polio Laboratory, University of Zimbabwe College of Health Sciences, P. O. Box A178, Avondale, Harare, Zimbabwe
| | - Muchaneta Gudza-Mugabe
- Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Room No. 3.22 Falmouth Building, Anzio Road, Observatory, Cape Town, 7925 South Africa
| |
Collapse
|
15
|
Ali MM, Woldeamanuel Y, Asrat D, Fenta DA, Beall B, Schrag S, McGee L. Features of Streptococcus agalactiae strains recovered from pregnant women and newborns attending different hospitals in Ethiopia. BMC Infect Dis 2020; 20:848. [PMID: 33198686 PMCID: PMC7668015 DOI: 10.1186/s12879-020-05581-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Background Streptococcus agalactiae (Group B Streptococcus, GBS) serotypes, sequence types, and antimicrobial resistance profile vary across different geographic locations affecting disease patterns in newborns. These differences are important considerations for vaccine development efforts and data from large countries in Africa is limited. The aim of this study was to determine serotypes and genotypes of GBS isolates from pregnant women and their newborns in Ethiopia. Methods A hospital based cross-sectional study was conducted at three hospitals in Ethiopia from June 2014 to September 2015. Out of 225 GBS isolates, 121 GBS were recovered, confirmed and characterized at CDC’s Streptococcus Laboratory using conventional microbiology methods and whole genome sequencing. Results Of the 121 isolates, 87 were from rectovaginal samples of pregnant women, 32 from different body parts of their newborns and 2 from blood of newborns with suspected sepsis. There were 25 mother-infant pairs and 24 pairs had concordant strains. The most prevalent serotypes among mothers and/or their babies were II, Ia and V (41.5, 20.6, 19.5 and 40.6%, 25 and 15.6%, respectively). Multilocus sequence typing (MLST) on 83 isolates showed ST10 (24; 28.9%) and ST2 (12; 14.5%) as most predominant sequence types. All GBS strains were susceptible to penicillin, cefotaxime and vancomycin, which correlated to the presence of wildtype PBP2x types and the lack of known vancomycin-resistance genes. Tetracycline resistance was high (73; 88%, associated primarily with tetM, but also tetO and tetL). Five isolates (6%) were resistant to erythromycin and clindamycin and 3 isolates were fluoroquinolone-resistant, containing associated mutations in gyrA and parC genes. All isolates were positive for one of four homologous Alpha/Rib family determinants and 1–2 of the three main pilus types. Conclusions Predominant serotypes were II, Ia, and V. A limited number of clonal types were identified with two STs accounting for about half of the isolates. All strains collected in this study were susceptible to beta-lactam antibiotics and vancomycin. Typical of most GBS, these isolates were positive for single alpha-like family protein, serine-rich repeat gene, as well as 1–2 pilus determinants. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-020-05581-8.
Collapse
Affiliation(s)
- Musa Mohammed Ali
- Hawassa University College of Medicine and Health Sciences, School of Medical laboratory Science, Hawassa, Ethiopia.
| | - Yimtubezinash Woldeamanuel
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University College of Health Science, Addis Ababa, Ethiopia
| | - Daniel Asrat
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University College of Health Science, Addis Ababa, Ethiopia
| | - Demissie Assegu Fenta
- Hawassa University College of Medicine and Health Sciences, School of Medical laboratory Science, Hawassa, Ethiopia
| | - Bernard Beall
- Respiratory Diseases Branch, Centers of Disease Control and Prevention (CDC), Atlanta, USA
| | - Stephanie Schrag
- Respiratory Diseases Branch, Centers of Disease Control and Prevention (CDC), Atlanta, USA
| | - Lesley McGee
- Respiratory Diseases Branch, Centers of Disease Control and Prevention (CDC), Atlanta, USA
| |
Collapse
|
16
|
Furfaro LL, Chang BJ, Kahler CM, Payne MS. Genomic characterisation of perinatal Western Australian Streptococcus agalactiae isolates. PLoS One 2019; 14:e0223256. [PMID: 31577825 PMCID: PMC6774530 DOI: 10.1371/journal.pone.0223256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/17/2019] [Indexed: 11/18/2022] Open
Abstract
As a leading cause of neonatal sepsis, Streptococcus agalactiae, commonly known as Group B Streptococcus, is a major neonatal pathogen. Current global screening practices employ risk- or culture-based protocols for detection of these organisms. In Western Australia (WA), universal culture-based screening is provided, with subsequent intrapartum antibiotic prophylaxis for all S. agalactiae-positive women during labour. Widespread antibiotic exposure is not ideal and this is one of the factors driving development of vaccines against S. agalactiae. Vaccine candidates have focused on the capsule, surface proteins and pilus types, however, capsule serotypes are known to vary geographically. The aim of this study was to use genome sequencing to gain an understanding of the circulating genotypes in WA, and to assess variations in the associated gene pools. We sequenced 141 antenatal carriage (vaginal/rectal) isolates and 10 neonatal invasive disease isolates from WA. Based on the global PubMLST database, the 151 strains were characterised into 30 sequence types, with clustering of these mainly into clonal complexes 1, 12, 17, 19 and 23. Of the genes encoding eleven surface proteins that were analysed, the most prevalent were fbp, lmb and scpB which were present in ≥ 98% of isolates. A cluster of non-haemolytic isolates, one of which was a neonatal invasive disease isolate, appeared to lack the entire cyl locus. Admixture analysis of population structure revealed evidence of genetic transfer among the WA isolates across structural groups. When compared against the PubMLST S. agalactiae data, WA isolates showed high levels of strain diversity with minimal apparent clustering. This is the first whole genome sequence study of WA S. agalactiae isolates and also represents the first addition of Australian isolate data to PubMLST. This report provides insight into the distribution and diversity of vaccine targets of S. agalactiae within Western Australia, indicating that the most appropriate capsular vaccine for this population would be the proposed pentavalent (Cps Ia, Ib, II, III and V) preparation, whilst vaccines targeting surface proteins should ideally utilise Fbp, Lmb and/or ScpB.
Collapse
Affiliation(s)
- Lucy L. Furfaro
- The School of Medicine, Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
- * E-mail:
| | - Barbara J. Chang
- The School of Biomedical Sciences, The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Perth, Western Australia, Australia
| | - Charlene M. Kahler
- The School of Biomedical Sciences, The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Perth, Western Australia, Australia
| | - Matthew S. Payne
- The School of Medicine, Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
17
|
Chen SL. Genomic Insights Into the Distribution and Evolution of Group B Streptococcus. Front Microbiol 2019; 10:1447. [PMID: 31316488 PMCID: PMC6611187 DOI: 10.3389/fmicb.2019.01447] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/11/2019] [Indexed: 01/31/2023] Open
Abstract
Streptococcus agalactiae, also known as Group B Streptococcus (GBS), is a bacteria with truly protean biology. It infects a variety of hosts, among which the most commonly studied are humans, cattle, and fish. GBS holds a singular position in the history of bacterial genomics, as it was the substrate used to describe one of the first major conceptual advances of comparative genomics, the idea of the pan-genome. In this review, I describe a brief history of GBS and the major contributions of genomics to understanding its genome plasticity and evolution as well as its molecular epidemiology, focusing on the three hosts mentioned above. I also discuss one of the major recent paradigm shifts in our understanding of GBS evolution and disease burden: foodborne GBS can cause invasive infections in humans.
Collapse
Affiliation(s)
- Swaine L Chen
- Division of Infectious Diseases, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Infectious Diseases Group, Genome Institute of Singapore, Singapore, Singapore
| |
Collapse
|
18
|
Nagano N, Koide S, Hayashi W, Taniguchi Y, Tanaka H, Maeyama Y, Suzuki M, Kimura K, Arakawa Y, Nagano Y. Population-level transition of capsular polysaccharide types among sequence type 1 group B Streptococcus isolates with reduced penicillin susceptibility during a long-term hospital epidemic. Int J Antimicrob Agents 2018; 53:203-210. [PMID: 30414439 DOI: 10.1016/j.ijantimicag.2018.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/30/2018] [Accepted: 11/04/2018] [Indexed: 10/27/2022]
Abstract
Over a 35-month period, group B Streptococcus isolates with reduced penicillin susceptibility (PRGBS) were detected from elderly patients at a regional hospital in Japan, accompanying population-level transition of PRGBS serotypes. The genetic relatedness of 77 non-duplicate PRGBS from 73 patients was analysed. Serotype III PRGBS predominated (16 serotype III/1 serotype Ib) in the first 9 months (period I), then 3 serotype Ib isolates appeared transiently for the next 3 months (period II), which was replaced predominantly by serotype Ia (20 serotype Ia/1 serotype III/1 non-typeable) for 9 months (period III). In the last 14 months (period IV), besides 25 serotype Ia isolates, 10 serotype III were also identified. Serotypes III and Ia isolates, belonging to ST1, shared G329V, G398A, V405A and G429D substitutions in penicillin-binding protein 2X. Of three strains subjected to whole-genome sequencing, serotype III strain SU12 (period I) had a higher degree of genomic similarity with serotype Ia strain SU97 (period III) than serotype Ib strain SU67 (period II) based on average nucleotide identity and single nucleotide polymorphisms. Analysis of the cps gene clusters and the upstream and downstream flanking sequences revealed that disruption of the hyaluronidase gene located upstream of cpsY by insertion of IS1548 was found in strain SU12, whereas ΔISSag8 was inserted between tRNA-Arg and rpsA genes located downstream of cpsL in strain SU97. Interestingly, most serotype III PRGBS re-emerging in period IV had this tRNA-Arg-ΔISSag8-rpsA region. Capsular switching and nosocomial transmission may possibly contribute to population-level serotype replacement among ST1 PRGBS isolates.
Collapse
Affiliation(s)
- Noriyuki Nagano
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| | - Shota Koide
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Wataru Hayashi
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Yui Taniguchi
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Hayato Tanaka
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Yoshihiko Maeyama
- Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Masahiro Suzuki
- Department of Microbiology, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Kouji Kimura
- Department of Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yoshichika Arakawa
- Department of Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yukiko Nagano
- Department of Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
19
|
Zhang Z, Lan J, Li Y, Hu M, Yu A, Zhang J, Wei S. The pathogenic and antimicrobial characteristics of an emerging Streptococcus agalactiae serotype IX in Tilapia. Microb Pathog 2018; 122:39-45. [DOI: 10.1016/j.micpath.2018.05.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/29/2018] [Accepted: 05/29/2018] [Indexed: 10/16/2022]
|
20
|
Perinatal Streptococcus agalactiae Epidemiology and Surveillance Targets. Clin Microbiol Rev 2018; 31:31/4/e00049-18. [PMID: 30111577 DOI: 10.1128/cmr.00049-18] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus agalactiae, or group B streptococcus (GBS), is a major neonatal pathogen. Recent data have elucidated the global prevalence of maternal and neonatal colonization, but gaps still remain in the epidemiology of this species. A number of phenotypic and genotypic classifications can be used to identify the diversity of GBS strains, and some are more discriminatory than others. This review explores the main schemes used for GBS epidemiology and further details the targets for epidemiological surveillance. Current screening practices across the world provide a unique opportunity to gain detailed information on maternal colonizing strains and neonatal disease-causing strains, which is vital for monitoring and therapeutics, if sufficient detail can be extracted. Deciphering which isolates are circulating within specific populations and recording targets within invasive strains are crucial steps in monitoring the implementation of therapeutics, such as vaccines, as well as developing novel therapies against prevalent GBS strains. Having a detailed understanding of global GBS epidemiology will prove invaluable for understanding the pathogenesis of this organism and equipping future prevention strategies for success.
Collapse
|
21
|
Garretto A, Thomas-White K, Wolfe AJ, Putonti C. Detecting viral genomes in the female urinary microbiome. J Gen Virol 2018; 99:1141-1146. [PMID: 29889019 PMCID: PMC6171713 DOI: 10.1099/jgv.0.001097] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/26/2018] [Indexed: 12/17/2022] Open
Abstract
Viruses are the most abundant component of the human microbiota. Recent evidence has uncovered a rich diversity of viruses within the female bladder, including both bacteriophages and eukaryotic viruses. We conducted whole-genome sequencing of the bladder microbiome of 30 women: 10 asymptomatic 'healthy' women and 20 women with an overactive bladder. These metagenomes include sequences representative of human, bacterial and viral DNA. This analysis, however, focused specifically on viral sequences. Using the bioinformatic tool virMine, we discovered sequence fragments, as well as complete genomes, of bacteriophages and the eukaryotic virus JC polyomavirus. The method employed here is a critical proof of concept: the genomes of viral populations within the low-biomass bladder microbiota can be reconstructed through whole-genome sequencing of the entire microbial community.
Collapse
Affiliation(s)
- Andrea Garretto
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA
| | - Krystal Thomas-White
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
- Present address: 325 Sharon Park Dr, Suite 522, Menlo Park, CA, USA
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Catherine Putonti
- Bioinformatics Program, Loyola University Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
- Department of Computer Science, Loyola University Chicago, Chicago, IL, USA
| |
Collapse
|
22
|
Kalimuddin S, Chen SL, Lim CTK, Koh TH, Tan TY, Kam M, Wong CW, Mehershahi KS, Chau ML, Ng LC, Tang WY, Badaruddin H, Teo J, Apisarnthanarak A, Suwantarat N, Ip M, Holden MTG, Hsu LY, Barkham T. 2015 Epidemic of Severe Streptococcus agalactiae Sequence Type 283 Infections in Singapore Associated With the Consumption of Raw Freshwater Fish: A Detailed Analysis of Clinical, Epidemiological, and Bacterial Sequencing Data. Clin Infect Dis 2018; 64:S145-S152. [PMID: 28475781 DOI: 10.1093/cid/cix021] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Streptococcus agalactiae (group B Streptococcus [GBS]) has not been described as a foodborne pathogen. However, in 2015, a large outbreak of severe invasive sequence type (ST) 283 GBS infections in adults epidemiologically linked to the consumption of raw freshwater fish occurred in Singapore. We attempted to determine the scale of the outbreak, define the clinical spectrum of disease, and link the outbreak to contaminated fish. Methods Time-series analysis was performed on microbiology laboratory data. Food handlers and fishmongers were screened for enteric carriage of GBS. A retrospective cohort study was conducted to assess differences in demographic and clinical characteristics of patients with invasive ST283 and non-ST283 infections. Whole-genome sequencing was performed on human and fish ST283 isolates from Singapore, Thailand, and Hong Kong. Results The outbreak was estimated to have started in late January 2015. Within the study cohort of 408 patients, ST283 accounted for 35.8% of cases. Patients with ST283 infection were younger and had fewer comorbidities but were more likely to develop meningoencephalitis, septic arthritis, and spinal infection. Of 82 food handlers and fishmongers screened, none carried ST283. Culture of 43 fish samples yielded 13 ST283-positive samples. Phylogenomic analysis of 161 ST283 isolates from humans and fish revealed they formed a tight clade distinguished by 93 single-nucleotide polymorphisms. Conclusions ST283 is a zoonotic GBS clone associated with farmed freshwater fish, capable of causing severe disease in humans. It caused a large foodborne outbreak in Singapore and poses both a regional and potentially more widespread threat.
Collapse
Affiliation(s)
| | - Swaine L Chen
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore.,Genome Institute of Singapore
| | - Cindy T K Lim
- Saw Swee Hock School of Public Health, National University Singapore
| | | | - Thean Yen Tan
- Department of Laboratory Medicine, Changi General Hospital, Singapore
| | - Michelle Kam
- Department of Internal Medicine, Singapore General Hospital
| | | | - Kurosh S Mehershahi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
| | - Man Ling Chau
- Environmental Health Institute, National Environment Agency
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency
| | - Wen Ying Tang
- Department of Laboratory Medicine, Tan Tock Seng Hospital
| | | | - Jeanette Teo
- Department of Laboratory Medicine, Microbiology Unit, National University Hospital, Singapore
| | | | - Nuntra Suwantarat
- Infectious Disease Division, Thammasat University Hospital, and.,Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Margaret Ip
- Department of Microbiology, Chinese University of Hong Kong, Shatin; and
| | | | - Li Yang Hsu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore.,Saw Swee Hock School of Public Health, National University Singapore
| | | | | |
Collapse
|
23
|
Teatero S, Ferrieri P, Fittipaldi N. Serotype IV Sequence Type 468 Group B Streptococcus Neonatal Invasive Disease, Minnesota, USA. Emerg Infect Dis 2018; 22:1937-1940. [PMID: 27767922 PMCID: PMC5088005 DOI: 10.3201/eid2211.152031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To further understand the emergence of serotype IV group B Streptococcus (GBS) invasive disease, we used whole-genome sequencing to characterize 3 sequence type 468 strains isolated from neonates in Minnesota, USA. We found that strains of tetracycline-resistant sequence type 468 GBS have acquired virulence genes from a putative clonal complex 17 GBS donor by recombination.
Collapse
|
24
|
Rajendram P, Mar Kyaw W, Leo YS, Ho H, Chen WK, Lin R, Pratim DP, Badaruddin H, Ang B, Barkham T, Chow A. Group B Streptococcus Sequence Type 283 Disease Linked to Consumption of Raw Fish, Singapore. Emerg Infect Dis 2018; 22:1974-1977. [PMID: 27767905 PMCID: PMC5088009 DOI: 10.3201/eid2211.160252] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
An outbreak of invasive group B Streptococcus (GBS) disease occurred in Singapore in mid-2015. We conducted a case–control study of 22 adults with invasive GBS infections during June 21–November 21, 2015. Consumption of raw fish was strongly associated with invasive sequence type 283 infections, but not with non–sequence type 283 infections.
Collapse
|
25
|
Neemuchwala A, Teatero S, Athey TBT, McGeer A, Fittipaldi N. Capsular Switching and Other Large-Scale Recombination Events in Invasive Sequence Type 1 Group B Streptococcus. Emerg Infect Dis 2018. [PMID: 27767925 PMCID: PMC5088006 DOI: 10.3201//eid2211.152064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We report several cases of recombination events leading to capsular switching among sequence type (ST) 1 group B Streptococcus strains. These strains otherwise shared a common genome backbone with serotype V ST1 strains. However, the genomes of ST1 serotype V strains and those of serotypes VI, VII, and VIII strains differed substantially.
Collapse
|
26
|
Lyhs U, Kulkas L, Katholm J, Waller KP, Saha K, Tomusk RJ, Zadoks RN. Streptococcus agalactiae Serotype IV in Humans and Cattle, Northern Europe 1. Emerg Infect Dis 2018; 22:2097-2103. [PMID: 27869599 PMCID: PMC5189126 DOI: 10.3201/eid2212.151447] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Streptococcus agalactiae is an emerging pathogen of nonpregnant human adults worldwide and a reemerging pathogen of dairy cattle in parts of Europe. To learn more about interspecies transmission of this bacterium, we compared contemporaneously collected isolates from humans and cattle in Finland and Sweden. Multilocus sequence typing identified 5 sequence types (STs) (ST1, 8, 12, 23, and 196) shared across the 2 host species, suggesting possible interspecies transmission. More than 54% of the isolates belonged to those STs. Molecular serotyping and pilus island typing of those isolates did not differentiate between populations isolated from different host species. Isolates from humans and cattle differed in lactose fermentation, which is encoded on the accessory genome and represents an adaptation to the bovine mammary gland. Serotype IV-ST196 isolates were obtained from multiple dairy herds in both countries. Cattle may constitute a previously unknown reservoir of this strain.
Collapse
|
27
|
Kolter J, Henneke P. Codevelopment of Microbiota and Innate Immunity and the Risk for Group B Streptococcal Disease. Front Immunol 2017; 8:1497. [PMID: 29209311 PMCID: PMC5701622 DOI: 10.3389/fimmu.2017.01497] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of neonatal late-onset sepsis (LOD), which manifests between the third day and the third month of life, remains poorly understood. Group B Streptococcus (GBS) is the most important cause of LOD in infants without underlying diseases or prematurity and the third most frequent cause of meningitis in the Western world. On the other hand, GBS is a common intestinal colonizer in infants. Accordingly, despite its adaption to the human lower gastrointestinal tract, GBS has retained its potential virulence and its transition from a commensal to a dangerous pathogen is unpredictable in the individual. Several cellular innate immune mechanisms, in particular Toll-like receptors, the inflammasome and the cGAS pathway, are engaged by GBS effectors like nucleic acids. These are likely to impact on the GBS-specific host resistance. Given the long evolution of streptococci as a normal constituent of the human microbiota, the emergence of GBS as the dominant neonatal sepsis cause just about 50 years ago is remarkable. It appears that intensive usage of tetracycline starting in the 1940s has been a selection advantage for the currently dominant GBS clones with superior adhesive and invasive properties. The historical replacement of Group A by Group B streptococci as a leading neonatal pathogen and the higher frequency of other β-hemolytic streptococci in areas with low GBS prevalence suggests the existence of a confined streptococcal niche, where locally competing streptococcal species are subject to environmental and immunological selection pressure. Thus, it seems pivotal to resolve neonatal innate immunity at mucous surfaces and its impact on microbiome composition and quality, i.e., genetic heterogeneity and metabolism, at the microanatomical level. Then, designer pro- and prebiotics, such as attenuated strains of GBS, and oligonucleotide priming of mucosal immunity may unfold their potential and facilitate adaptation of potentially hazardous streptococci as part of a beneficial local microbiome, which is stabilized by mucocutaneous innate immunity.
Collapse
Affiliation(s)
- Julia Kolter
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Eisenberg T, Rau J, Westerhüs U, Knauf-Witzens T, Fawzy A, Schlez K, Zschöck M, Prenger-Berninghoff E, Heydel C, Sting R, Glaeser SP, Pulami D, van der Linden M, Ewers C. Streptococcus agalactiae in elephants - A comparative study with isolates from human and zoo animal and livestock origin. Vet Microbiol 2017; 204:141-150. [PMID: 28532793 DOI: 10.1016/j.vetmic.2017.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 11/17/2022]
Abstract
Streptococcus (S.) agalactiae represents a significant pathogen for humans and animals. However, there are only a few elderly reports on S. agalactiae infections in wild and zoo elephants even though this pathogen has been isolated comparatively frequently in these endangered animal species. Consequently, between 2004 and 2015, we collected S. agalactiae isolates from African and Asian elephants (n=23) living in four different zoos in Germany. These isolates were characterised and compared with isolates from other animal species (n=20 isolates) and humans (n=3). We found that the isolates from elephants can be readily identified by classical biochemistry and MALDI-TOF mass spectrometry. Further characterisations for epidemiological issues were achieved using Fourier transform-infrared spectroscopy, capsule typing and molecular fingerprinting (PFGE, RAPD PCR). We could demonstrate that our elephant isolate collection contained at least six different lineages that were representative for their source of origin. Despite generally broad antimicrobial susceptibility of S. agalactiae, many showed tetracycline resistance in vitro. S. agalactiae plays an important role in bacterial infections not only in cattle and humans, but also in elephants. Comparative studies were able to differentiate S. agalactiae isolates from elephants into different infectious clusters based on their epidemiological background.
Collapse
Affiliation(s)
- Tobias Eisenberg
- Hessian State Laboratory, Schubertstr. 60, 35392 Giessen, Germany; Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, Frankfurter Str. 85-87, 35392 Giessen, Germany.
| | - Jörg Rau
- Chemical and Veterinary Investigation Office Stuttgart, Schaflandstraße 3/2, 70736 Fellbach, Germany.
| | - Uta Westerhüs
- Opel-Zoo, Königsteiner Straße 35, 61476 Kronberg, Germany.
| | - Tobias Knauf-Witzens
- Wilhelma - Zoological and Botanical Gardens, Wilhelma 13, 70376 Stuttgart, Germany.
| | - Ahmad Fawzy
- Hessian State Laboratory, Schubertstr. 60, 35392 Giessen, Germany; Cairo University, Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Giza Square 12211, Egypt; Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, Frankfurter Str. 85-87, 35392 Giessen, Germany.
| | - Karen Schlez
- Hessian State Laboratory, Schubertstr. 60, 35392 Giessen, Germany.
| | - Michael Zschöck
- Hessian State Laboratory, Schubertstr. 60, 35392 Giessen, Germany.
| | - Ellen Prenger-Berninghoff
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, Frankfurter Str. 85-87, 35392 Giessen, Germany.
| | - Carsten Heydel
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, Frankfurter Str. 85-87, 35392 Giessen, Germany.
| | - Reinhard Sting
- Chemical and Veterinary Investigation Office Stuttgart, Schaflandstraße 3/2, 70736 Fellbach, Germany.
| | - Stefanie P Glaeser
- Institute of Applied Microbiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany.
| | - Dipen Pulami
- Institute of Applied Microbiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany.
| | - Mark van der Linden
- National Reference Laboratory on Streptococcal Diseases, Abteilung Medizinische Mikrobiologie, Universitätsklinikum RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany.
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, Frankfurter Str. 85-87, 35392 Giessen, Germany.
| |
Collapse
|
29
|
Creti R, Imperi M, Berardi A, Pataracchia M, Recchia S, Alfarone G, Baldassarri L. Neonatal Group B Streptococcus Infections: Prevention Strategies, Clinical and Microbiologic Characteristics in 7 Years of Surveillance. Pediatr Infect Dis J 2017; 36:256-262. [PMID: 27870810 DOI: 10.1097/inf.0000000000001414] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The characteristics of group B streptococcus (GBS) neonatal disease in a period of 7 years are reported. METHODS The estimation of the neonatal GBS disease risk and prevention strategies adopted at delivery in absence of national guidelines was evaluated by the analysis of 3501 questionnaires. Notification of 194 neonatal GBS infections was recorded. In addition, 115 strains from neonatal early-onset disease (EOD) and late-onset disease, respectively, plus 320 strains from pregnant women were analyzed by molecular typing methods and for antibiotic resistance. RESULTS Preterm deliveries, precipitous labor and GBS negatively screened mothers were the prominent causes for an inadequate or lack of intrapartum antibiotic prophylaxis and EOD occurrence. The superimposable serotype distribution of GBS strains from EOD and from antenatal screening confirmed the vertical transmission from mother to neonate as the cause of disease. On the contrary, late-onset disease was almost exclusively caused by the internationally diffused clonal complex 17. Erythromycin resistance was detected in 17% of strains. Resistance to clindamycin was 15.3 %. CONCLUSIONS The administration of intrapartum antibiotic prophylaxis to negatively GBS screened women in presence of risk factors was a deviation from the recommendations issued by the Centers for Disease Control and Prevention, and it should deserve further consideration. Routine surveillance and molecular typing of circulating clones are essential for the effective management of the neonatal GBS disease.
Collapse
Affiliation(s)
- Roberta Creti
- From the *Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Rome, Italy; and †Unità Operativa di Neonatologia, Dipartimento Materno-Infantile, Azienda Ospedaliero-Universitaria, Policlinico di Modena, Modena, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Serotype Distribution, Population Structure, and Antimicrobial Resistance of Group B Streptococcus Strains Recovered from Colonized Pregnant Women. J Clin Microbiol 2016; 55:412-422. [PMID: 27852675 DOI: 10.1128/jcm.01615-16] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/12/2016] [Indexed: 11/20/2022] Open
Abstract
Using serotyping, multilocus sequence typing, and whole-genome sequencing (WGS) of selected strains, we studied the population structure of 102 group B Streptococcus (GBS) isolates prospectively sampled in 2014 from vaginal/rectal swabs of healthy pregnant women in metropolitan Toronto, Canada. We also determined the susceptibilities of each of the colonizing isolates to penicillin, erythromycin, clindamycin, tetracycline, and other antimicrobial agents. Overall, we observed a high rate of tetracycline resistance (89%) among colonizing GBS isolates. We found resistance to erythromycin in 36% of the strains, and 33% were constitutively or inducibly resistant to clindamycin. The most frequently identified serotypes were III (25%), Ia (23%), and V (19%). Serotype IV accounted for 6% of the colonizing isolates, a rate consistent with that observed among patients with invasive GBS infections in metropolitan Toronto. The majority of serotype IV isolates belonged to sequence type (ST)459, a tetracycline-, erythromycin-, and clindamycin-resistant ST first identified in Minnesota, which is considered to be the main driver of serotype IV GBS expansion in North America. WGS revealed that ST459 isolates from Canada are clonally related to colonizing and invasive ST459 organisms circulating in regions of the United States. We also used WGS to study recombination in selected colonizing strains from metropolitan Toronto, which revealed multiple episodes of capsular switching. Present and future circulating GBS organisms and their genetic diversity may influence GBS vaccine development.
Collapse
|
31
|
Neemuchwala A, Teatero S, Athey TBT, McGeer A, Fittipaldi N. Capsular Switching and Other Large-Scale Recombination Events in Invasive Sequence Type 1 Group B Streptococcus. Emerg Infect Dis 2016; 22:1941-1944. [PMID: 27767925 PMCID: PMC5088006 DOI: 10.3201/eid2211.152064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
We report several cases of recombination events leading to capsular switching among sequence type (ST) 1 group B Streptococcus strains. These strains otherwise shared a common genome backbone with serotype V ST1 strains. However, the genomes of ST1 serotype V strains and those of serotypes VI, VII, and VIII strains differed substantially.
Collapse
|
32
|
Molecular characteristics and antimicrobial resistance in invasive and noninvasive Group B Streptococcus between 2008 and 2015 in China. Diagn Microbiol Infect Dis 2016; 86:351-357. [PMID: 27692802 DOI: 10.1016/j.diagmicrobio.2016.08.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 01/28/2023]
Abstract
Group B streptococcus (GBS) is an increasing pathogen threat to newborns and adults with immunodepressive diseases. Here, a total of 193 GBS, including 51 invasive and 142 noninvasive isolates, were collected from the patients with infections in 7 tertiary hospitals from 5 cities in China during the year 2008 to 2015. The strains of GBS were characterized by classical and molecular techniques for capsular polysaccharide serotyping, genes for pilus island (PI) and α-like protein (alp), and antibiotic resistance profiling. Of 193 isolates, the predominant serotypes were III (45.6%) and Ia (18.7%). All strains carried at least 1 PI gene. The combination of PI-2b and PI-1 was present in 46.1% isolates, followed by PI-2a alone (80, 41.5%) and PI-2b alone (23, 11.9%). The most prevalent alp gene was rib (87, 45.1%), followed by α-C (47, 24.4%), ε (33, 17.1%), alp2/3 (7, 3.6%) and alp4 (2, 1.0%), respectively. The clonal relationships between strains were investigated using multilocus sequence typing. The strains were distinguished into 26 individual sequence typing, and further clustered into 6 clonal complexes. A significant association was noted between the distributions of alp genes, serotyping and PI profiles, such as serotype III-rib-PI+PI-2a, Ib-α-C, and Ia-ε-PI-2a. No penicillin-resistant strains were detected, and 74.1%, 64.2%, and 68.9% were resistant to erythromycin, clindamycin, and tetracycline, respectively. The infective GBS isolates in China demonstrated epidemical features.
Collapse
|
33
|
Molecular Characteristics of Group B Streptococci Isolated from Adults with Invasive Infections in Japan. J Clin Microbiol 2016; 54:2695-2700. [PMID: 27558182 DOI: 10.1128/jcm.01183-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/15/2016] [Indexed: 01/18/2023] Open
Abstract
Streptococcus agalactiae (group B streptococcus) isolates (n = 443) obtained from Japanese adults with invasive infections between April 2010 and March 2013 were analyzed for capsular serotype, multilocus sequence type (ST), antibiotic susceptibility, and resistance genes. Among these cases, bacteremia without primary focus was the most common variety of infection (49.9%), followed by cellulitis (12.9%) and pneumonia (9.0%). Concerning patient age (18 to 59, 60 to 69, 70 to 79, 80 to 89, and 90 years old or older), the incidence of pneumonia increased in patients in their 70s and 80s (P < 0.001), while younger patients (18 to 59 and 60 to 69 years old) were more likely to have abscesses (P < 0.05). The mortality rate was 10.2% for all ages. The most common capsular serotype was Ib (39.5%), followed by V (16.0%), III (13.8%), VI (9.5%), and Ia (8.6%). The main ST of serotype Ib strains was ST10, which belonged to clonal complex 10 (88.0%). The predominant clonal complexes of serotypes V and III, respectively, were 1 (78.9%) and 19 (75.4%). Among these isolates, 9 strains (2.0%) were identified as group B streptococci with reduced penicillin susceptibility, reflecting amino acid substitutions in penicillin-binding protein 2X (PBP2X). In addition, 19.2% of all strains possessed mef(A/E), erm(A), or erm(B) genes, which mediate macrolide resistance, while 40.2% of strains were resistant to quinolones resulting from amino acid substitutions in GyrA and ParC. Our data argue strongly for the continuous surveillance of microbial characteristics and judicious antibiotic use in clinical practice.
Collapse
|
34
|
Teatero S, Lemire P, Dewar K, Wasserscheid J, Calzas C, Mallo GV, Li A, Athey TBT, Segura M, Fittipaldi N. Genomic Recombination Leading to Decreased Virulence of Group B Streptococcus in a Mouse Model of Adult Invasive Disease. Pathogens 2016; 5:pathogens5030054. [PMID: 27527222 PMCID: PMC5039434 DOI: 10.3390/pathogens5030054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/21/2016] [Accepted: 08/01/2016] [Indexed: 01/06/2023] Open
Abstract
Adult invasive disease caused by Group B Streptococcus (GBS) is increasing worldwide. Whole-genome sequencing (WGS) now permits rapid identification of recombination events, a phenomenon that occurs frequently in GBS. Using WGS, we described that strain NGBS375, a capsular serotype V GBS isolate of sequence type (ST)297, has an ST1 genomic background but has acquired approximately 300 kbp of genetic material likely from an ST17 strain. Here, we examined the virulence of this strain in an in vivo model of GBS adult invasive infection. The mosaic ST297 strain showed intermediate virulence, causing significantly less systemic infection and reduced mortality than a more virulent, serotype V ST1 isolate. Bacteremia induced by the ST297 strain was similar to that induced by a serotype III ST17 strain, which was the least virulent under the conditions tested. Yet, under normalized bacteremia levels, the in vivo intrinsic capacity to induce the production of pro-inflammatory cytokines was similar between the ST297 strain and the virulent ST1 strain. Thus, the diminished virulence of the mosaic strain may be due to reduced capacity to disseminate or multiply in blood during a systemic infection which could be mediated by regulatory factors contained in the recombined region.
Collapse
Affiliation(s)
- Sarah Teatero
- Public Health Ontario Laboratory, 661 University Avenue, Suite 17-100, Toronto, ON M5G 1M1, Canada.
| | - Paul Lemire
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte Street, Saint-Hyacinthe, QC J2S 2M2, Canada.
| | - Ken Dewar
- McGill University and Genome Quebec Innovation Centre, 740 Dr. Penfield Avenue Rm 7104, Montreal, QC H3A 0G1, Canada.
| | - Jessica Wasserscheid
- McGill University and Genome Quebec Innovation Centre, 740 Dr. Penfield Avenue Rm 7104, Montreal, QC H3A 0G1, Canada.
| | - Cynthia Calzas
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte Street, Saint-Hyacinthe, QC J2S 2M2, Canada.
| | - Gustavo V Mallo
- Public Health Ontario Laboratory, 661 University Avenue, Suite 17-100, Toronto, ON M5G 1M1, Canada.
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada.
| | - Aimin Li
- Public Health Ontario Laboratory, 661 University Avenue, Suite 17-100, Toronto, ON M5G 1M1, Canada.
| | - Taryn B T Athey
- Public Health Ontario Laboratory, 661 University Avenue, Suite 17-100, Toronto, ON M5G 1M1, Canada.
| | - Mariela Segura
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte Street, Saint-Hyacinthe, QC J2S 2M2, Canada.
| | - Nahuel Fittipaldi
- Public Health Ontario Laboratory, 661 University Avenue, Suite 17-100, Toronto, ON M5G 1M1, Canada.
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada.
| |
Collapse
|
35
|
Neemuchwala A, Teatero S, Patel SN, Fittipaldi N. Fluoroquinolone Resistance among Clonal Complex 1 Group B Streptococcus Strains. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2016; 2016:6403928. [PMID: 27559344 PMCID: PMC4983356 DOI: 10.1155/2016/6403928] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/14/2016] [Indexed: 11/24/2022]
Abstract
Fluoroquinolone resistance in group B Streptococcus is increasingly being reported worldwide. Here, we correlated fluoroquinolone resistance with mutations in gyrA, gyrB, parC, and parE genes, identified by mining whole-genome sequencing (WGS) data of 190 clonal complex 1 group B Streptococcus strains recovered from patients with invasive diseases in North America. We report a high prevalence of fluoroquinolone resistance (12%) among GBS strains in our collection. Our approach is the first step towards accurate prediction of fluoroquinolone resistance from WGS data in this opportunistic pathogen.
Collapse
Affiliation(s)
| | - Sarah Teatero
- Public Health Ontario Laboratory, Toronto, ON, Canada M5G 1M1
| | - Samir N. Patel
- Public Health Ontario Laboratory, Toronto, ON, Canada M5G 1M1
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A1
| | - Nahuel Fittipaldi
- Public Health Ontario Laboratory, Toronto, ON, Canada M5G 1M1
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A1
| |
Collapse
|
36
|
Campisi E, Rinaudo CD, Donati C, Barucco M, Torricelli G, Edwards MS, Baker CJ, Margarit I, Rosini R. Serotype IV Streptococcus agalactiae ST-452 has arisen from large genomic recombination events between CC23 and the hypervirulent CC17 lineages. Sci Rep 2016; 6:29799. [PMID: 27411639 PMCID: PMC4944191 DOI: 10.1038/srep29799] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/21/2016] [Indexed: 11/10/2022] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) causes life-threatening infections in newborns and adults with chronic medical conditions. Serotype IV strains are emerging both among carriers and as cause of invasive disease and recent studies revealed two main Sequence Types (STs), ST-452 and ST-459 assigned to Clonal Complexes CC23 and CC1, respectively. Whole genome sequencing of 70 type IV GBS and subsequent phylogenetic analysis elucidated the localization of type IV isolates in a SNP-based phylogenetic tree and suggested that ST-452 could have originated through genetic recombination. SNPs density analysis of the core genome confirmed that the founder strain of this lineage originated from a single large horizontal gene transfer event between CC23 and the hypervirulent CC17. Indeed, ST-452 genomes are composed by two parts that are nearly identical to corresponding regions in ST-24 (CC23) and ST-291 (CC17). Chromosome mapping of the major GBS virulence factors showed that ST-452 strains have an intermediate yet unique profile among CC23 and CC17 strains. We described unreported large recombination events, involving the cps IV operon and resulting in the expansion of serotype IV to CC23. This work sheds further light on the evolution of GBS providing new insights on the recent emergence of serotype IV.
Collapse
Affiliation(s)
- Edmondo Campisi
- GSK Vaccines s.r.l., Siena, Italy.,Sapienza, Università di Roma, Rome, Italy
| | | | - Claudio Donati
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Mara Barucco
- GSK Vaccines s.r.l., Siena, Italy.,Department of physics "Enrico Fermi", University of Pisa, Pisa, Italy
| | | | - Morven S Edwards
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Carol J Baker
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Department Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
37
|
Clonal Complex 17 Group B Streptococcus strains causing invasive disease in neonates and adults originate from the same genetic pool. Sci Rep 2016; 6:20047. [PMID: 26843175 PMCID: PMC4740736 DOI: 10.1038/srep20047] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/23/2015] [Indexed: 11/20/2022] Open
Abstract
A significant proportion of group B Streptococcus (GBS) neonatal disease, particularly late-onset disease, is associated with strains of serotype III, clonal complex (CC) 17. CC17 strains also cause invasive infections in adults. Little is known about the phylogenetic relationships of isolates recovered from neonatal and adult CC17 invasive infections. We performed whole-genome-based phylogenetic analysis of 93 temporally and geographically matched CC17 strains isolated from both neonatal and adult invasive infections in the metropolitan region of Toronto/Peel, Canada. We also mined the whole-genome data to reveal mobile genetic elements carrying antimicrobial resistance genes. We discovered that CC17 GBS strains causing neonatal and adult invasive disease are interspersed and cluster tightly in a phylogenetic tree, signifying that they are derived from the same genetic pool. We identified limited variation due to recombination in the core CC17 genome. We describe that loss of Pilus Island 1 and acquisition of different mobile genetic elements carrying determinants of antimicrobial resistance contribute to CC17 genetic diversity. Acquisition of some of these mobile genetic elements appears to correlate with clonal expansion of the strains that possess them. Our results provide a genome-wide portrait of the population structure and evolution of a major disease-causing clone of an opportunistic pathogen.
Collapse
|
38
|
Björnsdóttir ES, Martins ER, Erlendsdóttir H, Haraldsson G, Melo-Cristino J, Kristinsson KG, Ramirez M. Changing epidemiology of group B streptococcal infections among adults in Iceland: 1975-2014. Clin Microbiol Infect 2015; 22:379.e9-379.e16. [PMID: 26691681 DOI: 10.1016/j.cmi.2015.11.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/19/2015] [Accepted: 11/27/2015] [Indexed: 11/29/2022]
Abstract
We studied the bacterial characteristics and incidence of invasive infections caused by group B streptococci (GBS) in adults in Iceland in 1975-2014. A total of 145 isolates were characterized by serotyping, antimicrobial susceptibility, multilocus sequence typing and surface protein gene profiling. Disease incidence increased during the studied period (p <0.001), reaching 2.17 cases/100 000 person-years in 2013-14. Overall, serotype Ia was the most frequently found (23%), but serotypes Ib, II, III and V showed similar prevalence (14%-17%). Although there were notable changes in the proportion of most serotypes during the study period, only the decline of serotype III was statistically supported (p = 0.003) and was reflected in a decrease of clonal complexes CC17 and CC19 that included most serotype III isolates (p <0.04). On the other hand, the increase in frequency of CC1 was caused by two lineages expressing distinct serotypes: ST1/V/alp3 and ST196/IV/eps. Underlying the relative stability of serotype Ia were major changes in the lineages expressing this serotype, with an increase in the relative importance of CC23, including both ST23/Ia/eps and ST24/Ia/bca lineages, and a decrease in CC7. Nine cases of invasive GBS disease were caused by ST7, of possible zoonotic origin. All isolates were susceptible to penicillin. Rates of erythromycin and clindamycin resistance were 8.3% and 9.7%, respectively. An over-representation of resistance solely to clindamycin was associated with the unusual lsaC gene and serotype III ST19/rib lineage (p <0.001).
Collapse
Affiliation(s)
- E S Björnsdóttir
- Department of Clinical Microbiology, Landspítali University Hospital, Reykjavik, Iceland; University of Iceland, Faculty of Medicine, Reykjavik, Iceland
| | - E R Martins
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - H Erlendsdóttir
- Department of Clinical Microbiology, Landspítali University Hospital, Reykjavik, Iceland; University of Iceland, Faculty of Medicine, Reykjavik, Iceland
| | - G Haraldsson
- Department of Clinical Microbiology, Landspítali University Hospital, Reykjavik, Iceland; University of Iceland, Faculty of Medicine, Reykjavik, Iceland
| | - J Melo-Cristino
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - K G Kristinsson
- Department of Clinical Microbiology, Landspítali University Hospital, Reykjavik, Iceland; University of Iceland, Faculty of Medicine, Reykjavik, Iceland
| | - M Ramirez
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
39
|
Emergence of Serotype IV Group B Streptococcus Adult Invasive Disease in Manitoba and Saskatchewan, Canada, Is Driven by Clonal Sequence Type 459 Strains. J Clin Microbiol 2015; 53:2919-26. [PMID: 26135871 DOI: 10.1128/jcm.01128-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/24/2015] [Indexed: 01/06/2023] Open
Abstract
Serotype IV group B Streptococcus (GBS) is emerging in Canada and the United States with rates as high as 5% of the total burden of adult invasive GBS disease. To understand this emergence, we studied the population structure and assessed the antimicrobial susceptibility of serotype IV isolates causing adult invasive infection in Manitoba and Saskatchewan, Canada, between 2010 and 2014. Whole-genome sequencing was used to determine multilocus sequence typing information and identify genes encoding antimicrobial resistance in 85 invasive serotype IV GBS strains. Antimicrobial susceptibility testing was performed by standard methods. Strain divergence was assessed using genome-wide single-nucleotide polymorphism analysis. Serotype IV strains were responsible for 16.9% of adult invasive GBS infections in Manitoba and Saskatchewan during the period. The majority of serotype IV isolates (89%) were clonally related, tetracycline-, erythromycin-, and clindamycin-resistant sequence type 459 (ST459) strains that possessed genes tetM and ermTR. Genome comparisons between ST459 and serotype V ST1 GBS identified several areas of recombination in an overall similar genomic background. Serotype IV ST459 GBS strains are expanding and causing a substantial percentage of adult invasive GBS disease. This emergence may be linked to the acquisition of resistance to tetracycline, macrolides, and lincosamides.
Collapse
|