1
|
Pokeerbux MR, Mavingui P, Gérardin P, Agrinier N, Gokalsing E, Meilhac O, Cournot M. A Holistic Approach to Cardiometabolic and Infectious Health in the General Population of Reunion Island: The REUNION Study. J Epidemiol Glob Health 2024; 14:839-846. [PMID: 38564109 PMCID: PMC11442726 DOI: 10.1007/s44197-024-00221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
INTRODUCTION Reunion Island is a French overseas department in the South West Indian Ocean with a unique multi-ethnic population. Cardiovascular diseases are the most common chronic conditions with higher prevalences of hypertension and diabetes compared to mainland France. Moreover, Reunion Island is particularly exposed to vector-borne diseases such as chikungunya and dengue. Our objective is to describe the prevalence of cardiometabolic and infectious diseases in Reunion Island and explore causal mechanisms linking these diseases. METHODS The REUNION study is an ongoing French prospective study. From January 2022, 2,000 consenting participants (18-68 years old) are being recruited from the general population according to polling lists and random generation of cellphone number. Baseline examination consists of (i) general health examination, assessment of cardiovascular risk factors, markers of subclinical atherosclerosis, bronchial obstruction, neuropathic and autonomic dysfunction, (ii) questionnaires to determine sociodemographic characteristics, diet, exposure to vector-borne diseases, mental health and cognitive functions, social inequalities in health and ethnic origins, (iii) biological sampling for determination of cardiovascular risk factors, seroprevalence of infectious diseases, innovative lipid biomarkers, advanced omics, composition of intestinal, periodontal and skin microbiota, and biobanking. CONCLUSIONS The REUNION study should provide new insights into the prevalence of cardiometabolic and infectious diseases, as well as their potential associations through the examination of various environmental pathways and a wide range of health aspects.
Collapse
Affiliation(s)
- Mohammad Ryadh Pokeerbux
- Université de La Réunion, UMR Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM U1188, Saint-Pierre, La Réunion, 97410, France.
| | - Patrick Mavingui
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire et Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Sainte-Clotilde, La Réunion, 97490, France
| | - Patrick Gérardin
- Plateforme de Recherche Clinique et Translationnelle, INSERM CIC1410, CHU de La Réunion, Saint-Pierre, La Réunion, 97400, France
| | - Nelly Agrinier
- CHRU-Nancy, Université de Lorraine, CIC, Epidémiologie clinique, Inserm, Nancy, F-54000, France
- Université de Lorraine, Inserm, INSPIIRE, Nancy, F-54000, France
| | - Erick Gokalsing
- Etablissement Public de Santé Mentale de La Réunion, 42 chemin du Grand Pourpier, 97866, Saint-Paul Cedex, France
- Laboratoire IRISSE (IngéniéRIe de la Santé, du Sport et de l'Environnement), Université de La Réunion, UFR SHE, Saint Pierre, EA, 4075, France
| | - Olivier Meilhac
- Université de La Réunion, UMR Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM U1188, Saint-Pierre, La Réunion, 97410, France
- Plateforme de Recherche Clinique et Translationnelle, INSERM CIC1410, CHU de La Réunion, Saint-Pierre, La Réunion, 97400, France
| | - Maxime Cournot
- Université de La Réunion, UMR Diabète Athérothrombose Réunion Océan Indien (DéTROI), INSERM U1188, Saint-Pierre, La Réunion, 97410, France
- Groupe de santé Clinifutur, Clinique Les Orchidées, Le Port, La Réunion, 97420, France
| |
Collapse
|
2
|
Saretzki CEB, Dobler G, Iro E, Heussen N, Küpper T. Dengue Virus and Zika Virus Seroprevalence in the South Pacific Populations of the Cook Islands and Vanuatu. Viruses 2024; 16:807. [PMID: 38793688 PMCID: PMC11125989 DOI: 10.3390/v16050807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Arboviral diseases are serious threats to global health with increasing prevalence and potentially severe complications. Significant arthropod-borne viruses are the dengue viruses (DENV 1-4), the Zika virus (ZIKV), and the chikungunya virus (CHIKV). Among the areas most affected is the South Pacific Region (SPR). Here, arboviruses not only cause a high local burden of disease, but the region has also proven to contribute to their global spread. Outpatient serum samples collected between 08/2016 and 04/2017 on three islands of the island states of Vanuatu and the Cook Islands were tested for anti-DENV- and anti-ZIKV-specific antibodies (IgG) using enzyme-linked immunosorbent assays (ELISA). ELISA test results showed 89% of all test sera from the Cook Islands and 85% of the Vanuatu samples to be positive for anti-DENV-specific antibodies. Anti-ZIKV antibodies were identified in 66% and 52%, respectively, of the test populations. Statistically significant differences in standardized immunity levels were found only at the intranational level. Our results show that in both the Cook Islands and Vanuatu, residents were exposed to significant Flavivirus transmission. Compared to other seroprevalence studies, the marked difference between ZIKV immunity levels and previously published CHIKV seroprevalence rates in our study populations is surprising. We propose the timing of ZIKV and CHIKV emergence in relation to recurrent DENV outbreaks and the impact of seasonality as explanatory external factors for this observation. Our data add to the knowledge of arboviral epidemics in the SPR and contribute to a better understanding of virus spread, including external conditions with potential influence on outbreak dynamics. These data may support preventive and rapid response measures in the affected areas, travel-related risk assessment, and infection identification in locals and returning travelers.
Collapse
Affiliation(s)
- Charlotte E. B. Saretzki
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen Technical University, 52074 Aachen, Germany;
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany;
| | - Elizabeth Iro
- Cook Islands Ministry of Health, Rarotonga P.O. Box 109, Cook Islands;
| | - Nicole Heussen
- Department of Medical Statistics, RWTH Aachen Technical University, 52074 Aachen, Germany;
- Faculty of Medicine, Sigmund Freud University, 1020 Vienna, Austria
| | - Thomas Küpper
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen Technical University, 52074 Aachen, Germany;
- Faculty for Travel Medicine, Royal College of Physicians and Surgeons of Glasgow, Glasgow G2 5RJ, UK
| |
Collapse
|
3
|
Teiti I, Aubry M, Fernandes-Pellerin S, Patin E, Madec Y, Boucheron P, Vanhomwegen J, Torterat J, Lastère S, Olivier S, Jaquaniello A, Roux M, Mendiboure V, Harmant C, Bisiaux A, Rijo de León G, Liu D, Bossin H, Mathieu-Daudé F, Gatti C, Suhas E, Chung K, Condat B, Ayotte P, Conte E, Jolly N, Manuguerra JC, Sakuntabhai A, Fontanet A, Quintana-Murci L, Cao-Lormeau VM. Unravelling the determinants of human health in French Polynesia: the MATAEA project. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1201038. [PMID: 38455935 PMCID: PMC10911015 DOI: 10.3389/fepid.2023.1201038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/15/2023] [Indexed: 03/09/2024]
Abstract
Background French Polynesia is a French overseas collectivity in the Southeast Pacific, comprising 75 inhabited islands across five archipelagoes. The human settlement of the region corresponds to the last massive migration of humans to empty territories, but its timeline is still debated. Despite their recent population history and geographical isolation, inhabitants of French Polynesia experience health issues similar to those of continental countries. Modern lifestyles and increased longevity have led to a rise in non-communicable diseases (NCDs) such as obesity, diabetes, hypertension, and cardiovascular diseases. Likewise, international trade and people mobility have caused the emergence of communicable diseases (CDs) including mosquito-borne and respiratory diseases. Additionally, chronic pathologies including acute rheumatic fever, liver diseases, and ciguatera, are highly prevalent in French Polynesia. However, data on such diseases are scarce and not representative of the geographic fragmentation of the population. Objectives The present project aims to estimate the prevalence of several NCDs and CDs in the population of the five archipelagoes, and identify associated risk factors. Moreover, genetic analyses will contribute to determine the sequence and timings of the peopling history of French Polynesia, and identify causal links between past genetic adaptation to island environments, and present-day susceptibility to certain diseases. Methods This cross-sectional survey is based on the random selection of 2,100 adults aged 18-69 years and residing on 18 islands from the five archipelagoes. Each participant answered a questionnaire on a wide range of topics (including demographic characteristics, lifestyle habits and medical history), underwent physical measurements (height, weight, waist circumference, arterial pressure, and skin pigmentation), and provided biological samples (blood, saliva, and stool) for biological, genetic and microbiological analyses. Conclusion For the first time in French Polynesia, the present project allows to collect a wide range of data to explore the existence of indicators and/or risk factors for multiple pathologies of public health concern. The results will help health authorities to adapt actions and preventive measures aimed at reducing the incidence of NCDs and CDs. Moreover, the new genomic data generated in this study, combined with anthropological data, will increase our understanding of the peopling history of French Polynesia. Clinical trial registration https://clinicaltrials.gov/, identifier: NCT06133400.
Collapse
Affiliation(s)
- Iotefa Teiti
- Laboratory of Research on Emerging Viral Diseases, Institut Louis Malardé, Papeete, French Polynesia
| | - Maite Aubry
- Laboratory of Research on Emerging Viral Diseases, Institut Louis Malardé, Papeete, French Polynesia
| | | | - Etienne Patin
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France
| | - Yoann Madec
- Institut Pasteur, Université Paris Cité, Epidemiology of Emerging Diseases Unit, Paris, France
| | - Pauline Boucheron
- Institut Pasteur, Université Paris Cité, Epidemiology of Emerging Diseases Unit, Paris, France
| | - Jessica Vanhomwegen
- Environment and Infectious Risk Unit, Laboratory for Urgent Response to Biological Threats, Institut Pasteur, Paris, France
| | - Jérémie Torterat
- Institut de la Statistique de la Polynésie Française, Papeete, French Polynesia
| | - Stéphane Lastère
- Clinical Laboratory, Centre Hospitalier de la Polynésie Française, Pirae, French Polynesia
| | - Sophie Olivier
- Clinical Laboratory, Institut Louis Malardé, Papeete, French Polynesia
| | - Anthony Jaquaniello
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France
- Institut Pasteur, Data Management Core Facility, Paris, France
| | - Maguelonne Roux
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, Paris, France
| | - Vincent Mendiboure
- Institut Pasteur, Université Paris Cité, Epidemiology of Emerging Diseases Unit, Paris, France
| | - Christine Harmant
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France
| | - Aurélie Bisiaux
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France
| | - Gaston Rijo de León
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France
| | - Dang Liu
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France
| | - Hervé Bossin
- Laboratory of Research in Medical Entomology, Institut Louis Malardé, Paea, French Polynesia
| | - Françoise Mathieu-Daudé
- Laboratory of Research in Medical Entomology, Institut Louis Malardé, Paea, French Polynesia
- UMR MIVEGEC-Infectious Diseases and Vectors, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Clémence Gatti
- Laboratory of Marine Biotoxins, UMR241-Ecosystèmes Insulaires Océaniens (EIO) (IFREMER, ILM, IRD, UPF), Institut Louis Malardé, Papeete, French Polynesia
| | - Edouard Suhas
- Unit on non-Communicable Diseases, UMR241-Ecosystèmes Insulaires Océaniens (EIO) (IFREMER, ILM, IRD, UPF), Institut Louis Malardé, Papeete, French Polynesia
| | - Kiyojiken Chung
- Laboratory of Research on Emerging Viral Diseases, Institut Louis Malardé, Papeete, French Polynesia
| | - Bertrand Condat
- Department of Gastroenterology, Centre Hospitalier de la Polynésie Française, Pirae, French Polynesia
| | - Pierre Ayotte
- Centre de Toxicologie du Québec, Institut National de Santé Publique du Québec, QC, Canada
| | - Eric Conte
- Maison des Sciences de l’Homme du Pacifique, Université de la Polynésie Française, Punaauia, French Polynesia
| | - Nathalie Jolly
- Center for Translational Sciences, Institut Pasteur, Paris, France
| | - Jean-Claude Manuguerra
- Environment and Infectious Risk Unit, Laboratory for Urgent Response to Biological Threats, Institut Pasteur, Paris, France
| | - Anavaj Sakuntabhai
- Functional Genetics of Infectious Diseases Unit, Department of Global Health, Institut Pasteur, Paris, France
| | - Arnaud Fontanet
- Institut Pasteur, Université Paris Cité, Epidemiology of Emerging Diseases Unit, Paris, France
- PACRI Unit, Conservatoire National des Arts et Métiers, Paris, France
| | - Lluis Quintana-Murci
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France
- Chair Human Genomics and Evolution, Collège de France, Paris, France
| | - Van-Mai Cao-Lormeau
- Laboratory of Research on Emerging Viral Diseases, Institut Louis Malardé, Papeete, French Polynesia
| |
Collapse
|
4
|
Ngwe Tun MM, Kyaw AK, Nwe KM, Myaing SS, Win YT, Inoue S, Takamatsu Y, Urano T, Thu HM, Hmone SW, Thant KZ, Morita K. Burden of Chikungunya Virus Infection during an Outbreak in Myanmar. Viruses 2023; 15:1734. [PMID: 37632076 PMCID: PMC10459206 DOI: 10.3390/v15081734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Chikungunya virus (CHIKV) infection is a re-emerging arboviral disease with no approved vaccine, although numerous options are in development. Before vaccine implementation, disease burden, affected age group, and hospitalization rate information should be documented. In 2019, a sizeable outbreak of the East Central South African genotype of CHIKV occurred in Myanmar, and during this period, a cross-sectional study was conducted in two regions, Mandalay and Yangon, to examine the molecular and seropositivity rate of the CHIKV infection. The participants (1124) included dengue-suspected pediatric patients, blood donors, and healthy volunteers, who were assessed using molecular assays (quantitative real-time RT-PCR), serological tests (anti-CHIKV IgM capture and IgG indirect enzyme-linked immunosorbent assays), and neutralization tests. The tests confirmed the following positivity rates: 11.3% (127/1124) for the molecular assay, 12.4% (139/1124) for the anti-CHIKV IgM Ab, 44.5% (500/1124) for the anti-CHIKV IgG Ab, and 46.3% (520/1124) for the CHIKV neutralizing Ab. The highest rate for the molecular test occurred with the dengue-suspected pediatric patients. The seroprevalence rate through natural infection was higher in the healthy volunteers and blood donors than that in the pediatric patients. The results of this study will help stakeholders determine the criteria for choosing appropriate recipients when a CHIKV vaccine is introduced in Myanmar.
Collapse
Affiliation(s)
- Mya Myat Ngwe Tun
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (K.M.N.); (Y.T.)
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 690-8504, Japan;
| | - Aung Kyaw Kyaw
- Department of Medical Research, Ministry of Health, Yangon 11191, Myanmar; (A.K.K.); (S.S.M.); (H.M.T.)
| | - Khine Mya Nwe
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (K.M.N.); (Y.T.)
| | - Su Su Myaing
- Department of Medical Research, Ministry of Health, Yangon 11191, Myanmar; (A.K.K.); (S.S.M.); (H.M.T.)
| | - Ye Thu Win
- 550-Bedded Children Hospital (Mandalay), Department of Medical Services, Ministry of Health, Mandalay City 05021, Myanmar;
| | - Shingo Inoue
- Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Yuki Takamatsu
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (K.M.N.); (Y.T.)
| | - Takeshi Urano
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 690-8504, Japan;
| | - Hlaing Myat Thu
- Department of Medical Research, Ministry of Health, Yangon 11191, Myanmar; (A.K.K.); (S.S.M.); (H.M.T.)
| | - Saw Wutt Hmone
- Department of Pathology, University of Medicine-1, Ministry of Health, Yangon 11131, Myanmar;
| | - Kyaw Zin Thant
- Myanmar Academy of Medical Science, Yangon 11201, Myanmar;
| | - Kouichi Morita
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (K.M.N.); (Y.T.)
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
5
|
Skalinski LM, Santos AES, Paixão E, Itaparica M, Barreto F, da Conceição Nascimento Costa M, Teixeira MG. Chikungunya seroprevalence in population-based studies: a systematic review and meta-analysis. Arch Public Health 2023; 81:80. [PMID: 37127721 PMCID: PMC10150504 DOI: 10.1186/s13690-023-01081-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Seroprevalence studies about chikungunya infection are usually conducted after epidemics to estimate the magnitude of the attack. This study aimed to estimate the seroprevalence of CHIKV by WHO region, considering the periods of introduction of the virus in these regions and its potential to lead to epidemics. METHODS We systematically reviewed Medline/Pubmed, Embase, Lilacs, Scopus and Web of Science for original articles published up to 2020. Cohort, case-control and cross-sectional studies were eligible for inclusion, based on the results of laboratory diagnosis of previous or previous and recent infection. Those conducted with symptomatic individuals were excluded. RESULTS 596 articles were identified, 197 full-text were reviewed and 64 were included, resulting in 71 seroprevalences. Most were cross-sectional studies (92%), between 2001 and 2020 (92%), with population of all ages (55%), conducted in Kenya (10.9%), Brazil (9.4%) and French Polynesia (7.8%). The pooled estimates were 24% (95%CI 19-29; I2 = 99.7%; p < 0.00), being 21% (95%CI 13-30; I2 = 99.5%; p < 0.00) for adults, 7% (95%CI 0-23; I2 = 99.7%; p < 0.00) for children and 30% (95%CI 23-38; I2 = 99.7%; p < 0.00) for all ages. The higher seroprevalences were found in African, the Americas and South-East Asian Regions. CONCLUSIONS The great heterogeneity of seroprevalences points to the persistence of viral circulation. Even where the seroprevalence is high, the population replacement and the absence of vaccines mean that the risk of virus spread and epidemics remains. REGISTRATION PROSPERO CRD42020166227.
Collapse
Affiliation(s)
- Lacita Menezes Skalinski
- Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, s/n, Salobrinho, Ilhéus, CEP 45662-900, BA, Brasil.
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil.
| | - Aline Elena Sacramento Santos
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil
| | - Enny Paixão
- London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | - Martha Itaparica
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil
| | - Florisneide Barreto
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil
| | | | - Maria Glória Teixeira
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil
| |
Collapse
|
6
|
Hakim MS, Annisa L, Gazali FM, Aman AT. The origin and continuing adaptive evolution of chikungunya virus. Arch Virol 2022; 167:2443-2455. [PMID: 35987965 DOI: 10.1007/s00705-022-05570-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/05/2022] [Indexed: 12/14/2022]
Abstract
Chikungunya virus (CHIKV) is the responsible agent of chikungunya fever, a debilitating arthritic disease in humans. CHIKV is endemic in Africa and Asia, although transmission cycles are considerably different on these continents. Before 2004, CHIKV had received little attention, since it was only known to cause localised outbreaks in a limited region with no fatalities. However, the recent global reemergence of CHIKV has caused serious global health problems and shown its potential to become a significant viral threat in the future. Unexpectedly, the reemergence is more rapid and is geographically more extensive, especially due to increased intensity of global travel systems or failure to contain mosquito populations. Another important factor is the successful adaptation of CHIKV to a new vector, the Aedes albopictus mosquito. Ae. albopictus survives in both temperate and tropical climates, thus facilitating CHIKV expansion to non-endemic regions. The continuous spread and transmission of CHIKV pose challenges for the development of effective vaccines and specific antiviral therapies. In this review, we discuss the biology and origin of CHIKV in Africa as well as its subsequent expansion to other parts of the world. We also review the transmission cycle of CHIKV and its continuing adaptation to its mosquito vectors and vertebrate hosts. More-complete understanding of the continuous evolution of CHIKV may help in predicting the emergence of CHIKV strains with possibly greater transmission efficiency in the future.
Collapse
Affiliation(s)
- Mohamad S Hakim
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
| | - Luthvia Annisa
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Faris M Gazali
- Master Program in Biotechnology, Postgraduate School, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Abu T Aman
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| |
Collapse
|
7
|
López L, Paul RE, Cao-Lormeau VM, Rodó X. Considering waning immunity to better explain dengue dynamics. Epidemics 2022; 41:100630. [PMID: 36272245 DOI: 10.1016/j.epidem.2022.100630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/25/2022] [Accepted: 09/20/2022] [Indexed: 12/29/2022] Open
Abstract
Life-long serotype-specific immunity following dengue virus infection may not always occur, but the true extent of this effect is unknown. Analysis of more than 20 years of monotypic epidemics in the isolated French Polynesian islands revealed that whilst the risk of symptomatic dengue infection did conform to the classical paradigms of homotypic immunity and increased disease risk in heterotypic secondary infections, incorporation of waning immunity improved the ability of epidemiological models to capture the observed epidemic dynamics. Not only does this show how inclusion of waning immunity into classical models can reveal important facets of the immune response to natural dengue virus infection, it also has significant ramifications for vaccine development and implementation in dengue endemic areas.
Collapse
Affiliation(s)
- Leonardo López
- CLIMA (Climate and Health) Program, ISGlobal, c/Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Richard E Paul
- Institut Pasteur, Université de Paris, CNRS UMR2000, Ecology and Emergence of Arthropod-borne Pathogens Unit, F-75015 Paris, France
| | - Van-Mai Cao-Lormeau
- Laboratoire de recherche sur les maladies infectieuses à transmission vectorielle, Institut Louis Malardé, 98713 Papeete, Tahiti, French Polynesia
| | - Xavier Rodó
- CLIMA (Climate and Health) Program, ISGlobal, c/Dr. Aiguader 88, 08003 Barcelona, Spain; ICREA, Passeig de Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
8
|
Reconstructing long-term dengue virus immunity in French Polynesia. PLoS Negl Trop Dis 2022; 16:e0010367. [PMID: 36191046 PMCID: PMC9560594 DOI: 10.1371/journal.pntd.0010367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/13/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Understanding the underlying risk of infection by dengue virus from surveillance systems is complicated due to the complex nature of the disease. In particular, the probability of becoming severely sick is driven by serotype-specific infection histories as well as age; however, this has rarely been quantified. Island communities that have periodic outbreaks dominated by single serotypes provide an opportunity to disentangle the competing role of serotype, age and changes in surveillance systems in characterising disease risk. METHODOLOGY We develop mathematical models to analyse 35 years of dengue surveillance (1979-2014) and seroprevalence studies from French Polynesia. We estimate the annual force of infection, serotype-specific reporting probabilities and changes in surveillance capabilities using the annual age and serotype-specific distribution of dengue. PRINCIPAL FINDINGS Eight dengue epidemics occurred between 1979 and 2014, with reporting probabilities for DENV-1 primary infections increasing from 3% to 5%. The reporting probability for DENV-1 secondary infections was 3.6 times that for primary infections. We also observed heterogeneity in reporting probabilities by serotype, with DENV-3 having the highest probability of being detected. Reporting probabilities declined with age after 14 y.o. Between 1979 and 2014, the proportion never infected declined from 70% to 23% while the proportion infected at least twice increased from 4.5% to 45%. By 2014, almost half of the population had acquired heterotypic immunity. The probability of an epidemic increased sharply with the estimated fraction of susceptibles among children. CONCLUSION/SIGNIFICANCE By analysing 35 years of dengue data in French Polynesia, we characterised key factors affecting the dissemination profile and reporting of dengue cases in an epidemiological context simplified by mono-serotypic circulation. Our analysis provides key estimates that can inform the study of dengue in more complex settings where the co-circulation of multiple serotypes can greatly complicate inference.
Collapse
|
9
|
Madzokere ET, Qian W, Webster JA, Walker DMH, Lim EXY, Harley D, Herrero LJ. Human Seroprevalence for Dengue, Ross River, and Barmah Forest viruses in Australia and the Pacific: A systematic review spanning seven decades. PLoS Negl Trop Dis 2022; 16:e0010314. [PMID: 35486651 PMCID: PMC9094520 DOI: 10.1371/journal.pntd.0010314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 05/11/2022] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Dengue (DENV), Ross River (RRV) and Barmah Forest viruses (BFV) are the most common human arboviral infections in Australia and the Pacific Island Countries and Territories (PICTs) and are associated with debilitating symptoms. All are nationally notifiable in Australia, but routine surveillance is limited to a few locations in the PICTs. Understanding the level of human exposure to these viruses can inform disease management and mitigation strategies. To assess the historic and current seroprevalence of DENV, RRV and BFV in Australia and the PICTs we conducted a systematic literature review of all published quantitative serosurveys.
Methodology and principal findings
The Preferred Reporting of Items for Systematic Reviews and Meta-Analyses procedures were adopted to produce a protocol to systematically search for published studies reporting the seroprevalence of DENV, RRV and BFV in Australia and the PICTs. Data for author, research year, location, study population, serosurvey methods and positive tests were extracted. A total of 41 papers, reporting 78 serosurveys of DENV, RRV and BFV including 62,327 samples met the inclusion criteria for this review. Seroprevalence varied depending on the assay used, strategy of sample collection and location of the study population. Significant differences were observed in reported seropositivity depending on the sample collection strategy with clinically targeted sampling reporting the highest seroprevalence across all three viruses. Non-stratified seroprevalence showed wide ranges in reported positivity with DENV 0.0% – 95.6%, RRV 0.0% – 100.0%, and BFV 0.3% – 12.5%. We discuss some of the causes of variation including serological methods used, selection bias in sample collection including clinical or environmental associations, and location of study site. We consider the extent to which serosurveys reflect the epidemiology of the viruses and provide broad recommendations regarding the conduct and reporting of arbovirus serosurveys.
Conclusions and significance
Human serosurveys provide important information on the extent of human exposure to arboviruses across: (1) time, (2) place, and (3) person (e.g., age, gender, clinical presentation etc). Interpreting results obtained at these scales has the potential to inform us about transmission cycles, improve diagnostic surveillance, and mitigate future outbreaks. Future research should streamline methods and reduce bias to allow a better understanding of the burden of these diseases and the factors associated with seroprevalence. Greater consideration should be given to the interpretation of seroprevalence in studies, and increased rigour applied in linking seroprevalence to transmission dynamics.
Collapse
Affiliation(s)
- Eugene T. Madzokere
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Australia
| | - Wei Qian
- Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | - Julie A. Webster
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Daniel M. H. Walker
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Australia
| | - Elisa X. Y. Lim
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Australia
| | - David Harley
- Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | - Lara J. Herrero
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Australia
- * E-mail:
| |
Collapse
|
10
|
The triple epidemics of arboviruses in Feira de Santana, Brazilian Northeast: Epidemiological characteristics and diffusion patterns. Epidemics 2022; 38:100541. [PMID: 35123281 DOI: 10.1016/j.epidem.2022.100541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/16/2021] [Accepted: 01/20/2022] [Indexed: 11/22/2022] Open
Abstract
Arboviruses are diseases of worldwide importance in the field of communicable diseases. In Brazil, the reemergence of dengue and the emergence of chikungunya and Zika since 2014 have led to epidemic waves of great magnitude and rapid spread. However, their diffusion patterns vary and change over time. This study analyzes the spatial diffusion of the simultaneous circulation of three arboviruses transmitted by the same vector in a large urban space over two epidemic waves in consecutive years. An ecological study of spatial and temporal aggregates on the occurrence of dengue, chikungunya, and Zika, from 2014 to 2019, in Feira de Santana, Bahia State, was carried out using data of cases reported to the national surveillance system. Four different methods were used to analyze the spatial diffusion: Kernel Estimation with sequential maps, cumulative nearest-neighbor ratios (NNI) over time, spatial correlograms and local autocorrelation changes (LISA) over time. From 2014-2019, there were 21,723 confirmed cases of arboviruses. The highest incidences were among women (496.9, 220.2, and 91.0 cases/100,000 women for dengue, chikungunya and Zika respectively). By age group, the highest incidences were from ages 10-19 years old (609.3 dengue cases/100,000), from 60 and more (306.7 chikungunya cases/100,000), and from 0-9 years old (124.1 Zika cases/100,000 inhabitants). The temporal distribution demonstrated two epidemic waves of simultaneous circulation in 2014 and 2015. Kernel maps indicate that arboviruses spread to neighboring areas near the first hotspots, suggesting an expansion diffusion pattern. The NNI, spatial correlograms and LISA changes results suggest expansion patterns for the three arboviruses in all periods. The spatial diffusion pattern of dengue, Zika, and chikungunya in the 2014-2015 epidemics in Feira de Santana was expansion. These findings are useful to guide prevention measures and reduce occurrence in other areas.
Collapse
|
11
|
Bettis AA, L’Azou Jackson M, Yoon IK, Breugelmans JG, Goios A, Gubler DJ, Powers AM. The global epidemiology of chikungunya from 1999 to 2020: A systematic literature review to inform the development and introduction of vaccines. PLoS Negl Trop Dis 2022; 16:e0010069. [PMID: 35020717 PMCID: PMC8789145 DOI: 10.1371/journal.pntd.0010069] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/25/2022] [Accepted: 12/07/2021] [Indexed: 12/19/2022] Open
Abstract
Chikungunya fever is an acute febrile illness that is often associated with severe polyarthralgia in humans. The disease is caused by chikungunya virus (CHIKV), a mosquito-borne alphavirus. Since its reemergence in 2004, the virus has spread throughout the tropical world and several subtropical areas affecting millions of people to become a global public health issue. Given the significant disease burden, there is a need for medical countermeasures and several vaccine candidates are in clinical development. To characterize the global epidemiology of chikungunya and inform vaccine development, we undertook a systematic literature review in MEDLINE and additional public domain sources published up to June 13, 2020 and assessed epidemiological trends from 1999 to 2020. Observational studies addressing CHIKV epidemiology were included and studies not reporting primary data were excluded. Only descriptive analyses were conducted. Of 3,883 relevant sources identified, 371 were eligible for inclusion. 46% of the included studies were published after 2016. Ninety-seven outbreak reports from 45 countries and 50 seroprevalence studies from 31 countries were retrieved, including from Africa, Asia, Oceania, the Americas, and Europe. Several countries reported multiple outbreaks, but these were sporadic and unpredictable. Substantial gaps in epidemiological knowledge were identified, specifically granular data on disease incidence and age-specific infection rates. The retrieved studies revealed a diversity of methodologies and study designs, reflecting a lack of standardized procedures used to characterize this disease. Nevertheless, available epidemiological data emphasized the challenges to conduct vaccine efficacy trials due to disease unpredictability. A better understanding of chikungunya disease dynamics with appropriate granularity and better insights into the duration of long-term population immunity is critical to assist in the planning and success of vaccine development efforts pre and post licensure. Chikungunya disease is a mosquito-borne viral infection which causes an acute febrile illness often associated with debilitating polyarthralgia. It is estimated that over three quarters of the world’s populations live in areas at-risk of chikungunya virus transmission and to date, no efficacious medical countermeasures exist. To guide vaccine development against chikungunya, data regarding where and when outbreaks occur are needed. We conducted a systematic literature review to describe the global epidemiology of chikungunya to inform vaccine development. We used well-defined methods to search for and identify relevant research published between 1, January 1999 and 13, June 2020 in MEDLINE and other publicly available sources. We reviewed 371 references which emphasized the global expansion of chikungunya since its reemergence in 2004. Gaps in epidemiological knowledge identified included the population at risk, magnitude of outbreaks, and duration of natural immunity. This information is essential for late-stage development of chikungunya vaccines.
Collapse
Affiliation(s)
- Alison A. Bettis
- The Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Maïna L’Azou Jackson
- The Coalition for Epidemic Preparedness Innovations (CEPI), London, United Kingdom
- * E-mail:
| | - In-Kyu Yoon
- The Coalition for Epidemic Preparedness Innovations (CEPI), Washington, D.C., Maryland, United States of America
| | | | - Ana Goios
- P95 Epidemiology and Pharmacovigilance, Leuven, Belgium
| | | | - Ann M. Powers
- Centers for Disease Control and Prevention (CDC), Fort Collins, Colorado, United States of America
| |
Collapse
|
12
|
Hapuarachchi HC, Wong WY, Koo C, Tien WP, Yeo G, Rajarethinam J, Tan E, Chiang S, Chong CS, Tan CH, Tan LK, Ng LC. Transient transmission of Chikungunya virus in Singapore exemplifies successful mitigation of severe epidemics in a vulnerable population. Int J Infect Dis 2021; 110:417-425. [PMID: 34380087 DOI: 10.1016/j.ijid.2021.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Singapore experienced two major outbreaks of chikungunya in 2008-09 and 2013-14. Despite repeated virus introductions, fresh local outbreaks have not emerged after 2014. The present study reviews the success of chikungunya control in Singapore, despite repeated introduction of virus strains, presence of competent vectors and an immunologically naïve population. METHODS Chikungunya virus (CHIKV) sequences (421 envelope 1 genes and 56 polyproteins) were analysed to distinguish the indigenous virus groups from 2008 to 2020. Vector surveillance data was used to incriminate the vector/s associated with local outbreaks. The population exposure to CHIKV was determined by assessing the seroprevalence status in three cohorts of sera collected in 2009 (n=2,008), 2013 (n=2,000) and 2017 (n=3,615). RESULTS Four distinct groups of CHIKV of East, Central and South African genotype have mainly circulated since 2008, transmitted primarily by Aedes albopictus. The age weighted CHIKV IgG prevalence rates were low (1-5%) and showed a non-significant increase from 2009 to 2013, but a significant decrease in 2017. In contrast, the prevalence of CHIKV neutralising antibodies in the population increased significantly from 2009 to 2013, with no significant change in 2017, but the levels remained below 2%. CONCLUSIONS The evidence suggested that surveillance and vector control strategies implemented were robust to avert severe epidemics, despite repeated introduction of virus strains, presence of competent vectors and an immunologically naïve population.
Collapse
Affiliation(s)
| | - Wing-Yan Wong
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Carmen Koo
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Wei-Ping Tien
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Gladys Yeo
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Jayanthi Rajarethinam
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Eugene Tan
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Suzanna Chiang
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Chee-Seng Chong
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Cheong-Huat Tan
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Li-Kiang Tan
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667
| | - Lee-Ching Ng
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
13
|
Standardization of ELISA for anti-chikungunya-IgG antibodies and age-stratified prevalence of anti-chikungunya-IgG antibodies in Pune, India. Eur J Clin Microbiol Infect Dis 2020; 39:1925-1932. [PMID: 32504313 DOI: 10.1007/s10096-020-03933-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/24/2020] [Indexed: 10/23/2022]
Abstract
Chikungunya (CHIKV) reemerged in India after a gap of 32 years, in 2005-2006 and has established endemicity in Pune. To assess the degree of CHIKV exposure, we estimated age-stratified prevalence of IgG antibodies to CHIKV in Pune population. This retrospective study utilized age-stratified serum samples collected from 15 wards of Pune in 2017 for dengue (DENV) virus study. Indirect anti-CHIKV-IgG ELISA was developed and used to test 1904 samples. Exposure to CHIKV and DENV was compared in the same population. CHIKV-specific plaque reduction neutralization test (PRNT) was employed to evaluate ELISA positivity and neutralizing potential of anti-CHIKV-IgG antibodies. Indirect ELISA showed 98.5% concordance with commercial ELISA. Seropositivity to CHIKV was 46.4%, one-third children < 15 years being antibody positive. A significant increase (45%, p = 0.026-0.038) was noted at 16-25 years and varied between 48 and 56% until the age 65. In elderly (65 + years), antibody positivity was reduced (41%, p = 0.01). In children, CHIKV-PRNT50 titers increased with age and remained comparable from the age group 11-15 until > 65. Exposure to DENV was higher than CHIKV. Lower exposure of children and elderly could be due to lesser exposure to the vectors. High prevalence of IgG antibodies needs to be addressed while planning vaccine studies for CHIKV.
Collapse
|
14
|
Reconstructing Mayaro virus circulation in French Guiana shows frequent spillovers. Nat Commun 2020; 11:2842. [PMID: 32503971 PMCID: PMC7275077 DOI: 10.1038/s41467-020-16516-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/03/2020] [Indexed: 12/24/2022] Open
Abstract
Characterizing the circulation of Mayaro virus (MAYV), an emerging arbovirus threat, is essential for risk assessment but challenging due to cross-reactivity with other alphaviruses such as chikungunya virus (CHIKV). Here, we develop an analytical framework to jointly assess MAYV epidemiology and the extent of cross-reactivity with CHIKV from serological data collected throughout French Guiana (N = 2697). We find strong evidence of an important sylvatic cycle for MAYV with most infections occurring near the natural reservoir in rural areas and in individuals more likely to go to the forest (i.e., adult males) and with seroprevalences of up to 18% in some areas. These findings highlight the need to strengthen MAYV surveillance in the region and showcase how modeling can improve interpretation of cross-reacting assays.
Collapse
|
15
|
Flamand C, Bailly S, Fritzell C, Berthelot L, Vanhomwegen J, Salje H, Paireau J, Matheus S, Enfissi A, Fernandes-Pellerin S, Djossou F, Linares S, Carod JF, Kazanji M, Manuguerra JC, Cauchemez S, Rousset D. Impact of Zika Virus Emergence in French Guiana: A Large General Population Seroprevalence Survey. J Infect Dis 2020; 220:1915-1925. [PMID: 31418012 PMCID: PMC6834069 DOI: 10.1093/infdis/jiz396] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Since the identification of Zika virus (ZIKV) in Brazil in May 2015, the virus has spread throughout the Americas. However, ZIKV burden in the general population in affected countries remains unknown. METHODS We conducted a general population survey in the different communities of French Guiana through individual interviews and serologic survey during June-October 2017. All serum samples were tested for anti-ZIKV immunoglobulin G antibodies using a recombinant antigen-based SGERPAxMap microsphere immunoassay, and some of them were further evaluated through anti-ZIKV microneutralization tests. RESULTS The overall seroprevalence was estimated at 23.3% (95% confidence interval [CI], 20.9%-25.9%) among 2697 participants, varying from 0% to 45.6% according to municipalities. ZIKV circulated in a large majority of French Guiana but not in the most isolated forest areas. The proportion of reported symptomatic Zika infection was estimated at 25.5% (95% CI, 20.3%-31.4%) in individuals who tested positive for ZIKV. CONCLUSIONS This study described a large-scale representative ZIKV seroprevalence study in South America from the recent 2015-2016 Zika epidemic. Our findings reveal that the majority of the population remains susceptible to ZIKV, which could potentially allow future reintroductions of the virus.
Collapse
Affiliation(s)
| | | | | | - Léna Berthelot
- Arbovirus National Reference Center, Institut Pasteur, Cayenne, French Guiana
| | - Jessica Vanhomwegen
- Environment and Infectious Risks Unit, Unité Mixte de Recherche 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Henrik Salje
- Mathematical Modelling of Infectious Diseases Unit, Unité Mixte de Recherche 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Juliette Paireau
- Mathematical Modelling of Infectious Diseases Unit, Unité Mixte de Recherche 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Séverine Matheus
- Arbovirus National Reference Center, Institut Pasteur, Cayenne, French Guiana.,Environment and Infectious Risks Unit, Unité Mixte de Recherche 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Antoine Enfissi
- Arbovirus National Reference Center, Institut Pasteur, Cayenne, French Guiana
| | | | - Félix Djossou
- Infectious and Tropical Diseases Unit, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Sébastien Linares
- Geographic Information and Knowledge Dissemination Unit, Direction de l'Environnement, de l'Aménagement et du Logement Guyane, Cayenne, French Guiana
| | - Jean-François Carod
- Medical Laboratory, Centre Hospitalier de l'Ouest Guyanais, Saint-Laurent du Maroni, French Guiana
| | | | - Jean-Claude Manuguerra
- Environment and Infectious Risks Unit, Unité Mixte de Recherche 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Unité Mixte de Recherche 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Dominique Rousset
- Arbovirus National Reference Center, Institut Pasteur, Cayenne, French Guiana
| |
Collapse
|
16
|
Darcy AW, Kanda S, Dalipanda T, Joshua C, Shimono T, Lamaningao P, Mishima N, Nishiyama T. Multiple arboviral infections during a DENV-2 outbreak in Solomon Islands. Trop Med Health 2020; 48:33. [PMID: 32435149 PMCID: PMC7225641 DOI: 10.1186/s41182-020-00217-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/23/2020] [Indexed: 11/15/2022] Open
Abstract
Background Solomon Islands, a country made up of tropical islands, has suffered cyclic dengue fever (DF) outbreaks in the past three decades. An outbreak of dengue-like illness (DLI) that occurred in April 2016 prompted this study, which aimed to determine the population’s immunity status and identify the arboviruses circulating in the country. Methods A household survey, involving 188 participants in two urban areas (Honiara and Gizo), and a parallel hospital-based clinical survey were conducted in April 2016. The latter was repeated in December after a surge in DLI cases. Arbovirus IgG ELISA were performed on the household blood samples to determine the prevalence of arboviruses in the community, while qPCR testing of the clinical samples was used to identify the circulating arboviruses. Dengue virus (DENV)-positive samples were further characterized by amplifying and sequencing the envelope gene. Results The overall prevalence rates of DENV, Zika virus, and chikungunya virus were 83.4%, 7.6%, and 0.9%, respectively. The qPCR positivity rates of the clinical samples collected in April 2016 were as follows: DENV 39.6%, Zika virus 16.7%, and chikungunya virus 6.3%, which increased to 74%, 48%, and 20% respectively in December 2016. The displacement of the circulating serotype-3, genotype-1, with DENV serotype 2, genotype cosmopolitan was responsible for the outbreak in 2016. Conclusions A DENV outbreak in Solomon Islands was caused by the introduction of a single serotype. The high prevalence of DENV provided transient cross-protection, which prevented the introduction of a new serotype from the hyperendemic region for at least 3 years. The severe outcomes seen in the recent outbreak probably resulted from changes in the causative viruses and the effects of population immunity and changes in the outbreak pattern. Solomon Islands needs to step up surveillance to include molecular tools, increase regional communication, and perform timely interventions.
Collapse
|
17
|
Teissier Y, Paul R, Aubry M, Rodo X, Dommar C, Salje H, Sakuntabhai A, Cazelles B, Cao-Lormeau VM. Long-term persistence of monotypic dengue transmission in small size isolated populations, French Polynesia, 1978-2014. PLoS Negl Trop Dis 2020; 14:e0008110. [PMID: 32142511 PMCID: PMC7080275 DOI: 10.1371/journal.pntd.0008110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/18/2020] [Accepted: 02/02/2020] [Indexed: 01/18/2023] Open
Abstract
Understanding the transition of epidemic to endemic dengue transmission remains a challenge in regions where serotypes co-circulate and there is extensive human mobility. French Polynesia, an isolated group of 117 islands of which 72 are inhabited, distributed among five geographically separated subdivisions, has recorded mono-serotype epidemics since 1944, with long inter-epidemic periods of circulation. Laboratory confirmed cases have been recorded since 1978, enabling exploration of dengue epidemiology under monotypic conditions in an isolated, spatially structured geographical location. A database was constructed of confirmed dengue cases, geolocated to island for a 35-year period. Statistical analyses of viral establishment, persistence and fade-out as well as synchrony among subdivisions were performed. Seven monotypic and one heterotypic dengue epidemic occurred, followed by low-level viral circulation with a recrudescent epidemic occurring on one occasion. Incidence was asynchronous among the subdivisions. Complete viral die-out occurred on several occasions with invasion of a new serotype. Competitive serotype replacement has been observed previously and seems to be characteristic of the South Pacific. Island population size had a strong impact on the establishment, persistence and fade-out of dengue cases and endemicity was estimated achievable only at a population size in excess of 175 000. Despite island remoteness and low population size, dengue cases were observed somewhere in French Polynesia almost constantly, in part due to the spatial structuration generating asynchrony among subdivisions. Long-term persistence of dengue virus in this group of island populations may be enabled by island hopping, although could equally be explained by a reservoir of sub-clinical infections on the most populated island, Tahiti. Dengue virus is the most significant arthropod-borne virus infecting man. Understanding how long dengue virus can persist in populations of varying size is key to understanding its epidemiology. This is, however, impossible to achieve in settings where dengue is endemic, because of continued human movement and is further complexified by the occurrence of several co-circulating serotypes. By contrast, French Polynesia, an isolated group of 72 inhabited islands in the South Pacific, has had intermittent majoritarily monotypic dengue epidemics since the 1940s and offers a unique opportunity to address questions of viral persistence, turnover and the importance of spatial sub-structure in determining dengue epidemiology. Collating and analyzing a database of laboratory-confirmed dengue cases from across French Polynesia over a 35 year period we were able to show that dengue virus die-out can occur with or without replacement by a new serotype, monotypic transmission of dengue viruses fails to be maintained within small island populations but can persist for years among isolated islands connected via air and sea links. This remarkable long-term persistence of dengue virus in French Polynesia could be maintained by asynchronous viral transmission among connected islands and/or by repeated seeding from a reservoir of sub-clinical infections in the most populated island, Tahiti.
Collapse
Affiliation(s)
- Yoann Teissier
- Laboratoire de recherche sur les maladies infectieuses à transmission vectorielle, Institut Louis Malardé, Papeete, Tahiti, French Polynesia
- Université Paris Descartes, PSL University, Paris, France
| | - Richard Paul
- Institut Pasteur, Unité de Génétique Fonctionnelle des Maladies Infectieuses, UMR 2000 CNRS, Paris, France
- Pasteur Kyoto International Joint Research Unit for Integrative Vaccinomics, Kyoto, Japan
- * E-mail: (RP); (VMCL)
| | - Maite Aubry
- Laboratoire de recherche sur les maladies infectieuses à transmission vectorielle, Institut Louis Malardé, Papeete, Tahiti, French Polynesia
| | - Xavier Rodo
- ICREA, Barcelona, Spain
- CLIMA (Climate and Health) Program, ISGlobal, Barcelona, Spain
| | - Carlos Dommar
- CLIMA (Climate and Health) Program, ISGlobal, Barcelona, Spain
| | - Henrik Salje
- Institut Pasteur, Mathematical Modelling of Infectious Diseases Unit, UMR 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Anavaj Sakuntabhai
- Institut Pasteur, Unité de Génétique Fonctionnelle des Maladies Infectieuses, UMR 2000 CNRS, Paris, France
- Pasteur Kyoto International Joint Research Unit for Integrative Vaccinomics, Kyoto, Japan
| | - Bernard Cazelles
- International Center for Mathematical and Computational Modeling of Complex Systems (UMMISCO), UMI 209, Sorbonne Université - IRD, Bondy cedex, France
- iGLOBE, UMI CNRS 3157, University of Arizona, Tucson, Arizona, United States of America
- IBENS, UMR 8197 CNRS-ENS Ecole Normale Supérieure, Paris, France
| | - Van-Mai Cao-Lormeau
- Laboratoire de recherche sur les maladies infectieuses à transmission vectorielle, Institut Louis Malardé, Papeete, Tahiti, French Polynesia
- * E-mail: (RP); (VMCL)
| |
Collapse
|
18
|
Beau F, Mallet H, Lastère S, Broult J, Laperche S. Transfusion risk associated with recent arbovirus outbreaks in French Polynesia. Vox Sang 2019; 115:124-132. [DOI: 10.1111/vox.12855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Frédéric Beau
- French Polynesia Blood Bank Taaone Hospital Tahiti French Polynesia
| | | | | | - Julien Broult
- French Polynesia Blood Bank Taaone Hospital Tahiti French Polynesia
| | - Syria Laperche
- Department of Blood‐borne Agents National Reference Center for Infectious Risks in Blood Transfusion National Institute of Blood Transfusion (INTS) Paris France
| |
Collapse
|
19
|
Beau F, Lastère S, Mallet HP, Mauguin S, Broult J, Laperche S. Impact on blood safety of the last arboviruses outbreaks in French Polynesia (2012-2018). Transfus Clin Biol 2019; 27:4-9. [PMID: 31889619 DOI: 10.1016/j.tracli.2019.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Several successive arbovirus outbreaks have affected French Polynesia (FP) in the recent past years due to different dengue serotypes (DENV) present for several decades, Zika (ZIKV) (2013-2014) and chikungunya (CHIKV) (2014-2015) viruses with a potential impact on blood safety and blood supply due to the geographical isolation of these islands. This study reports an assessment of the impact of these outbreaks on blood products supply and infectious safety in FP and discuss the effectiveness of implemented preventive measures. METHODS To ensure the infectious safety of blood products during outbreaks, several measures have successively been introduced as the selection of donors suspected of infection, the nucleic acid testing (NAT) and the pathogen reduction of platelets and plasmas. RESULTS The donor deferral rate increased by 6% between 2012 and 2014 without changes in the number of collected donations. NAT excluded five blood donations reactive for DENV RNA, 42 for ZIKV and 34 for CHIKV. As Zika screening could not been implemented before the third month of the outbreak, 36 blood products from ZIKV-infected donors were transfused to 26 recipients. However, no transfusion-transmitted arbovirus has been reported. CONCLUSION The last past arboviruses outbreaks did not have a significant impact on blood supply in FP. The measures introduced to prevent arbovirus transmission by transfusion were able to maintain infectious safety for all blood products without impairing self-sufficiency.
Collapse
Affiliation(s)
- F Beau
- Centre de transfusion sanguine de Polynésie française, hôpital du Taaone, centre hospitalier de Polynésie française, Pirae, BP 4530, 98713 Papeete, Tahiti, French Polynesia.
| | - S Lastère
- Laboratoire de biologie, hôpital du Taaone, centre hospitalier de Polynésie française, Pirae, Tahiti, French Polynesia
| | - H-P Mallet
- Centre de transfusion sanguine de Polynésie française, hôpital du Taaone, centre hospitalier de Polynésie française, Pirae, BP 4530, 98713 Papeete, Tahiti, French Polynesia
| | - S Mauguin
- Unité d'hémovigilance, hôpital du Taaone, centre hospitalier de Polynésie française, Pirae, Tahiti, French Polynesia
| | - J Broult
- Centre de transfusion sanguine de Polynésie française, hôpital du Taaone, centre hospitalier de Polynésie française, Pirae, BP 4530, 98713 Papeete, Tahiti, French Polynesia
| | - S Laperche
- Institut national de la transfusion sanguine, département des agents transmissibles par le sang, centre national de référence risques infectieux transfusionnels, Paris, France
| |
Collapse
|
20
|
Aubry M, Kama M, Henderson AD, Teissier A, Vanhomwegen J, Mariteragi-Helle T, Paoaafaite T, Manuguerra JC, Christi K, Watson CH, Lau CL, Kucharski AJ, Cao-Lormeau VM. Low chikungunya virus seroprevalence two years after emergence in Fiji. Int J Infect Dis 2019; 90:223-225. [PMID: 31689529 PMCID: PMC6912130 DOI: 10.1016/j.ijid.2019.10.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 11/29/2022] Open
Abstract
Chikungunya virus (CHIKV) infections were recorded in Fiji between 2015 and 2017. We performed serological testing on serum from 320 Fijians sampled in 2017. CHIKV seroprevalence increased from 0.9% in 2015 to 12.8% in 2017. Of the 198 participants seronegative in 2015, 31 (15.7%) were seropositive in 2017. Low CHIKV transmission occurred during the two years following emergence in Fiji.
Objectives In Fiji, autochthonous chikungunya virus (CHIKV) infection was first detected in March 2015. In a previous serosurvey conducted during October–November 2015, we reported a prevalence of anti-CHIKV IgG antibodies of 0.9%. In the present study, we investigated the seroprevalence of CHIKV two years after its emergence in Fiji. Methods Sera from 320 residents of Fiji recruited in June 2017, from the same cohort of individuals that participated in the serosurvey in 2015, were tested for the presence of IgG antibodies against CHIKV using a recombinant antigen-based microsphere immunoassay. Results Between 2015 and 2017, CHIKV seroprevalence among residents increased from 0.9% (3/333) to 12.8% (41/320). Of the participants with available serum samples collected in both 2015 and 2017 (n = 200), 31 (15.5%) who were seronegative in 2015 had seroconverted to CHIKV in 2017. Conclusions Our findings suggest that low-level transmission of CHIKV occurred during the two years following the emergence of the virus in Fiji. No CHIKV infection has been reported in Fiji since 2017, but due to the presumed low herd immunity of the population, the risk of CHIKV re-emergence is high. Consequently, chikungunya should be considered in the differential diagnosis of acute febrile diseases in Fiji.
Collapse
Affiliation(s)
- Maite Aubry
- Institut Louis Malardé, PO BOX 30, 98713 Papeete, Tahiti, French Polynesia.
| | - Mike Kama
- Fiji Centre for Communicable Disease Control, Tamavua Hospital Complex, Mataika House, Suva, Fiji; The University of the South Pacific, Private Mail Bag, Laucala Campus, Suva, Fiji
| | - Alasdair D Henderson
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Anita Teissier
- Institut Louis Malardé, PO BOX 30, 98713 Papeete, Tahiti, French Polynesia
| | | | | | | | | | - Ketan Christi
- The University of the South Pacific, Private Mail Bag, Laucala Campus, Suva, Fiji
| | - Conall H Watson
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom; Epidemic Research Group Oxford, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Colleen L Lau
- Research School of Population Health, The Australian National University, 62 Mills Road, Acton, ACT 2601, Australia
| | - Adam J Kucharski
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | | |
Collapse
|
21
|
Breitbach ME, Newman CM, Dudley DM, Stewart LM, Aliota MT, Koenig MR, Shepherd PM, Yamamoto K, Crooks CM, Young G, Semler MR, Weiler AM, Barry GL, Heimsath H, Mohr EL, Eichkoff J, Newton W, Peterson E, Schultz-Darken N, Permar SR, Dean H, Capuano S, Osorio JE, Friedrich TC, O’Connor DH. Primary infection with dengue or Zika virus does not affect the severity of heterologous secondary infection in macaques. PLoS Pathog 2019; 15:e1007766. [PMID: 31369649 PMCID: PMC6675051 DOI: 10.1371/journal.ppat.1007766] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/26/2019] [Indexed: 01/12/2023] Open
Abstract
Zika virus (ZIKV) and dengue virus (DENV) are genetically and antigenically related flaviviruses that now co-circulate in much of the tropical and subtropical world. The rapid emergence of ZIKV in the Americas in 2015 and 2016, and its recent associations with Guillain-Barré syndrome, birth defects, and fetal loss have led to the hypothesis that DENV infection induces cross-reactive antibodies that influence the severity of secondary ZIKV infections. It has also been proposed that pre-existing ZIKV immunity could affect DENV pathogenesis. We examined outcomes of secondary ZIKV infections in three rhesus and fifteen cynomolgus macaques, as well as secondary DENV-2 infections in three additional rhesus macaques up to a year post-primary ZIKV infection. Although cross-binding antibodies were detected prior to secondary infection for all animals and cross-neutralizing antibodies were detected for some animals, previous DENV or ZIKV infection had no apparent effect on the clinical course of heterotypic secondary infections in these animals. All animals had asymptomatic infections and, when compared to controls, did not have significantly perturbed hematological parameters. Rhesus macaques infected with DENV-2 approximately one year after primary ZIKV infection had higher vRNA loads in plasma when compared with serum vRNA loads from ZIKV-naive animals infected with DENV-2, but a differential effect of sample type could not be ruled out. In cynomolgus macaques, the serotype of primary DENV infection did not affect the outcome of secondary ZIKV infection. Pre-existing immunity to one of the four DENV serotypes is known to increase the risk of severe disease upon secondary infection with a different serotype. Due to the antigenic similarities between ZIKV and DENV, it has been proposed that these viruses could interact in a similar fashion. Data from in vitro experiments and murine models suggests that pre-existing immunity to one virus could either enhance or protect against infection with the other. These somewhat contradictory findings highlight the need for immune competent animal models for understanding the role of cross-reactive antibodies in flavivirus pathogenesis. We examined secondary ZIKV or DENV infections in rhesus and cynomolgus macaques that had previously been infected with the other virus. We assessed the outcomes of secondary ZIKV or DENV infections by quantifying vRNA loads, clinical and laboratory parameters, body temperature, and weight for each cohort of animals and compared them with control animals. These comparisons demonstrated that within a year of primary infection, secondary infections with either ZIKV or DENV were similar to primary infections and were not associated with enhancement or reduction in severity of disease based on the outcomes that we assessed.
Collapse
Affiliation(s)
- Meghan E. Breitbach
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christina M. Newman
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dawn M. Dudley
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Laurel M. Stewart
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michelle R. Koenig
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Phoenix M. Shepherd
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Keisuke Yamamoto
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chelsea M. Crooks
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ginger Young
- Takeda Vaccines, Inc., Madison, Wisconsin, United States of America
| | - Matthew R. Semler
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Gabrielle L. Barry
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Holly Heimsath
- Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Emma L. Mohr
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jens Eichkoff
- Department of Biostatistics & Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Wendy Newton
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Eric Peterson
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Nancy Schultz-Darken
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Sallie R. Permar
- Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Hansi Dean
- Takeda Vaccines, Inc., Madison, Wisconsin, United States of America
| | - Saverio Capuano
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Jorge E. Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
22
|
Aubry M, Mapotoeke M, Teissier A, Paoaafaite T, Dumas-Chastang E, Giard M, Cao-Lormeau VM. Dengue virus serotype 2 (DENV-2) outbreak, French Polynesia, 2019. Euro Surveill 2019; 24:1900407. [PMID: 31339095 PMCID: PMC6652116 DOI: 10.2807/1560-7917.es.2019.24.29.1900407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/18/2019] [Indexed: 11/20/2022] Open
Abstract
In 1996-97, the last dengue virus serotype 2 (DENV-2) outbreak occurred in French Polynesia. In February 2019, DENV-2 infection was detected in a traveller from New Caledonia. In March, autochthonous DENV-2 infection was diagnosed in two residents. A DENV-2 outbreak was declared on 10 April with 106 cases as at 24 June. Most of the population is not immune to DENV-2; a large epidemic could occur with risk of imported cases in mainland France.
Collapse
Affiliation(s)
- Maite Aubry
- Institut Louis Malardé, Papeete, Tahiti, French Polynesia
| | - Mihiau Mapotoeke
- Direction de la Santé de la Polynésie française, Papeete, Tahiti, French Polynesia
| | - Anita Teissier
- Institut Louis Malardé, Papeete, Tahiti, French Polynesia
| | | | | | - Marine Giard
- Direction de la Santé de la Polynésie française, Papeete, Tahiti, French Polynesia
| | | |
Collapse
|
23
|
Levi LI, Vignuzzi M. Arthritogenic Alphaviruses: A Worldwide Emerging Threat? Microorganisms 2019; 7:microorganisms7050133. [PMID: 31091828 PMCID: PMC6560413 DOI: 10.3390/microorganisms7050133] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022] Open
Abstract
Arthritogenic alphaviruses are responsible for a dengue-like syndrome associated with severe debilitating polyarthralgia that can persist for months or years and impact life quality. Chikungunya virus is the most well-known member of this family since it was responsible for two worldwide epidemics with millions of cases in the last 15 years. However, other arthritogenic alphaviruses that are as of yet restrained to specific territories are the cause of neglected tropical diseases: O'nyong'nyong virus in Sub-Saharan Africa, Mayaro virus in Latin America, and Ross River virus in Australia and the Pacific island countries and territories. This review evaluates their emerging potential in light of the current knowledge for each of them and in comparison to chikungunya virus.
Collapse
Affiliation(s)
- Laura I Levi
- Populations Virales et Pathogenèse, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France.
- Ecole doctorale BioSPC, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Marco Vignuzzi
- Populations Virales et Pathogenèse, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France.
| |
Collapse
|
24
|
Subissi L, Dub T, Besnard M, Mariteragi-Helle T, Nhan T, Lutringer-Magnin D, Barboza P, Gurry C, Brindel P, Nilles EJ, Baud D, Merianos A, Musso D, Glynn JR, Dupuis G, Cao-Lormeau VM, Giard M, Mallet HP. Zika Virus Infection during Pregnancy and Effects on Early Childhood Development, French Polynesia, 2013-2016. Emerg Infect Dis 2019; 24:1850-1858. [PMID: 30226164 PMCID: PMC6154169 DOI: 10.3201/eid2410.172079] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Congenital Zika virus syndrome consists of a large spectrum of neurologic abnormalities seen in infants infected with Zika virus in utero. However, little is known about the effects of Zika virus intrauterine infection on the neurocognitive development of children born without birth defects. Using a case-control study design, we investigated the temporal association of a cluster of congenital defects with Zika virus infection. In a nested study, we also assessed the early childhood development of children recruited in the initial study as controls who were born without known birth defects,. We found evidence for an association of congenital defects with both maternal Zika virus seropositivity (time of infection unknown) and symptomatic Zika virus infection during pregnancy. Although the early childhood development assessment found no excess burden of developmental delay associated with maternal Zika virus infection, larger, longer-term studies are needed.
Collapse
|
25
|
Aubry M, Cao-Lormeau VM. History of arthropod-borne virus infections in French Polynesia. New Microbes New Infect 2019; 29:100513. [PMID: 30899520 PMCID: PMC6407142 DOI: 10.1016/j.nmni.2019.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 12/27/2022] Open
Abstract
In French Polynesia, arthropod-borne diseases are major public health problems. From the mid-1940s, the four serotypes of dengue virus (DENV-1 to -4) have caused 15 epidemics of variable severity. In 2013, for the first time, a sustained co-circulation of two different DENV serotypes (DENV-1 and -3) was reported. The same year, Zika virus (ZIKV) caused the largest outbreak ever recorded at that time. Severe neurologic complications in adults, including Guillain-Barré syndrome and central nervous system malformations in newborns and foeteuses, such as microcephaly, were reported, and a causal link with ZIKV infection was established. In addition to mosquito-borne transmission, the potential for perinatal, sexual and blood-transfusion transmission of ZIKV was demonstrated. In 2014, chikungunya virus (CHIKV) caused an explosive outbreak. Series of Guillain-Barré syndrome temporally associated with the CHIKV epidemic were reported. Except for DENV, ZIKV and CHIKV, no other arboviruses have been detected so far, but serologic evidence suggested the past silent circulation of Ross River virus. From May 2015 DENV-1 has been the only arbovirus transmitted in French Polynesia, but the reemergence of DENV-2 is highly expected since the detection of two autochthonous cases of DENV-2 infection in June 2018.
Collapse
Affiliation(s)
- M Aubry
- Institut Louis Malardé, Tahiti, French Polynesia
| | | |
Collapse
|
26
|
Beck C, Leparc-Goffart I, Desoutter D, Debergé E, Bichet H, Lowenski S, Dumarest M, Gonzalez G, Migné C, Vanhomwegen J, Zientara S, Durand B, Lecollinet S. Serological evidence of infection with dengue and Zika viruses in horses on French Pacific Islands. PLoS Negl Trop Dis 2019; 13:e0007162. [PMID: 30730887 PMCID: PMC6382171 DOI: 10.1371/journal.pntd.0007162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 02/20/2019] [Accepted: 01/15/2019] [Indexed: 12/28/2022] Open
Abstract
New Caledonia and French Polynesia are areas in which arboviruses circulate extensively. A large serological survey among horses from New Caledonia and French Polynesia was carried out to investigate the seroprevalence of flaviviruses in the horse population. Here, 293 equine sera samples were screened for flaviviruses using a competitive enzyme-linked immunosorbent assay (cELISA). The positive sera were then confirmed using a flavivirus-specific microsphere immunoassay (MIA) and seroneutralization tests. This serosurvey showed that 16.6% (27/163) and 30.8% (40/130) of horses were positive for cELISA tests in New Caledonia and French Polynesia, respectively, but the MIA technique, targeting only flaviviruses causing neuro-invasive infections in humans and horses (i.e. West Nile virus [WNV], Japanese encephalitis virus [JEV] and tick-borne encephalitis virus [TBEV]), showed negative results for more than 85% (57/67) of the cELISA-positive animals. Seroneutralization tests with the main flaviviruses circulating in the South Pacific revealed that 6.1% (10/163; confidence interval [95% CI] 3.0%-11.0%) of sera in New Caledonia and 7.7% (10/130; 95% CI 3.8%-13.7%) in French Polynesia were positive for dengue virus serotype 1 (DENV1) and 4.3% (7/163; 95% CI 1.7%-8.6%) in New Caledonia and 15.4% (20/130, 95% CI 9.7%-22.8%) in French Polynesia were found positive for Zika virus (ZIKV). Seroprevalence of the JEV and WNV flaviviruses on the 293 samples from both island groups were comparatively much lower (less than 2%). This seroprevalence study in the horse population shows that horses can be infected with dengue and Zika viruses and that these infections lead to seroconversions in horses. The consequences of these infections in horses and their role in ZIKV and DENV epidemiological cycles are two issues that deserve further investigation.
Collapse
Affiliation(s)
- Cécile Beck
- UMR 1161 Virology, ANSES, INRA, ENVA, ANSES Animal Health Laboratory, EURL for equine diseases, Maisons-Alfort, France
| | - Isabelle Leparc-Goffart
- Institut de Recherche Biomédicale des Armées, Unité de Virologie-CNR des Arbovirus, Marseille, France.,UMR UVE Unité des Virus Emergents, Aix-Marseille Université - IRD 190-Inserm 1207-IHU Méditerranée Infection, Marseille, France
| | - Denise Desoutter
- Service des Laboratoires Officiels Vétérinaires Agroalimentaires et Phytosanitaires de Nouvelle-Calédonie, Direction des Affaires Vétérinaires Alimentaires et Rurales de Nouvelle-Calédonie, Païta, New Caledonia
| | - Estelle Debergé
- Service du développement rural, Présidence de la Polynésie française, Papeete, Tahiti, French Polynesia
| | - Hervé Bichet
- Service du développement rural, Présidence de la Polynésie française, Papeete, Tahiti, French Polynesia
| | - Steeve Lowenski
- UMR 1161 Virology, ANSES, INRA, ENVA, ANSES Animal Health Laboratory, EURL for equine diseases, Maisons-Alfort, France
| | - Marine Dumarest
- UMR 1161 Virology, ANSES, INRA, ENVA, ANSES Animal Health Laboratory, EURL for equine diseases, Maisons-Alfort, France
| | - Gaelle Gonzalez
- UMR 1161 Virology, ANSES, INRA, ENVA, ANSES Animal Health Laboratory, EURL for equine diseases, Maisons-Alfort, France
| | - Camille Migné
- UMR 1161 Virology, ANSES, INRA, ENVA, ANSES Animal Health Laboratory, EURL for equine diseases, Maisons-Alfort, France
| | - Jessica Vanhomwegen
- Environment and Infectious Risks Research and Expertise Unit, Department of Infections and Epidemiology, Institut Pasteur, Paris, France
| | - Stéphan Zientara
- UMR 1161 Virology, ANSES, INRA, ENVA, ANSES Animal Health Laboratory, EURL for equine diseases, Maisons-Alfort, France
| | - Benoit Durand
- Epidemiology unit, Paris-Est University, ANSES Animal Health Laboratory, Maisons-Alfort, France
| | - Sylvie Lecollinet
- UMR 1161 Virology, ANSES, INRA, ENVA, ANSES Animal Health Laboratory, EURL for equine diseases, Maisons-Alfort, France
| |
Collapse
|
27
|
Fritzell C, Rousset D, Adde A, Kazanji M, Van Kerkhove MD, Flamand C. Current challenges and implications for dengue, chikungunya and Zika seroprevalence studies worldwide: A scoping review. PLoS Negl Trop Dis 2018; 12:e0006533. [PMID: 30011271 PMCID: PMC6062120 DOI: 10.1371/journal.pntd.0006533] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/26/2018] [Accepted: 05/16/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Arboviral infections are a public health concern and an escalating problem worldwide. Estimating the burden of these diseases represents a major challenge that is complicated by the large number of unapparent infections, especially those of dengue fever. Serological surveys are thus required to identify the distribution of these diseases and measure their impact. Therefore, we undertook a scoping review of the literature to describe and summarize epidemiological practices, findings and insights related to seroprevalence studies of dengue, chikungunya and Zika virus, which have rapidly expanded across the globe in recent years. METHODOLOGY/PRINCIPAL FINDINGS Relevant studies were retrieved through a literature search of MEDLINE, WHOLIS, Lilacs, SciELO and Scopus (2000 to 2018). In total, 1389 publications were identified. Studies addressing the seroprevalence of dengue, chikungunya and/or Zika written in English or French and meeting the inclusion and exclusion criteria were included. In total, 147 studies were included, from which 185 data points were retrieved, as some studies used several different samples. Most of the studies were exclusively conducted on dengue (66.5%), but 16% were exclusively conducted on chikungunya, and 7 were exclusively conducted on Zika; the remainder were conducted on multiple arboviruses. A wide range of designs were applied, but most studies were conducted in the general population (39%) and in households (41%). Although several assays were used, enzyme-linked immunosorbent assays (ELISAs) were the predominant test used (77%). The temporal distribution of chikungunya studies followed the virus during its rapid expansion since 2004. The results revealed heterogeneity of arboviruses seroprevalence between continents and within a given country for dengue, chikungunya and Zika viruses, ranging from 0 to 100%, 76% and 73% respectively. CONCLUSIONS/SIGNIFICANCE Serological surveys provide the most direct measurement for defining the immunity landscape for infectious diseases, but the methodology remains difficult to implement. Overall, dengue, chikungunya and Zika serosurveys followed the expansion of these arboviruses, but there remain gaps in their geographic distribution. This review addresses the challenges for researchers regarding study design biases. Moreover, the development of reliable, rapid and affordable diagnosis tools represents a significant issue concerning the ability of seroprevalence surveys to differentiate infections when multiple viruses co-circulate.
Collapse
Affiliation(s)
- Camille Fritzell
- Epidemiology Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Dominique Rousset
- National Reference Laboratory for Arboviruses, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Antoine Adde
- Epidemiology Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Mirdad Kazanji
- Epidemiology Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | | | - Claude Flamand
- Epidemiology Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana
| |
Collapse
|
28
|
Kucharski AJ, Kama M, Watson CH, Aubry M, Funk S, Henderson AD, Brady OJ, Vanhomwegen J, Manuguerra JC, Lau CL, Edmunds WJ, Aaskov J, Nilles EJ, Cao-Lormeau VM, Hué S, Hibberd ML. Using paired serology and surveillance data to quantify dengue transmission and control during a large outbreak in Fiji. eLife 2018; 7:34848. [PMID: 30103854 PMCID: PMC6092126 DOI: 10.7554/elife.34848] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/01/2018] [Indexed: 01/27/2023] Open
Abstract
Dengue is a major health burden, but it can be challenging to examine transmission and evaluate control measures because outbreaks depend on multiple factors, including human population structure, prior immunity and climate. We combined population-representative paired sera collected before and after the 2013/14 dengue-3 outbreak in Fiji with surveillance data to determine how such factors influence transmission and control in island settings. Our results suggested the 10-19 year-old age group had the highest risk of infection, but we did not find strong evidence that other demographic or environmental risk factors were linked to seroconversion. A mathematical model jointly fitted to surveillance and serological data suggested that herd immunity and seasonally varying transmission could not explain observed dynamics. However, the model showed evidence of an additional reduction in transmission coinciding with a vector clean-up campaign, which may have contributed to the decline in cases in the later stages of the outbreak.
Collapse
Affiliation(s)
- Adam J Kucharski
- Centre for the Mathematical Modelling of Infectious DiseasesLondon School of Hygiene and Tropical MedicineLondonUnited Kingdom,Department of Infectious Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Mike Kama
- National Centre for Communicable Disease ControlSuvaFiji,University of the South PacificSuvaFiji
| | - Conall H Watson
- Centre for the Mathematical Modelling of Infectious DiseasesLondon School of Hygiene and Tropical MedicineLondonUnited Kingdom,Department of Infectious Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Maite Aubry
- Unit of Emerging Infectious DiseasesInstitut Louis MalardéTahitiFrench Polynesia
| | - Sebastian Funk
- Centre for the Mathematical Modelling of Infectious DiseasesLondon School of Hygiene and Tropical MedicineLondonUnited Kingdom,Department of Infectious Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Alasdair D Henderson
- Centre for the Mathematical Modelling of Infectious DiseasesLondon School of Hygiene and Tropical MedicineLondonUnited Kingdom,Department of Infectious Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Oliver J Brady
- Centre for the Mathematical Modelling of Infectious DiseasesLondon School of Hygiene and Tropical MedicineLondonUnited Kingdom,Department of Infectious Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | | | | | - Colleen L Lau
- Research School of Population HealthAustralian National UniversityCanberraAustralia
| | - W John Edmunds
- Centre for the Mathematical Modelling of Infectious DiseasesLondon School of Hygiene and Tropical MedicineLondonUnited Kingdom,Department of Infectious Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - John Aaskov
- Queensland University of TechnologyBrisbaneAustralia
| | - Eric James Nilles
- World Health Organization Division of Pacific Technical SupportSuvaFiji
| | - Van-Mai Cao-Lormeau
- Unit of Emerging Infectious DiseasesInstitut Louis MalardéTahitiFrench Polynesia
| | - Stéphane Hué
- Centre for the Mathematical Modelling of Infectious DiseasesLondon School of Hygiene and Tropical MedicineLondonUnited Kingdom,Department of Infectious Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Martin L Hibberd
- Department of Pathogen Molecular BiologyLondon School of Hygiene and Tropical MedicineLondonUnited Kingdom
| |
Collapse
|