1
|
Lanave G, Pellegrini F, Diakoudi G, Catella C, Cavalli A, Capozza P, Elia G, Di Martino B, Zini E, Pollicino G, Zatelli A, Bányai K, Lavazza A, Decaro N, Camero M, Martella V. Discovery of a human parvovirus B19 analog (Erythroparvovirus) in cats. Sci Rep 2025; 15:9650. [PMID: 40113872 PMCID: PMC11926167 DOI: 10.1038/s41598-025-94123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Two feral cats (from the same colony) were presented to the veterinary clinic for weakness, weight loss, and anorexia. The cats were part of a study on feline hepatotropic viruses (collection A, 43 animals). On metaviromic investigation, parvoviral reads were identified in the sera of the two cats. The feline parvovirus genome was 5.3 kb long with an organization similar to other members of the Erythroparvovirus genus. In the ORF1 (nonstructural proteins) and ORF2 (VP1/VP2 precursor) the feline virus displayed 43.1% and 49.1% nucleotide identity to human parvovirus B19, and 48.9% and 56.6% to chipmunk parvovirus. Sequence identity to canine/feline protoparvovirus (Protoparvovirus carnivoran 1) was as low as 36.5% % and 29.2% in the ORF1 and ORF2, respectively. Using a quantitative PCR assay, the virus was also identified in an additional ten cats (prevalence 27.6%, 12/43) from collection A and in 15/1150 (1.3%) of archival sera (collection B), revealing a higher infection rate in cats with altered hepatic markers, suggestive of hepatic distress. The findings of our study extend the list of known parvoviruses in the feline host.
Collapse
Affiliation(s)
- Gianvito Lanave
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy.
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Georgia Diakoudi
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Cristiana Catella
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Alessandra Cavalli
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Paolo Capozza
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Gabriella Elia
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | | | - Eric Zini
- AniCura Istituto Veterinario Novara, Granozzo Con Monticello, Novara, Italy
- Department of Animal Medicine, Productions and Health University of Padua, Padua, Italy
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Giuseppe Pollicino
- AniCura Istituto Veterinario Novara, Granozzo Con Monticello, Novara, Italy
| | - Andrea Zatelli
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Krisztián Bányai
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Antonio Lavazza
- Experimental Zooprophylactic Institute of Lombardia and Emilia Romagna, Brescia, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Michele Camero
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
2
|
Ji J, Cui H, Zhang Z, Liu Q, Xu X, Zuo K, Bi Y, Yao L. Genetic and recombination heterogeneity of canine bufaviruses detected in diarrheal dogs in China. Vet J 2024; 306:106192. [PMID: 38964602 DOI: 10.1016/j.tvjl.2024.106192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/05/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Bufavirus (BuV) was first identified in feces from children with acute diarrhea, and a genetically related Canine bufavirus (CBuV) was first reported in Italy in 2018. In this study, through the investigation of CBuV in 622 anal swabs from dogs with diarrhea symptoms collected from various provinces in northern, central and eastern China during 2018-2022, 14 samples were detected to be positive. And 5 samples were from dogs co-infected with other canine diarrhea related viruses, which consist of CPV-2, CDV and CCoV. The complete genome sequences (4219 nt) of the fourteen strains were amplified and sequenced. Through comparative analysis with 51 reference BuV strains, six strains might recombinate from the CBuV strains (HUN/2012/22, CaBuV/9AS/2005/ITA and CaBuV/35/2016/ITA) in Hungary and Italy as the parents, and two genetic recombination events from various parents were predicted to occur on the BUV-422 strain. Combined analyzing the phylogenetic tree and sequence alignment, it was found that these CBuVs are highly conserved in the nonstructural protein NS1, but indeed various amino acid mutation sites in the capsid protein VP2, and even some amino acid sites coincide with putative protein plastic regions and potential epitopes. The BUV-422 and BUV-512 strains show sequential mutation sites identical to the divergent strains of CaBuV/9AS/2005/ITA and CaBuV/35/2016/ITA. This study would enrich the molecular data of CBuV in China and provide essential reference for the epidemiological research and vaccine development of CBuV in the future.
Collapse
Affiliation(s)
- Jun Ji
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, PR China.
| | - Hao Cui
- Laboratory of Animal Center, Chifeng Municipal Hospital, Chifeng, Inner Mongolia 024000, PR China
| | - Zhibin Zhang
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, PR China
| | - Qiang Liu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, PR China
| | - Xin Xu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, PR China
| | - Kejing Zuo
- Guangzhou Zoo and Guangzhou Wildlife Research Center, Guangzhou 510070, PR China.
| | - Yingzuo Bi
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, South China Agricultural University, Guangzhou 510642, PR China
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering, and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, PR China
| |
Collapse
|
3
|
Tayebwa DS, Hyeroba D, Dunn CD, Dunay E, Richard JC, Biryomumaisho S, Acai JO, Goldberg TL. Viruses of free-roaming and hunting dogs in Uganda show elevated prevalence, richness and abundance across a gradient of contact with wildlife. J Gen Virol 2024; 105:002011. [PMID: 39045787 PMCID: PMC11316573 DOI: 10.1099/jgv.0.002011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024] Open
Abstract
Domestic dogs (Canis lupus familiaris) live with humans, frequently contact other animals and may serve as intermediary hosts for the transmission of viruses. Free-roaming dogs, which account for over 70% of the world's domestic dog population, may pose a particularly high risk in this regard. We conducted an epidemiological study of dog viromes in three locations in Uganda, representing low, medium and high rates of contact with wildlife, ranging from dogs owned specifically for traditional hunting in a biodiversity and disease 'hotspot' to pets in an affluent suburb. We quantified rates of contact between dogs and wildlife through owner interviews and conducted canine veterinary health assessments. We then applied broad-spectrum viral metagenomics to blood plasma samples, from which we identified 46 viruses, 44 of which were previously undescribed, in three viral families, Sedoreoviridae, Parvoviridae and Anelloviridae. All 46 viruses (100 %) occurred in the high-contact population of dogs compared to 63 % and 39 % in the medium- and low-contact populations, respectively. Viral prevalence ranged from 2.1 % to 92.0 % among viruses and was highest, on average, in the high-contact population (22.3 %), followed by the medium-contact (12.3 %) and low-contact (4.8 %) populations. Viral richness (number of viruses per dog) ranged from 0 to 27 and was markedly higher, on average, in the high-contact population (10.2) than in the medium-contact (5.7) or low-contact (2.3) populations. Viral richness was strongly positively correlated with the number of times per year that a dog was fed wildlife and negatively correlated with the body condition score, body temperature and packed cell volume. Viral abundance (cumulative normalized metagenomic read density) varied 124-fold among dogs and was, on average, 4.1-fold higher and 2.4-fold higher in the high-contact population of dogs than in the low-contact or medium-contact populations, respectively. Viral abundance was also strongly positively correlated with the number of times per year that a dog was fed wildlife, negatively correlated with packed cell volume and positively correlated with white blood cell count. These trends were driven by nine viruses in the family Anelloviridae, genus Thetatorquevirus, and by one novel virus in the family Sedoreoviridae, genus Orbivirus. The genus Orbivirus contains zoonotic viruses and viruses that dogs can acquire through ingestion of infected meat. Overall, our findings show that viral prevalence, richness and abundance increased across a gradient of contact between dogs and wildlife and that the health status of the dog modified viral infection. Other ecological, geographic and social factors may also have contributed to these trends. Our finding of a novel orbivirus in dogs with high wildlife contact supports the idea that free-roaming dogs may serve as intermediary hosts for viruses of medical importance to humans and other animals.
Collapse
Affiliation(s)
- Dickson S. Tayebwa
- Department of Veterinary Pharmacy Clinical and Comparative Medicine, School of Veterinary Medicine and Animal Resources, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - David Hyeroba
- Department of Veterinary Pharmacy Clinical and Comparative Medicine, School of Veterinary Medicine and Animal Resources, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Christopher D. Dunn
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, Wisconsin, 53706, USA
| | - Emily Dunay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, Wisconsin, 53706, USA
| | - Jordan C. Richard
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, Wisconsin, 53706, USA
| | - Savino Biryomumaisho
- Department of Veterinary Pharmacy Clinical and Comparative Medicine, School of Veterinary Medicine and Animal Resources, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - James O. Acai
- Department of Veterinary Pharmacy Clinical and Comparative Medicine, School of Veterinary Medicine and Animal Resources, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, Wisconsin, 53706, USA
| |
Collapse
|
4
|
Leng C, Tian X, Zhai H, Ji J, Yao L. Molecular epidemiological investigation and recombination analysis of Cachavirus prevalent in China. Front Vet Sci 2024; 11:1375948. [PMID: 38751804 PMCID: PMC11094709 DOI: 10.3389/fvets.2024.1375948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Chaphamaparvovirus carnivoran1 (canine Chaphamaparvovirus, also known as Cachavirus [CachaV]) is a novel parvovirus first reported in dog feces collected from the United States in 2017 and China in 2019. To continuously track its infection and evolution status, 276 canine anal swabs were obtained from pet hospitals in central, northern, and eastern China between 2021 and 2023 and screened via polymerase chain reaction; subsequently, a systematic study was conducted. Of these samples, nine (3.3%) were positive for CachaV. Using polymerase chain reaction, whole genome sequences of the nine CachaV-positive strains were amplified. The NS1 amino acid sequence identity between CachaV strains from China and other countries was 96.23-99.85%, whereas the VP1 protein sequence identity was 95.83-100%. CHN230521 demonstrated the highest identity for NS1 amino acids (99.85%) and VP1 amino acids (100%) with NWT-W88 and CP-T015. According to the model prediction of CHN220916-VP1 protein, Met64Thr, Thr107Ala, and Phe131Ser mutations may cause tertiary structural changes in VP1 protein. Interestingly, each of the nine CachaV strains harbored the same site mutations in NS1 (Ser252Cys, Gly253Leu, and Gly254Thr). Although no explicit recombination events were predicted, the clustering and branching of the phylogenetic tree were complicated. Based on the evolution trees for VP1 and NS1, the nine CachaV strains identified from 2021 to 2023 were closely related to those identified in gray wolves and cats. This study may be beneficial for evaluating the prevalence of CachaVs in China, thereby understanding the evolution trend of CachaVs.
Collapse
Affiliation(s)
| | | | | | - Jun Ji
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang, China
| | | |
Collapse
|
5
|
Piewbang C, Poonsin P, Lohavicharn P, Van Nguyen T, Lacharoje S, Kasantikul T, Techangamsuwan S. Canine bufavirus ( Carnivore protoparvovirus-3) infection in dogs with respiratory disease. Vet Pathol 2024; 61:232-242. [PMID: 37681306 DOI: 10.1177/03009858231198000] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Canine bufavirus (CBuV) or Carnivore protoparvovirus-3, a nonenveloped DNA virus belonging to the genus Protoparvovirus, family Parvoviridae, has been identified in dogs with respiratory and enteric diseases. Although CBuV detection has been reported in multiple countries, descriptions of pathologic findings associated with infection have not yet been provided. In this study, the authors necropsied 14 dogs (12 puppies and 2 adult dogs) from a breeding colony that died during multiple outbreaks of respiratory diseases. Postmortem investigations revealed extensive bronchointerstitial pneumonia with segmental type II pneumocyte hyperplasia in all necropsied puppies but less severe lesions in adults. With negative results of common pathogen detection by ancillary testing, CBuV DNA was identified in all investigated dogs using a polymerase chain reaction (PCR). Quantitative PCR demonstrated CBuV DNA in several tissues, and in situ hybridization (ISH) indicated CBuV tissue localization in the lung, tracheobronchial lymph node, and spinal cord, suggesting hematogenous spread. Dual CBuV ISH and cellular-specific immunohistochemistry were used to determine the cellular tropism of the virus in the lung and tracheobronchial lymph node, demonstrating viral localization in various cell types, including B-cells, macrophages, and type II pneumocytes, but not T-cells. Three complete CBuV sequences were successfully characterized and revealed that they clustered with the CBuV sequences obtained from dogs with respiratory disease in Hungary. No additional cases were identified in small numbers of healthy dogs. Although association of the bufavirus with enteric disease remains to be determined, a contributory role of CBuV in canine respiratory disease is possible.
Collapse
|
6
|
Charoenkul K, Thaw YN, Phyu EM, Jairak W, Nasamran C, Chamsai E, Chaiyawong S, Amonsin A. First detection and genetic characterization of canine bufavirus in domestic dogs, Thailand. Sci Rep 2024; 14:4773. [PMID: 38413640 PMCID: PMC10899236 DOI: 10.1038/s41598-024-54914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/18/2024] [Indexed: 02/29/2024] Open
Abstract
Canine bufavirus (CBuV) was reported in domestic dogs worldwide. We conducted a survey of canine bufavirus in domestic dogs in Thailand from September 2016 to October 2022. Rectal swab samples (n = 531) were collected from asymptomatic dogs and dogs with gastroenteritis signs. The samples were tested for CBuV using PCR with specific primers to the VP1/VP2 gene, and 9.42% (50/531) was CBuV positive. Our findings showed that CBuVs could be detected in both symptomatic and healthy dogs. The Thai CBuVs were found in dogs from different age groups, with a significant presence in those under 1 year (12.60%) and dogs aged 1-5 years (7.34%) (p < 0.05), suggesting a high prevalence of Thai CBuVs in dogs under 5 years of age. We performed complete genome sequencing (n = 15) and partial VP1/VP2 sequencing (n = 5) of Thai CBuVs. Genetic and phylogenetic analyses showed that whole genomes of Thai CBuVs were closely related to Chinese and Italian CBuVs, suggesting the possible origin of Thai CBuVs. The analysis of VP1 and VP2 genes in Thai CBuVs showed that 18 of them were placed in subgroup A, while only 2 belonged to subgroup B. This study is the first to report the detection and genetic characterization of CBuVs in domestic dogs in Thailand. Additionally, surveillance and genetic characterization of CBuVs in domestic animals should be further investigated on a larger scale to elucidate the dynamic, evolution, and distribution of CBuVs.
Collapse
Affiliation(s)
- Kamonpan Charoenkul
- Faculty of Veterinary Science, Center of Excellence for Emerging and Re-Emerging Infectious Diseases in Animals, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yu Nandi Thaw
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Eaint Min Phyu
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Waleemas Jairak
- Faculty of Veterinary Science, Center of Excellence for Emerging and Re-Emerging Infectious Diseases in Animals, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chanakarn Nasamran
- Faculty of Veterinary Science, Center of Excellence for Emerging and Re-Emerging Infectious Diseases in Animals, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ekkapat Chamsai
- Faculty of Veterinary Science, Center of Excellence for Emerging and Re-Emerging Infectious Diseases in Animals, Chulalongkorn University, Bangkok, Thailand
| | - Supassama Chaiyawong
- Faculty of Veterinary Science, Center of Excellence for Emerging and Re-Emerging Infectious Diseases in Animals, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Alongkorn Amonsin
- Faculty of Veterinary Science, Center of Excellence for Emerging and Re-Emerging Infectious Diseases in Animals, Chulalongkorn University, Bangkok, Thailand.
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Sarchese V, Palombieri A, Prandi I, Robetto S, Bertolotti L, Capucchio MT, Orusa R, Mauthe von Degerfeld M, Quaranta G, Vacchetta M, Martella V, Di Martino B, Di Profio F. Molecular Surveillance for Bocaparvoviruses and Bufaviruses in the European Hedgehog ( Erinaceus europaeus). Microorganisms 2024; 12:189. [PMID: 38258015 PMCID: PMC10819369 DOI: 10.3390/microorganisms12010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
The presence of bocaparvoviruses (BoVs) and bufaviruses (BuVs) in the European hedgehog (Erinaceus europaeus) was investigated by screening duodenal and liver samples collected from 183 carcasses, delivered to wildlife rescue centers located in northwestern Italy. BoV DNA was detected in 15 animals (8.2%), with prevalences of 7.1% (13/183) and 2.7% (5/183) in intestine and liver samples, respectively. Upon the sequence analyses of the NS1 gene, two highly divergent BoVs (65.5-67.8% nt identities) were identified. Fourteen strains showed the highest identity (98.3-99.4% nt) to the hedgehog BoV strains recently detected in China in Amur hedgehogs (Erinaceus amurensis), whilst four strains were genetically related (98.9-99.4% nt identities) to the porcine BoVs identified in pigs and classified in the species Bocaparvovirus ungulate 4, which included related viruses also found in rats, minks, shrews, and mice. BuV DNA was detected in the duodenal samples of two hedgehogs, with a prevalence rate of 1.1%. The nearly full-length genome of two BuV strains, Hedgehog/331DU-2022/ITA and Hedgehog/1278DU/2019/ITA, was reconstructed. Upon phylogenetic analysis based on the NS and VP aa sequences, the Italian hedgehog BuVs tightly clustered with the BuVs recently identified in the Chinese Amur hedgehogs, within a potential novel candidate species of the genus Protoparvovirus.
Collapse
Affiliation(s)
- Vittorio Sarchese
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, TE, Italy; (V.S.); (A.P.); (B.D.M.)
| | - Andrea Palombieri
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, TE, Italy; (V.S.); (A.P.); (B.D.M.)
| | - Ilaria Prandi
- Centro Animali Non Convenzionali (C.A.N.C.), Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.P.); (M.T.C.); (M.M.v.D.); (G.Q.)
| | - Serena Robetto
- Centro di Referenza Nazionale per le Malattie degli Animali Selvatici (CeRMAS), Istituto Zooprofilattico Sperimentale del Piemonte, della Liguria e della Valle d’Aosta, 11020 Quart, AO, Italy; (S.R.); (R.O.)
| | - Luigi Bertolotti
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy;
| | - Maria Teresa Capucchio
- Centro Animali Non Convenzionali (C.A.N.C.), Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.P.); (M.T.C.); (M.M.v.D.); (G.Q.)
| | - Riccardo Orusa
- Centro di Referenza Nazionale per le Malattie degli Animali Selvatici (CeRMAS), Istituto Zooprofilattico Sperimentale del Piemonte, della Liguria e della Valle d’Aosta, 11020 Quart, AO, Italy; (S.R.); (R.O.)
| | - Mitzy Mauthe von Degerfeld
- Centro Animali Non Convenzionali (C.A.N.C.), Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.P.); (M.T.C.); (M.M.v.D.); (G.Q.)
| | - Giuseppe Quaranta
- Centro Animali Non Convenzionali (C.A.N.C.), Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, TO, Italy; (I.P.); (M.T.C.); (M.M.v.D.); (G.Q.)
| | | | - Vito Martella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, BA, Italy;
| | - Barbara Di Martino
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, TE, Italy; (V.S.); (A.P.); (B.D.M.)
| | - Federica Di Profio
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, TE, Italy; (V.S.); (A.P.); (B.D.M.)
| |
Collapse
|
8
|
Piewbang C, Lohavicharn P, Nguyen TV, Punyathi P, Kasantikul T, Techangamsuwan S. Carnivore chaphamaparvovirus-1 (CaChPV-1) infection in diarrheic dogs reveals viral endotheliotropism in intestine and lung. Vet Q 2023; 43:1-10. [PMID: 36846895 PMCID: PMC10013547 DOI: 10.1080/01652176.2023.2185696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Carnivore chaphamaparvovirus-1 (CaChPV-1) is a parvovirus identified in dogs and association of infection with diarrhea is controversial. Information on whether tissue tropism persists is lacking. OBJECTIVES To determine the disease association of CaChPV-1 in dogs with diarrhea and to investigate viral tropism and genetic diversity. ANIMALS AND METHODS CaChPV-1 infection was investigated in five recently deceased puppies and designed a retrospective study to determine whether the presence of CaChPV-1 is associated with diarrhea. The retrospective study was conducted in 137 intestinal tissue samples and 168 fecal samples obtained from 305 dogs. CaChPV-1 tissue localization was determined using in situ hybridization, and CaChPV-1 complete genomes obtained from dead puppies and retrospective study were sequenced and analyzed. RESULTS CaChPV-1 was detected in 6.56% (20/305) of tested dogs, including 14 diarrheic- and 6 non-diarrheic dogs, and was significant in puppies with diarrhea (p = 0.048). Among the CaChPV-1-positive diarrheic dogs, one sample was obtained from intestinal tissue and 13 samples were fecal samples. However, six CaChPV-1 positive non-diarrheic dogs were based on fecal samples but not on intestinal tissue. Within the age range, the presence of CaChPV-1 was significant in puppies (p < 0.00001) and was mainly localized in the stromal and endothelial cells of intestinal villi and pulmonary alveoli. Phylogenetic analysis indicated genetic diversity of CaChPV-1 Thai strains that were mostly clustered within the sequences found in China. CONCLUSIONS Although definitive pathogenesis of CaChPV-1 remains undetermined, this study provides evidence supporting that CaChPV-1 localizes in canine cells and could play a potential role as an enteric pathogen.
Collapse
Affiliation(s)
- Chutchai Piewbang
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Pattiya Lohavicharn
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Tin Van Nguyen
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,The International Graduate Course of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Panitnan Punyathi
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Tanit Kasantikul
- Clemson Veterinary Diagnostic Center, Clemson University, Columbia, South Carolina, USA
| | - Somporn Techangamsuwan
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Di Profio F, Sarchese V, Fruci P, Aste G, Martella V, Palombieri A, Di Martino B. Exploring the Enteric Virome of Cats with Acute Gastroenteritis. Vet Sci 2023; 10:vetsci10050362. [PMID: 37235445 DOI: 10.3390/vetsci10050362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Viruses are a major cause of acute gastroenteritis (AGE) in cats, chiefly in younger animals. Enteric specimens collected from 29 cats with acute enteritis and 33 non-diarrhoeic cats were screened in PCRs and reverse transcription (RT) PCR for a large panel of enteric viruses, including also orphan viruses of recent identification. At least one viral species, including feline panleukopenia virus (FPV), feline enteric coronavirus (FCoV), feline chaphamaparvovirus, calicivirus (vesivirus and novovirus), feline kobuvirus, feline sakobuvirus A and Lyon IARC polyomaviruses, was detected in 66.1% of the samples.. Co-infections were mainly accounted for by FPV and FCoV and were detected in 24.2% of the samples. The virome composition was further assessed in eight diarrhoeic samples, through the construction of sequencing libraries using a sequence-independent single-primer amplification (SISPA) protocol. The libraries were sequenced on Oxford Nanopore Technologies sequencing platform. A total of 41 contigs (>100 nt) were detected from seven viral families infecting mammals, included Parvoviridae, Caliciviridae, Picornaviridae, Polyomaviridae, Anelloviridae, Papillomaviridae and Paramyxoviridae, revealing a broad variety in the composition of the feline enteric virome.
Collapse
Affiliation(s)
- Federica Di Profio
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Vittorio Sarchese
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Paola Fruci
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Giovanni Aste
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Vito Martella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, 70010 Valenzano, Italy
| | - Andrea Palombieri
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| | - Barbara Di Martino
- Department of Veterinary Medicine, Università degli Studi di Teramo, 64100 Teramo, Italy
| |
Collapse
|
10
|
Capozza P, Buonavoglia A, Pratelli A, Martella V, Decaro N. Old and Novel Enteric Parvoviruses of Dogs. Pathogens 2023; 12:pathogens12050722. [PMID: 37242392 DOI: 10.3390/pathogens12050722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Parvovirus infections have been well known for around 100 years in domestic carnivores. However, the use of molecular assays and metagenomic approaches for virus discovery and characterization has led to the detection of novel parvovirus species and/or variants in dogs. Although some evidence suggests that these emerging canine parvoviruses may act as primary causative agents or as synergistic pathogens in the diseases of domestic carnivores, several aspects regarding epidemiology and virus-host interaction remain to be elucidated.
Collapse
Affiliation(s)
- Paolo Capozza
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Alessio Buonavoglia
- Department of Biomedical and Neuromotor Sciences, Dental School, Via Zamboni 33, 40126 Bologna, Italy
| | - Annamaria Pratelli
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
| |
Collapse
|
11
|
Ji J, Liu Q, Pan S, Hu W, Xu X, Kan Y, Xie Q, Yao L. Retrospective Detection and Phylogenetic Analysis of Cachavirus-Related Parvoviruses in Dogs in China. Transbound Emerg Dis 2023; 2023:7010191. [PMID: 40303781 PMCID: PMC12017101 DOI: 10.1155/2023/7010191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 05/02/2025]
Abstract
Cachavirus (CachaV) infection was first reported in the USA in 2019. This virus has been previously detected in pet dogs and cats in China. In the present study, we retrospectively examined this virus in 413 dogs and 127 cats. Swab samples obtained from these animals were collected during 2015-2017. Notably, CachaV was detected in four samples from dogs with diarrhea but not in cats; however, the correlation between healthy dogs and those with enteritis was not statistically significant. Furthermore, we amplified early complete genomic sequences of the four strains detected in our study dogs (CHN1601, CHN1602, CHN1703, and CHN1704). Among these strains, the sequence identity of the NS1 protein and the seven previously reported strains in China were 97.44%-99.7%, whereas that of VP1 protein was 98.02%-99.6%. Interestingly, in the NS1 coding region, CHN1704 demonstrated 99.7% (highest) similarity with the CachaV strain NWT-W88 detected from a wolf and 64.5% similarity with the NS1 of a bat parvovirus (BtPV) strain. Conversely, in the VP1 coding region, CHN1703 demonstrated 99.7% (highest) similarity with the prototype CachaV strain IDEXX1 detected from dogs and 63.3% similarity with BtPV strain. For the phylogenetic analysis of NS1 and VP1, the four strains detected during 2016-2017 were merged with other Chinese and foreign CachaV strains to form the major branch. We believe that these results helped improve the understanding of how CachaV evolved and suggest that the virus has been circulating in China since at least March 2016.
Collapse
Affiliation(s)
- Jun Ji
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan 473006, China
| | - Qiang Liu
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| | - Shunshun Pan
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| | - Wen Hu
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| | - Xin Xu
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| | - Yunchao Kan
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lunguang Yao
- Henan Provincial Engineering Laboratory of Insects Bio-Reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
12
|
Investigation of canine chaphamaparvovirus, canine bufavirus, and canine adenovirus in dogs with diarrhea: First report of novel canine bufavirus in Turkey. Virus Genes 2023; 59:427-436. [PMID: 36849575 PMCID: PMC9970852 DOI: 10.1007/s11262-023-01982-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Viral enteritis is a significant cause of death among dogs younger than 6 months. In this study, the presence of canine chaphamaparvovirus (CaChPV), canine bufavirus (CBuV), and canine adenovirus (CAdV) was investigated in 62 diarrheal dogs previously tested for other viral pathogens (canine parvovirus type 2, canine coronavirus, and canine circovirus). CBuV was detected in two dogs (3.22%) and CaChPV in one dog (1.61%). One dog tested positive for three parvoviruses (CPV-2b, CBuV, and CaChPV). All dogs tested negative to CAdV-1/CAdV-2. A long genome fragment of one of the two identified CBuVs and of the CaChPV was obtained and analyzed. New Turkish CBuVs had high identity rates (96%-98% nt; 97%-98% aa) with some Italian CBuV strains (CaBuV/9AS/2005/ITA and CaBuV/35/2016/ITA). The phylogenetic analysis powerfully demonstrated that these viruses belonged to a novel genotype (genotype 2). A part of the genome ChPV-TR-2021-19 revealed high identity rates (> 98% nt and > 99% aa) with some Canadian CaChPV strains (NWT-W88 and NWT-W171) and the Italian CaChPV strain Te/37OVUD/2019/IT. This study is the first report on the detection of CBuV-2 and the concomitant presence of three canine parvoviruses in Turkey. The obtained data will contribute to the molecular epidemiology and the role in the etiology of enteric disease of new parvoviruses.
Collapse
|
13
|
Lanave G, Ndiana LA, Pellegrini F, Diakoudi G, Di Martino B, Sgroi G, D'Alessio N, Vasinioti V, Camero M, Canuti M, Otranto D, Decaro N, Buonavoglia C, Martella V. Detection at high prevalence of newlavirus (protoparvovirus) in the carcasses of red foxes. Virus Res 2023; 323:198971. [PMID: 36257486 PMCID: PMC10194357 DOI: 10.1016/j.virusres.2022.198971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
Wildlife conservation also relies on the study of animal virome. We identified the DNA of a novel fox protoparvovirus, newlavirus, with high (71%) prevalence in the carcasses of red foxes. On genome sequencing, high genetic diversity and possible recombination was observed, suggesting complex evolutionary dynamics in wildlife.
Collapse
Affiliation(s)
- Gianvito Lanave
- University of Bari, Department of Veterinary Medicine, Valenzano, Bari, Italy.
| | - Linda A Ndiana
- University of Bari, Department of Veterinary Medicine, Valenzano, Bari, Italy
| | | | - Georgia Diakoudi
- University of Bari, Department of Veterinary Medicine, Valenzano, Bari, Italy
| | | | - Giovanni Sgroi
- University of Bari, Department of Veterinary Medicine, Valenzano, Bari, Italy; Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Napoli, Italy
| | - Nicola D'Alessio
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Napoli, Italy
| | - Violetta Vasinioti
- University of Bari, Department of Veterinary Medicine, Valenzano, Bari, Italy
| | - Michele Camero
- University of Bari, Department of Veterinary Medicine, Valenzano, Bari, Italy
| | - Marta Canuti
- Memorial University of Newfoundland, Department of Biology, St. John's, Newfoundland and Labrador, Canada
| | - Domenico Otranto
- University of Bari, Department of Veterinary Medicine, Valenzano, Bari, Italy
| | - Nicola Decaro
- University of Bari, Department of Veterinary Medicine, Valenzano, Bari, Italy
| | - Canio Buonavoglia
- University of Bari, Department of Veterinary Medicine, Valenzano, Bari, Italy
| | - Vito Martella
- University of Bari, Department of Veterinary Medicine, Valenzano, Bari, Italy
| |
Collapse
|
14
|
Canuti M, Mira F, Sorensen RG, Rodrigues B, Bouchard É, Walzthoni N, Hopson M, Gilroy C, Whitney HG, Lang AS. Distribution and diversity of dog parvoviruses in wild, free-roaming and domestic canids of Newfoundland and Labrador, Canada. Transbound Emerg Dis 2022; 69:e2694-e2705. [PMID: 35689408 DOI: 10.1111/tbed.14620] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/21/2022] [Accepted: 05/28/2022] [Indexed: 01/02/2023]
Abstract
Some parvoviruses of carnivorans can infect multiple host species. Since many canine parvoviruses were only discovered recently, their host-range is still unexplored. We examined the host distribution and diversity of five dog parvoviruses in four canine populations from Newfoundland and Labrador, Canada, and investigated the potential for these viruses to cross the species barriers. Canine bocavirus 2 (CBoV-2) and the minute virus of canines were detected in stool from free-roaming dogs from Labrador (5/48 [10.4%] and 3/48 [6.3%], respectively) and two different CBoV-2 variants were identified. Canine bufavirus was identified in stool from free-roaming dogs (1/48, 2.1%) and foxes (3/80, 3.8%) from Labrador, but two different variants were observed in the two host species. The variant found in foxes was highly divergent from previously identified strains. Two cachavirus 1 variants, genetically similar to those circulating in other Canadian wildlife, were found in spleens from Newfoundland coyotes (3/87, 3.5%). Canine parvovirus type 2 (CPV-2) was found in stool from free-roaming dogs from Labrador (2/48, 4.2%) and in spleens from Newfoundland coyotes (3/87, 3.5%). Comparing CPV-2 sequences from these hosts to those retrieved from local symptomatic domestic dogs revealed the presence of a highly heterogeneous viral population as detected strains belonged to five different clades. The close relationship between CPV-2a strains from a dog and a coyote suggests the occurrence of viral transfer between wild and domestic canids. The identification of highly related strains with a similar molecular signature characteristic of older CPV-2 strains in free-roaming and domestic dogs suggests a probable common ancestry and that older CPV-2 strains, which have not been identified in dogs since the 1990s, persist in this part of Canada. Follow-up studies should evaluate samples from a larger number of animals and host species to extensively investigate the possible occurrence of cross-species transmission for recently discovered parvoviruses.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia 'A. Mirri', Palermo, Italy
| | - Rachel G Sorensen
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Bruce Rodrigues
- Wildlife Division, Newfoundland and Labrador Department of Fisheries, Forestry, and Agriculture, Corner Brook, Newfoundland and Labrador, Canada
| | - Émilie Bouchard
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Natasha Walzthoni
- Veterinary Specialty Centre of Newfoundland and Labrador, Mount Pearl, Newfoundland and Labrador, Canada
| | - Marti Hopson
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Cornelia Gilroy
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Hugh G Whitney
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
15
|
Palombieri A, Di Profio F, Fruci P, Sarchese V, Martella V, Marsilio F, Di Martino B. Emerging Respiratory Viruses of Cats. Viruses 2022; 14:663. [PMID: 35458393 PMCID: PMC9030917 DOI: 10.3390/v14040663] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/12/2022] [Accepted: 03/21/2022] [Indexed: 12/07/2022] Open
Abstract
In recent years, advances in diagnostics and deep sequencing technologies have led to the identification and characterization of novel viruses in cats as protoparviruses and chaphamaparvoviruses, unveiling the diversity of the feline virome in the respiratory tract. Observational, epidemiological and experimental data are necessary to demonstrate firmly if some viruses are able to cause disease, as this information may be confounded by virus- or host-related factors. Also, in recent years, researchers were able to monitor multiple examples of transmission to felids of viruses with high pathogenic potential, such as the influenza virus strains H5N1, H1N1, H7N2, H5N6 and H3N2, and in the late 2019, the human hypervirulent coronavirus SARS-CoV-2. These findings suggest that the study of viral infections always requires a multi-disciplinary approach inspired by the One Health vision. By reviewing the literature, we provide herewith an update on the emerging viruses identified in cats and their potential association with respiratory disease.
Collapse
Affiliation(s)
- Andrea Palombieri
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Federica Di Profio
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Paola Fruci
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Vittorio Sarchese
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Vito Martella
- Laboratory of Infectious Diseases, Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy;
| | - Fulvio Marsilio
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| | - Barbara Di Martino
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy; (A.P.); (F.D.P.); (P.F.); (V.S.); (B.D.M.)
| |
Collapse
|
16
|
Ganji VK, Buddala B, Yella NR, Putty K. First report of canine bufavirus in India. Arch Virol 2022; 167:1145-1149. [PMID: 35235060 PMCID: PMC8889056 DOI: 10.1007/s00705-022-05398-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/16/2022] [Indexed: 11/11/2022]
Abstract
Canine bufavirus (CBuV), a novel protoparvovirus of dogs that is associated with enteric and respiratory symptoms, has been reported only in Italy and China. The enteric prevalence of CBuV in India was investigated, and the nearly complete genome sequence (4292 bp) was amplified and reconstructed for one strain. A nucleotide sequence alignment indicated 93.42–98.81% identity to the other available CBuV sequences and 70.88–73.39% and 54.4–54.8% identity to human bufavirus and canine parvovirus 2 (CPV-2), respectively. The current strain is most closely related to Chinese CBuV strains, which together form an Asian lineage. This first report of the prevalence of CBuV in India emphasizes the need for further epidemiological surveillance.
Collapse
Affiliation(s)
- Vishweshwar Kumar Ganji
- Department of Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Hyderabad-30, 500030, Rajendranagar, Hyderabad, India
| | - Bhagyalakshmi Buddala
- Department of Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Hyderabad-30, 500030, Rajendranagar, Hyderabad, India
| | - Narasimha Reddy Yella
- Department of Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Hyderabad-30, 500030, Rajendranagar, Hyderabad, India
| | - Kalyani Putty
- Department of Veterinary Biotechnology, College of Veterinary Science, PVNRTVU, Hyderabad-30, 500030, Rajendranagar, Hyderabad, India.
| |
Collapse
|
17
|
Canuti M, Fry K, Dean Cluff H, Mira F, Fenton H, Lang AS. Co‐circulation of five species of dog parvoviruses and canine adenovirus type 1 among gray wolves (
Canis lupus
) in northern Canada. Transbound Emerg Dis 2022; 69:e1417-e1433. [DOI: 10.1111/tbed.14474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Marta Canuti
- Department of Biology Memorial University of Newfoundland St. John's NL Canada
| | - Kelsi Fry
- Department of Biology Memorial University of Newfoundland St. John's NL Canada
| | - H. Dean Cluff
- Environment and Natural Resources ‐ North Slave Region Government of the Northwest Territories Yellowknife Canada
| | - Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri” Palermo Italy
| | - Heather Fenton
- Environment and Natural Resources ‐ North Slave Region Government of the Northwest Territories Yellowknife Canada
| | - Andrew S. Lang
- Department of Biology Memorial University of Newfoundland St. John's NL Canada
| |
Collapse
|
18
|
Sasaki M. [Investigation of viruses harbored by wild animals: toward pre-emptive measures against future zoonotic diseases]. Uirusu 2022; 72:79-86. [PMID: 37899234 DOI: 10.2222/jsv.72.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Zoonoses are caused by pathogens transmitted from animals. To prepare mitigating measures against emerging zoonoses, it is imperative to identify animal reservoirs that carry potential pathogens and also elucidate the transmission routes of these pathogens. Under the continuous collaboration with counterparts from Zambia and Indonesia, we have so far identified various viruses in wild animals. Some of the identified viruses were phylogenetically distinct from known virus species and this finding led to approved new virus species by the International Committee on Taxonomy of Viruses (ICTV). Our studies provided new insights into the divergence, natural hosts and lifecycle of viruses. Through the exploration and characterization of viruses in animals, we will endeavor to contribute to the existing knowledge on viral pathogens in wild animals. This is cardinal for evidence-based preemptive measures against future zoonoses.
Collapse
Affiliation(s)
- Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control,Hokkaido University
| |
Collapse
|
19
|
Jager MC, Tomlinson JE, Lopez-Astacio RA, Parrish CR, Van de Walle GR. Small but mighty: old and new parvoviruses of veterinary significance. Virol J 2021; 18:210. [PMID: 34689822 PMCID: PMC8542416 DOI: 10.1186/s12985-021-01677-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
In line with the Latin expression "sed parva forti" meaning "small but mighty," the family Parvoviridae contains many of the smallest known viruses, some of which result in fatal or debilitating infections. In recent years, advances in metagenomic viral discovery techniques have dramatically increased the identification of novel parvoviruses in both diseased and healthy individuals. While some of these discoveries have solved etiologic mysteries of well-described diseases in animals, many of the newly discovered parvoviruses appear to cause mild or no disease, or disease associations remain to be established. With the increased use of animal parvoviruses as vectors for gene therapy and oncolytic treatments in humans, it becomes all the more important to understand the diversity, pathogenic potential, and evolution of this diverse family of viruses. In this review, we discuss parvoviruses infecting vertebrate animals, with a special focus on pathogens of veterinary significance and viruses discovered within the last four years.
Collapse
Affiliation(s)
- Mason C Jager
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Joy E Tomlinson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Robert A Lopez-Astacio
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
20
|
Canuti M, Bouchard É, Rodrigues B, Whitney HG, Hopson M, Gilroy C, Stenson G, Dufour SC, Lang AS, Verhoeven JTP. Newlavirus, a Novel, Highly Prevalent, and Highly Diverse Protoparvovirus of Foxes ( Vulpes spp.). Viruses 2021; 13:1969. [PMID: 34696399 PMCID: PMC8537079 DOI: 10.3390/v13101969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022] Open
Abstract
The genus Protoparvovirus (family Parvoviridae) includes several viruses of carnivores. We describe a novel fox protoparvovirus, which we named Newlavirus as it was discovered in samples from Newfoundland and Labrador, Canada. Analysis of the full non-structural protein (NS1) sequence indicates that this virus is a previously uncharacterized species. Newlavirus showed high prevalence in foxes from both the mainland (Labrador, 54/137, 39.4%) and the island of Newfoundland (22/50, 44%) but was not detected in samples from other carnivores, including coyotes (n = 92), lynx (n = 58), martens (n = 146), mink (n = 47), ermines (n = 17), dogs (n = 48), and ringed (n = 4), harp (n = 6), bearded (n = 6), and harbor (n = 2) seals. Newlavirus was found at similar rates in stool and spleen (24/80, 30% vs. 59/152, 38.8%, p = 0.2) but at lower rates in lymph nodes (2/37, 5.4%, p < 0.01). Sequencing a fragment of approximately 750 nt of the capsid protein gene from 53 samples showed a high frequency of co-infection by more than one strain (33.9%), high genetic diversity with 13 genotypes with low sequence identities (70.5-87.8%), and no geographic segregation of strains. Given the high prevalence, high diversity, and the lack of identification in other species, foxes are likely the natural reservoir of Newlavirus, and further studies should investigate its distribution.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial, University of Newfoundland, 232 Elizabeth Ave., St. John’s, NL A1B 3X9, Canada; (H.G.W.); (S.C.D.); (J.T.P.V.)
| | - Émilie Bouchard
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada;
- Research Group on Epidemiology of Zoonoses and Public Health (GREZOSP), Faculty of Veterinary Medicine, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Bruce Rodrigues
- Wildlife Division, Newfoundland and Labrador Department of Fisheries, Forestry, and Agriculture, PO Box 2007, Corner Brook, NL A2H 7S1, Canada;
| | - Hugh G. Whitney
- Department of Biology, Memorial, University of Newfoundland, 232 Elizabeth Ave., St. John’s, NL A1B 3X9, Canada; (H.G.W.); (S.C.D.); (J.T.P.V.)
| | - Marti Hopson
- Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada;
| | - Cornelia Gilroy
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada;
| | - Garry Stenson
- Fisheries and Oceans Canada, Government of Canada, P.O. Box 5667, St. John’s, NL A1C 5X1, Canada;
| | - Suzanne C. Dufour
- Department of Biology, Memorial, University of Newfoundland, 232 Elizabeth Ave., St. John’s, NL A1B 3X9, Canada; (H.G.W.); (S.C.D.); (J.T.P.V.)
| | - Andrew S. Lang
- Department of Biology, Memorial, University of Newfoundland, 232 Elizabeth Ave., St. John’s, NL A1B 3X9, Canada; (H.G.W.); (S.C.D.); (J.T.P.V.)
| | - Joost T. P. Verhoeven
- Department of Biology, Memorial, University of Newfoundland, 232 Elizabeth Ave., St. John’s, NL A1B 3X9, Canada; (H.G.W.); (S.C.D.); (J.T.P.V.)
| |
Collapse
|
21
|
A SYBR Green I-based real-time polymerase chain reaction assay for detection and quantification of canine bufavirus. Mol Cell Probes 2021; 59:101762. [PMID: 34481896 DOI: 10.1016/j.mcp.2021.101762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/21/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022]
Abstract
Canine bufavirus (CBuV) was first discovered in puppies in Italy in 2016, and subsequent studies have reported its possible relationship with acute enteritis. Currently, there is no specific and quantitative detection method for CBuV. This study examined the conserved NS1 gene and used a pair of specific primers to establish a direct SYBR Green I-based real-time quantitative polymerase chain reaction (qPCR) method for the detection and quantification of CBuV. In the sensitivity experiment, the detection limit of SYBR Green I-based real-time qPCR was 4.676 × 101 copies/μL and that of conventional PCR (cPCR) was 4.676 × 103 copies/μL. Furthermore, the qPCR method did not detect other viruses in dogs, indicating good specificity. The intra-assay coefficient of variation was 0.07-0.55% and the inter-assay coefficient of variation was 0.03-0.11%, indicating good repeatability. In clinical sample testing, the detection rate of qPCR was 5.0% (6/120), higher than that of cPCR (2.5%, 3/120). In addition, the samples that tested CBuV-positive in this experiment were all from dogs with acute enteritis. In summary, the SYBR Green I-based qPCR method established in this study has good sensitivity, specificity, and reproducibility for clinical sample detection and can also assist in future research on CBuV.
Collapse
|
22
|
Emerging Parvoviruses in Domestic Cats. Viruses 2021; 13:v13061077. [PMID: 34200079 PMCID: PMC8229815 DOI: 10.3390/v13061077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Parvovirus infections in cats have been well known for around 100 years. Recently, the use of molecular assays and metagenomic approaches for virus discovery and characterization has led to the detection of novel parvovirus lineages and/or species infecting the feline host. However, the involvement of emerging parvoviruses in the onset of gastroenteritis or other feline diseases is still uncertain.
Collapse
|
23
|
Wang Y, Guo X, Zhang D, Sun J, Li W, Fu Z, Liu G, Li Y, Jiang S. Genetic and phylogenetic analysis of canine bufavirus from Anhui Province, Eastern China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 86:104600. [PMID: 33091576 PMCID: PMC7573632 DOI: 10.1016/j.meegid.2020.104600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 02/08/2023]
Abstract
Bufavirus is a novel virus associated with canine gastroenteritis. Three strains of bufavirus were first detected in dog feces collected from Anhui province in Eastern China. The near-complete genome sequences were amplified. Sequence alignment showed 98.3-99.5% homology between the three bufavirus strains and reference strains. Phylogenetic analysis showed the distributed viruses forming a cluster of close relationships. Selective pressure analysis of the VP2 region indicated that the canine bufavirus (CBuV) was mainly subject to negative selection during evolution. The negative selection site was located on the residue of B-cell epitopes, indicating minimal change to the virus's immunogenicity. Since this is the first report of CBuV circulating in Anhui Province, this study will provide further understanding of the phylogenetic and molecular characteristics of CBuV and serve as a reference for prevention and vaccine development.
Collapse
Affiliation(s)
- Yong Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Xu Guo
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Da Zhang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Jianfei Sun
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Wei Li
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Ziteng Fu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yongdong Li
- Municipal Key Laboratory of Virology, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, PR China.
| | - Shudong Jiang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
24
|
Palombieri A, Di Profio F, Lanave G, Capozza P, Marsilio F, Martella V, Di Martino B. Molecular detection and characterization of Carnivore chaphamaparvovirus 1 in dogs. Vet Microbiol 2020; 251:108878. [PMID: 33069035 PMCID: PMC7528909 DOI: 10.1016/j.vetmic.2020.108878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
Canine chaphamaparvovirus (CaChPV) is a novel parvovirus recently discovered in dogs; Herein, stool samples from dogs with or without enteric signs were screened for CaChPV; CaChPV DNA was found either in diarrhoeic (1.9 %) or asymptomatic (1.6 %) dogs; The nearly complete genome sequences were determined for two strains; The Italian CaChPV strains tightly clustered with the American reference viruses.
Canine chaphamaparvovirus (CaChPV) is a newly recognised parvovirus discovered by metagenomic analysis during an outbreak of diarrhoea in dogs in Colorado, USA, in 2017 and more recently detected in diarrhoeic dogs in China. Whether the virus plays a role as canine pathogen and whether it is distributed elsewhere, in other geographical areas, is not known. We performed a case-control study to investigate the possible association of CaChPV with enteritis in dogs. CaChPV DNA was detected both in the stools of diarrhoeic dogs (1.9 %, 3/155) and of healthy animals (1.6 %, 2/120). All the CaChPV-infected dogs with diarrhea were mixed infected with other enteric viruses such as canine parvovirus (formerly CPV-2), canine bufavirus (CBuV) and canine coronavirus (CCoV), whilst none of the asymptomatic CaChPV positive animals resulted co-infected. The nearly full-length genome and the partial capsid protein (VP) gene of three canine strains, Te/36OVUD/19/ITA, Te/37OVUD/19/ITA and Te/70OVUD/19/ITA, were reconstructed. Upon phylogenetic analyses based on the NS1 and VP aa sequences, the Italian CaChPV strains tightly clustered with the American reference viruses. Distinctive residues could be mapped to the deduced variable regions of the VP of canine and feline chaphamaparvoviruses, considered as important markers of host range and pathogenicity for parvoviruses.
Collapse
Affiliation(s)
- Andrea Palombieri
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy
| | - Federica Di Profio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy
| | - Gianvito Lanave
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Paolo Capozza
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy
| | - Vito Martella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy.
| |
Collapse
|
25
|
Shao R, Zheng F, Cai S, Ji J, Ren Z, Zhao J, Wu L, Ou J, Lu G, Li S. Genomic sequencing and characterization of a novel group of canine bufaviruses from Henan province, China. Arch Virol 2020; 165:2699-2702. [PMID: 32851431 DOI: 10.1007/s00705-020-04785-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/22/2020] [Indexed: 12/01/2022]
Abstract
Canine bufavirus (CBuV) is a novel protoparvovirus of dogs that was first reported in 2018 in Italy. The prevalence and genetic diversity of CBuV in China are not clear. In this study, a total of 115 canine fecal samples were collected from northern China in 2019, and two of the samples tested positive for CBuV DNA by PCR. These two field CBuV strains were designated Henan38 and Henan44. The complete genomic sequences of Henan38 and Henan44 were obtained by gap-filling PCR, sequenced, and assembled. Phylogenetic analysis demonstrated that the two strains clustered together in a novel group that was distant from previously reported CBuV strains. This study will strengthen our understanding of the epidemiology and genetic diversity of CBuV in China.
Collapse
Affiliation(s)
- Ran Shao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, Guangdong Province, People's Republic of China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, 510642, Guangdong Province, People's Republic of China
| | - Feiyan Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, Guangdong Province, People's Republic of China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, 510642, Guangdong Province, People's Republic of China
| | - Siqi Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, Guangdong Province, People's Republic of China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, 510642, Guangdong Province, People's Republic of China
| | - Jinzhao Ji
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, Guangdong Province, People's Republic of China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, 510642, Guangdong Province, People's Republic of China
| | - Zixin Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, Guangdong Province, People's Republic of China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, 510642, Guangdong Province, People's Republic of China
| | - Jiawei Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, Guangdong Province, People's Republic of China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, 510642, Guangdong Province, People's Republic of China
| | - Liyan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, Guangdong Province, People's Republic of China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, 510642, Guangdong Province, People's Republic of China
| | - Jiajun Ou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, Guangdong Province, People's Republic of China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, 510642, Guangdong Province, People's Republic of China
| | - Gang Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China. .,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, Guangdong Province, People's Republic of China. .,Guangdong Technological Engineering Research Center for Pet, Guangzhou, 510642, Guangdong Province, People's Republic of China.
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong Province, People's Republic of China. .,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, 510642, Guangdong Province, People's Republic of China. .,Guangdong Technological Engineering Research Center for Pet, Guangzhou, 510642, Guangdong Province, People's Republic of China.
| |
Collapse
|
26
|
Di Martino B, Sarchese V, Di Profio F, Palombieri A, Melegari I, Fruci P, Aste G, Bányai K, Fulvio M, Martella V. Genetic heterogeneity of canine bufaviruses. Transbound Emerg Dis 2020; 68:802-812. [PMID: 32688446 DOI: 10.1111/tbed.13746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 11/30/2022]
Abstract
Canine bufavirus (CBuV) is a protoparvovirus, genetically related to human and non-human primate bufaviruses and distantly related to canine parvovirus type 2 (CPV-2). CBuV was initially identified from young dogs with respiratory signs but subsequent studies revealed that this virus is also a common component of the canine enteric virome. In this survey, by assessing archival and recent collections of dogs faecal samples, CBuV DNA was detected with a higher prevalence rate (8.8%) in animals with enteritis than in control animals (5.0%), although this difference was not statistically significant. The rate of co-infections with other enteric viruses in diarrhoeic dogs was high (84.6%), mostly in association with canine parvovirus CPV-2 (90.1%). The complete ORF2 gene was determined in five samples, and the nearly full-length genome was reconstructed for three strains, 62/2017/ITA, 9AS/2005/ITA and 35/2018/ITA. Upon sequence comparison, the viruses appeared highly conserved in the NS1 (97.2%-97.9% nt and 97.5%-98.1% aa identities). In the complete VP2 coding region, three strains were similar to the prototype viruses (99.7-99.8 nt and 99.6%-99.8% aa) whilst strains 9AS/2005/ITA and 35/2016/ITA were distantly related (87.6%-89.3% nt and 93.9%-95.1% aa identities). Interestingly, genetic diversification occurred downstream conserved regions such as the VP1/VP2 splicing signals and/or the G-rich motif in the N terminus of the VP2, suggesting a potential recombination nature. Upon phylogenetic analysis, the two divergent CBuV strains formed a distinct cluster/genotype.
Collapse
Affiliation(s)
- Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Vittorio Sarchese
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Federica Di Profio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Andrea Palombieri
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Irene Melegari
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Paola Fruci
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Giovanni Aste
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Krisztián Bányai
- Hungarian Academy of Sciences Centre for Agricultural Research Institute for Veterinary Medical Research, Budapest, Hungary
| | - Marsilio Fulvio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Vito Martella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| |
Collapse
|
27
|
Li Y, Gordon E, Idle A, Altan E, Seguin MA, Estrada M, Deng X, Delwart E. Virome of a Feline Outbreak of Diarrhea and Vomiting Includes Bocaviruses and a Novel Chapparvovirus. Viruses 2020; 12:v12050506. [PMID: 32375386 PMCID: PMC7291048 DOI: 10.3390/v12050506] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/16/2022] Open
Abstract
An unexplained outbreak of feline diarrhea and vomiting, negative for common enteric viral and bacterial pathogens, was subjected to viral metagenomics and PCR. We characterized from fecal samples the genome of a novel chapparvovirus we named fechavirus that was shed by 8/17 affected cats and identified three different feline bocaviruses shed by 9/17 cats. Also detected were nucleic acids from attenuated vaccine viruses, members of the normal feline virome, viruses found in only one or two cases, and viruses likely derived from ingested food products. Epidemiological investigation of disease signs, time of onset, and transfers of affected cats between three facilities support a possible role for this new chapparvovirus in a highly contagious feline diarrhea and vomiting disease.
Collapse
Affiliation(s)
- Yanpeng Li
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA 94118, USA; (Y.L.); (E.A.); (X.D.)
- Department of Laboratory Medicine, University of California, San Francisco, CA 94118, USA
| | - Emilia Gordon
- The British Columbia Society for the Prevention of Cruelty to Animals, Vancouver, BC V5T1R1, Canada; (E.G.); (A.I.)
| | - Amanda Idle
- The British Columbia Society for the Prevention of Cruelty to Animals, Vancouver, BC V5T1R1, Canada; (E.G.); (A.I.)
| | - Eda Altan
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA 94118, USA; (Y.L.); (E.A.); (X.D.)
- Department of Laboratory Medicine, University of California, San Francisco, CA 94118, USA
| | - M. Alexis Seguin
- IDEXX Reference Laboratories, Inc., West Sacramento, CA 95605, USA; (M.A.S.); (M.E.)
| | - Marko Estrada
- IDEXX Reference Laboratories, Inc., West Sacramento, CA 95605, USA; (M.A.S.); (M.E.)
| | - Xutao Deng
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA 94118, USA; (Y.L.); (E.A.); (X.D.)
- Department of Laboratory Medicine, University of California, San Francisco, CA 94118, USA
| | - Eric Delwart
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA 94118, USA; (Y.L.); (E.A.); (X.D.)
- Department of Laboratory Medicine, University of California, San Francisco, CA 94118, USA
- Correspondence: ; Tel.: +1-(415)-531-0763
| |
Collapse
|
28
|
Isolation and characterization of bovine alphaherpesvirus 2 strain from an outbreak of bovine herpetic mammillitis in a dairy farm. BMC Vet Res 2020; 16:103. [PMID: 32228616 PMCID: PMC7106810 DOI: 10.1186/s12917-020-02325-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine alphaherpesvirus type 2 (BoHV-2) belongs to family Herpesviridae, subfamily Alphaherpesviridae and can cause two distinct, well-defined conditions: a generalized benign skin infection that somewhat mimics lumpy skin disease (LSD), referred to as Pseudo-Lumpy Skin Disease (PSLD) and a localized ulcerative mammillitis, referred to as Bovine Herpetic Mammillitis (BHM). BHM is a localized form of BoHV-2 infection that causes erosive-ulcerative self-limiting lesions on breast and nipples. BHM is chiefly a disease of lactating dairy cows and has been described sporadically in several countries. In this study we describe an outbreak of bovine herpetic mammillitis caused by BoHV-2 occurred in a dairy farm in Southern Italy. Clinical signs were observed in 26/59 lactating cows with the age ranging between 2 and 6 years. The affected animals were afebrile, showed lesions on the skin of nipples, breast and ventral surface of the abdomen, near the mammary veins and spontaneously recovered within 2 months. RESULTS BoHV-2 DNA was detected in the crust samples by pan-herpes PCR and real-time quantitative PCR. The virus was isolated on bovine kidney cells and was characterised by deep sequencing technologies. The nucleotide identity to BoHV-2 of the strain ITA/2018/468 retrieved in this study ranged from 98.83 to 100%. Phylogenetic analyses based on three full-length gene (glycoprotein B, thymidine kinase and glycoprotein G) sequences confirmed the close relatedness of the strain ITA/2018/468 to BoHV-2 sequences. CONCLUSIONS The report represents a significant outbreak of BHM in a dairy farm 50 years after the last description in Italy. However, outbreaks of PLSD have been described in Europe recently, indicating that the virus is present in European territories. Improving the diagnostic algorithms and enacting specific surveillance plans could be useful to understand better the epidemiological and pathogenetic patterns of BoHV-2 infection in livestock animals, and to develop, eventually, effective prophylaxis plans.
Collapse
|
29
|
Abstract
BACKGROUND Bufavirus is a newly discovered zoonotic virus reported in numerous mammals and humans. However, the epidemiological and genetic characteristics of porcine bufaviruses (PBuVs) in China remain unclear. METHODS To detect PBuVs in China, 384 samples (92 fecal and 292 serum specimens) were collected from 2017 to 2018, covering six provinces in China, and were evaluated by nested PCR. Further, the positive samples from different provinces were selected to obtain the complete genome of Chinese PBuVs. RESULTS The prevalence rate of PBuV was 16.7% in Chinese domestic pigs in the Guangdong, Guangxi, Fujian, Jiangxi, Anhui, and Henan provinces. Additionally, the positive rate of fecal specimens was higher than that of the serum samples. Next, we sequenced nine near-complete genomes of Chinese field PBuV strains from different provinces. Homology and phylogenetic analyses indicated that Chinese PBuVs have high genetic variation (93.3-99.2%), showed higher nucleotide identity with an Austrian PBuV strain (KU867071.1), and developed into different branches within the same cluster. CONCLUSION To our knowledge, this is the first report on PBuV in China, expanding the geographic boundaries of PBuV circulation. Our data demonstrate that PBuVs are widely distributed in the six Chinese provinces. Moreover, these Chinese PBuVs exhibit genetic variation and continuous evolution characteristics. Taken together, our findings provide a foundation for future studies on bufaviruses.
Collapse
|
30
|
Kaszab E, Doszpoly A, Lanave G, Verma A, Bányai K, Malik YS, Marton S. Metagenomics revealing new virus species in farm and pet animals and aquaculture. GENOMICS AND BIOTECHNOLOGICAL ADVANCES IN VETERINARY, POULTRY, AND FISHERIES 2020. [PMCID: PMC7149329 DOI: 10.1016/b978-0-12-816352-8.00002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Viral metagenomics is slowly taking over the traditional and widely used molecular techniques for the investigation of pathogenic viruses responsible for illness and inflicting great economic burden on the farm animal industry. Owing to the continued improvements in sequencing technologies and the dramatic reduction of per base costs of sequencing the use of next generation sequencing have been key factors in this progress. Discoveries linked to viral metagenomics are expected to be beneficial to the field of veterinary medicine starting from the development of better diagnostic assays to the design of new subunit vaccines with minimal investments. With these achievements the research has taken a giant leap even toward the better healthcare of animals and, as a result, the animal sector could be growing at an unprecedented pace.
Collapse
|
31
|
Di Martino B, Di Profio F, Melegari I, Marsilio F. Feline Virome-A Review of Novel Enteric Viruses Detected in Cats. Viruses 2019; 11:v11100908. [PMID: 31575055 PMCID: PMC6832874 DOI: 10.3390/v11100908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/28/2019] [Accepted: 09/28/2019] [Indexed: 12/13/2022] Open
Abstract
Recent advances in the diagnostic and metagenomic investigations of the feline enteric environment have allowed the identification of several novel viruses that have been associated with gastroenteritis in cats. In the last few years, noroviruses, kobuviruses, and novel parvoviruses have been repetitively detected in diarrheic cats as alone or in mixed infections with other pathogens, raising a number of questions, with particular regards to their pathogenic attitude and clinical impact. In the present article, the current available literature on novel potential feline enteric viruses is reviewed, providing a meaningful update on the etiology, epidemiologic, pathogenetic, clinical, and diagnostic aspects of the infections caused by these pathogens.
Collapse
Affiliation(s)
- Barbara Di Martino
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy.
| | - Federica Di Profio
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy.
| | - Irene Melegari
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy.
| | - Fulvio Marsilio
- Laboratory of Infectious Diseases, Faculty of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy.
| |
Collapse
|
32
|
Abstract
Hepadnaviruses infect several animal species. The prototype species, human hepatitis B virus (HBV), increases the risk of liver diseases and may cause cirrhosis and hepatocellular carcinoma. Recently a novel hepadnavirus, similar to HBV, has been identified through transcriptomics studies in a domestic cat with large cell lymphoma in Australia. Herewith, a collection of 390 feline serum samples was screened for hepadnavirus. Overall, the virus was identified in 10.8% of the sera with a significantly higher prevalence (17.8%) in the sera of animals with a clinical suspect of infectious disease. Upon genome sequencing, the virus was closely related (97.0% nt identity) to the prototype Australian feline virus Sydney 2016. The mean and median values of hepadnavirus in the feline sera were 1.3 × 106 and 2.1 × 104 genome copies per mL (range 3.3 × 100-2.5 × 107 genome copies per mL). For a subset of hepadnavirus-positive samples, information on the hemato-chemical parameters was available and in 10/20 animals a profile suggestive of liver damage was present. Also, in 7/10 animals with suspected hepatic disease, virus load was >104 genome copies per mL, i.e. above the threshold considered at risk of active hepatitis and liver damage for HBV.
Collapse
|
33
|
Li J, Cui L, Deng X, Yu X, Zhang Z, Yang Z, Delwart E, Zhang W, Hua X. Canine bufavirus in faeces and plasma of dogs with diarrhoea, China. Emerg Microbes Infect 2019; 8:245-247. [PMID: 30866778 PMCID: PMC6455112 DOI: 10.1080/22221751.2018.1563457] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Jingjiao Li
- a Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai , People's Republic of China.,b Department of Microbiology, School of Medicine , Jiangsu University , Zhenjiang , People's Republic of China
| | - Li Cui
- a Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Xutao Deng
- c Blood Systems Research Institute , San Francisco , CA , USA
| | - Xiangqian Yu
- d Shanghai Pudong New Area Center for Animal Disease Prevention and Control , Shanghai , People's Republic of China
| | - Zhonghai Zhang
- d Shanghai Pudong New Area Center for Animal Disease Prevention and Control , Shanghai , People's Republic of China
| | - Zhibiao Yang
- a Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Eric Delwart
- c Blood Systems Research Institute , San Francisco , CA , USA.,e Department of Laboratory Medicine , University of California San Francisco , San Francisco , CA , USA
| | - Wen Zhang
- b Department of Microbiology, School of Medicine , Jiangsu University , Zhenjiang , People's Republic of China
| | - Xiuguo Hua
- a Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai , People's Republic of China
| |
Collapse
|
34
|
Melegari I, Di Profio F, Palombieri A, Sarchese V, Diakoudi G, Robetto S, Orusa R, Marsilio F, Bányai K, Martella V, Di Martino B. Molecular detection of canine bufaviruses in wild canids. Arch Virol 2019; 164:2315-2320. [PMID: 31168750 PMCID: PMC7086671 DOI: 10.1007/s00705-019-04304-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/03/2019] [Indexed: 11/27/2022]
Abstract
Novel protoparvoviruses genetically related to human and non-human primate bufaviruses (BuVs) have been detected recently in respiratory and enteric specimens collected from dogs and cats. In this study, by molecular screening of archival collections of faecal samples from wolves and foxes, we detected BuVs with a rate of 17.1% (7/41) and 10.5% (9/86), respectively. Sequence analysis of a portion of the ORF2 gene region of nine positive samples showed that the viruses in these samples were closely related to BuVs (97.5–99.0% nucleotide sequence identity) found in domestic carnivores.
Collapse
Affiliation(s)
- Irene Melegari
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Piazza Aldo Moro, 45, 64100, Teramo, Italy
| | - Federica Di Profio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Piazza Aldo Moro, 45, 64100, Teramo, Italy
| | - Andrea Palombieri
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Piazza Aldo Moro, 45, 64100, Teramo, Italy
| | - Vittorio Sarchese
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Piazza Aldo Moro, 45, 64100, Teramo, Italy
| | - Georgia Diakoudi
- Faculty of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Serena Robetto
- Istituto Zooprofilattico Sperimentale del Piemonte, della Liguria e della Valle d'Aosta, Torino, Italy
| | - Riccardo Orusa
- Istituto Zooprofilattico Sperimentale del Piemonte, della Liguria e della Valle d'Aosta, Torino, Italy
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Piazza Aldo Moro, 45, 64100, Teramo, Italy
| | - Kristián Bányai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Vito Martella
- Faculty of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Piazza Aldo Moro, 45, 64100, Teramo, Italy.
| |
Collapse
|
35
|
Fahsbender E, Altan E, Seguin MA, Young P, Estrada M, Leutenegger C, Delwart E. Chapparvovirus DNA Found in 4% of Dogs with Diarrhea. Viruses 2019; 11:v11050398. [PMID: 31035625 PMCID: PMC6563200 DOI: 10.3390/v11050398] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 01/02/2023] Open
Abstract
Feces from dogs in an unexplained outbreak of diarrhea were analyzed by viral metagenomics revealing the genome of a novel parvovirus. The parvovirus was named cachavirus and was classified within the proposed Chapparvovirus genus. Using PCR, cachavirus DNA was detected in two of nine tested dogs from that outbreak. In order to begin to elucidate the clinical impact of this virus, 2,053 canine fecal samples were screened using real-time PCR. Stool samples from 203 healthy dogs were positive for cachavirus DNA at a rate of 1.47%, while 802 diarrhea samples collected in 2017 and 964 samples collected in 2018 were positive at rates of 4.0% and 4.66% frequencies, respectively (healthy versus 2017-2018 combined diarrhea p-value of 0.05). None of 83 bloody diarrhea samples tested positive. Viral loads were generally low with average real-time PCR Ct values of 36 in all three positive groups. The species tropism and pathogenicity of cachavirus, the first chapparvovirus reported in feces of a placental carnivore, remains to be fully determined.
Collapse
Affiliation(s)
- Elizabeth Fahsbender
- Vitalant Research Institute, San Francisco, CA 94118, USA.
- Dept. of Laboratory Medicine, University of California, San Francisco, CA 94118, USA.
| | - Eda Altan
- Vitalant Research Institute, San Francisco, CA 94118, USA.
- Dept. of Laboratory Medicine, University of California, San Francisco, CA 94118, USA.
| | - M Alexis Seguin
- IDEXX Reference Laboratories, -Inc., West Sacramento, CA 95605, USA.
| | - Pauline Young
- IDEXX Reference Laboratories, -Inc., West Sacramento, CA 95605, USA.
| | - Marko Estrada
- IDEXX Reference Laboratories, -Inc., West Sacramento, CA 95605, USA.
| | | | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA 94118, USA.
- Dept. of Laboratory Medicine, University of California, San Francisco, CA 94118, USA.
| |
Collapse
|
36
|
Sun W, Zhang S, Huang H, Wang W, Cao L, Zheng M, Yin Y, Zhang H, Lu H, Jin N. First identification of a novel parvovirus distantly related to human bufavirus from diarrheal dogs in China. Virus Res 2019; 265:127-131. [PMID: 30914299 DOI: 10.1016/j.virusres.2019.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Abstract
Bufaviruses are small, nonenveloped, single-stranded DNA viruses belonging to the subfamily Parvovirinae. Human bufaviruses were first identified in 2012 in fecal samples from children with diarrhea. A new parvovirus of canines that was first detected in various samples from dogs with enteric and respiratory symptoms in Italy between 2014 and 2018 is closely related to the newly described human bufavirus. To explore the prevalence and genetic diversity of CBuV in Chinese dogs, 540 canine parvovirus (CPV)-positive serum and diarrhea samples were collected in Guangxi Province between 2016 and 2018. Among the samples, 6.25% (5/80) of rectal swabs and 2.5% (5/200) of CPV PCR-positive samples were positive for CBuV. However, the virus was not detected in CPV PCR-negative samples or nasal swabs. Two CBuV isolates were identified from CPV-positive fecal and serum samples by complete sequence analysis, with 99.8%-99.9% NS1 and VP2 protein identity to each another. Sequence analysis indicated that the CBuV GXNN01-2018 isolate VP2 protein shares 99.6% identity with the Italian CBuV ITA/2015/297 isolate and 62.3%-65.5% identity with human bufavirus. Phylogenetic analysis showed that CBuV was significantly distinct from other known bufaviruses and was most closely related to CBuV ITA/2015/297. This is the first report of the existence of CBuV in China, and our findings will strengthen the understanding of the epidemiology of bufaviruses in different animals.
Collapse
Affiliation(s)
- Wenchao Sun
- Institute of Virology, Wenzhou University, Wenzhou, 325035, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Shiheng Zhang
- Institute of Virology, Wenzhou University, Wenzhou, 325035, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Haixin Huang
- Institute of Virology, Wenzhou University, Wenzhou, 325035, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Wei Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China; College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Liang Cao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China
| | - Min Zheng
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Hongyun Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Huijun Lu
- Institute of Virology, Wenzhou University, Wenzhou, 325035, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China.
| | - Ningyi Jin
- Institute of Virology, Wenzhou University, Wenzhou, 325035, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, 130122, China; College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
37
|
Nasal virome of dogs with respiratory infection signs include novel taupapillomaviruses. Virus Genes 2019; 55:191-197. [PMID: 30632017 PMCID: PMC7088604 DOI: 10.1007/s11262-019-01634-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/04/2019] [Indexed: 11/24/2022]
Abstract
Using viral metagenomics, we characterized the mammalian virome of nasal swabs from 57 dogs with unexplained signs of respiratory infection showing mostly negative results using the IDEXX Canine Respiratory Disease RealPCR™ Panel. We identified canine parainfluenza virus 5, canine respiratory coronavirus, carnivore bocaparvovirus 3, canine circovirus and canine papillomavirus 9. Novel canine taupapillomaviruses (CPV21-23) were also identified in 3 dogs and their complete genome sequenced showing L1 nucleotide identity ranging from 68.4 to 70.3% to their closest taupapillomavirus relative. Taupapillomavirus were the only mammalian viral nucleic acids detected in two affected dogs, while a third dog was coinfected with low levels of canine parainfluenza 5. A role for these taupapillomavirues in canine respiratory disease remains to be determined.
Collapse
|
38
|
Identification of a novel parvovirus in domestic cats. Vet Microbiol 2018; 228:246-251. [PMID: 30593374 DOI: 10.1016/j.vetmic.2018.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 12/26/2022]
Abstract
A novel protoparvovirus species was identified in domestic cats. The virus was distantly related to the well-known feline (feline panleukopenia virus) and canine (canine parvovirus type 2) parvoviruses, sharing low nucleotide identities in the capsid protein 2 (less than 43%). The virus was genetically similar (100% at the nucleotide level) to a newly identified canine protoparvovirus, genetically related to human bufaviruses. The feline bufavirus appeared as a common element of the feline virome, especially in juvenile cats, with an overall prevalence of 9.2%. The virus was more common in respiratory samples (9.5%-12.2%) than in enteric samples of cats (2.2%). The role of bufaviruses in the etiology of feline respiratory disease complex, either as a primary or a secondary agents, should be defined.
Collapse
|