1
|
Saretzki CEB, Dobler G, Iro E, Heussen N, Küpper T. Dengue Virus and Zika Virus Seroprevalence in the South Pacific Populations of the Cook Islands and Vanuatu. Viruses 2024; 16:807. [PMID: 38793688 PMCID: PMC11125989 DOI: 10.3390/v16050807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Arboviral diseases are serious threats to global health with increasing prevalence and potentially severe complications. Significant arthropod-borne viruses are the dengue viruses (DENV 1-4), the Zika virus (ZIKV), and the chikungunya virus (CHIKV). Among the areas most affected is the South Pacific Region (SPR). Here, arboviruses not only cause a high local burden of disease, but the region has also proven to contribute to their global spread. Outpatient serum samples collected between 08/2016 and 04/2017 on three islands of the island states of Vanuatu and the Cook Islands were tested for anti-DENV- and anti-ZIKV-specific antibodies (IgG) using enzyme-linked immunosorbent assays (ELISA). ELISA test results showed 89% of all test sera from the Cook Islands and 85% of the Vanuatu samples to be positive for anti-DENV-specific antibodies. Anti-ZIKV antibodies were identified in 66% and 52%, respectively, of the test populations. Statistically significant differences in standardized immunity levels were found only at the intranational level. Our results show that in both the Cook Islands and Vanuatu, residents were exposed to significant Flavivirus transmission. Compared to other seroprevalence studies, the marked difference between ZIKV immunity levels and previously published CHIKV seroprevalence rates in our study populations is surprising. We propose the timing of ZIKV and CHIKV emergence in relation to recurrent DENV outbreaks and the impact of seasonality as explanatory external factors for this observation. Our data add to the knowledge of arboviral epidemics in the SPR and contribute to a better understanding of virus spread, including external conditions with potential influence on outbreak dynamics. These data may support preventive and rapid response measures in the affected areas, travel-related risk assessment, and infection identification in locals and returning travelers.
Collapse
Affiliation(s)
- Charlotte E. B. Saretzki
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen Technical University, 52074 Aachen, Germany;
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany;
| | - Elizabeth Iro
- Cook Islands Ministry of Health, Rarotonga P.O. Box 109, Cook Islands;
| | - Nicole Heussen
- Department of Medical Statistics, RWTH Aachen Technical University, 52074 Aachen, Germany;
- Faculty of Medicine, Sigmund Freud University, 1020 Vienna, Austria
| | - Thomas Küpper
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen Technical University, 52074 Aachen, Germany;
- Faculty for Travel Medicine, Royal College of Physicians and Surgeons of Glasgow, Glasgow G2 5RJ, UK
| |
Collapse
|
2
|
Kang H, Auzenbergs M, Clapham H, Maure C, Kim JH, Salje H, Taylor CG, Lim A, Clark A, Edmunds WJ, Sahastrabuddhe S, Brady OJ, Abbas K. Chikungunya seroprevalence, force of infection, and prevalence of chronic disability after infection in endemic and epidemic settings: a systematic review, meta-analysis, and modelling study. THE LANCET. INFECTIOUS DISEASES 2024; 24:488-503. [PMID: 38342105 DOI: 10.1016/s1473-3099(23)00810-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Chikungunya is an arboviral disease transmitted by Aedes aegypti and Aedes albopictus mosquitoes with a growing global burden linked to climate change and globalisation. We aimed to estimate chikungunya seroprevalence, force of infection (FOI), and prevalence of related chronic disability and hospital admissions in endemic and epidemic settings. METHODS In this systematic review, meta-analysis, and modelling study, we searched PubMed, Ovid, and Web of Science for articles published from database inception until Sept 26, 2022, for prospective and retrospective cross-sectional studies that addressed serological chikungunya virus infection in any geographical region, age group, and population subgroup and for longitudinal prospective and retrospective cohort studies with data on chronic chikungunya or hospital admissions in people with chikungunya. We did a systematic review of studies on chikungunya seroprevalence and fitted catalytic models to each survey to estimate location-specific FOI (ie, the rate at which susceptible individuals acquire chikungunya infection). We performed a meta-analysis to estimate the proportion of symptomatic patients with laboratory-confirmed chikungunya who had chronic chikungunya or were admitted to hospital following infection. We used a random-effects model to assess the relationship between chronic sequelae and follow-up length using linear regression. The systematic review protocol is registered online on PROSPERO, CRD42022363102. FINDINGS We identified 60 studies with data on seroprevalence and chronic chikungunya symptoms done across 76 locations in 38 countries, and classified 17 (22%) of 76 locations as endemic settings and 59 (78%) as epidemic settings. The global long-term median annual FOI was 0·007 (95% uncertainty interval [UI] 0·003-0·010) and varied from 0·0001 (0·00004-0·0002) to 0·113 (0·07-0·20). The highest estimated median seroprevalence at age 10 years was in south Asia (8·0% [95% UI 6·5-9·6]), followed by Latin America and the Caribbean (7·8% [4·9-14·6]), whereas median seroprevalence was lowest in the Middle East (1·0% [0·5-1·9]). We estimated that 51% (95% CI 45-58) of people with laboratory-confirmed symptomatic chikungunya had chronic disability after infection and 4% (3-5) were admitted to hospital following infection. INTERPRETATION We inferred subnational heterogeneity in long-term average annual FOI and transmission dynamics and identified both endemic and epidemic settings across different countries. Brazil, Ethiopia, Malaysia, and India included both endemic and epidemic settings. Long-term average annual FOI was higher in epidemic settings than endemic settings. However, long-term cumulative incidence of chikungunya can be similar between large outbreaks in epidemic settings with a high FOI and endemic settings with a relatively low FOI. FUNDING International Vaccine Institute.
Collapse
Affiliation(s)
- Hyolim Kang
- London School of Hygiene and Tropical Medicine, London, UK; Seoul National University College of Medicine School, Seoul, South Korea.
| | | | - Hannah Clapham
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Clara Maure
- International Vaccine Institute, Seoul, South Korea
| | | | - Henrik Salje
- Department of Genetics, Cambridge University, Cambridge, UK
| | | | - Ahyoung Lim
- London School of Hygiene and Tropical Medicine, London, UK
| | - Andrew Clark
- London School of Hygiene and Tropical Medicine, London, UK
| | - W John Edmunds
- London School of Hygiene and Tropical Medicine, London, UK; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Sushant Sahastrabuddhe
- International Vaccine Institute, Seoul, South Korea; Centre International de Recherche en Infectiologie, Université Jean Monnet, Université Claude Bernard Lyon, INSERM, Saint-Etienne, France
| | - Oliver J Brady
- London School of Hygiene and Tropical Medicine, London, UK
| | - Kaja Abbas
- London School of Hygiene and Tropical Medicine, London, UK; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
3
|
Saba Villarroel PM, Hamel R, Gumpangseth N, Yainoy S, Koomhin P, Missé D, Wichit S. Global seroprevalence of Zika virus in asymptomatic individuals: A systematic review. PLoS Negl Trop Dis 2024; 18:e0011842. [PMID: 38630843 PMCID: PMC11057727 DOI: 10.1371/journal.pntd.0011842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/29/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Zika virus (ZIKV) has spread to five of the six World Health Organization (WHO) regions. Given the substantial number of asymptomatic infections and clinical presentations resembling those of other arboviruses, estimating the true burden of ZIKV infections is both challenging and essential. Therefore, we conducted a systematic review and meta-analysis of seroprevalence studies of ZIKV IgG in asymptomatic population to estimate its global impact and distribution. METHODOLOGY/PRINCIPAL FINDINGS We conducted extensive searches and compiled a collection of articles published from Jan/01/2000, to Jul/31/2023, from Embase, Pubmed, SciELO, and Scopus databases. The random effects model was used to pool prevalences, reported with their 95% confidence interval (CI), a tool to assess the risk of study bias in prevalence studies, and the I2 method for heterogeneity (PROSPERO registration No. CRD42023442227). Eighty-four studies from 49 countries/territories, with a diversity of study designs and serological tests were included. The global seroprevalence of ZIKV was 21.0% (95%CI 16.1%-26.4%). Evidence of IgG antibodies was identified in all WHO regions, except for Europe. Seroprevalence correlated with the epidemics in the Americas (39.9%, 95%CI:30.0-49.9), and in some Western Pacific countries (15.6%, 95%CI:8.2-24.9), as well as with recent and past circulation in Southeast Asia (22.8%, 95%CI:16.5-29.7), particularly in Thailand. Additionally, sustained low circulation was observed in Africa (8.4%, 95%CI:4.8-12.9), except for Gabon (43.7%), and Burkina Faso (22.8%). Although no autochthonous transmission was identified in the Eastern Mediterranean, a seroprevalence of 16.0% was recorded. CONCLUSIONS/SIGNIFICANCE The study highlights the high heterogeneity and gaps in the distribution of seroprevalence. The implementation of standardized protocols and the development of tests with high specificity are essential for ensuring a valid comparison between studies. Equally crucial are vector surveillance and control methods to reduce the risk of emerging and re-emerging ZIKV outbreaks, whether caused by Ae. aegypti or Ae. albopictus or by the Asian or African ZIKV.
Collapse
Affiliation(s)
- Paola Mariela Saba Villarroel
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
- Viral Vector Joint unit and Joint Laboratory, Mahidol University, Nakhon Pathom, Thailand
| | - Rodolphe Hamel
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
- Viral Vector Joint unit and Joint Laboratory, Mahidol University, Nakhon Pathom, Thailand
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Nuttamonpat Gumpangseth
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
- Viral Vector Joint unit and Joint Laboratory, Mahidol University, Nakhon Pathom, Thailand
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Phanit Koomhin
- Center of Excellence in Innovation on Essential Oil, Walailak University, Nakhonsithammarat, Thailand
| | - Dorothée Missé
- MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Sineewanlaya Wichit
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
- Viral Vector Joint unit and Joint Laboratory, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
4
|
Ngwe Tun MM, Kyaw AK, Nwe KM, Myaing SS, Win YT, Inoue S, Takamatsu Y, Urano T, Thu HM, Hmone SW, Thant KZ, Morita K. Burden of Chikungunya Virus Infection during an Outbreak in Myanmar. Viruses 2023; 15:1734. [PMID: 37632076 PMCID: PMC10459206 DOI: 10.3390/v15081734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Chikungunya virus (CHIKV) infection is a re-emerging arboviral disease with no approved vaccine, although numerous options are in development. Before vaccine implementation, disease burden, affected age group, and hospitalization rate information should be documented. In 2019, a sizeable outbreak of the East Central South African genotype of CHIKV occurred in Myanmar, and during this period, a cross-sectional study was conducted in two regions, Mandalay and Yangon, to examine the molecular and seropositivity rate of the CHIKV infection. The participants (1124) included dengue-suspected pediatric patients, blood donors, and healthy volunteers, who were assessed using molecular assays (quantitative real-time RT-PCR), serological tests (anti-CHIKV IgM capture and IgG indirect enzyme-linked immunosorbent assays), and neutralization tests. The tests confirmed the following positivity rates: 11.3% (127/1124) for the molecular assay, 12.4% (139/1124) for the anti-CHIKV IgM Ab, 44.5% (500/1124) for the anti-CHIKV IgG Ab, and 46.3% (520/1124) for the CHIKV neutralizing Ab. The highest rate for the molecular test occurred with the dengue-suspected pediatric patients. The seroprevalence rate through natural infection was higher in the healthy volunteers and blood donors than that in the pediatric patients. The results of this study will help stakeholders determine the criteria for choosing appropriate recipients when a CHIKV vaccine is introduced in Myanmar.
Collapse
Affiliation(s)
- Mya Myat Ngwe Tun
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (K.M.N.); (Y.T.)
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 690-8504, Japan;
| | - Aung Kyaw Kyaw
- Department of Medical Research, Ministry of Health, Yangon 11191, Myanmar; (A.K.K.); (S.S.M.); (H.M.T.)
| | - Khine Mya Nwe
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (K.M.N.); (Y.T.)
| | - Su Su Myaing
- Department of Medical Research, Ministry of Health, Yangon 11191, Myanmar; (A.K.K.); (S.S.M.); (H.M.T.)
| | - Ye Thu Win
- 550-Bedded Children Hospital (Mandalay), Department of Medical Services, Ministry of Health, Mandalay City 05021, Myanmar;
| | - Shingo Inoue
- Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
| | - Yuki Takamatsu
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (K.M.N.); (Y.T.)
| | - Takeshi Urano
- Center for Vaccines and Therapeutic Antibodies for Emerging Infectious Diseases, Shimane University, Izumo 690-8504, Japan;
| | - Hlaing Myat Thu
- Department of Medical Research, Ministry of Health, Yangon 11191, Myanmar; (A.K.K.); (S.S.M.); (H.M.T.)
| | - Saw Wutt Hmone
- Department of Pathology, University of Medicine-1, Ministry of Health, Yangon 11131, Myanmar;
| | - Kyaw Zin Thant
- Myanmar Academy of Medical Science, Yangon 11201, Myanmar;
| | - Kouichi Morita
- Department of Tropical Viral Vaccine Development, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan;
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (K.M.N.); (Y.T.)
- DEJIMA Infectious Disease Research Alliance, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
5
|
Skalinski LM, Santos AES, Paixão E, Itaparica M, Barreto F, da Conceição Nascimento Costa M, Teixeira MG. Chikungunya seroprevalence in population-based studies: a systematic review and meta-analysis. Arch Public Health 2023; 81:80. [PMID: 37127721 PMCID: PMC10150504 DOI: 10.1186/s13690-023-01081-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Seroprevalence studies about chikungunya infection are usually conducted after epidemics to estimate the magnitude of the attack. This study aimed to estimate the seroprevalence of CHIKV by WHO region, considering the periods of introduction of the virus in these regions and its potential to lead to epidemics. METHODS We systematically reviewed Medline/Pubmed, Embase, Lilacs, Scopus and Web of Science for original articles published up to 2020. Cohort, case-control and cross-sectional studies were eligible for inclusion, based on the results of laboratory diagnosis of previous or previous and recent infection. Those conducted with symptomatic individuals were excluded. RESULTS 596 articles were identified, 197 full-text were reviewed and 64 were included, resulting in 71 seroprevalences. Most were cross-sectional studies (92%), between 2001 and 2020 (92%), with population of all ages (55%), conducted in Kenya (10.9%), Brazil (9.4%) and French Polynesia (7.8%). The pooled estimates were 24% (95%CI 19-29; I2 = 99.7%; p < 0.00), being 21% (95%CI 13-30; I2 = 99.5%; p < 0.00) for adults, 7% (95%CI 0-23; I2 = 99.7%; p < 0.00) for children and 30% (95%CI 23-38; I2 = 99.7%; p < 0.00) for all ages. The higher seroprevalences were found in African, the Americas and South-East Asian Regions. CONCLUSIONS The great heterogeneity of seroprevalences points to the persistence of viral circulation. Even where the seroprevalence is high, the population replacement and the absence of vaccines mean that the risk of virus spread and epidemics remains. REGISTRATION PROSPERO CRD42020166227.
Collapse
Affiliation(s)
- Lacita Menezes Skalinski
- Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, s/n, Salobrinho, Ilhéus, CEP 45662-900, BA, Brasil.
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil.
| | - Aline Elena Sacramento Santos
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil
| | - Enny Paixão
- London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | - Martha Itaparica
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil
| | - Florisneide Barreto
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil
| | | | - Maria Glória Teixeira
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Rua Basílio da Gama, s/n, Campus Canela, Salvador, CEP 40110-040, BA, Brazil
| |
Collapse
|
6
|
Muthuraj PG, Krishnamoorthy C, Anderson-Berry A, Hanson C, Natarajan SK. Novel Therapeutic Nutrients Molecules That Protect against Zika Virus Infection with a Special Note on Palmitoleate. Nutrients 2022; 15:124. [PMID: 36615782 PMCID: PMC9823984 DOI: 10.3390/nu15010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Zika virus (ZIKV) is a Flavivirus from the Flaviviridae family and a positive-sense single strand RNA virus. ZIKV infection can cause a mild infection to the mother but can be vertically transmitted to the developing fetus, causing congenital anomalies. The prevalence of ZIKV infections was relatively insignificant with sporadic outbreaks in the Asian and African continents until 2006. However, recent epidemic in the Caribbean showed significant increased incidence of Congenital Zika Syndrome. ZIKV infection results in placental pathology which plays a crucial role in disease transmission from mother to fetus. Currently, there is no Food and Drug Administration (FDA) approved vaccine or therapeutic drug against ZIKV. This review article summarizes the recent advances on ZIKV transmission and diagnosis and reviews nutraceuticals which can protect against the ZIKV infection. Further, we have reviewed recent advances related to the novel therapeutic nutrient molecules that have been shown to possess activity against Zika virus infected cells. We also review the mechanism of ZIKV-induced endoplasmic reticulum and apoptosis and the protective role of palmitoleate (nutrient molecule) against ZIKV-induced ER stress and apoptosis in the placental trophoblasts.
Collapse
Affiliation(s)
- Philma Glora Muthuraj
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Chandan Krishnamoorthy
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ann Anderson-Berry
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Corrine Hanson
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Medical Nutrition Education, College of Allied Health Profession, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Medical Nutrition Education, College of Allied Health Profession, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
7
|
Saretzki CEB, Dobler G, Iro E, May Y, Tou D, Lockington E, Ala M, Heussen N, Phiri BSJ, Küpper T. Chikungunya virus (CHIKV) seroprevalence in the South Pacific populations of the Cook Islands and Vanuatu with associated environmental and social factors. PLoS Negl Trop Dis 2022; 16:e0010626. [PMID: 36441828 PMCID: PMC9731434 DOI: 10.1371/journal.pntd.0010626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/08/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Arthropod-borne diseases pose a significant and increasing risk to global health. Given its rapid dissemination, causing large-scale outbreaks with severe human infections and economic loss, the Chikungunya virus (CHIKV) is one of the most important arboviruses worldwide. Despite its significance, the real global impact of CHIKV remains underestimated as outbreak data are often incomplete and based solely on syndromic surveillance. During 2011-2016, the South Pacific Region was severely affected by several CHIKV-epidemics, yet the area is still underrepresented in arboviral research. METHODS 465 outpatient serum samples collected between 08/2016 and 04/2017 on three islands of the island states Vanuatu (Espiritu Santo) and the Cook Islands (Rarotonga, Aitutaki) were tested for anti-CHIKV specific antibodies using Enzyme-linked immunosorbent Assays. RESULTS A total of 30% (Cook Islands) and 8% (Vanuatu) of specimens were found positive for anti-CHIKV specific antibodies with major variations in national and intranational immunity levels. Seroprevalence throughout all age groups was relatively constant. Four potential outbreak-protective factors were identified by comparing the different study settings: presence of Ae. albopictus (in absence of ECSA E1-A226V-mutation CHIKV), as well as low levels of human population densities, residents' travel activity and tourism. CONCLUSION This is the first seroprevalence study focussing on an arboviral disease in the Cook Islands and Vanuatu. It highlights the impact of the 2014/2015 CHIKV epidemic on the Cook Islands population and shows that a notable part of the Vanuatu test population was exposed to CHIKV although no outbreaks were reported. Our findings supplement the knowledge concerning CHIKV epidemics in the South Pacific Region and contribute to a better understanding of virus dissemination, including outbreak modifying factors. This study may support preventive and rapid response measures in affected areas, travel-related risk assessment and infection identification in returning travellers. TRIAL REGISTRATION ClinicalTrials.gov Aachen: 051/16_09/05/2016 Cook Islands Ref.: #16-16 Vanuatu Ref.: MOH/DG 10/1/1-GKT/lr.
Collapse
Affiliation(s)
- Charlotte E. B. Saretzki
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen Technical University, Aachen/ Germany
- * E-mail:
| | | | - Elisabeth Iro
- Cook Islands Ministry of Health, Rarotonga/ Cook Islands
| | - Yin May
- Cook Islands Ministry of Health, Rarotonga Hospital, Rarotonga/ Cook Islands
| | - Douglas Tou
- Cook Islands Ministry of Health, Rarotonga Laboratory, Rarotonga/ Cook Islands
| | - Eteta Lockington
- Cook Islands Ministry of Health, Aitutaki Laboratory, Aitutaki/ Cook Islands
| | - Michael Ala
- Northern Provincial Hospital Laboratory, Espiritu Santo/ Vanuatu
| | - Nicole Heussen
- Department of Medical Statistics, RWTH Aachen Technical University, Aachen/ Germany
- Center of Biostatistics and Epidemiology, Medical School, Sigmund Freud University, Vienna/ Austria
| | - Bruno S. J. Phiri
- Central Veterinary Research Institute (CVRI), Ministry of Fisheries and Livestock, Lusaka/ Zambia
| | - Thomas Küpper
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen Technical University, Aachen/ Germany
| |
Collapse
|
8
|
Matthews RJ, Kaluthotage I, Russell TL, Knox TB, Horwood PF, Craig AT. Arboviral Disease Outbreaks in the Pacific Islands Countries and Areas, 2014 to 2020: A Systematic Literature and Document Review. Pathogens 2022; 11:74. [PMID: 35056022 PMCID: PMC8779081 DOI: 10.3390/pathogens11010074] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 12/10/2022] Open
Abstract
Arthropod-borne diseases pose a significant public health threat, accounting for greater than 17% of infectious disease cases and 1 million deaths annually. Across Pacific Island countries and areas (PICs), outbreaks of dengue, chikungunya, and Zika are increasing in frequency and scale. Data about arbovirus outbreaks are incomplete, with reports sporadic, delayed, and often based solely on syndromic surveillance. We undertook a systematic review of published and grey literature and contacted relevant regional authorities to collect information about arboviral activity affecting PICs between October 2014 and June 2020. Our literature search identified 1176 unique peer-reviewed articles that were reduced to 25 relevant publications when screened. Our grey literature search identified 873 sources. Collectively, these data reported 104 unique outbreaks, including 72 dengue outbreaks affecting 19 (out of 22) PICs, 14 chikungunya outbreaks affecting 11 PICs, and 18 Zika outbreaks affecting 14 PICs. Our review is the most complete account of arboviral outbreaks to affect PICs since comparable work was published in 2014. It highlights the continued elevated level of arboviral activity across the Pacific and inconsistencies in how information about outbreaks is reported and recorded. It demonstrates the importance of a One-Health approach and the role that improved communication and reporting between different governments and sectors play in understanding the emergence, circulation, and transboundary risks posed by arboviral diseases.
Collapse
Affiliation(s)
- Rosie J. Matthews
- Department of Medicine, Cairns Hospital, Cairns, QID 4870, Australia
| | - Ishani Kaluthotage
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QID 4870, Australia; (I.K.); (T.L.R.)
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, QID 4870, Australia
| | - Tanya L. Russell
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QID 4870, Australia; (I.K.); (T.L.R.)
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, QID 4870, Australia
| | - Tessa B. Knox
- Vanuatu Country Liaison Office, World Health Organization, Port Vila, Vanuatu;
| | - Paul F. Horwood
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QID 4811, Australia;
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QID 4811, Australia
| | - Adam T. Craig
- School of Population Health, University of New South Wales, Sydney, NSW 1466, Australia
| |
Collapse
|
9
|
Ellington SR, Simeone RM, Serrano-Rodriguez RA, Bertolli J, Swartzendruber A, Goldberg HI, Mercado AS, Jamieson DJ, Honein MA, Cordero JF, Shapiro-Mendoza CK. Zika Prevention Behaviors Among Women of Reproductive Age in Puerto Rico, 2016. Am J Prev Med 2021; 61:e149-e155. [PMID: 33952412 PMCID: PMC9843536 DOI: 10.1016/j.amepre.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Zika virus is primarily transmitted through mosquito bites. Because Zika virus infection during pregnancy can cause serious birth defects, reproductive-aged women need protection from Zika virus infection. This report describes Zika virus prevention behaviors among women aged 18-49 years and assesses whether pregnancy status and healthcare provider counseling increases Zika virus prevention behaviors. METHODS A population-based cell phone survey of women aged 18-49 years living in Puerto Rico was conducted in July-November 2016. Data were analyzed in 2018-2019. Prevalence estimates and 95% CIs were calculated for Zika virus prevention behaviors. Adjusted prevalence ratios were estimated to examine the association of pregnancy status with healthcare provider counseling on Zika virus prevention behaviors, controlling for age, education, and health insurance status. RESULTS Most women reported using screens on open doors/windows (87.7%) and eliminating standing water in/around their homes (92.3%). Other Zika virus prevention behaviors were less common (<33%). In adjusted analysis, pregnant women were more likely than women not at risk for unintended pregnancy to report using mosquito repellent every/most days (adjusted prevalence ratio=1.44, 95% CI=1.13, 1.85). Healthcare provider counseling was associated with receiving professional spraying/larvicide treatment (adjusted prevalence ratio=1.42, 95% CI=1.17, 1.74), sleeping under a bed net (adjusted prevalence ratio=2.37, 95% CI=1.33, 4.24), using mosquito repellent (adjusted prevalence ratio=1.57, 95% CI=1.40, 1.77), and wearing long sleeves/pants (adjusted prevalence ratio=1.32, 95% CI=1.12, 1.55). CONCLUSIONS Receipt of healthcare provider counseling was more consistently associated with Zika virus prevention behaviors than pregnancy status. Healthcare provider counseling is an important strategy for increasing the uptake of Zika virus prevention behaviors among women aged 18-49 years.
Collapse
Affiliation(s)
- Sascha R Ellington
- Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta, Georgia; Department of Epidemiology & Biostatistics, College of Public Health, University of Georgia, Athens, Georgia.
| | - Regina M Simeone
- Division of Birth Defects and Infant Disorders, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Jeanne Bertolli
- Division of Human Development and Disability, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Andrea Swartzendruber
- Department of Epidemiology & Biostatistics, College of Public Health, University of Georgia, Athens, Georgia
| | - Howard I Goldberg
- Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Denise J Jamieson
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia
| | - Margaret A Honein
- Division of Birth Defects and Infant Disorders, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - José F Cordero
- Department of Epidemiology & Biostatistics, College of Public Health, University of Georgia, Athens, Georgia
| | | |
Collapse
|
10
|
Teixeira MG, Skalinski LM, Paixão ES, Costa MDCN, Barreto FR, Campos GS, Sardi SI, Carvalho RH, Natividade M, Itaparica M, Dias JP, Trindade SC, Teixeira BP, Morato V, Santana EB, Goes CB, Silva NSDJ, Santos CADST, Rodrigues LC, Whitworth J. Seroprevalence of Chikungunya virus and living conditions in Feira de Santana, Bahia-Brazil. PLoS Negl Trop Dis 2021; 15:e0009289. [PMID: 33878115 PMCID: PMC8087031 DOI: 10.1371/journal.pntd.0009289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/30/2021] [Accepted: 03/04/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Chikungunya is an arbovirus, transmitted by Aedes mosquitoes, which emerged in the Americas in 2013 and spread rapidly to almost every country on this continent. In Brazil, where the first cases were detected in 2014, it currently has reached all regions of this country and more than 900,000 cases were reported. The clinical spectrum of chikungunya ranges from an acute self-limiting form to disabling chronic forms. The purpose of this study was to estimate the seroprevalence of chikungunya infection in a large Brazilian city and investigate the association between viral circulation and living condition. METHODOLOGY/PRINCIPAL FINDINGS We conducted a population-based ecological study in selected Sentinel Areas (SA) through household interviews and a serologic survey in 2016/2017. The sample was of 1,981 individuals randomly selected. The CHIKV seroprevalence was 22.1% (17.1 IgG, 2.3 IgM, and 1.4 IgG and IgM) and varied between SA from 2.0% to 70.5%. The seroprevalence was significantly lower in SA with high living conditions compared to SA with low living condition. There was a positive association between CHIKV seroprevalence and population density (r = 0.2389; p = 0.02033). CONCLUSIONS/SIGNIFICANCE The seroprevalence in this city was 2.6 times lower than the 57% observed in a study conducted in the epicentre of the CHIKV epidemic of this same urban centre. So, the herd immunity in this general population, after four years of circulation of this agent is relatively low. It indicates that CHIKV transmission may persist in that city, either in endemic form or in the form of a new epidemic, because the vector infestation is persistent. Besides, the significantly lower seroprevalences in SA of higher Living Condition suggest that beyond the surveillance of the disease, vector control and specific actions of basic sanitation, the reduction of the incidence of this infection also depends on the improvement of the general living conditions of the population.
Collapse
Affiliation(s)
| | - Lacita Menezes Skalinski
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Salvador-BA, Brazil
- Departamento de Ciências da Saúde/ Universidade Estadual de Santa Cruz, Ilhéus-BA, Brazil
| | - Enny S. Paixão
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | - Gubio Soares Campos
- Instituto de Ciências da Saúde/ Universidade Federal da Bahia, Salvador-BA, Brazil
| | - Silvia Ines Sardi
- Instituto de Ciências da Saúde/ Universidade Federal da Bahia, Salvador-BA, Brazil
| | | | - Marcio Natividade
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Salvador-BA, Brazil
| | - Martha Itaparica
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Salvador-BA, Brazil
| | - Juarez Pereira Dias
- Instituto de Saúde Coletiva/ Universidade Federal da Bahia, Salvador-BA, Brazil
| | | | | | - Vanessa Morato
- Secretaria de Segurança Pública do Estado da Bahia, Salvador-BA, Brazil
| | | | | | | | | | | | - Jimmy Whitworth
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
11
|
Thomas S, Donato CM, Covea S, Ratu FT, Jenney AWJ, Reyburn R, Sahu Khan A, Rafai E, Grabovac V, Serhan F, Bines JE, Russell FM. Genotype Diversity before and after the Introduction of a Rotavirus Vaccine into the National Immunisation Program in Fiji. Pathogens 2021; 10:358. [PMID: 33802966 PMCID: PMC8002601 DOI: 10.3390/pathogens10030358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 11/20/2022] Open
Abstract
The introduction of the rotavirus vaccine, Rotarix, into the Fiji National Immunisation Program in 2012 has reduced the burden of rotavirus disease and hospitalisations in children less than 5 years of age. The aim of this study was to describe the pattern of rotavirus genotype diversity from 2005 to 2018; to investigate changes following the introduction of the rotavirus vaccine in Fiji. Faecal samples from children less than 5 years with acute diarrhoea between 2005 to 2018 were analysed at the WHO Rotavirus Regional Reference Laboratory at the Murdoch Children's Research Institute, Melbourne, Australia, and positive samples were serotyped by EIA (2005-2006) or genotyped by heminested RT-PCR (2007 onwards). We observed a transient increase in the zoonotic strain equine-like G3P[8] in the initial period following vaccine introduction. G1P[8] and G2P[4], dominant genotypes prior to vaccine introduction, have not been detected since 2015 and 2014, respectively. A decrease in rotavirus genotypes G2P[8], G3P[6], G8P[8] and G9P[8] was also observed following vaccine introduction. Monitoring the rotavirus genotypes that cause diarrhoeal disease in children in Fiji is important to ensure that the rotavirus vaccine will continue to be protective and to enable early detection of new vaccine escape strains if this occurs.
Collapse
Affiliation(s)
- Sarah Thomas
- Enteric Diseases Group, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (C.M.D.); (J.E.B.)
| | - Celeste M. Donato
- Enteric Diseases Group, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (C.M.D.); (J.E.B.)
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Sokoveti Covea
- Ministry of Health and Medical Services, Suva, Fiji; (S.C.); (F.T.R.); (A.S.K.); (E.R.)
| | - Felisita T. Ratu
- Ministry of Health and Medical Services, Suva, Fiji; (S.C.); (F.T.R.); (A.S.K.); (E.R.)
| | - Adam W. J. Jenney
- Asia-Pacific Health Group, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (A.W.J.J.); (R.R.); (F.M.R.)
- College of Medicine, Nursing and Health Sciences, Fiji National University, Suva, Fiji
- Centre for International Child Health, Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Rita Reyburn
- Asia-Pacific Health Group, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (A.W.J.J.); (R.R.); (F.M.R.)
- Centre for International Child Health, Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Aalisha Sahu Khan
- Ministry of Health and Medical Services, Suva, Fiji; (S.C.); (F.T.R.); (A.S.K.); (E.R.)
| | - Eric Rafai
- Ministry of Health and Medical Services, Suva, Fiji; (S.C.); (F.T.R.); (A.S.K.); (E.R.)
| | - Varja Grabovac
- Western Pacific Regional Office, World Health Organization, Manila 1000, Philippines;
| | - Fatima Serhan
- World Health Organization, 1202 Geneva, Switzerland;
| | - Julie E. Bines
- Enteric Diseases Group, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (C.M.D.); (J.E.B.)
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Gastroenterology and Clinical Nutrition, Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Fiona M. Russell
- Asia-Pacific Health Group, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; (A.W.J.J.); (R.R.); (F.M.R.)
- Centre for International Child Health, Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
12
|
Henderson AD, Kama M, Aubry M, Hue S, Teissier A, Naivalu T, Bechu VD, Kailawadoko J, Rabukawaqa I, Sahukhan A, Hibberd ML, Nilles EJ, Funk S, Whitworth J, Watson CH, Lau CL, Edmunds WJ, Cao-Lormeau VM, Kucharski AJ. Interactions between timing and transmissibility explain diverse flavivirus dynamics in Fiji. Nat Commun 2021; 12:1671. [PMID: 33723237 PMCID: PMC7961049 DOI: 10.1038/s41467-021-21788-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Zika virus (ZIKV) has caused large, brief outbreaks in isolated populations, however ZIKV can also persist at low levels over multiple years. The reasons for these diverse transmission dynamics remain poorly understood. In Fiji, which has experienced multiple large single-season dengue epidemics, there was evidence of multi-year transmission of ZIKV between 2013 and 2017. To identify factors that could explain these differences in dynamics between closely related mosquito-borne flaviviruses, we jointly fit a transmission dynamic model to surveillance, serological and molecular data. We estimate that the observed dynamics of ZIKV were the result of two key factors: strong seasonal effects, which created an ecologically optimal time of year for outbreaks; and introduction of ZIKV after this optimal time, which allowed ZIKV transmission to persist over multiple seasons. The ability to jointly fit to multiple data sources could help identify a similar range of possible outbreak dynamics in other settings.
Collapse
Affiliation(s)
- Alasdair D Henderson
- Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK.
| | - Mike Kama
- Fiji Center for Diseases Control, Suva, Fiji
| | - Maite Aubry
- Institut Louis Malardé, Papeete, Tahiti, French Polynesia
| | - Stephane Hue
- Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Anita Teissier
- Institut Louis Malardé, Papeete, Tahiti, French Polynesia
| | | | | | | | | | | | - Martin L Hibberd
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Sebastian Funk
- Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Jimmy Whitworth
- Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Conall H Watson
- Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK.,Epidemic Diseases Research Group Oxford, University of Oxford, Oxford, UK
| | - Colleen L Lau
- Research School of Population Health, The Australian National University, Canberra, ACT, Australia
| | - W John Edmunds
- Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Adam J Kucharski
- Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
13
|
Ireland DDC, Manangeeswaran M, Lewkowicz AP, Engel K, Clark SM, Laniyan A, Sykes J, Lee HN, McWilliams IL, Kelley-Baker L, Tonelli LH, Verthelyi D. Long-term persistence of infectious Zika virus: Inflammation and behavioral sequela in mice. PLoS Pathog 2020; 16:e1008689. [PMID: 33301527 PMCID: PMC7728251 DOI: 10.1371/journal.ppat.1008689] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
The neurodevelopmental defects associated with ZIKV infections early in pregnancy are well documented, however the potential defects and long-term consequences associated with milder infections in late pregnancy and perinatal period are less well understood. To model these, we challenged 1 day old (P1) immunocompetent C57BL/6 mice with ZIKV. The animals developed a transient neurological syndrome including unsteady gait, kinetic tremors, severe ataxia and seizures 10-15 days post-infection (dpi) but symptoms subsided after a week, and most animals survived. Despite apparent recovery, MRI of convalescent mice show reduced cerebellar volume that correlates with altered coordination and motor function as well as hyperactivity and impulsivity. Persistent mRNA levels of pro-inflammatory genes including Cd80, Il-1α, and Ifn-γ together with Cd3, Cd8 and perforin (PrfA), suggested persistence of low-grade inflammation. Surprisingly, the brain parenchyma of convalescent mice harbor multiple small discrete foci with viral antigen, active apoptotic processes in neurons, and cellular infiltrates, surrounded by activated astrocytes and microglia as late as 1-year post-infection. Detection of negative-sense strand viral RNA and isolation of infectious virus derived from these convalescent mice by blinded passage in Vero cells confirmed long-term persistence of replicating ZIKV in CNS of convalescent mice. Although the infection appears to persist in defined reservoirs within CNS, the resulting inflammation could increase the risk of neurodegenerative disorders. This raises concern regarding possible long-term effects in asymptomatic children exposed to the virus and suggests that long-term neurological and behavioral monitoring as well as anti-viral treatment to clear virus from the CNS may be useful in patients exposed to ZIKV at an early age.
Collapse
Affiliation(s)
- Derek D. C. Ireland
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Mohanraj Manangeeswaran
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Aaron P. Lewkowicz
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Kaliroi Engel
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Sarah M. Clark
- University of Maryland School of Medicine, Department of Psychiatry, Baltimore, Maryland, United States of America
| | - Adelle Laniyan
- University of Maryland School of Medicine, Department of Psychiatry, Baltimore, Maryland, United States of America
| | - Jacob Sykes
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Ha-Na Lee
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Ian L. McWilliams
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Logan Kelley-Baker
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Leonardo H. Tonelli
- University of Maryland School of Medicine, Department of Psychiatry, Baltimore, Maryland, United States of America
| | - Daniela Verthelyi
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| |
Collapse
|
14
|
Molecular Characterization of Dengue Type 2 Outbreak in Pacific Islands Countries and Territories, 2017-2020. Viruses 2020; 12:v12101081. [PMID: 32992973 PMCID: PMC7601490 DOI: 10.3390/v12101081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/02/2022] Open
Abstract
Dengue virus (DENV) serotype-2 was detected in the South Pacific region in 2014 for the first time in 15 years. In 2016–2020, DENV-2 re-emerged in French Polynesia, Vanuatu, Wallis and Futuna, and New Caledonia, co-circulating with and later replacing DENV-1. In this context, epidemiological and molecular evolution data are paramount to decipher the diffusion route of this DENV-2 in the South Pacific region. In the current work, the E gene from 23 DENV-2 serum samples collected in Vanuatu, Fiji, Wallis and Futuna, and New Caledonia was sequenced. Both maximum likelihood and Bayesian phylogenetic analyses were performed. While all DENV-2 strains sequenced belong to the Cosmopolitan genotype, phylogenetic analysis suggests at least three different DENV-2 introductions in the South Pacific between 2017 and 2020. Strains retrieved in these Pacific Islands Countries and Territories (PICTs) in 2017–2020 are phylogenetically related, with strong phylogenetic links between strains retrieved from French PICTs. These phylogenetic data substantiate epidemiological data of the DENV-2 diffusion pattern between these countries.
Collapse
|
15
|
Dudouet P, Gautret P, Larsen CS, Díaz-Menéndez M, Trigo E, von Sonnenburg F, Gobbi F, Grobusch MP, Malvy D, Field V, Asgeirsson H, Souto IO, Hamer DH, Parola P, Javelle E. Chikungunya resurgence in the Maldives and risk for importation via tourists to Europe in 2019-2020: A GeoSentinel case series. Travel Med Infect Dis 2020; 36:101814. [PMID: 32619732 PMCID: PMC7324928 DOI: 10.1016/j.tmaid.2020.101814] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/29/2022]
Abstract
Background Chikungunya virus (CHIKV) is an arthropod-borne virus mainly transmitted in tropical areas by Aedes spp. mosquitoes. It has been responsible for small-to-large outbreaks in temperate areas including southern Europe and North America. Past outbreaks in 2006 on the islands of Maldives, as well as on other islands in the Indian Ocean and in Southeast Asia, demonstrated for the first time the capacity of CHIKV to disseminate through travel and transcontinental commerce, and revealed the major socio-economic impact of CHIKV epidemics. Recently, CHIKV has been circulating in highly touristic areas including the Maldives, where 1736 cases were notified by the Health Protection Agency during 2019. Case series Among EuroTravNet/GeoSentinel patient records, eight CHIKV-confirmed cases imported the Maldives to France, Germany, Denmark, Italy and Spain were identified between February 2019 and February 2020; exceeding the total number of CHIKV infections travel-acquired in Maldives reported to this surveillance network during the previous 10 years. Conclusions The prevention and control of CHIKV introduction into naïve areas colonised by competent vectors is crucial. CHIKV outbreaks must be detected and reported in a timely manner. This must lead to adapted health information for international travellers and to prompt management of suspected imported cases. Conversely, travellers make for excellent sentinels and increased reports of imported cases might reflect a change in the level of endemicity or even herald an outbreak. Feedback to the local health authorities and matching this with local epidemiological surveillance data may lead to health benefits for the local population.
Collapse
Affiliation(s)
| | - Philippe Gautret
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | | | - Marta Díaz-Menéndez
- National Referral Unit for Imported Tropical Diseases, Department of Internal Medicine, Hospital Universitario La Paz-Carlos III, IdiPAZ, Madrid, Spain
| | - Elena Trigo
- National Referral Unit for Imported Tropical Diseases, Department of Internal Medicine, Hospital Universitario La Paz-Carlos III, IdiPAZ, Madrid, Spain
| | - Frank von Sonnenburg
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Munich, Germany
| | - Federico Gobbi
- Department of Infectious/Tropical Diseases and Microbiology, IRCCS Sacro-Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Martin P Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Location AMC, Amsterdam Public Health, Amsterdam Infection and Immunity, University of Amsterdam, Amsterdam, the Netherlands
| | - Denis Malvy
- Department for Infectious and Tropical Diseases, University Hospital Center of Bordeaux, Bordeaux, France
| | - Vanessa Field
- University College London Hospitals NHS Foundation Trust, United Kingdom
| | - Hilmir Asgeirsson
- Department of Infectious Diseases, Karolinska University Hospital, and Unit of Infectious Diseases, Huddinge, Karolinska Institutet, Stockholm, Sweden; Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Inés Oliveira Souto
- Department of Infectious Diseases, Tropical Medicine Unit Vall d'Hebron-Drassanes, Valld'Hebron University Hospital, Universitat Autónoma de Barcelona, PROSICS, Barcelona, Spain
| | - Davidson H Hamer
- Department of Global Health, Boston University School of Public Health, Section of Infectious Diseases, USA; Department of Medicine, Boston University School of Medicine, and National Emerging Infectious Disease Laboratory, USA
| | - Philippe Parola
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Emilie Javelle
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; Laveran Military Teaching Hospital, Marseille, France.
| |
Collapse
|
16
|
Flamand C, Bailly S, Fritzell C, Berthelot L, Vanhomwegen J, Salje H, Paireau J, Matheus S, Enfissi A, Fernandes-Pellerin S, Djossou F, Linares S, Carod JF, Kazanji M, Manuguerra JC, Cauchemez S, Rousset D. Impact of Zika Virus Emergence in French Guiana: A Large General Population Seroprevalence Survey. J Infect Dis 2020; 220:1915-1925. [PMID: 31418012 PMCID: PMC6834069 DOI: 10.1093/infdis/jiz396] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Since the identification of Zika virus (ZIKV) in Brazil in May 2015, the virus has spread throughout the Americas. However, ZIKV burden in the general population in affected countries remains unknown. METHODS We conducted a general population survey in the different communities of French Guiana through individual interviews and serologic survey during June-October 2017. All serum samples were tested for anti-ZIKV immunoglobulin G antibodies using a recombinant antigen-based SGERPAxMap microsphere immunoassay, and some of them were further evaluated through anti-ZIKV microneutralization tests. RESULTS The overall seroprevalence was estimated at 23.3% (95% confidence interval [CI], 20.9%-25.9%) among 2697 participants, varying from 0% to 45.6% according to municipalities. ZIKV circulated in a large majority of French Guiana but not in the most isolated forest areas. The proportion of reported symptomatic Zika infection was estimated at 25.5% (95% CI, 20.3%-31.4%) in individuals who tested positive for ZIKV. CONCLUSIONS This study described a large-scale representative ZIKV seroprevalence study in South America from the recent 2015-2016 Zika epidemic. Our findings reveal that the majority of the population remains susceptible to ZIKV, which could potentially allow future reintroductions of the virus.
Collapse
Affiliation(s)
| | | | | | - Léna Berthelot
- Arbovirus National Reference Center, Institut Pasteur, Cayenne, French Guiana
| | - Jessica Vanhomwegen
- Environment and Infectious Risks Unit, Unité Mixte de Recherche 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Henrik Salje
- Mathematical Modelling of Infectious Diseases Unit, Unité Mixte de Recherche 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Juliette Paireau
- Mathematical Modelling of Infectious Diseases Unit, Unité Mixte de Recherche 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Séverine Matheus
- Arbovirus National Reference Center, Institut Pasteur, Cayenne, French Guiana.,Environment and Infectious Risks Unit, Unité Mixte de Recherche 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Antoine Enfissi
- Arbovirus National Reference Center, Institut Pasteur, Cayenne, French Guiana
| | | | - Félix Djossou
- Infectious and Tropical Diseases Unit, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Sébastien Linares
- Geographic Information and Knowledge Dissemination Unit, Direction de l'Environnement, de l'Aménagement et du Logement Guyane, Cayenne, French Guiana
| | - Jean-François Carod
- Medical Laboratory, Centre Hospitalier de l'Ouest Guyanais, Saint-Laurent du Maroni, French Guiana
| | | | - Jean-Claude Manuguerra
- Environment and Infectious Risks Unit, Unité Mixte de Recherche 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Unité Mixte de Recherche 2000, Centre National de la Recherche Scientifique, Paris, France
| | - Dominique Rousset
- Arbovirus National Reference Center, Institut Pasteur, Cayenne, French Guiana
| |
Collapse
|
17
|
Henderson AD, Aubry M, Kama M, Vanhomwegen J, Teissier A, Mariteragi-Helle T, Paoaafaite T, Teissier Y, Manuguerra JC, Edmunds J, Whitworth J, Watson CH, Lau CL, Cao-Lormeau VM, Kucharski AJ. Zika seroprevalence declines and neutralizing antibodies wane in adults following outbreaks in French Polynesia and Fiji. eLife 2020; 9:48460. [PMID: 31987069 PMCID: PMC6986872 DOI: 10.7554/elife.48460] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/20/2019] [Indexed: 12/30/2022] Open
Abstract
It has been commonly assumed that Zika virus (ZIKV) infection confers long-term protection against reinfection, preventing ZIKV from re-emerging in previously affected areas for several years. However, the long-term immune response to ZIKV following an outbreak remains poorly documented. We compared results from eight serological surveys before and after known ZIKV outbreaks in French Polynesia and Fiji, including cross-sectional and longitudinal studies. We found evidence of a decline in seroprevalence in both countries over a two-year period following first reported ZIKV transmission. This decline was concentrated in adults, while high seroprevalence persisted in children. In the Fiji cohort, there was also a significant decline in neutralizing antibody titres against ZIKV, but not against dengue viruses that circulated during the same period.
Collapse
Affiliation(s)
- Alasdair D Henderson
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Maite Aubry
- Institut Louis Malardé, Papeete, French Polynesia
| | - Mike Kama
- Fiji Centre for Communicable Disease Control, Suva, Fiji.,The University of the South Pacific, Suva, Fiji
| | | | | | | | | | - Yoann Teissier
- Direction de la Santé de la Polynésie française, Papeete, French Polynesia
| | | | - John Edmunds
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jimmy Whitworth
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Conall H Watson
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | | - Adam J Kucharski
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
18
|
Filho WL, Scheday S, Boenecke J, Gogoi A, Maharaj A, Korovou S. Climate Change, Health and Mosquito-Borne Diseases: Trends and Implications to the Pacific Region. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16245114. [PMID: 31847373 PMCID: PMC6950258 DOI: 10.3390/ijerph16245114] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
Climate change is known to affect Pacific Island nations in a variety of ways. One of them is by increasing the vulnerability of human health induced by various climate change impacts, which pose an additional burden to the already distressed health systems in the region. This paper explores the associations between climate change and human health on the one hand, and outlines some of the health care challenges posed by a changing climate on the other. In particular, it describes the links between climate variations and the emergence of climate-sensitive infectious diseases, such as the mosquito-borne diseases dengue, chikungunya, and Zika. The paper also presents a summary of the key findings of the research initiatives Climate Change and Prevalence Study of ZIKA Virus Diseases in Fiji and the findings from the World Mosquito Program as two examples of public health action in the Pacific region.
Collapse
Affiliation(s)
- Walter Leal Filho
- Research and Transfer Centre Sustainable Development and Climate Change Management, Hamburg University of Applied Sciences, Faculty of Life Sciences, 20, 21033 Hamburg, Germany; (S.S.); (J.B.)
- Department of Natural Sciences, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK
- Correspondence:
| | - Svenja Scheday
- Research and Transfer Centre Sustainable Development and Climate Change Management, Hamburg University of Applied Sciences, Faculty of Life Sciences, 20, 21033 Hamburg, Germany; (S.S.); (J.B.)
| | - Juliane Boenecke
- Research and Transfer Centre Sustainable Development and Climate Change Management, Hamburg University of Applied Sciences, Faculty of Life Sciences, 20, 21033 Hamburg, Germany; (S.S.); (J.B.)
| | - Abhijit Gogoi
- Umanand Prasad School of Medicine and Health Sciences, The University of Fiji, Saweni, Lautoka 0700, Fiji; (A.G.); (S.K.)
| | - Anish Maharaj
- School of Science and Technology, The University of Fiji, Saweni, Lautoka 0700, Fiji;
| | - Samuela Korovou
- Umanand Prasad School of Medicine and Health Sciences, The University of Fiji, Saweni, Lautoka 0700, Fiji; (A.G.); (S.K.)
| |
Collapse
|
19
|
Aubry M, Kama M, Henderson AD, Teissier A, Vanhomwegen J, Mariteragi-Helle T, Paoaafaite T, Manuguerra JC, Christi K, Watson CH, Lau CL, Kucharski AJ, Cao-Lormeau VM. Low chikungunya virus seroprevalence two years after emergence in Fiji. Int J Infect Dis 2019; 90:223-225. [PMID: 31689529 PMCID: PMC6912130 DOI: 10.1016/j.ijid.2019.10.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 11/29/2022] Open
Abstract
Chikungunya virus (CHIKV) infections were recorded in Fiji between 2015 and 2017. We performed serological testing on serum from 320 Fijians sampled in 2017. CHIKV seroprevalence increased from 0.9% in 2015 to 12.8% in 2017. Of the 198 participants seronegative in 2015, 31 (15.7%) were seropositive in 2017. Low CHIKV transmission occurred during the two years following emergence in Fiji.
Objectives In Fiji, autochthonous chikungunya virus (CHIKV) infection was first detected in March 2015. In a previous serosurvey conducted during October–November 2015, we reported a prevalence of anti-CHIKV IgG antibodies of 0.9%. In the present study, we investigated the seroprevalence of CHIKV two years after its emergence in Fiji. Methods Sera from 320 residents of Fiji recruited in June 2017, from the same cohort of individuals that participated in the serosurvey in 2015, were tested for the presence of IgG antibodies against CHIKV using a recombinant antigen-based microsphere immunoassay. Results Between 2015 and 2017, CHIKV seroprevalence among residents increased from 0.9% (3/333) to 12.8% (41/320). Of the participants with available serum samples collected in both 2015 and 2017 (n = 200), 31 (15.5%) who were seronegative in 2015 had seroconverted to CHIKV in 2017. Conclusions Our findings suggest that low-level transmission of CHIKV occurred during the two years following the emergence of the virus in Fiji. No CHIKV infection has been reported in Fiji since 2017, but due to the presumed low herd immunity of the population, the risk of CHIKV re-emergence is high. Consequently, chikungunya should be considered in the differential diagnosis of acute febrile diseases in Fiji.
Collapse
Affiliation(s)
- Maite Aubry
- Institut Louis Malardé, PO BOX 30, 98713 Papeete, Tahiti, French Polynesia.
| | - Mike Kama
- Fiji Centre for Communicable Disease Control, Tamavua Hospital Complex, Mataika House, Suva, Fiji; The University of the South Pacific, Private Mail Bag, Laucala Campus, Suva, Fiji
| | - Alasdair D Henderson
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Anita Teissier
- Institut Louis Malardé, PO BOX 30, 98713 Papeete, Tahiti, French Polynesia
| | | | | | | | | | - Ketan Christi
- The University of the South Pacific, Private Mail Bag, Laucala Campus, Suva, Fiji
| | - Conall H Watson
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom; Epidemic Research Group Oxford, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Colleen L Lau
- Research School of Population Health, The Australian National University, 62 Mills Road, Acton, ACT 2601, Australia
| | - Adam J Kucharski
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | | |
Collapse
|