1
|
Lin S, Chen J, Li K, Liu Y, Fu S, Xie S, Zha A, Xin A, Han X, Shi Y, Xu L, Liao M, Jia W. Evolutionary dynamics and comparative pathogenicity of clade 2.3.4.4b H5 subtype avian influenza viruses, China, 2021-2022. Virol Sin 2024; 39:358-368. [PMID: 38679333 PMCID: PMC11280280 DOI: 10.1016/j.virs.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/18/2024] [Indexed: 05/01/2024] Open
Abstract
The recent concurrent emergence of H5N1, H5N6, and H5N8 avian influenza viruses (AIVs) has led to significant avian mortality globally. Since 2020, frequent human-animal interactions have been documented. To gain insight into the novel H5 subtype AIVs (i.e., H5N1, H5N6 and H5N8), we collected 6102 samples from various regions of China between January 2021 and September 2022, and identified 41 H5Nx strains. Comparative analyses on the evolution and biological properties of these isolates were conducted. Phylogenetic analysis revealed that the 41 H5Nx strains belonged to clade 2.3.4.4b, with 13 related to H5N1, 19 to H5N6, and 9 to H5N8. Analysis based on global 2.3.4.4b viruses showed that all the viruses described in this study were likely originated from H5N8, exhibiting a heterogeneous evolutionary history between H5N1 and H5N6 during 2015-2022 worldwide. H5N1 showed a higher rate of evolution in 2021-2022 and more sites under positive selection pressure in 2015-2022. The antigenic profiles of the novel H5N1 and H5N6 exhibited notable variations. Further hemagglutination inhibition assay suggested that some A(H5N1) viruses may be antigenically distinct from the circulating H5N6 and H5N8 strains. Mammalian challenge assays demonstrated that the H5N8 virus (21GD001_H5N8) displayed the highest pathogenicity in mice, followed by the H5N1 virus (B1557_H5N1) and then the H5N6 virus (220086_H5N6), suggesting a heterogeneous virulence profile of H5 AIVs in the mammalian hosts. Based on the above results, we speculate that A(H5N1) viruses have a higher risk of emergence in the future. Collectively, these findings unveil a new landscape of different evolutionary history and biological characteristics of novel H5 AIVs in clade 2.3.4.4b, contributing to a better understanding of designing more effective strategies for the prevention and control of novel H5 AIVs.
Collapse
MESH Headings
- Animals
- China/epidemiology
- Phylogeny
- Influenza in Birds/virology
- Influenza in Birds/epidemiology
- Evolution, Molecular
- Mice
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza A Virus, H5N1 Subtype/classification
- Influenza A Virus, H5N1 Subtype/isolation & purification
- Influenza A Virus, H5N8 Subtype/genetics
- Influenza A Virus, H5N8 Subtype/pathogenicity
- Influenza A Virus, H5N8 Subtype/classification
- Influenza A Virus, H5N8 Subtype/isolation & purification
- Virulence
- Influenza A virus/genetics
- Influenza A virus/pathogenicity
- Influenza A virus/classification
- Chickens/virology
- Mice, Inbred BALB C
- Female
- Birds/virology
- Humans
Collapse
Affiliation(s)
- Siru Lin
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Junhong Chen
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ke Li
- Institute of Poultry Management and Diseases, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China
| | - Yang Liu
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Siyuan Fu
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shumin Xie
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Aimin Zha
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Aiguo Xin
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xinyu Han
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yuting Shi
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lingyu Xu
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Liao
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, 510642, China.
| | - Weixin Jia
- National Avian Influenza Para-Reference Laboratory, Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Zoonoses, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Fusaro A, Zecchin B, Giussani E, Palumbo E, Agüero-García M, Bachofen C, Bálint Á, Banihashem F, Banyard AC, Beerens N, Bourg M, Briand FX, Bröjer C, Brown IH, Brugger B, Byrne AMP, Cana A, Christodoulou V, Dirbakova Z, Fagulha T, Fouchier RAM, Garza-Cuartero L, Georgiades G, Gjerset B, Grasland B, Groza O, Harder T, Henriques AM, Hjulsager CK, Ivanova E, Janeliunas Z, Krivko L, Lemon K, Liang Y, Lika A, Malik P, McMenamy MJ, Nagy A, Nurmoja I, Onita I, Pohlmann A, Revilla-Fernández S, Sánchez-Sánchez A, Savic V, Slavec B, Smietanka K, Snoeck CJ, Steensels M, Svansson V, Swieton E, Tammiranta N, Tinak M, Van Borm S, Zohari S, Adlhoch C, Baldinelli F, Terregino C, Monne I. High pathogenic avian influenza A(H5) viruses of clade 2.3.4.4b in Europe-Why trends of virus evolution are more difficult to predict. Virus Evol 2024; 10:veae027. [PMID: 38699215 PMCID: PMC11065109 DOI: 10.1093/ve/veae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Since 2016, A(H5Nx) high pathogenic avian influenza (HPAI) virus of clade 2.3.4.4b has become one of the most serious global threats not only to wild and domestic birds, but also to public health. In recent years, important changes in the ecology, epidemiology, and evolution of this virus have been reported, with an unprecedented global diffusion and variety of affected birds and mammalian species. After the two consecutive and devastating epidemic waves in Europe in 2020-2021 and 2021-2022, with the second one recognized as one of the largest epidemics recorded so far, this clade has begun to circulate endemically in European wild bird populations. This study used the complete genomes of 1,956 European HPAI A(H5Nx) viruses to investigate the virus evolution during this varying epidemiological outline. We investigated the spatiotemporal patterns of A(H5Nx) virus diffusion to/from and within Europe during the 2020-2021 and 2021-2022 epidemic waves, providing evidence of ongoing changes in transmission dynamics and disease epidemiology. We demonstrated the high genetic diversity of the circulating viruses, which have undergone frequent reassortment events, providing for the first time a complete overview and a proposed nomenclature of the multiple genotypes circulating in Europe in 2020-2022. We described the emergence of a new genotype with gull adapted genes, which offered the virus the opportunity to occupy new ecological niches, driving the disease endemicity in the European wild bird population. The high propensity of the virus for reassortment, its jumps to a progressively wider number of host species, including mammals, and the rapid acquisition of adaptive mutations make the trend of virus evolution and spread difficult to predict in this unfailing evolving scenario.
Collapse
Affiliation(s)
- Alice Fusaro
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Bianca Zecchin
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Edoardo Giussani
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Elisa Palumbo
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Montserrat Agüero-García
- Ministry of Agriculture, Fisheries and Food, Laboratorio Central de Veterinaria (LCV), Ctra. M-106, Km 1,4 Algete, Madrid 28110, Spain
| | - Claudia Bachofen
- Federal Department of Home Affairs FDHA Institute of Virology and Immunology IVI, Sensemattstrasse 293, Mittelhäusern 3147, Switzerland
| | - Ádám Bálint
- Veterinary Diagnostic Directorate (NEBIH), Laboratory of Virology, National Food Chain Safety Office, Tábornok utca 2, Budapest 1143, Hungary
| | - Fereshteh Banihashem
- Department of Microbiology, National Veterinary Institute (SVA), Travvägen 20, Uppsala 75189, Sweden
| | - Ashley C Banyard
- WOAH/FAO international reference laboratory for Avian Influenza and Newcastle Disease, Virology Department, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Nancy Beerens
- Department of Virology Wageningen Bioveterinary Research, Houtribweg 39, Lelystad 8221 RA, The Netherlands
| | - Manon Bourg
- Luxembourgish Veterinary and Food Administration (ALVA), State Veterinary Laboratory, 1 Rue Louis Rech, Dudelange 3555, Luxembourg
| | - Francois-Xavier Briand
- Agence Nationale de Sécurité Sanitaire, de l’Alimentation, de l’Environnement et du Travail, Laboratoire de Ploufragan-Plouzané-Niort, Unité de Virologie, Immunologie, Parasitologie Avaires et Cunicoles, 41 Rue de Beaucemaine – BP 53, Ploufragan 22440, France
| | - Caroline Bröjer
- Department of Pathology and Wildlife Disease, National Veterinary Institute (SVA), Travvägen 20, Uppsala 75189, Sweden
| | - Ian H Brown
- WOAH/FAO international reference laboratory for Avian Influenza and Newcastle Disease, Virology Department, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Brigitte Brugger
- Icelandic Food and Veterinary Authority, Austurvegur 64, Selfoss 800, Iceland
| | - Alexander M P Byrne
- WOAH/FAO international reference laboratory for Avian Influenza and Newcastle Disease, Virology Department, Animal and Plant Health Agency-Weybridge, Woodham Lane, New Haw, Addlestone KT15 3NB, United Kingdom
| | - Armend Cana
- Kosovo Food and Veterinary Agency, Sector of Serology and Molecular Diagnostics, Kosovo Food and Veterinary Laboratory, Str Lidhja e Pejes, Prishtina 10000, Kosovo
| | - Vasiliki Christodoulou
- Laboratory for Animal Health Virology Section Veterinary Services (1417), 79, Athalassa Avenue Aglantzia, Nicosia 2109, Cyprus
| | - Zuzana Dirbakova
- Department of Animal Health, State Veterinary Institute, Pod Dráhami 918, Zvolen 96086, Slovakia
| | - Teresa Fagulha
- I.P. (INIAV, I.P.), Avenida da República, Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, Oeiras 2780 – 157, Portugal
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus MC, Dr. Molewaterplein 40, Rotterdam 3015 GD, The Netherlands
| | - Laura Garza-Cuartero
- Department of Agriculture, Food and the Marine, Central Veterinary Research Laboratory (CVRL), Backweston Campus, Stacumny Lane, Celbridge, Co. Kildare W23 X3PH, Ireland
| | - George Georgiades
- Thessaloniki Veterinary Centre (TVC), Department of Avian Diseases, 26th October Street 80, Thessaloniki 54627, Greece
| | - Britt Gjerset
- Immunology & Virology department, Norwegian Veterinary Institute, Arboretveien 57, Oslo Pb 64, N-1431 Ås, Norway
| | - Beatrice Grasland
- Agence Nationale de Sécurité Sanitaire, de l’Alimentation, de l’Environnement et du Travail, Laboratoire de Ploufragan-Plouzané-Niort, Unité de Virologie, Immunologie, Parasitologie Avaires et Cunicoles, 41 Rue de Beaucemaine – BP 53, Ploufragan 22440, France
| | - Oxana Groza
- Republican Center for Veterinary Diagnostics (NRL), 3 street Murelor, Chisinau 2051, Republic of Moldova
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Ana Margarida Henriques
- I.P. (INIAV, I.P.), Avenida da República, Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, Oeiras 2780 – 157, Portugal
| | - Charlotte Kristiane Hjulsager
- Department for Virus and Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, Copenhagen DK-2300, Denmark
| | - Emiliya Ivanova
- National Reference Laboratory for Avian Influenza and Newcastle Disease, National Diagnostic and Research Veterinary Medical Institute (NDRVMI), 190 Lomsko Shose Blvd., Sofia 1231, Bulgaria
| | - Zygimantas Janeliunas
- National Food and Veterinary Risk Assessment Institute (NFVRAI), Kairiukscio str. 10, Vilnius 08409, Lithuania
| | - Laura Krivko
- Institute of Food Safety, Animal Health and Environment (BIOR), Laboratory of Microbilogy and Pathology, 3 Lejupes Street, Riga 1076, Latvia
| | - Ken Lemon
- Virological Molecular Diagnostic Laboratory, Veterinary Sciences Division, Department of Virology, Agri-Food and Bioscience Institute (AFBI), Stoney Road, Belfast BT4 3SD, Northern Ireland
| | - Yuan Liang
- Department of Veterinary and Animal Sciences, University of Copenhagen, Grønnegårdsvej 15, Frederiksberg 1870, Denmark
| | - Aldin Lika
- Animal Health Department, Food Safety and Veterinary Institute, Rruga Aleksandër Moisiu 10, Tirana 1001, Albania
| | - Péter Malik
- Veterinary Diagnostic Directorate (NEBIH), Laboratory of Virology, National Food Chain Safety Office, Tábornok utca 2, Budapest 1143, Hungary
| | - Michael J McMenamy
- Virological Molecular Diagnostic Laboratory, Veterinary Sciences Division, Department of Virology, Agri-Food and Bioscience Institute (AFBI), Stoney Road, Belfast BT4 3SD, Northern Ireland
| | - Alexander Nagy
- Department of Molecular Biology, State Veterinary Institute Prague, Sídlištní 136/24, Praha 6-Lysolaje 16503, Czech Republic
| | - Imbi Nurmoja
- National Centre for Laboratory Research and Risk Assessment (LABRIS), Kreutzwaldi 30, Tartu 51006, Estonia
| | - Iuliana Onita
- Institute for Diagnosis and Animal Health (IDAH), Str. Dr. Staicovici 63, Bucharest 050557, Romania
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, Greifswald-Insel Riems 17493, Germany
| | - Sandra Revilla-Fernández
- Austrian Agency for Health and Food Safety (AGES), Institute for Veterinary Disease Control, Robert Koch Gasse 17, Mödling 2340, Austria
| | - Azucena Sánchez-Sánchez
- Ministry of Agriculture, Fisheries and Food, Laboratorio Central de Veterinaria (LCV), Ctra. M-106, Km 1,4 Algete, Madrid 28110, Spain
| | - Vladimir Savic
- Croatian Veterinary Institute, Poultry Centre, Heinzelova 55, Zagreb 10000, Croatia
| | - Brigita Slavec
- University of Ljubljana – Veterinary Faculty/National Veterinary Institute, Gerbičeva 60, Ljubljana 1000, Slovenia
| | - Krzysztof Smietanka
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantow 57, Puławy 24-100, Poland
| | - Chantal J Snoeck
- Luxembourg Institute of Health (LIH), Department of Infection and Immunity, 29 Rue Henri Koch, Esch-sur-Alzette 4354, Luxembourg
| | - Mieke Steensels
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Ukkel 1180, Ukkel, Belgium
| | - Vilhjálmur Svansson
- Biomedical Center, Institute for Experimental Pathology, University of Iceland, Keldnavegi 3 112 Reykjavík Ssn. 650269 4549, Keldur 851, Iceland
| | - Edyta Swieton
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantow 57, Puławy 24-100, Poland
| | - Niina Tammiranta
- Finnish Food Authority, Animal Health Diagnostic Unit, Veterinary Virology, Mustialankatu 3, Helsinki FI-00790, Finland
| | - Martin Tinak
- Department of Animal Health, State Veterinary Institute, Pod Dráhami 918, Zvolen 96086, Slovakia
| | - Steven Van Borm
- Avian Virology and Immunology, Sciensano, Rue Groeselenberg 99, Ukkel 1180, Ukkel, Belgium
| | - Siamak Zohari
- Department of Microbiology, National Veterinary Institute (SVA), Travvägen 20, Uppsala 75189, Sweden
| | - Cornelia Adlhoch
- European Centre for Disease Prevention and Control, Gustav III:s boulevard 40, Solna 169 73, Sweden
| | | | - Calogero Terregino
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| | - Isabella Monne
- European Reference Laboratory (EURL) for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell'universita 10, Legnaro, Padua 35020, Italy
| |
Collapse
|
3
|
Li Y, An Q, Sun Z, Gao X, Wang H. Multifaceted analysis of temporal and spatial distribution and risk factors of global poultry HPAI-H5N1, 2005-2023. Animal 2024; 18:101085. [PMID: 38364655 DOI: 10.1016/j.animal.2024.101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/18/2024] Open
Abstract
The purpose of this study was to analyze the characteristics of occurrence and spread of highly pathogenic avian influenza H5N1 (HPAI-H5N1) globally, understand its spatiotemporal characteristics, investigate the risk factors influencing outbreaks, and identify high-risk areas for disease occurrence. We collected the data on global poultry HPAI-H5N1 outbreaks from January 2005 to April 2023, and conducted a thorough analysis of the spatial and temporal characteristics of the disease through time series decomposition and directional distribution analysis. Additionally, an ecological niche model was established to explore the major factors influencing the occurrence of HPAI-H5N1 and to pinpoint high-risk areas. Our findings revealed that HPAI-H5N1 outbreaks were cyclical, and seasonal, exhibiting a rising trend, with a predominant northwest-southeast transmission direction. The ecological niche model highlighted that species factors and economic trade factors are critical in influencing the outbreak of HPAI-H5N1. Variables such as chicken and duck density, population density, isothermality, and road density, contributed to importantly risk of outbreaks. High-risk areas for HPAI-H5N1 occurrence were primarily identified in Europe, West Africa, Southeast Asia, and Southeast China. This study provided valuable insights into the spatial and temporal distribution characteristics and risk factors of global poultry HPAI-H5N1 outbreaks. The identification of high-risk areas provides essential information that can be used to develop more effective prevention and control policies.
Collapse
Affiliation(s)
- Yuepeng Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Qi An
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Zhuo Sun
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xiang Gao
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Hongbin Wang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China.
| |
Collapse
|
4
|
Glazunova A, Krasnova E, Bespalova T, Sevskikh T, Lunina D, Titov I, Sindryakova I, Blokhin A. A highly pathogenic avian influenza virus H5N1 clade 2.3.4.4 detected in Samara Oblast, Russian Federation. Front Vet Sci 2024; 11:1244430. [PMID: 38389580 PMCID: PMC10881870 DOI: 10.3389/fvets.2024.1244430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Avian influenza (AI) is a global problem impacting birds and mammals, causing economic losses in commercial poultry farms and backyard settings. In 2022, over 8,500 AI cases were reported worldwide, with the H5 subtype being responsible for many outbreaks in wild and domestic birds. In the territory of the Russian Federation, outbreaks of AI have been massively reported since 2020, both among domestic bird species and wild bird species. Wild migratory birds often serve as natural reservoirs for AI viruses, and interactions between bird species can lead to the emergence of new, highly pathogenic variants through genetic recombination between strains. In order to combat the widespread outbreaks of the disease and potential risks of further spread in 2021, monitoring studies were conducted in the Samara Oblast, the southeastern region of European Russian Federation. These studies aimed to diagnose and characterize circulating AI virus variants among wild migratory birds during waterfowl hunting in areas of mass nesting. Among the 98 shot birds, a highly pathogenic A/H5N1 AI virus was detected in a Eurasian Teal from the Bolshechernigovsky district. It was classified into clade 2.3.4.4 based on the cleavage site structure of HA. Phylogenetic analysis showed a high relatedness of the identified strain in the Samara Oblast with field isolates from Russia, Nigeria, Bangladesh, and Benin. The article emphasizes the importance of monitoring AI virus spread in both wild and poultry, highlighting the need for timely information exchange to assess risks. Further comprehensive studies are necessary to understand virus dissemination pathways.
Collapse
Affiliation(s)
- Anastasia Glazunova
- Federal Research Center for Virology and Microbiology, Branch in Samara, Samara, Russia
| | - Elena Krasnova
- Federal Research Center for Virology and Microbiology, Branch in Samara, Samara, Russia
| | - Tatiana Bespalova
- Federal Research Center for Virology and Microbiology, Branch in Samara, Samara, Russia
| | - Timofey Sevskikh
- Federal Research Center for Virology and Microbiology, Samara, Russia
| | - Daria Lunina
- Federal Research Center for Virology and Microbiology, Branch in Samara, Samara, Russia
| | - Ilya Titov
- Federal Research Center for Virology and Microbiology, Samara, Russia
| | - Irina Sindryakova
- Federal Research Center for Virology and Microbiology, Samara, Russia
| | - Andrey Blokhin
- Federal Research Center for Virology and Microbiology, Branch in Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
5
|
Islam A, Hossain ME, Amin E, Islam S, Islam M, Sayeed MA, Hasan MM, Miah M, Hassan MM, Rahman MZ, Shirin T. Epidemiology and phylodynamics of multiple clades of H5N1 circulating in domestic duck farms in different production systems in Bangladesh. Front Public Health 2023; 11:1168613. [PMID: 37483933 PMCID: PMC10358836 DOI: 10.3389/fpubh.2023.1168613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/30/2023] [Indexed: 07/25/2023] Open
Abstract
Waterfowl are considered to be natural reservoirs of the avian influenza virus (AIV). However, the dynamics of transmission and evolutionary patterns of AIV and its subtypes within duck farms in Bangladesh remain poorly documented. Hence, a cross-sectional study was conducted in nine districts of Bangladesh between 2019 and 2021, to determine the prevalence of AIV and its subtypes H5 and H9, as well as to identify risk factors and the phylodynamics of H5N1 clades circulating in domestic duck farms. The oropharyngeal and cloacal swab samples were tested for the AIV Matrix gene (M-gene) followed by H5, H7, and H9 subtypes using rRT-PCR. The exploratory analysis was performed to estimate AIV and its subtype prevalence in different production systems, and multivariable logistic regression model was used to identify the risk factors that influence AIV infection in ducks. Bayesian phylogenetic analysis was conducted to generate a maximum clade credibility (MCC) tree and the maximum likelihood method to determine the phylogenetic relationships of the H5N1 viruses isolated from ducks. AIV was detected in 40% (95% CI: 33.0-48.1) of the duck farms. The prevalence of AIV was highest in nomadic ducks (39.8%; 95% CI: 32.9-47.1), followed by commercial ducks (24.6%; 95% CI: 14.5-37.3) and backyard ducks (14.4%; 95% CI: 10.5-19.2). The H5 prevalence was also highest in nomadic ducks (19.4%; 95% CI: 14.0-25.7). The multivariable logistic regression model revealed that ducks from nomadic farms (AOR: 2.4; 95% CI: 1.45-3.93), juvenile (AOR: 2.2; 95% CI: 1.37-3.61), and sick ducks (AOR: 11.59; 95% CI: 4.82-32.44) had a higher risk of AIV. Similarly, the likelihood of H5 detection was higher in sick ducks (AOR: 40.8; 95% CI: 16.3-115.3). Bayesian phylogenetic analysis revealed that H5N1 viruses in ducks belong to two distinct clades, 2.3.2.1a, and 2.3.4.4b. The clade 2.3.2.1a (reassorted) has been evolving silently since 2015 and forming at least nine subgroups based on >90% posterior probability. Notably, clade 2.3.4.4b was introduced in ducks in Bangladesh by the end of the year 2020, which was genetically similar to viruses detected in wild birds in Japan, China, and Africa, indicating migration-associated transmission of an emerging panzootic clade. We recommend continuing AIV surveillance in the duck production system and preventing the intermingling of domestic ducks with migratory waterfowl in wetlands.
Collapse
Affiliation(s)
- Ariful Islam
- EcoHealth Alliance, New York, NY, United States
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia
| | - Mohammad Enayet Hossain
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Emama Amin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Shariful Islam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Monjurul Islam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Md Abu Sayeed
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Md Mehedi Hasan
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Mojnu Miah
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, University of Queensland, Brisbane, QLD, Australia
| | - Mohammed Ziaur Rahman
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| |
Collapse
|
6
|
Abolnik C, Phiri T, Peyrot B, de Beer R, Snyman A, Roberts D, Ludynia K, Jordaan F, Maartens M, Ismail Z, Strydom C, van der Zel G, Anthony J, Daniell N, De Boni L, Grewar J, Olivier A, Roberts L. The Molecular Epidemiology of Clade 2.3.4.4B H5N1 High Pathogenicity Avian Influenza in Southern Africa, 2021-2022. Viruses 2023; 15:1383. [PMID: 37376682 DOI: 10.3390/v15061383] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
In southern Africa, clade 2.3.4.4B H5N1 high pathogenicity avian influenza (HPAI) was first detected in South African (SA) poultry in April 2021, followed by outbreaks in poultry or wild birds in Lesotho and Botswana. In this study, the complete or partial genomes of 117 viruses from the SA outbreaks in 2021-2022 were analyzed to decipher the sub-regional spread of the disease. Our analysis showed that seven H5N1 sub-genotypes were associated with the initial outbreaks, but by late 2022 only two sub-genotypes still circulated. Furthermore, SA poultry was not the source of Lesotho's outbreaks, and the latter was most likely an introduction from wild birds. Similarly, SA and Botswana's outbreaks in 2021 were unrelated, but viruses of Botswana's unique sub-genotype were introduced into SA later in 2022 causing an outbreak in ostriches. At least 83% of SA's commercial poultry cases in 2021-2022 were point introductions from wild birds. Like H5N8 HPAI in 2017-2018, a coastal seabird-restricted sub-lineage of H5N1 viruses emerged in the Western Cape province in 2021 and spread to Namibia, causing mortalities in Cape Cormorants. In SA ~24,000 of this endangered species died, and the loss of >300 endangered African penguins further threatens biodiversity.
Collapse
Affiliation(s)
- Celia Abolnik
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| | - Thandeka Phiri
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| | - Belinda Peyrot
- Provincial Veterinary Laboratory, Western Cape Department of Agriculture, Stellenbosch 7600, South Africa
| | - Renee de Beer
- Provincial Veterinary Laboratory, Western Cape Department of Agriculture, Stellenbosch 7600, South Africa
| | - Albert Snyman
- Southern African Foundation for the Conservation of Coastal Birds (SANCCOB), Cape Town 7441, South Africa
| | - David Roberts
- Southern African Foundation for the Conservation of Coastal Birds (SANCCOB), Cape Town 7441, South Africa
| | - Katrin Ludynia
- Southern African Foundation for the Conservation of Coastal Birds (SANCCOB), Cape Town 7441, South Africa
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville 7535, South Africa
| | | | | | - Zehaad Ismail
- SMT Veterinary Laboratory, Irene, Pretoria 0178, South Africa
| | - Christine Strydom
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- SMT Veterinary Laboratory, Irene, Pretoria 0178, South Africa
| | - Gerbrand van der Zel
- Gauteng Department of Agriculture and Rural Development, Johannesburg 2000, South Africa
| | - Jade Anthony
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| | - Nadine Daniell
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
| | - Liesl De Boni
- Gauteng Department of Agriculture and Rural Development, Johannesburg 2000, South Africa
| | - John Grewar
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- jDATA (Pty) Ltd., Sandbaai 7200, South Africa
| | - Adriaan Olivier
- South African Ostrich Business Chamber, Oudtshoorn 6620, South Africa
| | - Laura Roberts
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa
- Department of Agriculture, Western Cape Government, Elsenburg 7607, South Africa
| |
Collapse
|