1
|
Samani EK, Hasan SMN, Waas M, Keszei AFA, Xu X, Heydari M, Hill ME, McLaurin J, Kislinger T, Mazhab-Jafari MT. Unveiling the structural proteome of an Alzheimer's disease rat brain model. Structure 2025; 33:51-61.e3. [PMID: 39615488 DOI: 10.1016/j.str.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 12/08/2024]
Abstract
Studying native protein structures at near-atomic resolution in a crowded environment presents challenges. Consequently, understanding the structural intricacies of proteins within pathologically affected tissues often relies on mass spectrometry and proteomic analysis. Here, we utilized cryoelectron microscopy (cryo-EM) and the Build and Retrieve (BaR) method to investigate protein complexes' structural characteristics such as post-translational modification, active site occupancy, and arrested conformational state in Alzheimer's disease (AD) using brain lysate from a rat model (TgF344-AD). Our findings reveal novel insights into the architecture of these complexes, corroborated through mass spectrometry analysis. Interestingly, it has been shown that the dysfunction of these protein complexes extends beyond AD, implicating them in cancer, as well as other neurodegenerative disorders such as Parkinson's disease, Huntington's disease, and schizophrenia. By elucidating these structural details, our work not only enhances our understanding of disease pathology but also suggests new avenues for future approaches in therapeutic intervention.
Collapse
Affiliation(s)
- Elnaz Khalili Samani
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - S M Naimul Hasan
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Matthew Waas
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Alexander F A Keszei
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Xiaoxiao Xu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mahtab Heydari
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Mary Elizabeth Hill
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - JoAnne McLaurin
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Mohammad T Mazhab-Jafari
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Park IK, Choi YS, Jo SY. Development of quantitative detection methods for four Alzheimer's disease specific biomarker panels using electrochemical immunosensors based on enzyme immunoassay. ANAL SCI 2024; 40:1809-1821. [PMID: 38884905 DOI: 10.1007/s44211-024-00614-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024]
Abstract
Accurate and timely diagnosis of Alzheimer's disease (AD) is necessary to maximize the effectiveness of treatment and using biomarkers for diagnosis is attracting attention as a minimally invasive method with few side effects. Electrochemical immunosensor (EI) is a method that is in the spotlight in the medical and bioanalytical fields due to its portability and field usability. Here, we quantified four AD specific biomarkers using EIs based on enzyme immunoassay. We selected and developed quantitative methods for the biomarkers using screen-printed gold electrodes. For three biomarkers, quantification was performed using competition immunoassays in which antigen-antibody premix mixtures were applied to antigen-immobilized electrodes and the limit of detection (LOD) values were secured, 1.20 ng/ml, 1.30 ng/ml, and 1.74 ng/ml, respectively. For the other, a sandwich immunoassay using antibody pair was selected for quantification and LOD was also achieved as 0.077 ng/ml. All four biomarkers in buffer samples were successfully quantified and reliable R2 values were obtained, and reliable calibration curves were secured for three biomarkers in spiked human serum samples. The immunosensors developed and will be optimized are expected to be used in various fields, including detection of biomarkers for not only AD but also related diseases.
Collapse
Affiliation(s)
- Il Kyu Park
- JHK Medical Science Inc., Yuseong-gu, Daejeon, 34013, Republic of Korea
| | - Young Sun Choi
- JHK Medical Science Inc., Yuseong-gu, Daejeon, 34013, Republic of Korea
| | - Seo Yun Jo
- JHK Medical Science Inc., Yuseong-gu, Daejeon, 34013, Republic of Korea.
| |
Collapse
|
3
|
Sultana R, Butterfield DA. Protein Oxidation in Aging and Alzheimer's Disease Brain. Antioxidants (Basel) 2024; 13:574. [PMID: 38790679 PMCID: PMC11117785 DOI: 10.3390/antiox13050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Proteins are essential molecules that play crucial roles in maintaining cellular homeostasis and carrying out biological functions such as catalyzing biochemical reactions, structural proteins, immune response, etc. However, proteins also are highly susceptible to damage by reactive oxygen species (ROS) and reactive nitrogen species (RNS). In this review, we summarize the role of protein oxidation in normal aging and Alzheimer's disease (AD). The major emphasis of this review article is on the carbonylation and nitration of proteins in AD and mild cognitive impairment (MCI). The oxidatively modified proteins showed a strong correlation with the reported changes in brain structure, carbohydrate metabolism, synaptic transmission, cellular energetics, etc., of both MCI and AD brains compared to the controls. Some proteins were found to be common targets of oxidation and were observed during the early stages of AD, suggesting that those changes might be critical in the onset of symptoms and/or formation of the pathological hallmarks of AD. Further studies are required to fully elucidate the role of protein oxidation and nitration in the progression and pathogenesis of AD.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080, USA;
| | - D. Allan Butterfield
- Department of Chemistry, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
4
|
Funakoshi M, Araki T. Mechanism of initiation and regulation of axonal degeneration with special reference to NMNATs and Sarm1. Neurosci Res 2023; 197:3-8. [PMID: 34767875 DOI: 10.1016/j.neures.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Axonal degeneration is observed in a variety of contexts in both the central and peripheral nervous systems. Pathological signaling to regulate the progression of axonal degeneration has long been studied using Wallerian degeneration, the prototypical axonal degradation observed after injury, as a representative model. Understanding metabolism of nicotinamide adenine dinucleotide (NAD+) and the functional regulation of Sarm1 has generated great progress in this field, but there are a number of remaining questions. Here, in this short review, we describe our current understanding of the axonal degeneration mechanism, with special reference to the biology related to wlds mice and Sarm1. Furthermore, variations of axonal degeneration initiation are discussed in order to address the remaining questions needed for mechanistic clarification.
Collapse
Affiliation(s)
- Masabumi Funakoshi
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
5
|
Frederiksen SD, Wicki-Stordeur LE, Swayne LA. Overlap in synaptic neurological condition susceptibility pathways and the neural pannexin 1 interactome revealed by bioinformatics analyses. Channels (Austin) 2023; 17:2253102. [PMID: 37807670 PMCID: PMC10563626 DOI: 10.1080/19336950.2023.2253102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Many neurological conditions exhibit synaptic impairments, suggesting mechanistic convergence. Additionally, the pannexin 1 (PANX1) channel and signaling scaffold is linked to several of these neurological conditions and is an emerging regulator of synaptic development and plasticity; however, its synaptic pathogenic contributions are relatively unexplored. To this end, we explored connections between synaptic neurodevelopmental disorder and neurodegenerative disease susceptibility genes discovered by genome-wide association studies (GWASs), and the neural PANX1 interactome (483 proteins) identified from mouse Neuro2a (N2a) cells. To identify shared susceptibility genes, we compared synaptic suggestive GWAS candidate genes amongst autism spectrum disorders, schizophrenia, Parkinson's disease, and Alzheimer's disease. To further probe PANX1 signaling pathways at the synapse, we used bioinformatics tools to identify PANX1 interactome signaling pathways and protein-protein interaction clusters. To shed light on synaptic disease mechanisms potentially linking PANX1 and these four neurological conditions, we performed additional cross-analyses between gene ontologies enriched for the PANX1 synaptic and disease-susceptibility gene sets. Finally, to explore the regional specificity of synaptic PANX1-neurological condition connections, we identified brain region-specific elevations of synaptic PANX1 interactome and GWAS candidate gene set transcripts. Our results confirm considerable overlap in risk genes for autism spectrum disorders and schizophrenia and identify potential commonalities in genetic susceptibility for neurodevelopmental disorders and neurodegenerative diseases. Our findings also pinpointed novel putative PANX1 links to synaptic disease-associated pathways, such as regulation of vesicular trafficking and proteostasis, warranting further validation.
Collapse
Affiliation(s)
| | | | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
6
|
Eremin DV, Kondaurova EM, Rodnyy AY, Molobekova CA, Kudlay DA, Naumenko VS. Serotonin Receptors as a Potential Target in the Treatment of Alzheimer's Disease. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2023-2042. [PMID: 38462447 DOI: 10.1134/s0006297923120064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 03/12/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide that has an increasing impact on aging societies. Besides its critical role in the control of various physiological functions and behavior, brain serotonin (5-HT) system is involved in the regulation of migration, proliferation, differentiation, maturation, and programmed death of neurons. At the same time, a growing body of evidence indicates the involvement of 5-HT neurotransmission in the formation of insoluble aggregates of β-amyloid and tau protein, the main histopathological signs of AD. The review describes the role of various 5-HT receptors and intracellular signaling cascades induced by them in the pathological processes leading to the development of AD, first of all, in protein aggregation. Changes in the functioning of certain types of 5-HT receptors or associated intracellular signaling mediators prevent accumulation of β-amyloid plaques and tau protein neurofibrillary tangles. Based on the experimental data, it can be suggested that the use of 5-HT receptors as new drug targets will not only improve cognitive performance in AD, but will be also important in treating the causes of AD-related dementia.
Collapse
Affiliation(s)
- Dmitrii V Eremin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Elena M Kondaurova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Aleksander Ya Rodnyy
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Camilla A Molobekova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Dmitrii A Kudlay
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Vladimir S Naumenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
7
|
Zheng X, Lin Y, Huang L, Lin X. Effect of lidocaine on cognitively impaired rats: Anti-inflammatory and antioxidant mechanisms in combination with CRMP2 antiphosphorylation. Immun Inflamm Dis 2023; 11:e1040. [PMID: 37904712 PMCID: PMC10566448 DOI: 10.1002/iid3.1040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 11/01/2023] Open
Abstract
OBJECTIVE Studies have shown that lidocaine has antioxidative stress, anti-inflammatory, and nerve-protective effects. The current study investigated the effects of lidocaine on cognitive function in rats with cognitive dysfunction. METHODS A total of 48 rats were randomly assigned to four groups of 12 rats each: control group; L (lidocaine) + D (d-galactose) group, d-galactose group (D group); and D + L group. We assessed cognitive function using a Morris water maze (MWM) and pathologic changes of hippocampal sections. An enzyme-linked immunosorbent assay (ELIZA) was used to detect serum malondialdehyde (MDA) and superoxide dismutase (SOD) levels in rats, and protein immunoblotting (western blot) was used to detect brain tissue proteins (collapsing response mediator protein-2 [CRMP2], phosphorylated-collapsing response mediator protein-2 [P-CRMP2], and β-amyloid protein [Aβ]). RESULTS The MWM showed that the d-gal group (284.09 ± 20.46, 5.20 ± 0.793) performed worse than the L + D (265.37 ± 22.34, 4.170 ± 0.577; p = .000) and D + L groups (254.72 ± 27.87, 3.750; p = .000) in escape latency and number of platform crossings, respectively. The L + D group (44.94 ± 2.92 pg/mL, 6.22 ± 0.50 pg/mL, and 460.02 ± 8.26 nmol/mL) and D + L group (46.88 ± 2.63 pg/mL, 5.90 ± 0.38 pg/mL, and 465.6 ± 16.07 nmol/mL) had significantly lower serum inflammatory levels of interleukin-6, tumor necrosis factor-α, and MDA than the d-gal group (57.79 ± 3.96 pg/mL, 11.25 ± 1.70 pg/mL, and 564.9 ± 15.90 nmol/mL), respectively. The L + D group (3.17 ± 0.41 μg/mL) and D + L group (3.08 ± 0.09 μg/mL) had significantly higher serum inflammatory levels of SOD than the d-gal group (2.20 ± 0.13 μg/mL) (all p = .000). The levels of CRMP2, P-CRMP2, and Aβ in the brain tissue homogenates of the L + D group (0.87 ± 0.04, 0.57 ± 0.0, and 0.16 ± 0.02) and the D + L group (0.82 ± 0.05, 0.58 ± 0.09, and 0.15 ± 0.02) were significantly different than the d-gal group (0.67 ± 0.03, 0.96 ± 0.040, and 0.29 ± 0.05). CONCLUSIONS Lidocaine was shown to reduce cognitive impairment in rats with cognitive dysfunction through anti-inflammatory and antioxidative stress mechanisms in combination with CRMP2 antiphosphorylation.
Collapse
Affiliation(s)
- Xiaohong Zheng
- Department of Anesthesiology, First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Yuerong Lin
- Department of Anesthesiology, First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Linshen Huang
- Department of Anesthesiology, First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Xianzhong Lin
- Department of Anesthesiology, First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| |
Collapse
|
8
|
Shen L, Yang A, Chen X, Xiao S, Liu X, Lin J, Zhao Y, Zhang K, Li C, Ke J, Zhang H, Khan NU. Proteomic Profiling of Cerebrum Mitochondria, Myelin Sheath, and Synaptosome Revealed Mitochondrial Damage and Synaptic Impairments in Association with 3 × Tg-AD Mice Model. Cell Mol Neurobiol 2022; 42:1745-1763. [PMID: 33560469 PMCID: PMC11421756 DOI: 10.1007/s10571-021-01052-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/29/2021] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is the most common age-associated dementia with complex pathological hallmarks. Mitochondrion, synaptosome, and myelin sheath appear to be vulnerable and play a key role in the pathogenesis of AD. To clarify the early mechanism associated with AD, followed by subcellular components separation, we performed iTRAQ (isobaric tags for relative and absolute quantification)-based proteomics analysis to simultaneously investigate the differentially expressed proteins (DEPs) within the mitochondria, synaptosome, and myelin sheath in the cerebrum of the 6-month-old triple transgenic AD (3 × Tg-AD) and 6-month-old wild-type (WT) mice. A large number of DEPs between the AD and WT mice were identified. Most of them are related to mitochondria and synaptic dysfunction and cytoskeletal protein change. Differential expressions of Lrpprc, Nefl, and Sirpa were verified by Western blot analysis. The results suggest that decreased energy metabolism, impaired amino acid metabolism and neurotransmitter synthesis, increase compensatory fatty acid metabolism, up-regulated cytoskeletal protein expression, and oxidative stress are the early events of AD. Among these, mitochondrial damage, synaptic dysfunction, decreased energy metabolism, and abnormal amino acid metabolism are the most significant events. The results indicate that it is feasible to separate and simultaneously perform proteomics analysis on the three subcellular components.
Collapse
Affiliation(s)
- Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Aochu Yang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xinqian Chen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shifeng Xiao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Bay Laboratory, Shenzhen, 518055, P.R. China
| | - Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Kaoyuan Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Cuihua Li
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Junyan Ke
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, P. R. China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, P. R. China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen, 518060, P. R. China
| |
Collapse
|
9
|
Yazawa A, Hensley K, Ohshima T. Effects of Lanthionine Ketimine-5-Ethyl Ester on the α-Synucleinopathy Mouse Model. Neurochem Res 2022; 47:2373-2382. [PMID: 35589915 DOI: 10.1007/s11064-022-03626-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
Potentially druggable mechanisms underlying synaptic deficits seen in Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are under intense interrogations. In addition to defective synaptic vesicle trafficking, cytoskeletal disruption, autophagic perturbation, and neuroinflammation, hyperphosphorylation of microtubule-associated protein collapsin response mediator protein 2 (CRMP2, also known as DPYSL2) is newly determined to correlate with synaptic deficits in human DLB. The small molecule experimental therapeutic, lanthionine ketimine-5-ethyl ester (LKE), appears to interact with CRMP2 in a host of neurodegenerative mouse models, normalizing its phosphorylation level while promoting healthful autophagy in cell culture models and suppressing the proinflammatory phenotype of activated microglia. Accordingly, this study examined the effect of LKE on α-synuclein A53T transgenic (Tg) mice which were employed as a DLB model. We found that chronic administration of LKE to A53T mice suppressed (1) the accumulation of LBs, (2) neuroinflammatory activation of microglia, (3) impairment of contextual fear memory, and (4) CRMP2 phosphorylation at Thr509 in A53T Tg mice. These results suggest that CRMP2 phosphorylation by GSK3β in the hippocampus is related to pathology and memory impairment in DLB, and LKE may have clinical implications in the treatment of α-synucleinopathy.
Collapse
Affiliation(s)
- Arina Yazawa
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kenneth Hensley
- Department of Biochemistry, Molecular and Cell Science, Arkansas College of Osteopathic Medicine (ARCOM), Fort Smith, AR, 72916, USA
| | - Toshio Ohshima
- Department of Life Science and Medical Bioscience, Waseda University, Shinjuku-ku, Tokyo, 162-8480, Japan. .,Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
10
|
Füzesi MV, Muti IH, Berker Y, Li W, Sun J, Habbel P, Nowak J, Xie Z, Cheng LL, Zhang Y. High Resolution Magic Angle Spinning Proton NMR Study of Alzheimer's Disease with Mouse Models. Metabolites 2022; 12:253. [PMID: 35323696 PMCID: PMC8952313 DOI: 10.3390/metabo12030253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a crippling condition that affects millions of elderly adults each year, yet there remains a serious need for improved methods of diagnosis. Metabolomic analysis has been proposed as a potential methodology to better investigate and understand the progression of this disease; however, studies of human brain tissue metabolomics are challenging, due to sample limitations and ethical considerations. Comprehensive comparisons of imaging measurements in animal models to identify similarities and differences between aging- and AD-associated metabolic changes should thus be tested and validated for future human non-invasive studies. In this paper, we present the results of our highresolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) studies of AD and wild-type (WT) mouse models, based on animal age, brain regions, including cortex vs. hippocampus, and disease status. Our findings suggest the ability of HRMAS NMR to differentiate between AD and WT mice using brain metabolomics, which potentially can be implemented in in vivo evaluations.
Collapse
Affiliation(s)
- Mark V. Füzesi
- Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115, USA; (M.V.F.); (I.H.M.); (J.S.)
| | - Isabella H. Muti
- Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115, USA; (M.V.F.); (I.H.M.); (J.S.)
| | - Yannick Berker
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany;
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Wei Li
- Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115, USA; (W.L.); (Z.X.)
| | - Joseph Sun
- Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115, USA; (M.V.F.); (I.H.M.); (J.S.)
| | - Piet Habbel
- Department of Medical Oncology, Haematology and Tumour Immunology, Charité—University Medicine Berlin, 10117 Berlin, Germany;
| | - Johannes Nowak
- Radiology Gotha, SRH Poliklinik Gera, 99867 Gotha, Germany;
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115, USA; (W.L.); (Z.X.)
| | - Leo L. Cheng
- Departments of Radiology and Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Yiying Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115, USA; (W.L.); (Z.X.)
| |
Collapse
|
11
|
Abyadeh M, Gupta V, Gupta V, Chitranshi N, Wu Y, Amirkhani A, Meyfour A, Sheriff S, Shen T, Dhiman K, Ghasem HS, Paul AH, Stuart LG, Mirzaei M. Comparative Analysis of Aducanumab, Zagotenemab and Pioglitazone as Targeted Treatment Strategies for Alzheimer's Disease. Aging Dis 2021; 12:1964-1976. [PMID: 34881080 PMCID: PMC8612603 DOI: 10.14336/ad.2021.0719] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia that has remained a major medical, sociocultural and economical challenge globally. Previously developed treatments like anticholinesterase inhibitors (AChEIs) and N-methyl-D-aspartate receptor (NMDAR) antagonists only provide short-term symptomatic improvement and do not prevent progression. Repeated setbacks and failures over the past 25 years in AD clinical trials have hindered efforts to develop effective AD treatments. Fortunately, Aducanumab, a specific anti-amyloid β antibody, has shown promising clinical results and was recently approved by the Food and Drug Administration (FDA) through an accelerated approval pathway. This has raised hopes for AD patients; however post-approval trials are necessary to estimate the true scope of its clinical benefits. We have reviewed several AD clinical studies and summarized the experience to date with Aducanumab and two other potential AD drugs including Zagotenemab (an anti-tau antibody) and Pioglitazone (nuclear Peroxisome-Proliferator Activated Receptor γ (PPARγ) agonist). These have shown mixed results so far and the next few years will be critical to elucidate and interpret their broad long-term protective effects. A concerted effort is required to understand and strengthen the translation of pre-clinical findings from these drugs to routine clinical practice.
Collapse
Affiliation(s)
- Morteza Abyadeh
- 1Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vivek Gupta
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Veer Gupta
- 3School of Medicine, Deakin University, VIC, Australia
| | - Nitin Chitranshi
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Yunqi Wu
- 4Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW, Australia
| | - Ardeshir Amirkhani
- 4Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW, Australia
| | - Anna Meyfour
- 5Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samran Sheriff
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Ting Shen
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Kunal Dhiman
- 3School of Medicine, Deakin University, VIC, Australia
| | - H Salekdeh Ghasem
- 6Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - A Haynes Paul
- 6Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - L Graham Stuart
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Mehdi Mirzaei
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| |
Collapse
|
12
|
O'Shea SA, Hickman RA, Cortes E, Vonsattel JP, Fahn S, Okur V, Alcalay RN, Chung WK. Neuropathological Findings in a Case of Parkinsonism and Developmental Delay Associated with a Monoallelic Variant in PLXNA1. Mov Disord 2021; 36:2681-2687. [PMID: 34415653 DOI: 10.1002/mds.28756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/02/2021] [Accepted: 07/19/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND PLXNA1 encodes for Plexin-A, a transmembrane protein expressed in the developing nervous system. Mutations in this gene have been associated with developmental delay but have not been previously associated with the development of parkinsonism. OBJECTIVES To describe the case of a 38-year-old patient with developmental delay who developed parkinsonism later in life. METHODS Post-mortem exome sequencing was performed with confirmation by Sanger sequencing. Brain autopsy was also performed. RESULTS Post-mortem exome sequencing on the proband identified a heterozygous predicted nonsense PLXNA1 variant (c.G3361T:p.Glu1121Ter). Pathology demonstrated arhinencephaly with brainstem heterotopia, diffuse Lewy body disease, and frontotemporal lobar dementia-tau. CONCLUSIONS This case of a patient with developmental delay and parkinsonism with PLXNA1 mutation highlights a need for assessing long-term outcomes of individuals with neurodevelopmental disorders, as well as the need for genetic testing in adults. It also suggests that the link between PLXNA1 and α-synuclein should be explored in the future. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sarah A O'Shea
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA.,Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Richard A Hickman
- Department of Pathology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Etty Cortes
- Department of Pathology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.,Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jean Paul Vonsattel
- Department of Pathology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Stanley Fahn
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Volkan Okur
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
13
|
Proteomic Analysis Unveils Expressional Changes in Cytoskeleton- and Synaptic Plasticity-Associated Proteins in Rat Brain Six Months after Withdrawal from Morphine. Life (Basel) 2021; 11:life11070683. [PMID: 34357055 PMCID: PMC8304287 DOI: 10.3390/life11070683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022] Open
Abstract
Drug withdrawal is associated with abstinence symptoms including deficits in cognitive functions that may persist even after prolonged discontinuation of drug intake. Cognitive deficits are, at least partially, caused by alterations in synaptic plasticity but the precise molecular mechanisms have not yet been fully identified. In the present study, changes in proteomic and phosphoproteomic profiles of selected brain regions (cortex, hippocampus, striatum, and cerebellum) from rats abstaining for six months after cessation of chronic treatment with morphine were determined by label-free quantitative (LFQ) proteomic analysis. Interestingly, prolonged morphine withdrawal was found to be associated especially with alterations in protein phosphorylation and to a lesser extent in protein expression. Gene ontology (GO) term analysis revealed enrichment in biological processes related to synaptic plasticity, cytoskeleton organization, and GTPase activity. More specifically, significant changes were observed in proteins localized in synaptic vesicles (e.g., synapsin-1, SV2a, Rab3a), in the active zone of the presynaptic nerve terminal (e.g., Bassoon, Piccolo, Rims1), and in the postsynaptic density (e.g., cadherin 13, catenins, Arhgap35, Shank3, Arhgef7). Other differentially phosphorylated proteins were associated with microtubule dynamics (microtubule-associated proteins, Tppp, collapsin response mediator proteins) and the actin–spectrin network (e.g., spectrins, adducins, band 4.1-like protein 1). Taken together, a six-month morphine withdrawal was manifested by significant alterations in the phosphorylation of synaptic proteins. The altered phosphorylation patterns modulating the function of synaptic proteins may contribute to long-term neuroadaptations induced by drug use and withdrawal.
Collapse
|
14
|
Cuveillier C, Boulan B, Ravanello C, Denarier E, Deloulme JC, Gory-Fauré S, Delphin C, Bosc C, Arnal I, Andrieux A. Beyond Neuronal Microtubule Stabilization: MAP6 and CRMPS, Two Converging Stories. Front Mol Neurosci 2021; 14:665693. [PMID: 34025352 PMCID: PMC8131560 DOI: 10.3389/fnmol.2021.665693] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
The development and function of the central nervous system rely on the microtubule (MT) and actin cytoskeletons and their respective effectors. Although the structural role of the cytoskeleton has long been acknowledged in neuronal morphology and activity, it was recently recognized to play the role of a signaling platform. Following this recognition, research into Microtubule Associated Proteins (MAPs) diversified. Indeed, historically, structural MAPs—including MAP1B, MAP2, Tau, and MAP6 (also known as STOP);—were identified and described as MT-binding and -stabilizing proteins. Extensive data obtained over the last 20 years indicated that these structural MAPs could also contribute to a variety of other molecular roles. Among multi-role MAPs, MAP6 provides a striking example illustrating the diverse molecular and cellular properties of MAPs and showing how their functional versatility contributes to the central nervous system. In this review, in addition to MAP6’s effect on microtubules, we describe its impact on the actin cytoskeleton, on neuroreceptor homeostasis, and its involvement in signaling pathways governing neuron development and maturation. We also discuss its roles in synaptic plasticity, brain connectivity, and cognitive abilities, as well as the potential relationships between the integrated brain functions of MAP6 and its molecular activities. In parallel, the Collapsin Response Mediator Proteins (CRMPs) are presented as examples of how other proteins, not initially identified as MAPs, fall into the broader MAP family. These proteins bind MTs as well as exhibiting molecular and cellular properties very similar to MAP6. Finally, we briefly summarize the multiple similarities between other classical structural MAPs and MAP6 or CRMPs.In summary, this review revisits the molecular properties and the cellular and neuronal roles of the classical MAPs, broadening our definition of what constitutes a MAP.
Collapse
|
15
|
Jangampalli Adi P, Reddy PH. Phosphorylated tau targeted small-molecule PROTACs for the treatment of Alzheimer's disease and tauopathies. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166162. [PMID: 33940164 DOI: 10.1016/j.bbadis.2021.166162] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Tau is a microtubule-stabilizing protein that plays an important role in the formation of axonal microtubules in neurons. Phosphorylated tau (p-Tau) has received great attention in the field of Alzheimer's disease (AD) as a potential therapeutic target due to its involvement with synaptic damage and neuronal dysfunction. Mounting evidence suggests that amyloid beta (Aβ)-targeted clinical trials continuously failed; therefore, it is important to consider alternative therapeutic strategies such as p-tau-PROTACs targeted small molecules for AD and other tauopathies. The present article describes the characteristics of tau biology, structure, and function in both healthy and pathological states in AD. It also explains data from studies that have identified the involvement of p-tau in neuronal damage and synaptic and cognitive functions in AD. Current article also covers several aspects, including small molecule inhibitors, and the development of p-tau-PROTACs targeted drug molecules to treat patients with AD and other tauopathies.
Collapse
Affiliation(s)
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
16
|
Downregulation of hippocampal SIRT6 activates AKT/CRMP2 signaling and ameliorates chronic stress-induced depression-like behavior in mice. Acta Pharmacol Sin 2020; 41:1557-1567. [PMID: 32265492 DOI: 10.1038/s41401-020-0387-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
Sirtuin 6 (SIRT6) has been reported to play a key role in cognitive function and mood regulation, yet its role in mood disorders is not completely understood. Here, we confirmed that knockdown of hippocampal SIRT6 alleviated depression-like behaviors induced by chronic unpredictable stress (CUS) in mice. Our in vitro data showed that SIRT6 negatively regulated protein kinase B (AKT) signaling by deacetylating histone 3 at Lys9 and Lys56. Knockdown of SIRT6 significantly increased AKT phosphorylation activity, while decreased collapsin response mediator protein 2 (CRMP2) phosphorylation activity. Furthermore, pharmacologic inhibition of SIRT6 by ferulic acid (FA) (40 or 80 mg· kg-1 per day, i.g.) could activate AKT/CRMP2 pathway in vitro, which has been proved to exert an antidepressant-like effect on CUS-induced depressive models. In conclusion, our study suggested that hippocampal SIRT6 contributes to the performance of depression-like behaviors by suppressing AKT/CRMP2 signaling, and FA ameliorates CUS-induced depression-like behaviors in mice as a potential pharmacologic inhibitor of SIRT6.
Collapse
|
17
|
Synaptic Kalirin-7 and Trio Interactomes Reveal a GEF Protein-Dependent Neuroligin-1 Mechanism of Action. Cell Rep 2020; 29:2944-2952.e5. [PMID: 31801062 PMCID: PMC9012321 DOI: 10.1016/j.celrep.2019.10.115] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/18/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
The RhoGEFs Kalirin-7 and Trio are regulators of synaptic plasticity, and their dysregulation is associated with a range of neurodevelopmental and neurodegenerative disorders. Although studies have implicated both Kalirin and Trio in certain diseases, such as tauopathies, they remarkably differ in their association with other disorders. Using unbiased proteomics, we identified interactomes of Kalirin-7 and Trio to ascertain distinct protein association networks associated with their respective function and revealed groups of proteins that preferentially interact with a particular RhoGEF. In comparison, we find Trio interacts with a range of axon guidance and presynaptic complexes, whereas Kalirin-7 associates with several synaptic adhesion molecules. Specifically, we show Kalirin-7 is an interactor of the cell adhesion molecule neuroligin-1 (NLGN1), and NLGN1-dependent synaptic function is mediated through Kalirin-7 in an interaction-dependent manner. Our data reveal not only the interactomes of two important disease-related proteins, but also provide an intracellular effector of NLGN1 function. Paskus et al. use quantitative proteomics to determine the synaptic interactomes of the disease-associated proteins Kalirin-7 and Trio, identifying Kalirin-7 as an interactor of NLGN1. Investigation of this interaction unveils Kalirin-7 as a primary intracellular effector of NLGN1 gain of function.
Collapse
|
18
|
Khanna R, Moutal A, Perez-Miller S, Chefdeville A, Boinon L, Patek M. Druggability of CRMP2 for Neurodegenerative Diseases. ACS Chem Neurosci 2020; 11:2492-2505. [PMID: 32693579 DOI: 10.1021/acschemneuro.0c00307] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs) are ubiquitously expressed phosphoproteins that coordinate cytoskeletal formation and regulate cellular division, migration, polarity, and synaptic connection. CRMP2, the most studied of the five family members, is best known for its affinity for tubulin heterodimers and function in regulating the microtubule network. Accumulating evidence has also demonstrated a key role for CRMP2 in trafficking of voltage- and ligand-gated ion channels. These functions are tightly regulated by post-translational modifications including phosphorylation and SUMOylation (addition of a small ubiquitin like modifier). Over the past decade, it has become increasingly clear that dysregulated post-translational modifications of CRMP2 contribute to the pathomechanisms of diverse diseases, including cancer, neurodegenerative diseases, chronic pain, and bipolar disorder. Here, we review the discovery, functions, and current putative preclinical and clinical therapeutics targeting CRMP2. These potential therapeutics include CRMP2-based peptides that inhibit protein-protein interactions and small-molecule compounds. Capitalizing on the availability of structural information, we identify druggable pockets on CRMP2 and predict binding modes for five known CRMP2-targeting compounds, setting the stage for optimization and de novo drug discovery targeting this multifunctional protein.
Collapse
Affiliation(s)
- Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- Graduate Interdisciplinary Program in Neuroscience, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, United States
- Regulonix LLC, Tucson, Arizona 85718, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Lisa Boinon
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona 85724, United States
| | - Marcel Patek
- BrightRock Path, LLC, Tucson, Arizona 85704, United States
| |
Collapse
|
19
|
Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Correa Marrero M, Polacco BJ, Melnyk JE, Ulferts S, Kaake RM, Batra J, Richards AL, Stevenson E, Gordon DE, Rojc A, Obernier K, Fabius JM, Soucheray M, Miorin L, Moreno E, Koh C, Tran QD, Hardy A, Robinot R, Vallet T, Nilsson-Payant BE, Hernandez-Armenta C, Dunham A, Weigang S, Knerr J, Modak M, Quintero D, Zhou Y, Dugourd A, Valdeolivas A, Patil T, Li Q, Hüttenhain R, Cakir M, Muralidharan M, Kim M, Jang G, Tutuncuoglu B, Hiatt J, Guo JZ, Xu J, Bouhaddou S, Mathy CJP, Gaulton A, Manners EJ, Félix E, Shi Y, Goff M, Lim JK, McBride T, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, De Wit E, Leach AR, Kortemme T, Shoichet B, Ott M, Saez-Rodriguez J, tenOever BR, Mullins RD, Fischer ER, Kochs G, Grosse R, García-Sastre A, Vignuzzi M, Johnson JR, Shokat KM, Swaney DL, Beltrao P, Krogan NJ. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 2020; 182:685-712.e19. [PMID: 32645325 PMCID: PMC7321036 DOI: 10.1016/j.cell.2020.06.034] [Citation(s) in RCA: 748] [Impact Index Per Article: 149.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies.
Collapse
Affiliation(s)
- Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bjoern Meyer
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Veronica V Rezelj
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Miguel Correa Marrero
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James E Melnyk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Svenja Ulferts
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Robyn M Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jyoti Batra
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alicia L Richards
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erica Stevenson
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David E Gordon
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ajda Rojc
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kirsten Obernier
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cassandra Koh
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Quang Dinh Tran
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Alexandra Hardy
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Rémy Robinot
- Virus & Immunity Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France; Vaccine Research Institute, 94000 Creteil, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | | | - Claudia Hernandez-Armenta
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alistair Dunham
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sebastian Weigang
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany
| | - Julian Knerr
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Maya Modak
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Diego Quintero
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuan Zhou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aurelien Dugourd
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Alberto Valdeolivas
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Trupti Patil
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qiongyu Li
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Merve Cakir
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Monita Muralidharan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Minkyu Kim
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn Jang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beril Tutuncuoglu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph Hiatt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey Z Guo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiewei Xu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sophia Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
| | - Christopher J P Mathy
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna Gaulton
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Emma J Manners
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Eloy Félix
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ying Shi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Marisa Goff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | | | | | | | | | - Emmie De Wit
- NIH/NIAID/Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Andrew R Leach
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Tanja Kortemme
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian Shoichet
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - R Dyche Mullins
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | | | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany
| | - Robert Grosse
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg 79104, Germany.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France.
| | - Jeffery R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Kevan M Shokat
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute.
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Pedro Beltrao
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
20
|
Hou ST. The regulatory and enzymatic functions of CRMPs in neuritogenesis, synaptic plasticity, and gene transcription. Neurochem Int 2020; 139:104795. [PMID: 32652266 DOI: 10.1016/j.neuint.2020.104795] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Collapsin response mediator proteins (CRMPs) are ubiquitously expressed in neurons from worms to humans. A cardinal feature of CRMPs is to mediate growth cone collapse in response to Semaphorin-3A signaling through interactions with cytoskeletal proteins. These are critical regulatory roles that CRMPs play during neuritogenesis and neural network formation. Through post-translational modifications, such as phosphorylation, O-GlcNAcylation, SUMOylation, and proteolytic cleavage, CRMPs participate in synaptic plasticity by modulating NMDA receptors, L- and N-type voltage-gated calcium channels (VGCCs), thus affecting neurotransmitter release. CRMPs also possess histone deacetylase (HDAC) activity, which deacetylates histone H4 during neuronal death. Calcium-dependent proteolytic cleavage of CRMPs results in the truncation of CRMPs, producing a large 54 kD fragment (p54). Translocation of the p54 fragment into the nucleus leads to deacetylation of nuclear histone H4 and de-repression of transcription factor E2F1 expression. Increased expression of E2F1 elevates the expression of genes in cell cycle and death. These new and exciting studies lead to the realization that CRMPs are multifunctional proteins with both regulatory and enzymatic functions. Increasing numbers of studies associate these functions of CRMPs with the development of mental and neurological disorders, such as schizophrenia, Alzheimer's diseases, brain trauma, and stroke. This review focuses on new evidence showing the regulatory and enzymatic functions of CRMPs and highlights recent understandings of CRMPs' roles in neurological diseases.
Collapse
Affiliation(s)
- Sheng-Tao Hou
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province, 518055, PR China; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
21
|
Kuboyama T, Yang X, Tohda C. Natural Medicines and Their Underlying Mechanisms of Prevention and Recovery from Amyloid Β-Induced Axonal Degeneration in Alzheimer's Disease. Int J Mol Sci 2020; 21:E4665. [PMID: 32630004 PMCID: PMC7369795 DOI: 10.3390/ijms21134665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 01/26/2023] Open
Abstract
In Alzheimer's disease (AD), amyloid β (Aβ) induces axonal degeneration, neuronal network disruption, and memory impairment. Although many candidate drugs to reduce Aβ have been clinically investigated, they failed to recover the memory function in AD patients. Reportedly, Aβ deposition occurred before the onset of AD. Once neuronal networks were disrupted by Aβ, they could hardly be recovered. Therefore, we speculated that only removal of Aβ was not enough for AD therapy, and prevention and recovery from neuronal network disruption were also needed. This review describes the challenges related to the condition of axons for AD therapy. We established novel in vitro models of Aβ-induced axonal degeneration. Using these models, we found that several traditional medicines and their constituents prevented or helped recover from Aβ-induced axonal degeneration. These drugs also prevented or helped recover from memory impairment in in vivo models of AD. One of these drugs ameliorated memory decline in AD patients in a clinical study. These results indicate that prevention and recovery from axonal degeneration are possible strategies for AD therapy.
Collapse
Affiliation(s)
- Tomoharu Kuboyama
- Section of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan; (T.K.); (X.Y.)
- Laboratory of Pharmacognosy, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Ximeng Yang
- Section of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan; (T.K.); (X.Y.)
| | - Chihiro Tohda
- Section of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan; (T.K.); (X.Y.)
| |
Collapse
|
22
|
Multiple Herpes Simplex Virus-1 (HSV-1) Reactivations Induce Protein Oxidative Damage in Mouse Brain: Novel Mechanisms for Alzheimer's Disease Progression. Microorganisms 2020; 8:microorganisms8070972. [PMID: 32610629 PMCID: PMC7409037 DOI: 10.3390/microorganisms8070972] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/24/2022] Open
Abstract
Compelling evidence supports the role of oxidative stress in Alzheimer's disease (AD) pathophysiology. Interestingly, Herpes simplex virus-1 (HSV-1), a neurotropic virus that establishes a lifelong latent infection in the trigeminal ganglion followed by periodic reactivations, has been reportedly linked both to AD and to oxidative stress conditions. Herein, we analyzed, through biochemical and redox proteomic approaches, the mouse model of recurrent HSV-1 infection we previously set up, to investigate whether multiple virus reactivations induced oxidative stress in the mouse brain and affected protein function and related intracellular pathways. Following multiple HSV-1 reactivations, we found in mouse brains increased levels of oxidative stress hallmarks, including 4-hydroxynonenal (HNE), and 13 HNE-modified proteins whose levels were found significantly altered in the cortex of HSV-1-infected mice compared to controls. We focused on two proteins previously linked to AD pathogenesis, i.e., glucose-regulated protein 78 (GRP78) and collapsin response-mediated protein 2 (CRMP2), which are involved in the unfolded protein response (UPR) and in microtubule stabilization, respectively. We found that recurrent HSV-1 infection disables GRP78 function and activates the UPR, whereas it prevents CRMP2 function in mouse brains. Overall, these data suggest that repeated HSV-1 reactivation into the brain may contribute to neurodegeneration also through oxidative damage.
Collapse
|
23
|
Nakamura F, Ohshima T, Goshima Y. Collapsin Response Mediator Proteins: Their Biological Functions and Pathophysiology in Neuronal Development and Regeneration. Front Cell Neurosci 2020; 14:188. [PMID: 32655376 PMCID: PMC7325199 DOI: 10.3389/fncel.2020.00188] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs), which consist of five homologous cytosolic proteins, are one of the major phosphoproteins in the developing nervous system. The prominent feature of the CRMP family proteins is a new class of microtubule-associated proteins that play important roles in the whole process of developing the nervous system, such as axon guidance, synapse maturation, cell migration, and even in adult brain function. The CRMP C-terminal region is subjected to posttranslational modifications such as phosphorylation, which, in turn, regulates the interaction between the CRMPs and various kinds of proteins including receptors, ion channels, cytoskeletal proteins, and motor proteins. The gene-knockout of the CRMP family proteins produces different phenotypes, thereby showing distinct roles of all CRMP family proteins. Also, the phenotypic analysis of a non-phosphorylated form of CRMP2-knockin mouse model, and studies of pharmacological responses to CRMP-related drugs suggest that the phosphorylation/dephosphorylation process plays a pivotal role in pathophysiology in neuronal development, regeneration, and neurodegenerative disorders, thus showing CRMPs as promising target molecules for therapeutic intervention.
Collapse
Affiliation(s)
- Fumio Nakamura
- Department of Biochemistry, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
24
|
Mitochondrial Dysfunction: a Potential Therapeutic Target to Treat Alzheimer’s Disease. Mol Neurobiol 2020; 57:3075-3088. [DOI: 10.1007/s12035-020-01945-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/13/2020] [Indexed: 01/10/2023]
|
25
|
Quach TT, Moutal A, Khanna R, Deems NP, Duchemin AM, Barrientos RM. Collapsin Response Mediator Proteins: Novel Targets for Alzheimer's Disease. J Alzheimers Dis 2020; 77:949-960. [PMID: 32804096 PMCID: PMC7579750 DOI: 10.3233/jad-200721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Numerous experimental and postmortem studies have increasingly reported dystrophic axons and dendrites, and alterations of dendritic spine morphology and density in the hippocampus as prominent changes in the early stages of Alzheimer's disease (AD). Furthermore, these alterations tend to correlate well with the progressive cognitive decline observed in AD. For these reasons, and because these neurite structures have a capacity to re-grow, re-establish lost connections, and are critical for learning and memory, there is compelling evidence to suggest that therapeutic interventions aimed at preventing their degradation or promoting their regrowth may hold tremendous promise in preventing the progression of AD. In this regard, collapsin response mediator proteins (CRMPs), a family of phosphoproteins playing a major role in axon guidance and dendritic growth, are especially interesting. The roles these proteins play in neurons and immune cells are reviewed here.
Collapse
Affiliation(s)
- Tam T. Quach
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ, 85724, USA
| | - Nicholas P. Deems
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Anne-Marie Duchemin
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ruth M. Barrientos
- Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Chronic Brain Injury Program, Discovery Themes Initiative, The Ohio State University, Columbus, OH, 43210, USA
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
26
|
Xiang D, Xiao J, Sun S, Fu L, Yao L, Wang G, Liu Z. Differential Regulation of DNA Methylation at the CRMP2 Promoter Region Between the Hippocampus and Prefrontal Cortex in a CUMS Depression Model. Front Psychiatry 2020; 11:141. [PMID: 32256396 PMCID: PMC7093734 DOI: 10.3389/fpsyt.2020.00141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Current evidence supports the idea that neural plasticity is a potential cause of depression. Abundant studies indicate that CRMP2 has important roles in neural plasticity. Moreover, CRMP2 may contribute to the etiology of depression. However, the regulatory mechanisms underlying the role of CRMP2 remain unclear. DNA methylation alteration is generally acknowledged to be involved in the development of depression. The aim of this study was to explore the relationship between the expression and DNA methylation of CRMP2 in the hippocampus and prefrontal cortex of a rat depression model. Chronic unpredictable mild stress (CUMS) was used to establish a rat depression model, and body weight and behavioral tests were used to evaluate the effects of stress. Real-time PCR and Western blotting were used to test CRMP2 mRNA and protein expression, respectively, in the hippocampus and prefrontal cortex of rats. DNA methylation levels of the CRMP2 promoter were analyzed by bisulfite sequencing PCR (BSP). CUMS caused depressive-like behavior in rats, as evidenced by: decreased body weight and sucrose preference rate; decreases in the total distance traveled, rearing frequency, velocity, and duration in the center in the open field test (OFT); and prolonged immobility in the forced swimming test (FST). CRMP2 mRNA and protein expression in the hippocampus and prefrontal cortex were significantly decreased in the CUMS group compared with the control group. The levels of CRMP2 promoter DNA methylation in the hippocampus of the CUMS group were significantly higher than those of the control group, while these changes were not observed in the prefrontal cortex of CUMS rats. Our data provide evidence that altered expression of CRMP2 in the hippocampus and prefrontal cortex is associated with the pathogenesis of depression. Moreover, the results also suggest regional differences in the regulation of DNA methylation in the CRMP2 promoter between the hippocampus and prefrontal cortex during the development of depression.
Collapse
Affiliation(s)
- Dan Xiang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiawei Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siqi Sun
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linyan Fu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lihua Yao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital, Wuhan University, Wuhan, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Institute of Neuropsychiatry, Renmin Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
27
|
Lin FY, Lin YF, Lin YS, Yang CM, Wang CC, Hsiao YH. Relative D3 vitamin deficiency and consequent cognitive impairment in an animal model of Alzheimer's disease: Potential involvement of collapsin response mediator protein-2. Neuropharmacology 2019; 164:107910. [PMID: 31838171 DOI: 10.1016/j.neuropharm.2019.107910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) starts with memory impairments that can be observed before the appearance of significant neuropathology; thus, identifying mechanisms to stop AD progression is an urgent priority. Epidemiological and clinical data show that the consequences of vitamin D deficiency are relevant to disease risk and can be observed in the progression of many diseases, especially AD, whereas higher serum levels of vitamin D are associated with better cognitive test performance. However, the potential therapeutic strategy and underlying mechanisms of vitamin D supplementation against AD still need to be further investigated. In the present study, we found that 3xTg-AD mice with vitamin D supplementation exhibited an increase in serum vitamin D concentrations and improved cognition. We measured serum vitamin D binding protein (VDBP) concentrations and found that serum VDBP levels were increased in 3xTg-AD mice compared to B6129S control mice, but there was no significant difference between control- and vitamin D-treated 3xTg-AD groups. The vitamin D-mediated memory improvement may be accompanied by the suppression of increased hippocampal collapsin response mediator protein-2 (CRMP2) phosphorylation, and the restoration of CRMP2 phosphorylation by okadaic acid (OA) could abolish the beneficial effects of vitamin D. In addition, we found that CRMP2 was associated with NR2B and PSD-95 in 3xTg-AD mice with vitamin D supplementation. This CRMP2-NR2B interaction could be disrupted by a TAT-CBD3 peptide or OA, leading to attenuated memory protection in vitamin D-treated 3xTg-AD mice. Therefore, CRMP2 may be involved in vitamin D-mediated memory improvement in AD.
Collapse
Affiliation(s)
- Fang-Yu Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Fen Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Shuen Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Ming Yang
- Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan; Clinical Competency Center, Chi Mei Medical Center, Tainan, Taiwan
| | - Che-Chuan Wang
- Department of Neurosurgery, Chi-Mei Medical Center, Tainan, Taiwan; Center for General Education, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Ya-Hsin Hsiao
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
28
|
Zhang Z, Zhang J, Li J, Zhang J, Chen L, Li Y, Guo G. Ketamine Regulates Phosphorylation of CRMP2 To Mediate Dendritic Spine Plasticity. J Mol Neurosci 2019; 70:353-364. [PMID: 31808033 DOI: 10.1007/s12031-019-01419-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/10/2019] [Indexed: 01/10/2023]
Abstract
Ketamine is widely used in infants and young children for anesthesia, and subanesthetic doses of ketamine make neurons form new protrusions and promote synapse formation. However, the precise pathological mechanisms remain to be elucidated. In this study, we demonstrated that ketamine administration significantly increased dendritic spine density and maturity in rat cortical neurons in vivo and in vitro. Western blot analysis showed that CRMP2 protein expression was significantly increased in cerebral cortex of ketamine group, and phosphorylation levels of CRMP at Thr514 and Ser522 were significantly reduced. Furthermore, overexpression of CRMP2 promoted the growth of cortical neuron processes and dendritic spines. Although the dendritic field was more complex after adding ketamine and the density of dendritic spines increased, there was no statistical difference and no obvious superposition effect was observed. Moreover, both Ser522 mutant construction of CRMP2, GFP-CRMP2-522D, and mcherry-CDK5 showed similar inhibitory effects on neurite outgrowth, which could be rescued by ketamine. The frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) were significantly inhibited when GFP-CRMP2-522D and mCherry-CDK5 were transfected into cortical neurons and this trend could also be rescued by ketamine. In general, this study reveals a new mechanism by which ketamine promotes the growth and development of dendritic spines in developing cortical neurons.
Collapse
Affiliation(s)
- Zhongqi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China.,Department of Anesthesiology, Shunde Hospital of Southern Medical University, Foshan, 528308, Guangdong, China.,Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, Guangdong, China
| | - JiFeng Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jiong Li
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jiaqi Zhang
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, Guangdong, China.,Department of Neurology, The First Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Li Chen
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yalan Li
- Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China. .,Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Guoqing Guo
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
29
|
Landi C, Luddi A, Bianchi L, Pannuzzo G, Pavone V, Piomboni P, Bini L. Proteostasis network alteration in lysosomal storage disorders: Insights from the mouse model of Krabbe disease. J Neurosci Res 2019; 98:718-733. [PMID: 31797419 DOI: 10.1002/jnr.24558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/09/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022]
Abstract
In Krabbe disease, a mutation in GALC gene causes widespread demyelination determining cell death by apoptosis, mainly in oligodendrocytes and Schwann cells. Less is known on the molecular mechanisms induced by this deficiency. Here, we report an impairment in protein synthesis and degradation and in proteasomal clearance with a potential accumulation of the misfolded proteins and induction of the endoplasmic reticulum stress in the brain of 6-day-old twitcher mice (TM) (model of Krabbe disease). In particular, an imbalance of the immunoproteasome function was highlighted, useful for shaping adaptive immune response by neurological cells. Moreover, our data show an involvement of cytoskeleton remodeling in Krabbe pathogenesis, with a lamin meshwork disaggregation in twitcher oligodendrocytes in 6-day-old TM. This study provides interesting protein targets and mechanistic insight on the early onset of Krabbe disease that may be promising options to be tested in combination with currently available therapies to rescue Krabbe phenotype.
Collapse
Affiliation(s)
- Claudia Landi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Laura Bianchi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Valentina Pavone
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Luca Bini
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
30
|
Butterfield DA, Boyd-Kimball D. Redox proteomics and amyloid β-peptide: insights into Alzheimer disease. J Neurochem 2019; 151:459-487. [PMID: 30216447 PMCID: PMC6417976 DOI: 10.1111/jnc.14589] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/15/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022]
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disorder associated with aging and characterized pathologically by the presence of senile plaques, neurofibrillary tangles, and neurite and synapse loss. Amyloid beta-peptide (1-42) [Aβ(1-42)], a major component of senile plaques, is neurotoxic and induces oxidative stress in vitro and in vivo. Redox proteomics has been used to identify proteins oxidatively modified by Aβ(1-42) in vitro and in vivo. In this review, we discuss these proteins in the context of those identified to be oxidatively modified in animal models of AD, and human studies including familial AD, pre-clinical AD (PCAD), mild cognitive impairment (MCI), early AD, late AD, Down syndrome (DS), and DS with AD (DS/AD). These redox proteomics studies indicate that Aβ(1-42)-mediated oxidative stress occurs early in AD pathogenesis and results in altered antioxidant and cellular detoxification defenses, decreased energy yielding metabolism and mitochondrial dysfunction, excitotoxicity, loss of synaptic plasticity and cell structure, neuroinflammation, impaired protein folding and degradation, and altered signal transduction. Improved access to biomarker imaging and the identification of lifestyle interventions or treatments to reduce Aβ production could be beneficial in preventing or delaying the progression of AD. This article is part of the special issue "Proteomics".
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506
| | - Debra Boyd-Kimball
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, OH 44601
| |
Collapse
|
31
|
Morrissey JA, Bigus E, Necarsulmer JC, Srinivasan V, Peppercorn K, O'Leary DJ, Mockett BG, Tate WP, Hughes SM, Parfitt KD, Abraham WC. The Tripeptide RER Mimics Secreted Amyloid Precursor Protein-Alpha in Upregulating LTP. Front Cell Neurosci 2019; 13:459. [PMID: 31680870 PMCID: PMC6813913 DOI: 10.3389/fncel.2019.00459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
Secreted amyloid precursor protein-alpha (sAPPα), generated by enzymatic processing of the APP, possesses a range of neurotrophic and neuroprotective properties and plays a critical role in the molecular mechanisms of memory and learning. One of the key active regions of sAPPα is the central APP domain (E2) that contains within it the tripeptide sequence, RER. This sequence is exposed on the surface of a coiled coil substructure of E2. RER has by itself displayed memory-enhancing properties, and can protect newly formed engrams from interference in a manner similar to that displayed by sAPPα itself. In order to determine whether RER mimics other properties of sAPPα, we investigated the electrophysiological effects of the N-terminal protected acetylated RER (Ac-RER) and an isoform containing a chiral switch in the first amino acid from an l- to a d-orientation (Ac-rER), on synaptic plasticity. We found that, like sAPPα, exogenous perfusion with nanomolar concentrations of Ac-RER or Ac-rER enhanced the induction and stability of long-term potentiation (LTP) in area CA1 of rat and mouse hippocampal slices, in a protein synthesis- and trafficking-dependent manner. This effect did not occur with a control Ac-AAA or Ac-IFR tripeptide, nor with a full-length sAPPα protein where RER was substituted with AAA. Ac-rER also protected LTP against amyloid-beta (Aβ25–35)-induced LTP impairment. Our findings provide further evidence that the RER-containing region of sAPPα is functionally significant and by itself can produce effects similar to those displayed by full length sAPPα, suggesting that this tripeptide, like sAPPα, may have therapeutic potential.
Collapse
Affiliation(s)
- Jodi A Morrissey
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand.,Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Erin Bigus
- Department of Neuroscience, Pomona College, Claremont, CA, United States
| | | | - Vinay Srinivasan
- Department of Neuroscience, Pomona College, Claremont, CA, United States
| | - Katie Peppercorn
- Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Daniel J O'Leary
- Department of Neuroscience, Pomona College, Claremont, CA, United States
| | - Bruce G Mockett
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Warren P Tate
- Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Stephanie M Hughes
- Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Karen D Parfitt
- Department of Neuroscience, Pomona College, Claremont, CA, United States
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| |
Collapse
|
32
|
Moutal A, White KA, Chefdeville A, Laufmann RN, Vitiello PF, Feinstein D, Weimer JM, Khanna R. Dysregulation of CRMP2 Post-Translational Modifications Drive Its Pathological Functions. Mol Neurobiol 2019; 56:6736-6755. [PMID: 30915713 PMCID: PMC6728212 DOI: 10.1007/s12035-019-1568-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/15/2019] [Indexed: 12/13/2022]
Abstract
Collapsin response mediator proteins (CRMPs) are a family of ubiquitously expressed, homologous phosphoproteins best known for coordinating cytoskeletal formation and regulating cellular division, migration, polarity, and synaptic connection. CRMP2, the most studied of the five family members, is best known for its affinity for tubulin heterodimers and function in regulating the microtubule network. These functions are tightly regulated by post-translational modifications including phosphorylation, SUMOylation, oxidation, and O-GlcNAcylation. While CRMP2's physiological functions rely mostly on its non-phosphorylated state, dysregulation of CRMP2 phosphorylation and SUMOylation has been reported to be involved in the pathophysiology of multiple diseases including cancer, chronic pain, spinal cord injury, neurofibromatosis type 1, and others. Here, we provide a consolidated update on what is known about CRMP2 signaling and function, first focusing on axonal growth and neuronal polarity, then illustrating the link between dysregulated CRMP2 post-translational modifications and diseases. We additionally discuss the roles of CRMP2 in non-neuronal cells, both in the CNS and regions of the periphery. Finally, we offer thoughts on the therapeutic implications of modulating CRMP2 function in a variety of diseases.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Rachel N Laufmann
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA
| | - Peter F Vitiello
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Douglas Feinstein
- Department of Veterans Affairs, Jesse Brown VA Medical Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Jill M Weimer
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA.
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA.
- Department of Anesthesiology, University of Arizona, Tucson, AZ, USA.
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
33
|
Wang L, Ji S. Inhibition of Ubc9-Induced CRMP2 SUMOylation Disrupts Glioblastoma Cell Proliferation. J Mol Neurosci 2019; 69:391-398. [PMID: 31267313 DOI: 10.1007/s12031-019-01368-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/25/2019] [Indexed: 12/30/2022]
Abstract
Glioblastoma (GBM) is the most aggressive astrocytoma. Despite maximum treatment, the GBM usually recurs and the patient survival is poor. Thus, understanding the molecular mechanism of GBM progression will be meaningful to ameliorate this situation. In this study, collapsin response mediator protein 2 (CRMP2) and Ubc9 protein levels were evaluated in three GBM cell lines. Sumoylated CRMP2 were enriched and immunoprecipitated using SUMO1 and IgG antibodies. CRMP2-K374A mutant was generated by site-direct mutagenesis. All indicated constructs were transfected into GL15 cells, and the corresponding proliferation-promoting effect was assessed through cell proliferation ratio. The t-CSM peptide was used to disturb Ubc9-CRMP2 interaction. CRMP2 is expressed in all tested GBM cell lines. The Ubc9 protein levels are positively correlated with CRMP2 level, and both can promote GBM cell proliferation. Blocking CRMP2 SUMOylation through SUMOylation-incompetent mutant or small peptide suppresses CRMP2-induced GBM cell proliferation. This study demonstrates that the CRMP2 SUMOylation exists widely in GBM cells and drives glioblastoma proliferation. CRMP2 SUMOylation inhibition can significantly suppress GBM proliferation in vitro.
Collapse
Affiliation(s)
- Leilei Wang
- Department of Neurosurgery, Cangzhou Central Hospital, Xinhua West Road, Cangzhou, 061000, Hebei, China
| | - Suzhen Ji
- Department of Emergency, Cangzhou Central Hospital, Xinhua West Road, Cangzhou, 061000, Hebei, China.
| |
Collapse
|
34
|
Petrov AM, Mast N, Li Y, Pikuleva IA. The key genes, phosphoproteins, processes, and pathways affected by efavirenz-activated CYP46A1 in the amyloid-decreasing paradigm of efavirenz treatment. FASEB J 2019; 33:8782-8798. [PMID: 31063705 DOI: 10.1096/fj.201900092r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Efavirenz (EFV) is an anti-HIV drug, and cytochrome P450 46A1 (CYP46A1) is the major brain cholesterol hydroxylase. Previously, we discovered that EFV activates CYP46A1 and improves behavioral performance in 5XFAD mice, an Alzheimer's disease model. Herein, the unbiased omics and other approaches were used to study 5XFAD mice in the amyloid-decreasing paradigm of CYP46A1 activation by EFV. These approaches revealed increases in the brain levels of postsynaptic density protein 95, gephyrin, synaptophysin, synapsin, glial fibrillary acidic protein, and CYP46A1 and documented altered expression and phosphorylation of 66 genes and 77 proteins, respectively. The data obtained pointed to EFV effects at the synaptic level, plasmin-depended amyloid clearance, inflammation and microglia phenotype, oxidative stress and cellular hypoxia, autophagy and ubiquitin-proteasome systems as well as apoptosis. These effects could be realized in part via changes in the Ca2+-, small GTPase, and catenin signaling. A model is proposed, in which CYP46A1-dependent lipid raft rearrangement and subsequent decrease of protein phosphorylation are central in EFV effects and explain behavioral improvements in EFV-treated 5XFAD mice.-Petrov, A. M., Mast, N., Li, Y., Pikuleva, I. A. The key genes, phosphoproteins, processes, and pathways affected by efavirenz-activated CYP46A1 in the amyloid-decreasing paradigm of efavirenz treatment.
Collapse
Affiliation(s)
- Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yong Li
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
35
|
Ji Y, Hu Y, Ren J, Khanna R, Yao Y, Chen Y, Li Q, Sun L. CRMP2-derived peptide ST2-104 (R9-CBD3) protects SH-SY5Y neuroblastoma cells against Aβ 25-35-induced neurotoxicity by inhibiting the pCRMP2/NMDAR2B signaling pathway. Chem Biol Interact 2019; 305:28-39. [PMID: 30871964 DOI: 10.1016/j.cbi.2019.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/22/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022]
Abstract
Collapsin response mediator protein 2 (CRMP2),by regulating voltage-gated calcium channel activity, is a crucial regulator of neuronal excitability. Hyperphosphorylation of CRMP2 has been reported in brains of Alzheimer's disease (AD) patients and other neurodegenerative diseases. CRMP2 acting on N-methyl-d-aspartate receptors (NMDARs) may contribute to AD pathology. A short peptide from CRMP2, designated the Ca2+ channel-binding domain 3 (CBD3) peptide, has recently emerged as a Ca2+ channel blocker that exerts neuroprotective effects in traumatic brain injury and cerebral ischemia by disrupting pCRMP2/NMDAR interaction to inhibit calcium influx. ST2-104, a nona-arginine (R9)-conjugated CBD3 peptide derived from CRMP2, exerts a beneficial effect on neuropathic pain; however, the effect of ST2-104 on AD and its mechanism of action have not been studied. In this study we investigated the effects of ST2-104 on SH-SY5Y neuroblastoma cells stimulated by Aβ25-35. To induce neurotoxicity, SH-SY5Y cells were incubated with Aβ25-35, the shortest toxic fragment of Aβ. CRMP2 expression was manipulated by knockdown or overexpression of CRMP2 before ST2-104 treatment to further explore if the pCRMP2/NMDAR2B signaling pathway is involved in the action of the ST2-104 peptide. The results show that ST2-104 significantly enhanced cell viability, inhibited cell apoptosis, decreased LDH release, suppressed the expression of the pCRMP2 protein, disrupted pCRMP2/NMDAR2B interaction, inhibited Aβ25-35-induced NMDAR currents, and decreased intracellular Ca2+ levels. The effects of ST2-104 was abolished by overexpression of CRMP2 and intensified by knockdown of CRMP2 in SH-SY5Y cells. Taken together, our results support ST2-104 as a possible biologic therapeutic in the face of Aβ25-35-induced injury via the inhibition of the pCRMP2/NMDAR2B signaling pathway.
Collapse
Affiliation(s)
- Yingshi Ji
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Yang Hu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Jinghong Ren
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Yuan Yao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Yang Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Qi Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, PR China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital, Jilin University, Changchun, Jilin, 130021, PR China.
| |
Collapse
|
36
|
Castillo C, Martinez JC, Longart M, García L, Hernández M, Carballo J, Rojas H, Matteo L, Casique L, Escalona JL, Rodríguez Y, Rodriguez J, Hernández D, Balbi D, Villegas R. Extracellular Application of CRMP2 Increases Cytoplasmic Calcium through NMDA Receptors. Neuroscience 2019; 376:204-223. [PMID: 29555037 DOI: 10.1016/j.neuroscience.2018.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/27/2022]
Abstract
Collapsin Response Mediator Protein 2 (CRMP2) is an intracellular protein involved in axon and dendrite growth and specification. In this study, CRMP2 was identified in a conditioned media derived from degenerated sciatic nerves (CM). On cultured rat hippocampal neurons, acute extracellular application of CM or partially purified recombinant CRMP2 produced an increase in cytoplasmic calcium. The increase in cytoplasmic calcium was mostly mediated through NMDA receptors, with a minor contribution of N-type VDCC, and it was maintained as long as CM was present. By using live-labeling of CRMP2, Ca2+ channel binding domain 3 (CBD3) peptide derived from CRMP2, and recombinant CRMP2, we demonstrated that that this effect was mediated by an action on the extracellular side of the NMDA receptor. This is the first report of an extracellular action of CRMP2. Prolonged exposure to extracellular CRMP2, may contribute to neuronal calcium dysregulation and neuronal damage.
Collapse
Affiliation(s)
- Cecilia Castillo
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela.
| | - Juan Carlos Martinez
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Marines Longart
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Lisbeth García
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Marianela Hernández
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Jeismar Carballo
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Héctor Rojas
- Instituto de Inmunología, Facultad de Medicina, Universidad Central de Venezuela, Caracas 1051, Venezuela
| | - Lorena Matteo
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Liliana Casique
- Depto. de Biología Celular, Universidad Simón Bolívar, Caracas 1080, Venezuela
| | | | - Yuryanni Rodríguez
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Jessica Rodriguez
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Deyanell Hernández
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Domingo Balbi
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| | - Raimundo Villegas
- Unidad de Neurociencias, Instituto de Estudios Avanzados IDEA, Caracas 1080, Venezuela
| |
Collapse
|
37
|
Kim W, Won SY, Yoon BJ. CRMP2 mediates GSK3β actions in the striatum on regulating neuronal structure and mania-like behavior. J Affect Disord 2019; 245:1079-1088. [PMID: 30699850 DOI: 10.1016/j.jad.2018.10.371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/29/2018] [Accepted: 10/05/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Genetic and physiological studies have implicated the striatum in bipolar disorder (BD). Although Glycogen synthase kinase 3 beta (GSK3β) has been suggested to play a role in the pathophysiology of BD since it is inhibited by lithium, it remains unknown how GSK3β activity might be involved. Therefore we examined the functional roles of GSK3β and one of its substrates, CRMP2, within the striatum. METHODS Using CRISPR-Cas9 system, we specifically ablated GSK3β in the striatal neurons in vivo and in vitro. Sholl analysis was performed for the structural studies of medium spiny neurons (MSNs) and amphetamine-induced hyperlocomotion was measured to investigate the effects of gene ablations on the mania-like symptom of BD. RESULTS GSK3β deficiency in cultured neurons and in neurons of adult mouse brain caused opposite patterns of neurite changes. Furthermore, specific knockout of GSK3β in the MSNs of the indirect pathway significantly suppressed amphetamine-induced hyperlocomotion. We demonstrated that these phenotypes of GSK3β ablation were mediated by CRMP2, a major substrate of GSK3β. LIMITATIONS Amphetamine-induced hyperlocomotion only partially recapitulate the symptoms of BD. It requires further study to examine whether abnormality in GSK3β or CRMP2 is also involved in depression phase of BD. Additionally, we could not confirm whether the behavioral changes observed in GSK3β-ablated mice were indeed caused by the cellular structural changes observed in the striatal neurons. CONCLUSION Our results demonstrate that GSK3β and its substrate CRMP2 critically regulate the neurite structure of MSNs and their functions specifically within the indirect pathway of the basal ganglia network play a critical role in manifesting mania-like behavior of BD. Moreover, our data also suggest lithium may exert its effect on BD through a GSK3β-independent mechanism, in addition to the GSK3β inhibition-mediated mechanism.
Collapse
Affiliation(s)
- Wonju Kim
- Division of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seong-Yeon Won
- Division of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Bong-June Yoon
- Division of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
38
|
Novel Approaches for the Treatment of Alzheimer's and Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20030719. [PMID: 30743990 PMCID: PMC6386829 DOI: 10.3390/ijms20030719] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/18/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative disorders affect around one billion people worldwide. They can arise from a combination of genomic, epigenomic, metabolic, and environmental factors. Aging is the leading risk factor for most chronic illnesses of old age, including Alzheimer’s and Parkinson’s diseases. A progressive neurodegenerative process and neuroinflammation occur, and no current therapies can prevent, slow, or halt disease progression. To date, no novel disease-modifying therapies have been shown to provide significant benefit for patients who suffer from these devastating disorders. Therefore, early diagnosis and the discovery of new targets and novel therapies are of upmost importance. Neurodegenerative diseases, like in other age-related disorders, the progression of pathology begins many years before the onset of symptoms. Many efforts in this field have led to the conclusion that exits some similar events among these diseases that can explain why the aging brain is so vulnerable to suffer neurodegenerative diseases. This article reviews the current knowledge about these diseases by summarizing the most common features of major neurodegenerative disorders, their causes and consequences, and the proposed novel therapeutic approaches.
Collapse
|
39
|
Moutal A, Kalinin S, Kowal K, Marangoni N, Dupree J, Lin SX, Lis K, Lisi L, Hensley K, Khanna R, Feinstein DL. Neuronal Conditional Knockout of Collapsin Response Mediator Protein 2 Ameliorates Disease Severity in a Mouse Model of Multiple Sclerosis. ASN Neuro 2019; 11:1759091419892090. [PMID: 31795726 PMCID: PMC6893573 DOI: 10.1177/1759091419892090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/23/2019] [Accepted: 11/02/2019] [Indexed: 01/17/2023] Open
Abstract
We previously showed that treatment with lanthionine ketimine ethyl ester (LKE) reduced disease severity and axonal damage in an experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis and increased neuronal maturation and survival in vitro . A major target of LKE is collapsin response mediator protein 2 (CRMP2), suggesting this protein may mediate LKE actions. We now show that conditional knockout of CRMP2 from neurons using a CamK2a promoter to drive Cre recombinase expression reduces disease severity in the myelin oligodendrocyte glycoprotein (MOG)35–55 EAE model, associated with decreased spinal cord axonal damage, and less glial activation in the cerebellum, but not the spinal cord. Immunohistochemical staining and quantitative polymerase chain reaction show CRMP2 depletion from descending motor neurons in the motor cortex, but not from spinal cord neurons, suggesting that the benefits of CRMP2 depletion on EAE may stem from effects on upper motor neurons. In addition, mice in which CRMP2 S522 phosphorylation was prevented by substitution for an alanine residue also showed reduced EAE severity. These results show that modification of CRMP2 expression and phosphorylation can influence the course of EAE and suggests that treatment with CRMP2 modulators such as LKE act in part by reducing CRMP2 S522 phosphorylation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kinga Lis
- University of Illinois, Chicago, IL, USA
| | - Lucia Lisi
- Universita Cattolica del Sacro Cuore, Rome,
Italy
| | - Kenneth Hensley
- Arkansas College of Osteopathic Medicine, Fort Smith,
AR, USA
| | | | - Douglas L. Feinstein
- University of Illinois, Chicago, IL, USA
- Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
40
|
Hanson K, Tian N, Vickers JC, King AE. The HDAC6 Inhibitor Trichostatin A Acetylates Microtubules and Protects Axons From Excitotoxin-Induced Degeneration in a Compartmented Culture Model. Front Neurosci 2018; 12:872. [PMID: 30555293 PMCID: PMC6282003 DOI: 10.3389/fnins.2018.00872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022] Open
Abstract
Axon degeneration has been implicated as a pathological process in several neurodegenerative diseases and acquired forms of neural injury. We have previously shown that stabilizing microtubules can protect axons against excitotoxin-induced fragmentation, however, the alterations of microtubules following excitotoxicity that results in axon degeneration are currently unknown. Hence, this study investigated whether excitotoxicity affects the post-translational modifications of microtubules and microtubule-associated proteins, and whether reversing these changes has the potential to rescue axons from degeneration. To investigate microtubule alterations, primary mouse cortical neurons at 10 days in vitro were treated with 10 or 25 μM kainic acid to induce excitotoxicity and axon degeneration. Post-translational modifications of microtubules and associated proteins were examined at 6 h following kainic acid exposure, relative to axon degeneration. While there were no changes to tyrosinated tubulin or MAP1B, acetylated tubulin was significantly (p < 0.05) decreased by 40% at 6 h post-treatment. To determine whether increasing microtubule acetylation prior to kainic acid exposure could prevent axon fragmentation, we investigated the effect of reducing microtubule deacetylation with the HDAC6 inhibitor, trichostatin A. We found that trichostatin A prevented kainic acid-induced microtubule deacetylation and significantly (p < 0.05) protected axons from fragmentation. These data suggest that microtubule acetylation is a potential target for axonal protection where excitotoxicity may play a role in neuronal degeneration.
Collapse
Affiliation(s)
- Kelsey Hanson
- Wicking Dementia Research and Education Centre, College of Health, University of Tasmania, Hobart, TAS, Australia
| | - Nan Tian
- Wicking Dementia Research and Education Centre, College of Health, University of Tasmania, Hobart, TAS, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, College of Health, University of Tasmania, Hobart, TAS, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, College of Health, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
41
|
Kurochkina N, Bhaskar M, Yadav SP, Pant HC. Phosphorylation, Dephosphorylation, and Multiprotein Assemblies Regulate Dynamic Behavior of Neuronal Cytoskeleton: A Mini-Review. Front Mol Neurosci 2018; 11:373. [PMID: 30349458 PMCID: PMC6186834 DOI: 10.3389/fnmol.2018.00373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/20/2018] [Indexed: 12/28/2022] Open
Abstract
Cellular localization, assembly and abnormal aggregation of neurofilaments depend on phosphorylation. Pathological processes associated with neurodegeneration exhibit aberrant accumulation of microtubule associated aggregated forms of hyperphosphorylated neuronal protein tau in cell bodies. These processes are critical for the disease progression in patients suffering from Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. In healthy cells, tau is localized in axons. Topographic regulation suggests that whereas the sites of synthesis of kinases and neurofilaments are the cell bodies, and sites of their functional assemblies are axons, phosphorylation/dephosphorylation are the key processes that arrange the molecules at their precise locations. Phosphorylation sites in the dynamic developmental and degenerative processes differ. Not all these processes are well understood. New advancements identify epigenetic factors involved in AD which account for the influence of age-related environment/genome interactions leading to the disease. Progress in proteomics highlights previously found major proteins and adds more to the list of those involved in AD. New key elements of specificity provide determinants of molecular recognition important for the assembly of macromolecular complexes. In this review, we discuss aberrant spatial distribution of neuronal polypeptides observed in neuropathies: aggregation, association with proteins of the neuronal cytoskeleton, and phosphorylation dependent dynamics. Particularly, we emphasize recent advancements in understanding the function and determinants of specific association of molecules involved in Alzheimer's disease with respect to the topographic regulation of phosphorylation in neuronal cytoskeleton and implications for the design of new therapies. Further, we address the role of various filament systems in maintenance of the shape, rigidity and dynamics of the cytoskeleton.
Collapse
Affiliation(s)
- Natalya Kurochkina
- Department of Biophysics, The School of Theoretical Modeling, Washington, DC, United States
| | - Manju Bhaskar
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Sharda Prasad Yadav
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Harish C. Pant
- Neuronal Cytoskeletal Protein Regulation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
42
|
Numata-Uematsu Y, Wakatsuki S, Nagano S, Shibata M, Sakai K, Ichinohe N, Mikoshiba K, Ohshima T, Yamashita N, Goshima Y, Araki T. Inhibition of collapsin response mediator protein-2 phosphorylation ameliorates motor phenotype of ALS model mice expressing SOD1G93A. Neurosci Res 2018; 139:63-68. [PMID: 30194029 DOI: 10.1016/j.neures.2018.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 10/28/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurological disease characterized by the selective degeneration of motor neurons leading to paralysis and immobility. Missense mutations in the gene coding for the Cu2+/Zn2+ superoxide dismutase 1 (SOD1) accounts for 15-20% of familial ALS, and mice overexpressing ALS-linked SOD1 mutants have been frequently used as an animal model for ALS. Degeneration of motor neurons in ALS progresses in a manner called "dying back", in which the degeneration of synapses and axons precedes the loss of cell bodies. Phosphorylation of collapsin response mediator protein 2 (CRMP2) is implicated in the progression of neuronal/axonal degeneration of different etiologies. To evaluate the role of CRMP2 phosphorylation in ALS pathogenesis, we utilized CRMP2 S522A knock-in (CRMP2ki/ki) mice, in which the serine residue 522 was homozygously replaced with alanine and thereby making CRMP2 no longer phosphorylatable by CDK5 or GSK3B. We found that the CRMP2ki/ki/SOD1G93A mice showed delay in the progression of the motor phenotype compared to their SOD1G93-Tg littermates. Histological analysis revealed that the CRMP2ki/ki/SOD1G93A mice retained more intact axons and NMJs than their SOD1G93A-Tg littermates. These results suggest that the phosphorylation of CRMP2 may contribute to the axonal degeneration of motor neurons in ALS.
Collapse
Affiliation(s)
- Yurika Numata-Uematsu
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan
| | - Shuji Wakatsuki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan
| | - Seiichi Nagano
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan; Department of Neurology, Osaka University Graduate School of Medicine, Japan
| | - Megumi Shibata
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan
| | - Kazuhisa Sakai
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Center for Brain Science, Japan
| | - Toshio Ohshima
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Japan
| | - Naoya Yamashita
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Japan; Department of Pharmacology, Juntendo University School of Medicine, Japan
| | - Yoshiro Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan.
| |
Collapse
|
43
|
Lawal M, Olotu FA, Soliman MES. Across the blood-brain barrier: Neurotherapeutic screening and characterization of naringenin as a novel CRMP-2 inhibitor in the treatment of Alzheimer's disease using bioinformatics and computational tools. Comput Biol Med 2018; 98:168-177. [PMID: 29860210 DOI: 10.1016/j.compbiomed.2018.05.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 11/16/2022]
Abstract
The discovery and developmental processes of CNS drugs have been limited by the inability of potential drug molecules to pass through the blood-brain barrier (BBB). This presents a significant setback in the treatment of neurodegenerative disorders such as Alzheimer's disease (AD), hence the need for compounds that can adhere strictly to the selective criteria of suitable CNS drugs. Collapsin response mediator protein-2 (CRMP-2) has been recently identified as a viable target in neurotherapeutics due to its involvement in the etiology of AD. As shown in previous studies, Naringenin (NAR), a small molecule derivative of Drynaria rhizome (DR) extract, specifically binds CRMP-2 and reduces its phosphorylation. This was shown to facilitate axonal regrowth, with improvement in cognition and learning. Herein, we report the first account of the use of cheminformatics techniques to define the CNS drug-suitability of NAR using selective criteria, coupled with the prediction of possible biological activities and toxicities. Also, we evaluated the mechanistic activity of NAR by modeling its molecular interaction with human CRMP-2 (hCRMP-2). Physicochemical analyses revealed the suitability of NAR as a CNS drug and its ability to transverse the BBB. Possible neurogenic, anti-carcinogenic and cardioprotective activities were also predicted. NAR exhibited favorable binding to CRMP-2 and formed strong bonds with active site residues, which accounts for its stabilization and affinity. Moreover, NAR induced notable conformational changes in CRMP-2, an occurrence that could possibly disrupt kinase-mediated phosphorylation. These findings will aid in the optimization of NAR and improve its neurotherapeutic activities in the treatment of AD.
Collapse
Affiliation(s)
- Maryam Lawal
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Fisayo A Olotu
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa
| | - Mahmoud E S Soliman
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, 4000, South Africa.
| |
Collapse
|
44
|
Möller D, Gellert M, Langel W, Lillig CH. Molecular dynamics simulations and in vitro analysis of the CRMP2 thiol switch. MOLECULAR BIOSYSTEMS 2018; 13:1744-1753. [PMID: 28726921 DOI: 10.1039/c7mb00160f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The collapsin response mediator protein CRMP2 (gene: DPYSL2) is crucial for neuronal development. The homotetrameric CRMP2 complex is regulated via two mechanisms: first by phosphorylation and second by the reduction and oxidation of the Cys504 residues of two adjacent subunits. Here, we have analysed the effects of this redox switch on the protein in vitro combined with force field molecular dynamics (MD). Earlier X-ray data reveal the structure of the rigid body of the molecule but lack the flexible C-terminus with the important sites for phosphorylation and redox regulation. An in silico model for this part was established by replica exchange simulations and homology modelling, which is consistent with the CD spectroscopy results of the recombinant protein. Thermofluor data indicated that the protein aggregates at bivalent ion concentrations below 200 mM. In simulations the protein surface was covered under these conditions by a large number of ions, which most likely prevent aggregation. A tryptophan residue (Trp295) in close proximity to the forming disulphide allowed the measurement of the structural relaxation of the rigid body upon reduction by fluorescence quenching. We were also able to determine the second-order rate constant of CRMP2 oxidation by H2O2. The simulated solvent accessible surface of the hydroxyl group of Ser518 significantly increased upon reduction of the disulphide bond. Our results give the first detailed insight into the profound structural changes of the tetrameric CRMP2 due to oxidation and indicate a tightly connected regulation by phosphorylation and redox modification.
Collapse
Affiliation(s)
- Daniel Möller
- Biophysical Chemistry, Institute of Biochemistry, University Greifswald, 17489 Greifswald, Germany
| | | | | | | |
Collapse
|
45
|
Heiner F, Feistel B, Wink M. Sideritis scardica extracts inhibit aggregation and toxicity of amyloid- β in Caenorhabditis elegans used as a model for Alzheimer's disease. PeerJ 2018; 6:e4683. [PMID: 29736334 PMCID: PMC5933321 DOI: 10.7717/peerj.4683] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Background Beyond its traditional uses in the Balkan area, Sideritis scardica (known as Greek mountain tea, Lamiaceae) is currently extensively investigated for its pharmacological activity in the central nervous system. Antidepressant, psychostimulating, cognition-enhancing and neuroprotective properties have been described. In this study, we tested hydroalcoholic extracts of S. scardica for their potential to counteract amyloid-β toxicity and aggregation, which plays a crucial role in the pathogenesis of Alzheimer's disease. Methods For this purpose, we have chosen the nematode Caenorhabditis elegans, which is used as a model organism for neurodegenerative diseases. The concentration of different polyphenols in extracts prepared from water, 20, 40, 50, and 70% ethanol was analysed by HPLC. Additionally, polar and unpolar fractions were prepared from the 40% ethanolic extract and phytochemically analysed. Results Essentially, the contents of all measured constituents increased with the lipophilicity of the extraction solvents. Treatment of transgenic C. elegans strains expressing amyloid-β with the extracts resulted in a reduced number of peptide aggregates in the head region of the worms and alleviated toxicity of amyloid-β, observable through the degree of paralysed animals. The mid-polar extracts (40 and 50% ethanol) turned out be the most active, decreasing the plaque number by 21% and delaying the amyloid-β-induced paralysis by up to 3.5 h. The more lipophilic extract fractions exhibited higher activity than the hydrophilic ones. Discussion Sideritis scardica extracts demonstrated pharmacological activity against characteristics of Alzheimer's disease also in C. elegans, supporting current efforts to assess its potential for the treatment of cognitive decline. The active principle as well as the mode of action needs to be investigated in more detail.
Collapse
Affiliation(s)
- Felix Heiner
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | | | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
46
|
Multiple-step, one-pot synthesis of 2-substituted-3-phosphono-1-thia-4-aza-2-cyclohexene-5-carboxylates and their corresponding ethyl esters. Bioorg Med Chem Lett 2018; 28:562-565. [PMID: 29398540 DOI: 10.1016/j.bmcl.2018.01.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 11/22/2022]
Abstract
The multiple-step, one-pot procedure for a series of 2-substituted-3-phosphono-1-thia-4-aza-2-cyclohexene-5-carboxylates, analogues of the natural, sulfur amino acid metabolite lanthionine ketimine (LK), its 5-ethyl ester (LKE) and 2-substituted LKEs is described. Initiating the synthesis with the Michaelis-Arbuzov preparation of α-ketophosphonates allows for a wide range of functional variation at the 2-position of the products. Nine new compounds were synthesized with overall yields range from 40 to 62%. In addition, the newly prepared 2-isopropyl-LK-P, 2-n-hexyl-LKE-P and 2-ethyl-LKE were shown to stimulate autophagy in cultured cells better than that of the parent compound, LKE.
Collapse
|
47
|
Mokhtar SH, Kim MJ, Magee KA, Aui PM, Thomas S, Bakhuraysah MM, Alrehaili AA, Lee JY, Steer DL, Kenny R, McLean C, Azari MF, Birpanagos A, Lipiec E, Heraud P, Wood B, Petratos S. Amyloid-beta-dependent phosphorylation of collapsin response mediator protein-2 dissociates kinesin in Alzheimer's disease. Neural Regen Res 2018; 13:1066-1080. [PMID: 29926835 PMCID: PMC6022475 DOI: 10.4103/1673-5374.233451] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by accumulation of amyloid plaques and neurofibrillary tangles. Prior to the development of these characteristic pathological hallmarks of AD, anterograde axonal transport is impaired. However, the key proteins that initiate these intracellular impairments remain elusive. The collapsin response mediator protein-2 (CRMP-2) plays an integral role in kinesin-1-dependent axonal transport and there is evidence that phosphorylation of CRMP-2 releases kinesin-1. Here, we tested the hypothesis that amyloid-beta (Aβ)-dependent phosphorylation of CRMP-2 disrupts its association with the kinesin-1 (an anterograde axonal motor transport protein) in AD. We found that brain sections and lysates from AD patients demonstrated elevated phosphorylation of CRMP-2 at the T555 site. Additionally, in the transgenic Tg2576 mouse model of familial AD (FAD) that exhibits Aβ accumulation in the brain with age, we found substantial co-localization of pT555CRMP-2 and dystrophic neurites. In SH-SY5Y differentiated neuronal cultures, Aβ-dependent phosphorylation of CRMP-2 at the T555 site was also elevated and this reduced the CRMP-2 association with kinesin-1. The overexpression of an unphosphorylatable form of CRMP-2 in neurons promoted the re-establishment of CRMP-2-kinesin association and axon elongation. These data suggest that Aβ-dependent phosphorylation of CRMP-2 at the T555 site may directly impair anterograde axonal transport protein function, leading to neuronal defects.
Collapse
Affiliation(s)
- Sara H Mokhtar
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria, Australia
| | - Min Joung Kim
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria, Australia
| | - Kylie A Magee
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria, Australia
| | - Pei Mun Aui
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria, Australia
| | - Speros Thomas
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria, Australia
| | - Maha M Bakhuraysah
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria, Australia
| | - Amani A Alrehaili
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria, Australia
| | - Jae Young Lee
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria, Australia
| | - David L Steer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Rachel Kenny
- Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Catriona McLean
- Department of Anatomical Pathology, Alfred Hospital, Prahran, Victoria, Australia
| | - Michael F Azari
- Department of Anatomy & Developmental Biology, Monash University, Clayton; School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Antonis Birpanagos
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, Ilisia, Athens, Greece
| | - Ewlina Lipiec
- The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Department of Applied Spectroscopy, Radzikowskiego, Krakow, Poland
| | - Philip Heraud
- Centre for Biospectroscopy and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Bayden Wood
- Centre for Biospectroscopy and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria, Australia
| |
Collapse
|
48
|
Na EJ, Nam HY, Park J, Chung MA, Woo HA, Kim HJ. PI3K-mTOR-S6K Signaling Mediates Neuronal Viability via Collapsin Response Mediator Protein-2 Expression. Front Mol Neurosci 2017; 10:288. [PMID: 28966575 PMCID: PMC5605571 DOI: 10.3389/fnmol.2017.00288] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 08/25/2017] [Indexed: 01/22/2023] Open
Abstract
Collapsin response mediator protein (CRMP)-2 and the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway are associated with common physiological functions such as neuronal polarity, axonal outgrowth and synaptic strength, as well as various brain disorders including epilepsy. But, their regulatory and functional links are unclear. Alterations in CRMP-2 expression that lead to its functional changes are implicated in brain disorders such as epilepsy. Here, we investigate whether changes in CRMP-2 expression, possibly regulated by mTOR-related signaling, correlates with neuronal growth and viability. Inhibition of mTOR and/or phosphoinositol-3-kinase (PI3K) led to deceased p-S6K, and p-S6 signals also reduced CRMP-2 expression. These changes corresponded to inhibition of neuronal viability and proliferation in cultured hippocampal HT-22 cells under both basal serum-free and serum- or insulin-induced mTOR pathway-activated conditions. CRMP-2 expression tended to be increased by mTOR activation, indicated by an increase in p-S6/S6 level, in pentylentetrazole (PTZ)-induced epileptic rat hippocampal tissues was also significantly reduced by mTOR inhibition. Knockdown of CRMP-2 by si-RNA reduced the neuronal viability without changes in mTOR signaling, and overexpression of CRMP-2 recovered the glutamate-induced neurotoxicity and decrease of mTOR signaling in HT-22 cells. In conclusion, CRMP-2 protein expression controlled by the PI3K-mTOR-S6K signaling axis exerts its important functional roles in neuronal growth and survival.
Collapse
Affiliation(s)
- Eun J Na
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Ewha Womans UniversitySeoul, South Korea
| | - Hye Yeon Nam
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Ewha Womans UniversitySeoul, South Korea
| | - Jiyoung Park
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Ewha Womans UniversitySeoul, South Korea
| | - Myung Ah Chung
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Ewha Womans UniversitySeoul, South Korea
| | - Hyun Ae Woo
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Ewha Womans UniversitySeoul, South Korea
| | - Hwa-Jung Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Ewha Womans UniversitySeoul, South Korea
| |
Collapse
|
49
|
Li SW, Chen YC, Sheen JM, Hsu MH, Tain YL, Chang KA, Huang LT. Minocycline restores cognitive-relative altered proteins in young bile duct-ligated rat prefrontal cortex. Life Sci 2017; 180:75-82. [PMID: 28366719 DOI: 10.1016/j.lfs.2017.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 01/06/2023]
Abstract
AIMS Bile duct ligation (BDL) model is used to study hepatic encephalopathy accompanied by cognitive impairment. We employed the proteomic analysis approach to evaluate cognition-related proteins in the prefrontal cortex of young BDL rats and analyzed the effect of minocycline on these proteins and spatial memory. MAIN METHODS BDL was induced in young rats at postnatal day 17. Minocycline as a slow-release pellet was implanted into the peritoneum. Morris water maze test and two-dimensional liquid chromatography-tandem mass spectrometry were used to evaluate spatial memory and prefrontal cortex protein expression, respectively. We used 2D/LC-MS/MS to analyze for affected proteins in the prefrontal cortex of young BDL rats. Results were verified with Western blotting, immunohistochemistry, and quantitative real-time PCR. The effect of minocycline in BDL rats was assessed. KEY FINDINGS BDL induced spatial deficits, while minocycline rescued it. Collapsin response mediator protein 2 (CRMP2) and manganese-dependent superoxide dismutase (MnSOD) were upregulated and nucleoside diphosphate kinase B (NME2) was downregulated in young BDL rats. BDL rats exhibited decreased levels of brain-derived neurotrophic factor (BDNF) mRNA as compared with those by the control. However, minocycline treatment restored CRMP2 and NME2 protein expression, BDNF mRNA level, and MnSOD activity to control levels. SIGNIFICANCE We demonstrated that BDL altered the expression of CRMP2, NME2, MnSOD, and BDNF in the prefrontal cortex of young BDL rats. However, minocycline treatment restored the expression of the affected mediators that are implicated in cognition.
Collapse
Affiliation(s)
- Shih-Wen Li
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Chieh Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Mei-Hsin Hsu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kow-Aung Chang
- Department of Anesthesiolgy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Li-Tung Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Traditional Medicine, Chang Gung University, Linkow, Taiwan.
| |
Collapse
|
50
|
Collapsin response mediator protein 2: high-resolution crystal structure sheds light on small-molecule binding, post-translational modifications, and conformational flexibility. Amino Acids 2017; 49:747-759. [PMID: 28044206 DOI: 10.1007/s00726-016-2376-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
Collapsin response mediator protein 2 (CRMP-2) is a neuronal protein involved in axonal pathfinding. Intense research is focusing on its role in various neurological diseases. Despite a wealth of studies, not much is known about the molecular mechanisms of CRMP-2 function in vivo. The detailed structure-function relationships of CRMP-2 have also largely remained unknown, in part due to the fact that the available crystal structures lack the C-terminal tail, which is known to be a target for many post-translational modifications and protein interactions. Although CRMP-2, and other CRMPs, belong to the dihydropyrimidinase family, they have lost the enzymatic active site. Drug candidates for CRMP-2-related processes have come up during the recent years, but no reports of CRMP-2 complexes with small molecules have emerged. Here, CRMP-2 was studied at 1.25-Å resolution using X-ray crystallography. In addition, ligands were docked into the homotetrameric structure, and the C-terminal tail of CRMP-2 was produced recombinantly and analyzed. We have obtained the human CRMP-2 crystal structure at atomic resolution and could identify small-molecule binding pockets in the protein. Structures obtained in different crystal forms highlight flexible regions near possible ligand-binding pockets. We also used the CRMP-2 structure to analyze known or suggested post-translational modifications at the 3D structural level. The high-resolution CRMP-2 structure was also used for docking experiments with the sulfur amino acid metabolite lanthionine ketimine and its ester. We show that the C-terminal tail is intrinsically disordered, but it has conserved segments that may act as interaction sites. Our data provide the most accurate structural data on CRMPs to date and will be useful in further computational and experimental studies on CRMP-2, its function, and its binding to small-molecule ligands.
Collapse
|