1
|
Majumdar JR, Barton-Burke M, Gilliland JL, Jairath NN. Coping strategies and psychological distress in postoperative recovery: A repeated-measures study in women undergoing breast-conserving surgery. Asia Pac J Oncol Nurs 2025; 12:100674. [PMID: 40151461 PMCID: PMC11946355 DOI: 10.1016/j.apjon.2025.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Objective Breast-conserving surgery (BCS) is the standard treatment for early-stage breast cancer, yet patients often experience significant psychological distress and physical symptoms during recovery. This study aimed to explore the relationships between antecedents, physical symptoms (pain and nausea), psychological distress, and coping strategies utilized by women recovering from BCS to improve management of postoperative challenges. Methods This repeated-measures descriptive study involved 75 women who underwent BCS with sentinel lymph node biopsy at a National Cancer Institute-designated center. Participants completed the National Comprehensive Cancer Network (NCCN) Distress Thermometer and Ways of Coping Instrument on Postoperative Day 1 (POD1) and POD14. Bivariate analyses, multiple linear regression, and structural equation modeling were conducted to evaluate associations between antecedents, coping strategies, and distress. Open-ended responses were qualitatively analyzed for thematic content. Results Seeking social support (POD1 mean = 1.25; POD14 mean = 1.20) and planful problem-solving (POD1 mean = 1.19; POD14 mean = 1.04) were the most frequently used coping strategies, while accepting responsibility and confrontive coping were least utilized. Overall coping strategy use decreased between POD1 and POD14, likely reflecting recovery adaptation. Significant predictors of distress included escape-avoidance coping (β = 0.415, P < 0.001), social support (β = 0.270, P = 0.02), history of nausea (β = 0.517, P < 0.001), and age (β = 0.293, P = 0.007). Coping strategies did not mediate the relationship between antecedents and distress. Conclusions Adaptive coping strategies such as social support and planful problem-solving play a critical role in mitigating distress during BCS recovery. Interventions should emphasize fostering these strategies and addressing high-risk groups, such as younger patients and those with a history of nausea. Despite limitations, this study underscores the importance of supporting adaptive coping to improve postoperative outcomes and provides a basis for future research.
Collapse
Affiliation(s)
- Jennifer R. Majumdar
- Department of Nursing, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hunter-Bellevue School of Nursing, City University of New York, New York, NY, USA
| | | | - Jaime L. Gilliland
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
2
|
Earla JR, Kponee-Shovein K, Kurian AW, Mahendran M, Song Y, Hua Q, Hilts A, Sun Y, Hirshfield KM, Mejia JA. Real-world perioperative treatment patterns and economic burden of recurrence in early-stage HER2-negative breast cancer: a SEER-Medicare study. J Med Econ 2025; 28:54-69. [PMID: 39648858 DOI: 10.1080/13696998.2024.2439228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
AIM This study aimed to describe treatment patterns and quantify the economic impact of recurrence in early-stage human epidermal growth factor receptor 2 (HER2)-negative breast cancer (BC). MATERIALS & METHODS Medicare beneficiaries with stages I-III HER2-negative BC and lumpectomy or partial/total mastectomy were identified from SEER-Medicare data (2010-2019). Perioperative therapies were reported in the neoadjuvant and adjuvant setting. Locoregional recurrence and distant metastasis were identified using a claims-based algorithm developed with clinical input and consisting of a diagnosis-based and treatment-based indicator. All-cause and BC-related healthcare resource utilization (HRU) per-patient-month and monthly healthcare costs were estimated from the recurrence date for patients with recurrence and from an imputed index date for patients without recurrence using frequency matching. HRU and costs were compared between groups stratified by hormone receptor-positive (HR+) or triple negative BC (TNBC) using multivariable regression models. RESULTS Of 28,655 patients, 8.5% experienced recurrence, 90.4% had HR+ disease, and 5.6% received neoadjuvant therapy. Relative to patients without recurrence, patients with recurrence had more advanced disease (stage II/III: 73.7% vs. 34.0%) and higher-grade tumors (Grade 3/4: 40.6% vs. 18.0%) at diagnosis. Recurrence in HR+/HER2-negative BC and TNBC was associated with higher rates of all-cause hospitalizations (incidence rate ratio [IRR]: 2.84 and 3.65), emergency department (ED) visits (IRR: 1.75 and 2.00), and outpatient visits (IRR: 1.46 and 1.55; all p < 0.001). Similarly, recurrence was associated with higher rates of BC-related HRU, particularly for ED visits in HR+/HER2-negative BC (IRR: 4.24; p < 0.001) and hospitalizations in TNBC (IRR: 11.71; p < 0.001). Patients with HR+/HER2-negative BC and TNBC recurrence incurred higher monthly all-cause (cost difference [CD]: $3988 and $4651) and BC-related healthcare costs (CD: $3743 and $5819). CONCLUSIONS Our findings highlight the considerable economic burden of recurrence in early-stage HER2-negative BC and underscore the unmet need for optimization of therapies that reduce recurrence in this population.
Collapse
Affiliation(s)
| | | | | | | | - Yan Song
- Analysis Group, Inc, Boston, MA, USA
| | - Qi Hua
- Analysis Group, Inc, Boston, MA, USA
| | | | | | | | | |
Collapse
|
3
|
Liang Y, Du M, Li X, Gao J, Li Q, Li H, Li J, Gao X, Cong H, Huang Y, Li X, Wang L, Cui J, Gan Y, Tu H. Upregulation of Lactobacillus spp. in gut microbiota as a novel mechanism for environmental eustress-induced anti-pancreatic cancer effects. Gut Microbes 2025; 17:2470372. [PMID: 39988618 PMCID: PMC11853549 DOI: 10.1080/19490976.2025.2470372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/01/2024] [Accepted: 02/17/2025] [Indexed: 02/25/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with limited effective treatment options. Emerging evidence links enriched environment (EE)-induced eustress to PDAC inhibition. However, the underlying mechanisms remain unclear. In this study, we explored the role of gut microbiota in PDAC-suppressive effects of EE. We demonstrated that depletion of gut microbiota with antibiotics abolished EE-induced tumor suppression, while fecal microbiota transplantation (FMT) from EE mice significantly inhibited tumor growth in both subcutaneous and orthotopic PDAC models housed in standard environment. 16S rRNA sequencing revealed that EE enhanced gut microbiota diversity and selectively enriched probiotic Lactobacillus, particularly L. reuteri. Treatment with L. reuteri significantly suppressed PDAC tumor growth and increased natural killer (NK) cell infiltration into the tumor microenvironment. Depletion of NK cells alleviated the anti-tumor effects of L. reuteri, underscoring the essential role of NK cell-mediated immunity in anti-tumor response. Clinical analysis of PDAC patients showed that higher fecal Lactobacillus abundance correlated with improved progression-free and overall survival, further supporting the therapeutic potential of L. reuteri in PDAC. Overall, this study identifies gut microbiota as a systemic regulator of PDAC under psychological stress. Supplementation of psychobiotic Lactobacillus may offer a novel therapeutic strategy for PDAC.
Collapse
Affiliation(s)
- Yiyi Liang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Du
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Gao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Gao
- School of Basic Medicine, Fudan University, Shanghai, China
| | - Hui Cong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimeng Huang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinran Li
- School of Basic Medicine, Fudan University, Shanghai, China
| | - Liwei Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiujie Cui
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Yang Y, Tian X, Zhou H, Wang Y, Gu Y, Qi A, Wang D, Wang Z, Gong Y, Jiao L, Xu L. A score prediction model for predicting the heterogeneity symptom trajectories among lung cancer patients during perioperative period: a longitudinal observational study. Ann Med 2025; 57:2479588. [PMID: 40114445 PMCID: PMC11934189 DOI: 10.1080/07853890.2025.2479588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/15/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025] Open
Abstract
INTRODUCTION Patients undergoing video-assisted thoracoscopic surgery (VATs) for lung cancer (LC) frequently experience prolonged symptoms that can significantly affect their quality of life (QoL). PATIENTS AND METHODS This study employed a longitudinal observational design. The MDASI and QLQ-C30 were utilized to evaluate symptoms and QoL one day before surgery, as well as at 1 day, 2 weeks, and 1, 2, and 3 months post-surgery. Latent class growth modeling (LCGM) was employed to identify heterogeneous trajectories. By Logistic regression analysis, a score prediction model was developed based on predictive factors, which was internally validated utilizing 1000 bootstrap samples. The SHaply Additive Explanations (SHAP) was used to calculating the contribution of each factor. RESULTS 205 participants participated in this study. The predominant postoperative complaints included fatigue, shortness of breath, pain, and coughing. Two distinct classes of symptom trajectories were identified: 'severe group' and 'mild group'. Four independent predictors of heterogeneous symptom trajectories were used to develop a scoring model. The area under the receiver operating characteristic curve for this model was 0.742 (95% CI: 0.651-0.832). And the calibration curves demonstrated strong concordance between anticipated probability and actual data (mean absolute error: 0.033). Furthermore, the decision curve analysis (DCA) indicated higher net benefit than other four single factors. SHAP highlighted WBC and surgical duration time as the most influential features. CONCLUSIONS We established a score model to predict the occurrence of severe symptom trajectories 3 months postoperatively, promoting recovery by advancing rehabilitation plan based on preoperative and surgical situation. REGISTRATION ClinicalTrials.gov (ChiCTR2100044776).
Collapse
Affiliation(s)
- Yong Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xueqi Tian
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiling Zhou
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yichao Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifeng Gu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ao Qi
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Decai Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiying Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yabin Gong
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lijing Jiao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Xu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Li D, Chu X, Liu W, Ma Y, Tian X, Yang Y. The regulatory roles of RNA-binding proteins in the tumour immune microenvironment of gastrointestinal malignancies. RNA Biol 2025; 22:1-14. [PMID: 39718205 DOI: 10.1080/15476286.2024.2440683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/03/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
The crosstalk between the tumour immune microenvironment (TIME) and tumour cells promote immune evasion and resistance to immunotherapy in gastrointestinal (GI) tumours. Post-transcriptional regulation of genes is pivotal to GI tumours progression, and RNA-binding proteins (RBPs) serve as key regulators via their RNA-binding domains. RBPs may exhibit either anti-tumour or pro-tumour functions by influencing the TIME through the modulation of mRNAs and non-coding RNAs expression, as well as post-transcriptional modifications, primarily N6-methyladenosine (m6A). Aberrant regulation of RBPs, such as HuR and YBX1, typically enhances tumour immune escape and impacts prognosis of GI tumour patients. Further, while targeting RBPs offers a promising strategy for improving immunotherapy in GI cancers, the mechanisms by which RBPs regulate the TIME in these tumours remain poorly understood, and the therapeutic application is still in its early stages. This review summarizes current advances in exploring the roles of RBPs in regulating genes expression and their effect on the TIME of GI tumours, then providing theoretical insights for RBP-targeted cancer therapies.
Collapse
Affiliation(s)
- Dongqi Li
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Xiangyu Chu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Weikang Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Yongsu Ma
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Xiaodong Tian
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
6
|
Wang T, Villanueva DJ, Banerjee A, Gifkins D. Reporting and representation of participant race and ethnicity in phase III clinical trials for solid tumors. Future Sci OA 2025; 11:2458415. [PMID: 39885684 PMCID: PMC11792851 DOI: 10.1080/20565623.2025.2458415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/24/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Including racial and ethnic minorities in clinical trials is essential for advancing health equity. Despite progress, trials often do not mirror patient population demographics. METHODS The National Library of Medicine's Clinical Trials database was queried for phase III trials of lung, colorectal, breast, and prostate cancers. A reference population was identified from the Surveillance, Epidemiology, and End Result (SEER) database, covering 48% of the US population. RESULTS Among 181 trials, race and ethnicity data were included in 86.7% and 60.2% of trials, respectively, with improving reporting over time. Participants were predominantly White (76.3%), followed by Asian/Pacific Islander (14.1%), Black/African American (4.5%), and American Indian/Alaska Native (0.6%). Hispanic/Latino constituted 6.4% of participants. The proportion of non-White groups increased from 19.4% in trials started before 2011 to 26.2% after 2015. Compared with SEER data, the percentages were lower for Asian/Pacific Islander across all cancers, Black/African American in breast and prostate cancers, American Indian or Alaska Native in colorectal, breast, and prostate cancers in US solely trials. CONCLUSIONS Reporting and enrollment of racial and ethnic minorities in trials remain inadequate but improving. To enhance diversity, real-world data are warranted to identify recruitment goals by better assessing the geographic distribution within the patient population.
Collapse
Affiliation(s)
- Tianyi Wang
- Janssen Research & Development LLC, Raritan, NJ, USA
| | | | | | - Dina Gifkins
- Janssen Research & Development LLC, Raritan, NJ, USA
| |
Collapse
|
7
|
Zhang D, Xing Y, Liu L, Zhang X, Ma C, Xu M, Li R, Wei H, Zhao Y, Xu B, Mei S. Prognostic signature based on mitochondria- and angiogenesis-related genes associated with immune microenvironment of multiple myeloma. Hematology 2025; 30:2456649. [PMID: 39873160 DOI: 10.1080/16078454.2025.2456649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
INTRODUCTION Mitochondria and angiogenesis play key roles in multiple myeloma (MM) development, but their interrelated genes affecting MM prognosis are under-studied. METHODS We analyzed TCGA_MMRF and GSE4581 datasets to identify four genes - CCNB1, CDC25C, HSP90AA1, and PARP1 - that significantly correlate with MM prognosis, with high expression indicating poor outcomes. RESULTS A prognostic signature based on these genes stratified patients into high- and low-risk groups, with the latter showing better survival. The signature was validated as an independent prognostic factor. Biological function analysis revealed differences in cell cycle processes between risk groups, and immune microenvironment analysis showed distinct immune cell infiltration patterns. CONCLUSION This mitochondria- and angiogenesis-related prognostic signature could enhance MM prognosis assessment and offer new therapeutic insights.
Collapse
Affiliation(s)
- Dai Zhang
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
| | - Yu Xing
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
| | - Lu Liu
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
| | - Xiaoqing Zhang
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
| | - Cong Ma
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
| | - MengYao Xu
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
| | - Ruiqi Li
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
| | - HanJing Wei
- Research Center for Clinical Medical Sciences, XuChang Central Hospital, XuChang, People's Republic of China
- Henan Provincial Health Commission Key Laboratory of Precision Medicine, XuChang, People's Republic of China
| | - Yan Zhao
- Research Center for Clinical Medical Sciences, XuChang Central Hospital, XuChang, People's Republic of China
- Henan Provincial Health Commission Key Laboratory of Precision Medicine, XuChang, People's Republic of China
| | - Bingxin Xu
- Research Center for Clinical Medical Sciences, XuChang Central Hospital, XuChang, People's Republic of China
- Henan Provincial Health Commission Key Laboratory of Precision Medicine, XuChang, People's Republic of China
| | - Shuhao Mei
- Department of Hematology, XuChang Central Hospital, XuChang, People's Republic of China
- Henan Provincial Health Commission Key Laboratory of Precision Medicine, XuChang, People's Republic of China
- XuChang Key Laboratory of Hematology, XuChang, People's Republic of China
| |
Collapse
|
8
|
Jiang Q, Zhong H, Wu C, Li J, Chen J, Zhou X, Li B, Yu H, Wang W, Sheng W. Design, synthesis and biological activity of novel Xuetongsu derivatives as potential anticancer agents by inducing apoptosis. J Enzyme Inhib Med Chem 2025; 40:2482140. [PMID: 40197120 PMCID: PMC11983529 DOI: 10.1080/14756366.2025.2482140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/19/2025] [Accepted: 03/16/2025] [Indexed: 04/09/2025] Open
Abstract
Xuetongsu (XTS, Schisanlactone E) is one of the main active compounds and considered as the star molecule isolated from Kadsura heteroclita (Roxb.) Craib. In order to improve XTS anti-tumour bioactivities, a series of novel XTS derivatives were designed and synthesised by introducing an amide bond at the parent. Anti-proliferative assays on four different human tumour cell lines (BGC-823, HepG-2, HCT-116, and MCF-7) showed that the anti-tumour activities of most derivatives increased greatly compared to the parent XTS, and especially, compounds A-7, A-14, and A-18 exhibited multiple anti-tumour effects. Among them, compound A-7 has the best biological activities on the four tumour cell lines with the IC50 values ranging from 13.86 to 20.71 μM, which could significantly increase the fraction of apoptotic cells according to flow cytometry experience. Further study demonstrated that A-7 could induce apoptosis on HepG-2 cells through influencing the key apoptotic related proteins, such as Bcl-2, Bax, and cleaved Caspase-3.
Collapse
Affiliation(s)
- Qi Jiang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Hui Zhong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Cong Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Jia Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Jingmin Chen
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Xudong Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- TCM and Ethnomedicine Innovation and Development International Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Bin Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- TCM and Ethnomedicine Innovation and Development International Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Huanghe Yu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- TCM and Ethnomedicine Innovation and Development International Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Wei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- TCM and Ethnomedicine Innovation and Development International Laboratory, Hunan University of Chinese Medicine, Changsha, China
| | - Wenbing Sheng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- TCM and Ethnomedicine Innovation and Development International Laboratory, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
9
|
Zhang Y, Gao Z, Qi Z, Xu J, Xue J, Xiong L, Wang J, Huang Y, Qin S. Fractionated radiotherapy initiated at the early stage of bone metastasis is effective to prolong survival in mouse model. Cancer Biol Ther 2025; 26:2455756. [PMID: 39834121 DOI: 10.1080/15384047.2025.2455756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND AND PURPOSE Bone metastasis is common for breast cancer and associated with poor prognosis. Currently, radiotherapy (RT) serves as the standard treatment for patients exhibiting symptoms of bone metastasis to alleviate pain. Whether earlier application of RT will better control bone metastasis remains unclear. METHODS We utilized a mouse model of breast cancer bone metastasis by intra-femoral injection of 4T1-luc breast tumor cells. The bone metastasis was treated by RT using various doses, timings, and modalities. Tumor growth was assessed through bioluminescence imaging, and lung metastases was quantified following lung tissue fixation. Flow cytometry was employed to analyze alterations in immune cell populations. RESULTS Single high-dose RT suppressed tumor growth of bone metastases, but caused severe side effects. Conversely, fractionated RT mitigated tumor growth in bone metastases with fewer adverse effects. Fractioned RT initiated at the early stage of bone metastasis effectively inhibited tumor growth in the bone, suppressed secondary lung metastases, and prolonged mouse survival. In line with the known pro- and anti-metastatic effects of neutrophils and T cells in breast cancer, respectively, earlier fractioned RT consistently decreased the proportions of neutrophils while increased the proportions of T cells in both the bone and the lung tissues. CONCLUSION The data suggest that fractionated RT can inhibit the progression of early stage of bone metastasis and reduce secondary lung metastasis, leading to favorable outcomes. Therefore, these findings provide preclinical evidence to support the application of fractionated RT to treat patients with bone metastasis as earlier as possible.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhunyi Gao
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziwei Qi
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Prevention, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jiahe Xu
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiao Xue
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lujie Xiong
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Junhui Wang
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Prevention, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yuhui Huang
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Prevention, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Songbing Qin
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
10
|
Zhang XS, Liu JZ, Mei YY, Zhang M, Sun LW. Discovery of a selective and reversible LSD1 inhibitor with potent anticancer effects in vitro and in vivo. J Enzyme Inhib Med Chem 2025; 40:2466093. [PMID: 39976248 PMCID: PMC11843658 DOI: 10.1080/14756366.2025.2466093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
Lysine-specific demethylase 1 (LSD1) is abnormally overexpressed in various tumour tissues of patients and has been an attractive anticancer target. In this work, a potent LSD1 inhibitor (compound 14) was designed and synthesised by the molecular hybridisation strategy. It displays the potent antiproliferative activity against HepG2, HEP3B, HUH6, and HUH7 cells with IC50 values of 0.93, 2.09, 1.43, and 4.37 μM, respectively. Furthermore, compound 14 is a selective and reversible LSD1 inhibitor with an IC50 value of 0.18 μM and increases the methylation levels of H3K4me1/2. Molecular docking studies showed that it formed hydrogen bonds, hydrophilic interactions and hydrophobic interactions with residues of LSD1. Anticancer mechanisms demonstrated that it suppresses migration and epithelial-mesenchymal transition process in HepG2 cells. Importantly, it exhibits potent anti-liver cancer effects in vivo without obvious toxic effects. These interesting findings suggested that compound 14, a novel LSD1 inhibitor, may be a promising therapeutic agent to treat liver cancer.
Collapse
Affiliation(s)
- Xiao-Song Zhang
- Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Jin-Zhan Liu
- Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Ying-Ying Mei
- Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Meng Zhang
- Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Li-Wei Sun
- Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
11
|
Bassoy EY, Raja R, Rubino TE, Coscia F, Goergen K, Magtibay P, Butler K, Schmitt A, Oberg AL, Curtis M. Identification of TTLL8, POTEE, and PKMYT1 as immunogenic cancer-associated antigens and potential immunotherapy targets in ovarian cancer. Oncoimmunology 2025; 14:2460276. [PMID: 39891409 PMCID: PMC11792853 DOI: 10.1080/2162402x.2025.2460276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/27/2024] [Accepted: 01/24/2025] [Indexed: 02/03/2025] Open
Abstract
Most high-grade serous ovarian cancers (OC) do not respond to current immunotherapies. To identify potential new actionable tumor antigens in OC, we performed immunopeptidomics on a human OC cell line expressing the HLA-A02:01 haplotype, which is commonly expressed across many racial and ethnic groups. From this dataset, we identified TTLL8, POTEE, and PKMYT1 peptides as candidate tumor antigens with low expression in normal tissues and upregulated expression in OC. Using tissue microarrays, we assessed the protein expression of TTLL8 and POTEE and their association with patient outcomes in a large cohort of OC patients. TTLL8 was found to be expressed in 56.7% of OC and was associated with a worse overall prognosis. POTEE was expressed in 97.2% of OC patients and had no significant association with survival. In patient TILs, increases in cytokine production and tetramer-positive populations identified antigen-specific CD8 T cell responses, which were dependent on antigen presentation by HLA class I. Antigen-specific T cells triggered cancer cell killing of antigen-pulsed OC cells. These findings suggest that TTLL8, POTEE, and PKMYT1 are potential targets for the development of antigen-targeted immunotherapy in OC.
Collapse
Affiliation(s)
| | - Remya Raja
- Department of Immunology, Mayo Clinic, Phoenix, AZ, USA
| | | | - Fabian Coscia
- Max-Delbruck-Center for Molecular Medicine in the Helmholtz Association (MDC), Spatial Proteomics Group, Berlin, Germany
| | - Krista Goergen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Paul Magtibay
- Department of Obstetrics and Gynecology, Mayo Clinic, Phoenix, AZ, USA
| | - Kristina Butler
- Department of Obstetrics and Gynecology, Mayo Clinic, Phoenix, AZ, USA
- College of Medicine and Science, Mayo Clinic, Phoenix, AZ, USA
| | - Alessandra Schmitt
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA
| | - Ann L. Oberg
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Marion Curtis
- Department of Immunology, Mayo Clinic, Phoenix, AZ, USA
- College of Medicine and Science, Mayo Clinic, Phoenix, AZ, USA
- Department of Cancer Biology, Mayo Clinic, Phoenix, AZ, USA
- Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
12
|
Cai T. Hyperbaric oxygen therapy as an adjunt treatment for glioma and brain metastasis: a literature review. Med Gas Res 2025; 15:420-426. [PMID: 39923138 DOI: 10.4103/mgr.medgasres-d-24-00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/06/2024] [Indexed: 02/10/2025] Open
Abstract
The incidence and mortality rates of malignant tumors are increasing annually, with gliomas and brain metastases linked to a poor prognosis. Hyperbaric oxygen therapy is a promising treatment modality for both gliomas and brain metastases. It can alleviate tumor hypoxia and enhance radiosensitivity. When combined with other treatments for gliomas, this therapy has the potential to enhance survival rates. This review addresses the progress in research on the use of hyperbaric oxygen therapy combined with radiotherapy. For brain metastases, the combination of hyperbaric oxygen therapy and stereotactic radiosurgery is both feasible and advantagenous. This combination not only offers protection against radiation-induced brain injury but also supports the recovery of neurological and motor functions. The incidence of adverse reactions to hyperbaric oxygen therapy is relatively low, and it is safe and manageable. Future efforts should be made to investigate the mechanisms by which hyperbaric oxygen therapy combined with radiotherapy treats gliomas and brain metastases, optimize protection of the combined treatment against brain injury, minimizing adverse reactions, conducting multidisciplinary research and clinical trials, and training healthcare providers to facilitate broader clinical application.
Collapse
Affiliation(s)
- Tengteng Cai
- Department of Radiotherapy, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
13
|
Chen X, Zhao D, Yu C, Wei J, Zhou G. A novel photosensitive nanoprobe combined with CRISPR/Cas12a for dual signal amplification detection of ANGPTL2. Talanta 2025; 292:128010. [PMID: 40147084 DOI: 10.1016/j.talanta.2025.128010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
The detection of specific protein biomarkers holds significant potential for the early diagnosis of colorectal cancer (CRC). However, the accurate quantification of low-abundance proteins in serum presents a major challenge due to factors such as limited sensitivity and the complexity of the required methodologies. In this work, we established a universal CRISPR/Cas biosensing platform by integrating novel photosensitive nanoprobes (DA/PL@Cu NPs) and CRISPR/Cas12 system (DPC-Cas) for the highly sensitive, specific and user-friendly detection of angiopoietin-like protein 2 (ANGPTL2). The DA/PL@Cu NPs serve as a critical component in the transduction of protein recognition information into nucleic acid amplification events to produce Cas12a activators. The DPC-Cas biosensor integrates DA/PL@Cu NPs-assisted amplification with Cas12a self-amplification, enabling ultrasensitive detection of ANGPTL2 at concentrations as low as 20.00 pg/mL. The proposed DPC-Cas biosensor successfully detected ANGPTL2 in serum, demonstrating significant potential for the early diagnosis of CRC.
Collapse
Affiliation(s)
- Xiuyu Chen
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer, Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, China
| | - Dan Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University (Nanjing Tech), Nanjing, 211800, China
| | - Jifu Wei
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer, Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| | - Guoren Zhou
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer, Hospital of Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
14
|
Xuanyuan X, Liu W, Jiang M, Zhang X, Wen B, Zheng R, Yao N, Zhang T, Feng Y, Qiao C, Zhang H, Luo D, Feng S, Li M, Gao J, Lu Z. Harnessing prazosin for tumors: Liposome hybrid nanovesicles activate tumor immunotherapy via autophagy inhibition. Biomaterials 2025; 319:123184. [PMID: 39985978 DOI: 10.1016/j.biomaterials.2025.123184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/01/2025] [Accepted: 02/09/2025] [Indexed: 02/24/2025]
Abstract
Prazosin (Prz), an antagonist of alpha-1 adrenergic receptors, is conventionally employed in the treatment of hypertension. Our study pioneers the exploration of Prz in oncology, examining its impact on cellular autophagy and its potential to trigger antitumor immune responses. We have developed a novel Prz-loaded liposome hybrid nanovesicle (Prz@LINV) system, integrating tumor-derived nanovesicles (TNV) with liposomes (LIP) to facilitate targeted Prz delivery to tumor sites. This formulation enhances Prz bioavailability and markedly inhibits tumor cell autophagy, leading to immunogenic cell death (ICD) and the activation of antitumor immune responses. Furthermore, Prz@LINV modulates dendritic cells (DCs), augmenting their antigen cross-presentation capacity and thereby potentiating antitumor immunity. These effects were validated in a colorectal cancer mouse model, demonstrating the good biocompatibility of Prz@LINV and its significant inhibition in tumor growth, along with the enhancement of antitumor immune responses. Our findings elucidate a novel mechanism by which Prz inhibits autophagy and enhances the antitumor immune response, providing a foundation for the development of innovative immunotherapeutic strategies. The efficacy of Prz@LINV suggests that Prz may emerge as a pivotal component in future immunotherapeutic regimens, offering patients more potent therapeutic options.
Collapse
Affiliation(s)
- Xinyang Xuanyuan
- Department of Dermatology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Wenshang Liu
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Min Jiang
- The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Xin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - BeiBei Wen
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Rui Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Ning Yao
- Department of General Surgery, Joint Support Force 903rd Hospital, Hangzhou, 310013, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Yu Feng
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Chaofeng Qiao
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Huiqi Zhang
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Dong Luo
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Sa Feng
- School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Meng Li
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China.
| | - Zhengmao Lu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
15
|
Saadh MJ, Omar TM, Ballal S, Mahdi MS, Chahar M, Verma R, A Al-Hussein RK, Adil M, Jawad MJ, Al-Nuaimi AMA. Notch signaling and cancer: Insights into chemoresistance, immune evasion, and immunotherapy. Gene 2025; 955:149461. [PMID: 40164241 DOI: 10.1016/j.gene.2025.149461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 03/21/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
The Notch signaling pathway is a fundamental and highly conserved cell-to-cell communication system vital for embryonic development and tissue maintenance. However, its dysregulation has been associated with the initiation, progression, and chemoresistance of various cancers. In this comprehensive review, we will take an in-depth look at the multiple roles of the Notch family in cancer pathogenesis, immune response, and resistance to chemotherapy. We delve into the complicated mechanisms by which Notch signaling promotes tumor growth and development, including its influence on TME remodeling and immune evasion strategies. We will also be discussing recent studies that shed light on the connection between cancer stemness and chemoresistance mediated through the activation of Notch signaling pathways. Elucidation of the interplay between the Notch pathway and major constituents of the TME, including immune cells and cancer-associated fibroblasts, is necessary for the development of targeted therapies against Notch-driven tumors. We further discuss the potential of targeting Notch signaling alone or in combination with standard chemotherapy and immunotherapy as a potent strategy to overcome chemoresistance and improve patient outcomes. We conclude by discussing the challenges and future prospects of using Notch signaling as a therapeutic target in cancer treatment, focusing on how precision medicine and combination approaches are important.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq.
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | | | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Rajni Verma
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali 140307, Punjab, India
| | | | - Mohaned Adil
- College of Pharmacy, Al-Farahidi University, Baghdad, Iraq
| | | | - Ali M A Al-Nuaimi
- Department of Pharmacy, Gilgamesh Ahliya University, Baghdad 10022, Iraq
| |
Collapse
|
16
|
Liu W, Yang X, Zhou Y, Huang Z, Huang J. Gut microbiota in melanoma: Effects and pathogeneses. Microbiol Res 2025; 296:128144. [PMID: 40120565 DOI: 10.1016/j.micres.2025.128144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
The gut microbiota exhibits intricate connections with the body's immune system and holds significant implications for various diseases and cancers. Currently, accumulating evidence suggests a correlation between the composition of the gut microbiota and the development, treatment, and prognosis of melanoma. However, the underlying pathogenesis remains incompletely elucidated. In this comprehensive review, we present an in-depth review of the role played by gut microbiota in melanoma tumorigenesis, growth, metastasis, treatment response, and prognosis. Furthermore, we discuss the potential utility of gut microbiota as a promising prognostic marker. Lastly, we summarize three routes through which gut microbiota influences melanoma: immunity, aging, and the endocrine system. By modulating innate and adaptive immunity in patients with melanoma across different age groups and genders, the gut microbiota plays a crucial role in anti-tumor immune regulation from tumorigenesis to prognosis management, thereby impacting tumor growth and metastasis. This review also addresses current study limitations while highlighting future research prospects.
Collapse
Affiliation(s)
- Wenwen Liu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xin Yang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yuwei Zhou
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Ziru Huang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jian Huang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China; School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Costa IBSDS, Furtado RHM, Drager LF, de Barros E Silva PGM, Melo MDTD, Araruna P, Bacchiega BC, Cauduro S, Walter E, Fialho GL, Silvestre O, Damiani LP, Barbosa LM, Luz MN, Silva ACA, de Mattos RR, Saretta R, Rehder MHHS, Hajjar LA, Lopes-Fernandez T, Dent S, Gibson CM, Lopes RD, Kalil Filho R. Effects of carvedilol on the prevention of cardiotoxicity induced by anthracyclines: Design and rationale of the CARDIOTOX trial. Am Heart J 2025; 285:1-11. [PMID: 39988204 DOI: 10.1016/j.ahj.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Patients with cancer undergoing chemotherapy with an anthracycline-based regimen are at increased risk of cardiotoxicity, predisposing to heart failure, arrhythmias and death. Whether carvedilol may confer benefit to prevent anthracycline-induced cardiotoxicity remains to be determined. DESIGN CARDIOTOX is a double-blind, placebo controlled randomized clinical trial that plan to enroll 1,018 patients across 25 study sites in Brazil. Patients with active cancer scheduled to undergo an anthracycline-based chemotherapy regimen are eligible. Patients with prior HF or cardiomyopathy are excluded. Patients are randomized in 1:1 ratio to carvedilol (starting dose 6.25mg BID up titrated to 25mg BID or maximum tolerated dose) or placebo, stratified by site and use of renin-angiotensin blockers at baseline. Study drug is administered through the duration of chemotherapy and up to 30 days after the last dose of anthracycline. Patients are scheduled to undergo echocardiographic evaluations at baseline and at 3, 6, and 12 months. The study primary endpoint is the composite of new left ventricle ejection fraction (LVEF) reduction by at least 10% leading to an LVEF <50%, cardiovascular death, myocardial infarction, urgent care visit or hospitalization for heart failure, or clinically significant arrhythmias at 12 months. Echocardiographic images will be analyzed by a central core lab, clinical outcomes will be adjudicated, and safety endpoints include serious adverse events and adverse events of special interest (symptomatic bradycardia, hypotension, syncope and bronchospasm). SUMMARY The CARDIOTOX trial is the largest trial to date analyzing the potential role of beta-blockers as prophylactic therapy to prevent cardiotoxicity induced by anthracyclines. TRIAL REGISTRATION Effects of Carvedilol on Cardiotoxicity in Cancer Patients Submitted to Anthracycline Therapy (CardioTox). CLINICALTRIALS gov ID NCT04939883. https://clinicaltrials.gov/study/NCT04939883.
Collapse
Affiliation(s)
- Isabela Bispo Santos da Silva Costa
- Hospital Sírio-Libanês Research and Education Institute, São Paulo, Brazil; Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Remo H M Furtado
- Hospital Sírio-Libanês Research and Education Institute, São Paulo, Brazil; Brazilian Clinical Research Institute, São Paulo, Brazil; Instituto do Coração (InCor), Hospital das Clinicas da Faculdade de Medicina, Sao Paulo, Brazil
| | - Luciano F Drager
- Hospital Sírio-Libanês Research and Education Institute, São Paulo, Brazil; Instituto do Coração (InCor), Hospital das Clinicas da Faculdade de Medicina, Sao Paulo, Brazil
| | | | | | | | | | | | | | - Guilherme Loureiro Fialho
- Hospital Universitario Professor Polydoro Ernani de São Thiago, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Lucas P Damiani
- Brazilian Clinical Research Institute, São Paulo, Brazil; Instituto Dante Pazzanese de Cardiologia, Sao Paulo, Brazil
| | | | | | | | | | - Roberta Saretta
- Hospital Sírio-Libanês Research and Education Institute, São Paulo, Brazil
| | | | - Ludhmila Abrahao Hajjar
- Instituto do Cancer do Estado de São Paulo, Hospital das Clinicas da Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil; Brazilian Clinical Research Institute, São Paulo, Brazil; Instituto D´Or de Ensino e Pesquisa, Sao Paulo, Brazil
| | - Teresa Lopes-Fernandez
- Department of Cardiology, La Paz University Hospital, IdiPAZ Research Institute, Madrid, Spain; Department of Cardiology, Hospital Universitario Quirónsalud Madrid, Madrid, Spain.
| | - Susan Dent
- Wilmot Cancer Institute, University of Rochester, Rochester NY, USA
| | - C Michael Gibson
- Baim Research Institute and Harvard Medical School, Boston, MA, USA
| | - Renato D Lopes
- Hospital Sírio-Libanês Research and Education Institute, São Paulo, Brazil; Brazilian Clinical Research Institute, São Paulo, Brazil; Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA
| | - Roberto Kalil Filho
- Hospital Sírio-Libanês Research and Education Institute, São Paulo, Brazil; Instituto do Coração (InCor), Hospital das Clinicas da Faculdade de Medicina, Sao Paulo, Brazil
| |
Collapse
|
18
|
Liu S, Fu S, Wu X, Wu S, Zhao Y, Wu X, Yan L, Lu J, Li L, Tao Y. TAK-901, a novel EPHA2 inhibitor as a therapeutic strategy against prostate cancer. Cell Signal 2025; 131:111750. [PMID: 40101850 DOI: 10.1016/j.cellsig.2025.111750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/21/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Prostate cancer is the most common cancer and remains a leading cause of cancer-related deaths among men worldwide. Androgen deprivation therapy continues to be the cornerstone of treatment for prostate cancer. However, the efficacy of this treatments is often limited, leading to the emergence of drug resistance and tumor recurrence. TAK-901, an inhibitor of Aurora kinase B, has been shown to inhibit tumor growth both in vitro and in vivo models. To date, the effect of TAK-901 on prostate cancer and the underlying mechanism remain unknown. In this study, we found that TAK-901 could inhibit proliferation, colony formation and migration, while also inducing apoptosis in prostate cancer cells. We further demonstrated that TAK-901 activates the CHK1 signaling pathway, leading to G2/M-phase arrest in these cells. Additionally, we identified EPHA2 as a novel therapeutic target of TAK-901. By mutating the binding sites between EPHA2 and TAK-901, we discovered that these mutations could reverse the anti-proliferative effects of TAK-901 in prostate cancer models. Our study is the first to reveal that TAK-901 induces apoptosis in prostate cancer cells and inhibits cell growth by targeting EPHA2. These findings provide valuable insights into the underlying mechanisms of TAK-901 and may develop its therapeutic applications in prostate cancer.
Collapse
Affiliation(s)
- Shanhui Liu
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu, China
| | - Shengjun Fu
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu, China
| | - Xuewu Wu
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu, China
| | - Shan Wu
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou 730000, Gansu, China
| | - Youli Zhao
- Department of Clinical Medical Laboratory, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu, China
| | - Xinyue Wu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu, China
| | - Liting Yan
- Central Laboratory, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Jianzhong Lu
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu, China.
| | - Lanlan Li
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu, China.
| | - Yan Tao
- Institute of Urology, Clinical Research Center for Urology in Gansu Province, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu, China.
| |
Collapse
|
19
|
Xu X, Zhou H, Hong R, Gong J, Wan Y, Fu Q, Huang K, Li Y, Wang N, Zhao P, Cai K, Li F. A self-accelerating 'copper bomb' strategy activated innate and adaptive immune response against triple-negative breast cancer. Bioact Mater 2025; 49:193-206. [PMID: 40130080 PMCID: PMC11931225 DOI: 10.1016/j.bioactmat.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 03/26/2025] Open
Abstract
Triple-negative breast cancer (TNBC) presents therapeutic challenges due to its aggressive, drug-resistance, and low immunological reactivity. Cuproptosis, an emerging therapeutic modality, is a promising strategic intervention for treating TNBC. Nonetheless, the effectiveness of cuproptosis is compromised by tumor adaptations, including the Warburg effect, increased intracellular glutathione (GSH), and copper efflux, thus breaking the barrier of cuproptosis is the basis for developing cuproptosis-based clinical therapies. Herein, a self-accelerating strategy utilizing a pH-responsive copper framework encapsulating glucose oxidase (GOx), modified with polyethylene glycol (PEG) and tumor-penetrating peptide (tLyp1) has been developed. Upon reaching the acidic tumor microenvironment, the released GOx increases intracellular acidity and hydrogen peroxide (H2O2). The elevated intracellular GSH and H2O2 serve as "fuel" to amplify the copper-based catalytic within tumor cells. Concurrently, the reduction of copper efflux proteins (ATP7B) and the depletion of GSH lead to copper overload in tumor cells, leading to cuproptosis via copper overload, mitochondrial disruption, and Fe-S protein instability. This constellation of interrelated events constitutes a potent "Copper Bomb," which concurrently triggers the immune system and effectively kills the tumor. It robustly engages innate and adaptive immunity via the release of mitochondrial DNA, facilitating the cGAS-STING pathway and precipitating immunogenic cell death. This process reverses the immunosuppressive tumor microenvironment, eliminates tumor cells, and suppresses metastasis, thus offering a novel therapeutic modality for the comprehensive treatment of triple-negative breast cancer (TNBC).
Collapse
Affiliation(s)
- Xinzhi Xu
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing 400030, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Hang Zhou
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Ruixia Hong
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Jiaqi Gong
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yujie Wan
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Qihuan Fu
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Kaifeng Huang
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Ying Li
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Na Wang
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing 400030, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Peng Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Fang Li
- Department of Ultrasound, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
20
|
Yu X, Wu H, Wu Z, Lan Y, Chen W, Wu B, Deng Y, Liu J. Nuclear pore complex protein RANBP2 and related SUMOylation in solid malignancies. Genes Dis 2025; 12:101407. [PMID: 40271196 PMCID: PMC12017851 DOI: 10.1016/j.gendis.2024.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/28/2024] [Accepted: 06/21/2024] [Indexed: 04/25/2025] Open
Abstract
The growing interest in post-translational protein modification, particularly in SUMOylation, is driven by its crucial role in cell cycle regulation. SUMOylation affects various cell cycle regulators, including oncogenes, suggesting its relevance in cancer. SUMO E3 ligases are pivotal in this process, exhibiting diverse functionalities through structural domains and subcellular localizations. A less-explored SUMO E3 ligase, RANBP2, a component of the vertebrate nuclear pore complex, emerges as a central player in cellular cycle processes, as well as in tumorigenesis. The current studies illuminate the importance of RANBP2 and underscore the need for more extensive studies to validate its clinical applicability in neoplastic interventions. Our review elucidates the significance of RANBP2 across various types of malignancies. Additionally, it delves into exploring RANBP2 as a prospective therapeutic target for cancer treatment, offering insights into the avenues that scholars should pursue in their subsequent research endeavors. Thus, further investigation into RANBP2's role in solid tumorigenesis is eagerly awaited.
Collapse
Affiliation(s)
- Xinning Yu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Huatao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yangzheng Lan
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Wenjia Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Bingxuan Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yu Deng
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| |
Collapse
|
21
|
Jiang J, Zhan L, Jiang B, Pan J, Hong C, Chen Z, Yang L. Anticancer therapy-induced peripheral neuropathy in solid tumors: diagnosis, mechanisms, and treatment strategies. Cancer Lett 2025; 620:217679. [PMID: 40154913 DOI: 10.1016/j.canlet.2025.217679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Anticancer therapy-induced peripheral neuropathy (PN) is a common adverse event during the diagnosis and treatment of solid tumors. The drug class, cumulative dose, and individual susceptibility affect the incidence and severity of PN. Owing to the lack of specific biomarkers and imaging tests, the diagnostic criteria for PN remain unclear. Moreover, the available and effective clinical treatment strategies are very limited, and most of the current drugs focus on symptom management rather than fundamental reversal of the disease course. The morbidity mechanisms of PN are diverse, including direct neurotoxicity, mitochondrial dysfunction, and disruption of axonal transport. Here, we summarize the diagnosis, mechanisms, and neuroprotective strategies of PN and discuss potential intervention treatments.
Collapse
Affiliation(s)
- Jiahong Jiang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Luying Zhan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Boyang Jiang
- The Clinical Medical College, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jingyi Pan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chaojin Hong
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zheling Chen
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Liu Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
22
|
Ren H, Liu S, Ji D, Li X, Sun X, Wang W, Liu T, Li Y. Transcriptome analysis reveals the potential role of neural factor EN1 for long-terms survival in estrogen receptor-independent breast cancer. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200965. [PMID: 40207200 PMCID: PMC11981748 DOI: 10.1016/j.omton.2025.200965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/27/2025] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
Breast cancer patients with estrogen receptor-negative (ERneg) status, encompassing triple negative breast cancer (TNBC) and human epidermal growth factor receptor 2 positive breast cancer, are confronted with a heightened risk of drug resistance, often leading to early recurrence; the biomarkers and biological processes associated with recurrence is still unclear. In this study, we analyzed bulk RNA sequencing (RNA-seq) data from 285 cancer and paracancerous samples from 155 TNBC patients, along with transcriptome data from 11 independent public cohorts comprising 7,449 breast cancer patients and 26 single-cell RNA-seq datasets. Our results revealed differential enrichment of nerve-related pathways between TNBC patients with and without 10-year recurrence-free survival. We developed an early recurrence index (ERI) using a machine learning model and constructed a nomogram that accurately predicts the 10-year survival of ERneg patients (area under the curve [AUC]Training = 0.79; AUCTest = 0.796). Further analysis linked ERI to enhanced neural function and immunosuppression. Additionally, we identified EN1, the most significant ERI gene, as a potential biomarker that may regulate the tumor microenvironment and sensitize patients to immunotherapy.
Collapse
Affiliation(s)
- He Ren
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Shan Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Dongchen Ji
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Xue Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Xue Sun
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Wenzheng Wang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Tong Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang Province 150081, China
| |
Collapse
|
23
|
Fukushima H, Takao S, Furusawa A, Suzuki M, Yang Y, Ricketts CJ, Kano M, Okuyama S, Yamamoto H, Kano M, Ball MW, Choyke PL, Linehan WM, Kobayashi H. Carbonic anhydrase-9-targeted near-infrared photoimmunotherapy as a theranostic modality for clear cell renal cell carcinoma. Int J Cancer 2025; 156:2377-2388. [PMID: 39936451 PMCID: PMC12008829 DOI: 10.1002/ijc.35364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
Carbonic anhydrase-9 (CA9) is highly expressed in clear cell renal cell carcinoma (ccRCC) cells despite no expression in normal kidney tissues. Thus, CA9 has been proposed as a theranostic target for radioligand therapy (RLT). However, ccRCC tends to be radioresistant and may not effectively respond to RLT. Alternatively, CA9 can be targeted for near-infrared photoimmunotherapy (NIR-PIT) of ccRCC. Here, we sought to test NIR-PIT using CA9 in a preclinical model of ccRCC to determine its potential as a therapeutic strategy. Tissue microarray analysis showed that membrane CA9 was expressed in the majority of ccRCC cases. In vitro, CA9-targeted NIR-PIT induced cell membrane damage and cell killing in all CA9-expressing ccRCC cell lines specifically, UOK154, UOK220, and UOK122. In vivo, CA9-targeted NIR-PIT significantly inhibited tumor growth and prolonged survival in UOK154 and UOK220 subcutaneous xenograft models. Notably, 70%-80% of mice achieved complete remission after a single treatment of NIR-PIT. Additionally, remaining tumors after the first NIR-PIT persistently expressed CA9, suggesting that remaining tumors can be treated with repeated NIR-PIT. Furthermore, CA9-targeted NIR-PIT induced significant cytoplasmic damages on ccRCC cells in UOK154 orthotopic xenograft models. In conclusion, CA9-targeted NIR-PIT, which allow for safe and repeated application on the same lesion, is a promising treatment for ccRCC, especially in the management of multiple primary ccRCC (e.g., von Hippel-Lindau syndrome) and oligometastatic ccRCC.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Seiichiro Takao
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Motofumi Suzuki
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Youfeng Yang
- Urologic Oncology Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Christopher J. Ricketts
- Urologic Oncology Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Makoto Kano
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Hiroshi Yamamoto
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Miyu Kano
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Mark W. Ball
- Urologic Oncology Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - W. Marston Linehan
- Urologic Oncology Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| |
Collapse
|
24
|
Wang K, Xiang J, Zhou J, Chen C, Wang Z, Qin N, Zhu M, Bi L, Gong L, Yang L, Chen Y, Xu X, Dai J, Ma H, Hu Z, Li W, Wang C, Jin G, Shen H. Development and validation of a transcription factor regulatory network-based signature for individualized prognostic risk in lung adenocarcinoma. Int J Cancer 2025; 156:2440-2451. [PMID: 39960662 DOI: 10.1002/ijc.35375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 03/17/2025]
Abstract
Despite significant progress in diagnostic and therapeutic modalities, lung adenocarcinoma (LUAD) still exhibits a high recurrence risk and a low 5-year survival rate. Reliable prognostic signatures are imperative for risk stratification in LUAD patients. This study encompassed 2740 patients from 23 LUAD cohorts, including one single-cell RNA sequencing (scRNA-seq) dataset, five bulk RNA-seq datasets, and 17 microarray datasets. Using scRNA-seq dataset, we defined a group of epithelial-specific transcription factors significantly over-represented in the epithelial-to-mesenchymal transition (EMT) gene set (enrichment ratio [ER] = 5.80, Fisher's exact test p < .001), and the corresponding target genes were significantly enriched in the cancer driver gene set (ER = 2.74, p < .001), indicating of their crucial roles in the EMT process and tumor progression. We constructed a single-cell gene pairs (scGPS) signature, composed of 3521 gene pairs derived from the epithelial cell-specific transcription factor regulatory network, to predict overall survival (OS) of LUAD. High-risk patients identified by scGPS in the discovery cohort exhibited significantly worse OS compared to low-risk patients (Hazard ratio [HR] = 1.78, 95% CI: 1.29-2.46, log-rank p = 1.80 × 10-4). The scGPS outperformed other established gene signatures and demonstrated robust prognostic stratification across various independent datasets, including microarray data and even early-stage LUAD patients. It remained an independent prognostic factor after adjusting for clinical and pathologic factors. In addition, combining scGPS with tumor stage further enhanced prognostic accuracy compared to using stage alone. The scGPS signature offers individualized prognosis estimations, showing significant potential for practical application in clinical settings.
Collapse
Affiliation(s)
- Kai Wang
- Department of Epidemiology, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Xiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Zhou
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Congcong Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lingfeng Bi
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linnan Gong
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liu Yang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yingjia Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xianfeng Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangfu Jin
- Department of Epidemiology, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
25
|
Seng MM, Adarkwah Yiadom S, Otto-Dobos LD, Sardesai SD, Williams NO, Gatti-Mays ME, Stover DG, Sudheendra PK, Dawson E, Wesolowski R, Way BM, Glasper ER, Andridge RR, Pyter LM. The role of oxytocin in mediating the relationships between social factors and chemotherapy-associated cognitive decline in female patients with breast cancer. Psychoneuroendocrinology 2025; 176:107428. [PMID: 40120166 DOI: 10.1016/j.psyneuen.2025.107428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/30/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
Abstract
While chemotherapy can cause debilitating side effects, social support, particularly that of an intimate partner, can be protective. This study examined the relationships between couple satisfaction and chemotherapy-associated subjective and objective cognitive decline in a cohort of breast cancer patients, in addition to the roles of other social factors. Because of oxytocin's role in social bonding and cognition, circulating oxytocin and oxytocin receptor gene expression in peripheral blood mononuclear cells were investigated as potential mediators. Partnered breast cancer patients (n = 48) completed cognitive assessments and provided blood samples at 3 timepoints: pre-chemotherapy, during chemotherapy, and post-chemotherapy. Participants completed a retrospective couple satisfaction questionnaire, provided information about partner duration as well as other social factors (e.g., number of people in the household, number of dependents under 18), and completed a retrospective perceived general social support questionnaire. Analyses were completed using linear mixed effects and regression models. More satisfaction in an intimate relationship related to both less subjective and objective cognitive decline over chemotherapy. Similarly, higher perceived social support related to less overall objective cognitive decline over chemotherapy, though this relationship was less robust than that observed with high couple satisfaction. Remarkably, circulating oxytocin decreased over chemotherapy but was only associated with partner duration and not with cognitive measures. This study suggests a potential benefit of social-directed interventions for the treatment of cognitive side effects of chemotherapy, either from an intimate partner or more generally. Furthermore, understanding biological mechanisms is important to develop novel preventative and interventional therapies to mitigate the adverse side effects of chemotherapy.
Collapse
Affiliation(s)
- Melina M Seng
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | | | - Lauren D Otto-Dobos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Sagar D Sardesai
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Nicole O Williams
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Margaret E Gatti-Mays
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Daniel G Stover
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Preeti K Sudheendra
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Erica Dawson
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | - Robert Wesolowski
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Baldwin M Way
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Erica R Glasper
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | | | - Leah M Pyter
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
26
|
Lu G, Liu H, Wang H, Luo S, Du M, Christiani DC, Wei Q. Genetic variants of FER and SULF1 in the fibroblast-related genes are associated with non-small-cell lung cancer survival. Int J Cancer 2025; 156:2107-2117. [PMID: 39707607 PMCID: PMC11971011 DOI: 10.1002/ijc.35305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Fibroblasts are important components in the tumor microenvironment and can affect tumor progression and metastasis. However, the roles of genetic variants of the fibroblast-related genes (FRGs) in the prognosis of non-small-cell lung cancer (NSCLC) patients have not been reported. Therefore, we investigated the associations between 26,544 single nucleotide polymorphisms (SNPs) in 291 FRGs and survival of NSCLC patients from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. In Cox regression multivariable analysis, we found that 661 SNPs were associated with NSCLC overall survival (OS). Then we validated these SNPs in another independent replication dataset of 984 patients from the Harvard Lung Cancer Susceptibility (HLCS) Study. Finally, we identified two independent SNPs (i.e., FER rs7716388 A>G and SULF1 rs11785839 G>C) that remained significantly associated with NSCLC survival with hazards ratios (HRs) of 0.87 (95% confidence interval [CI] = 0.77-0.98, p = 0.018) and 0.88 (95% CI = 0.79-0.99, p = 0.033), respectively. Combined analysis for these two SNPs showed that the number of protective alleles was associated with better OS and disease-specific survival. Expression quantitative trait loci analysis indicated that the FER rs7716388 G allele was associated with the up-regulation of FER mRNA expression levels in lung tissue. Our results indicated that these two functional SNPs in the FRGs may be prognostic biomarkers for the prognosis of NSCLC patients, and the possible mechanism may be through modulating the expression of their corresponding genes.
Collapse
Affiliation(s)
- Guojun Lu
- Department of Respiratory Medicine, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Huilin Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Respiratory Oncology, Guangxi Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, China
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mulong Du
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115 USA
| | - David C. Christiani
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115 USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, Durham, NC 27710, USA
- Duke Global Health Institute, Duke University Medical Center, Durham, Durham, NC 27710, USA
| |
Collapse
|
27
|
Zhang J, Guo H, Gong C, Shen J, Jiang G, Liu J, Liang T, Guo L. Therapeutic targets in the Wnt signaling pathway: Treating cancer with specificity. Biochem Pharmacol 2025; 236:116848. [PMID: 40049295 DOI: 10.1016/j.bcp.2025.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/16/2025] [Accepted: 03/03/2025] [Indexed: 04/20/2025]
Abstract
The Wnt signaling pathway is a critical regulatory mechanism that governs cell cycle progression, apoptosis, epithelial-mesenchymal transition (EMT), angiogenesis, stemness, and the tumor immune microenvironment, while also maintaining tissue homeostasis. Dysregulated activation of this pathway is implicated in various cancers, closely linked to tumor initiation, progression, and metastasis. The Wnt/β-catenin axis plays a central role in the pathogenesis of common cancers, including colorectal cancer (CRC), breast cancer (BC), liver cancer, and lung cancer. Unlike traditional chemotherapy, targeted therapy offers a more precise approach to cancer treatment. As a key regulator of oncogenesis, the Wnt pathway represents a promising target for clinical interventions. This review provides a comprehensive analysis of the Wnt signaling pathway, exploring its roles in tumor biology and its implications in human malignancies. It further examines the molecular mechanisms and modes of action across different cancers, detailing how the Wnt pathway contributes to tumor progression through mechanisms such as metastasis promotion, immune modulation, drug resistance, and enhanced cellular proliferation. Finally, therapeutic strategies targeting Wnt pathway components are discussed, including inhibitors targeting extracellular members, as well as those within the cell membrane, cytoplasm, and nucleus. The potential of these targets in the development of novel therapeutic agents underscores the critical importance of intervening in the Wnt signaling pathway for effective cancer treatment.
Collapse
Affiliation(s)
- Jiaxi Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Haochuan Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Chengxuan Gong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Jie Shen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Guijie Jiang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiarui Liu
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China.
| | - Li Guo
- State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
28
|
Randall Armel S, Malcolmson J, Volenik A, Maganti M, Watkins N, Charames GS, McCuaig J. Genetic counseling referral rates and genetic testing outcomes in women with young breast cancer: a 20-year Canadian review. Breast Cancer Res Treat 2025; 211:321-330. [PMID: 39985623 DOI: 10.1007/s10549-025-07646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/10/2025] [Indexed: 02/24/2025]
Abstract
PURPOSE Despite guidelines recommending genetic testing for all cases of very young breast cancer (VYBC), poor uptake has been reported. This study aimed to examine genetic testing referral rates and outcomes over a 20-year period within the Canadian context. METHODS A retrospective chart review of all incident VYBC cases (at or below 35 years of age) between January 1, 2000 and December 31, 2019 was conducted. Descriptive statistics were used to summarize demographic factors and logistic regression analyses were performed to identify the predictors associated with referral for genetic counseling and positive genetic test results. RESULTS 628 women were identified with VYBC. Most women presented with stage 2 (42%), hormone receptor-positive (HR +) and HER2-negative (54%) invasive ductal carcinoma (94%). Over the study period, referral rates increased from 44 to 84%. Of women initially tested for BRCA1/BRCA2, only 21% were referred for updated panel testing. Among those tested, 19% had a pathogenic variant, 21% of whom reported no family history of cancer. Predictors of referral included stage 0-2 disease while predictors of positive test results included a second breast cancer diagnosis and positive family history. CONCLUSION Despite guidelines based on age alone, barriers to referral persist. Results of this study suggest the need for new models of care that ensure equitable access to genetic testing for all women diagnosed with VYBC regardless of family history, ethnicity, or disease stage. As genetic testing criteria evolve, protocols must address these barriers to prevent missed opportunities for testing.
Collapse
Affiliation(s)
- Susan Randall Armel
- Bhalwani Familial Cancer Clinic, Princess Margaret Cancer Centre, Toronto, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| | - Janet Malcolmson
- Bhalwani Familial Cancer Clinic, Princess Margaret Cancer Centre, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alexandra Volenik
- Bhalwani Familial Cancer Clinic, Princess Margaret Cancer Centre, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Manjula Maganti
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Canada
| | - Nicholas Watkins
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, Canada
| | - George S Charames
- Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Jeanna McCuaig
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
29
|
Li X, Chen Y, Qiao G, Ni J, Chen T, Wang Y, Wu C, Zhang Q, Ma T, Gao S, Zhang M, Shen Y, Wu J, Yu J, Que R, Zhang X, Sun K, Xiao W, Jiang T, Bai X, Liang T. 5-Year survival rate over 20 % in pancreatic ductal adenocarcinoma: A retrospective study from a Chinese high-volume center. Cancer Lett 2025; 619:217658. [PMID: 40118244 DOI: 10.1016/j.canlet.2025.217658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/23/2025]
Abstract
Standardized clinical management of pancreatic adenocarcinoma (PDAC) remains challenging and high-volume centers provide essential insights for establishing effective multimodal treatment approaches. This retrospective observational study evaluated the impact of standardized, multimodal clinical management on survival outcomes in patients with PDAC across all stages, based on NCCN guidelines resectability criteria, at a high-volume center. From 2019, 4143 patients were diagnosed with PDAC, with 3268 patients receiving further treatment, including surgical resection and/or systemic therapy. The median overall survival (OS) was 18.5 (95 %CI 17.5-19.4) months for the treated cohort and the 5-year survival rate reached 23.3 %. Patients who underwent surgical resection had significantly improved median OS compared to those who received non-surgical treatments (28.4 months vs. 13.0 months, P < 0.001), with corresponding 5-year survival rates of 31.6 % vs. 15.0 %. Moreover, the patients who received NAT followed by surgical resection had improved survival outcomes compared to those who underwent upfront surgical resection in both resectable (median OS: 37.5 months vs. 28.9 months, P < 0.01) and borderline resectable group (median OS: 31.8 months vs. 18.4 months, P < 0.001). This study demonstrated a 5-year survival rate exceeding 20 % for PDAC across all stages at our center. The application of evidence-based treatment strategies through the multidisciplinary team, accompanying with standardized and comprehensive therapeutic managements, high patient adherence, have been considered as critical determinants in enhancing therapeutic efficacy and improving long-term prognosis for patients with PDAC.
Collapse
Affiliation(s)
- Xiang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Yiwen Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Guoliang Qiao
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Ni
- Information Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Chen
- Department of Radiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyang Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Chengyi Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Tao Ma
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Shunliang Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Min Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Yan Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Jian Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Jun Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Risheng Que
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Sun
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenbo Xiao
- Department of Radiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian'an Jiang
- Department of Ultrasound, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; MOE Joint International Research Laboratory of Pancreatic Diseases, Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
30
|
Zeng W, Chen L. Astragalin inhibits the proliferation of high-risk HPV-positive cervical epithelial cells and attenuates malignant cervical lesions. Cytotechnology 2025; 77:80. [PMID: 40124127 PMCID: PMC11923324 DOI: 10.1007/s10616-025-00742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
High-risk human papillomavirus (HPV), especially HPV16 and HPV18, are closely linked to the onset of cervical cancer (CC). Astragalin (AST), a bioactive flavonoid, has been reported to impede CC HeLa cell proliferation. Nevertheless, the mechanism by which AST exerts its tumor-suppressive role in CC remains unclear. HeLa (HPV18-positive) and CaSki (HPV16-positive) cells were exposed to various concentrations of AST. CCK-8 assay, flow cytometry analysis, wound healing, and Transwell assays were employed to examine the AST functions on CC cell aggressiveness. Protein levels were assessed by western blotting. Immunofluorescence staining was used to detect E6, E7, p53, and p-pRb expression. Animal experiments were performed to validate the anti-CC role in vivo. The results showed that AST dose-dependently impaired HeLa and CaSki cell viability and elicited G1 cell cycle arrest. AST restrained CC cell migration and invasiveness. AST inhibited the growth of HeLa-derived xenograft tumors in mice and repressed E6/E7 oncoprotein expression in CC cells and mouse tumor tissues. In conclusion, AST suppresses CC progression by downregulating E6/E7 oncoprotein expression to attenuate CC cell aggressiveness. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-025-00742-6.
Collapse
Affiliation(s)
- Wei Zeng
- Department of Obstetrics and Gynecology, Hubei Provincial Hospital of Traditional Chinese Medicine (Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine), Wuhan, 430000 China
| | - Li Chen
- Hubei Provincial Hospital of Traditional Chinese Medicine (Guanggu Campus), No.856 Luoyu Road, Wuhan City, Hubei Province China
| |
Collapse
|
31
|
Zheng P, Yan X, Zhu J, Liu Y, Wang L, Su H, Wang D, Tang BZ. Molecularly manipulating pyrazinoquinoxaline derivatives to construct NIR-II AIEgens for multimodal phototheranostics of breast cancer bone metastases. Biomaterials 2025; 317:123105. [PMID: 39818143 DOI: 10.1016/j.biomaterials.2025.123105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Multimodal phototheranostics on the basis of single molecular species shows inexhaustible and vigorous vitality, particularly those emit fluorescence in the second near-infrared window (NIR-II), the construction of such exceptional molecules nonetheless retains formidably challenging. In view of the undiversified molecular skeletons and insufficient phototheranostic outputs of previously reported NIR-II fluorophores, herein, electron acceptor engineering based on heteroatom-inserted rigid-planar pyrazinoquinoxaline was manipulated to fabricate aggregation-induced emission (AIE)-featured NIR-II counterparts with donor-acceptor-donor (D-A-D) architecture. Systematical investigations substantiated that one of those synthesized AIE molecules, namely 4TPQ, incorporating a fused thiophene acceptor, synchronously exhibited high molar absorptivity (ε), NIR-II emission, typical AIE tendency, significant reactive oxygen species (ROS) generation, and high photothermal conversion efficiency. These extraordinary behaviors endowed 4TPQ nanoparticles with unprecedented performance on NIR-II fluorescence/photothermal imaging-navigated synergistic photodynamic/photothermal inhibition of tumors, as confirmed by the mice model of breast cancer bone metastases. This study thus brings significant insights into developing phototheranostic systems for clinical trials.
Collapse
Affiliation(s)
- Ping Zheng
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xueke Yan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jun Zhu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yi Liu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Huifang Su
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Ben Zhong Tang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
| |
Collapse
|
32
|
Kannen V, Olafsen NE, Das S, Giuliana P, Izzati FN, Choksi H, Åhrling SS, Cappello P, Teino I, Maimets T, Jaudzems K, Gulbinas A, Dambrauskas Z, Edgar LJ, Grant DM, Matthews J. Loss of aryl hydrocarbon receptor reduces pancreatic tumor growth by increasing immune cell infiltration. Biochem Pharmacol 2025; 236:116872. [PMID: 40090596 DOI: 10.1016/j.bcp.2025.116872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/16/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease which remains poorly understood. Increasing evidence suggests that the aryl hydrocarbon receptor (AHR) plays a role in the pathogenesis of several cancers; however, its role in PDAC is unclear because AHR exhibits both pro- and anti-tumor activities. Here we evaluated the role of AHR in CR705 and K8484 murine PDAC cells in vitro and CR705 cells in vivo. Loss of Ahr did not affect cell proliferation compared with Cas9 control cells and no differences in tumor development between CR705Cas9 and CR705AhrKO cells were observed in immunocompromised mice. Conversely, tumors from CR705AhrKO cells grew more slowly than tumors from CR705Cas9 cells in immune competent mice. RNA sequencing identified 1279 genes upregulated and 586 genes downregulated in CR705AhrKO tumors compared with CR705Cas9 tumors. Pathway analysis identified immunoregulatory interactions, interferon signaling, and chemokine signaling among the top upregulated pathways. Increased infiltration of CD45+ cells and higher numbers of CD8+ T cells and F4/80+ cells were observed in CR705AhrKO tumors. Ahr deficiency in macrophages (LysMCre) or lymphocytes (RorcCre) did not alter tumor development of CR705Cas9 cells compared with Ahrfl/fl mice. CR705AhrKO tumors in RorcCre mice, but not in LysMCre mice had significantly lower tumor weights normalized to body weights compared with CR705AhrKO tumors in WT mice. These findings show that Ahr loss in CR705 pancreatic cancer cells is sufficient to induce proinflammatory gene responses that contribute to increased immune cell infiltration and reduced tumor growth.
Collapse
MESH Headings
- Animals
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/deficiency
- Receptors, Aryl Hydrocarbon/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/genetics
- Mice
- Cell Line, Tumor
- Cell Proliferation/physiology
- Mice, Knockout
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Mice, Inbred C57BL
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Female
- Basic Helix-Loop-Helix Transcription Factors
Collapse
Affiliation(s)
- Vinicius Kannen
- Department of Pharmacology and Toxicology, University of Toronto, Canada
| | | | | | - Paolo Giuliana
- Department of Pharmacology and Toxicology, University of Toronto, Canada
| | - Fauzia N Izzati
- Department of Pharmacology and Toxicology, University of Toronto, Canada
| | - Hani Choksi
- Department of Pharmacology and Toxicology, University of Toronto, Canada
| | | | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Italy
| | - Indrek Teino
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | - Toivo Maimets
- Institute of Molecular and Cell Biology, University of Tartu, Estonia
| | | | - Antanas Gulbinas
- Surgical Gastroenterology Laboratory, University of Health 6 Sciences, Lithuania
| | - Zilvinas Dambrauskas
- Surgical Gastroenterology Laboratory, University of Health 6 Sciences, Lithuania
| | - Landon J Edgar
- Department of Pharmacology and Toxicology, University of Toronto, Canada
| | - Denis M Grant
- Department of Pharmacology and Toxicology, University of Toronto, Canada
| | - Jason Matthews
- Department of Pharmacology and Toxicology, University of Toronto, Canada; Department of Nutrition, University of Oslo, Norway.
| |
Collapse
|
33
|
Gao X, Zhang G, Wang F, Ruan W, Sun S, Zhang Q, Liu X. Emerging roles of EGFL family members in neoplastic diseases: Molecular mechanisms and targeted therapies. Biochem Pharmacol 2025; 236:116847. [PMID: 40044051 DOI: 10.1016/j.bcp.2025.116847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
Epidermal growth factor-like proteins (EGFLs) contain more than a single EGF/EGF-like domain within their protein structure. To date, ten EGFL family members (EGFL1-10) have been characterized across diverse tissues and developmental stages under different conditions. In this review, we conclude that EGFLs are instrumental in regulating biological activities and pathological processes. Under physiological conditions, EGFLs participate in angiogenesis, neurogenesis, osteogenesis, and other processes. Under pathological conditions, EGFLs are linked with different diseases, particularly cancers. Furthermore, we highlight recent advancements in the study of EGFLs in biological conditions and cancers. In addition, the regulatory role and key underlying mechanism of EGFLs in mediating tumorigenesis are discussed. This paper also examines potential antagonists that target EGFL family members in cancer therapeutics. In summary, this comprehensive review elucidates the critical role of EGFLs in neoplastic diseases and highlights their potential as therapeutic targets.
Collapse
Affiliation(s)
- Xiaoge Gao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, PR China
| | - Guopeng Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, PR China
| | - Feitong Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, PR China
| | - Wenhui Ruan
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, PR China
| | - Shishuo Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, PR China
| | - Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, PR China
| | - Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, PR China; Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, PR China.
| |
Collapse
|
34
|
Chandekar KR, Satapathy S, Dharmashaktu Y, Ballal S, Ranjan P, Batra A, Gogia A, Mathur S, Bal C. Somatostatin receptor-targeted theranostics in patients with estrogen receptor-positive metastatic breast cancer-a prospective exploratory study. Breast Cancer Res Treat 2025; 211:363-373. [PMID: 40000538 DOI: 10.1007/s10549-025-07651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE Somatostatin receptor (SSTR) expression has been reported in estrogen receptor-positive (ER +) metastatic breast cancer (mBC) by pathology and immunohistochemistry studies. We aimed to investigate whether SSTR could be a viable target for PET imaging and potential theranostics in ER + mBC. METHODS Thirty prospectively recruited patients with ER + mBC underwent PET/CT imaging with [18F]FDG and [68Ga]Ga-DOTATATE (within three weeks). Detection rates (per-patient, per-region), number of lesions detected, SUVmax values, Krenning scores, SSTR-FDG visual scores, and PET-based staging with both radiotracers were compared. RESULTS [18F]FDG and [68Ga]Ga-DOTATATE PET/CT had similar per-patient detection rates (100% vs 96.7%, P = 1.0). Per-region and per-lesion analyses revealed comparable detection of local/breast lesions, nodal, and skeletal metastases. However, [18F]FDG outperformed [68Ga]Ga-DOTATATE in detecting visceral/other metastases (235 vs 128 lesions, P = 0.003). [68Ga]Ga-DOTATATE resulted in a lower PET-based M-stage compared to [18F]FDG in 10% of patients, although T-/N-stages were concordant in all patients. HER2- patients showed a trend of higher [68Ga]Ga-DOTATATE lesional SUVmax values compared to the HER2 + sub-group (median 9.0 vs 3.8, P = 0.078). 3/30 (10%) participants had a patient-level Krenning score ≥ 3 ([68Ga]Ga-DOTATATE uptake higher than liver background in majority of the lesions), potentially making them suitable for SSTR-targeted radionuclide therapy. CONCLUSIONS SSTR-targeted theranostics may represent a novel potential alternative in a subset of patients with ER + mBC. Its generalized applicability is limited by poor sensitivity for visceral metastases and significant inter-lesion heterogeneity. Future studies must identify how tumor subtype, proliferation, and prior systemic therapies impact SSTR expression levels in these patients to ensure meaningful clinical translation. CLINICAL TRIAL REGISTRATION Clinical Trials Registry-India: CTRI/2023/03/051025 (prospectively registered on 23.03.2023).
Collapse
Affiliation(s)
- Kunal Ramesh Chandekar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Swayamjeet Satapathy
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Yamini Dharmashaktu
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sanjana Ballal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Piyush Ranjan
- Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Atul Batra
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Ajay Gogia
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sandeep Mathur
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Chandrasekhar Bal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
35
|
Lin W, Li Y, Huang H, Zhao P, Su Y, Fang CY. Harmine hydrochloride induces G0/G1 cell cycle arrest and apoptosis in oral squamous carcinoma cells. Exp Ther Med 2025; 29:111. [PMID: 40242602 PMCID: PMC12001316 DOI: 10.3892/etm.2025.12861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/26/2025] [Indexed: 04/18/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) represents the most frequently occurring form of oral cancer. However, despite the availability of advanced treatment modalities, the global 5-year survival rate for patients with advanced OSCC remains at ~50-60%. Devising alternative therapeutic strategies for oral cancer has therefore become an urgent need. Harmine, a β-carboline alkaloid, has recently been shown to exhibit anticancer activity. Compared with harmine, harmine hydrochloride (HH), a derivative of harmine, has improved water solubility and stability, so can absorb into tissues more readily. Therefore, the present study aimed to investigate the anticancer activity of HH in OSCC cells. A Cell Counting Kit-8 assay was performed to assess the cytotoxic effects of HH on the OSCC cell lines, SCC-4 and SCC-25. Flow cytometric analysis was subsequently employed to examine both the cell cycle profile and the extent of apoptosis. Western blotting was used to assess the expression levels of the regulatory proteins involved in these biological activities, and treatment with a pan-caspase inhibitor (Z-VAD-FMK) confirmed the involvement of the apoptotic pathway. Furthermore, western blotting was used to investigate which signaling pathways were affected in the HH-treated cells. Taken together, the findings of the present study demonstrated that HH was cytotoxic in OSCC cells. HH treatment induced G0/G1 phase cell cycle arrest and apoptosis. Additionally, the MAPK pathway was shown to be involved in HH-induced apoptosis in SCC-4 cells. Therefore, HH exhibited anticancer activity, and may be a putative therapeutic agent for the treatment of OSCC in the future.
Collapse
Affiliation(s)
- Weiting Lin
- Department of Stomatology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan, R.O.C
| | - Yizhen Li
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan, R.O.C
| | - Hsinyi Huang
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan, R.O.C
| | - Peiwen Zhao
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan, R.O.C
| | - Yining Su
- Department of Stomatology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan, R.O.C
| | - Chiung-Yao Fang
- Department of Medical Research, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi 600, Taiwan, R.O.C
- Institute of Molecular Biology, National Chung Cheng University, Chiayi 621, Taiwan, R.O.C
| |
Collapse
|
36
|
Lescroart M, Kemp H, Imauven O, Raphalen JH, Bagate F, Schmidt J, Issa N, Decavele M, Moreau AS, Tamion F, Mourvillier B, Calvet L, Canet E, Lebert C, Pons S, Lacave G, Wallet F, Winiszewski H, Merdji H, De Chambrun MP, Argaud L, Kimmoun A, Dumas G, Zafrani L. Cardiogenic shock in patients with active onco-hematological malignancies: A multicenter retrospective study. J Crit Care 2025; 87:155028. [PMID: 39848115 DOI: 10.1016/j.jcrc.2025.155028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/28/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
PURPOSE Onco-hematological (OH) patients face significant cardiovascular risks due to malignancy and drug toxicity. Data are limited on the characteristics and outcomes of OH patients with cardiogenic shock (CS) in intensive care units (ICUs). METHODS This multicenter retrospective study included 214 OH patients with CS across 22 ICUs (2010-2021). The objectives were to (i) identify risk factors for 30-day mortality, (ii) describe early and long-term outcomes, and (iii) assess the prognostic impact of malignancy by comparing OH patients to a control group of CS patients. RESULTS The 30-day survival rate was 44.8 %. Multivariate analysis identified previous cardiomyopathy (OR = 1.61), acute kidney injury (OR = 1.62), lactate levels (OR = 1.08 per 1 mmol/L), pulmonary embolism (OR = 3.04), invasive mechanical ventilation (OR = 3.48), and epinephrine use (OR = 2.09) as factors associated with 30-day mortality. Among ICU survivors, 54 % were alive at 1 year with a median left ventricular ejection fraction of 52 %. OH malignancy was significantly associated with 30-day mortality (HR 2.54). CONCLUSION The prognosis for OH patients with CS in the ICU is poor, with epinephrine use associated with worse outcomes. Further research is needed to refine risk stratification and improve treatments for this population.
Collapse
Affiliation(s)
- Mickael Lescroart
- Hospital Saint-Louis et Université Paris Cité, Assistance Publique-Hôpitaux de Paris, France; CHRU de Nancy, Médecine Intensive et Réanimation Brabois, Université de Lorraine, Vandœuvre-Lès-Nancy, France
| | - Hélène Kemp
- Hospital Saint-Louis et Université Paris Cité, Assistance Publique-Hôpitaux de Paris, France
| | - Olivier Imauven
- Groupe hospitalier Diaconesses - Croix Saint-Simon, institut d'anesthésie de l'Est Parisien, Paris, France
| | - Jean Herlé Raphalen
- Intensive Care Unit, Necker University Hospital, Assistance Publique-Hôpitaux de Paris, 149 rue de Sèvres, 75015 Paris, France
| | - François Bagate
- Service de Médecine Intensive Réanimation, AP-HP, CHU Henri Mondor, DHU A-TVB, 51, avenue du Mal de Lattre de Tassigny, 94010 Créteil Cedex, France
| | - Julien Schmidt
- Unité de médecine intensive et réanimation, Assistance Publique-Hôpitaux de Paris, Avicenne Hospital, Groupe Hospitalier Paris Seine Saint-Denis, Bobigny, France
| | - Nahema Issa
- Réanimation médicale, groupe hospitalier Saint-André, 1, rue Jean-Burguet, 33075 Bordeaux cedex, France; Médecine interne et maladies infectieuses, groupe hospitalier Saint-André, 1, rue Jean-Burguet, 33075 Bordeaux cedex, France
| | - Maxens Decavele
- APHP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Service Médecine Intensive et Réanimation (Département R3S), 75013, Paris, France
| | - Anne-Sophie Moreau
- CHU de Lille, Hôpital Salengro, Service de Médecine Intensive Réanimation, rue Emile-Laine, 59037 Lille, France
| | - Fabienne Tamion
- Service de Réanimation Médicale, Normandie Univ, UNIROUEN, U1096, CHU de Rouen, F 76000 Rouen, France
| | - Bruno Mourvillier
- Centre Hospitalo-Universitaire de Reims (CHU), Hôpital Robert-Debré, Service de Réanimation médicale, Reims, France
| | - Laure Calvet
- Service de Reanimation Medicale, Hopital Gabriel Monpied, CHU, Clermont-Ferrand, France
| | - Emmanuel Canet
- Medecine Intensive Reanimation, University Hospital Center, Nantes, France
| | - Christine Lebert
- Service Medico-Chirurgical, Unité de soins Intensifs, Centre Hospitalier de La Roche-sur-Yon, France
| | - Stephanie Pons
- Sorbonne University, GRC 29, AP-HP, DMU DREAM, Department of Anaesthesiology and Critical Care, Pitié-Salpêtrière Hospital, Paris, France; Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Guillaume Lacave
- Service de Réanimation Médico-Chirurgicale, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Florent Wallet
- Médecine Intensive et Réanimation, Hôpital Lyon Sud, Pierre-Bénite 69495, France
| | - Hadrien Winiszewski
- Médecine Intensive et Réanimation, Centre Hospitalier Universitaire de Besançon, Université de Franche-Comté, France
| | - Hamid Merdji
- Service de Médecine Intensive et Réanimation, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, INSERM UMR 1260, Regenerative NanoMedicine, FMTS, Strasbourg, France
| | - Marc Pineton De Chambrun
- Sorbonne Université, UPMC Univ Paris 06, INSERM UMRS_1166-iCAN, Institute of Cardiometabolism and Nutrition, 75651 Paris Cedex 13, France; Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Medical Intensive Care Unit, 75651 Paris Cedex 13, France
| | - Laurent Argaud
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Médecine Intensive-Réanimation, 5, Place d'Arsonval, 69437 Lyon Cedex 03, France
| | - Antoine Kimmoun
- CHRU de Nancy, Médecine Intensive et Réanimation Brabois, Université de Lorraine, Vandœuvre-Lès-Nancy, France; INSERM U942, MASCOT, Paris, France
| | - Guillaume Dumas
- Medical Intensive Care Unit, Service de Médecine Intensive-Réanimation, CHU Grenoble-Alpes, Université Grenoble-Alpes, INSERM, U1042-HP2, Grenoble, France
| | - Lara Zafrani
- Hospital Saint-Louis et Université Paris Cité, Assistance Publique-Hôpitaux de Paris, France.
| |
Collapse
|
37
|
Expert Consensus on the Clinical Application of PI3K/AKT/mTOR Inhibitors in the Treatment of Breast Cancer (2025 Edition). CANCER INNOVATION 2025; 4:e70008. [PMID: 40206206 PMCID: PMC11981814 DOI: 10.1002/cai2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 04/11/2025]
Abstract
Background The phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB or AKT)/mammalian target of rapamycin (mTOR) signaling pathway (PAM pathway) plays a critical role in breast cancer pathogenesis and progression, and is closely linked with resistance to endocrine therapy in advanced breast cancer. Randomized clinical trials have shown that PI3K/AKT/mTOR inhibitors deliver significant clinical benefits, particularly for patients with advanced hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancer. Methods In 2022, the Breast Cancer Expert Committee of the National Cancer Quality Control Center convened specialists in related fields to draft the "Expert Consensus on the Clinical Application of PI3K/AKT/mTOR Inhibitors in the Treatment of Advanced Breast Cancer." This consensus raised awareness of these inhibitors among oncologists in China and improved the precision of clinical decision-making. In recent years, growing evidence has emphasized the importance of targeting the PAM pathway, reflected in the approval of several innovative agents. This consensus is an updated 2025 edition that retains the foundational structure of the 2022 edition while incorporating notable updates. Results Updates to the consensus include the introduction of newly approved PAM pathway inhibitors, updated data from recent clinical trials, and expanded therapeutic applications. The revised guidance also offers updated recommendations for genetic testing to detect alterations in relevant pathways. The section on managing drug-related adverse events has been significantly expanded, providing detailed insights into different types of adverse events and their management. These updates aim to enhance the clinical application of PAM pathway inhibitors, promote precision medicine, and ultimately, improve survival outcomes for patients with breast cancer.
Collapse
|
38
|
Nerella SG, Shaik MG, Singh P, Arifuddin M, Ullah Q, Supuran CT. Antibody-drug conjugates and radioconjugates targeting carbonic anhydrase IX and XII in hypoxic tumors: Bench to clinical applications. Bioorg Chem 2025; 159:108408. [PMID: 40154235 DOI: 10.1016/j.bioorg.2025.108408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/10/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Treating hypoxic tumors is challenging due to their aggressive nature, resistance to standard treatments, often leading to poor outcomes. Hypoxic tumors create a unique environment that reduces the effectiveness of traditional treatments such as chemotherapy and radiotherapy. Human carbonic anhydrases (hCA IX and hCA XII) are involved in tumors survival and metabolism by regulating pH homeostasis, ferroptosis, metastatization, and other processes. Developing drugs that specifically target these enzymes has been demonstrated to disrupt the tumor survival mechanisms, leading to significant antitumor effects. This review discusses recent developments on antibody-drug conjugates (ADCs) and radioconjugates targeting hCA IX and hCA XII in hypoxic tumors. New approaches based on small molecule inhibitors and monoclonal antibodies such as girentuximab provided encouraging results in preclinical research and clinical trials. These advances highlight the potential of hCA-targeted therapies to improve cancer treatment for hypoxic tumors.
Collapse
Affiliation(s)
- Sridhar Goud Nerella
- Department of Neuroimaging and Interventional Radiology (NI & IR), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru 560 029, India; Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health (NIH), Bethesda, MD-20892, USA.
| | - Mahammad Ghouse Shaik
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | - Priti Singh
- Department of Chemistry and the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, 30324, USA
| | - Mohammed Arifuddin
- Department of Chemistry, Centre for Distance and Online Education, Maulana Azad National Urdu University, Hyderabad, 500032, India
| | - Qasim Ullah
- Physical Science Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
39
|
Qi F, Yang H, Han Y, Dong Y, Zhang F, Wang Y, Du J, Gao Y, Hu X, Zhang L, Zhang T. Coexistent Pulmonary Tuberculosis and Lung Cancer: An Analysis of Incidence Trends, Financial Burdens and Influencing Factors. CANCER INNOVATION 2025; 4:e70009. [PMID: 40196746 PMCID: PMC11973439 DOI: 10.1002/cai2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/24/2025] [Accepted: 02/11/2025] [Indexed: 04/09/2025]
Abstract
Background Tuberculosis (TB) and lung cancer (LC) are both major global health threats. However, coexistent pulmonary TB and LC (TBLC) is a unique condition for which incidence trends and risk factors have not been fully defined. Methods We retrospectively reviewed the medical records of patients with TBLC and LC alone between 2010 and 2022 at Beijing Chest Hospital, the standard authority for the diagnosis and treatment of TB and LC in China. The cumulative incidence rate (CIR) of TBLC was calculated as the number of new TBLC cases/number of LC cases at risk per 100,000 annually. The comparative incidence rate ratio (IRR) was estimated to be the TB incidence in LC patients/TB incidence in the general population. Logistic regression was used to explore risk factors for TBLC. Results The CIR of TBLC has rapidly increased each year since 2014 and reached 7027 per 100,000 LC patients in 2022. Patients with LC had a higher risk of developing active TB than the general population (IRR = 25.21, 95% confidence interval [CI]: 21.54-29.89). Medical expenditure per patient was 100.60 thousand yuan for those with TBLC and 105.60 thousand yuan for patients with LC (p = 0.687). Patients with TBLC were older (63.61 ± 10.46 vs. 61.08 ± 10.77, p < 0.001) and had a higher male-to-female ratio (2.82 vs. 1.59, p = 0.044) than those with LC alone. A tendency of earlier disease onset was observed in patients with LC rather than TBLC. A majority (44.92%) of TBLC lesions were located in the upper lobes of the lung and had a higher proportion of squamous cell carcinomas than LC alone (32.24% vs. 27.49%, p = 0.002). TBLC also presented more aggressively, with more lymph node involvement and distant metastases. Multivariate analysis revealed that older age, the male sex, mediastinal lymph node invasion, lung/bone metastases, anemia, hypoalbuminemia, malnutrition, pulmonary fibrosis, and chronic obstructive pulmonary disease were risk factors for active TBLC. Conclusions There has been a rise in the incidence of coexistent TBLC and a concomitant increase in its financial burden in China that deserves more awareness and attention.
Collapse
Affiliation(s)
- Fei Qi
- General Department, Beijing Chest HospitalCapital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute)BeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Hongjie Yang
- General Department, Beijing Chest HospitalCapital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute)BeijingChina
| | - Yi Han
- Cardiothoracic Surgery Department, Affiliated Hospital of Shaanxi University of Chinese MedicineShaanxi University of Chinese MedicineXianyangShaanxiChina
| | - Yujie Dong
- Pathology Department, Beijing Chest HospitalCapital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute)BeijingChina
| | - Fan Zhang
- General Department, Beijing Chest HospitalCapital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute)BeijingChina
- Department of Epidemiology, School of Public Health, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yishuo Wang
- General Department, Beijing Chest HospitalCapital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute)BeijingChina
| | - Juan Du
- Pathology Department, Beijing Chest HospitalCapital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute)BeijingChina
| | - Yuan Gao
- General Department, Beijing Chest HospitalCapital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute)BeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| | - Xueguang Hu
- Department of StomatologyShenzhen Guangming District People's HospitalShenzhenGuangdongChina
| | - Liqun Zhang
- Guangzhou National LaboratoryGuangzhouGuangdongChina
| | - Tongmei Zhang
- General Department, Beijing Chest HospitalCapital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute)BeijingChina
- Laboratory for Clinical MedicineCapital Medical UniversityBeijingChina
| |
Collapse
|
40
|
Zhang Y, Xie W, Li J, Liang Z, Zhou X, Tan Z, Wu Z, Lin J, Zhuo Y, Zou F, Wen B, Chen J, Cai S, Ye J, Liang Y, Lu J, Yang H, Zhong W, Yang R. Precision targeted melanoma therapy via cuproptosis/chemodynamic and chemotherapy: An engineering MCHS-CuMOF nanodelivery system. BIOMATERIALS ADVANCES 2025; 171:214228. [PMID: 39983499 DOI: 10.1016/j.bioadv.2025.214228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/11/2025] [Accepted: 02/09/2025] [Indexed: 02/23/2025]
Abstract
Melanoma, a highly aggressive skin cancer, continues to challenge current therapeutic modalities due to its resistance and high mortality rates. Recent advancements highlight cuproptosis, a copper-driven form of programmed cell death, as a promising target for melanoma treatment. This study integrated machine learning and large-scale genomic data to identify FDX1 as a pivotal gene in cuproptosis-related pathways for melanoma. We developed a novel nanomedicine, ACM@MCHS-CuMOF@Dox, combining Mesoporous Carbon Hollow Spheres (MCHS) loaded with Copper-based Metal-Organic Frameworks (CuMOFs) and Doxorubicin (Dox), to exploit this discovery. The nanomedicine leverages a biomimetic approach by incorporating A375 cell membranes, enhancing tumor-targeted delivery. Physicochemical characterization confirms optimal drug loading and pH/GSH-responsive release profiles. In vitro studies demonstrate that ACM@MCHS-CuMOF@Dox inhibits melanoma cell proliferation, migration, and invasion, outperforming other formulations. Mechanistic investigations revealed that ACM@MCHS-CuMOF@Dox induced robust apoptosis and cuproptosis through FDX1 downregulation, thereby enhancing oxidative stress and therapeutic efficacy. These findings underscore the potential of combining machine learning-driven target identification with advanced nanomedicine for precision melanoma therapy. This approach offers a promising strategy for overcoming current treatment limitations and advancing personalized cancer care.
Collapse
Affiliation(s)
- Yixun Zhang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenjie Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jinchuang Li
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhenguo Liang
- Guangdong Provincial Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230 Guangzhou, Guangdong, China
| | - Xin Zhou
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zeheng Tan
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhenjie Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jundong Lin
- Guangdong Provincial Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230 Guangzhou, Guangdong, China; Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong, China
| | - Yangjia Zhuo
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fen Zou
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Biyan Wen
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jianwei Chen
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Shanghua Cai
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianheng Ye
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yingke Liang
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianming Lu
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Huikang Yang
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Weide Zhong
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China; School of Medicine, South China University of Technology, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, 510230 Guangzhou, Guangdong, China; Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa 999078, Macau.
| | - Ronghua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
41
|
Huang C, Yang H, Wang H, Sheng S, Chen L. HDCA6 suppresses GATA6 expression to enhance cellular growth and migration in lung squamous cell carcinoma. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167757. [PMID: 40044063 DOI: 10.1016/j.bbadis.2025.167757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/12/2025] [Accepted: 02/26/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) exhibits a significant mortality rate and lacks effective targeted therapies. The GATA-binding factor 6 (GATA6), a pivotal regulator of lung development, undergoes reduced expression in LUSC and correlates with its metastasis and prognosis. However, the regulatory mechanisms underlying the down-regulation of GATA6 in LUSC remain elusive. HDAC6 emerges as a promising therapeutic target in preclinical cancer models. Nevertheless, its role in LUSC progression remains unexplored. Furthermore, the regulatory impact of HDAC6 on GATA6 expression needs clarification. The purpose of this work is to investigate HDAC6's involvement and regulatory mechanisms on the expression of GATA6 in LUSC. METHODS The impacts of HDCA6 on the expression of GATA6 were assessed using qPCR, Western blot and CHIP assays. The tumorigenic capacity of HDAC6 in promoting the growth and migration of LUSC cell were determined through CCK8, EdU incorporation, Transwell, and xenograft tumor models. Immunohistochemistry assays were employed to detected expression of HDAC6 in tissue microarray of LUSC. RESULTS A pan-HDACs inhibitor Trichostatin A and an HDAC6-specific inhibitor CAY10603 up-regulate the expression of GATA6, whereas HDAC6 overexpression down-regulates GATA6 level. Overexpression of HDAC6 promotes cell proliferation and migration in LUSC, while inhibition of HDAC6 significantly suppresses LUSC cell growth. And, GATA6 overexpression reverses HDAC6-mediated elevated growth and migration of LUSC cells. Compared to normal tissues, LUSC tissues exhibit elevated levels of HDAC6 expression, which were correlated with poor prognosis of LUSC patients. CONCLUSION Targeting HDAC6/GATA6 pathway may offer promising prospects for developing of novel therapeutic strategies against LUSC.
Collapse
Affiliation(s)
- Changhua Huang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hua Yang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hailong Wang
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Shouyin Sheng
- Department of Surgery 2, Jiujiang Third People's Hospital, Jiujiang, Jiangxi 332099, China.
| | - Limin Chen
- Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
42
|
Basmadjian RB, Xu Y, Quan ML, Lupichuk S, Cheung WY, Brenner DR. Evaluating PREDICT and developing outcome prediction models in early-onset breast cancer using data from Alberta, Canada. Breast Cancer Res Treat 2025; 211:399-408. [PMID: 40072699 PMCID: PMC12006220 DOI: 10.1007/s10549-025-07654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025]
Abstract
INTRODUCTION Outcome prediction research in early-onset breast cancer (EoBC) is limited. This study evaluated the predictive performance of NHS PREDICT v2.1 and developed two prediction models for 5-year and 10-year all-cause mortality in a cohort of EoBC patients in Alberta, Canada. METHODS Adults < 40 years diagnosed with invasive breast cancer in Alberta, Canada from 2004 to 2020 were included. Patient data were entered into PREDICT v2.1 and mortality estimates at 5 and 10 years were extracted. Two prediction models were developed for all-cause mortality: multivariable Cox regression with LASSO penalization (LASSO Cox) and random survival forests (RSF). Internal validation of the developed models was performed using nested tenfold cross-validation repeated 200 times. Model performance was assessed using receiver operator characteristic and calibration curves for mortality at 5 and 10 years. RESULTS In total, 1827 patients with EoBC were eligible for inclusion. At 5 years, PREDICT had an area under the curve of 0.78 (95%CI 0.74-0.82) and overestimated mortality by 2.4% (95%CI 0.70-4.33) in the overall cohort. No differences in observed and predicted mortality by PREDICT were observed at 10 years. The LASSO Cox model showed better discrimination at 5 and 10 years than the RSF model, but both had poor calibration and underestimated mortality. CONCLUSION PREDICT v2.1 tended to overestimate 5-year mortality in those with > 30% predicted risks and 10-year mortality in those with > 50% predicted risks for EoBC in Alberta, Canada. We did not identify additional models that would be clinically useful by applying machine learning. More follow-up data and emerging systemic treatment variables are required to study outcome prediction in modern cohorts.
Collapse
Affiliation(s)
- Robert B Basmadjian
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Yuan Xu
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - May Lynn Quan
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sasha Lupichuk
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Winson Y Cheung
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Darren R Brenner
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Department of Oncology and Community Health Sciences, Cumming School of Medicine, University of Calgary, Health Research Innovation Centre Room 2AA21, 3230 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
43
|
Uemoto Y, Lin CCA, Wang B, Ye D, Fang YV, Bikorimana E, Napolitano F, Chica-Parrado MR, Li C, Mendiratta S, Chen C, Hanker AB, Arteaga CL. Selective degradation of FGFR1/2 overcomes antiestrogen resistance in ER+ breast cancer with FGFR1/2 alterations. Cancer Lett 2025; 619:217668. [PMID: 40127812 DOI: 10.1016/j.canlet.2025.217668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/25/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
FGFR1 amplification and FGFR1/2 activating mutations have been associated with antiestrogen resistance in estrogen receptor-positive (ER+) breast cancer. However, there are no approved FGFR1-targeted therapies for breast cancers harboring these alterations. In this study, we investigated the selective degradation of FGFR1/2 using the proteolysis-targeting chimera (PROTAC) DGY-09-192 as a novel therapeutic strategy in ER + breast cancers harboring FGFR1/2 somatic alterations. Treatment of ER+/FGFR1-amplified breast cancer cells and patient-derived xenografts with DGY-09-192 resulted in sustained degradation of FGFR1 in a proteasome-dependent manner and suppressed downstream signal transduction. The combination of DGY-09-192 and the ERα degrader fulvestrant resulted in complete cell growth arrest and tumor regression of ER+/FGFR1-amplified patients-derived xenografts. In addition, we tested the effect of DGY-09-192 on breast cancer cells expressing FGFR1N546K and FGFR2K659E hotspot kinase domain mutations as well as ER-negative breast cancer cells harboring FGFR2 gene amplification. Treatment with DGY-09-192 resulted in the degradation of mutant FGFR1/2 and blocked mutant receptor-induced signal transduction and antiestrogen resistance. Collectively, our study suggests that degradation of FGFR1/2, in combination with antiestrogens, can be leveraged as a therapeutic strategy in ER + breast cancers harboring FGFR1/2 driver alterations.
Collapse
MESH Headings
- Humans
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Female
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Animals
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Xenograft Model Antitumor Assays
- Proteolysis/drug effects
- Mice
- Fulvestrant/pharmacology
- Cell Line, Tumor
- Receptors, Estrogen/metabolism
- Signal Transduction/drug effects
- Mutation
- Cell Proliferation/drug effects
- Estrogen Receptor Modulators/pharmacology
- Estrogen Receptor alpha/metabolism
- MCF-7 Cells
Collapse
Affiliation(s)
- Yasuaki Uemoto
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Chang-Ching A Lin
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Bingnan Wang
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Dan Ye
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | - Yisheng V Fang
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX, USA; Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | - Cheung Li
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX, USA
| | | | - Chuo Chen
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ariella B Hanker
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX, USA.
| | - Carlos L Arteaga
- UT Southwestern Simmons Comprehensive Cancer Center, Dallas, TX, USA.
| |
Collapse
|
44
|
Niaki NM, Hatefnia F, Heidari MM, Tabean M, Mobed A. Alpha-Fetoprotein (AFP) biosensors. Clin Chim Acta 2025; 573:120293. [PMID: 40216053 DOI: 10.1016/j.cca.2025.120293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
Alpha-fetoprotein (AFP) is a glycoprotein mainly produced during fetal development, and elevated levels in adults are frequently associated with liver diseases, especially hepatocellular carcinoma (HCC), as well as certain germ cell tumors. Measuring AFP in biological samples is crucial for early diagnosis, monitoring disease progression, and evaluating treatment efficacy. While traditional detection methods like enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay are dependable, they often face limitations such as lengthy processes, complexity, and the need for specialized equipment. In recent years, biosensing technologies have emerged as promising alternatives for detecting AFP, offering advantages like increased sensitivity, real-time monitoring, and ease of use. Various biosensing platforms, including electrochemical, optical, and piezoelectric sensors, have been developed to enable quick and specific detection of AFP. These sensors employ molecular recognition elements, such as antibodies, aptamers, or nanoparticles, to selectively bind AFP, producing a measurable signal. This article explores the structure and mechanisms of action of AFP, the diseases linked to it, and describes several biosensing technologies. It also reviews recent advancements in AFP biosensing, discussing their principles, performance, and potential applications in clinical settings. Furthermore, the article highlights the challenges and future prospects for developing cost-effective, portable, and multiplexed AFP biosensors, underscoring their potential to revolutionize early disease detection and personalized healthcare.
Collapse
Affiliation(s)
- Nava Moghadasian Niaki
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Hatefnia
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Mahdi Heidari
- Department of Pediatrics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Tabean
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Mobed
- Social Determinants of Health Research Center, Health Management and Safety Promotion, Iran.
| |
Collapse
|
45
|
Chávez LF, Schweitzer K, Alonso EG, Ferronato MJ, Fermento ME, Alonso EN, Facchinetti MM, Curino AC, Coló GP. GEF-H1 drives breast cancer cells to tumor progression. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167816. [PMID: 40154811 DOI: 10.1016/j.bbadis.2025.167816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/06/2025] [Accepted: 03/23/2025] [Indexed: 04/01/2025]
Abstract
Rho GTPases are involved in several biological processes, including cytoskeletal remodeling, gene transcription, cell proliferation and differentiation. Dysregulation of Rho GTPases activity can lead to enhanced tumor cell proliferation and metastasis. Rho guanine nucleotide exchange factor-H1 (GEFH1) is a RhoA activator that is associated with microtubules (MT) and its localization and activity are regulated, in part, by MT and fibronectin-binding integrins. Our findings showed that GEF-H1 expression is significantly higher in human breast cancer biopsies than in normal tissues. Moreover, patients with increased GEF-H1 expression had a lower survival rate and a higher incidence of metastasis. We generated a GEF-H1 knockout (KO) breast cancer cell line and observed a significant reduction in the number of focal adhesions, formation of stress fibers, and activation of downstream signaling pathways. Concordantly, cell proliferation, migration, adhesion, and invasion were reduced. Furthermore, when GEF-H1 knockout (KO) cells were orthotopically implanted into the mammary fat pads of BALB/c mice, a significant decrease was observed in both tumor formation and lung metastasis compared to control breast cancer cells. These results suggest that GEF-H1/RhoA activation mediates cytoskeletal remodeling and signaling pathways critical for breast cancer cell proliferation, migration, and invasion. In vivo assays and human biopsy studies further support GEF-H1 as a potential biomarker of breast tumor progression.
Collapse
Affiliation(s)
- Lucía Fernández Chávez
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Karen Schweitzer
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Exequiel Gonzalo Alonso
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María Julia Ferronato
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María Eugenia Fermento
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Eliana Noelia Alonso
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - María Marta Facchinetti
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Alejandro Carlos Curino
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Georgina Pamela Coló
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB-UNS-CONICET), Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina.
| |
Collapse
|
46
|
Gundesen MT, Schjesvold F, Lund T. Treatment of myeloma bone disease: When, how often, and for how long? J Bone Oncol 2025; 52:100680. [PMID: 40242221 PMCID: PMC12002780 DOI: 10.1016/j.jbo.2025.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
The landscape of MM has changed dramatically in recent years. Several new and more effective treatments have been introduced that not only makes patients live longer but also brings them into a deeper remission. This makes the potential total exposure of bone protective treatment much higher but perhaps also less needed. New and more precise imagining techniques have been introduced making detection of bone disease more sensitive, and the introduction of SLiM-CRAB criteria have changed the parameters used in old clinical trials investigating treatment of MM bone disease. New data have also emerged investigating the effect of the RANKL inhibitor denosumab compared to zoledronic acid (ZOL). Randomized trials have investigated longer treatment durations, which becomes more relevant as patients now live longer. In addition in this review, data regarding interval between individual treatment, impact of remission status, new data in relation to rebound after discontinuation and of denosumab, as well as the rational for drug holidays before dental procedures will also be discussed.
Collapse
Affiliation(s)
| | - Fredrik Schjesvold
- Oslo Myeloma Center, Department of Hematology, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B-Cell Malignancies, University of Oslo, Oslo, Norway
| | - Thomas Lund
- Department of Hematology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Centre for Innovative Medical Technology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
47
|
Gong Y, Cheng Y, Zeng F, Liu X, Yang Y, Zhang F, Wen C, Yang F, Li H, He Y, Ni B, Xu Y, Xiao L, Zhang Q, Zhou L, Zheng J, Chen W. A self-gelling hemostatic powder boosting radiotherapy-elicited NK cell immunity to combat postoperative hepatocellular carcinoma relapse. Biomaterials 2025; 317:123068. [PMID: 39813968 DOI: 10.1016/j.biomaterials.2024.123068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/06/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Liver resection represents a main curative treatment for patients with early-stage hepatocellular carcinoma (HCC), but there is a rather high incidence of postoperative HCC relapse, which severely shortens long-term survival time. Currently, no standard adjuvant strategies are available for preventing HCC relapse in clinical practice. Impaired natural killer (NK) cell anti-tumor immunity has been disclosed as a crucial root of HCC relapse, indicating that reinstating NK cell anti-tumor immunity may show promise to curb HCC relapse. Coincidently, mounting evidence shows that radiotherapy (RT) can trigger NK cell anti-tumor immunity, though its mechanisms have never been completely elucidated. Herein, we uncover that RT can induce immunogenic cell death and activate cGAS-STING pathway in HCC cells to elicit NK cell anti-tumor immunity. However, RT is also revealed to enhance autophagy and CD73 expression in HCC cells, as well as neutrophil extracellular traps (NETs) formation, which largely limits RT-induced activation of NK cell anti-tumor immunity. Therefore, a cocktail of autophagy inhibitor 3-methyladenine, CD73 inhibitor ARL 67156 trisodium and NETs lyase DNase I may sensitize RT to reinvigorate NK cell anti-tumor immunity and thus prevent HCC relapse postresection. To minimize therapy-related side effects, a nanocomposite powder encapsulating such a triple-drug cocktail is developed. This powder can rapidly form adhesive hydrogel in situ after applied to surgical margin, consequently fulfilling liver-localized sustained drug delivery. Importantly, it can sensitize RT to reinstate NK cell anti-tumor immunity to combat postoperative HCC relapse in Heap1-6-HCC murine model. Besides, this powder can also generate rapid hemostasis in rat and porcine models. Altogether, this work provides an innovative strategy to thwart postoperative HCC relapse and bleeding.
Collapse
Affiliation(s)
- Yihang Gong
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yusheng Cheng
- Department of General Surgery, The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, China
| | - Fanxin Zeng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaoquan Liu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Feng Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chaoyao Wen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fan Yang
- Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yizhan He
- Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Beibei Ni
- Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yan Xu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Lan Xiao
- Department of Gynecology Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qi Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Lei Zhou
- Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Wenjie Chen
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Organ Transplantation Institute, Sun Yat-sen University, Organ Transplantation Research Center of Guangdong Province, Guangdong Province Engineering Laboratory for Transplantation Medicine, Guangzhou, 510630, China; Biotherapy Centre & Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
48
|
Kodada D, Hadžega D, Krumpolec P, Janoštiaková N, Bľandová G, Janega P, Ballová Z, Dosedla E, Minárik G, Repiská V. Differential gene expression in uterine endometrioid cancer cells and adjusted normal tissue. Mol Cell Probes 2025; 81:102027. [PMID: 40090626 DOI: 10.1016/j.mcp.2025.102027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Endometrial cancer is a significant public health concern with rising incidence rates globally. Understanding the molecular mechanisms underlying this disease is crucial for developing effective therapeutic strategies. Our study aimed to characterize transcriptional changes in endometrial cancer tissues compared to adjusted healthy tissue. Using RNA sequencing, we identified 2483 differentially expressed genes (DEGs), including protein-coding genes, long non-coding RNAs (lncRNAs), and microRNAs (miRNAs). Notably, several known cancer-related genes were differentially expressed, such as MYC, AKT3, CCND1, and CDKN2A. Pathway analysis revealed significant alterations in cell cycle regulation, several signaling pathways, and metabolic processes. These findings provide valuable insights into the molecular pathways dysregulated in endometrial cancer. Our results may contribute to the development of novel therapeutic targets and biomarkers for this disease.
Collapse
Affiliation(s)
- Dominik Kodada
- Faculty of Medicine, Comenius University in Bratislava, 84215, Bratislava, Slovakia.
| | | | | | - Nikola Janoštiaková
- Faculty of Medicine, Comenius University in Bratislava, 84215, Bratislava, Slovakia
| | - Gabriela Bľandová
- Faculty of Medicine, Comenius University in Bratislava, 84215, Bratislava, Slovakia
| | - Pavol Janega
- Faculty of Medicine, Comenius University in Bratislava, 84215, Bratislava, Slovakia; Medirex Group Academy, 94905, Nitra, Slovakia
| | - Zuzana Ballová
- Faculty of Medicine, P.J.Šafarik University and Hospital AGEL Košice-Šaca Inc., 040 15, Košice-Šaca, Slovakia
| | - Erik Dosedla
- Faculty of Medicine, P.J.Šafarik University and Hospital AGEL Košice-Šaca Inc., 040 15, Košice-Šaca, Slovakia
| | | | - Vanda Repiská
- Faculty of Medicine, Comenius University in Bratislava, 84215, Bratislava, Slovakia
| |
Collapse
|
49
|
Zhou M, Guan B, Liu Y, Gu Q, Chen W, Xie B, Zhou M, Xiang J, Zhao S, Zhao Q, Yan D. Fibrinogen-like 2 in tumor-associated macrophage-derived extracellular vesicles shapes an immunosuppressive microenvironment in colorectal liver metastases by promoting tumor stemness and neutrophil extracellular traps formation. Cancer Lett 2025; 618:217642. [PMID: 40097065 DOI: 10.1016/j.canlet.2025.217642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 03/01/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
Investigating the mechanisms underlying the development of an immunosuppressive microenvironment within colorectal liver metastases (CRLM) is important for identifying synergistic targets for immunotherapy. The regulatory role of tumor-associated macrophage-derived extracellular vesicles (TAM-EVs) in the immune microenvironment of CRLM has not yet been fully explored. Here, we found that TAM-EVs shaped the immunosuppressive microenvironment at the invasive front in murine CRLM models, thus dampening anti-PD-1 immunotherapy. This environment is characterized by an increased tumor stemness potential and abundant neutrophil extracellular traps (NETs) formation. Mechanistically, TAM-EVs-derived fibrinogen-like 2 (FGL2) interacts with the FCGR2B receptor in tumor cells, which further activates a p-STAT3/IL-1β positive feedback loop to increase the stemness potential of cancer cells, whereas IL-1β mediates the communication between cancer cells and neutrophils. The use of an anti-IL-1β monoclonal antibody can reduce NETs production and synergize with anti-PD-1 immunotherapy, which offers clinical translational significance for CRLM therapy. The FGL2/p-STAT3/IL-1β loop correlates with an immunosuppressive microenvironment and poor prognosis in human patients with CRLM. Our results revealed the potential of enhancing the efficacy of immunotherapy via the targeted clearance of NETs using anti-IL-1β monoclonal antibodies, which have significant clinical translational value in the treatment of CRLM.
Collapse
Affiliation(s)
- Menghua Zhou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingjie Guan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youdong Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Gu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Chen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bowen Xie
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mantang Zhou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianjun Xiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Senlin Zhao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qian Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dongwang Yan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
50
|
Naara S, Cui Z, Izgutdina A, VanLandingham NK, Nazarenko A, Woerner LC, Hua Fu BX, Gilbert LA, Johnson DE, Grandis JR. Neddylation as a target in PIK3CA-mutated head and neck cancer. Biochem Biophys Res Commun 2025; 759:151703. [PMID: 40154000 DOI: 10.1016/j.bbrc.2025.151703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
PIK3CA encodes the catalytic subunit of phosphoinositide 3-kinase (PI3K) enzyme and is the most commonly mutated oncogene in head and neck squamous cell carcinoma (HNSCC). This study aimed to identify potential therapeutic targets in HNSCC harboring mutant PIK3CA. We used CRISPR interference (CRISPRi)-based genome-wide screening methodology to reveal targetable genetic dependencies in PIK3CA-mutated HNSCC. Screening was conducted in an HPV-positive HNSCC cell line, UM-SCC-47, engineered to express the canonical E545K PIK3CA mutant. We identified 34 genes co-dependent on PIK3CA E545K mutation, including 5 genes in the neddylation pathway (NEDD8, NEDD8-MDP-1 and NAE1, USP8, UBA3). Validation experiments confirmed the essential role of NEDD8, NEDD8-MDP-1, and NAE1, indicating a novel regulatory mechanism in PIK3CA E545K-mutated HNSCC. Our findings suggest that PIK3CA mutation may serve as a predictive biomarker for neddylation inhibitor therapy in a subpopulation of HNSCC.
Collapse
Affiliation(s)
- Shorook Naara
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Zhibin Cui
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Adila Izgutdina
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Nathan K VanLandingham
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Andrew Nazarenko
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Liam C Woerner
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Luke A Gilbert
- Arc Institute, 3181 Porter Drive, Palo Alto, CA, 94304, USA; University of California, San Francisco, Helen Diller Family Comprehensive Cancer Center, 13 CA, San Francisco, USA; Department of Urology, University of California San Francisco, San Francisco, CA, USA; Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
| | - Daniel E Johnson
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer R Grandis
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|