1
|
Guo Y, Liu Z, Tian M, Liu X, Li N, Ding K, Liu H, Fu R. Monocytes from patients with myelodysplastic syndrome inhibit natural killer cell-mediated antitumor function through the CD200/CD200R pathway. Int Immunopharmacol 2025; 152:114394. [PMID: 40049088 DOI: 10.1016/j.intimp.2025.114394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND Reports on the expression of CD200 in monocytes are scarce, and the role of monocytes in patients with myelodysplastic syndrome (MDS) remains unclear. Additionally, monocytes have been implicated in suppressing NK cell function. Therefore, this study aimed to explore the possible mechanism by which monocytes regulate NK cell function through CD200 in patients with MDS. METHODS We collected samples from patients with MDS, those with acute myeloid leukemia, and healthy controls. We detected the expression of CD200 on the surface of monocytes and its receptor CD200R on the surface of NK cells using flow cytometry, explored the effect of the CD200/CD200R pathway on activating STAT3 and ERK of NK cells, and studied the effect of blocking CD200/CD200R pathway on NK cells. RESULTS The expression of CD200 on the surface of monocytes and CD200R on the surface of NK cells in patients with MDS was higher than those in healthy controls. After adding CD200 monoclonal antibody to the co-culture system of monocytes and NK cells, the expression of activated receptors CD107a, CD226, and NKG2D on NK cells significantly increased. We then used siRNA to silence CD200R expression in NK-92 cells and found that the blockade of CD200R enhanced the phosphorylation levels of ERK and STAT3. CONCLUSIONS Our study found that elevated CD200 expression on monocytes in patients with MDS correlates with poor prognosis, suggesting CD200 as a potential prognostic marker. Blocking CD200 enhances NK cell activation and cytotoxicity, indicating that CD200 blockade therapy could enhance antitumor responses in patients with MDS.
Collapse
Affiliation(s)
- Yixuan Guo
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China.
| | - Mengyue Tian
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China
| | - Xiaohan Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China
| | - Nianbin Li
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China
| | - Kai Ding
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, 154 Anshan Street, Heping District, Tianjin 300052, PR China; Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin 300052, PR China; Tianjin Institute of Hematology, Tianjin 300052, PR China.
| |
Collapse
|
2
|
Veletic I, Harris DM, Rozovski U, Bertilaccio MTS, Calin GA, Takahashi K, Li P, Liu Z, Manshouri T, Drula RC, Furudate K, Muftuoglu M, Hossain A, Wierda WG, Keating MJ, Estrov Z. CLL cell-derived exosomes alter the immune and hematopoietic systems. Leukemia 2025:10.1038/s41375-025-02590-x. [PMID: 40186065 DOI: 10.1038/s41375-025-02590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
The origins of immunosuppression, neutropenia, and anemia in patients with chronic lymphocytic leukemia (CLL) are not fully understood. Because in patients with CLL, circulating exosomes, which participate in cell-to-cell interactions, are CLL cell-derived, we examined whether those exosomes contribute to abnormal features of this disease. Our data revealed that CLL cell-derived exosomes engulfed by healthy donors' monocytes, fibrocytes, and lymphocytes altered target-cell gene and protein expression and suppressed normal hematopoiesis. CLL cell-derived exosomes increased normal monocytes' CD14 and CD16 expression such that it mimicked the accessory-cell profile and upregulated T cells' checkpoint PD-1 and CD160 protein levels, potentially reducing T-cell-mediated anti-CLL activity. In normal B cells, CLL cell-derived exosomes induced apoptosis and CD5 expression, suggesting that CLL cell-derived exosomes eliminate B cells and not all CD19+/CD5+ cells in CLL patients are clonal. RNA sequencing and quantitative real-time PCR revealed that CLL cell-derived exosomes harbored RNAs of pro-apoptotic genes and genes that increase metabolism, induce proliferation, and induce constitutive PI3K-mTOR pathway activation. CLL cell-derived exosomes inhibited hematopoietic progenitor proliferation, hindering the supportive effect of monocyte-derived fibrocytes. Together, our findings suggest that CLL cell-derived exosomes disrupt the immune and hematopoietic systems and contribute to disease progression in patients with CLL.
Collapse
Affiliation(s)
- Ivo Veletic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - David M Harris
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Uri Rozovski
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Maria Teresa S Bertilaccio
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Li
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhiming Liu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Taghi Manshouri
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rares-Constantin Drula
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Furudate
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Muharrem Muftuoglu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anwar Hossain
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Kozarac S, Ivanovic J, Mitrovic M, Tomic Vujovic K, Arsenovic I, Suvajdzic-Vukovic N, Bogdanovic A, Vidovic A, Todorovic-Balint M, Bila J, Mitrovic M, Lekovic D, Djunic I, Virijevic M, Trivic A, Micic J, Antic D. Managing novel therapies and concomitant medications in chronic lymphocytic leukemia: key challenges. Front Pharmacol 2025; 15:1517972. [PMID: 39830358 PMCID: PMC11739332 DOI: 10.3389/fphar.2024.1517972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
The treatment of chronic lymphocytic leukemia (CLL) consists of the continuous use of Bruton tyrosine kinase inhibitors (BTKis) such as ibrutinib, acalabrutinib, zanubrutinib and pirtobrutinib, or Bcl-2 inhibitors, such as venetoclax. Overall survival (OS) and progression-free survival (PFS) of CLL patients are significantly improved with the use of these therapies. Adverse effects (AEs) that can occur during treatment and the presence of pre-existing comorbidities in patients can influence subsequent treatment outcomes and, consequently, OS and PFS. Managing these AEs, including cardiologic toxicity and infections (including fungal infections), as well as treating cardiovascular and other comorbidities, can be challenging due to potential drug interactions with the medications used for the management of AEs and comorbidities. Therefore, this review examined the key challenges associated with the concomitant use of novel CLL therapies and medications for managing comorbidities and AEs. This review aims to enhance and facilitate the management of patients with CLL.
Collapse
Affiliation(s)
- Sofija Kozarac
- Clinic of Hematology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Jelena Ivanovic
- Clinic of Hematology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Marko Mitrovic
- Clinic of Hematology, University Clinical Centre of Serbia, Belgrade, Serbia
| | | | - Isidora Arsenovic
- Clinic of Hematology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Nada Suvajdzic-Vukovic
- Clinic of Hematology, University Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Andrija Bogdanovic
- Clinic of Hematology, University Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana Vidovic
- Clinic of Hematology, University Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milena Todorovic-Balint
- Clinic of Hematology, University Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Bila
- Clinic of Hematology, University Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Mirjana Mitrovic
- Clinic of Hematology, University Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Danijela Lekovic
- Clinic of Hematology, University Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Irena Djunic
- Clinic of Hematology, University Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marijana Virijevic
- Clinic of Hematology, University Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Trivic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Jelena Micic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Obstetrics and Gynecology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Darko Antic
- Clinic of Hematology, University Clinical Centre of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Zhong W, Kokhaei P, Mulder TA, Ghaderi A, Moshfegh A, Lundin J, Palma M, Schultz J, Olin T, Österborg A, Mellstedt H, Hojjat-Farsangi M. A Small Molecule Antagonist of CX3CR1 (KAND567) Inhibited the Tumor Growth-Promoting Effect of Monocytes in Chronic Lymphocytic Leukemia (CLL). Cancers (Basel) 2024; 16:3821. [PMID: 39594776 PMCID: PMC11592364 DOI: 10.3390/cancers16223821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Nurse-like cells (NLCs) derived from monocytes in the tumor microenvironment support the growth of chronic lymphocytic leukemia (CLL) cells. Here, we investigated the effects of a CX3CR1 (fractalkine receptor) antagonist (KAND567) on autologous monocytes and their pro-survival effects on CLL cells in vitro. METHODS Plasma concentration of CX3CL1 was determined by ELISA and CX3CR1 expression by flow cytometry. CD19+ cells and autologous monocytes from patients with CLL and healthy donors were treated with KAND567 either in co-culture or alone. The apoptosis of CD19+ cells and monocytes was determined by Annexin V/PI staining and live-cell imaging. RESULTS Plasma concentration of CX3CL1 (fractalkine) was significantly higher in patients with CLL (n = 88) than in healthy donors (n = 32) (p < 0.0001), with higher levels in patients with active compared to non-active disease (p < 0.01). CX3CR1 was found on monocytes but not B cells in patients and controls. Levels of intermediate and non-classical CX3CR1+ monocytes were higher in patients with CLL than in controls (p < 0.001), particularly in those with active disease (p < 0.0001). Co-culture experiments revealed that autologous monocytes promoted the survival of both malignant and normal B cells and that KAND567 selectively inhibited the growth of CLL cells in a dose-dependent manner but only in the presence of autologous monocytes (p < 0.05). Additionally, KAND567 inhibited the transition of monocytes to NLCs in CLL (p < 0.05). CONCLUSIONS Our data suggest that the CX3CR1/CX3CL1 axis is activated in CLL and may contribute to the NLC-driven growth-promoting effects of CLL cells. KAND567, which is in clinical trials in other disorders, should also be explored in CLL.
Collapse
Affiliation(s)
- Wen Zhong
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital, Solna, Stockholm and Karolinska Institute, SE-17176 Stockholm, Sweden; (W.Z.); (P.K.); (T.A.M.); (A.G.); (A.M.); (J.L.); (M.P.); (A.Ö.); (H.M.)
| | - Parviz Kokhaei
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital, Solna, Stockholm and Karolinska Institute, SE-17176 Stockholm, Sweden; (W.Z.); (P.K.); (T.A.M.); (A.G.); (A.M.); (J.L.); (M.P.); (A.Ö.); (H.M.)
- Department of Immunology, Arak University of Medical Sciences, Arak 3848170001, Iran
| | - Tom A. Mulder
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital, Solna, Stockholm and Karolinska Institute, SE-17176 Stockholm, Sweden; (W.Z.); (P.K.); (T.A.M.); (A.G.); (A.M.); (J.L.); (M.P.); (A.Ö.); (H.M.)
- Department of Hematology, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
| | - Amineh Ghaderi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital, Solna, Stockholm and Karolinska Institute, SE-17176 Stockholm, Sweden; (W.Z.); (P.K.); (T.A.M.); (A.G.); (A.M.); (J.L.); (M.P.); (A.Ö.); (H.M.)
| | - Ali Moshfegh
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital, Solna, Stockholm and Karolinska Institute, SE-17176 Stockholm, Sweden; (W.Z.); (P.K.); (T.A.M.); (A.G.); (A.M.); (J.L.); (M.P.); (A.Ö.); (H.M.)
| | - Jeanette Lundin
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital, Solna, Stockholm and Karolinska Institute, SE-17176 Stockholm, Sweden; (W.Z.); (P.K.); (T.A.M.); (A.G.); (A.M.); (J.L.); (M.P.); (A.Ö.); (H.M.)
- Department of Hematology, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
| | - Marzia Palma
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital, Solna, Stockholm and Karolinska Institute, SE-17176 Stockholm, Sweden; (W.Z.); (P.K.); (T.A.M.); (A.G.); (A.M.); (J.L.); (M.P.); (A.Ö.); (H.M.)
- Department of Hematology, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
| | - Johan Schultz
- Kancera AB, Karolinska Institutet Science Park, SE-17165 Solna, Sweden; (J.S.); (T.O.)
| | - Thomas Olin
- Kancera AB, Karolinska Institutet Science Park, SE-17165 Solna, Sweden; (J.S.); (T.O.)
| | - Anders Österborg
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital, Solna, Stockholm and Karolinska Institute, SE-17176 Stockholm, Sweden; (W.Z.); (P.K.); (T.A.M.); (A.G.); (A.M.); (J.L.); (M.P.); (A.Ö.); (H.M.)
- Department of Hematology, Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
| | - Håkan Mellstedt
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital, Solna, Stockholm and Karolinska Institute, SE-17176 Stockholm, Sweden; (W.Z.); (P.K.); (T.A.M.); (A.G.); (A.M.); (J.L.); (M.P.); (A.Ö.); (H.M.)
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital, Solna, Stockholm and Karolinska Institute, SE-17176 Stockholm, Sweden; (W.Z.); (P.K.); (T.A.M.); (A.G.); (A.M.); (J.L.); (M.P.); (A.Ö.); (H.M.)
| |
Collapse
|
5
|
van der Straten L, Levin M, Dinnessen MAW, Visser O, Posthuma EFM, Doorduijn JK, Langerak AW, Kater AP, Dinmohamed AG. Causes of death among patients diagnosed with chronic lymphocytic leukemia: A population-based study in the Netherlands, 1996-2020. Hemasphere 2024; 8:e70015. [PMID: 39534384 PMCID: PMC11555299 DOI: 10.1002/hem3.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/06/2024] [Accepted: 08/24/2024] [Indexed: 11/16/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) manifests heterogeneously with varying outcomes. This population-based study examined causes of death (CODs), as registered by the physician who established the death, among 20,588 CLL patients diagnosed in the Netherlands between 1996 and 2020. Utilizing cause-specific flexible parametric survival models, we estimated cause-specific hazard ratios (HRs) and cumulative incidences of death due to CLL, solid malignancies, other hematological malignancies, infections, and other causes. Our findings reveal CLL as the predominant COD, contributing to around 40% of relative mortality, with a declining 5-year death probability from 16.8% in 1996-2002 to 7.6% in 2010-2020. Also, deaths attributed to solid malignancies, other hematological malignancies, and other COD diminished over time, as evidenced by respective HRs (95% confidence interval) of 0.68 (0.60%-0.77%), 0.45 (0.38%-0.53%), and 0.77 (0.66%-0.90%). In summary, our comprehensive, population-based analysis underscores a noticeable reduction in CLL-attributed deaths and other competing causes over the studied period. Nonetheless, CLL is registered as the most prevalent cause of mortality among contemporary diagnosed patients with CLL, emphasizing the continued relevance of CLL-centric clinical strategies and research.
Collapse
Affiliation(s)
- Lina van der Straten
- Department of Research and DevelopmentNetherlands Comprehensive Cancer Organisation (IKNL)UtrechtThe Netherlands
- Department of Internal MedicineAlbert Schweitzer HospitalDordrechtThe Netherlands
- Department of ImmunologyErasmus MCRotterdamThe Netherlands
| | - Mark‐David Levin
- Department of Internal MedicineAlbert Schweitzer HospitalDordrechtThe Netherlands
| | - Manette A. W. Dinnessen
- Department of Research and DevelopmentNetherlands Comprehensive Cancer Organisation (IKNL)UtrechtThe Netherlands
| | - Otto Visser
- Department of RegistrationNetherlands Comprehensive Cancer Organisation (IKNL)UtrechtThe Netherlands
| | - Eduardus F. M. Posthuma
- Department of Internal MedicineReinier The Graaf HospitalDelftThe Netherlands
- Department of HematologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jeanette K. Doorduijn
- Department of HematologyUniversity Medical Center Rotterdam, Erasmus MC Cancer InstituteRotterdamThe Netherlands
| | | | - Arnon P. Kater
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Avinash G. Dinmohamed
- Department of Research and DevelopmentNetherlands Comprehensive Cancer Organisation (IKNL)UtrechtThe Netherlands
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Public Health, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
- Department of Hematology, ancer Center Amsterdam, Amsterdam UMCCVrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
6
|
Zhang R, Khare P, Banerjee P, Ivan C, Schneider S, Barbaglio F, Clise-Dwyer K, Jensen VB, Thompson E, Mendoza M, Chiorazzi N, Chen SS, Yan XJJ, Jain N, Ghia P, Caligaris-Cappio F, Mendonsa R, Kasimsetty S, Swoboda R, Bayraktar R, Wierda W, Gandhi V, Calin GA, Keating MJ, Bertilaccio MTS. The DLEU2/miR-15a/miR-16-1 cluster shapes the immune microenvironment of chronic lymphocytic leukemia. Blood Cancer J 2024; 14:168. [PMID: 39438453 PMCID: PMC11496494 DOI: 10.1038/s41408-024-01142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 10/25/2024] Open
Abstract
The development and progression of chronic lymphocytic leukemia (CLL) depend on genetic abnormalities and on the immunosuppressive microenvironment. We have explored the possibility that genetic drivers might be responsible for the immune cell dysregulation that shapes the protumor microenvironment. We performed a transcriptome analysis of coding and non-coding RNAs (ncRNAs) during leukemia progression in the Rag2-/-γc-/- MEC1-based xenotransplantation model. The DLEU2/miR-16 locus was found downmodulated in monocytes/macrophages of leukemic mice. To validate the role of this cluster in the tumor immune microenvironment, we generated a mouse model that simultaneously mimics the overexpression of hTCL1 and the germline deletion of the minimal deleted region (MDR) encoding the DLEU2/miR-15a/miR-16-1 cluster. This model provides an innovative and faster CLL system where monocyte differentiation and macrophage polarization are exacerbated, and T-cells are dysfunctional. MDR deletion inversely correlates with the levels of predicted target proteins including BCL2 and PD1/PD-L1 on murine CLL cells and immune cells. The inverse correlation of miR-15a/miR-16-1 with target proteins has been confirmed on patient-derived immune cells. Forced expression of miR-16-1 interferes with monocyte differentiation into tumor-associated macrophages, indicating that selected ncRNAs drive the protumor phenotype of non-malignant immune cells.
Collapse
MESH Headings
- MicroRNAs/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Animals
- Mice
- Tumor Microenvironment/immunology
- Humans
- RNA, Long Noncoding/genetics
- Tumor Suppressor Proteins/genetics
- Multigene Family
Collapse
Affiliation(s)
- Ronghua Zhang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyanka Khare
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyanka Banerjee
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Caris Life Sciences, Irving, TX, USA
| | - Sarah Schneider
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Federica Barbaglio
- Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Karen Clise-Dwyer
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vanessa Behrana Jensen
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erika Thompson
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marisela Mendoza
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Uniondale, NY, USA
- Departments of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Uniondale, NY, USA
- Northwell Health Cancer Institute, Lake Success, NY, USA
| | - Shih-Shih Chen
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Xiao-Jie Joy Yan
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paolo Ghia
- B cell neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Federico Caligaris-Cappio
- Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
- AIRC (Associazione Italiana per la Ricerca sul Cancro), 20123, Milan, Italy
| | | | | | | | - Recep Bayraktar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
7
|
Welch BM, Parikh SA, Kay NE, Medina KL. Profound deficiencies in mature blood and bone marrow progenitor dendritic cells in Chronic Lymphocyticcytic Leukemia patients. RESEARCH SQUARE 2024:rs.3.rs-4953853. [PMID: 39399662 PMCID: PMC11469369 DOI: 10.21203/rs.3.rs-4953853/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Chronic lymphocytic leukemia (CLL) patients are immunocompromised and highly vulnerable to serious recurrent infections. Conventional dendritic cells (cDCs) and plasmacytoid DCs (pDCs) are principal sensors of infection and are essential in orchestrating innate and adaptive immune responses to resolve infection. This study identified significant deficiencies in six functionally distinct DC subsets in blood of untreated CLL (UT-CLL) patients and selective normalization of pDCs in response to acalabrutinib (a Bruton tyrosine kinase inhibitor) therapy. DCs are continuously replenished from hematopoiesis in bone marrow (BM). Four BM developmental intermediates that give rise to cDCs and pDCs were examined and significant reductions of these were identified in UT-CLL patients supporting a precursor/progeny relationship. The deficiencies in blood DCs and BM DC progenitors were significantly associated with alterations in the Flt3/FL signaling pathway critical to DC development and function. Regarding clinical parameter, cDC subset deficiencies are associated with adverse prognostic indicators of disease progression, including IGHV mutation, CD49d, CD38, and ZAP-70 status. Importantly, UT-CLL patients with shared DC subset deficiencies had shorter time-to-first treatment (TTFT), uncovering a profound alteration in innate immunity with the potential to instruct therapeutic decision-making.
Collapse
Affiliation(s)
- Baustin M. Welch
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Neil E. Kay
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kay L. Medina
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Mu S, Zhao K, Zhong S, Wang Y. The Role of m6A Methylation in Tumor Immunity and Immune-Associated Disorder. Biomolecules 2024; 14:1042. [PMID: 39199429 PMCID: PMC11353047 DOI: 10.3390/biom14081042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
N6-methyladenosine (m6A) represents the most prevalent and significant internal modification in mRNA, with its critical role in gene expression regulation and cell fate determination increasingly recognized in recent research. The immune system, essential for defense against infections and maintaining internal stability through interactions with other bodily systems, is significantly influenced by m6A modification. This modification acts as a key post-transcriptional regulator of immune responses, though its effects on different immune cells vary across diseases. This review delineates the impact of m6A modification across major system-related cancers-including those of the respiratory, digestive, endocrine, nervous, urinary reproductive, musculoskeletal system malignancies, as well as acute myeloid leukemia and autoimmune diseases. We explore the pathogenic roles of m6A RNA modifications within the tumor immune microenvironment and the broader immune system, highlighting how RNA modification regulators interact with immune pathways during disease progression. Furthermore, we discuss how the expression patterns of these regulators can influence disease susceptibility to immunotherapy, facilitating the development of diagnostic and prognostic models and pioneering new therapeutic approaches. Overall, this review emphasizes the challenges and prospective directions of m6A-related immune regulation in various systemic diseases throughout the body.
Collapse
Affiliation(s)
- Siyu Mu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110000, China; (S.M.); (S.Z.)
| | - Kaiyue Zhao
- Department of Hepatology, Beijing Tsinghua Changgeng Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China;
| | - Shanshan Zhong
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110000, China; (S.M.); (S.Z.)
| | - Yanli Wang
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| |
Collapse
|
9
|
Dasanu CA, Mann SK, Baidya M, Mdluli XP, Stapleton AE, Codreanu I. Evaluation of infectious morbidity due to BTK inhibitors in indolent B-cell lymphomas: latest research findings and systematic analysis. Expert Opin Pharmacother 2024; 25:1525-1540. [PMID: 39109526 DOI: 10.1080/14656566.2024.2390121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
INTRODUCTION Randomized clinical trials (RCTs) have suggested that BTK inhibitors (BTKis) might increase infectious disease (ID) risk. Systematic analysis of this topic as derived from RCTs and clinical practice is needed. AREAS COVERED An extensive Medline, Embase, and Cochrane search of peer-reviewed sources reporting on ID morbidity in patients on BTKis was performed (1 January 2014 - 31 December 2023). Contribution of intrinsic immune defects in indolent B-cell lymphomas to this morbidity was carefully considered. EXPERT OPINION Patients with indolent B-cell lymphomas display a wide range of innate and adaptive immune defects. In addition, BTKi use is linked with an increased signal of upper respiratory tract infections (URTIs) and pneumonias, mainly grade 1-2. These agents also increase the risk of rare invasive fungal infections (IFIs), mainly due to Cryptococcus and Aspergillus spp. with a peak within several months after the start of therapy. More than half of these IFIs are fatal. Research suggests a similar ID risk across 1st, 2nd and 3rd generations of BTKis, all causing B-cell dysfunction due to BTK inhibition, along with off-target functional neutrophil/macrophage alterations. Expanding the knowledge base on ID morbidity in patients on BTKis would facilitate timely diagnosis and treatment, and improve clinical outcomes.
Collapse
Affiliation(s)
- Constantin A Dasanu
- Lucy Curci Cancer Center, Eisenhower Health, Rancho Mirage, CA, USA
- Department of Medical Oncology and Hematology, UC San Diego Health System, San Diego, CA, USA
| | - Samar K Mann
- Department of Graduate Medical Education, Oakland William Beaumont School of Medicine, Rochester, MI, USA
| | - Melvin Baidya
- Lucy Curci Cancer Center, Eisenhower Health, Rancho Mirage, CA, USA
| | - Xolani P Mdluli
- Department of Infectious Diseases, Eisenhower Health, Rancho Mirage, CA, USA
| | - Ann E Stapleton
- Department of Infectious Diseases, Eisenhower Health, Rancho Mirage, CA, USA
| | - Ion Codreanu
- Translational Imaging Center, Houston Methodist Research Institute, Houston, TX, USA
- Department of Radiology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Republic of Moldova
| |
Collapse
|
10
|
Jestrabek H, Kohlhas V, Hallek M, Nguyen PH. Impact of leukemia-associated macrophages on the progression and therapy response of chronic lymphocytic leukemia. Leuk Res 2024; 143:107531. [PMID: 38851084 DOI: 10.1016/j.leukres.2024.107531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The treatment landscape of chronic lymphocytic leukemia (CLL) has advanced remarkably over the past decade. The advent and approval of the BTK inhibitor ibrutinib and BCL-2 inhibitor venetoclax, as well as monoclonal anti-CD20 antibodies rituximab and obinutuzumab, have resulted in deep remissions and substantially improved survival outcomes for patients. However, CLL remains a complex disease with many patients still experiencing relapse and unsatisfactory treatment responses. CLL cells are highly dependent on their pro-leukemic tumor microenvironment (TME), which comprises different cellular and soluble factors. A large body of evidence suggests that CLL-associated macrophages shaped by leukemic cells play a pivotal role in maintaining CLL cell survival. In this review, we summarize the pro-survival interactions between CLL cells and macrophages, as well as the impact of the current first-line treatment agents, including ibrutinib, venetoclax, and CD20 antibodies on leukemia-associated macrophages.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/drug effects
- Disease Progression
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Adenine/analogs & derivatives
- Sulfonamides/therapeutic use
- Piperidines/therapeutic use
- Macrophages/pathology
- Macrophages/immunology
Collapse
Affiliation(s)
- Hendrik Jestrabek
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne 50931, Germany; Mildred Scheel School of Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital of Cologne, Cologne 50931, Germany
| | - Viktoria Kohlhas
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne 50931, Germany
| | - Michael Hallek
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne 50931, Germany; Mildred Scheel School of Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital of Cologne, Cologne 50931, Germany
| | - Phuong-Hien Nguyen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Center for Molecular Medicine Cologne, CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne 50931, Germany.
| |
Collapse
|
11
|
Merchand-Reyes G, Bull MF, Santhanam R, Valencia-Pena ML, Murugesan RA, Chordia A, Mo XM, Robledo-Avila FH, Ruiz-Rosado JDD, Carson WE, Byrd JC, Woyach JA, Tridandapani S, Butchar JP. NOD2 activation enhances macrophage Fcγ receptor function and may increase the efficacy of antibody therapy. Front Immunol 2024; 15:1409333. [PMID: 38919608 PMCID: PMC11196781 DOI: 10.3389/fimmu.2024.1409333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Therapeutic antibodies have become a major strategy to treat oncologic diseases. For chronic lymphocytic leukemia, antibodies against CD20 are used to target and elicit cytotoxic responses against malignant B cells. However, efficacy is often compromised due to a suppressive microenvironment that interferes with cellular immune responses. To overcome this suppression, agonists of pattern recognition receptors have been studied which promote direct cytotoxicity or elicit anti-tumoral immune responses. NOD2 is an intracellular pattern recognition receptor that participates in the detection of peptidoglycan, a key component of bacterial cell walls. This detection then mediates the activation of multiple signaling pathways in myeloid cells. Although several NOD2 agonists are being used worldwide, the potential benefit of these agents in the context of antibody therapy has not been explored. Methods Primary cells from healthy-donor volunteers (PBMCs, monocytes) or CLL patients (monocytes) were treated with versus without the NOD2 agonist L18-MDP, then antibody-mediated responses were assessed. In vivo, the Eµ-TCL1 mouse model of CLL was used to test the effects of L18-MDP treatment alone and in combination with anti-CD20 antibody. Results Treatment of peripheral blood mononuclear cells with L18-MDP led to activation of monocytes from both healthy donors and CLL patients. In addition, there was an upregulation of activating FcγR in monocytes and a subsequent increase in antibody-mediated phagocytosis. This effect required the NF-κB and p38 signaling pathways. Treatment with L18-MDP plus anti-CD20 antibody in the Eµ-TCL model of CLL led to a significant reduction of CLL load, as well as to phenotypic changes in splenic monocytes and macrophages. Conclusions Taken together, these results suggest that NOD2 agonists help overturn the suppression of myeloid cells, and may improve the efficacy of antibody therapy for CLL.
Collapse
MESH Headings
- Nod2 Signaling Adaptor Protein/agonists
- Nod2 Signaling Adaptor Protein/metabolism
- Nod2 Signaling Adaptor Protein/immunology
- Animals
- Humans
- Receptors, IgG/metabolism
- Receptors, IgG/immunology
- Mice
- Macrophages/immunology
- Macrophages/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Acetylmuramyl-Alanyl-Isoglutamine/pharmacology
- Female
- Mice, Inbred C57BL
- Signal Transduction
- Phagocytosis
- Rituximab/pharmacology
- Rituximab/therapeutic use
Collapse
Affiliation(s)
- Giovanna Merchand-Reyes
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Mikayla F. Bull
- College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ramasamy Santhanam
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Maria L. Valencia-Pena
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | | | - Aadesh Chordia
- College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Xiaokui-Molly Mo
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Frank H. Robledo-Avila
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - Juan De Dios Ruiz-Rosado
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Division of Pediatric Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, OH, United States
| | | | - John C. Byrd
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Jennifer A. Woyach
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Susheela Tridandapani
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jonathan P. Butchar
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
12
|
Floerchinger A, Seiffert M. Lessons learned from the Eµ-TCL1 mouse model of CLL. Semin Hematol 2024; 61:194-200. [PMID: 38839457 DOI: 10.1053/j.seminhematol.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
The Eµ-TCL1 mouse model has been used for over 20 years to study the pathobiology of chronic lymphocytic leukemia (CLL) and for preclinical testing of novel therapies. A CLL-like disease develops with increasing age in these mice due to a B cell specific overexpression of human TCL1. The reliability of this model to mirror human CLL is controversially discussed, as none of the known driver mutations identified in patients are found in Eµ-TCL1 mice. It has to be acknowledged that this mouse model was key to develop targeted therapies that aim at inhibiting the constitutive B cell receptor (BCR) signaling, a main driver of CLL. Inhibitors of BCR signaling became standard-of-care for a large proportion of patients with CLL as they are highly effective. The Eµ-TCL1 model further advanced our understanding of CLL biology owed to studies that crossed this mouse line with various transgenic mouse models and demonstrated the relevance of CLL-cell intrinsic and -extrinsic drivers of disease. These studies were instrumental in showing the relevance of the tumor microenvironment in the lymphoid tissues for disease progression and immune escape in CLL. It became clear that CLL cells shape and rely on stromal and immune cells, and that immune suppressive mechanisms and T cell exhaustion contribute to CLL progression. Based on this knowledge, new immunotherapy strategies were clinically tested for CLL, but so far with disappointing results. As some of these therapies were effective in the Eµ-TCL1 mouse model, the question arose concerning the translatability of preclinical studies in these mice. The aim of this review is to summarize lessons we have learnt over the last decades by studying CLL-like disease in the Eµ-TCL1 mouse model. The article focuses on pitfalls and limitations of the model, as well as the gained knowledge and potential of using this model for the development of novel treatment strategies to achieve the goal of curing patients with CLL.
Collapse
MESH Headings
- Animals
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Mice
- Disease Models, Animal
- Humans
- Mice, Transgenic
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/antagonists & inhibitors
- Tumor Microenvironment/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
Collapse
Affiliation(s)
- Alessia Floerchinger
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Biosciences of the University of Heidelberg, Heidelberg, Germany
| | - Martina Seiffert
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
13
|
Vom Stein AF, Hallek M, Nguyen PH. Role of the tumor microenvironment in CLL pathogenesis. Semin Hematol 2024; 61:142-154. [PMID: 38220499 DOI: 10.1053/j.seminhematol.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/02/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024]
Abstract
Chronic lymphocytic leukemia (CLL) cells extensively interact with and depend on their surrounding tumor microenvironment (TME). The TME encompasses a heterogeneous array of cell types, soluble signals, and extracellular vesicles, which contribute significantly to CLL pathogenesis. CLL cells and the TME cooperatively generate a chronic inflammatory milieu, which reciprocally reprograms the TME and activates a signaling network within CLL cells, promoting their survival and proliferation. Additionally, the inflammatory milieu exerts chemotactic effects, attracting CLL cells and other immune cells to the lymphoid tissues. The intricate CLL-TME interactions also facilitate immune evasion and compromise leukemic cell surveillance. We also review recent advances that have shed light on additional aspects that are substantially influenced by the CLL-TME interplay.
Collapse
Affiliation(s)
- Alexander F Vom Stein
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Center for Molecular Medicine Cologne; CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Michael Hallek
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Center for Molecular Medicine Cologne; CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
| | - Phuong-Hien Nguyen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Center for Molecular Medicine Cologne; CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany.
| |
Collapse
|
14
|
Svanberg Teglgaard R, Marquart HV, Hartling HJ, Bay JT, da Cunha-Bang C, Brieghel C, Faitová T, Enggaard L, Kater AP, Levin MD, Kersting S, Ostrowski SR, Niemann CU. Improved Innate Immune Function in Patients with Chronic Lymphocytic Leukemia Treated with Targeted Therapy in Clinical Trials. Clin Cancer Res 2024; 30:1959-1971. [PMID: 38393694 DOI: 10.1158/1078-0432.ccr-23-2522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/06/2023] [Accepted: 02/21/2024] [Indexed: 02/25/2024]
Abstract
PURPOSE Patients with chronic lymphocytic leukemia (CLL) have increased risk of severe infections. Although adaptive immune dysfunction is well described, clinical tools for identifying patients at risk are lacking, warranting investigation of additional immune components. In contrast to chemotherapy, targeted agents could spare or even improve innate immune function. Therefore, we investigated innate immune phenotypes and function in patients with CLL before and during targeted treatment. EXPERIMENTAL DESIGN Baseline and consecutive blood samples were collected from patients with CLL treated with acalabrutinib (n = 17) or ibrutinib+venetoclax (n = 18) in clinical trials. Innate immune function was assessed by TruCulture, a whole-blood ligand-stimulation assay quantifying cytokine release in response to standardized stimuli. Innate immune phenotypes were characterized by flow cytometry. As a proxy for infections, we mapped antimicrobial use before and during treatment. RESULTS At baseline, patients with CLL displayed impaired stimulated cytokine responses to the endotoxin lipopolysaccharide (LPS) along with deactivated monocytes, enrichment of myeloid-derived suppressor cells and metamyelocytes, and elevated (unstimulated) proinflammatory cytokines. Two/three cycles of acalabrutinib or ibrutinib normalized LPS-stimulated responses, in parallel with decreased duration of infections. Innate immune profiles and elevated proinflammatory cytokines further normalized during longer-term acalabrutinib or ibrutinib+venetoclax, paralleled by decreased infection frequency. CONCLUSIONS Innate immune impairment and infection susceptibility in patients with CLL were restored in parallel during targeted therapy. Thus, targeted treatment may reduce the risk of infections in CLL, as currently under investigation in the PreVent-ACaLL phase 2 trial of acalabrutinib+venetoclax for high-risk CLL (NCT03868722).
Collapse
Affiliation(s)
| | | | | | - Jakob Thaning Bay
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | | | | | - Tereza Faitová
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
| | | | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam, the Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | - Sabina Kersting
- Department of Hematology, Haga Ziekenhuis, Den Haag, the Netherlands
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carsten U Niemann
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Blanco G, Morris E, Morris JL, Letson HL, Susheel S, Puiggros A, Espinet B, Chiorazzi N, Dobson GP. Spontaneous Regression Accompanied by Concomitant Immune Alterations in a Patient with Chronic Lymphocytic Leukemia. ANNALS OF CASE REPORTS 2024; 9:1539. [PMID: 38939045 PMCID: PMC11210401 DOI: 10.29011/2574-7754.101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Spontaneous regression (SR) of chronic lymphocytic leukemia (CLL) is a rare event (0.2% - 1%). Some advances have been made in understanding the tumor genetic characteristics of such patients, although the immunological mechanisms leading to SR remain unclear. We describe a series of immunological events related to regression dynamics, allowing the identification of a SR phase (associated with >99% reduction of CLL cells in peripheral blood and adenopathy resolution in less than one year, concurrently with a nine-fold increase in monocyte counts, high B2M and the appearance of an oligoclonal serum IgG band), followed by a persistent regression (PR) phase that was maintained for ≥17 months. Our observations highlight a role of monocytes and B2M in SR, potentially related to immune activation. The oligoclonal IgG band detected during SR was maintained in PR, suggesting either a change in the ability of malignant cells (IgM+IgD+IgG‒) to differentiate into IgG-secreting cells, or an anti-tumor humoral response from normal B cells. These findings imply immune and molecular mechanisms required to eliminate malignant cells and might suggest new immunotherapies for CLL.
Collapse
Affiliation(s)
- Gonzalo Blanco
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Hospital del Mar Medical Research Institute (IMIM), Hospital del Mar, Barcelona, 08003, Spain
| | - Edward Morris
- Department of Clinical Hematology, Icon Cancer Care, Hyde Park, QLD, Australia
| | - Jodie L Morris
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Hayley L Letson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | | | - Anna Puiggros
- Hospital del Mar Medical Research Institute (IMIM), Hospital del Mar, Barcelona, 08003, Spain
| | - Blanca Espinet
- Hospital del Mar Medical Research Institute (IMIM), Hospital del Mar, Barcelona, 08003, Spain
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
- Departments of Molecular Medicine and of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Geoffrey P Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
16
|
Giannoni P, Marini C, Cutrona G, Sambuceti GM, Fais F, de Totero D. Unraveling the Bone Tissue Microenvironment in Chronic Lymphocytic Leukemia. Cancers (Basel) 2023; 15:5058. [PMID: 37894425 PMCID: PMC10605026 DOI: 10.3390/cancers15205058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most frequent leukemia in Western countries. Although characterized by the progressive expansion and accumulation of leukemic B cells in peripheral blood, CLL cells develop in protective niches mainly located within lymph nodes and bone marrow. Multiple interactions between CLL and microenvironmental cells may favor the expansion of a B cell clone, further driving immune cells toward an immunosuppressive phenotype. Here, we summarize the current understanding of bone tissue alterations in CLL patients, further addressing and suggesting how the multiple interactions between CLL cells and osteoblasts/osteoclasts can be involved in these processes. Recent findings proposing the disruption of the endosteal niche by the expansion of a leukemic B cell clone appear to be a novel field of research to be deeply investigated and potentially relevant to provide new therapeutic approaches.
Collapse
Affiliation(s)
- Paolo Giannoni
- Department of Experimental Medicine, Biology Section, University of Genova, 16132 Genova, Italy;
| | - Cecilia Marini
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (C.M.); (G.M.S.)
- CNR Institute of Bioimages and Molecular Physiology, 20054 Milano, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (G.C.); (F.F.)
| | - Gian Mario Sambuceti
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (C.M.); (G.M.S.)
- Department of Health Sciences, University of Genova, 16132 Genova, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (G.C.); (F.F.)
- Department of Experimental Medicine, Anatomy Section, University of Genova, 16132 Genova, Italy
| | - Daniela de Totero
- Department of Health Sciences, University of Genova, 16132 Genova, Italy
| |
Collapse
|
17
|
Gargiulo E, Teglgaard RS, Faitová T, Niemann CU. Immune Dysfunction and Infection - Interaction between CLL and Treatment: A Reflection on Current Treatment Paradigms and Unmet Needs. Acta Haematol 2023; 147:84-98. [PMID: 37497921 DOI: 10.1159/000533234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) is a hematological malignancy characterized by immune dysfunction, which significantly contributes to increased morbidity and mortality due to infections. SUMMARY Advancement in therapeutic strategies based on combination chemoimmunotherapy and targeted treatment have increased life expectancy for patients affected by CLL. However, mortality and morbidity due to infection showed no improvement over the last decades. Although therapy options are highly efficient in targeting leukemic cells, several studies highlighted the interactions of different treatments with the tumor microenvironment immune components, significantly impacting their clinical efficacy and fostering increased risk of infections. KEY MESSAGES Given the profound immune dysfunction caused by CLL itself, treatment can thus represent a double-edged sword. Thus, it is essential to increase our understanding and awareness on how conventional therapies affect the disease-microenvironment-infection axis to ensure the best personalized strategy for each patient. This requires careful consideration of the advantages and disadvantages of efficient treatments, whether chemoimmunotherapy or targeted combinations, leading to risk of infectious complications. To this regard, our machine learning-based algorithm CLL Treatment-Infection Model, currently implemented into the local electronic health record system for Eastern Denmark, aims at early identification of patients at high risk of serious infections (PreVent-ACaLL; NCT03868722). We here review strategies for management of immune dysfunction and infections in CLL.
Collapse
Affiliation(s)
- Ernesto Gargiulo
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Infectious Diseases, PERSIMUNE, Rigshospitalet, Copenhagen, Denmark
| | | | - Tereza Faitová
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Carsten Utoft Niemann
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Tomasso MR, Padrick SB. BORG family proteins in physiology and human disease. Cytoskeleton (Hoboken) 2023; 80:182-198. [PMID: 37403807 DOI: 10.1002/cm.21768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
The binder of rho GTPases (BORG)/Cdc42 effector proteins (Cdc42EP) family is composed of five Rho GTPase binding proteins whose functions and mechanism of actions are of emerging interest. Here, we review recent findings pertaining to the family as a whole and consider how these change our understanding of cellular organization. Recent studies have implicated BORGs in both fundamental physiology and in human diseases, mainly cancers. An emerging pattern suggests that BORG family members cancer-promoting properties are related to their ability to regulate the cytoskeleton, with many impacting the organization of acto-myosin stress fibers. This is consistent with the broader literature indicating that BORG family members are regulators of both the septin and actin cytoskeleton networks. The exact mechanism through which BORGs modify the cytoskeleton is not clear, but we consider here a few data-supported and speculative possibilities. Finally, we delve into how the Rho GTPase Cdc42 modifies BORG function in cells. This remains open-ended as Cdc42's effects on BORGs appear cell type- and cell state-dependent. Collectively, these data point to the importance of the BORG family and suggest broader themes in their function and regulation.
Collapse
Affiliation(s)
- Meagan R Tomasso
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Shae B Padrick
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
De Biasi S, Neroni A, Nasi M, Lo Tartaro D, Borella R, Gibellini L, Lucaccioni L, Bertucci E, Lugli L, Miselli F, Bedetti L, Neri I, Ferrari F, Facchinetti F, Berardi A, Cossarizza A. Healthy preterm newborns: Altered innate immunity and impaired monocyte function. Eur J Immunol 2023; 53:e2250224. [PMID: 36929362 DOI: 10.1002/eji.202250224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Birth prior to 37 completed weeks of gestation is referred to as preterm (PT). Premature newborns are at increased risk of developing infections as neonatal immunity is a developing structure. Monocytes, which are key players after birth, activate inflammasomes. Investigations into the identification of innate immune profiles in premature compared to full-term infants are limited. Our research includes the investigation of monocytes and NK cells, gene expression, and plasma cytokine levels to investigate any potential differences among a cohort of 68 healthy PT and full-term infants. According to high-dimensional flow cytometry, PT infants have higher proportions of CD56+/- CD16+ NK cells and immature monocytes, and lower proportions of classical monocytes. Gene expression revealed lower proportions of inflammasome activation after in vitro monocyte stimulation and the quantification of plasma cytokine levels expressed higher concentrations of alarmin S100A8. Our findings suggest that PT newborns have altered innate immunity and monocyte functional impairment, and pro-inflammatory plasmatic profile. This may explain PT infants' increased susceptibility to infectious disease and should pave the way for novel therapeutic strategies and clinical interventions.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Anita Neroni
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Lucaccioni
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Emma Bertucci
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Licia Lugli
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Miselli
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Bedetti
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Isabella Neri
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabrizio Ferrari
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Facchinetti
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto Berardi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- National Institute for Cardiovascular Research, Bologna, Italy
| |
Collapse
|
20
|
Coyne V, Mead HL, Mongini PKA, Barker BM. B Cell Chronic Lymphocytic Leukemia Development in Mice with Chronic Lung Exposure to Coccidioides Fungal Arthroconidia. Immunohorizons 2023; 7:333-352. [PMID: 37195872 PMCID: PMC10579974 DOI: 10.4049/immunohorizons.2300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Links between repeated microbial infections and B cell chronic lymphocytic leukemia (B-CLL) have been proposed but not tested directly. This study examines how prolonged exposure to a human fungal pathogen impacts B-CLL development in Eµ-hTCL1-transgenic mice. Monthly lung exposure to inactivated Coccidioides arthroconidia, agents of Valley fever, altered leukemia development in a species-specific manner, with Coccidioides posadasii hastening B-CLL diagnosis/progression in a fraction of mice and Coccidioides immitis delaying aggressive B-CLL development, despite fostering more rapid monoclonal B cell lymphocytosis. Overall survival did not differ significantly between control and C. posadasii-treated cohorts but was significantly extended in C. immitis-exposed mice. In vivo doubling time analyses of pooled B-CLL showed no difference in growth rates of early and late leukemias. However, within C. immitis-treated mice, B-CLL manifests longer doubling times, as compared with B-CLL in control or C. posadasii-treated mice, and/or evidence of clonal contraction over time. Through linear regression, positive relationships were noted between circulating levels of CD5+/B220low B cells and hematopoietic cells previously linked to B-CLL growth, albeit in a cohort-specific manner. Neutrophils were positively linked to accelerated growth in mice exposed to either Coccidioides species, but not in control mice. Conversely, only C. posadasii-exposed and control cohorts displayed positive links between CD5+/B220low B cell frequency and abundance of M2 anti-inflammatory monocytes and T cells. The current study provides evidence that chronic lung exposure to fungal arthroconidia affects B-CLL development in a manner dependent on fungal genotype. Correlative studies suggest that fungal species differences in the modulation of nonleukemic hematopoietic cells are involved.
Collapse
Affiliation(s)
- Vanessa Coyne
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| | - Heather L. Mead
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| | | | - Bridget M. Barker
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| |
Collapse
|
21
|
Gargiulo E, Ribeiro EFO, Niemann CU. SOHO State of the Art Updates and Next Questions | Infections in Chronic Lymphocytic Leukemia Patients: Risks and Management. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:322-332. [PMID: 36868914 DOI: 10.1016/j.clml.2023.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
Although chronic lymphocytic leukemia (CLL) is a malignancy characterized by accumulation of tumor cells in the blood, bone marrow, lymph nodes and secondary lymphoid tissues, the hallmark of the disease and the major cause of death for patients with CLL is actually immune dysfunction and associated infections. Despite improvement in treatment based on combination chemoimmunotherapy and targeted treatment with BTK and BCL-2 inhibitors leading to longer overall survival for patients with CLL, the mortality due to infections have not improved over the last 4 decades. Thus, infections are now the main cause of death for patients with CLL, posing threats to the patient whether during the premalignant state of monoclonal B lymphocytosis (MBL), during the watch & wait phase for treatment naïve patients, or upon treatment in terms of chemoimmunotherapy or targeted treatment. To test whether the natural history of immune dysfunction and infections in CLL can be changed, we have developed the machine learning based algorithm CLL-TIM.org to identify these patients. The CLL-TIM algorithm is currently being used for selection of patients for the clinical trial PreVent-ACaLL (NCT03868722), testing whether short-term treatment with the BTK inhibitor acalabrutinib and the BCL-2 inhibitor venetoclax can improve immune function and decrease the risk of infections for this high-risk patient population. We here review the background for and management of infectious risks in CLL.
Collapse
Affiliation(s)
- Ernesto Gargiulo
- Tumor-Stroma Interactions, Department of Oncology, Luxembourg Institute of Health, Luxembourg City, Luxembourg; Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; PERSIMUNE, Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | | | - Carsten U Niemann
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; Center of Oncology and Hematology, Hospital Santa Lúcia Sul, Brasilia, Brazil; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
22
|
Ni J, Zhang J, Liu J, Fan L, Lin X, Yu H, Sun G. Exosomal NAMPT from chronic lymphocytic leukemia cells orchestrate monocyte survival and phenotype under endoplasmic reticulum stress. Hematol Oncol 2023; 41:61-70. [PMID: 36321597 DOI: 10.1002/hon.3093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022]
Abstract
Endoplasmic reticulum (ER) stress has been reported to be transmitted from tumor cells to immune cells via exosome and implicated in immune escape. However, the influence of ER stress on monocytes in chronic lymphocytic leukemia (CLL) cells is largely unknown. Here, we observed the expression of ER stress markers (GRP78, ATF6, PERK, IRE1a, and XBP1s) in CLL cells. The increasing mRNA expression of these ER stress response components was positively correlated with more aggressive disease. Exosome from ER stress inducer tunicamycin (TM)-primed CLL cells (ERS-exo) up-regulated the expression of ER stress marker on monocytes, indicating ER stress is transmissible in vitro via exosome. Treatment with ERS-exo promoted the survival of monocytes and induced phenotypic changes with a significantly larger percentage of CD14+ CD16+ monocytes. Finally, we identified exosome-mediated transfer of extracellular nicotinamide phosphoribosyltransferase (eNAMPT) from ER stressed CLL cells into monocytes as a novel mechanism through which ERS-exo regulated monocytes. Exosomal eNAMPT up-regulated nicotinamide adenine dinucleotide (NAD+ ) production which subsequently activated SIRT1-C/EBPβ signaling pathway in monocytes. Our results suggest the role of ER stress in mediating immunological dysfunction in CLL.
Collapse
Affiliation(s)
- Jing Ni
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ju Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Hefei, Anhui, China
| | - Jiatao Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lulu Fan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao Lin
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hanqing Yu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
23
|
Petty LE, Silva R, de Souza LC, Vieira AR, Shaw DM, Below JE, Letra A. Genome-wide association study identifies novel risk loci for apical periodontitis. RESEARCH SQUARE 2023:rs.3.rs-2515434. [PMID: 36747740 PMCID: PMC9901028 DOI: 10.21203/rs.3.rs-2515434/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Apical periodontitis (AP) is a common consequence of root canal infection leading to periapical bone resorption. Microbial and host genetic factors, and their interactions, have been shown to play a role in AP development and progression. Variations in a few genes have been reported in association with AP, however, the lack of genome-wide studies has hindered progress in understanding the mechanisms involved in AP. Here, we report the first genome-wide association study of AP in a well-characterized population. Male and female adults (n=932) presenting with deep caries with AP (cases) or without AP (controls) were included. Genotyping was performed using the Illumina Expanded Multi-Ethnic Genotyping Array. Single-variant association testing was performed adjusting for sex and five principal components. Subphenotype association testing, analyses of genetically regulated gene expression, polygenic risk score and phenome-wide association (PheWAS) analyses were also performed. Eight loci reached near-genome-wide significant association with AP (p < 5 x 10-6); gene-focused analyses replicated three previously reported associations (p < 8.9 x 10-5). Sex-specific and subphenotype analyses revealed additional significant associations with variants genome-wide. Functionally oriented gene-based analyses revealed eight genes significantly associated with AP (p < 5 x 10-5), and PheWAS analysis revealed 33 phecodes associated with AP risk score (p < 3.08 x 10-5). This study identified novel genes/loci contributing to AP and revealed specific contributions to AP risk in males and females. Importantly, we identified additional systemic conditions significantly associated with AP risk. Our findings provide strong evidence for host-mediated effects on AP susceptibility.
Collapse
Affiliation(s)
- L E Petty
- Vanderbilt University Medical Center
| | - R Silva
- University of Pittsburgh School of Dental Medicine
| | - L Chaves de Souza
- University of Texas Health Science Center at Houston School of Dentistry: The University of Texas Health Science Center at Houston School of Dentistry
| | - A R Vieira
- University of Pittsburgh School of Dental Medicine
| | - D M Shaw
- Vanderbilt University Medical Center
| | - J E Below
- Vanderbilt University Medical Center
| | | |
Collapse
|
24
|
Giannoni P, Marini C, Cutrona G, Todoerti K, Neri A, Ibatici A, Sambuceti G, Pigozzi S, Mora M, Ferrarini M, Fais F, de Totero D. A High Percentage of CD16+ Monocytes Correlates with the Extent of Bone Erosion in Chronic Lymphocytic Leukemia Patients: The Impact of Leukemic B Cells in Monocyte Differentiation and Osteoclast Maturation. Cancers (Basel) 2022; 14:cancers14235979. [PMID: 36497460 PMCID: PMC9740193 DOI: 10.3390/cancers14235979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Significant skeletal alterations are present in Chronic Lymphocytic Leukemia (CLL) patients; bone erosion, particularly evident in the long bone shaft, appeared increased in the progressive disease stage. Moreover, the partial colonization of the bone with reactive bone marrow we documented via PET-FDG imaging suggests that neoplastic cell overgrowth contributes to bone derangement. Indeed, cytokines released by leukemic B cells impair osteoblast differentiation and enhance osteoclast formation in vitro. CD16, Fcγ-RIIIa, has been previously indicated as a marker of osteoclast precursors. We demonstrate, here, that the percentage of circulating monocytes, CD16+, is significantly higher in CLL patients than in normal controls and directly correlated with the extent of bone erosion. When we assessed if healthy monocytes, treated with a CLL-conditioned medium, modulated RANK, RANKL and CD16, we observed that all these molecules were up-regulated and CD16 to a greater extent. Altogether, these findings suggest that leukemic cells facilitate osteoclast differentiation. Interestingly, the evidence that monocytes, polarized toward the M2 phenotype, were characterized by high CD16 expression and showed a striking propensity to differentiate toward osteoclasts may provide further explanations for the enhanced levels of bone erosion detected, in agreement with the high number of immunosuppressive-M2 cells present in these patients.
Collapse
Affiliation(s)
- Paolo Giannoni
- Department of Experimental Medicine, Biology Section, University of Genova, 16132 Genova, Italy
| | - Cecilia Marini
- CNR Institute of Bioimages and Molecular Physiology, 20054 Milano, Italy
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Katia Todoerti
- Hematology Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milano, Italy
- Department of Pathology, IRCCS Istituto Nazionale dei Tumori G. Venezian, 20133 Milano, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Adalberto Ibatici
- Hematology Unit and Bone Marrow Transplantation, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Health Sciences, University of Genova, 16132 Genova, Italy
| | - Simona Pigozzi
- Department of Surgical and Diagnostic Sciences, University of Genova, 16132 Genova, Italy
| | - Marco Mora
- Pathology Anatomy Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Manlio Ferrarini
- Department of Experimental Medicine, Anatomy Section, University of Genova, 16132 Genova, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Experimental Medicine, Anatomy Section, University of Genova, 16132 Genova, Italy
| | - Daniela de Totero
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Correspondence:
| |
Collapse
|
25
|
Yano M, Byrd JC, Muthusamy N. Natural Killer Cells in Chronic Lymphocytic Leukemia: Functional Impairment and Therapeutic Potential. Cancers (Basel) 2022; 14:cancers14235787. [PMID: 36497266 PMCID: PMC9739887 DOI: 10.3390/cancers14235787] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Immunotherapy approaches have advanced rapidly in recent years. While the greatest therapeutic advances so far have been achieved with T cell therapies such as immune checkpoint blockade and CAR-T, recent advances in NK cell therapy have highlighted the therapeutic potential of these cells. Chronic lymphocytic leukemia (CLL), the most prevalent form of leukemia in Western countries, is a very immunosuppressive disease but still shows significant potential as a target of immunotherapy, including NK-based therapies. In addition to their antileukemia potential, NK cells are important immune effectors in the response to infections, which represent a major clinical concern for CLL patients. Here, we review the interactions between NK cells and CLL, describing functional changes and mechanisms of CLL-induced NK suppression, interactions with current therapeutic options, and the potential for therapeutic benefit using NK cell therapies.
Collapse
Affiliation(s)
- Max Yano
- Medical Science Training Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - John C. Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence: (J.C.B.); (N.M.)
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (J.C.B.); (N.M.)
| |
Collapse
|
26
|
Bassan VL, Barretto GD, de Almeida FC, Palma PVB, Binelli LS, da Silva JPL, Fontanari C, Castro RC, de Figueiredo Pontes LL, Frantz FG, de Castro FA. Philadelphia-negative myeloproliferative neoplasms display alterations in monocyte subpopulations frequency and immunophenotype. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:223. [PMID: 36175590 PMCID: PMC9522456 DOI: 10.1007/s12032-022-01825-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/14/2022] [Indexed: 11/06/2022]
Abstract
Philadelphia-negative myeloproliferative neoplasms (MPN) are clonal hematological diseases associated with driver mutations in JAK2, CALR, and MPL genes. Moreover, several evidence suggests that chronic inflammation and alterations in stromal and immune cells may contribute to MPN’s pathophysiology. We evaluated the frequency and the immunophenotype of peripheral blood monocyte subpopulations in patients with polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (MF). Peripheral blood monocytes from PV (n = 16), ET (n = 16), and MF (n = 15) patients and healthy donors (n = 10) were isolated and submitted to immunophenotyping to determine the frequency of monocyte subpopulations and surface markers expression density. Plasma samples were used to measure the levels of soluble CD163, a biomarker of monocyte activity. PV, ET, and MF patients presented increased frequency of intermediate and non-classical monocytes and reduced frequency of classical monocytes compared to controls. Positivity for JAK2 mutation was significantly associated with the percentage of intermediate monocytes. PV, ET, and MF patients presented high-activated monocytes, evidenced by higher HLA-DR expression and increased soluble CD163 levels. The three MPN categories presented increased frequency of CD56+ aberrant monocytes, and PV and ET patients presented reduced frequency of CD80/86+ monocytes. Therefore, alterations in monocyte subpopulations frequency and surface markers expression pattern may contribute to oncoinflammation and may be associated with the pathophysiology of MPN.
Collapse
Affiliation(s)
- Vitor Leonardo Bassan
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| | - Gabriel Dessotti Barretto
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Felipe Campos de Almeida
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Patrícia Vianna Bonini Palma
- Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14051-260, Brazil
| | - Larissa Sarri Binelli
- Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14051-260, Brazil.,Department of Medical Images, Hematology and Clinical Oncology, University Hospital of the Ribeirão Preto Medical School, University of São Paulo, Rua Tenente Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14015-010, Brazil
| | - João Paulo Lettieri da Silva
- Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14051-260, Brazil.,Department of Medical Images, Hematology and Clinical Oncology, University Hospital of the Ribeirão Preto Medical School, University of São Paulo, Rua Tenente Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14015-010, Brazil
| | - Caroline Fontanari
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Ricardo Cardoso Castro
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Lorena Lôbo de Figueiredo Pontes
- Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14051-260, Brazil.,Department of Medical Images, Hematology and Clinical Oncology, University Hospital of the Ribeirão Preto Medical School, University of São Paulo, Rua Tenente Catão Roxo, 3900 - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14015-010, Brazil
| | - Fabiani Gai Frantz
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Fabíola Attié de Castro
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, São Paulo, 14040-903, Brazil
| |
Collapse
|
27
|
Papp E, Tasnády S, Tisza K, Király Á, Bekő G. Newly Diagnosed Chronic Lymphocytic Leukemia During Symptomatic COVID-19: Two Cases. EJIFCC 2022; 33:187-193. [PMID: 36313909 PMCID: PMC9562477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patients suffering from malignant diseases have a high risk of developing severe or critical forms of COVID-19 (Coronavirus Disease 2019). Chronic lymphocytic leukaemia (CLL) is characterized by dysregulated adaptive and innate immune responses, because both T and B cells, the function of phagocytes and the activity of the complement system may be affected. Severe SARS-CoV-2 infection also influences the immunological functions mainly via causing the depletion of CD4+ and CD8+ T cells. We present the cases of two patients, whose de novo CLL were observed during severe COVID-19 pneumonia. A 43-year-old man with IDDM (Insulin dependent diabetes mellitus) was sent to hospital in February 2021. He had a bilateral severe COVID-19 pneumonia. There was a suspected sign of malignancy on a thoracic vertebra in his chest CT, and haematological consultation was requested. In parallel, a 53-year-old man was hospitalized in March of 2021 because of severe COVID-19 pneumonia. CLL was suspected based on his haematology test results (WBC: 123 G/L, lymphocytes: 91%, haemoglobin: 107 g/L). Flow cytometric analysis revealed CLL in both cases. Based on the result of the molecular genetic tests, the first patient had a good prognosis in Rai 0 stage, while the other patient suffered from Rai I stage with a worse prognosis. Both patients recovered from bilateral COVID-19 pneumonia without the need for intensive care unit treatment. The follow-up of these CLL patients that manifested during symptomatic COVID-19 disease further enriched our knowledge on such clinical conditions where the immune system is dysfunctional due to different simultaneous causes.
Collapse
Affiliation(s)
- Enikő Papp
- Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Central Laboratory, Budapest, Hungary,Corresponding author: Enikő Papp, MD E-mail:
| | - Szabolcs Tasnády
- Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Central Laboratory, Budapest, Hungary
| | - Katalin Tisza
- Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Central Laboratory, Budapest, Hungary
| | - Ágnes Király
- Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Department of Hematology and Stem Cell Transplantation, Budapest, Hungary
| | - Gabriella Bekő
- Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Central Laboratory, Budapest, Hungary
| |
Collapse
|
28
|
Rivera D, Ferrajoli A. Managing the Risk of Infection in Chronic Lymphocytic Leukemia in the Era of New Therapies. Curr Oncol Rep 2022; 24:1003-1014. [PMID: 35366167 PMCID: PMC8976213 DOI: 10.1007/s11912-022-01261-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW Patients diagnosed with CLL have an increased susceptibility to infections. Over the years, there has been a shift of the treatment arsenal to an increasing use of chemotherapy-free regimens, particularly small molecule inhibitors. These therapies have proven to be effective and have a favorable toxicity profile. Infections continue to represent a significant complication in the era of novel therapies. RECENT FINDINGS Recent studies continue to bring new insights into the effects of modern therapies on the immune system. Evidence supporting infection prevention strategies is scarce. We will review the available recommendations to prevent infections in patients with CLL treated with novel therapies. New CLL therapies are broadly adopted in routine practice, requiring optimization of their side effects. Timely prevention, recognition, and treatment of infections should remain an important aspect of the standard management of a patient with CLL.
Collapse
Affiliation(s)
- Daniel Rivera
- Department of Leukemia, The University of Texas-MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 0428, Houston, TX, 77030, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas-MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 0428, Houston, TX, 77030, USA.
| |
Collapse
|
29
|
Effects of B-Cell Lymphoma on the Immune System and Immune Recovery after Treatment: The Paradigm of Targeted Therapy. Int J Mol Sci 2022; 23:ijms23063368. [PMID: 35328789 PMCID: PMC8952275 DOI: 10.3390/ijms23063368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/10/2022] Open
Abstract
B-cell lymphoma and lymphoproliferative diseases represent a heterogeneous and complex group of neoplasms that are accompanied by a broad range of immune regulatory disorder phenotypes. Clinical features of autoimmunity, hyperinflammation, immunodeficiency and infection can variously dominate, depending on the immune pathway most involved. Immunological imbalance can play a role in lymphomagenesis, also supporting the progression of the disease, while on the other hand, lymphoma acts on the immune system to weaken immunosurveillance and facilitate immunoevasion. Therefore, the modulation of immunity can have a profound effect on disease progression or resolution, which makes the immune system a critical target for new therapies. In the current therapeutic scenario enriched by chemo-free regimens, it is important to establish the effect of various drugs on the disease, as well as on the restoration of immune functions. In fact, treatment of B-cell lymphoma with passive immunotherapy that targets tumor cells or targets the tumor microenvironment, together with adoptive immunotherapy, is becoming more frequent. The aim of this review is to report relevant data on the evolution of the immune system during and after treatment with targeted therapy of B-cell lymphomas.
Collapse
|
30
|
Kowalska W, Zarobkiewicz M, Tomczak W, Woś J, Morawska I, Bojarska-Junak A. Reduced Percentage of CD14 dimCD16 +SLAN + Monocytes Producing TNF and IL-12 as an Immunological Sign of CLL Progression. Int J Mol Sci 2022; 23:3029. [PMID: 35328450 PMCID: PMC8951649 DOI: 10.3390/ijms23063029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 12/07/2022] Open
Abstract
Monocytes are one of the least studied immune cells with a potentially important role in the pathogenesis of chronic lymphocytic leukemia (CLL). Nevertheless, data regarding the role of subpopulations of monocytes in the CLL microenvironment are still limited. For the very first time, this study presents an assessment of monocyte subsets divided according to SLAN and CD16 expression in CLL patients. The study involved 70 freshly diagnosed CLL patients and 35 healthy donors. Using flow cytometry, monocyte subpopulations were assessed among PBMCs. CD14+ monocytes can be divided into: "classical" (CD14+CD16-SLAN-), "intermediate" (CD14+CD16+SLAN-) and "non-classical" (CD14dimCD16+SLAN+). In our study, we noted an increased percentage of non-classical monocytes with intracellular expression of TNF and IL-12. On the other hand, among the intermediate monocytes, a significantly higher percentage of cells synthesizing anti-inflammatory IL-10 was detected. The percentage of CD14dimCD16+SLAN+ monocytes producing TNF and IL-12 decreased with the stage of CLL and inversely correlated with the expression of the prognostic factors ZAP-70 and CD38. Moreover, the percentage of CD14dimCD16+SLAN+ monocytes producing TNF and IL-12 was lower in CLL patients requiring treatment. This may indicate the beneficial effect of non-classical monocytes on the anti-tumor response.
Collapse
Affiliation(s)
- Wioleta Kowalska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (M.Z.); (J.W.); (I.M.); (A.B.-J.)
| | - Michał Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (M.Z.); (J.W.); (I.M.); (A.B.-J.)
| | - Waldemar Tomczak
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-080 Lublin, Poland;
| | - Justyna Woś
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (M.Z.); (J.W.); (I.M.); (A.B.-J.)
| | - Izabela Morawska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (M.Z.); (J.W.); (I.M.); (A.B.-J.)
| | - Agnieszka Bojarska-Junak
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (M.Z.); (J.W.); (I.M.); (A.B.-J.)
| |
Collapse
|
31
|
Romano A, Cerchione C, Conticello C, Filetti S, Bulla A, Chiarenza A, Del Fabro V, Leotta S, Markovic U, Motta G, Parisi M, Stagno F, Palumbo GA, Di Raimondo F. Reduced Absolute Count of Monocytes in Patients Carrying Hematological Neoplasms and SARS-CoV2 Infection. Cancers (Basel) 2022; 14:cancers14051173. [PMID: 35267478 PMCID: PMC8909066 DOI: 10.3390/cancers14051173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary In hematological neoplasms associated with COVID-19, immunological dysfunction, including reduced count of non-classical monocytes, has been suggested as a primary driver of morbidity and mortality. In this work, we investigated the contribution of absolute monocyte count to clinical outcome of COVID-19 in 120 patients affected by hematological neoplasms that tested positive to SARS-CoV-2. We found that there was no statistical difference in 30-day mortality, rate of hospitalization for intensive cure and viral clearance at 14 days between fully vaccinated and unvaccinated patients. Increased 30-day mortality was associated with presence of active/progressing disease and absolute monocyte count lower than 400 cells/uL. Reduced absolute counts of monocytes should be used as an alert of increased risk of severe/critical forms of COVID-19 in patients with hematological malignancies, even when the full vaccination cycle has been completed. Abstract Background: Clinical course of COVID-19 depends on several patient-specific risk factors, including immune function, that is largely compromised in cancer patients. Methods: We prospectively evaluated 120 adult consecutive patients (including 34 cases of COVID-19 breakthrough after two full doses of BNT162b2 vaccine) with underlying hematological malignancies and a SARS-CoV-2 infection, in terms of patient’s clinical outcome. Results: Among fully vaccinated patients the achievement of viral clearance by day 14 was more frequent than in unvaccinated patients. Increased 30-day mortality was associated with presence of active/progressing disease and absolute monocyte count lower than 400 cells/uL. Results of multivariable analysis in unvaccinated patients showed that the pre-infection absolute count of monocytes less or equal to 400 cells/mmc, active or progressive disease of the underlying hematological malignancy, the COVID-19 severity identified by hospitalization requirement and lack of viral clearance at 14 days were independent predictors of 1-year overall survival. Conclusions: Taken together, our results indicate that absolute monocyte count determined one month before any documented SARS-CoV-2 infection could identify patients affected by hematological neoplasms with increased risk of inferior overall survival.
Collapse
Affiliation(s)
- Alessandra Romano
- Division of Hematology, AOU “Policlinico G. Rodolico-San Marco”, 95100 Catania, Italy; (A.R.); (C.C.); (S.F.); (A.B.); (A.C.); (V.D.F.); (S.L.); (U.M.); (G.M.); (M.P.); (F.S.); (G.A.P.); (F.D.R.)
- Postgraduate School of Hematology, University of Catania, 95124 Catania, Italy
| | - Claudio Cerchione
- Hematology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori [M1] (IRST) IRCCS, 47014 Meldola (FC), Italy
- Correspondence:
| | - Concetta Conticello
- Division of Hematology, AOU “Policlinico G. Rodolico-San Marco”, 95100 Catania, Italy; (A.R.); (C.C.); (S.F.); (A.B.); (A.C.); (V.D.F.); (S.L.); (U.M.); (G.M.); (M.P.); (F.S.); (G.A.P.); (F.D.R.)
| | - Sabina Filetti
- Division of Hematology, AOU “Policlinico G. Rodolico-San Marco”, 95100 Catania, Italy; (A.R.); (C.C.); (S.F.); (A.B.); (A.C.); (V.D.F.); (S.L.); (U.M.); (G.M.); (M.P.); (F.S.); (G.A.P.); (F.D.R.)
| | - Anna Bulla
- Division of Hematology, AOU “Policlinico G. Rodolico-San Marco”, 95100 Catania, Italy; (A.R.); (C.C.); (S.F.); (A.B.); (A.C.); (V.D.F.); (S.L.); (U.M.); (G.M.); (M.P.); (F.S.); (G.A.P.); (F.D.R.)
| | - Annalisa Chiarenza
- Division of Hematology, AOU “Policlinico G. Rodolico-San Marco”, 95100 Catania, Italy; (A.R.); (C.C.); (S.F.); (A.B.); (A.C.); (V.D.F.); (S.L.); (U.M.); (G.M.); (M.P.); (F.S.); (G.A.P.); (F.D.R.)
| | - Vittorio Del Fabro
- Division of Hematology, AOU “Policlinico G. Rodolico-San Marco”, 95100 Catania, Italy; (A.R.); (C.C.); (S.F.); (A.B.); (A.C.); (V.D.F.); (S.L.); (U.M.); (G.M.); (M.P.); (F.S.); (G.A.P.); (F.D.R.)
| | - Salvatore Leotta
- Division of Hematology, AOU “Policlinico G. Rodolico-San Marco”, 95100 Catania, Italy; (A.R.); (C.C.); (S.F.); (A.B.); (A.C.); (V.D.F.); (S.L.); (U.M.); (G.M.); (M.P.); (F.S.); (G.A.P.); (F.D.R.)
| | - Uros Markovic
- Division of Hematology, AOU “Policlinico G. Rodolico-San Marco”, 95100 Catania, Italy; (A.R.); (C.C.); (S.F.); (A.B.); (A.C.); (V.D.F.); (S.L.); (U.M.); (G.M.); (M.P.); (F.S.); (G.A.P.); (F.D.R.)
- Oncohematology and BMT Unit, Mediterranean Institute of Oncology, 95125 Viagrande, Italy
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98122 Messina, Italy
| | - Giovanna Motta
- Division of Hematology, AOU “Policlinico G. Rodolico-San Marco”, 95100 Catania, Italy; (A.R.); (C.C.); (S.F.); (A.B.); (A.C.); (V.D.F.); (S.L.); (U.M.); (G.M.); (M.P.); (F.S.); (G.A.P.); (F.D.R.)
| | - Marina Parisi
- Division of Hematology, AOU “Policlinico G. Rodolico-San Marco”, 95100 Catania, Italy; (A.R.); (C.C.); (S.F.); (A.B.); (A.C.); (V.D.F.); (S.L.); (U.M.); (G.M.); (M.P.); (F.S.); (G.A.P.); (F.D.R.)
| | - Fabio Stagno
- Division of Hematology, AOU “Policlinico G. Rodolico-San Marco”, 95100 Catania, Italy; (A.R.); (C.C.); (S.F.); (A.B.); (A.C.); (V.D.F.); (S.L.); (U.M.); (G.M.); (M.P.); (F.S.); (G.A.P.); (F.D.R.)
| | - Giuseppe Alberto Palumbo
- Division of Hematology, AOU “Policlinico G. Rodolico-San Marco”, 95100 Catania, Italy; (A.R.); (C.C.); (S.F.); (A.B.); (A.C.); (V.D.F.); (S.L.); (U.M.); (G.M.); (M.P.); (F.S.); (G.A.P.); (F.D.R.)
- Ingrassia Department, University of Catania, 95100 Catania, Italy
| | - Francesco Di Raimondo
- Division of Hematology, AOU “Policlinico G. Rodolico-San Marco”, 95100 Catania, Italy; (A.R.); (C.C.); (S.F.); (A.B.); (A.C.); (V.D.F.); (S.L.); (U.M.); (G.M.); (M.P.); (F.S.); (G.A.P.); (F.D.R.)
- Postgraduate School of Hematology, University of Catania, 95124 Catania, Italy
| |
Collapse
|
32
|
Li CC, Zhang G, Du J, Liu D, Li Z, Ni Y, Zhou J, Li Y, Hou S, Zheng X, Lan Y, Liu B, He A. Pre-configuring chromatin architecture with histone modifications guides hematopoietic stem cell formation in mouse embryos. Nat Commun 2022; 13:346. [PMID: 35039499 PMCID: PMC8764075 DOI: 10.1038/s41467-022-28018-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
The gene activity underlying cell differentiation is regulated by a diverse set of transcription factors (TFs), histone modifications, chromatin structures and more. Although definitive hematopoietic stem cells (HSCs) are known to emerge via endothelial-to-hematopoietic transition (EHT), how the multi-layered epigenome is sequentially unfolded in a small portion of endothelial cells (ECs) transitioning into the hematopoietic fate remains elusive. With optimized low-input itChIP-seq and Hi-C assays, we performed multi-omics dissection of the HSC ontogeny trajectory across early arterial ECs (eAECs), hemogenic endothelial cells (HECs), pre-HSCs and long-term HSCs (LT-HSCs) in mouse embryos. Interestingly, HSC regulatory regions are already pre-configurated with active histone modifications as early as eAECs, preceding chromatin looping dynamics within topologically associating domains. Chromatin looping structures between enhancers and promoters only become gradually strengthened over time. Notably, RUNX1, a master TF for hematopoiesis, enriched at half of these loops is observed early from eAECs through pre-HSCs but its enrichment further increases in HSCs. RUNX1 and co-TFs together constitute a central, progressively intensified enhancer-promoter interactions. Thus, our study provides a framework to decipher how temporal epigenomic configurations fulfill cell lineage specification during development.
Collapse
Affiliation(s)
- Chen C Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Guangyu Zhang
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, 100850, Beijing, China
| | - Junjie Du
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, 100850, Beijing, China
| | - Di Liu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Zongcheng Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, 100850, Beijing, China
| | - Yanli Ni
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, 100850, Beijing, China
| | - Jie Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, 100850, Beijing, China
| | - Yunqiao Li
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, 100850, Beijing, China
| | - Siyuan Hou
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaona Zheng
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, 100850, Beijing, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, 100850, Beijing, China.
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, 100850, Beijing, China.
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| | - Aibin He
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
33
|
Le Gallou S, Lhomme F, Irish JM, Mingam A, Pangault C, Monvoisin C, Ferrant J, Azzaoui I, Rossille D, Bouabdallah K, Damaj G, Cartron G, Godmer P, Le Gouill S, Casasnovas RO, Molina TJ, Houot R, Lamy T, Tarte K, Fest T, Roussel M. Nonclassical Monocytes Are Prone to Migrate Into Tumor in Diffuse Large B-Cell Lymphoma. Front Immunol 2021; 12:755623. [PMID: 34975843 PMCID: PMC8716558 DOI: 10.3389/fimmu.2021.755623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Absolute count of circulating monocytes has been proposed as an independent prognostic factor in diffuse large B-cell lymphoma (DLBCL). However, monocyte nomenclature includes various subsets with pro-, anti-inflammatory, or suppressive functions, and their clinical relevance in DLBCL has been poorly explored. Herein, we broadly assessed circulating monocyte heterogeneity in 91 DLBCL patients. Classical- (cMO, CD14pos CD16neg) and intermediate- (iMO, CD14pos CD16pos) monocytes accumulated in DLBCL peripheral blood and exhibited an inflammatory phenotype. On the opposite, nonclassical monocytes (ncMOSlanpos, CD14low CD16pos Slanneg and ncMOSlanneg, CD14low CD16pos, Slanneg) were decreased in peripheral blood. Tumor-conditioned monocytes presented similarities with ncMO phenotype from DLBCL and were prone to migrate in response to CCL5 and CXCL12, and presented similarities with DLBCL-infiltrated myeloid cells, as defined by mass cytometry. Finally, we demonstrated the adverse value of an accumulation of nonclassical monocytes in 2 independent cohorts of DLBCL.
Collapse
Affiliation(s)
- Simon Le Gallou
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
| | - Faustine Lhomme
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Jonathan M. Irish
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Anna Mingam
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France
| | - Celine Pangault
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
| | - Celine Monvoisin
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
| | - Juliette Ferrant
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
| | - Imane Azzaoui
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France
| | - Delphine Rossille
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
| | - Krimo Bouabdallah
- Centre Hospitalier Universitaire de Bordeaux, Service d’Hématologie Clinique, Bordeaux, France
| | - Gandhi Damaj
- Centre Hospitalier Universitaire de Caen, Service d’Hématologie Clinique, Caen, France
| | - Guillaume Cartron
- Centre Hospitalier Universitaire de Montpellier, Service d’Hématologie Clinique, Montpellier, France
| | - Pascal Godmer
- Centre Hospitalier de Bretagne Atlantique, Unité d’Hématologie Clinique, Vannes, France
| | - Steven Le Gouill
- Centre Hospitalier Universitaire de Nantes, Service d’Hématologie Clinique, Institut National de la Sante et de la Recherche Medicale, Centre de Recherche en Cancérologie et Immunologie Nantes Angers (INSERM CCRCINA) Nantes-Angers, NeXT Université de Nantes, Nantes, France
| | | | - Thierry Jo Molina
- Asistance Publique, Hopitaux de Paris (APHP), Necker, Service d’Anatomopathologie, Sorbonne Université, Paris, France
| | - Roch Houot
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
- Centre Hospitalier Universitaire de Rennes, Service d’Hématologie Clinique, Rennes, France
| | - Thierry Lamy
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
- Centre Hospitalier Universitaire de Rennes, Service d’Hématologie Clinique, Rennes, France
| | - Karin Tarte
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
| | - Thierry Fest
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
| | - Mikael Roussel
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche U1236, Université Rennes 1, Etablissement Français du Sang Bretagne, Rennes, France
| |
Collapse
|
34
|
Gagez AL, Paul F, Alaterre E, Gouilleux-Gruart V, Tuaillon E, Lepretre S, Ternant D, Letestu R, Moreaux J, Cartron G. Angiogenic factors could help us to define patients obtaining complete response with undetectable minimal residual disease in untreated CLL patients treated by FCR: results from the CLL2010FMP, a FILO study. Leuk Lymphoma 2021; 62:3160-3169. [PMID: 34806520 DOI: 10.1080/10428194.2021.1955879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Angiogenesis is in a constant balance between pro and anti-angiogenic factors. Neoangiogenesis, implicated in metastatic spreading is characterized in solid cancers, but fairly new in chronic lymphocytic leukemia (CLL). We hypothesize that secretion of angiogenic factors could be correlated to the pathogenesis of CLL, and therefore predict the outcome of patients. We investigated concentrations of 22 cytokines and chemokines in 137 non-del 17p B-CLL patients, treated with a fludarabine-cyclophosphamide-rituximab (FCR)-based regimen. We constructed a biomarker index defining different risk groups based on lymphocyte count, the intensity of CD20 antigen on CD19+ cells, Ang-2, and PDGF-BB plasma concentrations at diagnosis. Four groups were defined, exhibiting specific molecular signatures and correlated with progression-free survival of patients. Our results suggest that we can determine at diagnosis of non-del 17p B-CLL patients, those with a very high probability of progression-free survival, independently of IGVH mutational status and residual disease at the end of treatment.
Collapse
Affiliation(s)
- Anne Laure Gagez
- Department of Clinical Hematology, University Hospital Centre Montpellier, Montpellier, France
| | - Franciane Paul
- University Hospital Centre Montpellier, Montpellier, France
| | | | | | - Edouard Tuaillon
- Department of Bacteriology-Virology, University Hospital Centre Montpellier, Montpellier, France
| | | | - David Ternant
- UMR7292, Laboratory of Pharmacology-Toxicology, Tours, France
| | - Rémi Letestu
- Department of Biological Hematology, Hospital Avicenne, Bobigny, France
| | - Jérôme Moreaux
- IGH, Montpellier, France.,Laboratory for Monitoring Innovative Therapies, Department of Biological Hematology, University Hospital Centre Montpellier, Montpellier, France.,Institut Universitaire de France, Paris, France
| | | |
Collapse
|
35
|
Moreno C, Muñoz C, Terol MJ, Hernández-Rivas JÁ, Villanueva M. Restoration of the immune function as a complementary strategy to treat Chronic Lymphocytic Leukemia effectively. J Exp Clin Cancer Res 2021; 40:321. [PMID: 34654437 PMCID: PMC8517318 DOI: 10.1186/s13046-021-02115-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/24/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is a hematological malignancy characterized by uncontrolled proliferation of B-cells and severe immune dysfunction. Chemo(immuno)therapies (CIT) have traditionally aimed to reduce tumor burden without fully understanding their effects on the immune system. As a consequence, CIT are usually associated with higher risk of infections, secondary neoplasms and autoimmune disorders. A better understanding of the biology of the disease has led to the development of therapeutic strategies which not only act against malignant B-cells but also reactivate and enhance the patient's own anti-tumor immune response. Here, we review the current understanding of the underlying interplay between the malignant cells and non-malignant immune cells that may promote tumor survival and proliferation. In addition, we review the available evidence on how different treatment options for CLL including CIT regimens, small molecular inhibitors (i.e, BTK inhibitors, PI3K inhibitors, BCL-2 inhibitors) and T-cell therapies, affect the immune system and their clinical consequences. Finally, we propose that a dual therapeutic approach, acting directly against malignant B-cells and restoring the immune function is clinically relevant and should be considered when developing future strategies to treat patients with CLL.
Collapse
Affiliation(s)
| | - Cecilia Muñoz
- Hospital Universitario de la Princesa, Madrid, Spain
| | | | - José-Ángel Hernández-Rivas
- Hospital Universitario Infanta Leonor, Universidad Complutense de Madrid, Madrid, Spain.
- Servicio de Hematología y Hemoterapia, Hospital Universitario Infanta Leonor, Departamento de Medicina, Universidad Complutense de Madrid, Madrid, España.
- , C/ Gran Vía del Este 80, 28031, Madrid, Spain.
| | | |
Collapse
|
36
|
Yan Y, Liang Q, Xu Z, Yi Q. Integrative bioinformatics and experimental analysis revealed down-regulated CDC42EP3 as a novel prognostic target for ovarian cancer and its roles in immune infiltration. PeerJ 2021; 9:e12171. [PMID: 34616622 PMCID: PMC8449529 DOI: 10.7717/peerj.12171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/26/2021] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is a significant clinical challenge as no effective treatments are available to enhance patient survival. Recently, N6-methyladenosine (m6A) RNA modification has been demonstrated to play a pivotal role in tumorigenesis and progression. However, the roles of m6A target genes in ovarian cancer haven't been clearly illustrated. In this study, we presented a comprehensive bioinformatics and in vitro analysis to evaluate the roles of m6A target genes. Cell division cycle 42 effector protein 3 (CDC42EP3), one probable m6A target gene, was identified to be down-regulated in ovarian cancer tissues and cells. Meanwhile, quantitative PCR (qPCR) and western blot were used to confirm the down-regulated CDC42EP3 in ovarian cancer cells A2780 and TOV112D. The biological function of CDC42EP3 in ovarian cancer was further validated with several algorithms, such as PrognoScan, K-M plotter, LinkedOmics and TISIDB. These findings indicated that lower expression of CDC42EP3 was correlated with poor prognosis in patients with ovarian cancer. In addition, CDC42EP3 expression was significantly associated with a diverse range of tumor-infiltrating immune cells, including natural killer cells (NK), T central memory cells (Tcm), T gamma delta cells (Tgd), etc. Taken together, this study uncovered the potential roles of m6A target gene CDC42EP3 in the regulation of immune microenvironment in the ovarian cancer, and identified CDC42EP3 as a novel prognostic target.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
37
|
Goroshchuk O, Kolosenko I, Kunold E, Vidarsdottir L, Pirmoradian M, Azimi A, Jafari R, Palm-Apergi C. Thermal proteome profiling identifies PIP4K2A and ZADH2 as off-targets of Polo-like kinase 1 inhibitor volasertib. FASEB J 2021; 35:e21741. [PMID: 34143546 DOI: 10.1096/fj.202100457rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023]
Abstract
Polo-like kinase 1 (PLK1) is an important cell cycle kinase and an attractive target for anticancer treatments. An ATP-competitive small molecular PLK1 inhibitor, volasertib, has reached phase III in clinical trials in patients with refractory acute myeloid leukemia as a combination treatment with cytarabine. However, severe side effects limited its use. The origin of the side effects is unclear and might be due to insufficient specificity of the drug. Thus, identifying potential off-targets to volasertib is important for future clinical trials and for the development of more specific drugs. In this study, we used thermal proteome profiling (TPP) to identify proteome-wide targets of volasertib. Apart from PLK1 and proteins regulated by PLK1, we identified about 200 potential volasertib off-targets. Comparison of this result with the mass-spectrometry analysis of volasertib-treated cells showed that phosphatidylinositol phosphate and prostaglandin metabolism pathways are affected by volasertib. We confirmed that PIP4K2A and ZADH2-marker proteins for these pathways-are, indeed, stabilized by volasertib. PIP4K2A, however, was not affected by another PLK1 inhibitor onvansertib, suggesting that PIP4K2A is a true off-target of volasertib. Inhibition of these proteins is known to impact both the immune response and fatty acid metabolism and could explain some of the side effects seen in volasertib-treated patients.
Collapse
Affiliation(s)
- Oksana Goroshchuk
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| | - Iryna Kolosenko
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| | - Elena Kunold
- Department of Oncology-Pathology, Clinical Proteomics Mass Spectrometry, Karolinska Institutet, Solna, Sweden
| | - Linda Vidarsdottir
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| | - Mohammad Pirmoradian
- Department of Oncology-Pathology, Clinical Proteomics Mass Spectrometry, Karolinska Institutet, Solna, Sweden
| | - Alireza Azimi
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| | - Rozbeh Jafari
- Department of Oncology-Pathology, Clinical Proteomics Mass Spectrometry, Karolinska Institutet, Solna, Sweden
| | - Caroline Palm-Apergi
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
38
|
Prognostic Value of Tie2-Expressing Monocytes in Chronic Lymphocytic Leukemia Patients. Cancers (Basel) 2021; 13:cancers13112817. [PMID: 34198760 PMCID: PMC8200999 DOI: 10.3390/cancers13112817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Tie2-expressing monocytes (TEM) characterized by the phenotype of CD14+CD16+Tie2+ are seen as the new immunosuppressive force in tumors. However, little is known about the role of circulating TEM in chronic lymphocytic leukemia (CLL) as opposed to their role in solid tumors. In the current study, we observed an increased percentage of TEMs in CLL patients. A greater than 14.82% proportion of TEM foretells an unfavorable prognosis. This threshold has predicted a shorter time from diagnosis to therapy, and worse overall survival. Despite these results, a multivariable Cox regression model performed in 104 CLL patients did not identify TEM as an independent predictor of survival. However, TEM, as an important element of the tumor-microenvironment, can be an important complement to other prognostic indicators. Abstract Tie2-expressing monocytes (TEMs) are associated with tumor progression and metastasis. This unique subset of monocytes has been identified as a potential prognostic marker in several solid tumors. However, TEMs remain poorly characterized in hematological cancers, including chronic lymphocytic leukemia (CLL). This study analyzed, for the first time, the clinical significance of TEM population in CLL patients. Flow cytometry analysis of TEMs (defined as CD14+CD16+Tie2+ cells) was performed at the time of diagnosis on peripheral blood mononuclear cells from 104 untreated CLL patients. Our results revealed an expansion of circulating TEM in CLL patients. These monocytes express high levels of VEGF and suppressive IL-10. A high percentage of TEM was associated closely with unfavorable prognostic markers (ZAP-70, CD38, 17p and 11q deletion, and IGHV mutational status). Moreover, increased percentages of circulating TEMs were significantly higher in patients not responding to the first-line therapy as compared to responding patients, suggesting its potential predictive value. High TEM percentage was also correlated with shorter overall survival (OS) and shorter time to treatment (TTT). Importantly, based on multivariate Cox regression analysis, TEM percentage was an independent predictor for TTT. Thus, we can suggest the adverse role of TEMs in CLL.
Collapse
|
39
|
Sudhakar P, Verstockt B, Cremer J, Verstockt S, Sabino J, Ferrante M, Vermeire S. Understanding the Molecular Drivers of Disease Heterogeneity in Crohn's Disease Using Multi-omic Data Integration and Network Analysis. Inflamm Bowel Dis 2021; 27:870-886. [PMID: 33313682 PMCID: PMC8128416 DOI: 10.1093/ibd/izaa281] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 12/12/2022]
Abstract
Crohn's disease (CD), a form of inflammatory bowel disease (IBD), is characterized by heterogeneity along multiple clinical axes, which in turn impacts disease progression and treatment modalities. Using advanced data integration approaches and systems biology tools, we studied the contribution of CD susceptibility variants and gene expression in distinct peripheral immune cell subsets (CD14+ monocytes and CD4+ T cells) to relevant clinical traits. Our analyses revealed that most clinical traits capturing CD heterogeneity could be associated with CD14+ and CD4+ gene expression rather than disease susceptibility variants. By disentangling the sources of variation, we identified molecular features that could potentially be driving the heterogeneity of various clinical traits of CD patients. Further downstream analyses identified contextual hub proteins such as genes encoding barrier functions, antimicrobial peptides, chemokines, and their receptors, which are either targeted by drugs used in CD or other inflammatory diseases or are relevant to the biological functions implicated in disease pathology. These hubs could be used as cell type-specific targets to treat specific subtypes of CD patients in a more individualized approach based on the underlying biology driving their disease subtypes. Our study highlights the importance of data integration and systems approaches to investigate complex and heterogeneous diseases such as IBD.
Collapse
Affiliation(s)
- Padhmanand Sudhakar
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
| | - Bram Verstockt
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
- University Hospitals Leuven, Department of Gastroenterology and Hepatology
| | - Jonathan Cremer
- Department of Microbiology and Immunology, Laboratory of Clinical Immunology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sare Verstockt
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
| | - João Sabino
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
- University Hospitals Leuven, Department of Gastroenterology and Hepatology
| | - Marc Ferrante
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
- University Hospitals Leuven, Department of Gastroenterology and Hepatology
| | - Séverine Vermeire
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
- University Hospitals Leuven, Department of Gastroenterology and Hepatology
| |
Collapse
|
40
|
Wang J, Zeng H, Zhang H, Han Y. The role of exosomal PD-L1 in tumor immunotherapy. Transl Oncol 2021; 14:101047. [PMID: 33647542 PMCID: PMC7921878 DOI: 10.1016/j.tranon.2021.101047] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Exosomes are bioactive lipid bilayer vesicles released by most cells to mediate intercellular signal communication. Tumor cells release exosomes transmitting signals cell-to-cell and between cells and organs, which will promote tumor angiogenesis, regulate tumor stromal response, immune response, and enhance tumor cells resistance, while exosomes-derived from immune cells in tumor microenvironment play a key role in inhibiting tumor growth and killing tumor cells. Programmed cell death protein 1 (PD-1) combined with Programmed cell death protein ligand 1(PD-L1) can inhibit the activation of T cells, for tumor cells achieve immune escape by overexpressing PD-L1 and binding PD-1 on T cells. The use of anti-PD-1 / PD-L1 antibodies prevents their binding to a certain extent and partially restores T cell's activity. This article mainly discusses the role of exosomal PD-L1 in tumor progression and therapeutic efficacy after application of clinical antibodies, as well as the relation between different reactivity and immunity set points in cancer patients of different races, with different types and at different stages. Besides, we propose that exosomal PD-L1 may become targets for anti-PD-1 / PD-L1 antibody therapy, biomarkers for liquid biopsy, and drug carriers.
Collapse
Affiliation(s)
- Jing Wang
- Department of blood transfusion, the affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hao Zeng
- Southwest Medical University, Luzhou, Sichuan, China
| | - Hongwei Zhang
- Department of blood transfusion, the affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
41
|
Langerbeins P, Eichhorst B. Immune Dysfunction in Patients with Chronic Lymphocytic Leukemia and Challenges during COVID-19 Pandemic. Acta Haematol 2021; 144:508-518. [PMID: 33631756 PMCID: PMC8018219 DOI: 10.1159/000514071] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022]
Abstract
The novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) has been first described in December 2019 in Wuhan, China, and has led to a worldwide pandemic ever since. Initial clinical data imply that cancer patients are particularly at risk for a severe course of SARS-CoV-2. In patients with chronic lymphocytic leukemia (CLL), infections are a main contributor to morbidity and mortality driven by an impaired immune system. Treatment initiation is likely to induce immune modulation that further increases the risk for severe infections. This article aims to give an overview on pathogenesis and risk of infectious complications in patients with CLL. In this context, we discuss current data of SARS-CoV-2 infections in patients with CLL and how the pandemic impacts their management.
Collapse
MESH Headings
- COVID-19/complications
- COVID-19/epidemiology
- COVID-19/pathology
- COVID-19/therapy
- COVID-19/virology
- Humans
- Immunization, Passive
- Immunocompromised Host
- Immunotherapy
- Leukemia, Lymphocytic, Chronic, B-Cell/complications
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Palliative Care
- Pandemics
- Protein Kinase Inhibitors/therapeutic use
- SARS-CoV-2/isolation & purification
- COVID-19 Serotherapy
Collapse
Affiliation(s)
- Petra Langerbeins
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Cologne, Germany,
- CLL Study Group, University Hospital Cologne, University of Cologne, Cologne, Germany,
| | - Barbara Eichhorst
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Cologne, Germany
- CLL Study Group, University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
42
|
Solman IG, Blum LK, Burger JA, Kipps TJ, Dean JP, James DF, Mongan A. Impact of long-term ibrutinib treatment on circulating immune cells in previously untreated chronic lymphocytic leukemia. Leuk Res 2021; 102:106520. [PMID: 33611131 DOI: 10.1016/j.leukres.2021.106520] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/12/2021] [Accepted: 01/30/2021] [Indexed: 12/22/2022]
Abstract
This study evaluated long-term immunophenotypic changes in circulating levels of 24 immune cell subsets through 4 years of continuous treatment with first-line ibrutinib (420 mg once daily) in 31 patients with chronic lymphocytic leukemia (CLL) from the RESONATE-2 study, and compared them with untreated age-matched healthy donors (n = 20). Ibrutinib progressively decreased total B-cell counts and preferentially targeted malignant CLL B cells over normal B cells. Elevated counts of chronically activated, exhausted, and effector memory T cells were normalized within 6-16 months, while naive T cells remained mostly within healthy donor range (HDR). Immunosuppressive regulatory T cells and myeloid-derived suppressor cells were normalized within the first 1-2 years and then plateaued. Additionally, ibrutinib restored low counts of innate cell populations associated with antitumor immunity: plasmacytoid dendritic cells were restored to HDR after 2 years, and classical monocyte counts progressively and continuously increased toward HDR. Ibrutinib also consistently preserved circulating mature natural killer cell counts. The data indicate that ibrutinib continuously exerted positive effects on immune cell populations throughout 4 years of treatment, consistent with improved clinical outcomes observed in patients. The normalization of adaptive and innate immune cell populations suggests that long-term ibrutinib treatment mediates restoration of immunity.
Collapse
Affiliation(s)
| | - Lisa K Blum
- Pharmacyclics LLC, an AbbVie Company, Sunnyvale, CA, USA
| | - Jan A Burger
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - James P Dean
- Pharmacyclics LLC, an AbbVie Company, Sunnyvale, CA, USA
| | | | - Ann Mongan
- Pharmacyclics LLC, an AbbVie Company, Sunnyvale, CA, USA.
| |
Collapse
|
43
|
Fiorcari S, Maffei R, Atene CG, Potenza L, Luppi M, Marasca R. Nurse-Like Cells and Chronic Lymphocytic Leukemia B Cells: A Mutualistic Crosstalk inside Tissue Microenvironments. Cells 2021; 10:217. [PMID: 33499012 PMCID: PMC7911538 DOI: 10.3390/cells10020217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries and is an example of hematological disease where cooperation between genetic defects and tumor microenvironmental interaction is involved in pathogenesis. CLL is a disease that is considered as "addicted to the host"; indeed, the crosstalk between leukemic cells and the tumor microenvironment is essential for leukemic clone maintenance supporting CLL cells' survival, proliferation, and protection from drug-induced apoptosis. CLL cells are not innocent bystanders but actively model and manipulate the surrounding microenvironment to their own advantage. Besides the different players involved in this crosstalk, nurse-like cells (NLC) resemble features related to leukemia-associated macrophages with an important function in preserving CLL cell survival and supporting an immunosuppressive microenvironment. This review provides a comprehensive overview of the role played by NLC in creating a nurturing and permissive milieu for CLL cells, illustrating the therapeutic possibilities in order to specifically target and re-educate them.
Collapse
Affiliation(s)
- Stefania Fiorcari
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.); (C.G.A.); (L.P.); (M.L.)
| | - Rossana Maffei
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.); (C.G.A.); (L.P.); (M.L.)
- Hematology Unit, Department of Oncology and Hematology, A.O.U of Modena, Policlinico, 41124 Modena, Italy
| | - Claudio Giacinto Atene
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.); (C.G.A.); (L.P.); (M.L.)
| | - Leonardo Potenza
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.); (C.G.A.); (L.P.); (M.L.)
- Hematology Unit, Department of Oncology and Hematology, A.O.U of Modena, Policlinico, 41124 Modena, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.); (C.G.A.); (L.P.); (M.L.)
- Hematology Unit, Department of Oncology and Hematology, A.O.U of Modena, Policlinico, 41124 Modena, Italy
| | - Roberto Marasca
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, 41124 Modena, Italy; (R.M.); (C.G.A.); (L.P.); (M.L.)
- Hematology Unit, Department of Oncology and Hematology, A.O.U of Modena, Policlinico, 41124 Modena, Italy
| |
Collapse
|
44
|
Deciphering the complex circulating immune cell microenvironment in chronic lymphocytic leukaemia using patient similarity networks. Sci Rep 2021; 11:322. [PMID: 33431934 PMCID: PMC7801466 DOI: 10.1038/s41598-020-79121-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/26/2020] [Indexed: 11/08/2022] Open
Abstract
The tissue microenvironment in chronic lymphocytic leukaemia (CLL) plays a key role in the pathogenesis of CLL, but the complex blood microenvironment in CLL has not yet been fully characterised. Therefore, immunophenotyping of circulating immune cells in 244 CLL patients and 52 healthy controls was performed using flow cytometry and analysed by multivariate Patient Similarity Networks (PSNs). Our study revealed high inter-individual heterogeneity in the distribution and activation of bystander immune cells in CLL, depending on the bulk of the CLL cells. High CLL counts were associated with low activation on circulating monocytes and T cells and vice versa. The highest activation of immune cells, particularly of intermediate and non-classical monocytes, was evident in patients treated with novel agents. PSNs revealed a low activation of immune cells in CLL progression, irrespective of IgHV status, Binet stage and TP53 disruption. Patients with high intermediate monocytes (> 5.4%) with low activation were 2.5 times more likely (95% confidence interval 1.421–4.403, P = 0.002) to had shorter time-to-treatment than those with low monocyte counts. Our study demonstrated the association between the activation of circulating immune cells and the bulk of CLL cells. The highest activation of bystander immune cells was detected in patients with slow disease course and in those treated with novel agents. The subset of intermediate monocytes showed predictive value for time-to-treatment in CLL.
Collapse
|
45
|
Blanco G, Puiggros A, Sherry B, Nonell L, Calvo X, Puigdecanet E, Chiu PY, Kieso Y, Ferrer G, Palacios F, Arnal M, Rodríguez-Rivera M, Gimeno E, Abella E, Rai KR, Abrisqueta P, Bosch F, Calon A, Ferrer A, Chiorazzi N, Espinet B. Chronic lymphocytic leukemia-like monoclonal B-cell lymphocytosis exhibits an increased inflammatory signature that is reduced in early-stage chronic lymphocytic leukemia. Exp Hematol 2021; 95:68-80. [PMID: 33421548 DOI: 10.1016/j.exphem.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022]
Abstract
Several studies in chronic lymphocytic leukemia (CLL) patients have reported impaired immune cell functions, which contribute to tumor evasion and disease progression. However, studies on CLL-like monoclonal B-cell lymphocytosis (MBL) are scarce. In the study described here, we characterized the immune environment in 62 individuals with clinical MBL, 56 patients with early-stage CLL, and 31 healthy controls. Gene expression arrays and quantitative reverse transcription polymerase chain reaction were performed on RNA from CD4+ peripheral blood cells; serum cytokines were measured with immunoassays; and HLA-DR expression on circulating monocytes, as well as the percentages of Th1, cytotoxic, exhausted, and effector CD4+ T cells, were evaluated by flow cytometry. In addition, cell cultures of clonal B cells and CD14-enriched or -depleted cell fractions were performed. Strikingly, MBL and early-stage CLL differed in pro-inflammatory signatures. An increased inflammatory drive orchestrated mainly by monocytes was identified in MBL, which exhibited enhanced phagocytosis, pattern recognition receptors, interleukin-8 (IL8), HMGB1, and acute response signaling pathways and increased pro-inflammatory cytokines (in particular IL8, interferon γ [IFNγ], and tumor necrosis factor α). This inflammatory signature was diminished in early-stage CLL (reduced IL8 and IFNγ levels, IL8 signaling pathway, and monocytic HLA-DR expression compared with MBL), especially in those patients with mutations in IGHV genes. Additionally, CD4+ T cells of MBL and early-stage CLL exhibited a similar upregulation of Th1 and cytotoxic genes and expanded CXCR3+ and perforin+ CD4+ T cells, as well as PD1+ CD4+ T cells, compared with controls. Cell culture assays disclosed tumor-supporting effects of monocytes similarly observed in MBL and early-stage CLL. These novel findings reveal differences in the inflammatory environment between MBL and CLL, highlighting an active role for antigen stimulation in the very early stages of the disease, potentially related to malignant B-cell transformation.
Collapse
Affiliation(s)
- Gonzalo Blanco
- Laboratori de Citogenètica Molecular, Laboratori de Citologia Hematològica, Servei de Patologia, Hospital del Mar, Barcelona, Spain; Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Anna Puiggros
- Laboratori de Citogenètica Molecular, Laboratori de Citologia Hematològica, Servei de Patologia, Hospital del Mar, Barcelona, Spain; Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Barbara Sherry
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY; Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, NY; Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY
| | | | - Xavier Calvo
- Laboratori de Citogenètica Molecular, Laboratori de Citologia Hematològica, Servei de Patologia, Hospital del Mar, Barcelona, Spain; Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | | | - Pui Yan Chiu
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Yasmine Kieso
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Gerardo Ferrer
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Florencia Palacios
- Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, NY
| | | | - María Rodríguez-Rivera
- Laboratori de Citogenètica Molecular, Laboratori de Citologia Hematològica, Servei de Patologia, Hospital del Mar, Barcelona, Spain; Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Eva Gimeno
- Servei d'Hematologia, Hospital del Mar-IMIM, Barcelona, Spain; Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques, Cancer Research Program, IMIM-Hospital del Mar, Barcelona, Spain
| | - Eugènia Abella
- Servei d'Hematologia, Hospital del Mar-IMIM, Barcelona, Spain; Grup de Recerca Clínica Aplicada en Neoplàsies Hematològiques, Cancer Research Program, IMIM-Hospital del Mar, Barcelona, Spain
| | - Kanti R Rai
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, NY; Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Pau Abrisqueta
- Servei d'Hematologia, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Francesc Bosch
- Servei d'Hematologia, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Alexandre Calon
- Laboratori de Recerca Translacional en Microambient Tumoral, Cancer Research Program, IMIM, Barcelona, Spain
| | - Ana Ferrer
- Laboratori de Citogenètica Molecular, Laboratori de Citologia Hematològica, Servei de Patologia, Hospital del Mar, Barcelona, Spain; Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Nicholas Chiorazzi
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, NY; Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY; Karches Center for Oncology Research, The Feinstein Institute for Medical Research, Manhasset, NY
| | - Blanca Espinet
- Laboratori de Citogenètica Molecular, Laboratori de Citologia Hematològica, Servei de Patologia, Hospital del Mar, Barcelona, Spain; Grup de Recerca Translacional en Neoplàsies Hematològiques, Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.
| |
Collapse
|
46
|
Molecular Remission Using Low-Dose Immunotherapy with Minimal Toxicities for Poor Prognosis IGHV- Unmutated Chronic Lymphocytic Leukemia. Cells 2020; 10:cells10010010. [PMID: 33375215 PMCID: PMC7822209 DOI: 10.3390/cells10010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) accounts for 10% of hematologic malignancies. CLL is a malignancy of CD5+ B cells and it is characterized by the accumulation of small, mature-appearing neoplastic lymphocytes in the blood, bone marrow, and secondary lymphoid tissues. In the present case, a middle-aged female patient with poor prognosis unmutated IGHV CLL achieved cytogenetic and molecular remission with minimal adverse events following six cycles of low dose recombinant human IL-2 (rIL-2) in combination with low dose targeted venetoclax. Personalized low dose rIL-2 in combination with either lenalidomide or venetoclax mediates natural killer stimulation and is an effective non-toxic immunotherapy administered in the outpatient setting for poor prognosis CLL.
Collapse
|
47
|
Kikushige Y. Pathogenesis of chronic lymphocytic leukemia and the development of novel therapeutic strategies. J Clin Exp Hematop 2020; 60:146-158. [PMID: 33148933 PMCID: PMC7810248 DOI: 10.3960/jslrt.20036] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries and is characterized by the clonal expansion of mature CD5+ B cells. There have been substantial advances in the field of CLL research in the last decade, including the identification of recurrent mutations, and clarification of clonal architectures, signaling molecules, and the multistep leukemogenic process, providing a comprehensive understanding of CLL pathogenesis. Furthermore, the development of therapeutic approaches, especially that of molecular target therapies against CLL, has markedly improved the standard of care for CLL. This review focuses on the recent insights made in CLL leukemogenesis and the development of novel therapeutic strategies.
Collapse
MESH Headings
- Adult
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Molecular Targeted Therapy
- Mutation
Collapse
|
48
|
Mesaros O, Jimbu L, Neaga A, Popescu C, Berceanu I, Tomuleasa C, Fetica B, Zdrenghea M. Macrophage Polarization in Chronic Lymphocytic Leukemia: Nurse-Like Cells Are the Caretakers of Leukemic Cells. Biomedicines 2020; 8:E516. [PMID: 33228048 PMCID: PMC7699370 DOI: 10.3390/biomedicines8110516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophages are terminally differentiated innate immune cells. Through their activation, they can be polarized towards the pro-inflammatory M1 type or the wound healing-associated, anti-inflammatory M2 type macrophages. In the tumor microenvironment (TME), M2 is the dominant phenotype and these cells are referred to as tumor-associated macrophages (TAMs). TAMs secrete cytokines and chemokines, exerting an antiapoptotic, proliferative and pro-metastatic effect on the tumor cells. TAMs can be found in many cancers, including chronic lymphocytic leukemia (CLL), where they are called nurse-like cells (NLCs). Despite the generally indolent behavior of CLL, the proportion of treatment-refractory patients is significant. As with the majority of cancers, despite significant recent progress, CLL pathogenesis is poorly understood. The emerging role of the TME in nurturing the neoplastic process warrants the investigation of macrophages as a significant pathogenetic element of tumors. In this paper, we review the current knowledge on the role of stromal macrophages in CLL.
Collapse
Affiliation(s)
- Oana Mesaros
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| | - Laura Jimbu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| | - Alexandra Neaga
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
| | - Cristian Popescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
- Department of Infectious Diseases, County Emergency Hospital Alba Iulia, 20 Decebal str., 510093 Alba-Iulia, Romania
| | - Iulia Berceanu
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| | - Bogdan Fetica
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes str., 400012 Cluj-Napoca, Romania; (L.J.); (A.N.); (C.P.); (C.T.); (M.Z.)
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania; (I.B.); (B.F.)
| |
Collapse
|
49
|
Fiorcari S, Maffei R, Vallerini D, Scarfò L, Barozzi P, Maccaferri M, Potenza L, Ghia P, Luppi M, Marasca R. BTK Inhibition Impairs the Innate Response Against Fungal Infection in Patients With Chronic Lymphocytic Leukemia. Front Immunol 2020; 11:2158. [PMID: 32983178 PMCID: PMC7485008 DOI: 10.3389/fimmu.2020.02158] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Infections represent a cause of morbidity and mortality in patients affected by chronic lymphocytic leukemia (CLL). Introduction of new drugs in CLL clinical practice has showed impressive efficacy, in particular those targeting BTK. Among the consistent clinical data, an increasing number of reports describing the occurrence of unexpected opportunistic fungal infections has been reported during treatment with ibrutinib in the first 6 months of treatment. The reason underlying manifestations of invasive fungal infections in patients treated with ibrutinib is still under investigation. Our study aimed to understand the impact of BTK inhibition on immune response to fungal infection mediated by macrophages and CD14+ monocytic population obtained from CLL patients. Exposure to ibrutinib and acalabrutinib reduced signaling pathways activated by Aspergillus fumigatus determining an exacerbation of an immunosuppressive signature, a reduction of phagocytosis and a significant deficit in the secretion of inflammatory cytokines either in macrophages and monocytes isolated from CLL patients and healthy donors. These effects lead to a failure in completely counteracting conidia germination. In addition we investigated the biological effects of ibrutinib on monocyte counterpart in patients who were undergoing therapy. A significant impairment in cytokine secretion and a deficit of phagocytosis in circulating monocytes were detected after 3 months of treatment. Thus, our results uncover modifications in the innate response in CLL patients induced by ibrutinib that may impair the immunological response to fungal infection. KEYPOINTS •BTK inhibition affects a productive immune response of CLL-associated macrophages (NLC) during Aspergillus fumigatus infection.•Reduction of TNF-α secretion and phagocytosis are detected in monocytes isolated from CLL patients during ibrutinib therapy.
Collapse
Affiliation(s)
- Stefania Fiorcari
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Rossana Maffei
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Hematology Unit, Department of Oncology and Hematology, A.O.U of Modena, Policlinico, Modena, Italy
| | - Daniela Vallerini
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lydia Scarfò
- Università Vita-Salute San Raffaele and IRCCS Istituto Scientifico San Raffaele, Milan, Italy
| | - Patrizia Barozzi
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Monica Maccaferri
- Hematology Unit, Department of Oncology and Hematology, A.O.U of Modena, Policlinico, Modena, Italy
| | - Leonardo Potenza
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Ghia
- Università Vita-Salute San Raffaele and IRCCS Istituto Scientifico San Raffaele, Milan, Italy
| | - Mario Luppi
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Marasca
- Hematology Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
50
|
Bessler H, Leibovitch CM, Djaldetti M. Cytokine Release Ensuing Interaction Between Human Peripheral Blood Mononuclears and Epstein-Barr Virus Transformed B-CLL Cell Line. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2020; 3:99-104. [PMID: 35663257 PMCID: PMC9165579 DOI: 10.36401/jipo-19-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/14/2020] [Indexed: 06/15/2023]
Abstract
INTRODUCTION B-cell chronic lymphocytic leukemia (B-CLL) is a common form of leukemia affecting mostly elderly individuals. The course of the disease is usually unremarkable, but because it may proceed with impaired immune defense, B-CLL might be complicated with infections and even death. The leukemic microenvironment containing a number of immune cells, mainly lymphocytes and macrophages capable to produce various molecules including inflammatory cytokines, plays an important role in the development and outcome of the disease. We studied the capacity of Epstein-Barr virus (EBV)-transformed B-cell chronic lymphocytic leukemia (B-CLL) cell line (EHEB) cells, an EBV-transformed line established from a B-CLL patient, to affect the production of inflammatory cytokines by human peripheral blood mononuclear cells (PBMC). METHODS PBMC isolated from peripheral blood of healthy donors were incubated either with EHEB cells or with their supernatants and the production of the following cytokines: tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, interferon (IFN)-γ, IL-1ra, and IL-10 were detected using the enzyme-linked immunosorbent assay method. RESULTS Direct contact of PBMC incubated with EHEB cells induced a marked increase of TNFα, IL-1β, IL-6, IFNγ, and IL-10 release by the immune cells. Yet, incubation of PBMC with EHEB cells' supernatant resulted in a mild production of the same cytokines. CONCLUSIONS The noticeable increased production of inflammatory cytokines by PBMC following direct contact with EHEB cells and to a lesser degree with their supernatants implies the existence of an immune dialogue between these two types of cells. The results support the concept that not only leukemic cells, but also peripheral blood mononuclears could serve as a therapeutic target for B-CLL.
Collapse
Affiliation(s)
- Hanna Bessler
- Laboratory for Immunology and Hematology Research, Rabin Medical Center, Hasharon Hospital, Petah-Tiqva, the Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | - Chiya Moshe Leibovitch
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah-Tiqva, the Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | - Meir Djaldetti
- Laboratory for Immunology and Hematology Research, Rabin Medical Center, Hasharon Hospital, Petah-Tiqva, the Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| |
Collapse
|