1
|
Yang M, Chen S, Li Q, Zhou K, Li Y, Sun C, Xia Y, Tan J, Huang Q, Jin Y, Hu R, Ruan C, Dai K, Yan R. BAD-Glucokinase Axis Regulates Platelet Activation and Thrombosis. Arterioscler Thromb Vasc Biol 2025; 45:778-791. [PMID: 40109256 DOI: 10.1161/atvbaha.124.321738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND BAD (Bcl2-associated death promoter), a member of the Bcl2 proapoptotic family, promotes cell apoptosis by sequestering the prosurvival proteins Bcl-XL and Bcl2 from the proapoptotic proteins BAK (Bcl2 homologous antagonist/killer) and BAX (Bcl2-associated X protein) in nucleated cells. BAD is also expressed in platelets, playing a role in regulating platelet lifespan, apoptosis, and clearance. However, whether BAD regulates platelet activation and arterial thrombosis remains unclear. METHODS The role of BAD in platelet activation and arterial thrombosis was investigated using BAD-deficient mice (Bad-/-), in vitro functional studies, and arterial thrombosis models. The regulatory effect of BAD on platelet energy metabolism was detected using a Seahorse Extracellular Flux Analyzer. The regulatory effect of BAD on glucokinase was investigated by coimmunoprecipitation and activity measurement. The glucokinase heterozygous knockout mice (Gck+/-) and activator were used to study its role in platelet activation. RESULTS BAD-deficient mice (Bad-/-) and wild-type mice transfused with Bad-/- platelets displayed prolonged tail bleeding and arterial occlusion times. Bad-/- platelets exhibited decreased aggregation in response to stimulations by proteinase-activated receptor 4-activating peptide, thrombin, and U46619. Furthermore, BAD ablation suppressed platelet integrin αIIbβ3 activation, granule secretion, and clot retraction induced by these agonists. Mechanistically, BAD interacted with glucokinase, and BAD deficiency resulted in decreased platelet glucokinase activity, mitochondrial oxidative phosphorylation, and mitochondrial ATP production. The partial loss of glucokinase (Gck+/-) phenocopied platelet function defects caused by BAD deficiency, and a glucokinase activator rescued the impaired mitochondrial ATP production and function of Bad-/- platelets. Additionally, the glucokinase activator enhanced human platelet activation. CONCLUSIONS Our findings demonstrate the critical role of the BAD-glucokinase axis in platelet activation and thrombosis, suggesting a potential target for antithrombotic therapy.
Collapse
Affiliation(s)
- Mengnan Yang
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Shuang Chen
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Qing Li
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Kangxi Zhou
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Yu Li
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Chenglin Sun
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Yue Xia
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Jing Tan
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Qiuxia Huang
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Yuxin Jin
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Renping Hu
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Kesheng Dai
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| | - Rong Yan
- Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, Suzhou Medical College, Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Suzhou, China
| |
Collapse
|
2
|
Zhang W, Zhang Y, Han L, Bo T, Qi Z, Zhong H, Xu H, Hu L, Chen S, Zhang S. Double-stranded DNA enhances platelet activation, thrombosis, and myocardial injury via cyclic GMP-AMP synthase. Cardiovasc Res 2025; 121:353-366. [PMID: 39302147 DOI: 10.1093/cvr/cvae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/19/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024] Open
Abstract
AIMS Elevated dsDNA levels in ST-elevated myocardial infarction (STEMI) patients are associated with increased infarct size and worse clinical outcomes. However, the direct effect of dsDNA on platelet activation remains unclear. This study aims to investigate the direct influence of dsDNA on platelet activation, thrombosis, and the underlying mechanisms. METHODS AND RESULTS Analysis of clinical samples revealed elevated plasma dsDNA levels in STEMI patients, which positively correlated with platelet aggregation and markers of neutrophil extracellular traps such as MPO-DNA and CitH3. Platelet assays demonstrated the activation of the cGAS-STING pathway in platelets from STEMI patients. DsDNA directly potentiated platelet activation and thrombus formation. Mechanistic studies using G150 (cGAS inhibitor), H151 (STING inhibitor), and MCC950 (NLRP3 inhibitor), as well as cGAS-/-, STING-/-, and NLRP3-/- mice, showed that dsDNA activated cGAS, a previously unreported DNA sensor in platelets, and induced activation of the STING/NLRP3/caspase-1/IL-1β axis. This cascade enhanced platelet activation and thrombus formation. Platelet cGAS depletion or Palbociclib, a cGAS-STING inhibitor, approved by the FDA for advanced breast cancer, ameliorated myocardial ischaemia-reperfusion injury in ApoE-/- mice fed with a high-fat diet for 12 weeks. CONCLUSIONS These results suggested that dsDNA is a novel driver of platelet activation and thrombus formation in STEMI patients.
Collapse
Affiliation(s)
- Wei Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| | - Yan Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| | - Liping Han
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Tao Bo
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| | - Zhiyong Qi
- Department of Cardiology, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Haoxuan Zhong
- Department of Cardiology, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Huajie Xu
- Department of Cardiology, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
| | - Liang Hu
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - She Chen
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Shanghai 200032, China
| |
Collapse
|
3
|
Chen Y, Chen S, Liu Z, Wang Y, An N, Chen Y, Peng Y, Liu Z, Liu Q, Hu X. Red blood cells undergo lytic programmed cell death involving NLRP3. Cell 2025:S0092-8674(25)00389-7. [PMID: 40252640 DOI: 10.1016/j.cell.2025.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/27/2024] [Accepted: 03/24/2025] [Indexed: 04/21/2025]
Abstract
The canonical complement-mediated lysis of mature red blood cells (RBCs) leads to severe pathogenesis. However, inhibition strategies targeting complement are not always as efficient as expected, indicating that unknown mechanisms are awaiting elucidation. In this study, we investigate the intracellular events in mature RBCs following complement activation. The collected evidence demonstrates that complement-induced hemolysis is a caspase-8-dependent programmed RBC death. Furthermore, short NLRP3 (miniNLRP3) fragments in RBCs are identified to engage in the assembly of NLRP3-apoptosis-associated speck-like protein containing a CARD (ASC)-caspase-8 complex. Activated caspase-8 directly induces the proteolysis of β-spectrin, thereby disrupting the skeletal network of the RBC membrane, a process we refer to as spectosis. Spectosis signaling is also activated in autoimmune hemolytic anemia or paroxysmal nocturnal hemoglobinuria, and the inhibition of spectosis significantly reduced complement-induced hemolysis. These findings reveal a programmed death cascade in mature RBCs, which may have important implications for the treatment of hemolytic disorders.
Collapse
Affiliation(s)
- Yaozhen Chen
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Shouwen Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhixin Liu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yafen Wang
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Ning An
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yutong Chen
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | - Yihao Peng
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen 518115, Guangdong, China
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen 518115, Guangdong, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China.
| | - Xingbin Hu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
4
|
Sobolewska B, Poeschel S, Kalbacher H, Bieber K, Paczulla Stanger AM, Stellos K, Ziemssen F. Brolucizumab and Platelet Activation and Reactivity. Curr Eye Res 2025; 50:410-419. [PMID: 39760267 DOI: 10.1080/02713683.2024.2441245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025]
Abstract
PURPOSE This study explores the potential interaction of brolucizumab with platelets and its effects on platelet activation and reactivity, crucial in retinal vasculitis and retinal vascular occlusion. Safety concerns remain of interest, although brolucizumab showed superior retinal efficacy and reduced injection frequency compared to other licensed anti-VEGF agents. METHODS Resting and activated platelets of healthy volunteers were pretreated with brolucizumab at the following concentrations 0.6 µg/mL, 3 µg/mL, 6 µg/mL, 300 µg/mL, and 3000 µ/mL or its solvent or PBS. The surface expression of platelet activation markers GPIIb/IIIa and P-selectin was determined by multispectral imaging flow cytometry, which combines flow cytometry and fluorescence microscopy. Two different methods were used to examine the interaction of brolucizumab with platelets: 1) A cross-pretreatment experiment was performed with FITC-labeled brolucizumab and bevacizumab; 2) Resting and activated platelets were pretreated with brolucizumab or its solvent or PBS, followed by anti-brolucizumab antibody generated by rabbit immunization. RESULTS Brolucizumab did not significantly affect platelet activation compared to solvent or PBS, across a range of concentrations. No significant upregulation of CD62P and no activation of the fibrinogen receptor (GPIIb/IIa) were observed in resting and TRAP-activated platelets. After pretreatment with PBS, the level of brolucizumab-FITC was significantly lower in comparison to bevacizumab-FITC (normalized MFI = 3.32, CI = 3.16-3.48 vs. normalized MFI = 7.19, CI = 7.04-7.35; p < 0.001). Both brolucizumab- and bevacizumab-FITC were downregulated after pretreatment with brolucizumab or bevacizumab compared to pretreatment with PBS. Antibodies against brolucizumab did not show any significant difference between pretreatment with brolucizumab and its solvent in resting and TRAP-activated platelets. CONCLUSION Brolucizumab does not appear to directly affect platelet activation or reactivity to thrombin receptor agonists. No platelet interaction was observed after increasing brolucizumab concentrations or anti-brolucizumab antibodies in resting and activated platelets. However, brolucizumab might be taken up in platelets.
Collapse
Affiliation(s)
- B Sobolewska
- Centre for Ophthalmology, Eberhard-Karls University, Tübingen, Germany
| | - S Poeschel
- Department of Internal Medicine II, Core Facility Flow Cytometry of the Medical Faculty Tübingen, University of Tübingen, Tübingen, Germany
| | - H Kalbacher
- Interfaculty Institute of Biochemistry, Eberhard-Karls University of Tuebingen, Tübingen, Germany
| | - K Bieber
- Department of Internal Medicine II, Core Facility Flow Cytometry of the Medical Faculty Tübingen, University of Tübingen, Tübingen, Germany
| | - A M Paczulla Stanger
- Department of Internal Medicine II, Core Facility Flow Cytometry of the Medical Faculty Tübingen, University of Tübingen, Tübingen, Germany
| | - Konstantinos Stellos
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Cardiology, Preventive Cardiology Clinic, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
- Department of Medicine, University Medical Centre Mannheim, Heidelberg University, Mannheim, Germany
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - F Ziemssen
- Centre for Ophthalmology, Eberhard-Karls University, Tübingen, Germany
| |
Collapse
|
5
|
Shi S, Gao J, Zhang Y, Zhan M, Tan Z, Wang P, Fu J, Liu J. Inflammation and platelet hyperresponsiveness in coronary artery disease and the influence of Talin-1/αIIbβ3-mediated bidirectional signaling pathway. Front Pharmacol 2025; 16:1535182. [PMID: 40183091 PMCID: PMC11965607 DOI: 10.3389/fphar.2025.1535182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Background While platelet hyperreactivity constitutes an independent risk factor for major adverse cardiovascular events (MACEs) in coronary artery disease, its molecular underpinnings remain poorly characterized. Recent advances in transcriptomic profiling have revealed potential associations with specific RNA signatures. Through systematic bioinformatics analysis of differential gene expression patterns and pathway activation in CHD patients, this study aims to elucidate key molecular regulators of platelet hyperactivity, establishing a theoretical framework for developing precision therapeutic strategies to mitigate post-CHD complications. Methods This randomized controlled study included 16 CHD patients and 16 healthy controls. Inflammation markers, platelet aggregation function, and CD62p levels were assessed using flow cytometry. Mitochondrial morphology and organelles were observed using scanning electron microscopy and transmission electron microscopy. Genes related to symptom alteration between CHD patients and healthy controls were identified using the criteria of p < 0.05. The molecular correlations of these genes were analyzed using a comprehensive perspective that included Gene Ontology (GO) biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Western blot and correlation analyses were also conducted to validate the expression and diagnostic value of the DEGs. Results CHD patients exhibited alterations in platelet organelles ultrastructure, heightened platelet activation and aggregation, and disturbance of the inflammatory equilibrium. RNA sequencing demonstrated distinct changes in the gene expression profiles of circulating platelets from CHD patients. The increase in platelet activation and aggregation could be partially associated with the upregulation of the Talin-1 and αIIbβ3 proteins expression. Conclusion Abnormal transcription and platelet activation occur after CHD onset, and upregulation of the Talin-1/αIIbβ3-mediated bidirectional signaling pathway are the primary pathological features. Clinical Trial Registration https://www.chictr.org.cn/, identifier ChiCTR2100041998.
Collapse
Affiliation(s)
- Shengnan Shi
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaming Gao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yehao Zhang
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Zhan
- Department of Encephalopathy, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhanfei Tan
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peili Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianhua Fu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Verma R, Kailashiya J, Mukherjee A, Chaurasia RN, Dash D. Prion protein fragment (106-126) activates NLRP3 inflammasome and promotes platelet-monocyte/neutrophil interactions, potentially contributing to an inflammatory state. Front Cell Dev Biol 2025; 13:1534235. [PMID: 40070881 PMCID: PMC11895701 DOI: 10.3389/fcell.2025.1534235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction Prion diseases are neurodegenerative disorders where infectious prion proteins (PrP) featuring an amyloidogenic amino acid sequence, PrP (106-126), accumulate in the brain leading to neuroinflammation while it can also access circulation by breaching the blood-brain barrier. Platelets are highly sensitive cells in blood, which have been widely employed as "peripheral" model for neurons. In addition to their stellar roles in hemostasis and thrombosis, platelets are also known to function as immune cells and possess necessary components of functional inflammasome. This study demonstrates that prion proteins drive inflammasome assembly in platelets and upregulate activity of caspase-1, a critical readout of functional inflammasomes. Methods Flow cytometric analysis was performed to measure intracellular ROS levels, caspase-1 activity, and platelet-monocyte/neutrophil interactions. Microscopy was used to assess the co-localization of NLRP3 and ASC. Results Inflammasome activation is fuelled by reactive oxygen species (ROS) generated in prion-stimulated platelets that eventually leads to formation of platelet-monocyte/neutrophil aggregates, which was prohibited by small-molecule inhibitors of either caspase-1 or ROS. Discussion Thus, in addition to their neurotoxic effects on neuronal cells and stimulation of pro-coagulant activity in platelets, prions also unleash an inflammatory response in the organism.
Collapse
Affiliation(s)
- Rashmi Verma
- Centre for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Jyotsna Kailashiya
- Centre for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Avijit Mukherjee
- Centre for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rameshwar Nath Chaurasia
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Debabrata Dash
- Centre for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
7
|
He C, Yang A, Lv K, Zhang Y, Zhao Z, Lu Y, Fang C, Han Y, Wu D, Jiang M, Zhang J, Wu Y. Thiol isomerase ERp18 enhances platelet activation and arterial thrombosis. Res Pract Thromb Haemost 2025; 9:102706. [PMID: 40224275 PMCID: PMC11986512 DOI: 10.1016/j.rpth.2025.102706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 04/15/2025] Open
Abstract
Background Thiol isomerases regulate the thiol-disulfide exchange of functional proteins in cells. Using genetically modified mouse models and inhibitors, we and others demonstrated that 7 thiol isomerases (ERp57, protein diisulfide isomerase, ERp72, ERp46, ERp5, TMX4, and TMX1) participate in thrombosis. There are 21 thiol isomerases in mammals, but whether other enzymes of this family also contribute to thrombosis remains unknown. Objectives Investigate whether and how ERp18 participates in arterial thrombosis. Methods ERp18 knockout mice and arterial thrombosis models were used to determine the role of ERp18 in thrombosis. Platelets from ERp18 knockout mice were used to detect aggregation, activation, spreading, and clot retraction. Finally, flow cytometry and immunoprecipitation were used to detect the binding between ERp18 and αIIbβ3. Results The mice lacking ERp18 exhibited a prolonged tail bleeding time and decreased platelet thrombus formation in FeCl3-induced carotid arterial injury and laser-induced cremaster artery injury models. ERp18 deficiency inhibited platelet aggregation, adenosine triphosphate release, integrin αIIbβ3 activation, P-selectin expression, platelet adhesion, as well as clot retraction. Flow cytometry and coimmunoprecipitation analyses revealed that ERp18 binds to the platelet surface via interaction with integrin αIIbβ3. Moreover, the ERp18 protein promoted the binding of integrin αIIbβ3 to fibrinogen and platelet aggregation. Furthermore, the recombinant ERp18 protein exhibited reductase activity and cleaved integrin αIIbβ3 disulfides. Conclusion ERp18 participates in platelet activation and thrombosis. Its function is, at least in part, through the regulation of integrin αIIbβ3 function. This finding expands our understanding of the role of thiol isomerases in the redox regulation of thrombosis and platelet function.
Collapse
Affiliation(s)
- Chao He
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, China
| | - Aizhen Yang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Keyu Lv
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yuxin Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, China
| | - Zhenzhen Zhao
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Lu
- Hunan Sinozex Biosciences Co, Ltd, Changsha, China
| | - Chao Fang
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yue Han
- Department of Hematology, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China
| | - Depei Wu
- Department of Hematology, National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China
| | - Miao Jiang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingyu Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, China
| | - Yi Wu
- Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, Shijiazhuang, China
| |
Collapse
|
8
|
Chen X, Li J, Liu P, Zhou Y, Zhang T, Li L, Shi J, Deng X, Sheng Y, Chen W, Wang D, Hu H. Inflammasome-Independent Mechanism of NLRP3 is Critical for Platelet GPIb-IX Function and Thrombosis. Thromb Haemost 2024; 124:1095-1113. [PMID: 38325399 DOI: 10.1055/a-2263-8372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
INTRODUCTION Platelets link thrombosis and inflammation, but how platelets handle the endogenous intraplatelet inflammatory machinery is less well understood. NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) is the central component of the interleukin (IL)-1-producing inflammasome. Elucidating the cell type-specific mechanism of NLRP3 in platelets may improve our understanding of thrombotic diseases. METHODS Ferric chloride-induced mesenteric arteriole thrombosis models, tail bleeding models, and microfluidic whole-blood perfusion were used to study thrombosis and hemostasis. Additionally, we utilized aggregometry, flow cytometry, immunoprecipitation, and western blotting to investigate glycoprotein (GP)Ib-IX-mediated platelet function and signaling. RESULTS NLRP3-/- mice exhibited severely impaired thrombosis and hemostasis, whereas apoptosis-associated speck-like protein containing a CARD (ASC)-/-, caspase-1-/-, and Nlrp3 A350V/+ CrePF4 mice did not exhibit such changes. NLRP3-/- platelets exhibited reduced adhesion to injured vessel walls and collagen and impaired von Willebrand factor (vWF)-dependent translocation and rolling behavior. NLRP3 deficiency decreased botrocetin-induced platelet aggregation and the phosphorylation of key signaling molecules in the GPIb-IX pathway. Mechanistically, decreased cAMP/PKA activity led to reduced phosphorylation of NLRP3, thereby enabling the interaction between NLRP3 and filamin A. This interaction accelerated the dissociation of filamin A from GPIbα, which allowed a 14-3-3ζ-dependent increase in GPIb-IX affinity to vWF. Finally, platelet NLRP3 was found to largely regulate thrombotic disease models, such as models of stroke and deep vein thrombosis. CONCLUSION NLRP3 promoted the function of the major platelet adhesion receptor GPIb-IX without involving NLRP3 inflammasome assembly or IL-1β production.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, People's Republic of China
| | - Jingke Li
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, People's Republic of China
| | - Pu Liu
- Department of Pathology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yangfan Zhou
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, People's Republic of China
| | - Tongtong Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Center for Integrated Oncology and Precision Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Li Li
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, People's Republic of China
| | - Jingqi Shi
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, People's Republic of China
| | - Xin Deng
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, People's Republic of China
| | - Yilin Sheng
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, People's Republic of China
| | - Wei Chen
- Department of Cell Biology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Di Wang
- Institute of Immunology, Department of Orthopaedic Surgery of the Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Hu Hu
- Department of Pathology and Pathophysiology and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, People's Republic of China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
9
|
Pennings GJ. NLRP3: More than an Inflammasome? Thromb Haemost 2024; 124:1114-1116. [PMID: 39260395 DOI: 10.1055/a-2413-4672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Affiliation(s)
- Gabrielle J Pennings
- ANZAC Research Institute-Sydney Local Health District, The University of Sydney, Concord NSW, Australia
| |
Collapse
|
10
|
Bian Y, Jin Q, He J, Ngo T, Bae ON, Xing L, Pi J, Chung HY, Xu Y. Biomedical application of TiO 2NPs can cause arterial thrombotic risks through triggering procoagulant activity, activation and aggregation of platelets. Cell Biol Toxicol 2024; 40:67. [PMID: 39110362 PMCID: PMC11306309 DOI: 10.1007/s10565-024-09908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Titanium dioxide nanoparticles (TiO2NPs) are widely used in medical application. However, the relevant health risk has not been completely assessed, the potential of inducing arterial thrombosis (AT) in particular. METHODS Alterations in platelet function and susceptibility to arterial thrombosis induced by TiO2NPs were examined using peripheral blood samples from healthy adult males and an in vivo mouse model, respectively. RESULTS Here, using human platelets (hPLTs) freshly isolated from health volunteers, we demonstrated TiO2NP treatment triggered the procoagulant activity of hPLTs through phosphatidylserine exposure and microvesicles generation. In addition, TiO2NP treatment increased the levels of glycoprotein IIb/IIIa and P-selectin leading to aggregation and activation of hPLTs, which were exacerbated by providing physiology-mimicking conditions, including introduction of thrombin, collagen, and high shear stress. Interestingly, intracellular calcium levels in hPLTs were increased upon TiO2NP treatment, which were crucial in TiO2NP-induced hPLT procoagulant activity, activation and aggregation. Moreover, using mice in vivo models, we further confirmed that TiO2NP treatment a reduction in mouse platelet (mPLT) counts, disrupted blood flow, and exacerbated carotid arterial thrombosis with enhanced deposition of mPLT. CONCLUSIONS Together, our study provides evidence for an ignored health risk caused by TiO2NPs, specifically TiO2NP treatment augments procoagulant activity, activation and aggregation of PLTs via calcium-dependent mechanism and thus increases the risk of AT.
Collapse
Affiliation(s)
- Yiying Bian
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, Shenyang, China.
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, China.
- Program of Environmental Toxicology, School of Public Health, China Medical University. No, 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea.
| | - Qiushuo Jin
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, Shenyang, China
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, China
- Program of Environmental Toxicology, School of Public Health, China Medical University. No, 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Jinrui He
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, Shenyang, China
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, China
- Program of Environmental Toxicology, School of Public Health, China Medical University. No, 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Thien Ngo
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
- Faculty of Pharmacy, Thai Binh University of Medicine and Pharmacy, Thai Binh City, 410000, Vietnam
| | - Ok-Nam Bae
- College of Pharmacy, Hanyang University, Ansan, Gyeonggido, 426-791, South Korea
| | - Liguo Xing
- Safety Evaluation Center of Shenyang Research Institute of Chemical Industry Ltd, Shenyang, 110021, China
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, Shenyang, China
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, China
- Program of Environmental Toxicology, School of Public Health, China Medical University. No, 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Han Young Chung
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, South Korea
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, Shenyang, China.
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, China.
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University. No, 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
11
|
Ramachandran R, Manan A, Kim J, Choi S. NLRP3 inflammasome: a key player in the pathogenesis of life-style disorders. Exp Mol Med 2024; 56:1488-1500. [PMID: 38945951 PMCID: PMC11297159 DOI: 10.1038/s12276-024-01261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 07/02/2024] Open
Abstract
Proinflammatory cytokines and chemokines play a crucial role in regulating the inflammatory response, which is essential for the proper functioning of our immune system. When infections or threats to the body's defense mechanisms are detected, the innate immune system takes the lead. However, an excessive inflammatory response can lead to the production of high concentrations of cytotoxic molecules, resulting in tissue damage. Inflammasomes are significant contributors to innate immunity, and one of the most extensively studied inflammasome complexes is NOD-like receptor 3 (NLRP3). NLRP3 has a wide range of recognition mechanisms that streamline immune activation and eliminate pathogens. These cytosolic multiprotein complexes are composed of effector, adaptor, and sensor proteins, which are crucial for identifying intracellular bacterial breakdown products and initiating an innate immune cascade. To understand the diverse behavior of NLRP3 activation and its significance in the development of lifestyle-related diseases, one must delve into the study of the immune response and apoptosis mediated by the release of proinflammatory cytokines. In this review, we briefly explore the immune response in the context of lifestyle associated disorders such as obesity, hyperlipidemia, diabetes, chronic respiratory disease, oral disease, and cardiovascular disease.
Collapse
Affiliation(s)
- Rajath Ramachandran
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.
| | - Abdul Manan
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Jei Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon, 16502, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon, 16502, Korea.
| |
Collapse
|
12
|
Haque I, Thapa P, Burns DM, Zhou J, Sharma M, Sharma R, Singh V. NLRP3 Inflammasome Inhibitors for Antiepileptogenic Drug Discovery and Development. Int J Mol Sci 2024; 25:6078. [PMID: 38892264 PMCID: PMC11172514 DOI: 10.3390/ijms25116078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Epilepsy is one of the most prevalent and serious brain disorders and affects over 70 million people globally. Antiseizure medications (ASMs) relieve symptoms and prevent the occurrence of future seizures in epileptic patients but have a limited effect on epileptogenesis. Addressing the multifaceted nature of epileptogenesis and its association with the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediated neuroinflammation requires a comprehensive understanding of the underlying mechanisms of these medications for the development of targeted therapeutic strategies beyond conventional antiseizure treatments. Several types of NLRP3 inhibitors have been developed and their effect has been validated both in in vitro and in vivo models of epileptogenesis. In this review, we discuss the advances in understanding the regulatory mechanisms of NLRP3 activation as well as progress made, and challenges faced in the development of NLRP3 inhibitors for the treatment of epilepsy.
Collapse
Affiliation(s)
- Inamul Haque
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
- Department of Math, Science and Business Technology, Kansas City Kansas Community College, Kansas City, KS 66112, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Pritam Thapa
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
| | - Douglas M. Burns
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
| | - Jianping Zhou
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Mukut Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, MO 64128, USA;
| | - Ram Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
| | - Vikas Singh
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO 64128, USA; (P.T.); (D.M.B.); (M.S.); (R.S.)
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO 64128, USA
- Division of Neurology, Kansas City VA Medical Center, Kansas City, MO 64128, USA
| |
Collapse
|
13
|
Mateo SV, Vidal-Correoso D, Muñoz-Morales AM, Jover-Aguilar M, Alconchel F, de la Peña J, Martínez-Alarcón L, López-López V, Ríos-Zambudio A, Cascales P, Pons JA, Ramírez P, Pelegrín P, Baroja-Mazo A. Detection of inflammasome activation in liver tissue during the donation process as potential biomarker for liver transplantation. Cell Death Discov 2024; 10:266. [PMID: 38816358 PMCID: PMC11139956 DOI: 10.1038/s41420-024-02042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
Deceased donor liver transplantation (LT) is a crucial lifesaving option for patients with end-stage liver diseases. Although donation after brain death (DBD) remains the main source of donated organs, exploration of donation after circulatory death (DCD) addresses donor scarcity but introduces challenges due to warm ischemia. While technical advances have improved outcomes, challenges persist, with a 13% mortality rate within the first year. Delving into liver transplantation complexities reveals the profound impact of molecular signaling on organ fate. NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation play a pivotal role, influencing inflammatory responses. The NLRP3 inflammasome, found in hepatocytes, contributes to inflammation, fibrosis, and liver cell death. This study explores these dynamics, shedding light on potential biomarkers and therapeutic targets. Samples from 36 liver transplant patients were analyzed for ASC specks detection and inflammasome-related gene expression. Liver biopsies, obtained before and after cold ischemia storage, were processed for immunofluorescence, qRT-PCR, and Western blot. One year post-LT clinical follow-up included diagnostic procedures for complications, and global survival was assessed. Immunofluorescence detected activated inflammasome complexes in fixed liver tissues. ASC specks were identified in hepatocytes, showing a trend toward more specks in DCD livers. Likewise, inflammasome-related gene expression analysis indicated higher expression in DCD livers, decreasing after cold ischemia. Similar results were found at protein level. Patients with increased ASC specks staining exhibited lower overall survival rates, correlating with IL1B expression after cold ischemia. Although preliminary, these findings offer novel insights into utilizing direct detection of inflammasome activation in liver tissue as a biomarker. They suggest its potential impact on post-transplant outcomes, potentially paving the way for improved diagnostic approaches and personalized treatment strategies in LT.
Collapse
Affiliation(s)
- Sandra V Mateo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Daniel Vidal-Correoso
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Ana M Muñoz-Morales
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Marta Jover-Aguilar
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Felipe Alconchel
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Jesús de la Peña
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- Patology Unit, University Clinical Hospital Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Laura Martínez-Alarcón
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Víctor López-López
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Antonio Ríos-Zambudio
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Pedro Cascales
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, 30120, Murcia, Spain
| | - José A Pons
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- Hepatology and Liver Transplant Unit, University Clinical Hospital Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Pablo Ramírez
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Pablo Pelegrín
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30120, Murcia, Spain
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain.
| |
Collapse
|
14
|
Nicolai L, Pekayvaz K, Massberg S. Platelets: Orchestrators of immunity in host defense and beyond. Immunity 2024; 57:957-972. [PMID: 38749398 DOI: 10.1016/j.immuni.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 06/05/2024]
Abstract
Platelets prevent blood loss during vascular injury and contribute to thrombus formation in cardiovascular disease. Beyond these classical roles, platelets are critical for the host immune response. They guard the vasculature against pathogens via specialized receptors, intracellular signaling cascades, and effector functions. Platelets also skew inflammatory responses by instructing innate immune cells, support adaptive immunosurveillance, and influence antibody production and T cell polarization. Concomitantly, platelets contribute to tissue reconstitution and maintain vascular function after inflammatory challenges. However, dysregulated activation of these multitalented cells exacerbates immunopathology with ensuing microvascular clotting, excessive inflammation, and elevated risk of macrovascular thrombosis. This dichotomy underscores the critical importance of precisely defining and potentially modulating platelet function in immunity.
Collapse
Affiliation(s)
- Leo Nicolai
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian University, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| | - Kami Pekayvaz
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian University, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, University Hospital Ludwig-Maximilian University, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
15
|
Vogel S, Kamimura S, Smith ML, Almeida LEF, Cui X, Combs CA, Quezado ZMN. Syk inhibition suppresses NLRP3 inflammasome activation in platelets from sickle cell mice leading to decreased platelet secretion, aggregation, spreading, and in vitro thrombus formation. Thromb Res 2024; 237:18-22. [PMID: 38547689 PMCID: PMC11614189 DOI: 10.1016/j.thromres.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2024]
Affiliation(s)
- Sebastian Vogel
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, USA
| | - Sayuri Kamimura
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, USA
| | - Meghann L Smith
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, USA
| | - Luis E F Almeida
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, USA
| | - Xizhong Cui
- Critical Care Medicine Department, National Institutes of Health Clinical Center, USA
| | - Christian A Combs
- Light Microscopy Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zenaide M N Quezado
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, USA.
| |
Collapse
|
16
|
Aleksandrowicz K, Hempel D, Polityńska B, Wojtukiewicz AM, Honn KV, Tang DG, Wojtukiewicz MZ. The Complex Role of Thrombin in Cancer and Metastasis: Focus on Interactions with the Immune System. Semin Thromb Hemost 2024; 50:462-473. [PMID: 37984359 DOI: 10.1055/s-0043-1776875] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Thrombin, a pleiotropic enzyme involved in coagulation, plays a crucial role in both procoagulant and anticoagulant pathways. Thrombin converts fibrinogen into fibrin, initiates platelet activation, and promotes clot formation. Thrombin also activates anticoagulant pathways, indirectly inhibiting factors involved in coagulation. Tissue factor triggers thrombin generation, and the overexpression of thrombin in various cancers suggests that it is involved in tumor growth, angiogenesis, and metastasis. Increased thrombin generation has been observed in cancer patients, especially those with metastases. Thrombin exerts its effects through protease-activated receptors (PARs), particularly PAR-1 and PAR-2, which are involved in cancer progression, angiogenesis, and immunological responses. Thrombin-mediated signaling promotes angiogenesis by activating endothelial cells and platelets, thereby releasing proangiogenic factors. These functions of thrombin are well recognized and have been widely described. However, in recent years, intriguing new findings concerning the association between thrombin activity and cancer development have come to light, which justifies a review of this research. In particular, there is evidence that thrombin-mediated events interact with the immune system, and may regulate its response to tumor growth. It is also worth reevaluating the impact of thrombin on thrombocytes in conjunction with its multifaceted influence on tumor progression. Understanding the role of thrombin/PAR-mediated signaling in cancer and immunological responses is crucial, particularly in the context of developing immunotherapies. In this systematic review, we focus on the impact of the thrombin-related immune system response on cancer progression.
Collapse
Affiliation(s)
- Karolina Aleksandrowicz
- Department of Clinical Oncology, Medical University, Białystok, Poland
- Comprehensive Cancer Center, Bialystok, Poland
| | - Dominika Hempel
- Department of Clinical Oncology, Medical University, Białystok, Poland
- Comprehensive Cancer Center, Bialystok, Poland
| | - Barbara Polityńska
- Department of Psychology and Philosophy, Medical University of Białystok, Białystok, Poland
| | - Anna M Wojtukiewicz
- Department of Psychology and Philosophy, Medical University of Białystok, Białystok, Poland
| | - Kenneth V Honn
- Department of Pathology-School of Medicine, Bioactive Lipids Research Program, Detroit, Michigan
- Department of Chemistry, Wayne State University, Detroit, Michigan
- Department of Oncology, Wayne State University, Detroit, Michigan
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Marek Z Wojtukiewicz
- Department of Clinical Oncology, Medical University, Białystok, Poland
- Comprehensive Cancer Center, Bialystok, Poland
| |
Collapse
|
17
|
Kodi T, Sankhe R, Gopinathan A, Nandakumar K, Kishore A. New Insights on NLRP3 Inflammasome: Mechanisms of Activation, Inhibition, and Epigenetic Regulation. J Neuroimmune Pharmacol 2024; 19:7. [PMID: 38421496 PMCID: PMC10904444 DOI: 10.1007/s11481-024-10101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/06/2023] [Indexed: 03/02/2024]
Abstract
Inflammasomes are important modulators of inflammation. Dysregulation of inflammasomes can enhance vulnerability to conditions such as neurodegenerative diseases, autoinflammatory diseases, and metabolic disorders. Among various inflammasomes, Nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) is the best-characterized inflammasome related to inflammatory and neurodegenerative diseases. NLRP3 is an intracellular sensor that recognizes pathogen-associated molecular patterns and damage-associated patterns resulting in the assembly and activation of NLRP3 inflammasome. The NLRP3 inflammasome includes sensor NLRP3, adaptor apoptosis-associated speck-like protein (ASC), and effector cysteine protease procaspase-1 that plays an imperative role in caspase-1 stimulation which further initiates a secondary inflammatory response. Regulation of NLRP3 inflammasome ameliorates NLRP3-mediated diseases. Much effort has been invested in studying the activation, and exploration of specific inhibitors and epigenetic mechanisms controlling NLRP3 inflammasome. This review gives an overview of the established NLRP3 inflammasome assembly, its brief molecular mechanistic activations as well as a current update on specific and non-specific NLRP3 inhibitors that could be used in NLRP3-mediated diseases. We also focused on the recently discovered epigenetic mechanisms mediated by DNA methylation, histone alterations, and microRNAs in regulating the activation and expression of NLRP3 inflammasome, which has resulted in a novel method of gaining insight into the mechanisms that modulate NLRP3 inflammasome activity and introducing potential therapeutic strategies for CNS disorders.
Collapse
Affiliation(s)
- Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Adarsh Gopinathan
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
18
|
Berger M, Maqua H, Lysaja K, Mause SF, Hindle MS, Naseem K, Dahl E, Speer T, Marx N, Schütt K. Platelets from patients with chronic inflammation have a phenotype of chronic IL-1β release. Res Pract Thromb Haemost 2024; 8:102261. [PMID: 38192728 PMCID: PMC10772383 DOI: 10.1016/j.rpth.2023.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 09/24/2023] [Accepted: 10/18/2023] [Indexed: 01/10/2024] Open
Abstract
Background Chronic inflammation is a cardiovascular risk factor, and interleukin-1β (IL-1β) is central to the inflammatory host response. Platelets contain the NLRP3 inflammasome and are able to translate IL-1β messenger RNA (mRNA) and secrete mature IL-1β upon activation. However, the role of a chronic inflammatory environment in platelet IL-1β mRNA and protein content remains unclear. Objectives The aim of the current study was to investigate intracellular platelet IL-1β and IL-1β mRNA in a chronic inflammatory state. Methods Sixty-five patients with stable inflammation (ie, high-sensitivity C-reactive protein within predefined margins in 2 separate measurements) were stratified according to high-sensitivity C-reactive protein levels in low (0.0-0.9 mg/L), medium (1.0-2.9 mg/L), and high (3.0-9.9 mg/L) risk groups. Platelet reactivity as well as platelet IL-1β protein synthesis were studied. Results The highest risk group was characterized by a distinct cardiovascular risk profile and approximately 20% higher platelet counts. While platelet reactivity was not different, a reduction in intracellular platelet IL-1β mRNA and IL-1β protein levels was observed in the highest risk group and was linked to decreased platelet size and granularity. This signature suggests a phenotype of chronic IL-1β secretion and could be experimentally phenocopied by stimulation of platelets from healthy volunteers with either TRAP-6 or collagen related peptide (CRP-XL). Conclusion Our data suggest a phenotype of chronic IL-1β secretion by platelets in patients with chronic sterile inflammation.
Collapse
Affiliation(s)
- Martin Berger
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Hendrik Maqua
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Katharina Lysaja
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | | | - Mathew S. Hindle
- Centre for Biomedical Research, School of Health, Leeds Beckett University, Leeds, UK
| | - Khalid Naseem
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Edgar Dahl
- Rheinisch Westfälische Technische Hochschule Centralized Biomaterial Bank, University Hospital Aachen, Aachen, Germany
| | - Thimoteus Speer
- Department of Internal Medicine IV, Goethe University Frankfurt, Frankfurt am Main, Germany
- Else Kroener Fresenius Center for Nephrological Research, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| | - Katharina Schütt
- Department of Internal Medicine I, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
19
|
Kumar R, Patil G, Dayal S. NLRP3-Induced NETosis: A Potential Therapeutic Target for Ischemic Thrombotic Diseases? Cells 2023; 12:2709. [PMID: 38067137 PMCID: PMC10706381 DOI: 10.3390/cells12232709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Ischemic thrombotic disease, characterized by the formation of obstructive blood clots within arteries or veins, is a condition associated with life-threatening events, such as stroke, myocardial infarction, deep vein thrombosis, and pulmonary embolism. The conventional therapeutic strategy relies on treatments with anticoagulants that unfortunately pose an inherent risk of bleeding complications. These anticoagulants primarily target clotting factors, often overlooking upstream events, including the release of neutrophil extracellular traps (NETs). Neutrophils are integral components of the innate immune system, traditionally known for their role in combating pathogens through NET formation. Emerging evidence has now revealed that NETs contribute to a prothrombotic milieu by promoting platelet activation, increasing thrombin generation, and providing a scaffold for clot formation. Additionally, NET components enhance clot stability and resistance to fibrinolysis. Clinical and preclinical studies have underscored the mechanistic involvement of NETs in the pathogenesis of thrombotic complications, since the clots obtained from patients and experimental models consistently exhibit the presence of NETs. Given these insights, the inhibition of NETs or NET formation is emerging as a promising therapeutic approach for ischemic thrombotic diseases. Recent investigations also implicate a role for the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome as a mediator of NETosis and thrombosis, suggesting that NLRP3 inhibition may also hold potential for mitigating thrombotic events. Therefore, future preclinical and clinical studies aimed at identifying and validating NLRP3 inhibition as a novel therapeutic intervention for thrombotic disorders are imperative.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (R.K.); (G.P.)
- Department of Biotechnology, GITAM School of Sciences, GITAM (Deemed to be) University, Visakhapatnam 530045, India
| | - Gokul Patil
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (R.K.); (G.P.)
| | - Sanjana Dayal
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; (R.K.); (G.P.)
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
- Iowa City VA Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|
20
|
Potere N, Abbate A, Kanthi Y, Carrier M, Toldo S, Porreca E, Di Nisio M. Inflammasome Signaling, Thromboinflammation, and Venous Thromboembolism. JACC Basic Transl Sci 2023; 8:1245-1261. [PMID: 37791298 PMCID: PMC10544095 DOI: 10.1016/j.jacbts.2023.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 10/05/2023]
Abstract
Venous thromboembolism (VTE) remains a major health burden despite anticoagulation advances, suggesting incomplete management of pathogenic mechanisms. The NLRP3 (NACHT-, LRR- and pyrin domain-containing protein 3) inflammasome, interleukin (IL)-1, and pyroptosis are emerging contributors to the inflammatory pathogenesis of VTE. Inflammasome pathway activation occurs in patients with VTE. In preclinical models, inflammasome signaling blockade reduces venous thrombogenesis and vascular injury, suggesting that this therapeutic approach may potentially maximize anticoagulation benefits, protecting from VTE occurrence, recurrence, and ensuing post-thrombotic syndrome. The nonselective NLRP3 inhibitor colchicine and the anti-IL-1β agent canakinumab reduce atherothrombosis without increasing bleeding. Rosuvastatin reduces primary venous thrombotic events at least in part through lipid-lowering independent mechanisms, paving the way to targeted anti-inflammatory strategies in VTE. This review outlines recent preclinical and clinical evidence supporting a role for inflammasome pathway activation in venous thrombosis, and discusses the, yet unexplored, therapeutic potential of modulating inflammasome signaling to prevent and manage VTE.
Collapse
Affiliation(s)
- Nicola Potere
- Department of Medicine and Ageing Sciences, “G. d'Annunzio” University, Chieti, Italy
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center, Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Yogendra Kanthi
- Vascular Thrombosis & Inflammation Section, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Marc Carrier
- Department of Medicine, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Stefano Toldo
- Robert M. Berne Cardiovascular Research Center, Department of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Ettore Porreca
- Department of Innovative Technologies in Medicine and Dentistry, School of Medicine and Health Sciences, “G. d'Annunzio” University, Chieti, Italy
| | - Marcello Di Nisio
- Department of Medicine and Ageing Sciences, “G. d'Annunzio” University, Chieti, Italy
| |
Collapse
|
21
|
Ding Y, Gui X, Chu X, Sun Y, Zhang S, Tong H, Ju W, Li Y, Sun Z, Xu M, Li Z, Andrews RK, Gardiner EE, Zeng L, Xu K, Qiao J. MTH1 protects platelet mitochondria from oxidative damage and regulates platelet function and thrombosis. Nat Commun 2023; 14:4829. [PMID: 37563135 PMCID: PMC10415391 DOI: 10.1038/s41467-023-40600-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Human MutT Homolog 1 (MTH1) is a nucleotide pool sanitization enzyme that hydrolyzes oxidized nucleotides to prevent their mis-incorporation into DNA under oxidative stress. Expression and functional roles of MTH1 in platelets are not known. Here, we show MTH1 expression in platelets and its deficiency impairs hemostasis and arterial/venous thrombosis in vivo. MTH1 deficiency reduced platelet aggregation, phosphatidylserine exposure and calcium mobilization induced by thrombin but not by collagen-related peptide (CRP) along with decreased mitochondrial ATP production. Thrombin but not CRP induced Ca2+-dependent mitochondria reactive oxygen species generation. Mechanistically, MTH1 deficiency caused mitochondrial DNA oxidative damage and reduced the expression of cytochrome c oxidase 1. Furthermore, MTH1 exerts a similar role in human platelet function. Our study suggests that MTH1 exerts a protective function against oxidative stress in platelets and indicates that MTH1 could be a potential therapeutic target for the prevention of thrombotic diseases.
Collapse
Affiliation(s)
- Yangyang Ding
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Xiang Gui
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Xiang Chu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Yueyue Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Sixuan Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Huan Tong
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Yue Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Zengtian Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Mengdi Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Robert K Andrews
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Elizabeth E Gardiner
- Division of Genome Science and Cancer, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China.
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China.
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China.
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
- Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China.
| |
Collapse
|
22
|
Chu X, Zhang J, Li Y, Yuan K, Wang X, Gui X, Sun Y, Geng C, Ju W, Xu M, Li Z, Zeng L, Xu K, Qiao J. Dimethyl fumarate possesses antiplatelet and antithrombotic properties. Int Immunopharmacol 2023; 120:110381. [PMID: 37245302 DOI: 10.1016/j.intimp.2023.110381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Dimethyl fumarate (DMF) is a methyl ester of fumaric acid and has been approved for treating multiple sclerosis (MS) and psoriasis due to anti-inflammatory effect. There is a close association between platelets and the pathogenesis of MS. Whether DMF affects platelet function remains unclear. Our study intends to evaluate DMF's effect on platelet function. METHODS Washed human platelets were treated with different concentrations of DMF (0, 50, 100 and 200 μM) at 37 °C for 1 h followed by analysis of platelet aggregation, granules release, receptors expression, spreading and clot retraction. In addition, mice received intraperitoneal injection of DMF (15 mg/kg) to assess tail bleeding time, arterial and venous thrombosis. RESULTS DMF significantly inhibited platelet aggregation and the release of dense/alpha granules in response to collagen-related peptide (CRP) or thrombin stimulation dose-dependently without altering the expression of platelet receptors αIIbβ3, GPIbα, and GPVI. In addition, DMF-treated platelets presented significantly reduced spreading on collagen or fibrinogen and thrombin-mediated clot retraction along with the decreased phosphorylation of c-Src and PLCγ2. Moreover, administration of DMF into mice significantly prolonged the tail bleeding time and impaired arterial and venous thrombus formation. Furthermore, DMF reduced the generation of intracellular reactive oxygen species and calcium mobilization, and inhibited NF-κB activation and the phosphorylation of ERK1/2, p38 and AKT. CONCLUSION DMF inhibits platelet function and arterial/venous thrombus formation. Considering the presence of thrombotic events in MS, our study indicates that DMF treatment for patients with MS might obtain both anti-inflammatory and anti-thrombotic benefits.
Collapse
Affiliation(s)
- Xiang Chu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Jie Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Yingying Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Ke Yuan
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Xue Wang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Xiang Gui
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Yueyue Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Chaonan Geng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Mengdi Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.
| |
Collapse
|
23
|
Wang M, Yu F, Chang W, Zhang Y, Zhang L, Li P. Inflammasomes: a rising star on the horizon of COVID-19 pathophysiology. Front Immunol 2023; 14:1185233. [PMID: 37251383 PMCID: PMC10213254 DOI: 10.3389/fimmu.2023.1185233] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a contagious respiratory virus that is the cause of the coronavirus disease 2019 (COVID-19) pandemic which has posed a serious threat to public health. COVID-19 is characterized by a wide spectrum of clinical manifestations, ranging from asymptomatic infection to mild cold-like symptoms, severe pneumonia or even death. Inflammasomes are supramolecular signaling platforms that assemble in response to danger or microbial signals. Upon activation, inflammasomes mediate innate immune defense by favoring the release of proinflammatory cytokines and triggering pyroptotic cell death. Nevertheless, abnormalities in inflammasome functioning can result in a variety of human diseases such as autoimmune disorders and cancer. A growing body of evidence has showed that SARS-CoV-2 infection can induce inflammasome assembly. Dysregulated inflammasome activation and consequent cytokine burst have been associated with COVID-19 severity, alluding to the implication of inflammasomes in COVID-19 pathophysiology. Accordingly, an improved understanding of inflammasome-mediated inflammatory cascades in COVID-19 is essential to uncover the immunological mechanisms of COVID-19 pathology and identify effective therapeutic approaches for this devastating disease. In this review, we summarize the most recent findings on the interplay between SARS-CoV-2 and inflammasomes and the contribution of activated inflammasomes to COVID-19 progression. We dissect the mechanisms involving the inflammasome machinery in COVID-19 immunopathogenesis. In addition, we provide an overview of inflammasome-targeted therapies or antagonists that have potential clinical utility in COVID-19 treatment.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | | | | | | | | | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Trivigno SMG, Guidetti GF, Barbieri SS, Zarà M. Blood Platelets in Infection: The Multiple Roles of the Platelet Signalling Machinery. Int J Mol Sci 2023; 24:ijms24087462. [PMID: 37108623 PMCID: PMC10138547 DOI: 10.3390/ijms24087462] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Platelets are classically recognized for their important role in hemostasis and thrombosis but they are also involved in many other physiological and pathophysiological processes, including infection. Platelets are among the first cells recruited to sites of inflammation and infection and they exert their antimicrobial response actively cooperating with the immune system. This review aims to summarize the current knowledge on platelet receptor interaction with different types of pathogens and the consequent modulations of innate and adaptive immune responses.
Collapse
Affiliation(s)
- Silvia M G Trivigno
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- University School for Advanced Studies, IUSS, 27100 Pavia, Italy
| | | | - Silvia Stella Barbieri
- Unit of Heart-Brain Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy
| | - Marta Zarà
- Unit of Heart-Brain Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milano, Italy
| |
Collapse
|
25
|
Eptifibatide, an Older Therapeutic Peptide with New Indications: From Clinical Pharmacology to Everyday Clinical Practice. Int J Mol Sci 2023; 24:ijms24065446. [PMID: 36982519 PMCID: PMC10049647 DOI: 10.3390/ijms24065446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Therapeutic peptides are oligomers or short polymers of amino acids used for various medical purposes. Peptide-based treatments have evolved considerably due to new technologies, stimulating new research interests. They have been shown to be beneficial in a variety of therapeutic applications, notably in the treatment of cardiovascular disorders such as acute coronary syndrome (ACS). ACS is characterized by coronary artery wall damage and consequent formation of an intraluminal thrombus obstructing one or more coronary arteries, leading to unstable angina, non-ST elevated myocardial infarction, and ST-elevated myocardial infarction. One of the promising peptide drugs in the treatment of these pathologies is eptifibatide, a synthetic heptapeptide derived from rattlesnake venom. Eptifibatide is a glycoprotein IIb/IIIa inhibitor that blocks different pathways in platelet activation and aggregation. In this narrative review, we summarized the current evidence on the mechanism of action, clinical pharmacology, and applications of eptifibatide in cardiology. Additionally, we illustrated its possible broader usage with new indications, including ischemic stroke, carotid stenting, intracranial aneurysm stenting, and septic shock. Further research is, however, required to fully evaluate the role of eptifibatide in these pathologies, independently and in comparison to other medications.
Collapse
|
26
|
Gui X, Chu X, Du Y, Wang Y, Zhang S, Ding Y, Tong H, Xu M, Li Y, Ju W, Sun Z, Li Z, Zeng L, Xu K, Qiao J. Impaired Platelet Function and Thrombus Formation in PDE5A-Deficient Mice. Thromb Haemost 2023; 123:207-218. [PMID: 36252813 DOI: 10.1055/a-1962-1613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intracellular cyclic GMP (cGMP) inhibits platelet function. Platelet cGMP levels are controlled by phosphodiesterase 5A (PDE5A)-mediated degradation. However, the exact role of PDE5A in platelet function and thrombus formation remains poorly understood. In this study, we characterized the role of PDE5A in platelet activation and function. Platelets were isolated from wild type or PDE5A-/- mice to measure platelet aggregation, activation, phosphatidylserine exposure (annexin-V binding), reactive oxygen species (ROS) generation, platelet spreading as well as clot retraction. Cytosolic calcium mobilization was measured using Fluo-4 AM by a microplate reader. Western blot was used to measure the phosphorylation of VASP, ERK1/2, p38, JNK, and AKT. FeCl3-induced arterial thrombosis and venous thrombosis were assessed to evaluate the in vivo hemostatic function and thrombus formation. Additionally, in vitro thrombus formation was assessed in a microfluidic whole-blood perfusion assay. PDE5A-deficient mice presented significantly prolonged tail bleeding time and delayed arterial and venous thrombus formation. PDE5A deficiency significantly inhibited platelet aggregation, ATP release, P-selectin expression, and integrin aIIbb3 activation. In addition, an impaired spreading on collagen or fibrinogen and clot retraction was observed in PDE5A-deficient platelets. Moreover, PDE5A deficiency reduced phosphatidylserine exposure, calcium mobilization, ROS production, and increased intracellular cGMP level along with elevated VASP phosphorylation and reduced phosphorylation of ERK1/2, p38, JNK, and AKT. In conclusion, PDE5A modulates platelet activation and function and thrombus formation, indicating that therapeutically targeting it might be beneficial for the treatment of thrombotic diseases.
Collapse
Affiliation(s)
- Xiang Gui
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Xiang Chu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Yuwei Du
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Yuhan Wang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Sixuan Zhang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Yangyang Ding
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Huan Tong
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Mengdi Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Yue Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Zengtian Sun
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China.,School of Medical Technology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, People's Republic of China
| |
Collapse
|
27
|
Zhu C, Liang Y, Luo Y, Ma X. Role of pyroptosis in hemostasis activation in sepsis. Front Immunol 2023; 14:1114917. [PMID: 36756123 PMCID: PMC9899792 DOI: 10.3389/fimmu.2023.1114917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Sepsis is frequently associated with hemostasis activation and thrombus formation, and systematic hemostatic changes are associated with a higher risk of mortality. The key events underlying hemostasis activation during sepsis are the strong activation of innate immune pathways and the excessive inflammatory response triggered by invading pathogens. Pyroptosis is a proinflammatory form of programmed cell death, that defends against pathogens during sepsis. However, excessive pyroptosis can lead to a dysregulation of host immune responses and organ dysfunction. Recently, pyroptosis has been demonstrated to play a prominent role in hemostasis activation in sepsis. Several studies have demonstrated that pyroptosis participates in the release and coagulation activity of tissue factors. In addition, pyroptosis activates leukocytes, endothelial cells, platelets, which cooperate with the coagulation cascade, leading to hemostasis activation in sepsis. This review article attempts to interpret the molecular and cellular mechanisms of the hemostatic imbalance induced by pyroptosis during sepsis and discusses potential therapeutic strategies.
Collapse
Affiliation(s)
- Chengrui Zhu
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yingjian Liang
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yangtuo Luo
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, Liaoning, China,*Correspondence: Yangtuo Luo, ; Xiaochun Ma,
| | - Xiaochun Ma
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China,*Correspondence: Yangtuo Luo, ; Xiaochun Ma,
| |
Collapse
|
28
|
Coagulation Disorders in Sepsis and COVID-19-Two Sides of the Same Coin? A Review of Inflammation-Coagulation Crosstalk in Bacterial Sepsis and COVID-19. J Clin Med 2023; 12:jcm12020601. [PMID: 36675530 PMCID: PMC9866352 DOI: 10.3390/jcm12020601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Sepsis is a major cause of morbidity and mortality worldwide. Sepsis-associated coagulation disorders are involved in the pathogenesis of multiorgan failure and lead to a subsequently worsening prognosis. Alongside the global impact of the COVID-19 pandemic, a great number of research papers have focused on SARS-CoV-2 pathogenesis and treatment. Significant progress has been made in this regard and coagulation disturbances were once again found to underlie some of the most serious adverse outcomes of SARS-CoV-2 infection, such as acute lung injury and multiorgan dysfunction. In the attempt of untangling the mechanisms behind COVID-19-associated coagulopathy (CAC), a series of similarities with sepsis-induced coagulopathy (SIC) became apparent. Whether they are, in fact, the same disease has not been established yet. The clinical picture of CAC shows the unique feature of an initial phase of intravascular coagulation confined to the respiratory system. Only later on, patients can develop a clinically significant form of systemic coagulopathy, possibly with a consumptive pattern, but, unlike SIC, it is not a key feature. Deepening our understanding of CAC pathogenesis has to remain a major goal for the research community, in order to design and validate accurate definitions and classification criteria.
Collapse
|
29
|
Wang Y, Liu YJ, Zhang MM, Zhou H, Gao YH, Cheng WJ, Ye ZW, Yuan ZY, Xu GH, Li CF, Yi LT. CY-09 Alleviates the Depression-like Behaviors via Inhibiting NLRP3 Inflammasome-Mediated Neuroinflammation in Lipopolysaccharide-Induced Mice. ACS Chem Neurosci 2022; 13:3291-3302. [PMID: 36399525 DOI: 10.1021/acschemneuro.2c00348] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Depression is a serious mental illness, mainly characterized as large mood swings and sleep, diet, and cognitive function disorders. NLPR3, one of the inflammasomes that can be activated by a variety of stimuli to promote the maturation and secretion of pro-inflammatory cytokines, has been considered to be involved in the pathophysiology of depression. In this study, the putative role of CY-09, a selective and direct inhibitor of NLRP3, was evaluated in the lipopolysaccharide (LPS)-induced mice. The results of the study indicated that CY-09 significantly decreased the levels of NLRP3 in the hippocampus of LPS-induced mice. In addition, CY-09 increased the sucrose preference and shortened the immobility time in LPS-induced mice, suggesting the antidepressant-like effects of inhibiting NLRP3 inflammasome. Biochemical analysis showed that LPS significantly activated the NLRP3/ASC/cytokine signaling pathway and caused microglial activation, while CY-09 prevented the changes. Moreover, CY-09 increased the brain-derived neurotrophic factor (BDNF) only in microglia but not in the whole hippocampus. Meanwhile, CY-09 did not promote neurogenesis in the hippocampus of LPS mice. In conclusion, the results of the study showed that the antidepressant-like effects of NLRP3 inhibitor CY-09 were mediated by alleviating neuroinflammation in microglia and independent of the neurotrophic function in the hippocampus.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Yi-Jie Liu
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Man-Man Zhang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Han Zhou
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Yi-Han Gao
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Wen-Jing Cheng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Zi-Wei Ye
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Zhong-Yu Yuan
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Guang-Hui Xu
- Xiamen Medicine Research Institute, Xiamen 361008, Fujian Province, PR China
| | - Cheng-Fu Li
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361009, Fujian Province, PR China
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China.,Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China.,Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, PR China
| |
Collapse
|
30
|
Pinheiro MBM, Rozini SV, Quirino-Teixeira AC, Barbosa-Lima G, Lopes JF, Sacramento CQ, Bozza FA, Bozza PT, Hottz ED. Dengue induces iNOS expression and nitric oxide synthesis in platelets through IL-1R. Front Immunol 2022; 13:1029213. [PMID: 36569864 PMCID: PMC9767985 DOI: 10.3389/fimmu.2022.1029213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Dengue is an arthropod-born disease caused by dengue virus (DENV), that may manifest as a mild illness or severe form, characterized by hemorrhagic fever and shock. Nitric oxide (NO) is a vasodilator signaling molecule and an inhibitor of platelet aggregation known to be increased in platelets from dengue patients. However, the mechanisms underlying NO synthesis by platelets during dengue are not yet elucidated. IL-1β is a pro-inflammatory cytokine able to induce iNOS expression in leukocytes and present in dengue patients at high levels. Nevertheless, the role of IL-1β in platelet activation, especially regarding iNOS expression, are not clear. Methods We prospectively followed a cohort of 28 dengue-infected patients to study NO synthesis in platelets and its relationship with disease outcomes. We used in vitro infection and stimulation models to gain insights on the mechanisms. Results and Discussion We confirmed that platelets from dengue patients express iNOS and produce higher levels of NO during the acute phase compared to healthy volunteers, returning to normal levels after recovery. Platelet NO production during acute dengue infection was associated with the presence of warning signs, hypoalbuminemia and hemorrhagic manifestations, suggesting a role in dengue pathophysiology. By investigating the mechanisms, we evidenced increased iNOS expression in platelets stimulated with dengue patients´ plasma, indicating induction by circulating inflammatory mediators. We then investigated possible factors able to induce platelet iNOS expression and observed higher levels of IL-1β in plasma from patients with dengue, which were correlated with NO production by platelets. Since platelets can synthesize and respond to IL-1β, we investigated whether IL-1β induces iNOS expression and NO synthesis in platelets. We observed that recombinant human IL-1β enhanced iNOS expression and dose-dependently increased NO synthesis by platelets. Finally, platelet infection with DENV in vitro induced iNOS expression and NO production, besides the secretion of both IL-1α and IL-1β. Importantly, treatment with IL-1 receptor antagonist or a combination of anti-IL-1α and anti-IL-1β antibodies prevented DENV-induced iNOS expression and NO synthesis. Our data show that DENV induces iNOS expression and NO production in platelets through mechanisms depending on IL-1 receptor signaling.
Collapse
Affiliation(s)
- Mariana Brandi Mendonça Pinheiro
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Stephane Vicente Rozini
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Anna Cecíllia Quirino-Teixeira
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Giselle Barbosa-Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Juliana F. Lopes
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Carolina Q. Sacramento
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil,National Institute for Science and Technology on Innovation in Diseases of Neglected Populations (INCT/IDPN), Center for Technological Development in Health (CDTS), Fiocruz, Rio de Janeiro, Brazil
| | - Fernando A. Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil,D’Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Patrícia T. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Eugenio D. Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil,Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil,*Correspondence: Eugenio D. Hottz,
| |
Collapse
|
31
|
Tong X, Ping H, Gong X, Zhang K, Chen Z, Cai C, Lu Z, Yang R, Gao S, Wang Y, Wang X, Liu L, Ke H. Pyroptosis in the lung and spleen of patients died from
COVID-19. EUR J INFLAMM 2022; 20:1721727X221140661. [PMCID: PMC9702972 DOI: 10.1177/1721727x221140661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
The purpose of this study was to investigate the expression of pyroptosis-related factors (NLRP3, IL-18, NF-κB, HMGB-1, and GSDMD) in patients who died of COVID-19. The expression levels of NLRP3, IL-18, NF-κB, HMGB-1, and GSDMD in lung and spleen tissues of the COVID-19 group and the control group were detected by tissue immunofluorescence. The control group includes lung tissues and spleen tissues of two patients who died unexpectedly without SARS-CoV-2 infection, and the COVID-19 group includes the lung and spleen tissues of three patients who died of SARS-CoV-2 virus infection. The positive rates of NF-κB, NLRP3, IL-18, and GSDMD in the lung tissues from the control group and COVID-19 group were 9.8% vs 73.4% (p = 0.000), 5.5% vs 63.6% (p = 0.000), 24.4% vs 76.2% (p = 0.000), and 17.5% and 46.8% (p = 0.000) respectively. The positive rates of NF-κB, NLRP3, IL-18, HMGB-1, and GSDMD in the spleen tissues from the control group and COVID-19 group were 20.6% vs 71.2% (p = 0.000), 18.9% vs 72.0% (p = 0.000), 15.2% vs 64.8% (p = 0.000), 27.6% vs 69.2% (p = 0.000), and 23% and 48.8% (p = 0.000), respectively. The positive rates of SARS-CoV-2 spike protein in the CD68 positive cells of the lung and spleen in the control group and COVID-19 group were 2.5% vs 56.8% (p = 0.000); 3.0% vs 64.9% (p = 0.000) respectively. The rates of NF-κB positive nuclei in the control group and COVID-19 group were 13.4% vs 51.4% (p = 0.000) in the lung and 38.2% vs 59.3% (p = 0.000) in the spleen. The rates of HMGB-1 positive cytoplasm in the control and the COVID-19 group were 19.7% vs 50.3% (p = 0.000) in the lung and 12.3% vs 45.2% (p = 0.000) in the spleen. The targets of SARS-CoV-2 are the lung and spleen, where increased macrophages could be involved in the up-regulation of pyroptosis-related inflammatory factors such as NF-κB, HMGB-1, NLRP3, IL-18, and GSDMD.
Collapse
Affiliation(s)
- Xin Tong
- Training Center of AIDS prevention
and Cure of Hubei Province, Zhongnan Hospital Wuhan
University, Wuhan, China
| | - Haiqin Ping
- Training Center of AIDS prevention
and Cure of Hubei Province, Zhongnan Hospital Wuhan
University, Wuhan, China
| | - Xiaoming Gong
- Training Center of AIDS prevention
and Cure of Hubei Province, Zhongnan Hospital Wuhan
University, Wuhan, China
| | - Kai Zhang
- Training Center of AIDS prevention
and Cure of Hubei Province, Zhongnan Hospital Wuhan
University, Wuhan, China
| | - Zhaojun Chen
- Training Center of AIDS prevention
and Cure of Hubei Province, Zhongnan Hospital Wuhan
University, Wuhan, China
| | - Caiyun Cai
- Training Center of AIDS prevention
and Cure of Hubei Province, Zhongnan Hospital Wuhan
University, Wuhan, China
| | - Zhiyan Lu
- Department of Radiology, Zhongnan Hospital of Wuhan
University, Wuhan, China
| | - Rongrong Yang
- Department of Radiology, Zhongnan Hospital of Wuhan
University, Wuhan, China
| | - Shicheng Gao
- Department of infectious disease, Zhongnan Hospital of Wuhan
University, Wuhan, China
| | - Yunyun Wang
- Department of Forensic Medicine,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan
University, Wuhan, China
| | - Liang Liu
- Department of Forensic Medicine,
Tongji Medical College, Huazhong University of Science and
Technology, Wuhan, China
| | - Hengning Ke
- Training Center of AIDS prevention
and Cure of Hubei Province, Zhongnan Hospital Wuhan
University, Wuhan, China
| |
Collapse
|
32
|
Yamaguchi A, Stanger L, Freedman JC, Prieur A, Thav R, Tena J, Holman TR, Holinstat M. Supplementation with omega-3 or omega-6 fatty acids attenuates platelet reactivity in postmenopausal women. Clin Transl Sci 2022; 15:2378-2391. [PMID: 35791734 PMCID: PMC9579391 DOI: 10.1111/cts.13366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/18/2022] [Accepted: 06/26/2022] [Indexed: 01/25/2023] Open
Abstract
Postmenopausal women are at increased risk for a cardiovascular event due to platelet hyperactivity. There is evidence suggesting that ω-3 polyunsaturated fatty acids (PUFAs) and ω-6 PUFAs have cardioprotective effects in these women. However, a mechanistic understanding of how these fatty acids regulate platelet function is unknown. In this study, we supplemented postmenopausal women with fish oil (ω-3 fatty acids) or evening primrose oil (ω-6 fatty acids) and investigated the effects on their platelet activity. The effects of fatty acid supplementation on platelet aggregation, dense granule secretion, and activation of integrin αIIbβ3 at basal levels and in response to agonist were tested in postmenopausal women following a supplementation and washout period. Supplementation with fish oil or primrose oil attenuated the thrombin receptor PAR4-induced platelet aggregation. Supplementation with ω-3 or ω-6 fatty acids decreased platelet dense granule secretion and attenuated basal levels of integrin αIIbβ3 activation. Interestingly, after the washout period following supplementation with primrose oil, platelet aggregation was similarly attenuated. Additionally, for either treatment, the observed protective effects post-supplementation on platelet dense granule secretion and basal levels of integrin activation were sustained after the washout period, suggesting a long-term shift in platelet reactivity due to fatty acid supplementation. These findings begin to elucidate the underlying mechanistic effects of ω-3 and ω-6 fatty acids on platelet reactivity in postmenopausal women. Hence, this study supports the beneficial effects of fish oil or primrose oil supplementation as a therapeutic intervention to reduce the risk of thrombotic events in postmenopausal women. https://clinicaltrials.gov/ct2/show/NCT02629497.
Collapse
Affiliation(s)
- Adriana Yamaguchi
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Livia Stanger
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - John Cody Freedman
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Amanda Prieur
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Rachel Thav
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA,Cranbrook SchoolsBloomfield HillsMichiganUSA
| | - Jennyfer Tena
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Theodore R. Holman
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Michael Holinstat
- Department of PharmacologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA,Department of Internal Medicine, Division of Cardiovascular MedicineUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| |
Collapse
|
33
|
Enhanced platelet NLRP3 inflammasome expression in patients with acute coronary syndrome and stable coronary artery disease: A prospective observational study. CARDIOLOGY PLUS 2022. [DOI: 10.1097/cp9.0000000000000018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
34
|
Zheng Y, Xu L, Dong N, Li F. NLRP3 inflammasome: The rising star in cardiovascular diseases. Front Cardiovasc Med 2022; 9:927061. [PMID: 36204568 PMCID: PMC9530053 DOI: 10.3389/fcvm.2022.927061] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the prevalent cause of mortality around the world. Activation of inflammasome contributes to the pathological progression of cardiovascular diseases, including atherosclerosis, abdominal aortic aneurysm, myocardial infarction, dilated cardiomyopathy, diabetic cardiomyopathy, heart failure, and calcific aortic valve disease. The nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome plays a critical role in the innate immune response, requiring priming and activation signals to provoke the inflammation. Evidence shows that NLRP3 inflammasome not only boosts the cleavage and release of IL-1 family cytokines, but also leads to a distinct cell programmed death: pyroptosis. The significance of NLRP3 inflammasome in the CVDs-related inflammation has been extensively explored. In this review, we summarized current understandings of the function of NLRP3 inflammasome in CVDs and discussed possible therapeutic options targeting the NLRP3 inflammasome.
Collapse
|
35
|
Gleeson TA, Nordling E, Kaiser C, Lawrence CB, Brough D, Green JP, Allan SM. Looking into the IL-1 of the storm: are inflammasomes the link between immunothrombosis and hyperinflammation in cytokine storm syndromes? DISCOVERY IMMUNOLOGY 2022; 1:kyac005. [PMID: 38566906 PMCID: PMC10917224 DOI: 10.1093/discim/kyac005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 04/04/2024]
Abstract
Inflammasomes and the interleukin (IL)-1 family of cytokines are key mediators of both inflammation and immunothrombosis. Inflammasomes are responsible for the release of the pro-inflammatory cytokines IL-1β and IL-18, as well as releasing tissue factor (TF), a pivotal initiator of the extrinsic coagulation cascade. Uncontrolled production of inflammatory cytokines results in what is known as a "cytokine storm" leading to hyperinflammatory disease. Cytokine storms can complicate a variety of diseases and results in hypercytokinemia, coagulopathies, tissue damage, multiorgan failure, and death. Patients presenting with cytokine storm syndromes have a high mortality rate, driven in part by disseminated intravascular coagulation (DIC). While our knowledge on the factors propagating cytokine storms is increasing, how cytokine storm influences DIC remains unknown, and therefore treatments for diseases, where these aspects are a key feature are limited, with most targeting specific cytokines. Currently, no therapies target the immunothrombosis aspect of hyperinflammatory syndromes. Here we discuss how targeting the inflammasome and pyroptosis may be a novel therapeutic strategy for the treatment of hyperinflammation and its associated pathologies.
Collapse
Affiliation(s)
- Tara A Gleeson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Erik Nordling
- Swedish Orphan Biovitrum AB, Stockholm 112 76, Sweden
| | | | - Catherine B Lawrence
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - David Brough
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Jack P Green
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Stuart M Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| |
Collapse
|
36
|
Protein tyrosine phosphatase PTPN22 negatively modulates platelet function and thrombus formation. Blood 2022; 140:1038-1051. [PMID: 35767715 DOI: 10.1182/blood.2022015554] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/21/2022] [Indexed: 11/20/2022] Open
Abstract
Protein tyrosine phosphatase nonreceptor type 22 (PTPN22) is a protein tyrosine phosphatase that negatively regulates T-cell signaling. However, whether it is expressed and functions in platelets remains unknown. Here we investigated the expression and role of PTPN22 in platelet function. We reported PTPN22 expression in both human and mouse platelets. Using PTPN22-/- mice, we showed that PTPN22 deficiency significantly shortened tail-bleeding time and accelerated arterial thrombus formation without affecting venous thrombosis and the coagulation factors VIII and IX. Consistently, PTPN22-deficient platelets exhibited enhanced platelet aggregation, granule secretion, calcium mobilization, lamellipodia formation, spreading, and clot retraction. Quantitative phosphoproteomic analysis revealed the significant difference of phosphodiesterase 5A (PDE5A) phosphorylation in PTPN22-deficient platelets compared with wild-type platelets after collagen-related peptide stimulation, which was confirmed by increased PDE5A phosphorylation (Ser92) in collagen-related peptide-treated PTPN22-deficient platelets, concomitant with reduced level and vasodilator-stimulated phosphoprotein phosphorylation (Ser157/239). In addition, PTPN22 interacted with phosphorylated PDE5A (Ser92) and dephosphorylated it in activated platelets. Moreover, purified PTPN22 but not the mutant form (C227S) possesses intrinsic serine phosphatase activity. Furthermore, inhibition of PTPN22 enhanced human platelet aggregation, spreading, clot retraction, and increased PDE5A phosphorylation (Ser92). In conclusion, our study shows a novel role of PTPN22 in platelet function and arterial thrombosis, identifying new potential targets for future prevention of thrombotic or cardiovascular diseases.
Collapse
|
37
|
Mattana M, Tomasello R, Cammarata C, Di Carlo P, Fasciana T, Giordano G, Lucchesi A, Siragusa S, Napolitano M. Clostridium difficile Induced Inflammasome Activation and Coagulation Derangements. Microorganisms 2022; 10:microorganisms10081624. [PMID: 36014040 PMCID: PMC9416296 DOI: 10.3390/microorganisms10081624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
C. difficile enterocolitis (CDAC) is the most common hospital infection, burdened by an increased incidence of coagulation-related complications such as deep vein thrombosis (DVT) and disseminated intravascular coagulation (DIC) as well as a significant sepsis-related mortality. In this review, we analyzed the available data concerning the correlation between coagulation complications related to C. difficile infection (CDI) and inflammasome activation, in particular the pyrin-dependent one. The little but solid available preclinical and clinical evidence shows that inflammasome activation increases the risk of venous thromboembolism (VTE). As proof of this, it has been observed that in vitro inhibition of the molecules (e.g., tissue factor) mainly involved in coagulation activation could block the process. In vivo studies show that it could be possible to reduce the incidence of complications associated with C. difficile infection (CDI) and mortality due to a state of hypercoagulability. A personalized therapeutic approach to reduce the inflammatory activity and prevent thromboembolic complications could be preliminarily defined to reduce mortality.
Collapse
Affiliation(s)
- Marta Mattana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90141 Palermo, Italy
| | - Riccardo Tomasello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90141 Palermo, Italy
| | - Claudia Cammarata
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90141 Palermo, Italy
| | - Paola Di Carlo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90141 Palermo, Italy
| | - Teresa Fasciana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90141 Palermo, Italy
| | - Giulio Giordano
- Division of Internal Medicine, Hematology Service, Regional Hospital “A. Cardarelli”, 86100 Campobasso, Italy
| | - Alessandro Lucchesi
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Sergio Siragusa
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90141 Palermo, Italy
| | - Mariasanta Napolitano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90141 Palermo, Italy
- Correspondence: ; Tel.: +39-0916554519; Fax: +39-0916554500
| |
Collapse
|
38
|
Yin H, Wu M, Lu Y, Wu X, Yu B, Chen R, Lu J, Tong H. HMGB1-activatied NLRP3 inflammasome induces thrombocytopenia in heatstroke rat. PeerJ 2022; 10:e13799. [PMID: 35945940 PMCID: PMC9357367 DOI: 10.7717/peerj.13799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/06/2022] [Indexed: 01/18/2023] Open
Abstract
Background Thrombocytopenia, an early common complication in heatstroke (HS), has been widely considered as a mortality predictor of HS. The mechanism underlying thrombocytopenia in HS remains unknown. It is not known whether NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is activated in HS platelet, which, in turn, induces platelet activation and thrombocytopenia. This study tried to clarify the activation of the NOD-like receptor signaling pathway under HS conditions and investigate its roles in mediating HS-induced thrombocytopenia. Methods Rat HS models were established in a certain ambient temperature and humidity. Platelets, isolated from blood, were counted and CD62P, an index of platelet activation, was measured by flow cytometry in all rats. The colocalization of NLRP3 inflammasome in platelet was detected by confocal fluorescence microscopy. Mitochondrial-derived reactive oxygen species (ROS) was detected using the molecular probes. Plasma HMGB1 and IL-1β levels were measured by ELISA. Results Platelet activation, showed by upregulated CD62P, and thrombocytopenia were observed in HS rats. HS activated the NLRP3 inflammasome, which was induced by elevated levels of ROS, while the upregulated CD62P and thrombocytopenia triggered by NLRP3 inflammasome were attributed to the high mobility group box protein 1 (HMGB1) inplasma. Moreover, inhibition of the NOD-like receptor signaling pathway in rats with HS suppressed platelet activation and the decline of platelet count. Similar results were obtained when the receptor toll-like receptor 4 (TLR4)/advanced glycation end product (RAGE) was blocked. Conclusions The NOD-like receptor signaling pathway induces platelet activation and thrombocytopenia in HS rats. These findings suggested that the NLRP3 inflammasome might be the potential target for HS treatment.
Collapse
Affiliation(s)
- Huimei Yin
- The 3rd Xiangya Hospital, Central South University, Department of Critical Care Medicine and Hematology, Changsha, Hunan, China
| | - Ming Wu
- Department of Intensive Care Unit & Infection Prevention and Control, The Second People‘s Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Yong Lu
- Department of Critical Care Medicine, The First People’s Hospital of Chenzhou, Chenzhou, Hunan, China,Department of Graduate School, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinghui Wu
- Department of Graduate School, Southern Medical University, Guangzhou, Guangdong, China,Department of Intensive Care Unit, General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong, China
| | - BaoJun Yu
- Department of Intensive Care Unit, Baoan District People’s Hospital, Shenzhen, Guangdong, China
| | - Ronglin Chen
- Department of Critical Care Medicine, Longgang District Central Hospital, Shenzhen, Guangdong, China
| | - JieFu Lu
- Department of Intensive Care Unit, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Huasheng Tong
- Department of Graduate School, Southern Medical University, Guangzhou, Guangdong, China,Department of Intensive Care Unit, General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong, China
| |
Collapse
|
39
|
Sun C, Zhao H, Han Y, Wang Y, Sun X. The Role of Inflammasomes in COVID-19: Potential Therapeutic Targets. J Interferon Cytokine Res 2022; 42:406-420. [PMID: 35984324 DOI: 10.1089/jir.2022.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The coronavirus 2019 disease (COVID-19) pandemic has caused massive morbidity and mortality worldwide. In severe cases, it is mainly associated with acute pneumonia, cytokine storm, and multi-organ dysfunction. Inflammasomes play a primary role in various pathological processes such as infection, injury, and cancer. However, their role in COVID-19-related complications has not been explored. In addition, the role of underlying medical conditions on COVID-19 disease severity remains unclear. Therefore, this review expounds on the mechanisms of inflammasomes following COVID-19 infection and provides recent evidence on the potential double-edged sword effect of inflammasomes during COVID-19 pathogenesis. The assembly and activation of inflammasomes are critical for inducing effective antiviral immune responses and disease resolution. However, uncontrolled activation of inflammasomes causes excessive production of proinflammatory cytokines (cytokine storm), increased risk of acute respiratory distress syndrome, and death. Therefore, discoveries in the role of the inflammasome in mediating organ injury are key to identifying therapeutic targets and treatment modifications to prevent or reduce COVID-19-related complications.
Collapse
Affiliation(s)
- Chen Sun
- Department of Clinical Medicine, School of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hangyuan Zhao
- Department of Clinical Medicine, School of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yunze Han
- Department of Clinical Medicine, School of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yiqing Wang
- Department of Clinical Medicine, School of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiao Sun
- Department of Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
40
|
Qiu Y, Huang Y, Chen M, Yang Y, Li X, Zhang W. Mitochondrial DNA in NLRP3 inflammasome activation. Int Immunopharmacol 2022; 108:108719. [DOI: 10.1016/j.intimp.2022.108719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/26/2022] [Accepted: 03/17/2022] [Indexed: 12/20/2022]
|
41
|
Li Y, Xin G, Li S, Dong Y, Zhu Y, Yu X, Wan C, Li F, Wei Z, Wang Y, Zhang K, Chen Q, Niu H, Huang W. PD-L1 Regulates Platelet Activation and Thrombosis via Caspase-3/GSDME Pathway. Front Pharmacol 2022; 13:921414. [PMID: 35784685 PMCID: PMC9240427 DOI: 10.3389/fphar.2022.921414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Platelets play a central role in hemostasis and thrombosis, regulating the occurrence and development of thrombotic diseases, including ischemic stroke. Programmed death ligand 1 (PD-L1) has recently been detected in platelet, while the function of PD-L1 in platelets remain elusive. Our data reveal a novel mechanism for the role of PD-L1 on platelet activation and arterial thrombosis. PD-L1 knockout does not affect platelet morphology, count, and mean volume under homeostasis and without risk of bleeding, which inhibits platelet activation by suppressing outside-in-activation of integrin by downregulating the Caspase-3/GSDME pathway. Platelet adoptive transfer experiments demonstrate that PD-L1 knockout inhibits thrombosis. And the absence of PD-L1 improves ischemic stroke severity and increases mice survival. Immunohistochemical staining of the internal structure of the thrombus proves that PD-L1 enhances the seriousness of the thrombus by inhibiting platelet activation. This work reveals a regulatory role of PD-L1 on platelet activation and thrombosis while providing novel platelet intervention strategies to prevent thrombosis.
Collapse
|
42
|
Li Q, Yang XT, Wei W, Hu XP, Li XX, Xu M. Favorable effect of rivaroxaban against vascular dysfunction in diabetic mice by inhibiting NLRP3 inflammasome activation. J Cell Physiol 2022; 237:3369-3380. [PMID: 35675485 DOI: 10.1002/jcp.30807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 12/26/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in various complications of type 2 diabetes mellitus (T2DM). Rivaroxaban (Xarelto; Bayer), an oral direct factor Xa (FXa) inhibitor, prevents the activation of the coagulation cascade in CVD. Considering its anticoagulant and anti-inflammatory effects, we assessed the hypothesis that rivaroxaban treatment may attenuate the vascular lesion and dysfunction in T2DM mice. C57BL/6, BKS-db/db, BKS-db/+, wild-type (WT), and NLRP3-/- mice were fed with standard chow or high-fat diet (HFD). Biochemical indexes, vascular lesions, and protein expression were evaluated using Western blot analysis, immunofluorescent staining, and RNA interference. Rivaroxaban presented favorable protection of vascular dysfunction in T2DM mice with significantly relieved vascular tension, intima-media thickness, and collagen deposition. Similar improvements in NLR family pyrin domain containing 3 (NLRP3) knockout groups and rivaroxaban pointed to the positive role of rivaroxaban against vascular dysfunction in diabetic mice by ameliorating NLRP3 inflammasome activation. Furthermore, the augmentation of inflammation and cell dysfunction in mice aortic endothelial cells (MAECs) and smooth muscle cells (MOVASs) induced by soluble FXa may be blocked by rivaroxaban via protease-activated receptors (PAR-1, PAR-2), mitogen-activated protein kinase (MAPK), and nuclear factor κ-B (NF-κB) pathway. The data indicate that the development of vascular dysfunction and inflammation in T2DM mice may be blocked by rivaroxaban in vivo and in vitro. Rivaroxaban treatment may also attenuate NLRP3 inflammasome activation via PARs, MAPK, and NF-κB pathway. This study provides mechanistic evidence of rivaroxaban therapies for vascular complications of T2DM.
Collapse
Affiliation(s)
- Qing Li
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin-Tong Yang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wei Wei
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiang-Peng Hu
- Digestive Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Xue Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ming Xu
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
43
|
Zhang X, Tang J, Kou X, Huang W, Zhu Y, Jiang Y, Yang K, Li C, Hao M, Qu Y, Ma L, Chen C, Shi S, Zhou Y. Proteomic analysis of MSC-derived apoptotic vesicles identifies Fas inheritance to ameliorate haemophilia a via activating platelet functions. J Extracell Vesicles 2022; 11:e12240. [PMID: 36856683 PMCID: PMC9927920 DOI: 10.1002/jev2.12240] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Apoptotic vesicles (apoVs) are apoptotic cell-derived nanosized vesicles that play a crucial role in multiple pathophysiological settings. However, their detailed characteristics, specific surface markers, and biological properties are not fully elucidated. In this study, we compared mesenchymal stem cell (MSC)-derived apoVs and exosomes from three different types of MSCs including human bone marrow MSCs (hBMSCs), human adipose MSCs (hASCs), and mouse bone marrow MSCs (mBMSCs). We established a unique protein map of MSC-derived apoVs and identified the differences between apoVs and exosomes in terms of functional protein cargo and surface markers. Furthermore, we identified 13 proteins specifically enriched in apoVs compared to exosomes, which can be used as apoV-specific biomarkers. In addition, we showed that apoVs inherited apoptotic imprints such as Fas to ameliorate haemophilia A in factor VIII knockout mice via binding to the platelets' FasL to activate platelet functions, and therefore rescuing the blood clotting disorder. In summary, we systemically characterized MSC-derived apoVs and identified their therapeutic role in haemophilia A treatment through a previously unknown Fas/FasL linkage mechanism.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of ProsthodonticsPeking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
- South China Center of Craniofacial Stem Cell ResearchHospital of Stomatology, Guanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhou510080China
| | - Jianxia Tang
- Hunan Key Laboratory of Oral Health Research & Hunan Clinical Research Center of Oral Major Diseases and Oral HealthXiangya School of Stomatology, Xiangya Stomatological Hospital, Central South UniversityChangsha410000China
- South China Center of Craniofacial Stem Cell ResearchHospital of Stomatology, Guanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhou510080China
| | - Xiaoxing Kou
- South China Center of Craniofacial Stem Cell ResearchHospital of Stomatology, Guanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhou510080China
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat‐Sen University)Ministry of EducationGuangzhou510080China
| | - Weiying Huang
- South China Center of Craniofacial Stem Cell ResearchHospital of Stomatology, Guanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhou510080China
| | - Yuan Zhu
- Department of ProsthodonticsPeking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Yuhe Jiang
- Department of ProsthodonticsPeking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Kunkun Yang
- Department of ProsthodonticsPeking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Can Li
- South China Center of Craniofacial Stem Cell ResearchHospital of Stomatology, Guanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhou510080China
| | - Meng Hao
- South China Center of Craniofacial Stem Cell ResearchHospital of Stomatology, Guanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhou510080China
| | - Yan Qu
- South China Center of Craniofacial Stem Cell ResearchHospital of Stomatology, Guanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhou510080China
| | - Lan Ma
- South China Center of Craniofacial Stem Cell ResearchHospital of Stomatology, Guanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhou510080China
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery and PharmacologyUniversity of Pennsylvania, School of Dental MedicinePhiladelphiaPA 19104USA
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell ResearchHospital of Stomatology, Guanghua School of Stomatology, Sun Yat‐sen UniversityGuangzhou510080China
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat‐Sen University)Ministry of EducationGuangzhou510080China
| | - Yongsheng Zhou
- Department of ProsthodonticsPeking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| |
Collapse
|
44
|
Liu X, Bao Y, Lin Z, Tang L, Mao P. Platelets inhibit development of atherosclerosis in atherosclerotic mice. Cell Cycle 2022; 21:1222-1232. [PMID: 35213268 PMCID: PMC9103360 DOI: 10.1080/15384101.2022.2044703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Platelets can protect from lipopolysaccharide-induced septic shock by inhibiting inflammation, but it is unknown whether platelets have an anti-atherosclerotic effect. The aim of this study was to investigate the effect of platelet transfusion on atherosclerosis (AS) in a mouse model of AS. Apolipoprotein E deficiency (ApoE-/-) mice were fed with a high-fat diet (HFD) for 8 weeks to establish a mouse model of AS. Mice weekly underwent bi-weekly injection with or without platelets during AS induction (HFD+platelet). Hematoxylin-eosin (H&E), Oil Red O, and Sudan IV stainings were used to assess pathological and morphological changes in the aortic tissue. Lipid levels, and liver and kidney function were examined using an automatic biochemical analyzer. Immune histochemical assays were used to detect the infiltration and distribution of inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), IL-6, and monocyte chemotactic protein-1 (MCP-1) in the aortic arch. Western blot and enzyme-linked immunosorbent assay (ELISA) were used to examine the expression levels of TNF-α, IL-1β, IL-6, and MCP-1 in the aorta or the peripheral blood, respectively. Compared with the HFD group, AS pathological lesions from the aortic arch in the HFD+platelet group were significantly smaller and alterations in the lipid metabolism were also less pronounced. Furthermore, TNF-α, IL-1β, IL-6, and MCP-1 levels were all significantly reduced in mice that received platelet injection. Platelets transfusion can effectively ameliorate lipid metabolism, suppress the inflammatory response in the vascular wall, and inhibit the development of AS in mice.
Collapse
Affiliation(s)
- Xiaowei Liu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, P. R. China
| | - Yizhong Bao
- Zhejiang Provincial Key Laboratory of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, P. R. China
| | - Zhang Lin
- Department of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, P. R. China,Lijiang Tang Department of Cardiology, Zhejiang Hospital, 12 Lingying Road, Hangzhou, Zhejiang 310013, P. R. China Department of Cardiology, Zhejiang Hospital, Hangzhou, P. R. China
| | - Ping Mao
- Department of Cardiology, Zhejiang Hospital, Hangzhou, P. R. China,CONTACT Ping Mao Department of Cardiology, Zhejiang Hospital, 12 Lingying Road, Hangzhou, Zhejiang310013, P. R. China
| |
Collapse
|
45
|
Gu W, Qi J, Zhang S, Ding Y, Qiao J, Han Y. Inhibition of HIF prolyl hydroxylase modulates platelet function. Thromb Haemost 2022; 122:1693-1705. [PMID: 35477177 DOI: 10.1055/a-1837-7797] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hypoxia-inducible factors-1α (HIF-1α) involves in redox reaction. Considering the role of reactive oxygen species (ROS) in platelet function, whether it regulates platelet function remains unclear. Using an inhibitor of HIF prolyl hydroxylase IOX-2, we intend to investigate its effect on platelet function. Human platelets were treated with IOX-2 (0, 10, 25, and 50 M) followed by analysis of platelet aggregation, granule secretion, receptor expression, platelet spreading or clot retraction. Additionally, IOX-2 (10 mg/kg) was injected intraperitoneally into mice to measure tail bleeding time and arterial thrombosis. IOX-2 significantly inhibited collagen-related peptide (CRP, 0.25 μg/ml) or thrombin (0.03 U/ml)-induced platelet aggregation and ATP release dose dependently without affecting P-selectin expression and the surface levels of glycoprotein (GP)Ib, GPVI or IIb3. In addition, IOX-2-treated platelets presented significantly decreased spreading on fibrinogen or collagen and clot retraction. Moreover, IOX-2 administration into mice significantly impaired the in vivo hemostatic function of platelets and arterial thrombus formation without affecting the number of circulating platelets and coagulation factor (FVIII and FIX). Further, IOX-2 significantly upregulated HIF-1 in platelets, decreased ROS generation and downregulated NOX1 expression. Finally, IOX-2 increased the phosphorylation level of VASP (Ser157/239), and inhibited the phosphorylation of p38 (Thr180/Tyr182), ERK1/2 (Thr202/Tyr204), AKT (Thr308/Ser473) and PKC (Thr505) in CRP- or thrombin-stimulated platelets. In conclusion, inhibition of HIF prolyl hydroxylase modulates platelet function and arterial thrombus formation, possibly through upregulation of HIF-1α expression and subsequent inhibition of ROS generation, indicating that HIF-1α might be a novel target for the treatment of thrombotic disorders.
Collapse
|
46
|
Al-Tamimi M, Qiao J, Gardiner EE. The utility of platelet activation biomarkers in thrombotic microangiopathies. Platelets 2022; 33:503-511. [PMID: 35287530 DOI: 10.1080/09537104.2022.2026912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Primary thrombotic microangiopathies (TMAs) are observed in thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS), while secondary TMAs have a wide range of etiologies. Early diagnosis and treatment of TMA are critical for patient well-being; however, distinguishing TTP from HUS on presentation is particularly challenging. Thrombocytopenia and platelet activation are central to different types of TMAs, thus limiting the utility of standard diagnostic approaches to evaluate the platelet function and hemostatic capacity. Alternative means of quantifying and monitoring changes to platelet activation and function are urgently needed. Activated platelets have been shown to interact with proteins of the complement and coagulation cascades and form part of inflammation processes engaged in TMA. Increased levels of platelet surface receptors as well as increased plasma levels of platelet-derived soluble proteins have been reported in TMAs. Elevated levels of platelet-leukocyte aggregates and platelet microparticles are also reported in different types of TMAs. Larger prospective evaluations of platelet activation markers in TMA using standardized assays, with comparison to cohorts of patients with thrombosis, coagulopathy, and thrombocytopenia, to evaluate the clinical usefulness of platelet markers in TMA are now needed. This review will summarize the current knowledge around platelet activation markers and critically evaluate their utility in diagnosis and prognosis of TMA patients.
Collapse
Affiliation(s)
- Mohammad Al-Tamimi
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| |
Collapse
|
47
|
O’Reilly D, Murphy CA, Drew R, El-Khuffash A, Maguire PB, Ainle FN, Mc Callion N. Platelets in pediatric and neonatal sepsis: novel mediators of the inflammatory cascade. Pediatr Res 2022; 91:359-367. [PMID: 34711945 PMCID: PMC8816726 DOI: 10.1038/s41390-021-01715-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Sepsis, a dysregulated host response to infection, has been difficult to accurately define in children. Despite a higher incidence, especially in neonates, a non-specific clinical presentation alongside a lack of verified biomarkers has prevented a common understanding of this condition. Platelets, traditionally regarded as mediators of haemostasis and thrombosis, are increasingly associated with functions in the immune system with involvement across the spectrum of innate and adaptive immunity. The large number of circulating platelets (approx. 150,000 cells per microlitre) mean they outnumber traditional immune cells and are often the first to encounter a pathogen at a site of injury. There are also well-described physiological differences between platelets in children and adults. The purpose of this review is to place into context the platelet and its role in immunology and examine the evidence where available for its role as an immune cell in childhood sepsis. It will examine how the platelet interacts with both humoral and cellular components of the immune system and finally discuss the role the platelet proteome, releasate and extracellular vesicles may play in childhood sepsis. This review also examines how platelet transfusions may interfere with the complex relationships between immune cells in infection. IMPACT: Platelets are increasingly being recognised as important "first responders" to immune threats. Differences in adult and paediatric platelets may contribute to differing immune response to infections. Adult platelet transfusions may affect infant immune responses to inflammatory/infectious stimuli.
Collapse
Affiliation(s)
- Daniel O’Reilly
- grid.416068.d0000 0004 0617 7587Department of Neonatology, Rotunda Hospital, Dublin, Ireland ,grid.7886.10000 0001 0768 2743Conway-SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
| | - Claire A. Murphy
- grid.416068.d0000 0004 0617 7587Department of Neonatology, Rotunda Hospital, Dublin, Ireland ,grid.7886.10000 0001 0768 2743Conway-SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Department of Paediatrics, Royal College of Surgeons in Ireland, Dubin, Ireland
| | - Richard Drew
- grid.416068.d0000 0004 0617 7587Clinical Innovation Unit, Rotunda Hospital, Dublin, Ireland ,Irish Meningitis and Sepsis Reference Laboratory, Children’s Health Ireland at Temple Street, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Afif El-Khuffash
- grid.416068.d0000 0004 0617 7587Department of Neonatology, Rotunda Hospital, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Department of Paediatrics, Royal College of Surgeons in Ireland, Dubin, Ireland
| | - Patricia B. Maguire
- grid.7886.10000 0001 0768 2743Conway-SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland ,grid.7886.10000 0001 0768 2743School of Biomolecular & Biomedical Science, University College Dublin, Dublin, Ireland
| | - Fionnuala Ni Ainle
- grid.7886.10000 0001 0768 2743Conway-SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland ,grid.7886.10000 0001 0768 2743School of Biomolecular & Biomedical Science, University College Dublin, Dublin, Ireland ,grid.411596.e0000 0004 0488 8430Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland ,grid.416068.d0000 0004 0617 7587Department of Haematology, Rotunda Hospital, Dublin, Ireland ,grid.7886.10000 0001 0768 2743School of Medicine, University College Dublin, Dublin, Ireland
| | - Naomi Mc Callion
- grid.416068.d0000 0004 0617 7587Department of Neonatology, Rotunda Hospital, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Department of Paediatrics, Royal College of Surgeons in Ireland, Dubin, Ireland
| |
Collapse
|
48
|
Mizurini DM, Hottz ED, Bozza PT, Monteiro RQ. Fundamentals in Covid-19-Associated Thrombosis: Molecular and Cellular Aspects. Front Cardiovasc Med 2021; 8:785738. [PMID: 34977191 PMCID: PMC8718518 DOI: 10.3389/fcvm.2021.785738] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/23/2021] [Indexed: 01/08/2023] Open
Abstract
The novel coronavirus disease (COVID-19) is associated with a high incidence of coagulopathy and venous thromboembolism that may contribute to the worsening of the clinical outcome in affected patients. Marked increased D-dimer levels are the most common laboratory finding and have been repeatedly reported in critically ill COVID-19 patients. The infection caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is followed by a massive release of pro-inflammatory cytokines, which mediate the activation of endothelial cells, platelets, monocytes, and neutrophils in the vasculature. In this context, COVID-19-associated thrombosis is a complex process that seems to engage vascular cells along with soluble plasma factors, including the coagulation cascade, and complement system that contribute to the establishment of the prothrombotic state. In this review, we summarize the main findings concerning the cellular mechanisms proposed for the establishment of COVID-19-associated thrombosis.
Collapse
Affiliation(s)
- Daniella M. Mizurini
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Eugenio D. Hottz
- Oswaldo Cruz Foundation, Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Patrícia T. Bozza
- Oswaldo Cruz Foundation, Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Rio de Janeiro, Brazil
| | - Robson Q. Monteiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Zhao W, Wei Z, Xin G, Li Y, Yuan J, Ming Y, Ji C, Sun Q, Li S, Chen X, Fu W, Zhu Y, Niu H, Huang W. Piezo1 initiates platelet hyperreactivity and accelerates thrombosis in hypertension. J Thromb Haemost 2021; 19:3113-3125. [PMID: 34411418 DOI: 10.1111/jth.15504] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/21/2021] [Accepted: 08/18/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Thrombosis is the pathological basis of cardiovascular and cerebrovascular diseases, which seriously threaten human life and health. Among them, nearly half of cardiovascular disease patients suffer from severe hypertension complications. Hypertension is thought to cause abnormal platelet activation and increases the risk of thrombosis, but the related mechanism is still vague. OBJECTIVES This study hypothesized that the abnormal hemodynamics of blood under hypertension might affect platelet function and accelerate thrombosis by activating mechanoreceptor Piezo1. METHODS To assess the activation effect of hypertension on mechanoreceptor Piezo1, we injected Piezo1 agonist Yoda1 and antagonist GsMTx-4 through the tail vein, then examined the platelet activation status and thrombosis. RESULTS Our results displayed that antagonist GsMTx-4 effectively inhibited calcium influx caused by hypertension and agonist Yoda1. Antithrombotic studies proved that the inhibition of Piezo1 effectively inhibited arterial thrombosis and reduced the infarct size of stroke in hypertensive mice. CONCLUSIONS Our study explains the activation of mechanoreceptor Piezo1 under hypertension is the key to abnormal platelet activation and thrombosis while providing novel platelet intervention strategies to prevent thrombosis.
Collapse
Affiliation(s)
- Weiyu Zhao
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu, China
| | - Zeliang Wei
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Guang Xin
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu, China
| | - Yulong Li
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiyan Yuan
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Ming
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengjie Ji
- Department of Laboratory Medicine, The People's Hospital of Jianyang City, Jianyang, China
| | - Qiushi Sun
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyi Li
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu, China
| | - Xinchuan Chen
- Division of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Fu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Zhu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Niu
- College of Mathematics, Sichuan University, Chengdu, China
| | - Wen Huang
- Laboratory of Ethnopharmacology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Zhong H, Waresi M, Zhang W, Han L, Zhao Y, Chen Y, Zhou P, Chang L, Pan G, Wu B, Li J, Zhang S, Shi H, Luo X, Gao W, Qi Z, Ding Z. NOD2-mediated P2Y 12 upregulation increases platelet activation and thrombosis in sepsis. Biochem Pharmacol 2021; 194:114822. [PMID: 34748820 DOI: 10.1016/j.bcp.2021.114822] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/14/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Platelets from septic patients exhibit increased reactivity. However, the underlying mechanism of sepsis-induced platelet hyperactivity is still not completely understood. OBJECTIVE P2Y12 is a central receptor for platelet activation. In this study, we investigated the role of platelet P2Y12 in platelet hyperactivity during sepsis. METHODS We measured platelet P2Y12 expression and aggregation in response to ADP in septic patients and cecal ligation and puncture (CLP)-treated mice. We also detected the downstream signaling of P2Y12 in resting platelets from patients and mice with sepsis. The role of nucleotide-binding oligomerization domain 2 (NOD2)/RIP2/NF-κB/P65 pathway in sepsis-induced platelet P2Y12 high expression was also investigated. Finally, we compared the antiplatelet and antithrombotic effects of clopidogrel, prasugrel, and ticagrelor in experimental sepsis in mice and rats. RESULTS Compared to healthy subjects, platelets from septic patients exhibit P2Y12 hyperactivity and higher P2Y12 expression. pAkt is enhanced and pVASP is impaired in resting platelets from the patients, indicating the constitutive activation of platelet P2Y12 receptor. Mouse sepsis model recapitulates the findings in septic patients. NOD2 deficiency attenuates sepsis-induced platelet P2Y12 high expression, hyperactivity, and thrombosis. Prasugrel and ticagrelor are potent P2Y12 inverse agonists, and exhibit superior antiplatelet and antithrombotic efficacy over clopidogrel in mice and rats with sepsis. CONCLUSIONS NOD2 activation upregulates platelet P2Y12 expression, which is constitutively activated and contributes to platelet hyperactivity in septic status. Compared to clopidogrel, prasugrel and ticagrelor are potent P2Y12 inverse agonists with superior antiplatelet and antithrombotic efficacy in experimental sepsis.
Collapse
Affiliation(s)
- Haoxuan Zhong
- Department of Cardiology, Huashan Hospital, Fudan University. Shanghai, China
| | - Maieryemu Waresi
- Department of Cardiology, Huashan Hospital, Fudan University. Shanghai, China
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Liping Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yikai Zhao
- Department of Cardiology, Huashan Hospital, Fudan University. Shanghai, China
| | - Yufei Chen
- Department of Cardiology, Huashan Hospital, Fudan University. Shanghai, China
| | - Peng Zhou
- Department of Cardiology, Huashan Hospital, Fudan University. Shanghai, China
| | - Lin Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guanxing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Bangwei Wu
- Department of Cardiology, Huashan Hospital, Fudan University. Shanghai, China
| | - Jian Li
- Department of Cardiology, Huashan Hospital, Fudan University. Shanghai, China
| | - Si Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Haiming Shi
- Department of Cardiology, Huashan Hospital, Fudan University. Shanghai, China
| | - Xinping Luo
- Department of Cardiology, Huashan Hospital, Fudan University. Shanghai, China
| | - Wen Gao
- Department of Cardiology, Huashan Hospital, Fudan University. Shanghai, China.
| | - Zhiyong Qi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China.
| | - Zhongren Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China; School of Pharmacy, Tianjin Medical University, Tianjin, China.
| |
Collapse
|