1
|
Helmy S, Brocca P, Koutsioubas A, Hall SCL, Puricelli L, Parisse P, Casalis L, Rondelli V. A supported lipid bilayer to model solid-ordered membrane domains. J Colloid Interface Sci 2025; 690:137333. [PMID: 40107054 DOI: 10.1016/j.jcis.2025.137333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Membrane models are widely used to mimic the behaviour of native plasma membranes and to simulate interactions occurring at their interface. Such models can be built up with different molecular compositions, ranging from single phospholipids to more complex, heterogeneous mixtures of phospho- and sphingo-lipids, possibly enriched with cholesterol and proteins. In particular, mixing different lipids and cholesterol is instrumental to promote the formation of phase-separated, ordered domains, which resemble the structure of lipid rafts, specialized functional domains of real membranes. According to the specific lipid composition, physical characteristics of the rafts can be tuned, such as fluidity, strongly related to membrane biological activity. Here, we introduce a novel three-component membrane model constituted by the mixing of a saturated phospholipid, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), sphingomyelin and cholesterol to mimic the presence of solid ordered rafts and to study their behaviour. Differential scanning calorimetry, neutron reflectometry, and atomic force microscopy were synergistically applied to gain information on the membrane's transverse and lateral organization, as well as on its thermotropic behaviour. The membrane model benefits from the use of DMPC, a lipid (i) characterized by an accessible transition temperature; (ii) saturated; (iii) fluid at physiological temperature and (iv) commercially available in both protiated and deuterated forms. The proposed model, along with the wide range of biophysical techniques employed, constitutes an ideal system to study the molecular mechanisms and the physical properties that govern membrane functions, such as molecular signalling and membrane trafficking.
Collapse
Affiliation(s)
- Sally Helmy
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Milano, Italy; Biophysics Group, Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Paola Brocca
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Milano, Italy
| | - Alexandros Koutsioubas
- Julich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Julich GmbH, Garching, Germany
| | - Stephen C L Hall
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0DE, UK
| | | | - Pietro Parisse
- Elettra Sincrotrone Trieste, Basovizza, TS, Italy; CNR-IOM, Basovizza, TS, Italy
| | | | - Valeria Rondelli
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Milano, Italy
| |
Collapse
|
2
|
Devinat M, Thevenard-Devy J, Ghilane F, Devy J, Chazee L, Terryn C, Duca L, Devarenne-Charpentier E, El Btaouri H. Xanthohumol Sensitizes Melanoma Cells to Vemurafenib by Lowering Membrane Cholesterol and Increasing Membrane Fluidity. Int J Mol Sci 2025; 26:2290. [PMID: 40076912 PMCID: PMC11901044 DOI: 10.3390/ijms26052290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Chemoresistance remains one of the major obstacles to cancer treatment. The search for specific molecules that could improve cancer treatment has become one of the objectives of biomedical research. Identifying new natural molecules to enhance chemotherapy treatment or improve sensitization to conventional therapies has become a key objective. Here, we evaluated the effect of Xanthohumol (XN) extracted from hop on SKMEL-28 melanoma cells and their sensitization to vemurafenib (VEM) treatment. We measured the XN effect on cell viability and apoptosis. We also assessed the effect of XN on membrane fluidity and membrane cholesterol levels. Finally, we studied the impact of XN on cell sensitization to VEM. Here, we showed that XN reduced SKMEL-28 cell viability through an apoptotic mechanism. Our results demonstrated the potential role of XN in sensitizing cancer cells to VEM with a less toxic effect on non-tumor cells. A study of XN's molecular mechanism showed that XN was able to induce cholesterol depletion and increased fluidity in SKMEL-28 cancer cells. This leads to an increase in VEM incorporation. Here, we describe the importance of the strategy to modulate membrane fluidity by XN in order to significantly improve anticancer therapy.
Collapse
Affiliation(s)
- Marine Devinat
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, CEDEX, France; (M.D.); (J.T.-D.); (J.D.); (L.C.); (L.D.); (E.D.-C.)
| | - Jessica Thevenard-Devy
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, CEDEX, France; (M.D.); (J.T.-D.); (J.D.); (L.C.); (L.D.); (E.D.-C.)
| | - Fatiha Ghilane
- Laboratoire de Biologie des Pathologies Humaines, Université Mohammed V de Rabat, 4 Avenue Ibn Battouta, Rabat B.P. 1014 RP, Morocco;
| | - Jerome Devy
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, CEDEX, France; (M.D.); (J.T.-D.); (J.D.); (L.C.); (L.D.); (E.D.-C.)
| | - Lise Chazee
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, CEDEX, France; (M.D.); (J.T.-D.); (J.D.); (L.C.); (L.D.); (E.D.-C.)
| | - Christine Terryn
- Plateau Technique en Imagerie Cellulaire et Tissulaire (PICT) Pôle Santé, UFR Pharmacie, Université de Reims Champagne Ardenne, 51 Rue Cognacq Jay, 51096 Reims, France;
| | - Laurent Duca
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, CEDEX, France; (M.D.); (J.T.-D.); (J.D.); (L.C.); (L.D.); (E.D.-C.)
| | - Emmanuelle Devarenne-Charpentier
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, CEDEX, France; (M.D.); (J.T.-D.); (J.D.); (L.C.); (L.D.); (E.D.-C.)
| | - Hassan El Btaouri
- UMR-CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims, CEDEX, France; (M.D.); (J.T.-D.); (J.D.); (L.C.); (L.D.); (E.D.-C.)
| |
Collapse
|
3
|
Golysheva EA, Kashnik AS, Baranov DS, Dzuba SA. Nanoclusters of Guest Molecules in Lipid Rafts of a Model Membrane Revealed by Pulsed Dipolar EPR Spectroscopy. J Phys Chem B 2025; 129:650-658. [PMID: 39772603 DOI: 10.1021/acs.jpcb.4c05217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Plasma membranes are known to segregate into liquid disordered and ordered nanoscale phases, the latter being called lipid rafts. The structure, lipid composition, and function of lipid rafts have been the subject of numerous studies using a variety of experimental and computational methods. Double electron-electron resonance (DEER, also known as PELDOR) is a member of the pulsed dipole EPR spectroscopy (PDS) family of techniques, allowing the study of nanoscale distances between spin-labeled molecules. To extend the possibilities of DEER in the study of molecule clusters, its joint application with the simple two-pulse electron spin echo (2p ESE) method is carried out here. We studied spin-labeled ibuprofen (ibuprofen-SL) diluted in bilayers composed of equimolar mixtures of dioleoyl-glycero-phosphocholine (DOPC) and dipalmitoyl-glycero-phosphocholine (DPPC) phospholipids, with added cholesterol, a system known as a raft-mimicking. The data obtained show that ibuprofen-SL molecules in this system form isolated clusters of about 4 nm in size, containing 6-8 molecules spaced at least 1.3 nm apart. These results indicate the interaction of ibuprofen-SL molecules with lipid rafts, for which the existence of nanoscale substructures at the boundaries of which adsorption of these molecules occurs is suggested.
Collapse
Affiliation(s)
- Elena A Golysheva
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anna S Kashnik
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Denis S Baranov
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Zhang Y, Yang Z, Liu Y, Pei J, Li R, Yang Y. Targeting lipid metabolism: novel insights and therapeutic advances in pancreatic cancer treatment. Lipids Health Dis 2025; 24:12. [PMID: 39806478 PMCID: PMC11727729 DOI: 10.1186/s12944-024-02426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Lipid metabolism in cancer is characterized by dysregulated lipid regulation and utilization, critical for promoting tumor growth, survival, and resistance to therapy. Pancreatic cancer (PC) is a highly aggressive malignancy of the gastrointestinal tract that has a dismal 5-year survival rate of less than 10%. Given the essential function of the pancreas in digestion, cancer progression severely disrupts its function. Standard treatments for PC such as surgical resection, chemotherapy, and radiotherapy. However, these therapies often face significant challenges, including biochemical recurrence and drug resistance.Given these limitations, new therapeutic approaches are being developed to target tumor metabolism. Dysregulation of cholesterol biosynthesis and alterations in fatty acids (FAs), such as palmitate, stearate, omega-3, and omega-6, have been observed in pancreatic cancer. These lipids serve as energy sources, signaling molecules, and essential components of cell membranes. Their accumulation fosters an immunosuppressive tumor microenvironment that supports cancer cell proliferation and metastasis.Moreover, lipid metabolism dysregulation within immune cells, particularly T cells, impairs immune surveillance and weakens the body's defenses against cancer. Abnormal lipid metabolism also contributes to drug resistance in PC. Despite these challenges, targeting lipid metabolism may offer a promising therapeutic strategy. By enhancing lipid peroxidation, the induction of ferroptosis-a form of regulated cell death-could impair the survival of PC cells and hinder disease progression.
Collapse
Affiliation(s)
- Yanyan Zhang
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, Qinling, Hanzhong, 723001, China
| | - Zhichao Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Dalian Medical University, Dalian, China
| | - Yuchen Liu
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, Qinling, Hanzhong, 723001, China
| | - Jinjin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, Qinling, Hanzhong, 723001, China
| | - Ruojie Li
- Interventional Therapy Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, P.R. China.
| | - Yanhui Yang
- Emergency surgery Dapartment (Trauma center), The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, Henan, China.
| |
Collapse
|
5
|
Anselmo S, Bonaccorso E, Gangemi C, Sancataldo G, Conti Nibali V, D’Angelo G. Lipid Rafts in Signalling, Diseases, and Infections: What Can Be Learned from Fluorescence Techniques? MEMBRANES 2025; 15:6. [PMID: 39852247 PMCID: PMC11766618 DOI: 10.3390/membranes15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/26/2025]
Abstract
Lipid rafts are dynamic microdomains in the membrane, rich in cholesterol and sphingolipids, that are critical for biological processes like cell signalling, membrane trafficking, and protein organization. Their essential role is claimed in both physiological and pathological conditions, including cancer, neurodegenerative diseases, and viral infections, making them a key area of research. Fluorescence-based approaches, including super-resolution fluorescence microscopy techniques, enable precise analysis of the organization, dynamics, and interactions of these microdomains, thanks also to the innovative design of appropriate fluorescent probes. Moreover, these non-invasive approaches allow for the study of live cells, facilitating the collection of quantitative data under physiologically relevant conditions. This review synthesizes the latest insights into the role of lipid rafts in biological and pathological processes and underscores how fluorescence techniques have advanced our understanding of these critical microdomains. The findings emphasize the pivotal role of lipid rafts in health and disease, providing a foundation for future research and potential therapeutic interventions.
Collapse
Affiliation(s)
- Sara Anselmo
- Department of Physics and Chemistry-Emilio Segré, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (S.A.); (G.S.)
| | - Elisa Bonaccorso
- Department of Mathematics, Computer Science, Physics and Earth Science, University of Messina, Viale Stagno D’Alcontres 31, 98166 Messina, Italy (V.C.N.)
| | - Chiara Gangemi
- Department of Mathematics, Computer Science, Physics and Earth Science, University of Messina, Viale Stagno D’Alcontres 31, 98166 Messina, Italy (V.C.N.)
| | - Giuseppe Sancataldo
- Department of Physics and Chemistry-Emilio Segré, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; (S.A.); (G.S.)
| | - Valeria Conti Nibali
- Department of Mathematics, Computer Science, Physics and Earth Science, University of Messina, Viale Stagno D’Alcontres 31, 98166 Messina, Italy (V.C.N.)
| | - Giovanna D’Angelo
- Department of Mathematics, Computer Science, Physics and Earth Science, University of Messina, Viale Stagno D’Alcontres 31, 98166 Messina, Italy (V.C.N.)
| |
Collapse
|
6
|
Golysheva EA, Baranov DS, Dzuba SA. Evidence for capture of spin-labeled ibuprofen drug molecules by lipid rafts in model membranes. Chem Phys Lipids 2025; 266:105450. [PMID: 39491578 DOI: 10.1016/j.chemphyslip.2024.105450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Lipid rafts are lipid-cholesterol nanostructures thought to exist in cell membranes, which are characterized by higher ordering compared to their surroundings. Ibuprofen and other non-steroidal anti-inflammatory drugs (NSAIDs) have a high affinity for phospholipid membranes and can alter their structure and biological properties. Here we use electron paramagnetic resonance (EPR) in its pulsed electron spin echo (ESE) version to study spin-labeled ibuprofen (ibuprofen-SL) in a raft-mimicking bilayer, which consists of an equimolar mixture of the phospholipids dioleoyl-glycero-phosphocholine (DOPC) and dipalmitoyl-glycero-phosphocholine (DPPC), with cholesterol added in various proportions. ESE decays are sensitive to the presence of low-temperature small-angle orientational motions of molecules - stochastic molecular librations. The data obtained show that in the presence of lipid rafts the temperature dependence of the spin relaxation rate induced by this motion reaches a plateau. This behavior is characteristic of non-cooperative motion of a molecule bound to some structure denser than the rest of the medium. Based on this analogy, the data obtained were interpreted as evidence that ibuprofen-SL molecules are adsorbed on the raft boundaries.
Collapse
Affiliation(s)
- Elena A Golysheva
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Denis S Baranov
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia.
| |
Collapse
|
7
|
Amiar S, Johnson KA, Husby ML, Marzi A, Stahelin RV. A fatty acid-ordered plasma membrane environment is critical for Ebola virus matrix protein assembly and budding. J Lipid Res 2024; 65:100663. [PMID: 39369791 PMCID: PMC11565396 DOI: 10.1016/j.jlr.2024.100663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
Plasma membrane (PM) domains and order phases have been shown to play a key role in the assembly, release, and entry of several lipid-enveloped viruses. In the present study, we provide a mechanistic understanding of the Ebola virus (EBOV) matrix protein VP40 interaction with PM lipids and their effect on VP40 oligomerization, a crucial step for viral assembly and budding. VP40 matrix formation is sufficient to induce changes in the PM fluidity. We demonstrate that the distance between the lipid headgroups, the fatty acid tail saturation, and the PM order are important factors for the stability of VP40 binding and oligomerization at the PM. The use of FDA-approved drugs to fluidize the PM destabilizes the viral matrix assembly leading to a reduction in budding efficiency. Overall, these findings support an EBOV assembly mechanism that reaches beyond lipid headgroup specificity by using ordered PM lipid regions independent of cholesterol.
Collapse
Affiliation(s)
- Souad Amiar
- Borch Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN; Purdue Institute of Inflammation, Immunology, and Infectious Disease (PI4D), Purdue University, West Lafayette, IN
| | - Kristen A Johnson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
| | - Monica L Husby
- Borch Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT
| | - Robert V Stahelin
- Borch Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN; Purdue Institute of Inflammation, Immunology, and Infectious Disease (PI4D), Purdue University, West Lafayette, IN.
| |
Collapse
|
8
|
Overall SA, Hartmann SJ, Luu-Nguyen QH, Judge P, Pinotsi D, Marti L, Sigurdsson ST, Wender PA, Barnes AB. Topological Heterogeneity of Protein Kinase C Modulators in Human T-Cells Resolved with In-Cell Dynamic Nuclear Polarization NMR Spectroscopy. J Am Chem Soc 2024; 146:27362-27372. [PMID: 39322225 PMCID: PMC11468733 DOI: 10.1021/jacs.4c05704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
Phorbol ester analogs are a promising class of anticancer therapeutics and HIV latency reversing agents that interact with cellular membranes to recruit and activate protein kinase C (PKC) isoforms. However, it is unclear how these esters interact with membranes and how this might correlate with the biological activity of different phorbol ester analogs. Here, we have employed dynamic nuclear polarization (DNP) NMR to characterize phorbol esters in a native cellular context. The enhanced NMR sensitivity afforded by DNP and cryogenic operation reveals topological heterogeneity of 13C-21,22-phorbol-myristate-acetate (PMA) within T cells utilizing 13C-13C correlation and double quantum filtered NMR spectroscopy. We demonstrate the detection of therapeutically relevant amounts of PMA in T cells down to an upper limit of ∼60.0 pmol per million cells and identify PMA to be primarily localized in cellular membranes. Furthermore, we observe distinct 13C-21,22-PMA chemical shifts under DNP conditions in cells compared to model membrane samples and homogenized cell membranes, that cannot be accounted for by differences in conformation. We provide evidence for distinct membrane topologies of 13C-21,22-PMA in cell membranes that are consistent with shallow binding modes. This is the first of its kind in-cell DNP characterization of small molecules dissolved in the membranes of living cells, establishing in-cell DNP-NMR as an important method for the characterization of drug-membrane interactions within the context of the complex heterogeneous environment of intact cellular membranes. This work sets the stage for the identification of the in-cell structural interactions that govern the biological activity of phorbol esters.
Collapse
Affiliation(s)
- Sarah A. Overall
- Institute
of Molecular Physical Science, ETH Zurich, 8093 Zurich, Switzerland
| | - Sina J. Hartmann
- Institute
of Molecular Physical Science, ETH Zurich, 8093 Zurich, Switzerland
| | - Quang H. Luu-Nguyen
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United
States
| | - Patrick Judge
- Department
of Biochemistry, Biophysics, & Structural Biology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Dorothea Pinotsi
- Scientific
Center for Optical and Electron Microscopy, ETH Zurich, 8093 Zurich, Switzerland
| | - Lea Marti
- Institute
of Molecular Physical Science, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Paul A. Wender
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United
States
| | - Alexander B. Barnes
- Institute
of Molecular Physical Science, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
9
|
Zăgrean-Tuza C, Matei A, Silaghi-Dumitrescu R. A biomimetic assay for antioxidant reactivity, based on liposomes and myoglobin. J Inorg Biochem 2024; 258:112613. [PMID: 38815361 DOI: 10.1016/j.jinorgbio.2024.112613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Antioxidant assays are typically based on non-physiologically relevant reagents. We describe here a quantitative assay based on the inhibition of the liposome autooxidation in the presence of myoglobin (ILA-Mb), an oxidative process with direct biomedical relevance. Additional advantages of the assay include the use of standard and readily available reagents (lecithin and myoglobin) and the applicability to lipophilic antioxidants. The ILA-Mb assay is based on previously reported qualitative or semi-quantitative ones that employed cytochrome c instead of myoglobin. A number of antioxidants are tested, and their IC50 parameters are discussed and interpreted to involve direct interaction with both myoglobin and the liposomes.
Collapse
Affiliation(s)
- Cezara Zăgrean-Tuza
- Department of Chemistry, Babeș-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| | - Alina Matei
- Department of Chemistry, Babeș-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| | - Radu Silaghi-Dumitrescu
- Department of Chemistry, Babeș-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania.
| |
Collapse
|
10
|
Krogman WL, Woodard T, McKay RSF. Anesthetic Mechanisms: Synergistic Interactions With Lipid Rafts and Voltage-Gated Sodium Channels. Anesth Analg 2024; 139:92-106. [PMID: 37968836 DOI: 10.1213/ane.0000000000006738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Despite successfully utilizing anesthetics for over 150 years, the mechanism of action remains relatively unknown. Recent studies have shown promising results, but due to the complex interactions between anesthetics and their targets, there remains a clear need for further mechanistic research. We know that lipophilicity is directly connected to anesthetic potency since lipid solubility relates to anesthetic partition into the membrane. However, clinically relevant concentrations of anesthetics do not significantly affect lipid bilayers but continue to influence various molecular targets. Lipid rafts are derived from liquid-ordered phases of the plasma membrane that contain increased concentrations of cholesterol and sphingomyelin and act as staging platforms for membrane proteins, including ion channels. Although anesthetics do not perturb membranes at clinically relevant concentrations, they have recently been shown to target lipid rafts. In this review, we summarize current research on how different types of anesthetics-local, inhalational, and intravenous-bind and affect both lipid rafts and voltage-gated sodium channels, one of their major targets, and how those effects synergize to cause anesthesia and analgesia. Local anesthetics block voltage-gated sodium channel pores while also disrupting lipid packing in ordered membranes. Inhalational anesthetics bind to the channel pore and the voltage-sensing domain while causing an increase in the number, size, and diameter of lipid rafts. Intravenous anesthetics bind to the channel primarily at the voltage-sensing domain and the selectivity filter, while causing lipid raft perturbation. These changes in lipid nanodomain structure possibly give proteins access to substrates that have translocated as a result of these structural alterations, resulting in lipid-driven anesthesia. Overall, anesthetics can impact channel activity either through direct interaction with the channel, indirectly through the lipid raft, or both. Together, these result in decreased sodium ion flux into the cell, disrupting action potentials and producing anesthetic effects. However, more research is needed to elucidate the indirect mechanisms associated with channel disruption through the lipid raft, as not much is known about anionic lipid products and their influence over voltage-gated sodium channels. Anesthetics' effect on S-palmitoylation, a promising mechanism for direct and indirect influence over voltage-gated sodium channels, is another auspicious avenue of research. Understanding the mechanisms of different types of anesthetics will allow anesthesiologists greater flexibility and more specificity when treating patients.
Collapse
Affiliation(s)
- William L Krogman
- From the Department of Anesthesiology, University of Kansas School of Medicine - Wichita, Wichita, Kansas
| | | | | |
Collapse
|
11
|
Kashnik AS, Baranov DS, Dzuba SA. Spatial Arrangement of the Drug Ibuprofen in a Model Membrane in the Presence of Lipid Rafts. J Phys Chem B 2024; 128:3652-3661. [PMID: 38576273 DOI: 10.1021/acs.jpcb.4c01507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Many pharmaceutical drugs are known to interact with lipid membranes through nonspecific molecular interactions, which affect their therapeutic effect. Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) and one of the most commonly prescribed. In the presence of cholesterol, lipid bilayers can separate into nanoscale liquid-disordered and liquid-ordered structures, the latter known as lipid rafts. Here, we study spin-labeled ibuprofen (ibuprofen-SL) in the model membrane consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol in the molar ratio of (0.5-0.5xchol)/(0.5-0.5xchol)/xchol. Electron paramagnetic resonance (EPR) spectroscopy is employed, along with its pulsed version of double electron-electron resonance (DEER, also known as PELDOR). The data obtained indicate lateral lipid-mediated clustering of ibuprofen-SL molecules with a local surface density noticeably larger than that expected for random lateral distribution. In the absence of cholesterol, the data can be interpreted as indicating alternating clustering in two opposing leaflets of the bilayer. In the presence of cholesterol, for xchol ≥ 20 mol %, the results show that ibuprofen-SL molecules have a quasi-regular lateral distribution, with a "superlattice" parameter of ∼3.0 nm. This regularity can be explained by the entrapment of ibuprofen-SL molecules by lipid rafts known to exist in this system with the additional assumption that lipid rafts have a nanoscale substructure.
Collapse
Affiliation(s)
- Anna S Kashnik
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Denis S Baranov
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
12
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
13
|
Alkafaas SS, Abdallah AM, Hassan MH, Hussien AM, Elkafas SS, Loutfy SA, Mikhail A, Murad OG, Elsalahaty MI, Hessien M, Elshazli RM, Alsaeed FA, Ahmed AE, Kamal HK, Hafez W, El-Saadony MT, El-Tarabily KA, Ghosh S. Molecular docking as a tool for the discovery of novel insight about the role of acid sphingomyelinase inhibitors in SARS- CoV-2 infectivity. BMC Public Health 2024; 24:395. [PMID: 38321448 PMCID: PMC10848368 DOI: 10.1186/s12889-024-17747-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Recently, COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, caused > 6 million deaths. Symptoms included respiratory strain and complications, leading to severe pneumonia. SARS-CoV-2 attaches to the ACE-2 receptor of the host cell membrane to enter. Targeting the SARS-CoV-2 entry may effectively inhibit infection. Acid sphingomyelinase (ASMase) is a lysosomal protein that catalyzes the conversion of sphingolipid (sphingomyelin) to ceramide. Ceramide molecules aggregate/assemble on the plasma membrane to form "platforms" that facilitate the viral intake into the cell. Impairing the ASMase activity will eventually disrupt viral entry into the cell. In this review, we identified the metabolism of sphingolipids, sphingolipids' role in cell signal transduction cascades, and viral infection mechanisms. Also, we outlined ASMase structure and underlying mechanisms inhibiting viral entry 40 with the aid of inhibitors of acid sphingomyelinase (FIASMAs). In silico molecular docking analyses of FIASMAs with inhibitors revealed that dilazep (S = - 12.58 kcal/mol), emetine (S = - 11.65 kcal/mol), pimozide (S = - 11.29 kcal/mol), carvedilol (S = - 11.28 kcal/mol), mebeverine (S = - 11.14 kcal/mol), cepharanthine (S = - 11.06 kcal/mol), hydroxyzin (S = - 10.96 kcal/mol), astemizole (S = - 10.81 kcal/mol), sertindole (S = - 10.55 kcal/mol), and bepridil (S = - 10.47 kcal/mol) have higher inhibition activity than the candidate drug amiodarone (S = - 10.43 kcal/mol), making them better options for inhibition.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Abanoub Mosaad Abdallah
- Narcotic Research Department, National Center for Social and Criminological Research (NCSCR), Giza, 11561, Egypt
| | - Mai H Hassan
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Aya Misbah Hussien
- Biotechnology department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Abanoub Mikhail
- Department of Physics, Faculty of Science, Minia University, Minia, Egypt
- Faculty of Physics, ITMO University, Saint Petersburg, Russia
| | - Omnia G Murad
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed I Elsalahaty
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University - Egypt, New Damietta, 34517, Egypt
| | - Fatimah A Alsaeed
- Department of Biology, College of Science, King Khalid University, Muhayl, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Hani K Kamal
- Anatomy and Histology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Wael Hafez
- NMC Royal Hospital, 16Th Street, 35233, Khalifa City, Abu Dhabi, United Arab Emirates
- Medical Research Division, Department of Internal Medicine, The National Research Centre, 12622, 33 El Buhouth St, Ad Doqi, Dokki, Cairo Governorate, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
- Natural & Medical Science Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
14
|
Menzikov SA, Zaichenko DM, Moskovtsev AA, Morozov SG, Kubatiev AA. Phenols and GABA A receptors: from structure and molecular mechanisms action to neuropsychiatric sequelae. Front Pharmacol 2024; 15:1272534. [PMID: 38303988 PMCID: PMC10831359 DOI: 10.3389/fphar.2024.1272534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
γ-Aminobutyric acid type A receptors (GABAARs) are members of the pentameric ligand-gated ion channel (pLGIC) family, which are widespread throughout the invertebrate and vertebrate central nervous system. GABAARs are engaged in short-term changes of the neuronal concentrations of chloride (Cl-) and bicarbonate (HCO3 -) ions by their passive permeability through the ion channel pore. GABAARs are regulated by various structurally diverse phenolic substances ranging from simple phenols to complex polyphenols. The wide chemical and structural variability of phenols suggest similar and different binding sites on GABAARs, allowing them to manifest themselves as activators, inhibitors, or allosteric ligands of GABAAR function. Interest in phenols is associated with their great potential for GABAAR modulation, but also with their subsequent negative or positive role in neurological and psychiatric disorders. This review focuses on the GABAergic deficit hypotheses during neurological and psychiatric disorders induced by various phenols. We summarize the structure-activity relationship of general phenol groups concerning their differential roles in the manifestation of neuropsychiatric symptoms. We describe and analyze the role of GABAAR subunits in manifesting various neuropathologies and the molecular mechanisms underlying their modulation by phenols. Finally, we discuss how phenol drugs can modulate GABAAR activity via desensitization and resensitization. We also demonstrate a novel pharmacological approach to treat neuropsychiatric disorders via regulation of receptor phosphorylation/dephosphorylation.
Collapse
|
15
|
Stachowicz K. Deciphering the mechanisms of reciprocal regulation or interdependence at the cannabinoid CB1 receptors and cyclooxygenase-2 level: Effects on mood, cognitive implications, and synaptic signaling. Neurosci Biobehav Rev 2023; 155:105439. [PMID: 37898448 DOI: 10.1016/j.neubiorev.2023.105439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
The lipid endocannabinoid system refers to endogenous cannabinoids (eCBs), the enzymes involved in their synthesis and metabolism, and the G protein-coupled cannabinoid receptors (GPCRs), CB1, and CB2. CB1 receptors (CB1Rs) are distributed in the brain at presynaptic terminals. Their activation induces inhibition of neurotransmitter release, which are gamma-aminobutyric acid (GABA), glutamate (Glu), dopamine, norepinephrine, serotonin, and acetylcholine. Postsynaptically localized CB1Rs regulate the activity of selected ion channels and N-methyl-D-aspartate receptors (NMDARs). CB2Rs are mainly peripheral and will not be considered here. Anandamide metabolism, mediated by cyclooxygenase-2 (COX-2), generates anandamide-derived prostanoids. In addition, COX-2 regulates the formation of CB1 ligands, which reduce excitatory transmission in the hippocampus (HC). The role of CB1Rs and COX-2 has been described in anxiety, depression, and cognition, among other central nervous system (CNS) disorders, affecting neurotransmission and behavior of the synapses. This review will analyze common pathways, mechanisms, and behavioral effects of manipulation at the CB1Rs/COX-2 level.
Collapse
Affiliation(s)
- Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacoslogy, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| |
Collapse
|
16
|
Yammine A, Auezova L, Lizard G, Greige-Gerges H. Activity of Na +/K +- and Ca 2+-ATPases in human erythrocyte membranes: Protocol improvement, relation to cholesterol content, and effects of polyphenols. Biochimie 2023; 212:95-105. [PMID: 37098369 DOI: 10.1016/j.biochi.2023.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/27/2023]
Abstract
It is known that the activities of Na+/K+- and Ca2+-ATPases in the plasma membrane with an excess of cholesterol are compromised. Our main goal was to find out whether quercetin, resveratrol, or caffeic acid, in the nano- and low micromolar concentration ranges, can improve the ATPase activity in human erythrocyte membranes with excess cholesterol. These molecules belong to different chemical classes of polyphenols and are widely present in plant foods. Also, due to some variations in the protocol for determining the ATPase activity, we first analyzed several key parameters of the protocol to improve the accuracy of the results. The activities of Na+/K+- and Ca2+-ATPases were reduced in membranes with moderate and high cholesterol levels compared to membranes from normocholesterolemic subjects (p < 0.01). All three polyphenols affected the ATPase activity in a similar biphasic manner. Namely, the ATPase activity gradually increased with increasing polyphenol concentration up to 80-200 nM, and then gradually decreased with further increase in polyphenol concentration. Moreover, the stimulating effect of the polyphenols was highest in membranes with high cholesterol content, making ATPase activity values close/equal to those in normal cholesterol membranes. In other words, quercetin, resveratrol, and caffeic acid at nanomolar concentrations were able to improve/restore the functioning of Na+/K+- and Ca2+-ATPases in erythrocyte membranes with high cholesterol levels. This suggests a common membrane-mediated mechanism of action for these polyphenols, related to the content of membrane cholesterol.
Collapse
Affiliation(s)
- Aline Yammine
- Bioactive Molecules Research Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences-II, Lebanese University, Lebanon; Team Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270), University Bourgogne Franche-Comté/Inserm, 21000, Dijon, France
| | - Lizette Auezova
- Bioactive Molecules Research Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences-II, Lebanese University, Lebanon.
| | - Gérard Lizard
- Team Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270), University Bourgogne Franche-Comté/Inserm, 21000, Dijon, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences-II, Lebanese University, Lebanon
| |
Collapse
|
17
|
Ceballos JA, Jaramillo-Isaza S, Calderón JC, Miranda PB, Giraldo MA. Doxorubicin Interaction with Lipid Monolayers Leads to Decreased Membrane Stiffness when Experiencing Compression-Expansion Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37320858 DOI: 10.1021/acs.langmuir.3c00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Physical membrane models permit to study and quantify the interactions of many external molecules with monitored and simplified systems. In this work, we have constructed artificial Langmuir single-lipid monolayers with dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE), dipalmitoylphosphatidylserine (DPPS), or sphingomyelin to resemble the main lipid components of the mammalian cell membranes. We determined the collapse pressure, minimum area per molecule, and maximum compression modulus (Cs-1) from surface pressure measurements in a Langmuir trough. Also, from compression/expansion isotherms, we estimated the viscoelastic properties of the monolayers. With this model, we explored the membrane molecular mechanism of toxicity of the well-known anticancer drug doxorubicin, with particular emphasis in cardiotoxicity. The results showed that doxorubicin intercalates mainly between DPPS and sphingomyelin, and less between DPPE, inducing a change in the Cs-1 of up to 34% for DPPS. The isotherm experiments suggested that doxorubicin had little effect on DPPC, partially solubilized DPPS lipids toward the bulk of the subphase, and caused a slight or large expansion in the DPPE and sphingomyelin monolayers, respectively. Furthermore, the dynamic viscoelasticity of the DPPE and DPPS membranes was greatly reduced (by 43 and 23%, respectively), while the reduction amounted only to 12% for sphingomyelin and DPPC models. In conclusion, doxorubicin intercalates into the DPPS, DPPE, and sphingomyelin, but not into the DPPC, membrane lipids, inducing a structural distortion that leads to decreased membrane stiffness and reduced compressibility modulus. These alterations may constitute a novel, early step in explaining the doxorubicin mechanism of action in mammalian cancer cells or its toxicity in non-cancer cells, with relevance to explain its cardiotoxicity.
Collapse
Affiliation(s)
- Jorge A Ceballos
- Biophysics Group, Institute of Physics, University of Antioquia, Medellin 050010, Colombia
- School of Health Sciences, Pontifical Bolivarian University, Medellin 050031, Colombia
- Sao Carlos Physics Institute, University of Sao Paulo, P.O. Box 369, Sao Carlos, SP 13560-970, Brazil
| | | | - Juan C Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin 050010, Colombia
| | - Paulo B Miranda
- Sao Carlos Physics Institute, University of Sao Paulo, P.O. Box 369, Sao Carlos, SP 13560-970, Brazil
| | - Marco A Giraldo
- Biophysics Group, Institute of Physics, University of Antioquia, Medellin 050010, Colombia
| |
Collapse
|
18
|
Tsuchiya H. Treatments of COVID-19-Associated Taste and Saliva Secretory Disorders. Dent J (Basel) 2023; 11:140. [PMID: 37366663 DOI: 10.3390/dj11060140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Since the worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, treating taste and saliva secretory disorders associated with coronavirus disease 2019 (COVID-19) has become a critical issue. The aim of the present study was to update information on treatments applicable to such oral symptoms and discuss their pathogenic mechanisms. The literature search indicated that different treatments using tetracycline, corticosteroids, zinc, stellate ganglion block, phytochemical curcumin, traditional herbal medicine, nutraceutical vitamin D, photobiomodulation, antiviral drugs, malic acid sialagogue, chewing gum, acupuncture, and/or moxibustion have potential effects on COVID-19-associated ageusia/dysgeusia/hypogeusia and xerostomia/dry mouth/hyposalivation. These treatments have multiple modes of action on viral cellular entry and replication, cell proliferation and differentiation, immunity, and/or SARS-CoV-2 infection-induced pathological conditions such as inflammation, cytokine storm, pyroptosis, neuropathy, zinc dyshomeostasis, and dysautonomia. An understanding of currently available treatment options is required for dental professionals because they may treat patients who were infected with SARS-CoV-2 or who recovered from COVID-19, and become aware of their abnormal taste and salivary secretion. By doing so, dentists and dental hygienists could play a crucial role in managing COVID-19 oral symptoms and contribute to improving the oral health-related quality of life of the relevant patients.
Collapse
Affiliation(s)
- Hironori Tsuchiya
- Department of Dental Basic Education, Asahi University School of Dentistry, Mizuho, Gifu 501-0296, Japan
| |
Collapse
|
19
|
Peruzzu D, Fecchi K, Venturi G, Gagliardi MC. Repurposing Amphotericin B and Its Liposomal Formulation for the Treatment of Human Mpox. Int J Mol Sci 2023; 24:ijms24108896. [PMID: 37240241 DOI: 10.3390/ijms24108896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Mpox (monkeypox) is a zoonotic viral disease caused by the mpox virus (MPXV). Recently in 2022, a multi-country Mpox outbreak has determined great concern as the disease rapidly spreads. The majority of cases are being noticed in European regions and are unrelated to endemic travel or known contact with infected individuals. In this outbreak, close sexual contact appears to be important for MPXV transmission, and an increasing prevalence in people with multiple sexual partners and in men who have sex with men has been observed. Although Vaccinia virus (VACV)-based vaccines have been shown to induce a cross-reactive and protective immune response against MPXV, limited data support their efficacy against the 2022 Mpox outbreak. Furthermore, there are no specific antiviral drugs for Mpox. Host-cell lipid rafts are small, highly dynamic plasma-membrane microdomains enriched in cholesterol, glycosphingolipids and phospholipids that have emerged as crucial surface-entry platforms for several viruses. We previously demonstrated that the antifungal drug Amphotericin B (AmphB) inhibits fungal, bacterial and viral infection of host cells through its capacity to sequester host-cell cholesterol and disrupt lipid raft architecture. In this context, we discuss the hypothesis that AmphB could inhibit MPXV infection of host cells through disruption of lipid rafts and eventually through redistribution of receptors/co-receptors mediating virus entry, thus representing an alternative or additional therapeutic tool for human Mpox.
Collapse
Affiliation(s)
- Daniela Peruzzu
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Katia Fecchi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Giulietta Venturi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Maria Cristina Gagliardi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
20
|
Gee YJ, Sea YL, Lal SK. Viral modulation of lipid rafts and their potential as putative antiviral targets. Rev Med Virol 2023; 33:e2413. [PMID: 36504273 DOI: 10.1002/rmv.2413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 12/14/2022]
Abstract
Lipid rafts are ubiquitous in cells. They are identified as cholesterol and glycosphingolipid enriched microdomains on cellular membranes. They serve as platforms for cellular communications by functioning in signal transduction and membrane trafficking. Such structural organisation fulfils cellular needs for normal function, but at the same time increases vulnerability of cells to pathogen invasion. Viruses rely heavily on lipid rafts in basically every stage of the viral life cycle for successful infection. Various mechanisms of lipid rafts modification exploited by diverse viruses for attachment, internalisation, membrane fusion, genome replication, assembly and release have been brought to light. This review focuses on virus-raft interactions and how a wide range of viruses manipulate lipid rafts at distinct stages of infection. The importance of virus-raft interactions in viral infections has inspired researchers to discover and develop antivirals that target this interaction, such as statins, methyl-β-cyclodextrin, viperin, 25-hydroxycholesterol and even anti-malarial drugs. The therapeutic modulations of lipid rafts as potential antiviral intervention from in vitro and in vivo evidence are discussed herein.
Collapse
Affiliation(s)
- Yee Jing Gee
- School of Science, Monash University, Bandar Sunway, Selangor DE, Malaysia
| | - Yi Lin Sea
- School of Science, Monash University, Bandar Sunway, Selangor DE, Malaysia
| | - Sunil Kumar Lal
- School of Science, Monash University, Bandar Sunway, Selangor DE, Malaysia.,Tropical Medicine & Biology Platform, Monash University, Bandar Sunway, Selangor DE, Malaysia
| |
Collapse
|
21
|
Schöning V, Hammann F. Drug-Disease Severity and Target-Disease Severity Interaction Networks in COVID-19 Patients. Pharmaceutics 2022; 14:pharmaceutics14091828. [PMID: 36145576 PMCID: PMC9504398 DOI: 10.3390/pharmaceutics14091828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 11/25/2022] Open
Abstract
Drug interactions with other drugs are a well-known phenomenon. Similarly, however, pre-existing drug therapy can alter the course of diseases for which it has not been prescribed. We performed network analysis on drugs and their respective targets to investigate whether there are drugs or targets with protective effects in COVID-19, making them candidates for repurposing. These networks of drug-disease interactions (DDSIs) and target-disease interactions (TDSIs) revealed a greater share of patients with diabetes and cardiac co-morbidities in the non-severe cohort treated with dipeptidyl peptidase-4 (DPP4) inhibitors. A possible protective effect of DPP4 inhibitors is also plausible on pathophysiological grounds, and our results support repositioning efforts of DPP4 inhibitors against SARS-CoV-2. At target level, we observed that the target location might have an influence on disease progression. This could potentially be attributed to disruption of functional membrane micro-domains (lipid rafts), which in turn could decrease viral entry and thus disease severity.
Collapse
|
22
|
Yilmaz İ, Karaarslan N, Somay H, Ozbek H, Ates O. Curcumin-Impregnated Drug Delivery Systems May Show Promise in the Treatment of Diseases Secondary to Traumatic Brain Injury: Systematic Review. J Pharmacol Pharmacother 2022. [DOI: 10.1177/0976500x221112479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a major social health problem, especially in young adults, and progresses with advanced functional losses. In this study, curcumin was directed to the damaged brain tissue by crossing the blood–brain barrier through drug delivery systems. Thus, the study asked whether it can be effective in the treatment of TBI, which has not had a radical treatment method in clinics yet. Methods A comprehensive and systematic literature search in the PubMed electronic database was performed. Descriptive statistics were used to evaluate the data obtained. The results were presented as frequency and percentage (%) or amount. Results Two clinical trials investigated curcumin for the treatment of TBI. One study tested curcumin in living mammalian subjects using an amyloLipid nanovesicle. In three studies, curcumin was investigated together with the drug delivery system for the treatment of TBI. Conclusion Drug delivery systems prepared with nanomaterials may have a potential therapeutic effect in treating TBI by increasing neuroprotection because they can penetrate the central nervous system more rapidly.
Collapse
Affiliation(s)
- İbrahim Yilmaz
- Ministry of Health, Dr Ismail Fehmi Cumalioglu City Hospital, Unit of Pharmacovigilance and Rational Use of Drugs, Tekirdag, Turkey
- Department of Medical Services and Techniques, Vocational School of Health Services, Istanbul Rumeli University, Istanbul, Istanbul, Turkey
| | - Numan Karaarslan
- Department of Neurosurgery, Halic University School of Medicine, Istanbul, Istanbul, Turkey
| | - Hakan Somay
- Department of Neurosurgery, Kadikoy Medicana Hospital, Istanbul, Istanbul, Turkey
| | - Hanefi Ozbek
- Department of Medical Pharmacology, İzmir Bakırçay University School of Medicine, Izmir, Izmir, Turkey
| | - Ozkan Ates
- Department of Neurosurgery, Istanbul Koc University School of Medicine, Istanbul, Istanbul, Turkey
| |
Collapse
|
23
|
Pan Y, Li H, Shahidi F, Luo T, Deng Z. Interactions among dietary phytochemicals and nutrients: Role of cell membranes. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Membrane Interactivity of Capsaicin Antagonized by Capsazepine. Int J Mol Sci 2022; 23:ijms23073971. [PMID: 35409329 PMCID: PMC8999564 DOI: 10.3390/ijms23073971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Although the pharmacological activity of capsaicin has been explained by its specific binding to transient receptor potential vanilloid type 1, the amphiphilic structure of capsaicin may enable it to act on lipid bilayers. From a mechanistic point of view, we investigated whether capsaicin and its antagonist capsazepine interact with biomimetic membranes, and how capsazepine influences the membrane effect of capsaicin. Liposomal phospholipid membranes and neuro-mimetic membranes were prepared with 1,2-dipalmitoylphosphatidylcholine and with 1-palmitoyl-2-oleoylphosphatidylcholine and sphingomyelin plus cholesterol, respectively. These membrane preparations were subjected to reactions with capsaicin and capsazepine at 0.5–250 μM, followed by measuring fluorescence polarization to determine the membrane interactivity to modify the fluidity of membranes. Both compounds acted on 1,2-dipalmitoylphosphatidylcholine bilayers and changed membrane fluidity. Capsaicin concentration-dependently interacted with neuro-mimetic membranes to increase their fluidity at low micromolar concentrations, whereas capsazepine inversely decreased the membrane fluidity. When used in combination, capsazepine inhibited the effect of capsaicin on neuro-mimetic membranes. In addition to the direct action on transmembrane ion channels, capsaicin and capsazepine share membrane interactivity, but capsazepine is likely to competitively antagonize capsaicin’s interaction with neuro-mimetic membranes at pharmacokinetically-relevant concentrations. The structure-specific membrane interactivity may be partly responsible for the analgesic effect of capsaicin.
Collapse
|
25
|
Menon AP, Dong W, Lee TH, Aguilar MI, Duan M, Kapoor S. Mutually Exclusive Interactions of Rifabutin with Spatially Distinct Mycobacterial Cell Envelope Membrane Layers Offer Insights into Membrane-Centric Therapy of Infectious Diseases. ACS BIO & MED CHEM AU 2022; 2:395-408. [PMID: 35996474 PMCID: PMC9389580 DOI: 10.1021/acsbiomedchemau.2c00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anjana P. Menon
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IITB-Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Wanqian Dong
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Tzong-Hsien Lee
- IITB-Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Marie-Isabel Aguilar
- IITB-Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Mojie Duan
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IITB-Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
26
|
Fricke N, Raghunathan K, Tiwari A, Stefanski KM, Balakrishnan M, Waterson AG, Capone R, Huang H, Sanders CR, Bauer JA, Kenworthy AK. High-Content Imaging Platform to Discover Chemical Modulators of Plasma Membrane Rafts. ACS CENTRAL SCIENCE 2022; 8:370-378. [PMID: 35355811 PMCID: PMC8961798 DOI: 10.1021/acscentsci.1c01058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 05/05/2023]
Abstract
Plasma membrane organization profoundly impacts cellular functionality. A well-known mechanism underlying this organization is through nanoscopic clustering of distinct lipids and proteins in membrane rafts. Despite their physiological importance, rafts remain a difficult-to-study aspect of membrane organization, in part because of the paucity of chemical tools to experimentally modulate their properties. Methods to selectively target rafts for therapeutic purposes are also currently lacking. To tackle these problems, we developed a high-throughput screen and an accompanying image analysis pipeline to identify small molecules that enhance or inhibit raft formation. Cell-derived giant plasma membrane vesicles were used as the experimental platform. A proof-of-principle screen using a bioactive lipid library demonstrates that this method is robust and capable of validating established raft modulators including C6- and C8-ceramide, miltefosine, and epigallocatechin gallate as well as identifying new ones. The platform we describe here represents a powerful tool to discover new chemical approaches to manipulate rafts and their components.
Collapse
Affiliation(s)
- Nico Fricke
- Department
of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| | - Krishnan Raghunathan
- Department
of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| | - Ajit Tiwari
- Department
of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| | - Katherine M. Stefanski
- Department
of Biochemistry, Vanderbilt School of Medicine, Nashville, Tennessee 37240, United States
| | - Muthuraj Balakrishnan
- Center
for Membrane and Cell Physiology and Department of Molecular Physiology
and Biological Physics, University of Virginia
School of Medicine, Charlottesville, Virginia 22903, United States
| | - Alex G. Waterson
- Department
of Pharmacology, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| | - Ricardo Capone
- Department
of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt School of Medicine, Nashville, Tennessee 37240, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt School of Medicine, Nashville, Tennessee 37240, United States
| | - Joshua A. Bauer
- Department
of Biochemistry, Vanderbilt School of Medicine, Nashville, Tennessee 37240, United States
- Vanderbilt
Institute of Chemical Biology, High-Throughput Screening Facility, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| | - Anne K. Kenworthy
- Department
of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
27
|
Wnętrzak A, Chachaj-Brekiesz A, Stępniak A, Kobierski J, Dynarowicz-Latka P. Different effects of oxysterols on a model lipid raft - Langmuir monolayer study complemented with theoretical calculations. Chem Phys Lipids 2022; 244:105182. [PMID: 35182569 DOI: 10.1016/j.chemphyslip.2022.105182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 11/18/2022]
Abstract
Three oxysterols (7β-hydroxycholesterol; 7β-OH, 7-ketocholesterol; 7-K and 25-hydroxycholesterol, 25-OH) differing in the site of oxidation (ring system versus chain) and kind of polar group (hydroxyl versus carbonyl) were studied in lipid raft environment using the Langmuir monolayer technique complemented with theoretical calculations. Experiments were performed for the unmodified raft system, composed of sphingomyelin (SM) and cholesterol (Chol), and in the next step the raft was modified by the incorporation of oxysterol in different proportions. In the examined three-component system (Chol:SM:oxysterol), apart from interactions between the lipid raft components, the affinity of Chol to its oxidized derivatives also plays an important role. 25-OH was found to enhance interactions between SM and Chol and thus stabilize the raft, contrary to 7β-OH and 7-K, which exterted the fluidizing effect as well as the destabilization of the raft. Different action of oxysterols on model raft was observed. 7β-OH and 7-K, which are highly potent inducers of cell dath caused raft destabilization, while 25-OH, which is the least toxic of the investigated oxysterols, was found to stabilize the raft.
Collapse
Affiliation(s)
- Anita Wnętrzak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Anna Chachaj-Brekiesz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Alicja Stępniak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Jan Kobierski
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | | |
Collapse
|
28
|
Kulkarni R, Wiemer EAC, Chang W. Role of Lipid Rafts in Pathogen-Host Interaction - A Mini Review. Front Immunol 2022; 12:815020. [PMID: 35126371 PMCID: PMC8810822 DOI: 10.3389/fimmu.2021.815020] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Lipid rafts, also known as microdomains, are important components of cell membranes and are enriched in cholesterol, glycophospholipids and receptors. They are involved in various essential cellular processes, including endocytosis, exocytosis and cellular signaling. Receptors are concentrated at lipid rafts, through which cellular signaling can be transmitted. Pathogens exploit these signaling mechanisms to enter cells, proliferate and egress. However, lipid rafts also play an important role in initiating antimicrobial responses by sensing pathogens via clustered pathogen-sensing receptors and triggering downstream signaling events such as programmed cell death or cytokine production for pathogen clearance. In this review, we discuss how both host and pathogens use lipid rafts and associated proteins in an arms race to survive. Special attention is given to the involvement of the major vault protein, the main constituent of a ribonucleoprotein complex, which is enriched in lipid rafts upon infection with vaccinia virus.
Collapse
Affiliation(s)
- Rakesh Kulkarni
- Molecular and Cell Biology, Taiwan International Graduate Program, National Defense Medical Center, Academia Sinica and Graduate Institute of Life Science, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Rakesh Kulkarni, ; Wen Chang,
| | - Erik A. C. Wiemer
- Medical Oncology, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, Netherlands
| | - Wen Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- *Correspondence: Rakesh Kulkarni, ; Wen Chang,
| |
Collapse
|
29
|
Mizogami M, Tsuchiya H. Acetaminophen Has Lipid Composition-Dependent Membrane Interactivity That Could Be Related to Nephrotoxicity but Not to Analgesic Activity and Hepatotoxicity. Med Princ Pract 2022; 31:111-117. [PMID: 35316804 PMCID: PMC9210001 DOI: 10.1159/000524210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/17/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Although acetaminophen is one of the most widely used over-the-counter drugs, the mechanisms by which this classical drug exerts analgesic, hepatotoxic, and nephrotoxic effects remain unclear. We hypothesized that acetaminophen might act on cellular membranes of nerves, liver, and kidneys. In order to verify this hypothesis, we studied the interactivity of acetaminophen with biomimetic lipid bilayer membranes by comparing with structurally related phenacetin. METHODS Liposomal membranes (unilamellar vesicles suspended in the buffer of pH 7.4) were prepared with phospholipids and cholesterol to mimic the membrane lipid composition of neuronal cells, hepatocytes, and nephrocytes. They were subjected to reactions with acetaminophen and phenacetin at clinically relevant concentrations, followed by measuring fluorescence polarization to determine their membrane interactivity to modify membrane fluidity. RESULTS Acetaminophen and phenacetin interacted with neuro-mimetic and hepato-mimetic membranes to increase membrane fluidity at 10-100 μM. Both drugs were more effective in fluidizing hepato-mimetic membranes than neuro-mimetic membranes. Although the relative membrane-interacting potency was phenacetin >> acetaminophen in neuro-mimetic and hepato-mimetic membranes, such membrane effects conflicted with their relative analgesic and hepatotoxic effects. Acetaminophen and phenacetin strongly interacted with nephro-mimetic membranes to increase membrane fluidity at 2-100 μM and 0.1-100 μM, respectively. Phenacetin interacted significantly with nephro-mimetic membranes at lower concentrations (<2 μM) than acetaminophen, which was consistent with their relative nephrotoxic effects. CONCLUSION In comparison with phenacetin, lipid composition-dependent membrane interactivity of acetaminophen could be related to nephrotoxicity but not to analgesic activity and hepatotoxicity.
Collapse
Affiliation(s)
- Maki Mizogami
- Department of Anesthesiology, Central Japan International Medical Center, Minokamo, Japan
| | - Hironori Tsuchiya
- Asahi University School of Dentistry, Mizuho, Japan
- *Hironori Tsuchiya,
| |
Collapse
|
30
|
Martin HS, Podolsky KA, Devaraj NK. Probing the Role of Chirality in Phospholipid Membranes. Chembiochem 2021; 22:3148-3157. [PMID: 34227722 DOI: 10.1002/cbic.202100232] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/04/2021] [Indexed: 11/09/2022]
Abstract
Nucleotides, amino acids, sugars, and lipids are almost ubiquitously homochiral within individual cells on Earth. While oligonucleotides and proteins exist as one natural chirality throughout the tree of life, two stereoisomers of phospholipids have separately emerged in archaea and bacteria, an evolutionary divergence known as "the lipid divide". Within this review, we focus on the emergence of phospholipid homochirality and compare the stability of synthetic homochiral and heterochiral membranes in vitro. We discuss chemical probes designed to study the stereospecific interactions of lipid membranes in vitro. Overall, we aim to highlight studies that help elucidate the determinants of stereospecific interactions between lipids, peptides, and small molecule ligands. Continued work in understanding the drivers of favorable interactions between chiral molecules and biological membranes will lead to the design of increasingly selective chemical tools for bioorthogonal labeling of lipid membranes and safer membrane-associating pharmaceuticals.
Collapse
Affiliation(s)
- Hannah S Martin
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Kira A Podolsky
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| |
Collapse
|