1
|
Beesetti S. Ubiquitin Ligases in Control: Regulating NLRP3 Inflammasome Activation. FRONT BIOSCI-LANDMRK 2025; 30:25970. [PMID: 40152367 DOI: 10.31083/fbl25970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 03/29/2025]
Abstract
Ubiquitin ligases play pivotal roles in the regulation of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation, a critical process in innate immunity and inflammatory responses. This review explores the intricate mechanisms by which various E3 ubiquitin ligases exert both positive and negative influences on NLRP3 inflammasome activity through diverse post-translational modifications. Negative regulation of NLRP3 inflammasome assembly is mediated by several E3 ligases, including F-box and leucine-rich repeat protein 2 (FBXL2), tripartite motif-containing protein 31 (TRIM31), and Casitas B-lineage lymphoma b (Cbl-b), which induce K48-linked ubiquitination of NLRP3, targeting it for proteasomal degradation. Membrane-associated RING-CH 7 (MARCH7) similarly promotes K48-linked ubiquitination leading to autophagic degradation, while RING finger protein (RNF125) induces K63-linked ubiquitination to modulate NLRP3 function. Ariadne homolog 2 (ARIH2) targets the nucleotide-binding domain (NBD) domain of NLRP3, inhibiting its activation, and tripartite motif-containing protein (TRIM65) employs dual K48 and K63-linked ubiquitination to suppress inflammasome assembly. Conversely, Pellino2 exemplifies a positive regulator, promoting NLRP3 inflammasome activation through K63-linked ubiquitination. Additionally, ubiquitin ligases influence other components critical for inflammasome function. TNF receptor-associated factor 3 (TRAF3) mediates K63 polyubiquitination of apoptosis-associated speck-like protein containing a CARD (ASC), facilitating its degradation, while E3 ligases regulate caspase-1 activation and DEAH-box helicase 33 (DHX33)-NLRP3 complex formation through specific ubiquitination events. Beyond direct inflammasome regulation, ubiquitin ligases impact broader innate immune signaling pathways, modulating pattern-recognition receptor responses and dendritic cell maturation. Furthermore, they intricately control NOD1/NOD2 signaling through K63-linked polyubiquitination of receptor-interacting protein 2 (RIP2), crucial for nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) activation. Furthermore, we explore how various pathogens, including bacteria, viruses, and parasites, have evolved sophisticated strategies to hijack the host ubiquitination machinery, manipulating NLRP3 inflammasome activation to evade immune responses. This comprehensive analysis provides insights into the molecular mechanisms underlying inflammasome regulation and their implications for inflammatory diseases, offering potential avenues for therapeutic interventions targeting the NLRP3 inflammasome. In conclusion, ubiquitin ligases emerge as key regulators of NLRP3 inflammasome activation, exhibiting a complex array of functions that finely tune immune responses. Understanding these regulatory mechanisms not only sheds light on fundamental aspects of inflammation but also offers potential therapeutic avenues for inflammatory disorders and infectious diseases.
Collapse
Affiliation(s)
- Swarna Beesetti
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
2
|
Ge J, Cao M, Zhang Y, Wu T, Liu J, Pu J, He H, Guo Z, Ju S, Yu J. Inhibiting NLRP3 enhances cellular autophagy induced by outer membrane vesicles from Pseudomonas aeruginosa. Microbiol Spectr 2025; 13:e0181924. [PMID: 39873509 PMCID: PMC11878092 DOI: 10.1128/spectrum.01819-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
The bacterium Pseudomonas aeruginosa is able to invade lung epithelial cells and survive intracellularly. During this process, it secretes outer membrane vesicles (OMVs), however, it is currently unclear how OMVs from P. aeruginosa (PA-OMVs) affect lung epithelial cells and their impact on oxidative stress, autophagy, and other physiological activities of lung epithelial cells. In this study, we found that PA-OMVs activated oxidative stress and autophagy in cells. We demonstrated that the NLRP3 (NLR family, pyrin domain containing 3) inhibitor MCC950 can enhance autophagy induced by PA-OMVs. The main function of NLRP3 is related to the body's immune response and inflammation regulation. MCC950 is the most common inhibitor of NLRP3. Additionally, we showed that PA-OMVs not only enhanced the expression of AMP-activated protein kinase, a key regulator of cellular energy homeostasis, and reactive oxygen species, which play a crucial role in cellular signaling and oxidative stress, but also significantly enhanced the expression of NLRP3. Inhibiting the expression of NLRP3 further enhanced the process of PA-OMVs induced autophagy. These results demonstrate that PA-OMVs activate both autophagy and the NLRP3 inflammasome, with NLRP3 suppressing autophagy to a certain extent, hoping to provide broad ideas for the future applications of PA-OMVs.IMPORTANCEThe discovery that lung epithelial cells exposed to outer membrane vesicles from Pseudomonas aeruginosa (PA-OMVs) activate cellular autophagy and induce protective immunity is significant. Specifically, the addition of an NLRP3 inhibitor, MCC950, has been found to decrease NLRP3 targets while simultaneously enhancing the autophagy activity induced by PA-OMVs. This finding unveils a novel theoretical framework for the development of PA-OMVs vaccines, highlighting new targets for enhancing the body's anti-infective responses. By elucidating the mechanisms through which PA-OMVs trigger autophagy and bolster immune defenses, this research opens avenues for innovative vaccine design strategies aimed at combatting infections effectively.
Collapse
Affiliation(s)
- Jing Ge
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Min Cao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Yuyao Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Medical School of Nantong University, Nantong, China
| | - Tianqi Wu
- Krieger School of Arts and Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jiayi Liu
- Institute of Public Health, Nantong University, Nantong, China
| | - Jiang Pu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Hongye He
- Institute of Public Health, Nantong University, Nantong, China
| | - Zhibin Guo
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Juan Yu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Institute of Public Health, Nantong University, Nantong, China
| |
Collapse
|
3
|
An Z, Ding W. LncRNA-Gm17586 inhibits S.typhimurium mediated pyroptosis by promoting NLRP3 and Tnip1 binding. Sci Rep 2025; 15:6713. [PMID: 40000898 PMCID: PMC11861967 DOI: 10.1038/s41598-025-91296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/19/2025] [Indexed: 02/27/2025] Open
Abstract
The aim of this study is to identify the lncRNA that directly interacts with NLRP3 molecules in RAW264.7 cells infected with S. typhimurium and its role in S. typhimurium-mediated pyroptosis. We have identified LncRNA-Gm17586, which directly interacts with NLRP3 in RAW264.7 cells infected with S. typhimurium. LncRNA-Gm17586 inhibits S. typhimurium-mediated pyroptosis in RAW264.7 cells. Overexpression of LncRNA-Gm17586 not only directly suppresses NLRP3 inflammasome activation but also enhances the binding affinity between Tnip1 and NLRP3, thereby indirectly facilitating Tnip1-mediated inhibition of the NLRP3 inflammasome. Consequently, this dual mechanism effectively inhibits S. typhimurium-induced pyroptosis. Our results demonstrate that LncRNA-Gm17586 directly interacts with NLRP3 during S. typhimurium-mediated pyroptosis and inhibits this process by enhancing the interaction between Tnip1 and NLRP3.
Collapse
Affiliation(s)
- Zhiyuan An
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Wenyi Ding
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
4
|
Ren D, Ye X, Chen R, Jia X, He X, Tao J, Jin T, Wu S, Zhang H. Activation and evasion of inflammasomes during viral and microbial infection. Cell Mol Life Sci 2025; 82:56. [PMID: 39833559 PMCID: PMC11753444 DOI: 10.1007/s00018-025-05575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
The inflammasome is a cytoplasmic multiprotein complex that induces the maturation of the proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) or pyroptosis by activating caspases, which play critical roles in regulating inflammation, cell death, and various cellular processes. Multiple studies have shown that the inflammasome is a key regulator of the host defence response against pathogen infections. During the process of pathogenic microbe invasion into host cells, the host's innate immune system recognizes these microbes by activating inflammasomes, triggering inflammatory responses to clear the microbes and initiate immune responses. Moreover, microbial pathogens have evolved various mechanisms to inhibit or evade the activation of inflammasomes. Therefore, we review the interactions between viruses and microbes with inflammasomes during the invasion process, highlight the molecular mechanisms of inflammasome activation induced by microbial pathogen infection, and highlight the corresponding strategies that pathogens employ to evade inflammasome activity. Finally, we also discuss potential therapeutic strategies for the treatment of pathogenic microbial infections via the targeting of inflammasomes and their products.
Collapse
Affiliation(s)
- Dan Ren
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Xiaoou Ye
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Ruiming Chen
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Xiuzhi Jia
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Xianhong He
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China.
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
| |
Collapse
|
5
|
Rahman MU, Ullah MW, Manan S, Bilal H, Alomairy T, Awad MF, Nawab S, Zahoor, Zhu D. Ammonia Exposure-Induced Immunological Damage in Chicken Lymphoid Organs via TLR-7/MYD88/NF-κB Signaling Pathway and NLRP3 Inflammasome Activation. J Microbiol Biotechnol 2024; 34:2527-2538. [PMID: 39476861 PMCID: PMC11729696 DOI: 10.4014/jmb.2407.07025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/15/2024] [Accepted: 10/02/2024] [Indexed: 12/31/2024]
Abstract
Ammonia (NH3) is a hazardous gas that pollutes the environment and causes irritation. Its harmful effects on chickens, including its impact on their immune system, have previously been observed. However, the mechanism by which NH3 exposure causes immune system disorders in chickens remains unclear. The bursa of Fabricius (BF) and thymus are the two main lymphoid organs responsible for the proliferation, differentiation, and selection of B- and T-lymphocytes, both critical for the innate immune response of the host. In this study, we investigated the mechanism of NH3-induced immune dysregulation in broiler chickens. Transmission electron microscopy (TEM) revealed swollen mitochondria and breakage of the large crista lining, membrane deformation, chromatin condensation, increased vacuolation, and blood vessel spasms in the NH3-exposed BF and thymus tissues. Immunofluorescent analysis showed clustering of CD4+ and CD8+ cells, indicating an active immune response to NH3 exposure. Furthermore, NH3 exposure enhanced the mRNA expressions of Toll-like receptor 7 (TLR-7), myeloid differentiation primary response 88 (MYD88), and nuclear factor-kappa B (NF-κB), along with their proteins, and led to activation of the TLR-7/MyD88/NF-κB signaling pathway and NLRP3 inflammasome in chicken thymus tissues. Both mRNA and protein levels of key inflammation-related genes and proteins were upregulated in the NH3-treated group, highlighting a robust inflammatory response due to NH3 exposure. The specific findings of significant structural damage to key lymphoid organs and activation of inflammatory pathways in broiler chickens upon NH3 exposure can provide guidance for future, targeted therapies to improve poultry health.
Collapse
Affiliation(s)
- Mujeeb ur Rahman
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Muhammad Wajid Ullah
- Department of Pulp & Paper Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China
| | - Sehrish Manan
- Department of Pulp & Paper Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China
| | - Hazrat Bilal
- Jiangxi Key Laboratory of Oncology, JXHC Key Laboratory of Tumour Metastasis, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, Jiangxi 330029, P.R. China
| | - Thamir Alomairy
- Department of Biology, Faculty of Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohamed F. Awad
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Said Nawab
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Zahoor
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, P.R. China
| |
Collapse
|
6
|
Li J, Song L, Li H, Gao Y, Chen T, Zhang Z, Hou H, Ye Z, Zhang G. Aerosol Inhalation of Luteolin-7-O-Glucuronide Exerts Anti-Inflammatory Effects by Inhibiting NLRP3 Inflammasome Activation. Pharmaceuticals (Basel) 2024; 17:1731. [PMID: 39770573 PMCID: PMC11677241 DOI: 10.3390/ph17121731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Luteolin-7-O-glucuronide (L7Gn) is a flavonoid isolated from numerous traditional Chinese herbal medicines that exerts anti-inflammatory effects. Previous research has revealed that aerosol inhalation is the most straightforward way of administration for the delivery of respiratory agents. Thus far, the impact of aerosol inhalation of L7Gn on lung inflammation and the underlying mechanisms remain unknown. Methods: The real-time particle size for L7Gn aerosol inhalation was detected by the Spraytec spray droplet size measurement system, including transmission and size diameters. The acute lung injury (ALI) rat model was induced by aerosol inhalation of LPS to evaluate the protective effect of L7Gn. The inhibitory effect of NLRP3 inflammasome activation assays was conducted in LPS-induced MH-S cells. Elisa, Western blotting, and RT-PCR were utilized to investigate the expression of NLRP3 inflammasome-relevant proteins and genes. Results: In this study, we found that inhalation of L7Gn aerosol significantly reduced pulmonary injury by inhibiting inflammatory infiltration and enhancing lung function. Meanwhile, the NLR family pyrin domain containing 3 (NLRP3) inflammasome was activated dramatically, accompanied by upregulated expression of IL-1β and IL-18, both in the ALI rat model and in LPS-induced MH-S cells. Moreover, L7Gn was found to significantly downregulate the expression of NLRP3, ASC, caspase-1, and cleaved caspase-1, which are critical components of the NLRP3 inflammasome, as well as the expression of IL-1β and IL-18. Conclusions: Based on our findings, L7Gn could exert anti-inflammatory effects by inhibiting NLRP3 inflammasome activation, which may emerge as potential therapeutic agents for the treatment of ALI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zuguang Ye
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen, Dongcheng District, Beijing 100700, China; (J.L.); (L.S.); (H.L.); (Y.G.); (T.C.); (Z.Z.); (H.H.)
| | - Guangping Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen, Dongcheng District, Beijing 100700, China; (J.L.); (L.S.); (H.L.); (Y.G.); (T.C.); (Z.Z.); (H.H.)
| |
Collapse
|
7
|
Mannan A, Mohan M, Gulati A, Dhiman S, Singh TG. Aquaporin proteins: A promising frontier for therapeutic intervention in cerebral ischemic injury. Cell Signal 2024; 124:111452. [PMID: 39369758 DOI: 10.1016/j.cellsig.2024.111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
Cerebral ischemic injury is characterized by reduced blood flow to the brain, remains a significant cause of morbidity and mortality worldwide. Despite improvements in therapeutic approaches, there is an urgent need to identify new targets to lessen the effects of ischemic stroke. Aquaporins, a family of water channel proteins, have recently come to light as promising candidates for therapeutic intervention in cerebral ischemic injury. There are 13 aquaporins identified, and AQP4 has been thoroughly involved with cerebral ischemia as it has been reported that modulation of AQP4 activity can offers a possible pathway for therapeutic intervention along with their role in pH, osmosis, ions, and the blood-brain barrier (BBB) as possible therapeutic targets for cerebral ischemia injury. The molecular pathways which can interacts with particular cellular pathways, participation in neuroinflammation, and possible interaction with additional proteins thought to be involved in the etiology of a stroke. Understanding these pathways offers crucial information on the diverse role of AQPs in cerebral ischemia, paving the door for the development of focused/targeted therapeutics.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Anshika Gulati
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India; School of Public Health, Faculty of Health, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia.
| |
Collapse
|
8
|
Fan C, Chen G, Reiter RJ, Bai Y, Zheng T, Fan L. Glutathione inhibits lung cancer development by reducing interleukin-6 expression and reversing the Warburg effect. Mitochondrion 2024; 79:101953. [PMID: 39214486 DOI: 10.1016/j.mito.2024.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Reduced glutathione (GSH) is widely used as an antioxidant in clinical practice, but whether GSH affects the development of early lung cancer remains unclear. Herein, we investigated the mechanism underlying the anticancer effect of GSH in patients with pulmonary nodules. Thirty patients with pulmonary nodules were treated with GSH intravenously for 10 days at a dose of 1.8 g/d, followed by oral administration of the drug at a dose of 0.4 g three times daily for 6 months. The results showed that GSH treatment promoted nodule absorption and reduced the IL-6 level in the peripheral blood of the patients. GSH reduced IL-6 expression in inflammatory BEAS-2B and lung cancer cells and inhibited the proliferation of lung cancer cell lines in vitro. In addition, GSH reduced IL-6 expression by decreasing ROS via down-regulating PI3K/AKT/FoxO pathways. Finally, GSH reversed the Warburg effect, restored mitochondrial function, and reduced the IL-6 expression via PI3K/AKT/FoxO pathways. The in vivo experiment confirmed that GSH inhibited lung cancer growth, improved mitochondrial function, and reduced the IL-6 expression by regulating key enzymes via the PI3K/AKT/FoxO pathway. In conclusion, we uncovered that GSH exerts an unprecedentedly potent anti-cancer effect to prevent the transformation of lung nodules to lung cancer by improving the mitochondrial function and suppressing inflammation via PI3K/AKT/FoxO pathway. This investigation innovatively positions GSH as a potentially safe and efficacious old drug with new uses, inhibiting inflammation and early lung cancer. The use of the drug offers a promising preventive strategy when administered during the early stages of lung cancer.
Collapse
Affiliation(s)
- Chenchen Fan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Guojie Chen
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Yidong Bai
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Tiansheng Zheng
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lihong Fan
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
9
|
Huang H, Zhou T, He F, Wen B, Yang Y, Zhong W, Wang Q, Li J. The gut microbiota improves reproductive dysfunction in obese mice by suppressing the NLRP3/ASC/caspase-1 axis. Future Microbiol 2024; 19:1389-1405. [PMID: 39225491 PMCID: PMC11552480 DOI: 10.1080/17460913.2024.2386867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Aim: To explore the complex relationship between gut microbiota, obesity-related male reproductive impairments, and the NLRP3 inflammasome.Methods: A high-fat diet was administered to induce obesity in a mouse model, fecal microbiota transplantation or a high-dietary fiber diet (HDFD) was administered for 5 weeks to evaluate changes in parameters related to reproductive capacity, NLRP3, gut microbiota composition and metabolites in mice.Results: A high-fat diet induces obesity and decreases reproductive capacity in male mice. Fecal microbiota transplantation and HDFD can improve reproductive capacity in obese mice by adjusting the gut microbiota population to suppress the NLRP3/ASC/caspase-1 axis, thereby reducing IL-1β levels.Conclusion: This study offers a potential treatment for obesity-induced reproductive dysfunction by targeting the gut microbiota and the NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Hui Huang
- Chengdu Medical College, Chengdu, Sichuan, 610500, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, P. R. China
| | - Ting Zhou
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, P. R. China
| | - Feng He
- Chengdu Medical College, Chengdu, Sichuan, 610500, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, P. R. China
| | - Biao Wen
- Chengdu Medical College, Chengdu, Sichuan, 610500, P. R. China
| | - Ying Yang
- Chengdu Medical College, Chengdu, Sichuan, 610500, P. R. China
| | - Wei Zhong
- Chengdu Medical College, Chengdu, Sichuan, 610500, P. R. China
| | - Qiurong Wang
- Chengdu Medical College, Chengdu, Sichuan, 610500, P. R. China
| | - Jun Li
- Chengdu Medical College, Chengdu, Sichuan, 610500, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, P. R. China
| |
Collapse
|
10
|
Alipour S, Mardi A, Shajari N, Kazemi T, Sadeghi MR, Ahmadian Heris J, Masoumi J, Baradaran B. Unmasking the NLRP3 inflammasome in dendritic cells as a potential therapeutic target for autoimmunity, cancer, and infectious conditions. Life Sci 2024; 348:122686. [PMID: 38710282 DOI: 10.1016/j.lfs.2024.122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Proper and functional immune response requires a complex interaction between innate and adaptive immune cells, which dendritic cells (DCs) are the primary actors in this coordination as professional antigen-presenting cells. DCs are armed with numerous pattern recognition receptors (PRRs) such as nucleotide-binding and oligomerization domain-like receptors (NLRs) like NLRP3, which influence the development of their activation state upon sensation of ligands. NLRP3 is a crucial component of the immune system for protection against tumors and infectious agents, because its activation leads to the assembly of inflammasomes that cause the formation of active caspase-1 and stimulate the maturation and release of proinflammatory cytokines. But, when NLRP3 becomes overactivated, it plays a pathogenic role in the progression of several autoimmune disorders. So, NLRP3 activation is strictly regulated by diverse signaling pathways that are mentioned in detail in this review. Furthermore, the role of NLRP3 in all of the diverse immune cells' subsets is briefly mentioned in this study because NLRP3 plays a pivotal role in modulating other immune cells which are accompanied by DCs' responses and subsequently influence differentiation of T cells to diverse T helper subsets and even impact on cytotoxic CD8+ T cells' responses. This review sheds light on the functional and therapeutic role of NLRP3 in DCs and its contribution to the occurrence and progression of autoimmune disorders, prevention of diverse tumors' development, and recognition and annihilation of various infectious agents. Furthermore, we highlight NLRP3 targeting potential for improving DC-based immunotherapeutic approaches, to be used for the benefit of patients suffering from these disorders.
Collapse
Affiliation(s)
- Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Alonaizan R. Molecular regulation of NLRP3 inflammasome activation during parasitic infection. Biosci Rep 2024; 44:BSR20231918. [PMID: 38623843 PMCID: PMC11096646 DOI: 10.1042/bsr20231918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024] Open
Abstract
Parasitic diseases are a serious global health concern, causing many common and severe infections, including Chagas disease, leishmaniasis, and schistosomiasis. The NLRP3 inflammasome belongs to the NLR (nucleotide-binding domain leucine-rich-repeat-containing proteins) family, which are cytosolic proteins playing key roles in the detection of pathogens. NLRP3 inflammasomes are activated in immune responses to Plasmodium, Leishmania, Toxoplasma gondii, Entamoeba histolytica, Trypanosoma cruzi, and other parasites. The role of NLRP3 is not fully understood, but it is a crucial component of the innate immune response to parasitic infections and its functions as a sensor triggering the inflammatory response to the invasive parasites. However, while this response can limit the parasites' growth, it can also result in potentially catastrophic host pathology. This makes it essential to understand how NLRP3 interacts with parasites to initiate the inflammatory response. Plasmodium hemozoin, Leishmania glycoconjugate lipophosphoglycan (LPG) and E. histolytica Gal/GalNAc lectin can stimulate NLRP3 activation, while the dense granule protein 9 (GRA9) of T. gondii has been shown to suppress it. Several other parasitic products also have diverse effects on NLRP3 activation. Understanding the mechanism of NLRP3 interaction with these products will help to develop advanced therapeutic approaches to treat parasitic diseases. This review summarizes current knowledge of the NLRP3 inflammasome's action on the immune response to parasitic infections and aims to determine the mechanisms through which parasitic molecules either activate or inhibit its action.
Collapse
Affiliation(s)
- Rasha Alonaizan
- Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Zhang A, Zhang C, Zhang Y, Hu T, Cheng R. PANoptosis is a compound death in periodontitis: A systematic review of ex vivo and in vivo studies. Oral Dis 2024; 30:1828-1842. [PMID: 37650218 DOI: 10.1111/odi.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE The purpose of the systematic review is to verify the presence of PANoptosis in periodontitis based on the published literatures studying cell death in periodontitis. MATERIALS AND METHODS We conducted a comprehensive review of literature studying the types of cell death in vitro cellular experiments, in vivo rodent studies and clinical studies from three major databases: PubMed, Scopus, and Web of Science. The present systematic review was recorded in the PROSPERO database, under registration number CRD42022383456. RESULTS In total, 51 articles were included in this study. Our analysis of in vitro cell models revealed that pyroptosis, necroptosis, and apoptosis could be induced by periodontal pathogens in macrophages, fibroblasts, stem cells, and periodontal ligament cells. Furthermore, three types of cell death were detected in in vivo rodent periodontitis models. Clinical studies on human periodontitis tissue specimens and gingival crevicular fluid (GCF) showed that some key proteins related to pyroptosis, necroptosis, and apoptosis were elevated in periodontitis. CONCLUSIONS Various studies have established similar in vivo and in vitro models with three modes of death detected under the same conditions, revealing complex interactions between different types of cell death pathways in periodontitis and the potential for PANoptosis to occur in periodontitis.
Collapse
Affiliation(s)
- Aopeng Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuhan Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ran Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Badr G, El-Hossary FM, Lasheen FEDM, Negm NZ, Khalaf M, Salah M, Sayed LH, Abdel-Maksoud MA, Elminshawy A. Cold atmospheric plasma induces the curing mechanism of diabetic wounds by regulating the oxidative stress mediators iNOS and NO, the pyroptotic mediators NLRP-3, Caspase-1 and IL-1β and the angiogenesis mediators VEGF and Ang-1. Biomed Pharmacother 2023; 169:115934. [PMID: 38000357 DOI: 10.1016/j.biopha.2023.115934] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023] Open
Abstract
It has been demonstrated that cold atmospheric plasma (CAP) accelerates the wound healing process, however the underlying molecular pathways behind this effect remain unclear. Thus, the goal of the proposed investigation is to elucidate the therapeutic advantages of CAP on angiogenesis, pyroptotic, oxidative stress, and inflammatory mediators during the wound-healing mechanisms associated with diabetes. Intraperitoneal administration of streptozotocin (STZ, 60 mg/Kg) of body weight was used to induce type-1 diabetes. Seventy-five male mice were randomized into 3 groups: the control non-diabetic group, the diabetic group that was not treated, and the diabetic group that was treated with CAP. The key mediators of pyroptosis and its impact on the slow healing process of diabetic wounds were examined using histological investigations employing H&E staining, immunohistochemistry, ELISA, and Western blotting analysis. Angiogenesis proteins (VEGF, Ang-1, and HO-1) showed a significant decline in expression concentrations in the diabetic wounds, indicating that diabetic animals' wounds were less likely to heal. Furthermore, compared to the controls, the major mediators of pyroptosis (NLRP-3, IL-1β, and caspase-1), oxidative stress (iNOS and NO), and inflammation (TNF-α and IL-6) have higher expression levels in the diabetic wounds. These factors substantially impede the healing mechanism of diabetic wounds. Interestingly, our results disclosed the therapeutic impacts of CAP treatment in the healing process of diabetic wounds via significantly regulating the expression levels of angiogenesis, pyroptosis, oxidative stress and pro-inflammatory mediators. Our findings demonstrated the curative likelihood of CAP and the underlying mechanisms for enhancing the healing process of diabetic wounds.
Collapse
Affiliation(s)
- Gamal Badr
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt.
| | - Fayez M El-Hossary
- Physics Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| | | | - Niemat Z Negm
- Physics Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| | - Mohamed Khalaf
- Physics Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| | - Mohamed Salah
- Botany and Microbiology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt; Institut Cochin, Université de Paris, INSERM, CNRS, 75014 Paris, France
| | - Leila H Sayed
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Elminshawy
- Deptartment of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
14
|
Peng X, Wang J, Li Z, Jia X, Zhang A, Ju J, Eulenburg V, Gao F. Toll-like Receptor 2-Melatonin Feedback Loop Regulates the Activation of Spinal NLRP3 Inflammasome in Morphine-Tolerant Rats. Neurochem Res 2023; 48:3597-3609. [PMID: 37561258 DOI: 10.1007/s11064-023-03998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND AND PURPOSE Morphine is amongst the most effective analgesics available for the management of severe pain. However, prolonged morphine treatment leads to analgesic tolerance which limits its clinical usage. Previous studies have demonstrated that melatonin ameliorates morphine tolerance by reducing neuroinflammation. However, little is known about the relationship between Toll like receptor 2 (TLR2) and neuroinflammation in morphine tolerance. The aim of this study was to explore the role of TLR2 in morphine tolerance and its connections with melatonin and Nod-like receptor protein 3 (NLRP3) inflammasome. METHODS Sprague-Dawley rats were treated with morphine for 7 days and tail-flick latency test was performed to identify the induction of analgesic tolerance. The roles of TLR2 in microglia activation and morphine tolerance were assessed pharmacologically, and the possible interactions between melatonin, TLR2 and NLRP3 inflammasome were investigated. KEY RESULTS Morphine tolerance was accompanied by increased TLR2 expression and NLRP3 inflammasome activation in spinal cord. whereas melatonin level was down-regulated. Chronic melatonin administration resulted in a reduced TLR2 expression and NLRP3 inflammasome activation. Moreover, the analgesic effect of morphine was partially restored. Inhibition of TLR2 suppressed the microglia and NLRP3 inflammasome activation, as well as restored the spinal melatonin level while attenuated the development of morphine tolerance. Furthermore, the inhibition of microglia activation ameliorated morphine tolerance via inhibiting TLR2-NLRP3 inflammasome signaling in spinal cord. CONCLUSION In this study, we directly demonstrate a TLR2-melatonin negative feedback loop regulating microglia and NLRP3 inflammasome activation during the development of morphine tolerance.
Collapse
Affiliation(s)
- Xiaoling Peng
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jihong Wang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Zheng Li
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xiaoqian Jia
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Anqi Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Jie Ju
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Volker Eulenburg
- Department for Translational Anaesthesiology and Intensive Care Medicine, Medical Faculty University of Augsburg, 86156, Augsburg, Germany.
| | - Feng Gao
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
15
|
Dai Y, Zhou J, Shi C. Inflammasome: structure, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e391. [PMID: 37817895 PMCID: PMC10560975 DOI: 10.1002/mco2.391] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 10/12/2023] Open
Abstract
Inflammasomes are a group of protein complex located in cytoplasm and assemble in response to a wide variety of pathogen-associated molecule patterns, damage-associated molecule patterns, and cellular stress. Generally, the activation of inflammasomes will lead to maturation of proinflammatory cytokines and pyroptotic cell death, both associated with inflammatory cascade amplification. A sensor protein, an adaptor, and a procaspase protein interact through their functional domains and compose one subunit of inflammasome complex. Under physiological conditions, inflammasome functions against pathogen infection and endogenous dangers including mtROS, mtDNA, and so on, while dysregulation of its activation can lead to unwanted results. In recent years, advances have been made to clarify the mechanisms of inflammasome activation, the structural details of them and their functions (negative/positive) in multiple disease models in both animal models and human. The wide range of the stimuli makes the function of inflammasome diverse and complex. Here, we review the structure, biological functions, and therapeutic targets of inflammasomes, while highlight NLRP3, NLRC4, and AIM2 inflammasomes, which are the most well studied. In conclusion, this review focuses on the activation process, biological functions, and structure of the most well-studied inflammasomes, summarizing and predicting approaches for disease treatment and prevention with inflammasome as a target. We aim to provide fresh insight into new solutions to the challenges in this field.
Collapse
Affiliation(s)
- Yali Dai
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
| | - Jing Zhou
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
- Institute of ImmunologyArmy Medical UniversityChongqingChina
| | - Chunmeng Shi
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
| |
Collapse
|
16
|
Dong RJ, Li J, Zhang Y, Li JS, Yang LH, Kuang YQ, Wang RR, Li YY. Thalidomide promotes NLRP3/caspase-1-mediated pyroptosis of macrophages in Talaromyces marneffei infection. Microb Pathog 2023:106168. [PMID: 37224982 DOI: 10.1016/j.micpath.2023.106168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
Macrophage-derived inflammatory cytokines are critical for host defense against Talaromyces marneffei (T. marneffei) infection among HIV/AIDS patients, and excessive inflammatory cytokines are associated with poor outcomes of AIDS-associated talaromycosis. However, the underlying mechanisms of macrophage-caused pyroptosis and cytokine storm are poorly understood. Here, in the T. marneffei-infected mice and macrophages, we show that T. marneffei induced pyroptosis in macrophages through the NLRP3/caspase-1 pathway. The immunomodulatory drug thalidomide could promote the pyroptosis of macrophages infected T. marneffei. In T. marneffei-infected mice, the splenic macrophages underwent increasing pyroptosis as talaromycosis deteriorated. Thalidomide ameliorated inflammation of mice, while amphotericin B (AmB) in combination with thalidomide did not improve overall survival compared with AmB alone. Taken together, our findings suggest that thalidomide promotes NLRP3/caspase-1-mediated pyroptosis of macrophages in T. marneffei infection.
Collapse
Affiliation(s)
- Rong-Jing Dong
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Kidney Diseases, Medical College, Hubei Polytechnic University, Huangshi, China
| | - Jun Li
- College of Pharmaceutical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Yi Zhang
- College of Pharmaceutical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Jia-Sheng Li
- College of Pharmaceutical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Lu-Hui Yang
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yi-Qun Kuang
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming650032, China.
| | - Rui-Rui Wang
- College of Pharmaceutical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China.
| | - Yu-Ye Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
17
|
Wang Y, Sun Z, Zhang H, Song Y, Wang Y, Xu W, Li M. CVB3 Inhibits NLRP3 Inflammasome Activation by Suppressing NF-κB Pathway and ROS Production in LPS-Induced Macrophages. Viruses 2023; 15:v15051078. [PMID: 37243164 DOI: 10.3390/v15051078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammasomes are cytosolic sensors of pathogens. Their activation can lead to the induction of caspase-1-mediated inflammatory responses and the release of several proinflammatory cytokines, including IL-1β. There is a complex relationship between viral infection and the nucleotide-binding oligomerization domain-like receptors family pyrin domain-containing 3 (NLRP3) inflammasome. The activation of the NLRP3 inflammasome is essential for antiviral immunity, while excessive NLRP3 inflammasome activation may lead to excessive inflammation and pathological damage. Meanwhile, viruses have evolved strategies to suppress the activation of inflammasome signaling pathways, thus escaping immune responses. In this study, we investigated the inhibitory effect of coxsackievirus B3 (CVB3), a positive single-strand RNA virus, on the activation of the NLRP3 inflammasome in macrophages. CVB3-infected mice had significantly lower production of IL-1β and a lower level of NLRP3 in the small intestine after LPS stimulation. Furthermore, we found that CVB3 infection inhibited NLRP3 inflammasome activation and IL-1β production in macrophages by suppressing the NF-κB signaling pathway and ROS production. Additionally, CVB3 infection increased the susceptibility of mice to Escherichia coli infection by decreasing IL-1β production. Collectively, our study revealed a novel mechanism of NLRP3 inflammasome activation by suppressing the NF-κB pathway and ROS production in LPS-induced macrophages. Our findings may provide new ideas for antiviral treatment and drug development for CVB3 infection.
Collapse
Affiliation(s)
- Yanqi Wang
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, Suzhou 215123, China
| | - Zhirong Sun
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, Suzhou 215123, China
| | - Hongkai Zhang
- Suzhou Center for Disease Prevention and Control, 72 Sanxiang Road, Suzhou 215004, China
| | - Yahui Song
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, Suzhou 215123, China
| | - Yi Wang
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, Suzhou 215123, China
| | - Wei Xu
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, Suzhou 215123, China
| | - Min Li
- Institute of Biology and Medical Sciences, Soochow University, Building 703, 199 Ren-ai Road, Suzhou 215123, China
| |
Collapse
|
18
|
Liu M, Meng X, Xuan Z, Chen S, Wang J, Chen Z, Wang J, Jia X. Effect of Er Miao San on peritoneal macrophage polarisation through the miRNA-33/NLRP3 signalling pathway in a rat model of adjuvant arthritis. PHARMACEUTICAL BIOLOGY 2022; 60:846-853. [PMID: 35608068 PMCID: PMC9132473 DOI: 10.1080/13880209.2022.2066700] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/25/2022] [Accepted: 04/11/2022] [Indexed: 06/01/2023]
Abstract
CONTEXT Er Miao San (EMS) is a formulation that contains Atractylodis Rhizoma and Phellodendri Cortex in 1:1 ratio, and is commonly used to treat rheumatoid arthritis (RA) and other inflammatory diseases. OBJECTIVE We investigated the mechanism of action and effects of EMS on peritoneal macrophage differentiation in a rat model of adjuvant arthritis (AA). MATERIALS AND METHODS EMS (3, 1.5 and 0.75 g/kg; once daily) and methotrexate (0.5 mg/kg; once every 3 days) were administered orally from days 21 to 35 after immunisation. Paw swelling and arthritis index were measured; pathological changes in the ankle joint were observed using x-ray and haematoxylin eosin staining. The ratio of CD86/CD206 in macrophages was detected by flow cytometry. Examination of the miRNA-33/NLRP3 signalling pathway was examined by RT-qPCR and western blotting. The levels of cytokines in the serum and cell supernatants were tested by ELISA. RESULTS EMS significantly reduced the AA index in rats (from 11.0 to 9.3) and pathological changes in the ankle joint (from 3.8 to 1.4). The ratio of CD86/CD206 was reduced, and polarisation to M1 improved (from 0.9 to 0.6) in macrophages of EMS-treated rats. EMS downregulated the miRNA-33/NLRP3 pathway. Furthermore, EMS treatment increased IL-10 and TGF-β levels in the serum and supernatant of macrophages of AA rats and simultaneously decreased the levels of IL-1β and TNF-α. DISCUSSION AND CONCLUSIONS Our results suggest that EMS may reduce macrophage polarisation to the M1 inflammatory phenotype by downregulating the miRNA-33/NLRP3 pathway in AA rats. These findings may provide new insights into the treatment of RA.
Collapse
Affiliation(s)
- Min Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| | - Xiangwen Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| | - Zihua Xuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| | - Simeng Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| | - Jin Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| | - Zhiluo Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| | - Jiayu Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| | - Xiaoyi Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| |
Collapse
|
19
|
Yoon C, Ham YS, Gil WJ, Yang CS. The strategies of NLRP3 inflammasome to combat Toxoplasma gondii. Front Immunol 2022; 13:1002387. [PMID: 36341349 PMCID: PMC9626524 DOI: 10.3389/fimmu.2022.1002387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/05/2022] [Indexed: 07/30/2023] Open
Abstract
Infection with the protozoan parasite Toxoplasma gondii (T. gondii) results in the activation of nucleotide-binding domain leucine-rich repeat containing receptors (NLRs), which in turn leads to inflammasome assembly and the subsequent activation of caspase-1, secretion of proinflammatory cytokines, and pyroptotic cell death. Several recent studies have addressed the role of the NLRP3 inflammasome in T. gondii infection without reaching a consensus on its roles. Moreover, the mechanisms of NLRP3 inflammasome activation in different cell types remain unknown. Here we review current research on the activation and specific role of the NLRP3 inflammasome in T. gondii infection.
Collapse
Affiliation(s)
- Chanjin Yoon
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea
| | - Yu Seong Ham
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea
| | - Woo Jin Gil
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan, South Korea
- Center for Bionano Intelligence Education and Research, Ansan, South Korea
| |
Collapse
|
20
|
Bencze D, Fekete T, Pfliegler W, Szöőr Á, Csoma E, Szántó A, Tarr T, Bácsi A, Kemény L, Veréb Z, Pázmándi K. Interactions between the NLRP3-Dependent IL-1β and the Type I Interferon Pathways in Human Plasmacytoid Dendritic Cells. Int J Mol Sci 2022; 23:12154. [PMID: 36293012 PMCID: PMC9602791 DOI: 10.3390/ijms232012154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Generally, a reciprocal antagonistic interaction exists between the antiviral type I interferon (IFN) and the antibacterial nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing 3 (NLRP3)-dependent IL-1β pathways that can significantly shape immune responses. Plasmacytoid dendritic cells (pDCs), as professional type I IFN-producing cells, are the major coordinators of antiviral immunity; however, their NLRP3-dependent IL-1β secretory pathway is poorly studied. Our aim was to determine the functional activity of the IL-1β pathway and its possible interaction with the type I IFN pathway in pDCs. We found that potent nuclear factor-kappa B (NF-κB) inducers promote higher levels of pro-IL-1β during priming compared to those activation signals, which mainly trigger interferon regulatory factor (IRF)-mediated type I IFN production. The generation of cleaved IL-1β requires certain secondary signals in pDCs and IFN-α or type I IFN-inducing viruses inhibit IL-1β production of pDCs, presumably by promoting the expression of various NLRP3 pathway inhibitors. In line with that, we detected significantly lower IL-1β production in pDCs of psoriasis patients with elevated IFN-α levels. Collectively, our results show that the NLRP3-dependent IL-1β secretory pathway is inducible in pDCs; however, it may only prevail under inflammatory conditions, in which the type I IFN pathway is not dominant.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Walter Pfliegler
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Árpád Szöőr
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Eszter Csoma
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Antónia Szántó
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tünde Tarr
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Lajos Kemény
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
21
|
Su J, Yang F, Kang X, Liu J, Tao Y, Diao Q, Meng X, Liu D, Zhang Y. Chalcone Derivatives From Abelmoschus manihot Seeds Restrain NLRP3 Inflammasome Assembly by Inhibiting ASC Oligomerization. Front Pharmacol 2022; 13:932198. [PMID: 35873581 PMCID: PMC9301202 DOI: 10.3389/fphar.2022.932198] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Three chalcone derivatives, abelmanihotols A−C (1–3), and nine known compounds were isolated from A. manihot seeds, and their structures were determined using HRESIMS and NMR spectroscopic analysis. Compound 1 exhibited the most potent inhibitory effect (IC50 = 4.79 ± 0.72 μM) against lipopolysaccharide (LPS)-induced NO release in THP-1 cells, and significantly inhibited interleukin 1β (IL-1β) secretion, which is stimulated by LPS plus nigericin (IC50 = 11.86 ± 1.20 μM), ATP or MSU, in THP-1 cells. A preliminary mechanism of action study indicated that compound 1 blocked the formation of nucleotide oligomerization domain-like receptor protein-3 (NLRP3) inflammasome formation by suppressing apoptosis-associated speck-like protein oligomerization, thereby attenuating caspase-1 activation and IL-1β release. These results reveal that compound 1 is not only a potent and efficacious NLRP3 inflammasome inhibitor but also a promising drug for the treatment of NLRP3-related diseases.
Collapse
Affiliation(s)
- Jinsong Su
- School of Ethnic Medicine, and Research Institute of Integrated TCM and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fujing Yang
- Chongqing Clinical Research Center for Dermatology, Chongqing Key Laboratory of Integrative Dermatology Research, Key Laboratory of External Therapies of Traditional Chinese Medicine in Eczema, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.
| | - Xuemei Kang
- Hospital Administration Office, The First People’s Hospital of Ziyang, Ziyang, China.
| | - Jia Liu
- School of Ethnic Medicine, and Research Institute of Integrated TCM and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yiwen Tao
- School of Ethnic Medicine, and Research Institute of Integrated TCM and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qingchun Diao
- Chongqing Clinical Research Center for Dermatology, Chongqing Key Laboratory of Integrative Dermatology Research, Key Laboratory of External Therapies of Traditional Chinese Medicine in Eczema, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.
| | - Xianli Meng
- School of Ethnic Medicine, and Research Institute of Integrated TCM and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Deming Liu
- Chongqing Clinical Research Center for Dermatology, Chongqing Key Laboratory of Integrative Dermatology Research, Key Laboratory of External Therapies of Traditional Chinese Medicine in Eczema, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.
- *Correspondence: Deming Liu, ; Yi Zhang,
| | - Yi Zhang
- School of Ethnic Medicine, and Research Institute of Integrated TCM and Western Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- *Correspondence: Deming Liu, ; Yi Zhang,
| |
Collapse
|
22
|
Kumar A, Singh PK, Ahmed Z, Singh S, Kumar A. Essential Role of NLRP3 Inflammasome in Mediating IL-1β Production and the Pathobiology of Staphylococcus aureus Endophthalmitis. Infect Immun 2022; 90:e0010322. [PMID: 35404106 PMCID: PMC9119078 DOI: 10.1128/iai.00103-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/28/2022] Open
Abstract
Staphylococcal endophthalmitis is one of the leading causes of blindness following ocular surgery and trauma. Dysregulated inflammation during bacterial endophthalmitis causes host-induced inflammatory damage and vision loss if it remains unchecked. Emerging evidence indicates that inflammasome plays a critical role in regulating innate immunity in various infectious and inflammatory diseases. However, the role of the inflammasome in endophthalmitis remains elusive. Here, using a mouse model of Staphylococcus (S) aureus endophthalmitis, we show that NLRP3/ASC/Caspase-1 signaling regulates IL-1β production in endophthalmitis. We also show that S. aureus and its cell wall components and toxins induce the activation of the NLRP3 inflammasome complex in mouse eyes. Moreover, we found that both infiltrating neutrophils and retinal microglia contribute toward NLRP3 activation and IL-1β production in S. aureus-infected eyes. Furthermore, our data using NLRP3-/- and IL-1β-/- mice revealed that NLRP3 and IL-1β deficiency leads to increased intraocular bacterial burden and retinal tissue damage. Altogether, our study demonstrated an essential role of NLRP3 inflammasome activation in regulating innate immune responses in bacterial endophthalmitis.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences/Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Pawan Kumar Singh
- Department of Ophthalmology, Visual and Anatomical Sciences/Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Zeeshan Ahmed
- Department of Ophthalmology, Visual and Anatomical Sciences/Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sukhvinder Singh
- Department of Ophthalmology, Visual and Anatomical Sciences/Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences/Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
23
|
Lin Y, Li Z, Wang Y, Tian T, Jia P, Ye Y, He M, Yang Z, Li C, Guo D, Hou P. CCDC50 suppresses NLRP3 inflammasome activity by mediating autophagic degradation of NLRP3. EMBO Rep 2022; 23:e54453. [PMID: 35343634 PMCID: PMC9066065 DOI: 10.15252/embr.202154453] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
The NLRP3-directed inflammasome complex is crucial for the host to resist microbial infection and monitor cellular damage. However, the hyperactivation of NLRP3 inflammasome is implicated in pathogenesis of inflammatory diseases, including inflammatory bowel disease (IBD). Autophagy and autophagy-related genes are closely linked to NLRP3-mediated inflammation in these inflammatory disorders. Here, we report that CCDC50, a novel autophagy cargo receptor, negatively regulates NLRP3 inflammasome assembly and suppresses the cleavage of pro-caspase-1 and interleukin 1β (IL-1β) release by delivering NLRP3 for autophagic degradation. Transcriptome analysis showed that knockdown of CCDC50 results in upregulation of signaling pathways associated with autoinflammatory diseases. CCDC50 deficiency leads to enhanced proinflammatory cytokine response triggered by a wide range of endogenous and exogenous NLRP3 stimuli. Ccdc50-deficient mice are more susceptible to dextran sulfate (DSS)-induced colitis and exhibit more severe gut inflammation with elevated NLRP3 inflammasome activity. These results illustrate the physiological significance of CCDC50 in the pathogenicity of inflammatory diseases, suggesting protective roles of CCDC50 in keeping gut inflammation under control.
Collapse
Affiliation(s)
- Yuxin Lin
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zibo Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yicheng Wang
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Tian Tian
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Penghui Jia
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Yu Ye
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Miao He
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zixiao Yang
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Chunmei Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Deyin Guo
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Panpan Hou
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Study (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
24
|
The potential convergence of NLRP3 inflammasome, potassium, and dopamine mechanisms in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:32. [PMID: 35332154 PMCID: PMC8948240 DOI: 10.1038/s41531-022-00293-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
The pathology of Parkinson's disease (PD) is characterized by α-synuclein aggregation, microglia-mediated neuroinflammation, and dopaminergic neurodegeneration in the substantia nigra with collateral striatal dopamine signaling deficiency. Microglial NLRP3 inflammasome activation has been linked independently to each of these facets of PD pathology. The voltage-gated potassium channel Kv1.3, upregulated in microglia by α-synuclein and facilitating potassium efflux, has also been identified as a modulator of neuroinflammation and neurodegeneration in models of PD. Evidence increasingly suggests that microglial Kv1.3 is mechanistically coupled with NLRP3 inflammasome activation, which is contingent on potassium efflux. Potassium conductance also influences dopamine release from midbrain dopaminergic neurons. Dopamine, in turn, has been shown to inhibit NLRP3 inflammasome activation in microglia. In this review, we provide a literature framework for a hypothesis in which Kv1.3 activity-induced NLRP3 inflammasome activation, evoked by stimuli such as α-synuclein, could lead to microglia utilizing dopamine from adjacent dopaminergic neurons to counteract this process and fend off an activated state. If this is the case, a sufficient dopamine supply would ensure that microglia remain under control, but as dopamine is gradually siphoned from the neurons by microglial demand, NLRP3 inflammasome activation and Kv1.3 activity would progressively intensify to promote each of the three major facets of PD pathology: α-synuclein aggregation, microglia-mediated neuroinflammation, and dopaminergic neurodegeneration. Risk factors overlapping to varying degrees to render brain regions susceptible to such a mechanism would include a high density of microglia, an initially sufficient supply of dopamine, and poor insulation of the dopaminergic neurons by myelin.
Collapse
|
25
|
Martynova E, Rizvanov A, Urbanowicz RA, Khaiboullina S. Inflammasome Contribution to the Activation of Th1, Th2, and Th17 Immune Responses. Front Microbiol 2022; 13:851835. [PMID: 35369454 PMCID: PMC8969514 DOI: 10.3389/fmicb.2022.851835] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/22/2022] [Indexed: 12/24/2022] Open
Abstract
Inflammasomes are cytosolic polyprotein complexes formed in response to various external and internal stimuli, including viral and bacterial antigens. The main product of the inflammasome is active caspase 1 which proteolytically cleaves, releasing functional interleukin-1 beta (IL-1β) and interleukin-18 (IL-18). These cytokines play a central role in shaping immune response to pathogens. In this review, we will focus on the mechanisms of inflammasome activation, as well as their role in development of Th1, Th2, and Th17 lymphocytes. The contribution of cytokines IL-1β, IL-18, and IL-33, products of activated inflammasomes, are summarized. Additionally, the role of cytokines released from tissue cells in promoting differentiation of lymphocyte populations is discussed.
Collapse
Affiliation(s)
| | | | - Richard A. Urbanowicz
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | | |
Collapse
|
26
|
Pike AF, Longhena F, Faustini G, van Eik JM, Gombert I, Herrebout MAC, Fayed MMHE, Sandre M, Varanita T, Teunissen CE, Hoozemans JJM, Bellucci A, Veerhuis R, Bubacco L. Dopamine signaling modulates microglial NLRP3 inflammasome activation: implications for Parkinson's disease. J Neuroinflammation 2022; 19:50. [PMID: 35172843 PMCID: PMC8848816 DOI: 10.1186/s12974-022-02410-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by the loss of nigral dopaminergic neurons leading to impaired striatal dopamine signaling, α-synuclein- (α-syn-) rich inclusions, and neuroinflammation. Degenerating neurons are surrounded by activated microglia with increased secretion of interleukin-1β (IL-1β), driven largely by the NLRP3 inflammasome. A critical role for microglial NLRP3 inflammasome activation in the progression of both dopaminergic neurodegeneration and α-syn pathology has been demonstrated in parkinsonism mouse models. Fibrillar α-syn activates this inflammasome in mouse and human macrophages, and we have shown previously that the same holds true for primary human microglia. Dopamine blocks microglial NLRP3 inflammasome activation in the MPTP model, but its effects in this framework, highly relevant to PD, remain unexplored in primary human microglia and in other in vivo parkinsonism models. METHODS Biochemical techniques including quantification of IL-1β secretion and confocal microscopy were employed to gain insight into dopamine signaling-mediated inhibition of the NLRP3 inflammasome mechanism in primary human microglia and the SYN120 transgenic mouse model. Dopamine and related metabolites were applied to human microglia together with various inflammasome activating stimuli. The involvement of the receptors through which these catecholamines were predicted to act were assessed with agonists in both species. RESULTS We show in primary human microglia that dopamine, L-DOPA, and high extracellular K+, but not norepinephrine and epinephrine, block canonical, non-canonical, and α-syn-mediated NLRP3 inflammasome-driven IL-1β secretion. This suggests that dopamine acts as an inflammasome inhibitor in human microglia. Accordingly, we provide evidence that dopamine exerts its inhibitory effect through dopamine receptor D1 and D2 (DRD1 and DRD2) signaling. We also show that aged mice transgenic for human C-terminally truncated (1-120) α-syn (SYN120 tg mice) display increased NLRP3 inflammasome activation in comparison to WT mice that is diminished upon DRD1 agonism. CONCLUSIONS Dopamine inhibits canonical, non-canonical, and α-syn-mediated activation of the NLRP3 inflammasome in primary human microglia, as does high extracellular K+. We suggest that dopamine serves as an endogenous repressor of the K+ efflux-dependent microglial NLRP3 inflammasome activation that contributes to dopaminergic neurodegeneration in PD, and that this reciprocation may account for the specific vulnerability of these neurons to disease pathology.
Collapse
Affiliation(s)
- Adrianne F Pike
- Department of Clinical Chemistry, Amsterdam Neuroscience, Neurochemistry Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands. .,Department of Biology, University of Padua, Padua, Italy.
| | - Francesca Longhena
- Pharmacology Division, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gaia Faustini
- Pharmacology Division, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Jean-Marc van Eik
- Department of Clinical Chemistry, Amsterdam Neuroscience, Neurochemistry Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Iris Gombert
- Department of Clinical Chemistry, Amsterdam Neuroscience, Neurochemistry Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Maaike A C Herrebout
- Department of Clinical Chemistry, Amsterdam Neuroscience, Neurochemistry Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Mona M H E Fayed
- Department of Clinical Chemistry, Amsterdam Neuroscience, Neurochemistry Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Michele Sandre
- Department of Biology, University of Padua, Padua, Italy
| | | | - Charlotte E Teunissen
- Department of Clinical Chemistry, Amsterdam Neuroscience, Neurochemistry Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, Neuropathology Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Robert Veerhuis
- Department of Clinical Chemistry, Amsterdam Neuroscience, Neurochemistry Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.,Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Luigi Bubacco
- Department of Biology, University of Padua, Padua, Italy
| |
Collapse
|
27
|
Yue Y, Chen Y, Liu H, Xu L, Zhou X, Ming H, Chen X, Chen M, Lin Y, Liu L, Zhao Y, Liu S. Shugan Hewei Decoction Alleviates Cecum Mucosal Injury and Improves Depressive- and Anxiety-Like Behaviors in Chronic Stress Model Rats by Regulating Cecal Microbiota and Inhibiting NLRP3 Inflammasome. Front Pharmacol 2022; 12:766474. [PMID: 34987395 PMCID: PMC8721152 DOI: 10.3389/fphar.2021.766474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic stress is a significant cause of depression, anxiety, and intestinal mucosal injury. Gut microbiota disturbances are also associated with these disorders. Shugan Hewei Decoction (SHD), which is a traditional Chinese medicine formula developed by our team, has shown superior therapeutic effects in the treatment of depression, anxiety, and functional gastrointestinal diseases caused by chronic stress. In this study, we investigated the modulatory effect of SHD on the cecal microbiota and cecum mucosal NOD-like receptor protein 3 (NLRP3) inflammasome in a chronic unpredictable stress (CUS)/social isolation rat model. After the SHD intervention, the CUS model rats showed improvements in their depressive- and anxiety-like behaviors, as well as sustained body weight growth and improved fecal characteristics. SHD improved the cecal microbiota diversity and changed the abundance of six microbial genera. A Spearman's correlation analysis showed a strong correlation between the NLRP3 inflammasome and CUS-perturbed cecal biomarker microbiota. SHD regulated the excessive expression of NLRP3, ASC, caspase-1, interleukin-1β (IL-1β), and IL-18 in the serum and cecum mucosa induced by CUS, as well as the activation of the Toll-like receptor 4/nuclear factor-κB signaling cascades. Our results reveal the pharmacological mechanisms of SHD and provide a validated therapeutic method for the treatment of depression, anxiety, and cecum mucosal injury.
Collapse
Affiliation(s)
- Yingying Yue
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China.,Institute of Classical Prescription Applications, Hubei University of Chinese Medicine, Wuhan, China
| | - Yu Chen
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China.,Institute of Classical Prescription Applications, Hubei University of Chinese Medicine, Wuhan, China
| | - Hao Liu
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lesi Xu
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China.,Institute of Classical Prescription Applications, Hubei University of Chinese Medicine, Wuhan, China
| | - Xian Zhou
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Hao Ming
- School of Medicine, Jianghan University, Wuhan, China
| | - Xin Chen
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Miaoqi Chen
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yunya Lin
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Lin Liu
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yingqian Zhao
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Songlin Liu
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
28
|
Zhou B, Chen Y, Yuan H, Wang T, Feng J, Li M, Liu J. NOX1/4 Inhibitor GKT-137831 Improves Erectile Function in Diabetic Rats by ROS Reduction and Endothelial Nitric Oxide Synthase Reconstitution. J Sex Med 2021; 18:1970-1983. [PMID: 34649814 DOI: 10.1016/j.jsxm.2021.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Previous studies have shown that oxidative stress contributes to hyperglycemia-induced erectile dysfunction. A preferential direct inhibitor of NOX1 and NOX4, GKT-137831, exhibited a strong anti‑oxidative role via blockade of reactive oxygen species (ROS) generation in endothelial cells, but whether GKT-137831 could improve erectile function was not clear. AIM Our study was designed to investigate the effect of NOX1/4 inhibition on improving diabetic erectile dysfunction (ED) in rats. METHODS We used streptozotocin to induce type 1 diabetes mellitus (DM) in 32 male Sprague Dawley (SD) rats (8 weeks old). Eight weeks later, type 1 diabetes mellitus-induced erectile dysfunction (DMED) in rats was confirmed using an apomorphine test. Our study consisted of 3 groups: (i) nondiabetic control group (n = 8), (ii) DMED + vehicle group (DMED group; n = 8), and (iii) DMED + GKT-137831 group (n = 9); GKT-137831 was given as a once-daily intraperitoneal injection for 4 weeks. Cavernous nerve electrostimulation was used to evaluate erectile function. Western blot, ELISA, immunohistochemistry, and immunofluorescence were used to measure expression of specific proteins, and DHE fluorescent probe was performed to detect ROS level. OUTCOMES Intracavernous pressure (ICP), nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signaling pathway, oxidative stress level, inflammatory response, corporal autophagy, and apoptosis were measured. RESULTS Erectile function in the DMED group was significantly impaired compared to the nondiabetic control group, whereas this impairment was improved with GKT-137831 treatment by 70%. Similarly, endothelial function and overactivated oxidative stress in the corpus cavernosum (CC) of the DMED + GKT-137831 group were improved. The DMED group showed serious inflammatory responses and excessive autophagy, which were inhibited by GKT-137831 treatment in the DMED + GKT-137831 group. CLINICAL TRANSLATION Our study showed improvement in erectile function with GKT-137831 in a diabetic rat ED model. STRENGTH AND LIMITATIONS This study suggested for the first time that GKT-137831, an NOX1/4 inhibitor undergoing clinical trials, is effective in improving erectile function in rats with type 1 DMED. However, we only investigated GKT-137831 treatment of streptozotocin-induced type 1 diabetic rats, and therapeutic evidence in other types of diabetes is lacking. CONCLUSION GKT-137831 improves erectile function by 70% in type 1 DMED rats and constitutes a promising compound for the treatment of type 1 DMED, likely by inhibition of overactivated oxidative stress, down-regulation of proinflammatory factors, and amelioration of excessive autophagy and endothelial function. B Zhou, Y Chen, H Yuan, et al. NOX1/4 Inhibitor GKT-137831 Improves Erectile Function in Diabetic Rats by ROS Reduction and Endothelial Nitric Oxide Synthase Reconstitution. J Sex Med 2021;18:1970-1983.
Collapse
Affiliation(s)
- Bingyan Zhou
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinwei Chen
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huixing Yuan
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiexiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchao Li
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jihong Liu
- Department of Urology and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
29
|
Jia LL, Zhang M, Liu H, Sun J, Pan LL. Early-life fingolimod treatment improves intestinal homeostasis and pancreatic immune tolerance in non-obese diabetic mice. Acta Pharmacol Sin 2021; 42:1620-1629. [PMID: 33473182 PMCID: PMC8463616 DOI: 10.1038/s41401-020-00590-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023]
Abstract
Fingolimod has beneficial effects on multiple diseases, including type 1 diabetes (T1D) and numerous preclinical models of colitis. Intestinal dysbiosis and intestinal immune dysfunction contribute to disease pathogenesis of T1D. Thus, the beneficial effect of fingolimod on T1D may occur via the maintenance of intestinal homeostasis to some extent. Herein, we investigated the role of fingolimod in intestinal dysfunction in non-obese diabetic (NOD) mice and possible mechanisms. NOD mice were treated with fingolimod (1 mg · kg-1 per day, i.g.) from weaning (3-week-old) to 31 weeks of age. We found that fingolimod administration significantly enhanced the gut barrier (evidenced by enhanced expression of tight junction proteins and reduced intestinal permeability), attenuated intestinal microbial dysbiosis (evidenced by the reduction of enteric pathogenic Proteobacteria clusters), as well as intestinal immune dysfunction (evidenced by inhibition of CD4+ cells activation, reduction of T helper type 1 cells and macrophages, and the expansion of regulatory T cells). We further revealed that fingolimod administration suppressed the activation of CD4+ cells and the differentiation of T helper type 1 cells, promoted the expansion of regulatory T cells in the pancreas, which might contribute to the maintenance of pancreatic immune tolerance and the reduction of T1D incidence. The protection might be due to fingolimod inhibiting the toll-like receptor 2/4/nuclear factor-κB/NOD-like receptor protein 3 inflammasome pathway in the colon. Collectively, early-life fingolimod treatment attenuates intestinal microbial dysbiosis and intestinal immune dysfunction in the T1D setting, which might contribute to its anti-diabetic effect.
Collapse
Affiliation(s)
- Ling-Ling Jia
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Ming Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - He Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
30
|
Qin M, Liu Y, Sun M, Li X, Xu J, Zhang L, Jiang H. Protective effects of melatonin on the white matter damage of neonatal rats by regulating NLRP3 inflammasome activity. Neuroreport 2021; 32:739-747. [PMID: 33994520 DOI: 10.1097/wnr.0000000000001642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of the study was to investigate the protective effects and relevant mechanisms of melatonin on the white matter damage (WMD) caused by endotoxin and ischemic hypoxia in neonatal rats. METHODS Seventy-two female neonatal rats (postnatal day 3) were randomly divided into the sham, melatonin-treated, and control groups (n = 24 for each group). The periventricular white matter was collected to evaluate the WMD and apoptosis. In addition, the reactive oxygen species (ROS) level was measured. The expression levels of nucleotide-binding domain-like receptor protein 3 (NLRP3), interleukin (IL)-1β, IL-18, pink1, parkin, Toll-like receptor (TLR)-4, and nuclear factor (NF)-κB were detected. RESULTS Hematoxylin and eosin and terminal-deoxynucleoitidyl transferase mediated nick end labeling staining showed that the WMD, as well as cell degeneration, necrosis, and apoptosis in the control group, were more severe than those in the melatonin-treated group. Endotoxin and ischemic hypoxia upregulated the expression of NLRP3 and downstream inflammatory factors such as IL-1β and IL-18, which could be reversed by melatonin treatment. Melatonin increased mitochondrial autophagy marker (pink1 and parkin) expression in the white matter and reduced ROS production. Moreover, melatonin-reduced TLR4 and NF-κB expression. CONCLUSIONS Melatonin can inhibit the hyperactivity of NLRP3 inflammasomes by enhancing mitochondrial autophagy and inhibiting TLR4/NF-κB pathway activity. Thus, melatonin may be a promising treatment for alleviating the WMD caused by endotoxin and ischemic hypoxia in neonatal rats.
Collapse
Affiliation(s)
- Miao Qin
- Department of Neonatology, Affiliated Hospital of Qingdao University, Qingdao, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Mi L, Wang Y, Xu H, Wang Y, Wu J, Dai H, Zhang Y. PRAK Promotes the Pathogen Clearance by Macrophage Through Regulating Autophagy and Inflammasome Activation. Front Immunol 2021; 12:618561. [PMID: 33936034 PMCID: PMC8085562 DOI: 10.3389/fimmu.2021.618561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/26/2021] [Indexed: 01/03/2023] Open
Abstract
The p38 regulated/activated protein kinase (PRAK) is a protein kinase downstream of p38MAPK. The present study investigated its function in the macrophage. Myeloid-specific deletion of Prak resulted in a significant reduction in F4/80+CD11b+ peritoneal macrophages with decreased expression of MHC-II and CD80. Upon infection with Listeria monocytogenes, Prak-deficient mice demonstrated an increased mortality, which was accompanied by a higher bacterial load in multiple tissues and elevated levels of proinflammatory cytokines in the serum. While the Prak-deficient macrophage showed similar potency in phagocytosis assays, its bactericidal activity was severely impaired. Moreover, Prak deficiency was associated with defects in ROS production, inflammasome activation as well as autophagy induction. Therefore, PRAK critically contributes to the clearance of intracellular pathogens by affecting multiple aspects of the macrophage function.
Collapse
Affiliation(s)
- Ligu Mi
- Department of Immunology, School of Basic Medical Sciences, National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China.,Department of Immunology, School of Basic Medical Sciences, Shihezi University, Shihezi, Xinjiang, China
| | - Yan Wang
- Department of Immunology, School of Basic Medical Sciences, National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Hui Xu
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| | - Yu Wang
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| | - Jia Wu
- Department of Immunology, School of Basic Medical Sciences, National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Hui Dai
- Department of Immunology, School of Basic Medical Sciences, National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China.,Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
32
|
Snäkä T, Fasel N. Behind the Scenes: Nod-Like Receptor X1 Controls Inflammation and Metabolism. Front Cell Infect Microbiol 2020; 10:609812. [PMID: 33344269 PMCID: PMC7746548 DOI: 10.3389/fcimb.2020.609812] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022] Open
Abstract
Regulatory Nod-like receptors (NLRs) are a subgroup of the cytosolic NLR family of pathogen recognition receptors (PRRs). These receptors can tune the innate immune responses triggered by the activation of other PRRs by either augmenting or attenuating the activated pro-inflammatory signaling cascades. Nod-like receptor X1 (NLRX1) is the only known mitochondria-associated negative regulatory NLR. NLRX1 attenuates several inflammatory pathways and modulates cellular processes such as autophagy and mitochondrial function following infection or injury. Using both in vitro expression and in vivo experimental models, NLRX1 is extensively described in the context of anti-viral signaling and host-defense against invading pathogens. More recently, NLRX1 has also gained interest in the field of cancer and metabolism where NLRX1 functions to attenuate overzealous inflammation in various inflammatory and autoimmune diseases. However, the exact function of this novel receptor is still under debate and many, often contradictory, mechanisms of action together with cellular localizations have been proposed. Thus, a better understanding of the underlying mechanism is crucial for future research and development of novel therapeutical approaches. Here, we summarize the current findings on NLRX1 and discuss its role in both infectious and inflammatory context.
Collapse
Affiliation(s)
- Tiia Snäkä
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
33
|
An MF, Wang MY, Shen C, Sun ZR, Zhao YL, Wang XJ, Sheng J. Isoorientin exerts a urate-lowering effect through inhibition of xanthine oxidase and regulation of the TLR4-NLRP3 inflammasome signaling pathway. J Nat Med 2020; 75:129-141. [PMID: 33188510 DOI: 10.1007/s11418-020-01464-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022]
Abstract
Isoorientin (ISO), a natural flavonoid compound, has been identified in several plants and its biological activity is determined and the study on lowering uric acid has not been reported. In view of the current status of treatment of hyperuricemia, we evaluated the hypouricemic effects of ISO in vivo and in vitro, and explored the underlying mechanisms. Yeast extract-induced hyperuricemia animal model as well as hypoxanthine and xanthine oxidase (XOD) co-induced high uric acid L-O2 cell model and enzymatic experiments in vitro were selected. The XOD activity and uric acid (UA) level were inhibited after the treatment of ISO in vitro and in vivo. Furthermore, serum creatinine (CRE) and blood urea nitrogen (BUN) levels were also significantly reduced and liver damage was recovered in pathological histology after the ISO administration in hyperuricemia animal model. The results of mechanism illustrated that protein expressions such as XOD, toll-like receptor 4 (TLR4), cathepsin B (CTSB), NLRP3, and its downstream caspase-1 as well as interleukin-18 (IL-18) were markedly downregulated by ISO intervention in vitro and in vivo. Our results suggest that ISO exerts a urate-lowering effect through inhibiting XOD activity and regulating TLR4-NLRP3 inflammasome signal pathway, thus representing a promising candidate therapeutic agent for hyperuricemia. Both animal models and in vitro experiments suggested that ISO may effectively lower uric acid produce. The mechanism might be the inhibition of XOD activity and NLRP3 inflammasome of upregulation.
Collapse
Affiliation(s)
- Meng-Fei An
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650224, People's Republic of China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650224, People's Republic of China
| | - Ming-Yue Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650224, People's Republic of China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650224, People's Republic of China
| | - Chang Shen
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650224, People's Republic of China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650224, People's Republic of China
| | - Ze-Rui Sun
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650224, People's Republic of China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650224, People's Republic of China
| | - Yun-Li Zhao
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650224, People's Republic of China.
- College of Science, Yunnan Agricultural University, Kunming, 650224, People's Republic of China.
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Xuan-Jun Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650224, People's Republic of China.
- College of Science, Yunnan Agricultural University, Kunming, 650224, People's Republic of China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650224, People's Republic of China.
| | - Jun Sheng
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650224, People's Republic of China.
- College of Science, Yunnan Agricultural University, Kunming, 650224, People's Republic of China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650224, People's Republic of China.
| |
Collapse
|
34
|
Yuk JM, Silwal P, Jo EK. Inflammasome and Mitophagy Connection in Health and Disease. Int J Mol Sci 2020; 21:ijms21134714. [PMID: 32630319 PMCID: PMC7370205 DOI: 10.3390/ijms21134714] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
The inflammasome is a large intracellular protein complex that activates inflammatory caspase-1 and induces the maturation of interleukin (IL)-1β and IL-18. Mitophagy plays an essential role in the maintenance of mitochondrial homeostasis during stress. Previous studies have indicated compelling evidence of the crosstalk between inflammasome and mitophagy. Mitophagy regulation of the inflammasome, or vice versa, is crucial for various biological functions, such as controlling inflammation and metabolism, immune and anti-tumor responses, and pyroptotic cell death. Uncontrolled regulation of the inflammasome often results in pathological inflammation and pyroptosis, and causes a variety of human diseases, including metabolic and inflammatory diseases, infection, and cancer. Here, we discuss how improved understanding of the interactions between inflammasome and mitophagy can lead to novel therapies against various disease pathologies, and how the inflammasome-mitophagy connection is currently being targeted pharmacologically by diverse agents and small molecules. A deeper understanding of the inflammasome-mitophagy connection will provide new insights into human health and disease through the balance between mitochondrial clearance and pathology.
Collapse
Affiliation(s)
- Jae-Min Yuk
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Prashanta Silwal
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Correspondence: ; Tel.: +82-42-580-8243
| |
Collapse
|
35
|
Liu QX, Zhou Y, Li XM, Ma DD, Xing S, Feng JH, Zhang MH. Ammonia induce lung tissue injury in broilers by activating NLRP3 inflammasome via Escherichia/Shigella. Poult Sci 2020; 99:3402-3410. [PMID: 32616234 PMCID: PMC7597683 DOI: 10.1016/j.psj.2020.03.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/30/2020] [Accepted: 03/09/2020] [Indexed: 01/01/2023] Open
Abstract
Respiratory tract diseases are closely related to atmosphere pollution. Ammonia is one of the harmful pollutants in the atmosphere environment, which has a great threat to human and animal respiratory tract health, but the mechanism of causing diseases is not clear. In this study, broiler lung tissue was used as a model to study the effect of high ammonia on respiratory tract diseases through the relationship between respiratory microflora, NLRP3 inflammasome, and inflammatory factors. For this, we validated the occurrence of lung tissue inflammation under ammonia exposure and detected the lung tissue microbial constituent by 16S rDNA sequencing. Moreover, the relative expression levels of NLRP3 and caspase-1 mRNA and the content of IL-1β and IL-6 were measured. After 7-D ammonia exposure, the proportion of the phylum Proteobacteria and the genus Escherichia/Shigella in lung tissue was significantly increased, the expression levels of NLRP3 and caspase-1 mRNA were significantly increased, and the content of IL-1β in lung tissue and serum was higher than that in the control group. In conclusion, high ammonia induced lung tissue inflammation via increasing the proportion of Escherichia/Shigella, activating NLRP3 inflammasome, and promoting IL-1β release. These findings provided a reference for the prevention and control of respiratory tract diseases in humans and animals caused by ammonia pollution.
Collapse
Affiliation(s)
- Qing Xiu Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Ying Zhou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Xiu Mei Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Dan Dan Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Shuang Xing
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Jing Hai Feng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Min Hong Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China.
| |
Collapse
|
36
|
Gao P, Chen L, Fan L, Ren J, Du H, Sun M, Li Y, Xie P, Lin Q, Liao M, Xu C, Ning Z, Ding C, Xiang B, Ren T. Newcastle disease virus RNA-induced IL-1β expression via the NLRP3/caspase-1 inflammasome. Vet Res 2020; 51:53. [PMID: 32293543 PMCID: PMC7156904 DOI: 10.1186/s13567-020-00774-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Newcastle disease virus (NDV) infection causes severe inflammation and is a highly contagious disease in poultry. Virulent NDV strains (GM) induce large quantities of interleukin-1β (IL-1β), which is the central mediator of the inflammatory reaction. Excessive expression of IL-1β exacerbates inflammatory damage. Therefore, exploring the mechanisms underlying NDV-induced IL-1β expression can aid in further understanding the pathogenesis of Newcastle disease. Here, we showed that anti-IL-1β neutralizing antibody treatment decreased body temperature and mortality following infection with virulent NDV. We further explored the primary molecules involved in NDV-induced IL-1β expression from the perspective of both the host and virus. This study showed that overexpression of NLRP3 resulted in increased IL-1β expression, whereas inhibition of NLRP3 or caspase-1 caused a significant reduction in IL-1β expression, indicating that the NLRP3/caspase-1 axis is involved in NDV-induced IL-1β expression. Moreover, ultraviolet-inactivated GM (chicken/Guangdong/GM/2014) NDV failed to induce the expression of IL-1β. We then collected virus from GM-infected cell culture supernatant using ultracentrifugation, extracted the viral RNA, and stimulated the cells further with GM RNA. The results revealed that RNA alone was capable of inducing IL-1β expression. Moreover, NLRP3/caspase-1 was involved in GM RNA-induced IL-1β expression. Thus, our study elucidated the critical role of IL-1β in the pathogenesis of Newcastle disease while also demonstrating that inhibition of IL-1β via anti-IL-1β neutralizing antibodies decreased the damage associated with NDV infection; furthermore, GM RNA induced IL-1β expression via NLRP3/caspase-1.
Collapse
Affiliation(s)
- Pei Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.,Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Lei Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jinlian Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Haoyun Du
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Minhua Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yaling Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Peng Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Chenggang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Bin Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China. .,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China. .,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China. .,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China. .,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.
| |
Collapse
|
37
|
Sui X, Yang J, Zhang G, Yuan X, Li W, Long J, Luo Y, Li Y, Wang Y. NLRP3 inflammasome inhibition attenuates subacute neurotoxicity induced by acrylamide in vitro and in vivo. Toxicology 2020; 432:152392. [PMID: 32014472 DOI: 10.1016/j.tox.2020.152392] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
Acrylamide (AA) constitutes an important industrial chemical agent and well-known neurotoxin. However, the mechanism underlying AA-mediated neurotoxicity is extremely complicated and controversial. In this study, we found that activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome and its subsequent downstream inflammatory responses plays an important role in AA-induced neurotoxicity mechanisms. In vitro experiments revealed that AA (2.5 mM) induced BV2 microglial cytotoxicity and triggered NLRP3 inflammasome activation along with downstream proinflammatory cytokine interleukin-1β and interleukin-18 expression. Treatment with inhibitor or NLRP3 siRNA efficiently protected BV2 microglial cells against AA-induced cytotoxicity and reversed NLRP3 inflammasome activation and its mediated inflammatory reaction. Similarly, AA exposure (50 mg/kg) for 10 consecutive days caused significant activation of NLRP3 inflammasomes and neuroinflammation in C57BL/6 mice, whereas inhibiting these effects through specific NLRP3 inflammasome blocker MCC950 (5 mg/kg) intervention or NLRP3 knock-out significantly ameliorated AA-induced ataxia, cerebellar Purkinje cells degeneration, and apoptosis. Furthermore, we demonstrated that antagonism of NLRP3 could also up-regulate the Nrf2 signalling pathway and related antioxidant genes. In conclusion, our findings indicate that activation of the NLRP3 inflammasome pathway is involved in AA-induced neurotoxicity, whereas MCC950 treatment or NLRP3 knock-out could effectively protect against AA-induced neurotoxic injury through the inhibition of neuroinflammation and activation of the Nrf2 antioxidant pathway. Therefore, the NLRP3 inflammasome might serve as a promising therapeutic target, with drugs designed to specifically inhibit this pathway potentially providing new avenues for preventing or ameliorating AA poisoning.
Collapse
Affiliation(s)
- Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Jun Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Guangzhou Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - XiaoFeng Yuan
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - WanHua Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - JianHai Long
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China.
| | - Yunfeng Li
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China.
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, No 27, Taiping Road, Haidian District, Beijing, 100850, China.
| |
Collapse
|
38
|
Ko YJ, Lee JW, Yang EJ, Jang N, Park J, Jeon YK, Yu JW, Cho NH, Kim HS, Chan Kwon I. Non-invasive in vivo imaging of caspase-1 activation enables rapid and spatiotemporal detection of acute and chronic inflammatory disorders. Biomaterials 2020; 226:119543. [DOI: 10.1016/j.biomaterials.2019.119543] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022]
|
39
|
Rasmussen G, Idosa BA, Bäckman A, Monecke S, Strålin K, Särndahl E, Söderquist B. Caspase-1 inflammasome activity in patients with Staphylococcus aureus bacteremia. Microbiol Immunol 2019; 63:487-499. [PMID: 31403210 PMCID: PMC6916170 DOI: 10.1111/1348-0421.12738] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 01/12/2023]
Abstract
The inflammasome is a multiprotein complex that mediates caspase‐1 activation with subsequent maturation of the proinflammatory cytokines IL‐1β and IL‐18. The NLRP3 inflammasome is known to be activated by Staphylococcus aureus, one of the leading causes of bacteremia worldwide. Inflammasome activation and regulation in response to bacterial infection have been found to be of importance for a balanced host immune response. However, inflammasome signaling in vivo in humans initiated by S. aureus is currently sparsely studied. This study therefore aimed to investigate NLRP3 inflammasome activity in 20 patients with S. aureus bacteremia (SAB), by repeated measurement during the first week of bacteremia, compared with controls. Caspase‐1 activity was measured in monocytes and neutrophils by flow cytometry detecting FLICA (fluorescent‐labeled inhibitor of caspase‐1), while IL‐1β and IL‐18 was measured by Luminex and ELISA, respectively. As a measure of inflammasome priming, messenger RNA (mRNA) expression of NLRP3, CASP1 (procaspase‐1), and IL1B (pro‐IL‐1β) was analyzed by quantitative PCR. We found induced caspase‐1 activity in innate immune cells with subsequent release of IL‐18 in patients during the acute phase of bacteremia, indicating activation of the inflammasome. There was substantial interindividual variation in caspase‐1 activity between patients with SAB. We also found an altered inflammasome priming with low mRNA levels of NLRP3 accompanied by elevated mRNA levels of IL1B. This increased knowledge of the individual host immune response in SAB could provide support in the effort to optimize management and treatment of each individual patient.
Collapse
Affiliation(s)
- Gunlög Rasmussen
- Department of Infectious Diseases, Örebro University Hospital, Örebro, Sweden.,School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Berhane Asfaw Idosa
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Anders Bäckman
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Sweden
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), InfectoGnostics Research Campus Jena, Jena, Germany
| | - Kristoffer Strålin
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Bo Söderquist
- Department of Infectious Diseases, Örebro University Hospital, Örebro, Sweden.,School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
40
|
Quaresma JAS. Organization of the Skin Immune System and Compartmentalized Immune Responses in Infectious Diseases. Clin Microbiol Rev 2019; 32:e00034-18. [PMID: 31366611 PMCID: PMC6750136 DOI: 10.1128/cmr.00034-18] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The skin is an organ harboring several types of immune cells that participate in innate and adaptive immune responses. The immune system of the skin comprises both skin cells and professional immune cells that together constitute what is designated skin-associated lymphoid tissue (SALT). In this review, I extensively discuss the organization of SALT and the mechanisms involved in its responses to infectious diseases of the skin and mucosa. The nature of these SALT responses, and the cellular mediators involved, often determines the clinical course of such infections. I list and describe the components of innate immunity, such as the roles of the keratinocyte barrier and of inflammatory and natural killer cells. I also examine the mechanisms involved in adaptive immune responses, with emphasis on new cytokine profiles, and the role of cell death phenomena in host-pathogen interactions and control of the immune responses to infectious agents. Finally, I highlight the importance of studying SALT in order to better understand host-pathogen relationships involving the skin and detail future directions in the immunological investigation of this organ, especially in light of recent findings regarding the skin immune system.
Collapse
Affiliation(s)
- Juarez Antonio Simões Quaresma
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- School of Medicine, São Paulo University, São Paulo, SP, Brazil
| |
Collapse
|
41
|
Zhang B, Swamy S, Balijepalli S, Panicker S, Mooliyil J, Sherman MA, Parkkinen J, Raghavendran K, Suresh MV. Direct pulmonary delivery of solubilized curcumin reduces severity of lethal pneumonia. FASEB J 2019; 33:13294-13309. [PMID: 31530014 DOI: 10.1096/fj.201901047rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute respiratory distress syndrome (ARDS), the most severe form of acute lung injury, is associated with reduced lung compliance and hypoxemia. Curcumin exhibits potent anti-inflammatory properties but has poor solubility and rapid plasma clearance. To overcome these physiochemical limitations and uncover the full therapeutic potential of curcumin in lung inflammation, in this study we utilized a novel water-soluble curcumin formulation (CDC) and delivered it directly into the lungs of C57BL/6 mice inoculated with a lethal dose of Klebsiella pneumoniae (KP). Administration of CDC led to a significant reduction in mortality, in bacterial presence within blood and lungs, as well as in lung injury, inflammation, and oxidative stress. The expression of Klebsiella hemolysin gene; TNF-α; IFN-β; nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3; hypoxia-inducible factor 1/2α; and NF-κB were also decreased following CDC treatment, suggesting modulation of the inflammasome complex and hypoxia signaling pathways as an underlying mechanism by which CDC reduces the severity of pneumonia. On a cellular level, CDC led to diminished cell death, improved viability, and protection of human lung epithelial cells in vitro. Overall, our studies demonstrate that CDC administration improves cell survival and reduces injury, inflammation, and mortality in a murine model of lethal gram-negative pneumonia. CDC, therefore, has promising anti-inflammatory potential in pneumonia and likely other inflammatory lung diseases, demonstrating the importance of optimizing the physicochemical properties of active natural products to optimize their clinical application.-Zhang, B., Swamy, S., Balijepalli, S., Panicker, S., Mooliyil, J., Sherman, M. A., Parkkinen, J., Raghavendran, K., Suresh, M. V. Direct pulmonary delivery of solubilized curcumin reduces severity of lethal pneumonia.
Collapse
Affiliation(s)
- Boya Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Samantha Swamy
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Sreehari Panicker
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Jashitha Mooliyil
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew A Sherman
- Department of Pediatrics, Children's National Medical Center, Washington, DC, USA
| | - Jaakko Parkkinen
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
42
|
Effect of Tripterygium wilfordii Polycoride on the NOXs-ROS-NLRP3 Inflammasome Signaling Pathway in Mice with Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9306283. [PMID: 31531121 PMCID: PMC6721241 DOI: 10.1155/2019/9306283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/10/2019] [Accepted: 07/31/2019] [Indexed: 01/08/2023]
Abstract
Objective To explore the effect of Tripterygium wilfordii polycoride (TWP) on the NADPH oxidases (NOXs)-reactive oxygen species (ROS)-NOD-like receptor protein 3 (NLRP3) inflammasome signaling pathway and the possibility of using TWP to treat ulcerative colitis (UC). Methods BALB/c mice were randomly divided into five groups: model control, low TWP, middle TWP, high TWP, and normal control groups. A UC model was established with dextran sulfate sodium. The determination of ROS was carried out by using the fluorescent probe DCFH-DA, and NOXs activity was detected based on the NADPH consumption rate. The mRNA expression levels of NLRP3, ASC, and caspase-1 in the colon tissues and neutrophils were assessed via real-time PCR. Results The colon tissues were abnormal with different degrees in TWP groups with disease activity index and histopathological scores lower than those in the model group. In TWP groups, ROS generation, NOXs activity, and the mRNA expression levels of NLRP3, ASC, and caspase-1 in the colon tissues and colon-isolated neutrophils were remarkably lower than those in the model control group (P < 0.05) and higher than those in the normal group (P < 0.05). The results of pairwise comparison for the efficacy of TWP administration showed that the above indexes were statistically significant with the lowest expression in the high TWP group (P < 0.05) and the highest expression in the low TWP group (P < 0.05). Conclusion TWP demonstrated anti-inflammatory effects on UC by decreasing the expression of proinflammatory factors in the NOXs-ROS-NLRP3 signaling pathway.
Collapse
|
43
|
Li LH, Lin JS, Chiu HW, Lin WY, Ju TC, Chen FH, Chernikov OV, Liu ML, Chang JC, Hsu CH, Chen A, Ka SM, Gao HW, Hua KF. Mechanistic Insight Into the Activation of the NLRP3 Inflammasome by Neisseria gonorrhoeae in Macrophages. Front Immunol 2019; 10:1815. [PMID: 31417575 PMCID: PMC6685137 DOI: 10.3389/fimmu.2019.01815] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
Gonorrhea is a type III legal communicable disease caused by Neisseria gonorrhoeae (NG), one of the most common sexually transmitted bacteria worldwide. NG infection can cause urethritis or systemic inflammation and may lead to infertility or other complications. The NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is a protein complex composed of NLRP3, apoptosis-associated speck-like protein and caspase-1 and is an important part of the cellular machinery controlling the release of interleukin (IL)-1β and IL-18 and the pathogenesis of numerous infectious diseases. It has been reported that NG infection activates the NLRP3 inflammasome; however, the underlying mechanism remain unclear. In this report, the signaling pathways involved in the regulation of NG-mediated NLRP3 inflammasome activation in macrophages were studied. The results indicated that viable NG, but not heat-killed or freeze/thaw-killed NG, activated the NLRP3 inflammasome in macrophages through toll-like receptor 2, but not toll-like receptor 4. NG infection provided the priming signal to the NLRP3 inflammasome that induced the expression of NLRP3 and IL-1β precursor through the nuclear factor kappa B and mitogen-activated protein kinase pathways. In addition, NG infection provided the activation signal to the NLRP3 inflammasome that activated caspase-1 through P2X7 receptor-dependent potassium efflux, lysosomal acidification, mitochondrial dysfunction, and reactive oxygen species production pathways. Furthermore, we demonstrated that NLRP3 knockout increased phagocytosis of bacteria by macrophages and increases the bactericidal activity of macrophages against NG. These findings provide potential molecular targets for the development of anti-inflammatory drugs that could ameliorate NG-mediated inflammation.
Collapse
Affiliation(s)
- Lan-Hui Li
- Department of Laboratory Medicine, Linsen Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.,Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Jia-Sing Lin
- Department of Laboratory Medicine, Linsen Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.,Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Hsiao-Wen Chiu
- National Defense Medical Center, Graduate Institute of Life Sciences, Taipei, Taiwan
| | - Wen-Yu Lin
- Division of Cardiology, Department of Internal Medicine, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Tz-Chuen Ju
- Department of Animal Science and Biotechnology, Tunghai University, Taichung City, Taiwan
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan City, Taiwan
| | - Oleg V Chernikov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry (PIBOC), Far Eastern Branch of the Russian Academy of Sciences (FEB RAS), Vladivostok, Russia
| | - May-Lan Liu
- Department of Nutritional Science, Toko University, Chiayi City, Taiwan
| | - Jen-Che Chang
- Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Chung-Hua Hsu
- Department of Laboratory Medicine, Linsen Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.,School of Medicine, Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ann Chen
- Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Shuk-Man Ka
- National Defense Medical Center, Graduate Institute of Life Sciences, Taipei, Taiwan.,Department of Medicine, National Defense Medical Center, Graduate Institute of Aerospace and Undersea Medicine, Taipei, Taiwan
| | - Hong-Wei Gao
- Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Pathology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan.,Department of Biotechnology and Animal Science, National Ilan University, Yilan City, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, Taiwan
| |
Collapse
|
44
|
Ubiquitination-Mediated Inflammasome Activation during Bacterial Infection. Int J Mol Sci 2019; 20:ijms20092110. [PMID: 31035661 PMCID: PMC6539186 DOI: 10.3390/ijms20092110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammasome activation is essential for host immune responses during pathogenic infection and sterile signals insult, whereas excessive activation is injurious. Thus, inflammasome activation is tightly regulated at multiple layers. Ubiquitination is an important post-translational modification for orchestrating inflammatory immune responses during pathogenic infection, and a major target hijacked by pathogenic bacteria for promoting their survival and proliferation. This review summarizes recent insights into distinct mechanisms of the inflammasome activation and ubiquitination process triggered by bacterial infection. We discuss the complex regulatory of inflammasome activation mediated by ubiquitination machinery during bacterial infection, and provide therapeutic approaches for specifically targeting aberrant inflammasome activation.
Collapse
|
45
|
Murthy AMV, Sullivan MJ, Nhu NTK, Lo AW, Phan MD, Peters KM, Boucher D, Schroder K, Beatson SA, Ulett GC, Schembri MA, Sweet MJ. Variation in hemolysin A expression between uropathogenic Escherichia coli isolates determines NLRP3-dependent vs. -independent macrophage cell death and host colonization. FASEB J 2019; 33:7437-7450. [PMID: 30869997 DOI: 10.1096/fj.201802100r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) is the major cause of urinary tract infections (UTIs). The multidrug-resistant E. coli sequence type 131 (ST131) clone is a serious threat to human health, yet its effects on immune responses are not well understood. Here we screened a panel of ST131 isolates, finding that only strains expressing the toxin hemolysin A (HlyA) killed primary human macrophages and triggered maturation of the inflammasome-dependent cytokine IL-1β. Using a representative strain, the requirement for the hlyA gene in these responses was confirmed. We also observed considerable heterogeneity in levels of cell death initiated by different HlyA+ve ST131 isolates, and this correlated with secreted HlyA levels. Investigation into the biological significance of this variation revealed that an ST131 strain producing low levels of HlyA initiated cell death that was partly dependent on the nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, with this response being associated with a host-protective role in a mouse UTI model. When the same ST131 strain was engineered to overexpress high HlyA levels, macrophage cell death occurred even when NLRP3 function was abrogated, and bladder colonization was significantly increased. Thus, variation in HlyA expression in UPEC affects mechanisms by which macrophages die, as well as host susceptibility vs. resistance to colonization.-Murthy, A. M. V., Sullivan, M. J., Nhu, N. T. K., Lo, A. W., Phan, M.-D., Peters, K. M., Boucher, D., Schroder, K., Beatson, S. A., Ulett, G. C., Schembri, M. A., Sweet, M. J. Variation in hemolysin A expression between uropathogenic Escherichia coli isolates determines NLRP3-dependent vs. -independent macrophage cell death and host colonization.
Collapse
Affiliation(s)
- Ambika M V Murthy
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew J Sullivan
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; and
| | - Nguyen Thi Khanh Nhu
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Alvin W Lo
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Minh-Duy Phan
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kate M Peters
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Dave Boucher
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Kate Schroder
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Scott A Beatson
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Glen C Ulett
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; and
| | - Mark A Schembri
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Matthew J Sweet
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
46
|
Sun J, Chi L, He Z, Gao Y, Gao Y, Huang Y, Nan G. NLRP3 inflammasome contributes to neurovascular unit damage in stroke. J Drug Target 2019; 27:866-875. [PMID: 30601069 DOI: 10.1080/1061186x.2018.1564925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recently, a wealth of information has emerged connecting the activation of the NLRP3 (NOD-like receptor family pyrin domain-containing 3) inflammasome to stroke pathogenesis, although the exact influence of the NLRP3 inflammasome on stroke is still in the stage of preliminary study and is awaiting further confirmation. In this paper, we will review the structure, assembly and activation of the NLRP3 inflammasome and its expression in the neurovascular units and will speculate on its possible roles in neurovascular injury post-stroke. Evidence on this topic suggests that targeting NLRP3-mediated inflammation at multiple levels may provide a new therapeutic strategy to prevent the deterioration of neurovascular units after stroke. However, many aspects of the biological link between the NLRP3 inflammasome and stroke remain ill-defined or even completely unknown. As fresh insights come to light regarding the NLRP3 inflammasome, the opportunities to develop new therapeutic strategies for stroke patients are expected to improve accordingly.
Collapse
Affiliation(s)
- Jing Sun
- a Department of Neurology , China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Lumei Chi
- a Department of Neurology , China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Zhidong He
- b Department of Neurosurgery , China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Yu Gao
- a Department of Neurology , China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Yufen Gao
- b Department of Neurosurgery , China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Yujing Huang
- a Department of Neurology , China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Guangxian Nan
- a Department of Neurology , China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| |
Collapse
|
47
|
Lin Y, Yang Y. MiR-24 inhibits inflammatory responses in LPS-induced acute lung injury of neonatal rats through targeting NLRP3. Pathol Res Pract 2018; 215:683-688. [PMID: 30600184 DOI: 10.1016/j.prp.2018.12.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/03/2018] [Accepted: 12/25/2018] [Indexed: 12/20/2022]
Abstract
Inflammation plays an important role in the development of acute lung injury (ALI) in preterm infants. Despite the critical role of microRNA in inflammatory response, little is known about its function in ALI. In this study, we investigate the role of MicroRNA-24 (miR-24) in lipopolysaccharide (LPS) induced neonatal rats ALI and its potential mechanism. LPS was used to induce ALI neonatal animal model. miR-24 expression in the lung tissues of LPS-challenged neonatal rats was detected by qPCR. Proinflammatory factors, including tumor necrosis factor-alpha (TNF-α), IL-1β, IL-18 in the bronchoalveolar lavage fluid and lung tissues of LPS-challenged neonatal rats were measured by qRT-PCR and western blot, respectively. The mRNA levels of surfactant protein A (SP-A) and D (SP-D) was measured by qRT-PCR. Direct binding of miR-24 and pyrin domain-containing 3(NLRP3) were determined by dual luciferase assay. The levels of NLRP3, apoptosis-associated speck-like protein containing a C‑terminal caspase recruitment domain (ASC) and caspase-1 protein expression were detected by immunohistochemistry (IHC) staining and western blot, respectively. Our data indicated that LPS-induced lung injury in neonatal rats and resulted in significant downregulated of miR-24 expression. Overexpression of miR-24 significantly reduced LPS-induced lung damage and decreased the release of proinflammatory cytokine TNF-α, IL-6, IL-1β and SP-A, SP-D expression induced by LPS. In addition, miR-24 inhibited the expression of NLRP3 by directly targeting to the CDS region of NLRP3 mRNA. Furthermore, miR-24 overexpression attenuated lung inflammation and deactivated the NLRP3/caspase-1/IL-1β pathway in LPS-challenged neonatal rats. These data show that miR-24 alleviated inflammatory responses in LPS-induced ALI via targeting NLRP3.
Collapse
Affiliation(s)
- Yanfeng Lin
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| | - Yang Yang
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|
48
|
An Z, Su J. Acinetobacter baumannii outer membrane protein 34 elicits NLRP3 inflammasome activation via mitochondria-derived reactive oxygen species in RAW264.7 macrophages. Microbes Infect 2018; 21:143-153. [PMID: 30439507 DOI: 10.1016/j.micinf.2018.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 10/19/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022]
Abstract
Acinetobacter baumannii (A. baumannii) is a Gram-negative bacterium, which acts as an opportunistic pathogen and causes hospital-acquired pneumonia and bacteremia by infecting the alveoli of epithelial cells and macrophages. Evidence reveals that A. baumannii outer membrane protein 34 (Omp34) elicits cellular immune responses and inflammation. The innate immunity NOD-like receptor 3 (NLRP3) inflammasome exerts critical function against pneumonia caused by A. baumannii infection, however, the role of Omp34 in the activation of the NLRP3 inflammasome and its corresponding regulatory mechanism are not clearly elucidated. The present study aimed to investigate whether Omp34 elicited NLRP3 inflammasome activation through the mitochondria-derived reactive oxygen species (ROS). Our results showed that Omp34 triggered cell pyroptosis by up-regulating the expression of NLRP3 inflammasome-associated proteins and IL-1β release in a time- and dose-dependent manner. Omp34 induced the expression of caspase-1-p10 and IL-1β, which was significantly attenuated by NLRP3 gene silencing in RAW264.7 mouse macrophage cells. Additionally, Omp34 stimulated RAW264.7 mitochondria to generate ROS, while the ROS scavenger Mito-TEMPO inhibited the Omp34-triggered expression of NLRP3 inflammasome-associated proteins and IL-1β synthesis. The above findings indicate that mitochondria-derived ROS play an important role in the process of NLRP3 inflammasome activation. In summary, our study demonstrates that the A. baumannii pathogen pattern recognition receptor Omp34 activates NLRP3 inflammasome via mitochondria-derived ROS in RAW264.7 cells. Accordingly, down-regulating the mitochondria-derived ROS prevents the severe infection consequences caused by A. baumannii-induced NLRP3 inflammasome hyper-activation.
Collapse
Affiliation(s)
- Zhiyuan An
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jianrong Su
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
49
|
The possible ameliorative effect of simvastatin versus sulfasalazine on acetic acid induced ulcerative colitis in adult rats. Chem Biol Interact 2018; 298:57-65. [PMID: 30408459 DOI: 10.1016/j.cbi.2018.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/20/2018] [Accepted: 11/03/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Inflammatory bowel diseases (IBD) are chronic and recurrent disorders of the gastrointestinal tract with unknown etiology and have two major forms, ulcerative colitis (UC) and Crohn diseases. In view of the adverse effects and incomplete efficacy of currently administered drugs, it is essential to investigate new and harmless drugs with more desirable beneficial effects. Statins have many additional pleiotropic effects other than their lipid-lowering effect. This study aims to investigate the role of simvastatin (SIM) at different doses against induced UC in rats. METHODS SIM (10, 20 mg/kg), and sulfasalazine as a standard therapy (100 mg/kg) were given from five days before and seven days after induction of UC by acetic acid (AA). Colonic mucosal inflammation was evaluated macroscopically and microscopically. Furthermore, the colonic tissue tumor necrosis factor-α (TNF-α), interleukin 1beta (IL 1B), nod-like receptor family pyrin domain-1 containing 3 (NLRP3), malondialdehyde (MDA), reduced glutathione (GSH) and super oxide dismutase (SOD) were assayed in addition to immunohistochemistry of caspase-1 and cyclooxygenase-2 (COX2). RESULTS SIM in a dose dependant manner significantly improved macroscopic and histological scores, diminished colonic levels of IL 1B, TNF-α, NLRP3, MDA, caspase-1 and COX2 and elevated GSH and SOD. CONCLUSION SIM has anti-inflammatory, cytoprotective and antioxidants effects that are not directly related to its cholesterol lowering activity against AA induced colitis this makes it a new therapeutic target for UC.
Collapse
|
50
|
Kasper L, König A, Koenig PA, Gresnigt MS, Westman J, Drummond RA, Lionakis MS, Groß O, Ruland J, Naglik JR, Hube B. The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat Commun 2018; 9:4260. [PMID: 30323213 PMCID: PMC6189146 DOI: 10.1038/s41467-018-06607-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/13/2018] [Indexed: 01/03/2023] Open
Abstract
Clearance of invading microbes requires phagocytes of the innate immune system. However, successful pathogens have evolved sophisticated strategies to evade immune killing. The opportunistic human fungal pathogen Candida albicans is efficiently phagocytosed by macrophages, but causes inflammasome activation, host cytolysis, and escapes after hypha formation. Previous studies suggest that macrophage lysis by C. albicans results from early inflammasome-dependent cell death (pyroptosis), late damage due to glucose depletion and membrane piercing by growing hyphae. Here we show that Candidalysin, a cytolytic peptide toxin encoded by the hypha-associated gene ECE1, is both a central trigger for NLRP3 inflammasome-dependent caspase-1 activation via potassium efflux and a key driver of inflammasome-independent cytolysis of macrophages and dendritic cells upon infection with C. albicans. This suggests that Candidalysin-induced cell damage is a third mechanism of C. albicans-mediated mononuclear phagocyte cell death in addition to damage caused by pyroptosis and the growth of glucose-consuming hyphae.
Collapse
Affiliation(s)
- Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Beutenbergstrasse 11a, Jena, 07745, Germany
| | - Annika König
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Beutenbergstrasse 11a, Jena, 07745, Germany
| | - Paul-Albert Koenig
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, München, 81675, Germany
| | - Mark S Gresnigt
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Beutenbergstrasse 11a, Jena, 07745, Germany
| | - Johannes Westman
- Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1×8, Canada
| | - Rebecca A Drummond
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, 9000 Rockville Pike, Bldg 10 / Rm 11C102, Bethesda, MD, 20892, USA.,Institute of Immunology and Immunotherapy, Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Michail S Lionakis
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, 9000 Rockville Pike, Bldg 10 / Rm 11C102, Bethesda, MD, 20892, USA
| | - Olaf Groß
- Institute of Neuropathology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, Freiburg, 79106, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, München, 81675, Germany.,TranslaTUM, Center for Translational Cancer Research, Technische Universität München, München, 81675, Germany.,German Cancer Consortium (DKTK), Heidelberg, 69120, Germany.,German Center for Infection Research (DZIF), Munich, 81675, Germany
| | - Julian R Naglik
- Mucosal and Salivary Biology Division, King's College London Dental Institute, London, SE1 1UL, UK
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Beutenbergstrasse 11a, Jena, 07745, Germany. .,Friedrich Schiller University, Fürstengraben 1, Jena, 07743, Germany.
| |
Collapse
|