1
|
Shaji S, Sheth P, Shanmugasundaram R, Selvaraj RK. Efficacy of a killed Salmonella Enterica serovar Typhimurium bacterin vaccine administration in layer birds challenged with heterologous Salmonella Enterica serovar Enteritidis. Poult Sci 2025; 104:105044. [PMID: 40158250 PMCID: PMC11997314 DOI: 10.1016/j.psj.2025.105044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/02/2025] Open
Abstract
In this study, we evaluated the efficacy of administering a killed Salmonella enterica ser. Typhimurium bacterin (ST) vaccine with an adjuvant intramuscularly on humoral immunity, cellular immunity, and SE load reduction in layers. The ST vaccine was prepared with 97% S. Typhimurium and an adjuvant of 3% Immune Plus® with preservatives. Eighty 14-week-old Salmonella-free Hy-Line W-36 pullets were randomly allocated into two groups: unvaccinated control and ST vaccinated, with 40 birds per group. Birds were immunized intramuscularly with 500 µL (Endovac) vaccine at week 17 and a booster dose at week 19. At 27 weeks of age, both groups were challenged with 5 × 108 CFU/mL of nalidixic acid-resistant Salmonella enterica ser. Enteritidis. At 22, 23, and 24 weeks of age, ST-vaccinated birds showed higher serum anti-Salmonella IgY levels than the control group by 186%, 202% (P < 0.05), and 2700% (P > 0.05), respectively. At 28 weeks of age, vaccinated birds had 8.3% lower levels (P > 0.05) of anti-Salmonella IgA in bile and 240% greater levels (P < 0.05) of anti-Salmonella IgY in serum compared to control group. At 28 weeks of age, splenocytes from the ST-vaccinated birds had increased antigen-specific T-lymphocyte proliferation (P > 0.05). There were no significant differences in CD4+/CD8+-T-cell ratios, IL-10, IL-4, IL-1β, IFNγ mRNA levels in the spleen and cecal tonsil between vaccinated birds compared to control. However, the vaccine did not reduce the Salmonella Enteritidis load in ceca, spleen, and liver. It can be concluded that the intramuscular administration of the killed ST vaccine with the adjuvant Immune Plus can increase serum antibody titers and induce a humoral immune response specific to Salmonella. However, the increase in serum antibody titers were not successful in reducing the Salmonella load in ceca, spleen, and liver.
Collapse
Affiliation(s)
- Syamily Shaji
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | | | | | - Ramesh K Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
2
|
Zhang Q, Wang Q, Zheng J, Zhang J, Zhang G, Ying F, Liu D, Wen J, Li Q, Zhao G. Single-cell RNA sequencing of the spleen reveals differences in Salmonella typhimurium infection mechanisms between different chicken breeds. Poult Sci 2025; 104:104669. [PMID: 39793244 PMCID: PMC11954797 DOI: 10.1016/j.psj.2024.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/30/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025] Open
Abstract
Bacterial infections remain an important cause of morbidity in poultry production. The molecular characteristics and dynamic changes in immune cell populations after bacterial infection have yet to be fully understood. Beijing-You chicken and Cobb broiler, two broiler breeds with different disease resistance, were infected with Salmonella typhimurium, and inflammation models were constructed. Compared to Beijing-You, Cobb showed higher survival rates, lower liver load, and milder spleen damage after Salmonella infection. We characterized chicken spleen CD45+ immune cells by single-cell RNA sequencing and identified 9 distinct cell types among 54,487 cells. In Beijing-You, mono-macrophages expressed higher levels of pro-inflammatory factors, including IL1B, IL6, and M-CSF, after bacterial infection. In Cobb, Tregs exhibited intense inflammatory inhibition and highly expressed CTLA4, LAG3 and other immunosuppressive regulators. In addition, we found complex macrophage phenotypes during bacterial infection, with a tendency in macrophages from pro-inflammatory phenotypes (Mac-IL1B) to anti-inflammatory phenotypes (Mac-C1QC/Mac-MARCO). This study represents the first single-cell transcriptomic analysis of chicken spleen and compares the immune responses of Beijing-You and Cobb after bacterial infection. These findings provide insight into the mechanism of inflammation regulation in different broiler breeds.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Qiao Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Jumei Zheng
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Jin Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Gaomeng Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Fan Ying
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, 528515, PR China.
| | - Dawei Liu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, 528515, PR China.
| | - Jie Wen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Qinghe Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| | - Guiping Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China.
| |
Collapse
|
3
|
Shanmugasundaram R, Kappari L, Pilewar M, Jones MK, Olukosi OA, Pokoo-Aikins A, Applegate TJ, Glenn AE. Exposure to Subclinical Doses of Fumonisins, Deoxynivalenol, and Zearalenone Affects Immune Response, Amino Acid Digestibility, and Intestinal Morphology in Broiler Chickens. Toxins (Basel) 2025; 17:16. [PMID: 39852969 PMCID: PMC11769399 DOI: 10.3390/toxins17010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025] Open
Abstract
Fusarium mycotoxins often co-occur in broiler feed, and their presence negatively impacts health even at subclinical concentrations, so there is a need to identify the concentrations of these toxins that do not adversely affect chickens health and performance. The study was conducted to evaluate the least toxic effects of combined mycotoxins fumonisins (FUM), deoxynivalenol (DON), and zearalenone (ZEA) on the production performance, immune response, intestinal morphology, and nutrient digestibility of broiler chickens. A total of 960 one-day-old broilers were distributed into eight dietary treatments: T1 (Control); T2: 33.0 FUM + 3.0 DON + 0.8 ZEA; T3: 14.0 FUM + 3.5 DON + 0.7 ZEA; T4: 26.0 FUM + 1.0 DON + 0.2 ZEA; T5: 7.7 FUM + 0.4 DON + 0.1 ZEA; T6: 3.6 FUM + 2.5 DON + 0.9 ZEA; T7: 0.8 FUM + 1.0 DON + 0.3 ZEA; T8: 1.0 FUM + 0.5 DON + 0.1 ZEA, all in mg/kg diet. The results showed that exposure to higher mycotoxin concentrations, T2 and T3, had significantly reduced body weight gain (BWG) by 17% on d35 (p < 0.05). The T2, T3, and T4 groups had a significant decrease in villi length in the jejunum and ileum (p < 0.05) and disruption of tight junction proteins, occludin, and claudin-4 (p < 0.05). Higher mycotoxin groups T2 to T6 had a reduction in the digestibility of amino acids methionine (p < 0.05), aspartate (p < 0.05), and serine (p < 0.05); a reduction in CD4+, CD8+ T-cell populations (p < 0.05) and an increase in T regulatory cell percentages in the spleen (p < 0.05); a decrease in splenic macrophage nitric oxide production and total IgA production (p < 0.05); and upregulated cytochrome P450-1A1 and 1A4 gene expression (p < 0.05). Birds fed the lower mycotoxin concentration groups, T7 and T8, did not have a significant effect on performance, intestinal health, and immune responses, suggesting that these concentrations pose the least negative effects in broiler chickens. These findings are essential for developing acceptable thresholds for combined mycotoxin exposure and efficient feed management strategies to improve broiler performance.
Collapse
Affiliation(s)
- Revathi Shanmugasundaram
- U. S. National Poultry Research Center, Agriculture Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Laharika Kappari
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Mohammad Pilewar
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Matthew K. Jones
- Southern Poultry Research Group, Inc., Watkinsville, GA 30677, USA
| | | | - Anthony Pokoo-Aikins
- U. S. National Poultry Research Center, Agriculture Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Todd J. Applegate
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Anthony E. Glenn
- U. S. National Poultry Research Center, Agriculture Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| |
Collapse
|
4
|
Majeed S, Shah BR, Khalid N, Bielke L, Nazmi A. Dynamic Changes in the Intraepithelial Lymphocyte Numbers Following Salmonella Typhimurium Infection in Broiler Chickens. Animals (Basel) 2024; 14:3463. [PMID: 39682428 DOI: 10.3390/ani14233463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
At day 21 of age, Ross-308 broilers were orally gavaged with 7.5 × 106 CFU/mL S. Typhimurium (n = 30), and another 30 birds were kept as the control. The body weight of birds was recorded on days 0, 2, 7, and 14 days post-infection (dpi) to calculate body weight gains (BWGs). At each time point, seven birds per group were euthanized for sample collection to acquire IELs and lymphocytes from the ileum and spleen for flow cytometric analysis. A reduction in BWGs of the infected groups compared to the control group was observed only at 2 dpi. Additionally, there were no changes in the expression of IFN-γ, IL-1β, and TNF-α in the ileum at 2 and 7 dpi. The number of IELs increased significantly following Salmonella infection in the ileum at 2 and 7 dpi without any changes in spleen lymphocytes. The increase in the total number of IELs was derived from the elevated numbers of conventional CD8αβ+TCRαβ+ and natural IEL populations (CD4-CD8-TCRαβ+, CD8αα+TCRαβ+, TCRγδ+, non-T cells (TCRneg, and iCD8α cells)). The increase in regulatory IELs and the stable expression of proinflammatory cytokine genes during the first week of infection suggests the potential role of IELs in modulating intestinal inflammation.
Collapse
Affiliation(s)
- Shuja Majeed
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Bikas R Shah
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
| | - Nimra Khalid
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore 54000, Punjab, Pakistan
| | - Lisa Bielke
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Ali Nazmi
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA
- Food for Health Discovery Theme, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Omotainse OS, Wawegama NK, Kulappu Arachchige SN, Coppo MC, Vaz PK, Saliha U, Bogeski M, Noormohammadi AH, Stent AW. Th-1 cytotoxic cell-mediated response predominates in the tracheal mucosa following Mycoplasma synoviae infection of MS-H-vaccinated chickens. Vet Microbiol 2023; 287:109921. [PMID: 38000210 DOI: 10.1016/j.vetmic.2023.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/03/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Mycoplasma synoviae is a pathogen of poultry that causes upper respiratory tract disease. MS-H is a live attenuated temperature-sensitive vaccine that effectively control M. synoviae infection in chickens. However, the mechanisms underpinning protection have not been described previously. In this study, specific-pathogen-free chickens were vaccinated at 3 weeks of age with MS-H vaccine and challenged with field strain M. synoviae 94011/v-18d at 6 weeks of age. Tracheal mucosal inflammation was characterised by the assessment of thickness, histopathological lesions, cellular infiltrates and cytokine transcription. Tracheal lesion scores of unvaccinated-challenged (-V+C) birds were higher than that of vaccinated-challenged (+V+C) birds. +V+C birds displayed early upregulation of IL-4, consistent with a Th-2-skewed response, followed by a later increase in IFN-γ transcription, indicating transition to a Th-1-skewed response. -V+C birds displayed a concurrent early Th-2 and Th-17 response characterised by increase expression of IL-4 and IL-17A respectively, and late T regulatory response characterised by increased IL-10 transcription. +V+C chickens had more cytotoxic T cells (CD8+ T cells) at 7- and 21 days post-challenge (dpc), while -V+C chickens had higher numbers of infiltrating CD4+CD25+ at 7 and 21 dpc. Overall, these observations suggest that the immune response in +V+C chickens had an inflammation characterised by an early Th-2 skewed response followed closely by a Th-1 response and infiltration of cytotoxic T cells, while the response in -V+C chickens was an early Th-2/Th-17-skewed response closely followed by a T regulatory response.
Collapse
Affiliation(s)
- Oluwadamilola S Omotainse
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia.
| | - Nadeeka K Wawegama
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Sathya N Kulappu Arachchige
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Mauricio C Coppo
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia; Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Concepción, Biobío, Chile
| | - Paola K Vaz
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Uneeb Saliha
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Mirjana Bogeski
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Amir H Noormohammadi
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Andrew W Stent
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| |
Collapse
|
6
|
Obe T, Boltz T, Kogut M, Ricke SC, Brooks LA, Macklin K, Peterson A. Controlling Salmonella: strategies for feed, the farm, and the processing plant. Poult Sci 2023; 102:103086. [PMID: 37839165 PMCID: PMC10587538 DOI: 10.1016/j.psj.2023.103086] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 10/17/2023] Open
Abstract
Controlling Salmonella in poultry is an ongoing food safety measure and while significant progress has been made, there is a need to continue to evaluate different strategies that include understanding Salmonella-poultry interaction, Salmonella-microbiota interactions, Salmonella genetics and response to adverse conditions, and preharvest and postharvest parameters that enable persistence. The purpose of this symposium is to discuss different strategies to consider from feed milling to the farm to the processing environment. This Poultry Science Association symposium paper is divided into 5 different sections that covers 1) immunological aspects of Salmonella control, 2) application of Salmonella genetics for targeted control strategies in poultry production, 3) improving poultry feed hygienics: utilizing feed manufacture techniques and equipment to improve feed hygienics, 4) practical on farm interventions for controlling Salmonella-what works and what may not work, and 5) monitoring and mitigating Salmonella in poultry. These topics elucidate the critical need to establish control strategies that will improve poultry gut health and limit conditions that exposes Salmonella to stress causing alterations to virulence and pathogenicity both at preharvest and postharvest poultry production. This information is relevant to the poultry industry's continued efforts to ensure food safety poultry production.
Collapse
Affiliation(s)
- Tomi Obe
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA.
| | - Timothy Boltz
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, USA
| | - Mike Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX, USA
| | - Steven C Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin - Madison, Madison, WI, USA
| | | | - Ken Macklin
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, USA
| | | |
Collapse
|
7
|
Shaji S, Selvaraj RK, Shanmugasundaram R. Salmonella Infection in Poultry: A Review on the Pathogen and Control Strategies. Microorganisms 2023; 11:2814. [PMID: 38004824 PMCID: PMC10672927 DOI: 10.3390/microorganisms11112814] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Salmonella is the leading cause of food-borne zoonotic disease worldwide. Non-typhoidal Salmonella serotypes are the primary etiological agents associated with salmonellosis in poultry. Contaminated poultry eggs and meat products are the major sources of human Salmonella infection. Horizontal and vertical transmission are the primary routes of infection in chickens. The principal virulence genes linked to Salmonella pathogenesis in poultry are located in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2). Cell-mediated and humoral immune responses are involved in the defense against Salmonella invasion in poultry. Vaccination of chickens and supplementation of feed additives like prebiotics, probiotics, postbiotics, synbiotics, and bacteriophages are currently being used to mitigate the Salmonella load in poultry. Despite the existence of various control measures, there is still a need for a broad, safe, and well-defined strategy that can confer long-term protection from Salmonella in poultry flocks. This review examines the current knowledge on the etiology, transmission, cell wall structure, nomenclature, pathogenesis, immune response, and efficacy of preventative approaches to Salmonella.
Collapse
Affiliation(s)
- Syamily Shaji
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA; (S.S.); (R.K.S.)
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA; (S.S.); (R.K.S.)
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, Athens, GA 30605, USA
| |
Collapse
|
8
|
Kogut MH, Fernandez Miyakawa ME. Phenotype Alterations in the Cecal Ecosystem Involved in the Asymptomatic Intestinal Persistence of Paratyphoid Salmonella in Chickens. Animals (Basel) 2023; 13:2824. [PMID: 37760224 PMCID: PMC10525526 DOI: 10.3390/ani13182824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The gastrointestinal ecosystem involves interactions between the host, gut microbiota, and external environment. To colonize the gut of poultry, Salmonella must surmount barriers levied by the intestine including mucosal innate immune responses and microbiota-mediated niche restrictions. Accordingly, comprehending Salmonella intestinal colonization in poultry requires an understanding of how the pathogen interacts with the intestinal ecosystem. In chickens, the paratyphoid Salmonella have evolved the capacity to survive the initial immune response and persist in the avian ceca for months without triggering clinical signs. The persistence of a Salmonella infection in the avian host involves both host defenses and tolerogenic defense strategies. The initial phase of the Salmonella-gut ecosystem interaction is characteristically an innate pro-inflammatory response that controls bacterial invasion. The second phase is initiated by an expansion of the T regulatory cell population in the cecum of Salmonella-infected chickens accompanied by well-defined shifts in the enteric neuro-immunometabolic pathways that changes the local phenotype from pro-inflammatory to an anti-inflammatory environment. Thus, paratyphoid Salmonella in chickens have evolved a unique survival strategy that minimizes the inflammatory response (disease resistance) during the initial infection and then induces an immunometabolic reprogramming in the cecum that alters the host defense to disease tolerance that provides an environment conducive to drive asymptomatic carriage of the bacterial pathogen.
Collapse
Affiliation(s)
- Michael H. Kogut
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX 77845, USA
| | - Mariano Enrique Fernandez Miyakawa
- Instituto de Patobiología, Instituto Nacional de Tecnología, Nicolas Repetto y Los Reseros S/N, Hurlingham 1686, Buenos Aires, Argentina;
| |
Collapse
|
9
|
Meinen-Jochum J, Ott LC, Mellata M. Segmented filamentous bacteria-based treatment to elicit protection against Enterobacteriaceae in Layer chickens. Front Microbiol 2023; 14:1231837. [PMID: 37583515 PMCID: PMC10423809 DOI: 10.3389/fmicb.2023.1231837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Introduction Gut microbes like segmented filamentous bacteria (SFB) play a key role in gut maturation during early life, as demonstrated in humans and mice. Our previous study demonstrated oral inoculation of ileum-spores containing SFB to chickens after hatch increases early SFB gut colonization, which increases immune maturation and resistance to bacteria, like Salmonella, as tested in vitro; however, more studies are needed for treatment optimization and in vivo testing. The objectives of this study were to (1) test a treatment that includes both spores and filamentous SFB, (2) validate antimicrobial ability of the treatment in layer hens in vivo, and (3) elucidate its molecular mechanism. Methods One-day-old specific pathogen-free layers (n = 12 per group) were orally treated with either PBS (CON) or SFB-based treatment (SFB). At 4 days post-inoculation (DPI), both CON and SFB groups were orally challenged with Salmonella Typhimurium. Total Enterobacteriaceae and Salmonella were examined by plating and enumeration in feces at 7,10 and 14 dpi; and in the ileum, cecum, and spleen at 16 dpi in euthanized birds. The presence and levels of SFB were determined from ilea scrapings via microscopy and qPCR, respectively. Relative gene expression of host-derived antimicrobial peptides and cytokines in the distal ileum was determined by RT-qPCR. Results At 10 and 14 dpi, a significant decrease in total Enterobacteriaceae was observed in the feces of the SFB group. At necropsy, the level of SFB was significantly higher in the SFB group than in the CON group, while a significant decrease in total Enterobacteriaceae and Salmonella was observed in the ceca of the SFB group. RT-qPCR revealed increased expression of β-defensin 14, and cytokines IL-10 and IFNγ. Discussion The introduction of SFB at hatch as a prophylactic treatment may benefit commercial partners as well as consumers by reducing the incidence of Enterobacteriaceae in food animals. Reduction of these bacteria in animals would, in turn, increase animal health, productivity, and safety for consumers. Studies to optimize the treatment for poultry industry applications are ongoing in our lab.
Collapse
Affiliation(s)
- Jared Meinen-Jochum
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Logan C. Ott
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Melha Mellata
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| |
Collapse
|
10
|
Liu JD, Shanmugasundaram R, Doupovec B, Schatzmayr D, Murugesan GR, Applegate TJ. Short-term exposure to fumonisins and deoxynivalenol, on broiler growth performance and cecal Salmonella load during experimental Salmonella Enteritidis infection. Poult Sci 2023; 102:102677. [PMID: 37104905 PMCID: PMC10160587 DOI: 10.1016/j.psj.2023.102677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Fumonisins (FUM) and deoxynivalenol (DON) are two common mycotoxins in poultry feed. Salmonella enterica ser. Enteritidis (S. Enteritidis) is a primary foodborne bacterium in broilers. This trial was conducted to evaluate the effects of naturally occurring FUM and DON and their combination at subclinical doses on broiler performance during a S. Enteritidis challenge. The experiment consisted of five treatments: NCC, no-challenge no-mycotoxin treatment; CC, Salmonella challenge + no-mycotoxin treatment; DON, DON 0.6 mg/kg + Salmonella challenge; FUM, FUM 14 mg/kg + Salmonella challenge; DON + FUM + T-2 + neosolaniol, DON 0.6 mg/kg + FUM 14 mg/kg + T-2 toxin 0.6 mg/kg + 0.8 mg/kg neosolaniol + Salmonella challenge. On d 4, birds were challenged with either 0 or 1 × 109 CFU/mL S. Enteritidis orally. There were no significant effects on growth performance among treatments at 0, 3, 7, and 14 d of post-inoculation (dpi). On 14 dpi, the combined DON + FUM + T-2 + neosolaniol significantly increased the Salmonella load by 1.5 logs compared to the control groups (P < 0.05). FUM significantly increased the cecal tonsil IL-10 gene expression by 1.2-fold at 7 dpi (P < 0.05) and downregulated TNF-α by 1.8-fold on 14 dpi compared to the control, nonchallenge groups (P < 0.05). On 7 dpi, the combined DON + FUM + T-2 + neosolaniol reduced occludin by 4.4-fold (P < 0.05) when compared to the control groups. Similarly, combined DON + FUM+ T-2 + neosolaniol decreased zona-occluden transcription by 2.3 and 7.6-fold on 3 and 14 dpi, respectively (P < 0.05). Furthermore, combined DON + FUM + T-2 + neosolaniol decreased Claudin-1 by 2.2-fold and Claudin-4 by 5.1-fold on 14 dpi when compared to the control groups (P < 0.05). In conclusion, short-term exposure to a subclinical dose of combined DON + FUM + T-2 + neosolaniol had an impact on broiler intestinal tight junction proteins and cecal Salmonella abundance under experimental Salmonella challenge.
Collapse
Affiliation(s)
- J D Liu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - R Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA.
| | - B Doupovec
- DSM - BIOMIN Research Center, Tulln 3430, Austria
| | - D Schatzmayr
- DSM - BIOMIN Research Center, Tulln 3430, Austria
| | | | - T J Applegate
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
11
|
Application of Eugenol in Poultry to Control Salmonella Colonization and Spread. Vet Sci 2023; 10:vetsci10020151. [PMID: 36851455 PMCID: PMC9962070 DOI: 10.3390/vetsci10020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
The poultry sector is an essential component of agriculture that has experienced unprecedented growth during the last few decades. It is especially true for the United States, where the average intake of chicken meat increased from 10 pounds (4.5 kg) per person in 1940 to 65.2 pounds (29.6 kg) per person in 2018, while the country produced 113 billion eggs in 2019 alone. Besides providing nutrition and contributing significantly to the economy, chicken is also a natural reservoir of Salmonella, which is responsible for salmonellosis in humans, one of the significant foodborne illnesses around the globe. The increasing use of chicken manure and antibiotics increases the spread of Salmonella and selects for multi-drug resistant strains. Various plant extracts, primarily essential oils, have been investigated for their antimicrobial activities. The multiple ways through which these plant-derived compounds exert their antimicrobial effects make the development of resistance against them unlikely. Eugenol, an aromatic oil primarily found in clove and cinnamon, has shown antimicrobial activities against various pathogenic bacteria. A few reports have also highlighted the anti-Salmonella effects of eugenol in chicken, especially in reducing the colonization by Salmonella Enteritidis and Salmonella Typhimurium, the primary Salmonella species responsible for human salmonellosis. Besides limiting Salmonella infection in chicken, the supplementation of eugenol also significantly improves intestinal health, improving overall well-being. In this review, we highlight the rising incidences of salmonellosis worldwide and the factors increasing its prevalence. We then propose the usage of eugenol as a natural feed supplement for containing Salmonella in chicken.
Collapse
|
12
|
Lopez BS. Can Infectious Disease Control Be Achieved without Antibiotics by Exploiting Mechanisms of Disease Tolerance? Immunohorizons 2022; 6:730-740. [DOI: 10.4049/immunohorizons.2200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/04/2022] [Indexed: 01/04/2023] Open
Abstract
Abstract
Antimicrobial use in animal agriculture may be contributing to the emerging public health crisis of antimicrobial resistance. The sustained prevalence of infectious diseases driving antimicrobial use industry-wide suggests that traditional methods of bolstering disease resistance are, for some diseases, ineffective. A paradigm shift in our approach to infectious disease control is needed to reduce antimicrobial use and sustain animal and human health and the global economy. Targeting the defensive mechanisms that promote the health of an infected host without impacting pathogen fitness, termed “disease tolerance,” is a novel disease control approach ripe for discovery. This article presents examples of disease tolerance dictating clinical outcomes for several infectious diseases in humans, reveals evidence suggesting a similarly critical role of disease tolerance in the progression of infectious diseases plaguing animal agriculture, and thus substantiates the assertion that exploiting disease tolerance mechanisms can positively impact animal and human health.
Collapse
Affiliation(s)
- Brina S. Lopez
- Department of Farm Animal Medicine, Midwestern University College of Veterinary Medicine, Glendale, AZ
| |
Collapse
|
13
|
Omotainse OS, Wawegama NK, Kulappu Arachchige SN, C Coppo MJ, Vaz PK, Woodward AP, Kordafshari S, Bogeski M, Stevenson M, Noormohammadi AH, Stent AW. Tracheal cellular immune response in chickens inoculated with Mycoplasma synoviae vaccine, MS-H or its parent strain 86079/7NS. Vet Immunol Immunopathol 2022; 251:110472. [PMID: 35940079 DOI: 10.1016/j.vetimm.2022.110472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Mycoplasma synoviae causes respiratory tract disease in chickens characterised by mild to moderate lymphoplasmacytic infiltration of the tracheal mucosa. MS-H (Vaxsafe1 MS, Bioproperties Pty Ltd.) is an effective live attenuated vaccine for M. synoviae, but the immunological basis for its mechanism of protection has not been investigated, and the phenotypes of lymphocytes and associated cytokines involved in the local adaptive immune response have not been described previously. In this study, specific-pathogen-free chickens were inoculated intra-ocularly at 3 weeks of age with either M. synoviae vaccine strain MS-H or vaccine parent strain 86079/7NS (7NS), or remained uninoculated. At 2-, 7- and 21 days post-inoculation (dpi), tracheal mucosal pathology, infiltrating lymphocytes subsets and transcription levels of mRNA encoding 8 cytokines were assessed using light microscopy, indirect immunofluorescent staining and RT-qPCR, respectively. After inoculation, tracheal mucosal thickness, tracheal mucosal lesions, and numbers of infiltrating CD4+CD25- cells, B-cells, and macrophages were greater in MS-H- and 7NS-inoculated chickens compared with non-inoculated. Inoculation with 7NS induced up-regulation of IFN-γ, while vaccination with MS-H induced up-regulation of IL-17A, when compared with non-inoculated birds. Both inoculated groups had a moderate infiltrate of CD4+CD25+ T cells in the tracheal mucosa. These findings reveal that the tracheal local cellular response after MS-H inoculation is dominated by a Th-17 response, while that of 7NS-inoculated chickens is dominated by a Th-1 type response.
Collapse
Affiliation(s)
- Oluwadamilola S Omotainse
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia.
| | - Nadeeka K Wawegama
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Sathya N Kulappu Arachchige
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia; Department of Basic Veterinary SciencesFaculty of Veterinary Medicine and Animal Science University of Peradeniya, Peradeniya 20400, Sri lanka
| | - Mauricio J C Coppo
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia; Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Concepción, Biobío, Chile
| | - Paola K Vaz
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew P Woodward
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Somayeh Kordafshari
- Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, Parkville, VIC, Australia
| | - Mirjana Bogeski
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Mark Stevenson
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Amir H Noormohammadi
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Andrew W Stent
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| |
Collapse
|
14
|
Shanmugasundaram R, Adams D, Ramirez S, Murugesan GR, Applegate TJ, Cunningham S, Pokoo-Aikins A, Glenn AE. Subclinical Doses of Combined Fumonisins and Deoxynivalenol Predispose Clostridium perfringens–Inoculated Broilers to Necrotic Enteritis. Front Physiol 2022; 13:934660. [PMID: 35936897 PMCID: PMC9353554 DOI: 10.3389/fphys.2022.934660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
Fumonisins (FB) and deoxynivalenol (DON) are mycotoxins which may predispose broiler chickens to necrotic enteritis (NE). The objective of this study was to identify the effects of subclinical doses of combined FB and DON on NE. A total of 480 day-old male broiler chicks were divided into four treatment groups; 1) control group (basal diet + Clostridium perfringens); 2) necrotic enteritis group (basal diet + Eimeria maxima + C. perfringens); 3) FB + DON group (basal diet + 3 mg/kg FB + 4 mg/kg DON + C. perfringens); and 4) FB + DON + NE group (basal diet + 3 mg/kg FB + 4 mg/kg DON + E. maxima + C. perfringens). Birds in NE and FB + DON + NE groups received 2.5 × 103E. maxima on day 14. All birds were inoculated with C. perfringens on days 19, 20, and 21. On day 35, birds in the NE, FB + DON, and FB + DON + NE groups had 242, 84, and 339 g lower BWG and a 19-, 2-, and 22-point increase in FCR respectively, than in the control group. Subclinical doses of FB + DON increased (p < 0.05) the NE lesion scores compared to the control group on day 21. On day 21, birds in the NE, FB + DON, and FB + DON + NE groups had increased (p < 0.05) serum FITC-D, lower (p < 0.05) jejunal tight junction protein mRNA, and increased (p < 0.05) cecal tonsil IL-1 mRNA compared to control group. On day 21, birds in the NE group had decreased (p < 0.05) villi height to crypt depth ratio compared to the control group and the presence of FB + DON in NE-induced birds further decreased the villi height to crypt depth ratio. Birds in the NE, FB + DON, and FB + DON + NE groups had increased (p < 0.05) C. perfringens, lower (p < 0.05) Lactobacillus loads in the cecal content, and a lower (p < 0.05) CD8+: CD4+ cell ratio in the cecal tonsils compared to the control group. It can be concluded that subclinical doses of combined FB and DON predispose C. perfringens-inoculated birds to NE, and the presence of FB + DON in NE-induced birds exacerbated the severity of NE.
Collapse
Affiliation(s)
- R. Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
- *Correspondence: R. Shanmugasundaram,
| | - D. Adams
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - S. Ramirez
- DSM Animal Nutrition and Health, Kaiseraugst, Switzerland
| | | | - T. J. Applegate
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - S. Cunningham
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| | - A. Pokoo-Aikins
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| | - A. E. Glenn
- Toxicology and Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA, United States
| |
Collapse
|
15
|
Acevedo-Villanueva K, Akerele G, Al-Hakeem W, Adams D, Gourapura R, Selvaraj R. Immunization of Broiler Chickens With a Killed Chitosan Nanoparticle Salmonella Vaccine Decreases Salmonella Enterica Serovar Enteritidis Load. Front Physiol 2022; 13:920777. [PMID: 35923229 PMCID: PMC9340066 DOI: 10.3389/fphys.2022.920777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
There is a critical need for an oral-killed Salmonella vaccine for broilers. Chitosan nanoparticle (CNP) vaccines can be used to deliver Salmonella antigens orally. We investigated the efficacy of a killed Salmonella CNP vaccine on broilers. CNP vaccine was synthesized using Salmonella enterica serovar Enteritidis (S. Enteritidis) outer membrane and flagella proteins. CNP was stable at acidic conditions by releasing 14% of proteins at pH 5.5. At 17 h post-incubation, the cumulative protein release for CNP was 75% at pH 7.4. Two hundred microliters of PBS with chicken red blood cells incubated with 20 μg/ml CNP released 0% hemoglobin. Three hundred chicks were allocated into 1) Control, 2) Challenge, 3) Vaccine + Challenge. At d1 of age, chicks were spray-vaccinated with PBS or 40 mg CNP. At d7 of age, chicks were orally-vaccinated with PBS or 20 μg CNP/bird. At d14 of age, birds were orally-challenged with PBS or 1 × 107 CFU/bird of S. Enteritidis. The CNP-vaccinated birds had higher antigen-specific IgY/IgA and lymphocyte-proliferation against flagellin (p < 0.05). At 14 days post-infection, CNP-vaccinated birds reversed the loss in gut permeability by 13% (p < 0.05). At 21 days post-infection, the CNP-vaccinated birds decreased S. Enteritidis in the ceca and spleen by 2 Log10 CFU/g, and in the small intestine by 0.6 Log10 CFU/g (p < 0.05). We conclude that the CNP vaccine is a viable alternative to conventional Salmonella poultry vaccines.
Collapse
Affiliation(s)
- Keila Acevedo-Villanueva
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Gabriel Akerele
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Walid Al-Hakeem
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Daniel Adams
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Renukaradhy Gourapura
- Ohio Agricultural Research and Development Center, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, United States
| | - Ramesh Selvaraj
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
- *Correspondence: Ramesh Selvaraj,
| |
Collapse
|
16
|
Gregorich JL, Lilburn MS, Shanmugasundaram R. Effects of Induced Moisture Loss in Chicken Embryos at Embryonic Day 18 and Post-hatch Immune Response During Salmonella enteritidis Lipopolysaccharide Challenge in Broilers. Front Physiol 2022; 13:820349. [PMID: 35356075 PMCID: PMC8959886 DOI: 10.3389/fphys.2022.820349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 11/23/2022] Open
Abstract
Two experiments were conducted to investigate the effects of induced moisture loss on embryonic development and the immune response following an inflammatory challenge immediately post-hatch. In Experiment I, fertile leghorn eggs (n = 100) and commercial broiler eggs (n = 300) were set at 37.5°C and moisture loss was induced in one-half of the Leghorn and broiler eggs by drilling two, 1.5 mm diameter holes. The Control eggs had 0 holes. At embryonic day (ED)18, layer and broiler eggs in the 2-holes treatment had a significant (P < 0.01) increase in moisture loss compared to the control treatment (10.1% vs. 8.2%). Similarly, at ED18, the broiler eggs with 2-holes had a significant increase (P < 0.01) in moisture loss compared with control eggs (9.9% vs. 8.4%). Thymocytes from both the leghorn (104%) and broiler (62%) embryos in the 2-holes treatment had significantly increased in vitro proliferation compared with the control embryos (P ≤ 0.05). At ED18, layer and broiler embryos in the 2-holes treatment had an approximate twofold increase in the splenic CD8+/CD4+ ratio (P ≤ 0.05) and CD4+CD25+ cells percentage in both the thymus and spleen (P ≤ 0.05). At ED18, both layer and broiler embryos from the 2-holes treatment had a significant increase in splenic IL1-β, IL-6, IL-10, and TLR-4 mRNA transcription compared to the control group (P ≤ 0.05). Experiment II was repeated with 300 fertile broiler eggs. On the day of hatch, chicks were randomly distributed into one of four treatments in a 2 (0, 2 holes) × 2 (0, 500 μg lipopolysaccharide, LPS) factorial arrangement of treatments. Chicks in the LPS groups were injected intraperitoneally with 500 μg/kg BW LPS. At 24 and 48 h post-hatch, chicks hatched from eggs with 2-holes and challenged with LPS had a significant increase (P ≤ 0.05) in thymocyte proliferation at 24 h (42%) and 48 h (37%) when compared with chicks hatched from the control (0-hole; 0 μg LPS) treatment. Chicks hatched from the 2-holes treatment and challenged with the LPS had an approximately twofold higher splenic CD8+/CD4+ ratio and 1.5 fold increase in CD4+CD25+ percentage compared to control chicks (P ≤ 0.05). In chicks hatched from the 2-holes treatment, MUC2 mRNA transcription was comparable to control chicks at 24 and 48 h in response to the LPS challenge. Our data suggest that the 2-holes treatment reprograms gene transcription to facilitate cell survival via proliferation and differentiation during an LPS inflammatory challenge.
Collapse
Affiliation(s)
- Jenna L Gregorich
- Department of Animal Sciences, The Ohio State University, Wooster, OH, United States
| | - Michael S Lilburn
- Department of Animal Sciences, The Ohio State University, Wooster, OH, United States
| | | |
Collapse
|
17
|
Burkhardt NB, Elleder D, Schusser B, Krchlíková V, Göbel TW, Härtle S, Kaspers B. The Discovery of Chicken Foxp3 Demands Redefinition of Avian Regulatory T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1128-1138. [PMID: 35173035 DOI: 10.4049/jimmunol.2000301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022]
Abstract
Since the publication of the first chicken genome sequence, we have encountered genes playing key roles in mammalian immunology, but being seemingly absent in birds. One of those was, until recently, Foxp3, the master transcription factor of regulatory T cells in mammals. Therefore, avian regulatory T cell research is still poorly standardized. In this study we identify a chicken ortholog of Foxp3 We prove sequence homology with known mammalian and sauropsid sequences, but also reveal differences in major domains. Expression profiling shows an association of Foxp3 and CD25 expression levels in CD4+CD25+ peripheral T cells and identifies a CD4-CD25+Foxp3high subset of thymic lymphocytes that likely represents yet undescribed avian regulatory T precursor cells. We conclude that Foxp3 is existent in chickens and that it shares certain functional characteristics with its mammalian ortholog. Nevertheless, pathways for regulatory T cell development and Foxp3 function are likely to differ between mammals and birds. The identification and characterization of chicken Foxp3 will help to define avian regulatory T cells and to analyze their functional properties and thereby advance the field of avian immunology.
Collapse
Affiliation(s)
- Nina B Burkhardt
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Daniel Elleder
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic; and
| | - Benjamin Schusser
- Reproductive Biotechnology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Veronika Krchlíková
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic; and
| | - Thomas W Göbel
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Sonja Härtle
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Bernd Kaspers
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany;
| |
Collapse
|
18
|
Zmrhal V, Svoradova A, Batik A, Slama P. Three-Dimensional Avian Hematopoietic Stem Cell Cultures as a Model for Studying Disease Pathogenesis. Front Cell Dev Biol 2022; 9:730804. [PMID: 35127695 PMCID: PMC8811169 DOI: 10.3389/fcell.2021.730804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Three-dimensional (3D) cell culture is attracting increasing attention today because it can mimic tissue environments and provide more realistic results than do conventional cell cultures. On the other hand, very little attention has been given to using 3D cell cultures in the field of avian cell biology. Although mimicking the bone marrow niche is a classic challenge of mammalian stem cell research, experiments have never been conducted in poultry on preparing in vitro the bone marrow niche. It is well known, however, that all diseases cause immunosuppression and target immune cells and their development. Hematopoietic stem cells (HSC) reside in the bone marrow and constitute a source for immune cells of lymphoid and myeloid origins. Disease prevention and control in poultry are facing new challenges, such as greater use of alternative breeding systems and expanding production of eggs and chicken meat in developing countries. Moreover, the COVID-19 pandemic will draw greater attention to the importance of disease management in poultry because poultry constitutes a rich source of zoonotic diseases. For these reasons, and because they will lead to a better understanding of disease pathogenesis, in vivo HSC niches for studying disease pathogenesis can be valuable tools for developing more effective disease prevention, diagnosis, and control. The main goal of this review is to summarize knowledge about avian hematopoietic cells, HSC niches, avian immunosuppressive diseases, and isolation of HSC, and the main part of the review is dedicated to using 3D cell cultures and their possible use for studying disease pathogenesis with practical examples. Therefore, this review can serve as a practical guide to support further preparation of 3D avian HSC niches to study the pathogenesis of avian diseases.
Collapse
Affiliation(s)
- Vladimir Zmrhal
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Andrea Svoradova
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- NPPC, Research Institute for Animal Production in Nitra, Luzianky, Slovak Republic
| | - Andrej Batik
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
19
|
Liu J, Li X, Song F, Cui S, Lu W, Zhao J, Zhang H, Gu Z, Chen W. Dietary supplementation with low-dose xylooligosaccharide promotes the anti-Salmonella activity of probiotic Lactiplantibacillus plantarum ZS2058 in a murine model. Food Res Int 2022; 151:110858. [PMID: 34980394 DOI: 10.1016/j.foodres.2021.110858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/22/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022]
Abstract
Oligosaccharides have been previously reported to cause an aggravation of Salmonella infection. In this study, we reduced the dietary supplementation of oligosaccharides (1% w/w) and studied their effects on the anti-Salmonella activity of probiotic Lactiplantibacillus plantarum (L. plantarum) ZS2058. The results showed that among all five studied oligosaccharides, only xylooligosaccharide (XOS) promoted the anti-Salmonella activity of L. plantarum ZS2058 by increasing the survival rate of the infected mice (66.7% vs. 53.3%). Further study revealed that XOS did not function synergistically with L. plantarum ZS2058, as XOS itself did not improve the survival rate of the infected mice. In an in vitro coculture system, XOS significantly promoted the antagonistic activity (92% increase) of L. plantarum ZS2058 against Salmonella. In Salmonella-infected mice, the combination of XOS and L. plantarum ZS2058 significantly increased the faecal content of short-chain fatty acids (SCFAs) and restored the production of proinflammatory cytokines. More importantly, XOS, L. plantarum ZS2058 and their combination changed the gut microbiota into distinct profiles. Linear Discriminant Analysis (LDA) effect size (LEfSe) analysis identified five taxa as marker bacteria for mice treated with a combination of XOS and L. plantarum ZS2058. In particular, Mucispirillum, which was previously reported to protect the host from Salmonella infection, was increased. Here, we showed that low dose XOS could promote the anti-Salmonella activity of the probiotic L. plantarum ZS2058. These results offer new opportunities to cope with this predominant food-borne pathogen with great efficiency and to lay a foundation for developing functional foods with anti-Salmonella potential.
Collapse
Affiliation(s)
- Junsheng Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, PR China
| | - Fanfen Song
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
20
|
Redweik GAJ, Kogut MH, Arsenault RJ, Lyte M, Mellata M. Reserpine improves Enterobacteriaceae resistance in chicken intestine via neuro-immunometabolic signaling and MEK1/2 activation. Commun Biol 2021; 4:1359. [PMID: 34862463 PMCID: PMC8642538 DOI: 10.1038/s42003-021-02888-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
Salmonella enterica persist in the chicken gut by suppressing inflammatory responses via expansion of intestinal regulatory T cells (Tregs). In humans, T cell activation is controlled by neurochemical signaling in Tregs; however, whether similar neuroimmunological signaling occurs in chickens is currently unknown. In this study, we explore the role of the neuroimmunological axis in intestinal Salmonella resistance using the drug reserpine, which disrupts intracellular storage of catecholamines like norepinephrine. Following reserpine treatment, norepinephrine release was increased in both ceca explant media and Tregs. Similarly, Salmonella killing was greater in reserpine-treated explants, and oral reserpine treatment reduced the level of intestinal Salmonella Typhimurium and other Enterobacteriaceae in vivo. These antimicrobial responses were linked to an increase in antimicrobial peptide and IL-2 gene expression as well as a decrease in CTLA-4 gene expression. Globally, reserpine treatment led to phosphorylative changes in epidermal growth factor receptor (EGFR), mammalian target of rapamycin (mTOR), and the mitogen-associated protein kinase 2(MEK2). Exogenous norepinephrine treatment alone increased Salmonella resistance, and reserpine-induced antimicrobial responses were blocked using beta-adrenergic receptor inhibitors, suggesting norepinephrine signaling is crucial in this mechanism. Furthermore, EGF treatment reversed reserpine-induced antimicrobial responses, whereas mTOR inhibition increased antimicrobial activities, confirming the roles of metabolic signaling in these responses. Finally, MEK1/2 inhibition suppressed reserpine, norepinephrine, and mTOR-induced antimicrobial responses. Overall, this study demonstrates a central role for MEK1/2 activity in reserpine induced neuro-immunometabolic signaling and subsequent antimicrobial responses in the chicken intestine, providing a means of reducing bacterial colonization in chickens to improve food safety.
Collapse
Affiliation(s)
- Graham A. J. Redweik
- grid.34421.300000 0004 1936 7312Department of Food Science and Human Nutrition, Iowa State University, Ames, IA USA ,grid.34421.300000 0004 1936 7312Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA USA ,grid.266190.a0000000096214564Present Address: Molecular, Cellular & Developmental Biology, Colorado University-Boulder, Boulder, CO USA
| | - Michael H. Kogut
- grid.512846.c0000 0004 0616 2502Southern Plains Agricultural Research Center, USDA-ARS College Station, TX USA
| | - Ryan J. Arsenault
- grid.33489.350000 0001 0454 4791Department of Animal and Food Sciences, University of Delaware, Newark, DE USA
| | - Mark Lyte
- grid.34421.300000 0004 1936 7312Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA USA ,grid.34421.300000 0004 1936 7312Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA USA
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA. .,Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, USA.
| |
Collapse
|
21
|
Shanmugasundaram R, Acevedo K, Mortada M, Akerele G, Applegate TJ, Kogut MH, Selvaraj RK. Effects of Salmonella enterica ser. Enteritidis and Heidelberg on host CD4+CD25+ regulatory T cell suppressive immune responses in chickens. PLoS One 2021; 16:e0260280. [PMID: 34843525 PMCID: PMC8629318 DOI: 10.1371/journal.pone.0260280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Poultry infected with Salmonella mount an immune response initially, however the immune responses eventually disappear leading the bird to be a carrier of Salmonella. The hypothesis of this study is that Salmonella infection induces T regulatory cell numbers and cytokine production and suppress host T cells locally in the gut to escape the host immune responses. An experiment was conducted to comparatively analyze the effect of S. enterica ser. Enteritidis (S. Enteritidis) and S. enterica ser. Heidelberg (S. Heidelberg) infection on CD4+CD25+ T regulatory cell properties in chickens. A total of 144 broiler chicks were randomly distributed into three experimental groups of non-infected control, S. Enteritidis infected and S. Heidelberg infected groups. Chickens were orally inoculated with PBS (control) or 5x106 CFU/mL of either S. Enteritidis or S. Heidelberg at 3 d of age. Each group was replicated in six pens with eight chickens per pen. Chickens infected with S. Enteritidis had 6.2, 5.4, and 3.8 log10 CFU/g, and chickens infected with S. Heidelberg had 7.1, 4.8, and 4.1 log10 CFU/g Salmonella in the cecal contents at 4, 11, and 32 dpi, respectively. Both S. Enteritidis and S. Heidelberg were recovered from the liver and spleen 4 dpi. At 4, 11, and 32 dpi, chickens infected with S. Enteritidis and S. Heidelberg had increased CD4+CD25+ cell numbers as well as IL-10 mRNA transcription of CD4+CD25+ cells compared to that in the control group. CD4+CD25+ cells from S. Enteritidis- and S. Heidelberg-infected chickens and restimulated with 1 μg antigen in vitro, had higher (P < 0.05) IL-10 mRNA transcription than the CD4+CD25+ cells from the non-infected controls Though at 4dpi, chickens infected with S. Enteritidis and S. Heidelberg had a significant (P < 0.05) increase in CD4+CD25- IL-2, IL-1β, and IFNγ mRNA transcription, the CD4+CD25- IL-2, IL-1β, and IFNγ mRNA transcription, were comparable to that in the control group at 11 and 32dpi identifying that the host inflammatory response against Salmonella disappears at 11 dpi. It can be concluded that S. Enteritidis and S. Heidelberg infection at 3 d of age induces a persistent infection through inducing CD4+CD25+ cells and altering the IL-10 mRNA transcription of CD4+CD25+ cell numbers and cytokine production in chickens between 3 to 32 dpi allowing chickens to become asymptomatic carriers of Salmonella after 18 dpi.
Collapse
Affiliation(s)
- Revathi Shanmugasundaram
- USDA-ARS, Toxicology and Mycotoxins Research Unit, Athens, GA, United States of America
- * E-mail:
| | - Keila Acevedo
- Department of Poultry Sciences, The University of Georgia, Athens, GA, United States of America
| | - Mohamad Mortada
- Department of Poultry Sciences, The University of Georgia, Athens, GA, United States of America
| | - Gabriel Akerele
- Department of Poultry Sciences, The University of Georgia, Athens, GA, United States of America
| | - Todd J. Applegate
- Department of Poultry Sciences, The University of Georgia, Athens, GA, United States of America
| | - Michael H. Kogut
- U.S. Department of Agriculture-ARS, Plains Area, College Station, TX, United States of America
| | - Ramesh K. Selvaraj
- Department of Poultry Sciences, The University of Georgia, Athens, GA, United States of America
| |
Collapse
|
22
|
Acevedo-Villanueva KY, Renu S, Shanmugasundaram R, Akerele GO, Gourapura RJ, Selvaraj RK. Salmonella chitosan nanoparticle vaccine administration is protective against Salmonella Enteritidis in broiler birds. PLoS One 2021; 16:e0259334. [PMID: 34784366 PMCID: PMC8594846 DOI: 10.1371/journal.pone.0259334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
Salmonella control strategies include vaccines that help reduce the spread of Salmonella in poultry flocks. In this study we evaluated the efficacy of administering a live Salmonella vaccine followed by a killed Salmonella chitosan nanoparticle (CNP) vaccine booster on the cellular and humoral immunity of broilers. The CNP vaccine was synthesized with Salmonella Enteritidis (S. Enteritidis) outer-membrane-proteins (OMPs) and flagellin-proteins. At d1-of-age, one-hundred-sixty-eight chicks were allocated into treatments: 1) No vaccine, 2) Live vaccine (Poulvac®ST), 3) CNP vaccine, 4) Live+CNP vaccine. At d1-of-age, birds were orally vaccinated with PBS, Live vaccine, or CNP. At d7-of-age, the No vaccine, Live vaccine and CNP vaccine groups were boosted with PBS and the Live+CNP vaccine group was boosted with CNP. At d14-of-age, birds were challenged with 1×109 CFU/bird S. Enteritidis. There were no significant differences in body-weight-gain (BWG) or feed-conversion-ratio (FCR). At 8h-post-challenge, CNP and Live+CNP-vaccinated birds had 17% and 24% greater levels (P<0.05) of anti-Salmonella OMPs IgA in bile, respectively, compared to control. At d28-of-age, CNP, Live, and Live+CNP-vaccinated birds had 33%, 18%, and 24% greater levels (P<0.05) of anti-Salmonella OMPs IgA in bile, respectively, compared to control. At d14-of-age, Live+CNP-vaccinated birds had 46% greater levels (P<0.05) of anti-Salmonella OMPs IgY in serum, compared to control. At d21-of-age, splenocytes from CNP and Live-vaccinated birds had increased (P<0.05) T-lymphocyte proliferation at 0.02 mg/mL OMPs stimulation compared to the control. At d28-of-age, CNP and Live+CNP-vaccinated birds had 0.9 Log10 CFU/g and 1 Log10 CFU/g decreased S. Enteritidis cecal loads (P<0.05), respectively, compared to control. The CNP vaccine does not have adverse effects on bird's BWG and FCR or IL-1β, IL-10, IFN-γ, or iNOS mRNA expression levels. It can be concluded that the CNP vaccine, as a first dose or as a booster vaccination, is an alternative vaccine candidate against S. Enteritidis in broilers.
Collapse
Affiliation(s)
| | - Sankar Renu
- Department of Veterinary Preventative Medicine, Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, United States of America
| | | | - Gabriel O. Akerele
- Department of Poultry Science, The University of Georgia, Athens, Georgia, United States of America
| | - Renukaradhy J. Gourapura
- Department of Veterinary Preventative Medicine, Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
23
|
Acevedo-Villanueva KY, Akerele GO, Al Hakeem WG, Renu S, Shanmugasundaram R, Selvaraj RK. A Novel Approach against Salmonella: A Review of Polymeric Nanoparticle Vaccines for Broilers and Layers. Vaccines (Basel) 2021; 9:vaccines9091041. [PMID: 34579278 PMCID: PMC8470574 DOI: 10.3390/vaccines9091041] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
This work discusses the present-day limitations of current commercial Salmonella vaccines for broilers and layers and explores a novel approach towards poultry vaccination using biodegradable nanoparticle vaccines against Salmonella. With the increasing global population and poultry production and consumption, Salmonella is a potential health risk for humans. The oral administration of killed or inactivated vaccines would provide a better alternative to the currently commercially available Salmonella vaccines for poultry. However, there are currently no commercial oral killed-vaccines against Salmonella for use in broilers or layers. There is a need for novel and effective interventions in the poultry industry. Polymeric nanoparticles could give way to an effective mass-administered mucosal vaccination method for Salmonella. The scope of this work is limited to polymeric nanoparticles against Salmonella for use in broilers and layers. This review is based on the information available at the time of the investigation.
Collapse
Affiliation(s)
- Keila Y. Acevedo-Villanueva
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA; (K.Y.A.-V.); (G.O.A.); (W.G.A.H.)
| | - Gabriel O. Akerele
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA; (K.Y.A.-V.); (G.O.A.); (W.G.A.H.)
| | - Walid Ghazi Al Hakeem
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA; (K.Y.A.-V.); (G.O.A.); (W.G.A.H.)
| | - Sankar Renu
- Upkara Inc., 45145 W 12 Mile Rd, Novi, MI 48377, USA;
| | | | - Ramesh K. Selvaraj
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA; (K.Y.A.-V.); (G.O.A.); (W.G.A.H.)
- Correspondence:
| |
Collapse
|
24
|
Tolerogenic Immunoregulation towards Salmonella Enteritidis Contributes to Colonization Persistence in Young Chicks. Infect Immun 2021; 89:e0073620. [PMID: 34031125 PMCID: PMC8281283 DOI: 10.1128/iai.00736-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Long-term survival and the persistence of bacteria in the host suggest either host unresponsiveness or induction of an immunological tolerant response to the pathogen. The role of the host immunological response to persistent colonization of Salmonella Enteritidis (SE) in chickens remains poorly understood. In the current study, we performed a cecal tonsil transcriptome analysis in a model of SE persistent infection in 2-week-old chickens to comprehensively examine the dynamics of host immunological responses in the chicken gastrointestinal tract. Our results revealed overall host tolerogenic adaptive immune regulation in a major gut-associated lymphoid tissue, the cecal tonsil, during SE infection. Specifically, we observed consistent downregulation of the metallothionein 4 gene at all four postinfection time points (3, 7, 14, and 21 days postinfection [dpi]), which suggested potential pathogen-associated manipulation of the host zinc regulation as well as a possible immune modulatory effect. Furthermore, delayed activation in the B cell receptor signaling pathway and failure to sustain its active state during the lag phase of infection were further supported by an insignificant production of both intestinal and circulatory antibodies. Tug-of-war for interleukin 2 (IL-2) regulation between effector T cells and regulatory T cells appears to have consequences for upregulation in the transducer of ERBB2 (TOB) pathway, a negative regulator of T cell proliferation. In conclusion, this work highlights the overall host tolerogenic immune response that promotes persistent colonization by SE in young layer chicks.
Collapse
|
25
|
Efficacy of a nanoparticle vaccine administered in-ovo against Salmonella in broilers. PLoS One 2021; 16:e0247938. [PMID: 33822791 PMCID: PMC8023474 DOI: 10.1371/journal.pone.0247938] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/16/2021] [Indexed: 11/19/2022] Open
Abstract
Salmonella is a zoonotic pathogen that persists in poultry. Salmonella vaccines that can be delivered in-ovo can be cost-effective and can decrease Salmonella load in poultry. This study evaluates the efficacy of a Salmonella chitosan-nanoparticle (CNP) vaccine, administered in-ovo, in broilers. CNP vaccine was synthesized with Salmonella Enteritidis (SE) outer-membrane-proteins (OMPs) and flagellin proteins. At embryonic-d18, one-hundred-thirty-six eggs were injected with 200μl PBS or 1000μg CNP into the amniotic cavity. At d1-of-age, 132 chicks were allocated in 6 pens/treatment with 11 chicks/pen. At d7, birds were orally challenged with 1×109 CFU/bird SE. At d1, 8h-post-challenge, d14, and d21, serum anti-SE-OMPs IgY were analyzed. At d14 and d21, cloacal swabs and bile anti-SE-OMPs IgA, CD4+/CD8+-T-cell ratios, and ceca SE loads were analyzed. At d21, cecal tonsil IL-1β, IL-10, and iNOS mRNA were analyzed. Body-weight-gain (BWG) and feed-conversion-ratio (FCR) were recorded weekly. Data were analyzed by Student's t-test at P<0.05. There were no significant differences in BWG or FCR between vaccinated birds compared to control. At d1, CNP-vaccinated birds had 5.62% greater levels (P<0.05) of anti-SE-OMPs IgY, compared to control. At 8h-post-challenge, CNP-vaccinated birds had 6.39% greater levels (P<0.05) of anti-SE-OMPs IgY, compared to control. At 2wk-post-challenge, CNP-vaccinated birds had 7.34% lower levels (P<0.05) of anti-SE-OMPs IgY, compared to control. At 1wk-post-challenge, CNP-vaccinated birds had 15.30% greater levels (P<0.05) of bile anti-SE-OMPs IgA, compared to control. At d14 and d21, CNP-vaccinated birds had 0.62 and 0.85 Log10 CFU/g, decreased SE ceca load (P<0.05), respectively, compared to control. There were no significant differences in CD4+/CD8+-T-cell ratios between vaccinated birds compared to control. There were no significant differences in IL-1β, IL-10, iNOS mRNA between vaccinated birds compared to control. Findings demonstrate that the in-ovo administration of CNP vaccine can induce an antigen-specific immune response against SE and can decrease SE cecal load in broilers.
Collapse
|
26
|
Sylte MJ, Sivasankaran SK, Trachsel J, Sato Y, Wu Z, Johnson TA, Chandra LC, Zhang Q, Looft T. The Acute Host-Response of Turkeys Colonized With Campylobacter coli. Front Vet Sci 2021; 8:613203. [PMID: 33889603 PMCID: PMC8057350 DOI: 10.3389/fvets.2021.613203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/08/2021] [Indexed: 01/17/2023] Open
Abstract
Consumption of contaminated poultry products is one of the main sources of human campylobacteriosis, of which Campylobacter jejuni subsp. jejuni (C. jejuni) and C. coli are responsible for ~98% of the cases. In turkeys, the ceca are an important anatomical site where Campylobacter asymptomatically colonizes. We previously demonstrated that commercial turkey poults colonized by C. jejuni showed acute changes in cytokine gene expression profiles, and histological intestinal lesions at 2 days post-inoculation (dpi). Cecal tonsils (CT) are an important part of the gastrointestinal-associated lymphoid tissue that surveil material passing in and out of the ceca, and generate immune responses against intestinal pathogens. The CT immune response toward Campylobacter remains unknown. In this study, we generated a kanamycin-resistant C. coli construct (CcK) to facilitate its enumeration from cecal contents after experimental challenge. In vitro analysis of CcK demonstrated no changes in motility when compared to the parent isolate. Poults were inoculated by oral gavage with CcK (5 × 107 colony forming units) or sterile-media (mock-colonized), and euthanized at 1 and 3 dpi. At both time points, CcK was recovered from cecal contents, but not from the mock-colonized group. As a marker of acute inflammation, serum alpha-1 acid glycoprotein was significantly elevated at 3 dpi in CcK inoculated poults compared to mock-infected samples. Significant histological lesions were detected in cecal and CT tissues of CcK colonized poults at 1 and 3 dpi, respectively. RNAseq analysis identified 250 differentially expressed genes (DEG) in CT from CcK colonized poults at 3 dpi, of which 194 were upregulated and 56 were downregulated. From the DEG, 9 significantly enriched biological pathways were identified, including platelet aggregation, response to oxidative stress and negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathway. These data suggest that C. coli induced an acute inflammatory response in the intestinal tract of poults, and that platelet aggregation and oxidative stress in the CT may affect the turkey's ability to resist Campylobacter colonization. These findings will help to develop and test Campylobacter mitigation strategies to promote food safety in commercial turkeys.
Collapse
Affiliation(s)
- Matthew J Sylte
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, U.S. Department of Agriculture, Ames, IA, United States
| | - Sathesh K Sivasankaran
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, U.S. Department of Agriculture, Ames, IA, United States
- Genome Informatics Facility, Iowa State University, Ames, IA, United States
| | - Julian Trachsel
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, U.S. Department of Agriculture, Ames, IA, United States
| | - Yuko Sato
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, IA, United States
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Timothy A Johnson
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, U.S. Department of Agriculture, Ames, IA, United States
| | - Lawrance C Chandra
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, U.S. Department of Agriculture, Ames, IA, United States
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Torey Looft
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Services, U.S. Department of Agriculture, Ames, IA, United States
| |
Collapse
|
27
|
Akerele G, Ramadan N, Renu S, Renukaradhya GJ, Shanmugasundaram R, Selvaraj RK. In vitro characterization and immunogenicity of chitosan nanoparticles loaded with native and inactivated extracellular proteins from a field strain of Clostridium perfringens associated with necrotic enteritis. Vet Immunol Immunopathol 2020; 224:110059. [PMID: 32408182 DOI: 10.1016/j.vetimm.2020.110059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
Abstract
There are currently no licensed vaccines against Clostridium perfringens which causes necrotic enteritis in poultry. Chitosan nanoparticles were formulated with native (CN) or toxoids (CT) of extracellular proteins (ECP) of C. perfringens, both surface-tagged with Salmonella flagellar proteins. In a pH stability assay, CN and CT nanoparticles released 6% and 0% of their protein at 8.0 pH. In a protein release assay, CN and CT nanoparticles released 16% and 10% of their protein respectively at 7.4 pH after 24 h. CN and CT nanoparticles incubated at 100 μg/mL PBS with Chicken RBCs released 1% and 0% hemoglobin respectively. Ninety broilers were randomly assigned to treatments; sham-vaccinated (Control), CN-vaccinated (CN), and CT-vaccinated (CT). Each bird was orally gavaged with 50 μg vaccine in 0.5 mL PBS or 0.5 mL PBS only on d 0, 3, 7 and 14 of age. At 21 d of age, the CN group had higher anti-ECP IgA than control (P < 0.05). At 21 d of age, the CN and CT group had higher anti-ECP IgA than control (P < 0.05). At 17 d of age, the CN group had higher anti-flagellar IgG than control (P < 0.05). At 10 d of age, the CN group had higher anti-flagellar IgA than control (P < 0.05). Splenic T cells from chickens in the CN and CT group ex-vivo stimulated with 0.05 mg/mL ECP, had higher proliferation control (P < 0.05, P < 0.01 respectively). Splenic T cells from chickens in the CN and CT groups ex-vivo stimulated with 0.1 mg/mL ECP had proliferation than control (P < 0.05). Pooled serum from 17 d of age CN and CT-vaccinated birds partially neutralized toxins in 50 μg of ECP (P < 0.05). Pooled serum from 28 d of age CN-vaccinated birds also partially neutralized toxins in 50 μg of ECP. The result from this study indicates the potential for chitosan loaded with Clostridium perfringens extracellular proteins to be applied to necrotic enteritis challenge studies.
Collapse
Affiliation(s)
- Gabriel Akerele
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, United States
| | - Nour Ramadan
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, United States
| | - Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, 44691, OH, United States
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, 44691, OH, United States
| | | | - Ramesh K Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
28
|
Dietary supplementation with vitamin C ameliorates the adverse effects of Salmonella Enteritidis-challenge in broilers by shaping intestinal microbiota. Poult Sci 2020; 99:3663-3674. [PMID: 32616263 PMCID: PMC7597860 DOI: 10.1016/j.psj.2020.03.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
Salmonella Enteritidis (SE) infection is not only a leading cause of poor production performance and compromised animal welfare in broilers but also a potential threat to public health. Two experiments were conducted to evaluate the effects of dietary supplemental vitamin C (VC) on SE challenged-broilers. In experiment 1, one hundred eighty 1-day-old Arbor Acre broilers were randomly allocated into 3 treatments, with 0, 500, or 1,000 mg/kg VC included in the diet. In experiment 2, dietary VC at 0 or 500 mg/kg, with or without SE challenge was applied in a 2 × 2 factorial arrangement in 6 randomized complete blocks. In experiment 1, addition with 500 mg/kg VC increased BW and infectious bursal disease (IBD) titer of broilers on 35 D (P < 0.05), whereas 1,000 mg/kg VC had no effects on the IBD titer (P > 0.05) compared with the control group. In experiment 2, SE challenge depressed BW on 11 and 21 D (P < 0.05 and P = 0.088, respectively), whereas increased mortality and hepatic bacterial translocation (P < 0.05) on 21 D. Further, SE challenge resulted in lower villus height in jejunum, lower microbial richness, and diversity, whereas higher abundance of Enterobacteriaceae in cecum (P < 0.05). Importantly, supplementation with VC increased BW on both 21 and 35 D (P < 0.05 and P = 0.088, respectively) and enhanced the intestinal health by improving villus morphology and microbial structure as indicated by higher cecal microbial richness and Firmicutes to Bacteroidetes ratio, while lower abundance of Enterobacteriaceae (P < 0.05). In addition, birds fed with 500 mg/kg VC in the diet had significantly increased jejunal secretory immunoglobulin A levels, T lymphocytes stimulation index, and serum total antioxidant capability compared with groups without VC (P < 0.05). In conclusion, SE challenge induced lower production performance and higher mortality in broilers. However, dietary supplementation with VC ameliorated SE-caused damage in broilers by improving the intestinal health, partly mediated by shaping the structure of cecal microbiota.
Collapse
|
29
|
Liu Z, Wu Q, Jiao C, Cheng B, Zhu D, Ma Y, Li Y, Li W. Effects of Glutamine on the Mucosal Structure and Immune Cells in the Intestines of Broiler Chickens Challenged with Salmonella Enteritidis. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2020. [DOI: 10.1590/1806-9061-2020-1270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Z Liu
- Henan University of Science and Technology, PR China
| | - Q Wu
- Henan University of Science and Technology, PR China
| | - C Jiao
- Henan University of Science and Technology, PR China
| | - B Cheng
- Henan University of Science and Technology, PR China
| | - D Zhu
- Henan University of Science and Technology, PR China
| | - Y Ma
- Henan University of Science and Technology, PR China
| | - Y Li
- Henan University of Science and Technology, PR China
| | - W Li
- Henan University of Science and Technology, PR China
| |
Collapse
|
30
|
Shanmugasundaram R, Mortada M, Cosby DE, Singh M, Applegate TJ, Syed B, Pender CM, Curry S, Murugesan GR, Selvaraj RK. Synbiotic supplementation to decrease Salmonella colonization in the intestine and carcass contamination in broiler birds. PLoS One 2019; 14:e0223577. [PMID: 31600299 PMCID: PMC6786831 DOI: 10.1371/journal.pone.0223577] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022] Open
Abstract
In vitro and in vivo experiments were conducted to study the effects of synbiotic supplementation on Salmonella enterica ser. Enteritidis (SE) proliferation, cecal content load, and broiler carcass contamination. Lactobacillus reuteri, Enterococcus faecium, Bifidobacterium animalis, and Pediococcus acidilactici culture supernatants decreased (P < 0.05) the in vitro proliferation of SE at 1:1 supernatant: pathogen dilution. A total of 240 Cobb-500 broiler chicks were randomly allotted to three treatment groups (8 replicates/group with 10 birds/replicate): control (basal diet), antibiotic (Virginiamycin at 20 mg/kg feed), synbiotic (PoultryStar® ME at 0.5 g/kg feed containing L. reuteri, E. faecium, B. animalis, P. acidilactici and a Fructooligosaccharide) from day of hatch. At 21 d of age, all birds in experimental groups were orally inoculated with 250 μl of 1 X 109 CFU SE. Antibiotic supplementation increased (P < 0.05) body weight and feed consumption, compared to the control group. Birds in the synbiotic supplementation had intermediate body weight and feed consumption that were not significantly different from both the control and antibiotic group at 42 d of age in SE infected birds. No significant effects were observed in feed efficiency at 42 d of age among the groups. Antibiotic and synbiotic supplementation decreased (P < 0.05) SE load in cecal contents by 0.90 and 0.85 log units/ g and carcass SE load by 1.4 and 1.5 log units/mL of rinsate compared to the control group at 42 d of age (21 dpi). The relative abundance of IL-10, IL-1, TLR-4, and IFNγ mRNA was decreased (P < 0.05) in the antibiotic and synbiotic supplementation groups compared to the control birds at 42 d of age (21 dpi). It can be concluded that synbiotic supplementation decreased SE proliferation in vitro and decreased SE load in the cecal contents and broiler carcass.
Collapse
Affiliation(s)
- R. Shanmugasundaram
- Department of Poultry Sciences, University of Georgia, Athens, GA, United States of America
| | - M. Mortada
- Department of Poultry Sciences, University of Georgia, Athens, GA, United States of America
| | - D. E. Cosby
- USDA-ARS, Athens, GA, United States of America
| | - M. Singh
- Department of Poultry Sciences, University of Georgia, Athens, GA, United States of America
| | - T. J. Applegate
- Department of Poultry Sciences, University of Georgia, Athens, GA, United States of America
| | - B. Syed
- BIOMIN Holding GmbH, Getzersdorf, Austria
| | - C. M. Pender
- BIOMIN America Inc., Overland Park, KS, United States of America
| | - S. Curry
- BIOMIN America Inc., Overland Park, KS, United States of America
| | - G. R. Murugesan
- BIOMIN America Inc., Overland Park, KS, United States of America
| | - R. K. Selvaraj
- Department of Poultry Sciences, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
31
|
Zitnan R, Albrecht E, Kalbe C, Miersch C, Revajova V, Levkut M, Röntgen M. Muscle characteristics in chicks challenged with Salmonella Enteritidis and the effect of preventive application of the probiotic Enterococcus faecium. Poult Sci 2019; 98:2014-2025. [PMID: 30590796 PMCID: PMC6448134 DOI: 10.3382/ps/pey561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022] Open
Abstract
The present study was conducted to assess the effects of the probiotic Enterococcus faecium AL41 (EF) and of the enteric pathogen Salmonella Enteritidis PT4 (SE) on the development of posthatch pectoralis major muscle (PM) of broiler chicks. The four experimental groups were control (CON), EF, SE, and EF+SE (EFSE). EF and SE were given per os from days 1 to 7 and at day 4 posthatch, respectively. Muscle samples from 6 chicks per group were taken at day 8 (D8) and day 11 (D11) to evaluate PM myofiber growth, capillarization, DNA, RNA, and protein content, as well as enzyme activities (isocitrate dehydrogenase, lactate dehydrogenase, creatine kinase). PM growth rate was 7.45 ± 2.7 g/d in non-SE groups (CON, EF) and 5.10 ± 1.82 g/d in SE-infected groups (P < 0.02). Compared with group CON, application of bacteria (groups EF and SE) reduced the fiber cross-sectional area (246 and 262 vs. 347 ± 19 μm2) and the number of myonuclei per fiber (0.66 and 0.64 vs. 0.79 ± 0.03). At D11, hypertrophic myofiber growth normalized in the EF group, but negative effects persisted in SE and EFSE birds contributing to lower daily PM gain. In addition, SE infection strongly disturbed PM capillarization. Negative effects on capillary cross-sectional area and on the area (%) covered by capillaries persisted until D11 in the SE group, whereas pre-feeding of EF restored capillarization in the EFSE group to control levels. We conclude that supplementation of the probiotic bacteria EF AL41 had positive effects on PM capillarization and, thus, on delivery of O2, supply of nutrients, and removal of metabolites. Supplementation of probiotic bacteria might therefore reduce energetic stress and improve muscle health and meat quality during SE infection.
Collapse
Affiliation(s)
- R Zitnan
- National Agriculture and Food Centre, Research Institute of Animal Production, Nitra, Kosice, Slovakia
| | - E Albrecht
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - C Kalbe
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - C Miersch
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - V Revajova
- Department of Pathological Anatomy, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - M Levkut
- Department of Pathological Anatomy, University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - M Röntgen
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
32
|
Adhikari P, Cosby DE, Cox NA, Franca MS, Williams SM, Gogal RM, Ritz CW, Kim WK. Effect of dietary fructooligosaccharide supplementation on internal organs Salmonella colonization, immune response, ileal morphology, and ileal immunohistochemistry in laying hens challenged with Salmonella enteritidis. Poult Sci 2018; 97:2525-2533. [PMID: 29669131 DOI: 10.3382/ps/pey101] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/08/2018] [Indexed: 01/20/2023] Open
Abstract
A study was conducted to evaluate the efficacy of fructooligosaccharides (FOS) in controlling the infection of Salmonella Enteritidis (SE) in White Leghorns. A total of 30 laying hens (white leghorns W-36) were challenged both orally and cloacally with approximately 108 colony-forming units of nalidxic acid resistant SE (SENAR) and divided into 3 treatments: 1) SENAR challenged + 0.0% FOS, 2) SENAR challenged + 0.5% FOS (Nutraflora), and 3) SENAR challenged + 1.0% FOS. SENAR recovery via fecal shedding was measured at 3- and 6-d post-infection (dpi), whereas in the ceca and internal organs, SENAR recovery was measured at 7-d post-infection. In the first experiment, there was a 1.0 log10 and a 1.3 log10 reduction in cecal SENAR by supplementation of FOS at 0.5 and 1.0%, respectively. In the second experiment, there was a 0.6 log10 and a 0.8 log10 reduction in cecal SENAR by supplementation of FOS at 0.5 and 1.0%, respectively. Fecal shedding was significantly lower in 1.0% FOS supplemented groups compared to SENAR challenge 0.0% FOS. There was no significant difference among the 3 treatments on SENAR recovery in liver with gall bladder and ovaries. However, the frequency of positive SENAR in the ovaries (10 to 40%) in SENAR challenge 0.0% FOS was significantly lower than liver with gall bladder (60 to 80%) in both experiments. There was a significant upregulation of toll-like receptor-4 in 1.0% FOS and interferon gamma in both 0.5 and 1.0% FOS. Histologic measurements of ileal villi height and crypt depth were similar across all treatments. Immunohistochemistry analyses of ileal samples showed that immunoglobulin A positive cells increased as FOS concentration increased reaching significance at 1.0% as well as altered cytokine gene expression in the ileum. Further, FOS supplementation also reduced cecal SENAR and feces SENAR levels. Collectively, the results suggest that dietary supplementation with FOS may impair SE pathogenesis while modulating humoral immunity within the gut-associated lymphoid tissue.
Collapse
Affiliation(s)
- Pratima Adhikari
- Department of Poultry Science, Mississippi State University, Starkville, Mississippi, 39762, USA
| | - Douglas E Cosby
- USDA, ARS, The U.S. National Poultry Research Center, Athens, GA 30605, USA
| | - Nelson A Cox
- USDA, ARS, The U.S. National Poultry Research Center, Athens, GA 30605, USA
| | - Monique S Franca
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Susan M Williams
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Robert M Gogal
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Casey W Ritz
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
33
|
Adhikari P, Cosby DE, Cox NA, Kim WK. Effect of dietary supplementation of nitrocompounds on Salmonella colonization and ileal immune gene expression in laying hens challenged with Salmonella Enteritidis. Poult Sci 2017; 96:4280-4286. [DOI: 10.3382/ps/pex221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/10/2017] [Indexed: 12/29/2022] Open
|
34
|
Santin E, Hayashi RM, Wammes JC, Gonzalez-Esquerra R, Carazzolle MF, Freire CCDM, Monzani PS, da Cunha AF. Phenotypic and Genotypic Features of a Salmonella Heidelberg Strain Isolated in Broilers in Brazil and Their Possible Association to Antibiotics and Short-Chain Organic Acids Resistance and Susceptibility. Front Vet Sci 2017; 4:184. [PMID: 29164140 PMCID: PMC5671994 DOI: 10.3389/fvets.2017.00184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 10/11/2017] [Indexed: 01/04/2023] Open
Abstract
Salmonella enterica serovar Heidelberg is a human pathogen also found in broilers. A strain (UFPR1) has been associated with field reports of resistance to short-chain organic acids (SCOA) in broilers in the South of Brazil, but was susceptible to a Bacillus subtilis-based probiotic added in feed in a related study. This work aimed to (i) report clinical symptoms caused by SH UFPR1 in broilers, (ii) study its susceptibility to some antibiotics in vitro, and (iii) SCOA in vivo; and (iv) relate these phenotypic observations with its genome characteristics. Two in vivo trials used 1-day-old chicks housed for 21 days in 8 sterilized isolated negative pressure rooms with 4 battery cages of 12 birds each. Birds were challenged or not with 107 CFU/bird of SH UFPR1 orally and exposed or not to SCOA in a 2 × 2 factorial design. Zootechnical parameters were unaffected (P > 0.05), no clinical signs were observed, and few cecal and hepatic histologic and immune-related alterations were seen, in birds challenged with SH. Formic and propionic acids added together in drinking water, fumaric and benzoic acid in feed (Trial 1), and coated calcium butyrate in feed (Trial 2) did not reduce the SH isolation frequencies seen in cecum and liver in broilers after SH challenge (P > 0.05). SH UFPR1 was susceptible to amikacin, amoxicillin + clavulanate, ceftiofur, cephalexin, doxycycline and oxytetracycline; and mildly susceptible to ampicillin + sulbactam, cephalothin, ciprofloxacin, enrofloxacin, and gentamycin in an in vitro minimum inhibitory concentration model using Mueller–Hinton agar. The whole genome of SH UFPR1 was sequenced and consisted of a circular chromosome, spanning 4,760,321 bp with 52.18% of GC-content encoding 84 tRNA, 22 rRNA, and 4,427 protein-coding genes. The comparison between SH UFPR1 genome and a multidrug-resistant SL476 strain revealed 11 missing genomic fragments and 5 insertions related to bgt, bgr, and rpoS genes. The deleted genes codify proteins associated with cell cycle regulation, virulence, drug resistance, cellular adhesion, and salt efflux which collectively reveal key aspects of the evolution and adaptation of SH strains such as organic acids resistance and antibiotic sensitivity and provide information relevant to the control of SH in poultry.
Collapse
Affiliation(s)
- Elizabeth Santin
- Laboratório de Microbiologia e Ornitopatologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Ricardo Mitsuo Hayashi
- Laboratório de Microbiologia e Ornitopatologia, Universidade Federal do Paraná, Curitiba, Brazil
| | - Jessica Caroline Wammes
- Laboratório de Microbiologia e Ornitopatologia, Universidade Federal do Paraná, Curitiba, Brazil
| | | | | | - Caio César de Melo Freire
- Laboratório de Bioquímica e Genética Aplicada, Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Paulo Sérgio Monzani
- Faculdade de Zootecnia e Engenharia de Alimentos, Departamento de Medicina Veterinária, Universidade de São Paulo, Pirassununga, Brazil
| | - Anderson Ferreira da Cunha
- Laboratório de Bioquímica e Genética Aplicada, Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
35
|
Gast RK, Guraya R, Jones DR, Anderson KE, Karcher DM. Frequency and Duration of Fecal Shedding of Salmonella Enteritidis by Experimentally Infected Laying Hens Housed in Enriched Colony Cages at Different Stocking Densities. Front Vet Sci 2017; 4:47. [PMID: 28443289 PMCID: PMC5385464 DOI: 10.3389/fvets.2017.00047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 03/22/2017] [Indexed: 12/02/2022] Open
Abstract
Human infections with Salmonella Enteritidis are often attributed to the consumption of contaminated eggs, so the prevalence of this pathogen in egg-laying poultry is an important public health risk factor. Numerous and complex environmental influences on Salmonella persistence and transmission are exerted by management practices and housing facilities used in commercial egg production. In recent years, the animal welfare implications of poultry housing systems have guided the development of alternatives to traditional cage-based housing, but their food safety consequences are not yet fully understood. The present study assessed the effects of different bird stocking densities on the frequency and duration of fecal shedding of S. Enteritidis in groups of experimentally infected laying hens housed in colony cages enriched with perching and nesting areas. In two trials, groups of laying hens were distributed at two stocking densities (648 and 973 cm2/bird) into enriched colony cages and (along with a group housed in conventional cages at 648 cm2/bird) orally inoculated with doses of 1.0 × 108 cfu of S. Enteritidis. At 10 weekly postinoculation intervals, samples of voided feces were collected from beneath each cage and cultured to detect S. Enteritidis. Fecal shedding of S. Enteritidis was detected for up to 10 weeks postinoculation by hens in all three housing treatment groups. The overall frequency of positive fecal cultures was significantly (P < 0.05) greater from conventional cages than from enriched colony cages (at the lower stocking density) for the total of all sampling dates (45.0 vs. 33.3%) and also for samples collected at 4–9 weeks postinfection. Likewise, the frequency of S. Enteritidis isolation from feces from conventional cages was significantly greater than from enriched colony cages (at the higher hen stocking density) for the sum of all samples (45.0 vs. 36.7%) and at 6 weeks postinoculation. Moreover, the frequency of S. Enteritidis fecal recovery from enriched colony cages at the higher hen stocking was significantly greater than from similar cages at the lower stocking density for all 10 sampling dates combined (39.4 vs. 33.3%). These results suggest that stocking density can affect S. Enteritidis intestinal colonization and fecal shedding in laying hens, but some other difference between conventional and enriched colony cage systems appears to exert an additional influence.
Collapse
Affiliation(s)
- Richard K Gast
- USDA Agricultural Research Service, U. S. National Poultry Research Center, Athens, GA, USA
| | - Rupa Guraya
- USDA Agricultural Research Service, U. S. National Poultry Research Center, Athens, GA, USA
| | - Deana R Jones
- USDA Agricultural Research Service, U. S. National Poultry Research Center, Athens, GA, USA
| | - Kenneth E Anderson
- Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Darrin M Karcher
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
36
|
Kogut MH, Arsenault RJ. Immunometabolic Phenotype Alterations Associated with the Induction of Disease Tolerance and Persistent Asymptomatic Infection of Salmonella in the Chicken Intestine. Front Immunol 2017; 8:372. [PMID: 28421074 PMCID: PMC5378774 DOI: 10.3389/fimmu.2017.00372] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/15/2017] [Indexed: 11/15/2022] Open
Abstract
The adaptation of Salmonella enterica to the eukaryotic host is a key process that enables the bacterium to survive in a hostile environment. Salmonella have evolved an intimate relationship with its host that extends to their cellular and molecular levels. Colonization, invasion, and replication of the bacteria in an appropriate host suggest that modification of host functions is central to pathogenesis. Intuitively, this subversion of the cell must be a complex process, since hosts are not inherently programmed to provide an environment conducive to pathogens. Hosts have evolved countermeasures to pathogen invasion, establishment, and replication through two types of defenses: resistance and tolerance. Resistance functions to control pathogen invasion and reduce or eliminate the invading pathogen. Research has primarily concentrated on resistance mechanisms that are mediated by the immune system. On the other hand, tolerance is mediated by different mechanisms that limit the damage caused by a pathogen’s growth without affecting or reducing pathogen numbers or loads. The mechanisms of tolerance appear to be separated into those that protect host tissues from the virulence factors of a pathogen and those that limit or reduce the damage caused by the host immune and inflammatory responses to the pathogen. Some pathogens, such as Salmonella, have evolved the capacity to survive the initial robust immune response and persist. The persistent phase of a Salmonella infection in the avian host usually involves a complex balance of protective immunity and immunopathology. Salmonella is able to stay in the avian ceca for months without triggering clinical signs. Chronic colonization of the intestinal tract is an important aspect of persistent Salmonella infection because it results in a silent propagation of bacteria in poultry stocks due to the impossibility to isolate contaminated animals. Data from our lab promote the hypothesis that Salmonella have evolved a unique survival strategy in poultry that minimizes host defenses (disease resistance) during the initial infection and then exploits and/or induces a dramatic immunometabolic reprogramming in the cecum that alters the host defense to disease tolerance. Unfortunately, this disease tolerance results in the ongoing human food safety dilemma.
Collapse
Affiliation(s)
| | - Ryan J Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
37
|
Kogut MH, Swaggerty CL, Byrd JA, Selvaraj R, Arsenault RJ. Chicken-Specific Kinome Array Reveals that Salmonella enterica Serovar Enteritidis Modulates Host Immune Signaling Pathways in the Cecum to Establish a Persistence Infection. Int J Mol Sci 2016; 17:ijms17081207. [PMID: 27472318 PMCID: PMC5000605 DOI: 10.3390/ijms17081207] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/15/2016] [Accepted: 07/08/2016] [Indexed: 02/07/2023] Open
Abstract
Non-typhoidal Salmonella enterica induces an early, short-lived pro-inflammatory response in chickens that is asymptomatic of clinical disease and results in a persistent colonization of the gastrointestinal (GI) tract that transmits infections to naïve hosts via fecal shedding of bacteria. The underlying mechanisms that control this persistent colonization of the ceca of chickens by Salmonella are only beginning to be elucidated. We hypothesize that alteration of host signaling pathways mediate the induction of a tolerance response. Using chicken-specific kinomic immune peptide arrays and quantitative RT-PCR of infected cecal tissue, we have previously evaluated the development of disease tolerance in chickens infected with Salmonella enterica serovar Enteritidis (S. Enteritidis) in a persistent infection model (4-14 days post infection). Here, we have further outlined the induction of an tolerance defense strategy in the cecum of chickens infected with S. Enteritidis beginning around four days post-primary infection. The response is characterized by alterations in the activation of T cell signaling mediated by the dephosphorylation of phospholipase c-γ1 (PLCG1) that inhibits NF-κB signaling and activates nuclear factor of activated T-cells (NFAT) signaling and blockage of interferon-γ (IFN-γ) production through the disruption of the JAK-STAT signaling pathway (dephosphorylation of JAK2, JAK3, and STAT4). Further, we measured a significant down-regulation reduction in IFN-γ mRNA expression. These studies, combined with our previous findings, describe global phenotypic changes in the avian cecum of Salmonella Enteritidis-infected chickens that decreases the host responsiveness resulting in the establishment of persistent colonization. The identified tissue protein kinases also represent potential targets for future antimicrobial compounds for decreasing Salmonella loads in the intestines of food animals before going to market.
Collapse
Affiliation(s)
- Michael H Kogut
- Southern Plains Agricultural Resarch Center, United States Department of Agriculture, Agricultural Research Service, College Station, TX 77845, USA.
| | - Christina L Swaggerty
- Southern Plains Agricultural Resarch Center, United States Department of Agriculture, Agricultural Research Service, College Station, TX 77845, USA.
| | - James Allen Byrd
- Southern Plains Agricultural Resarch Center, United States Department of Agriculture, Agricultural Research Service, College Station, TX 77845, USA.
| | - Ramesh Selvaraj
- Ohio Agricultural Research Center, The Ohio State University, Wooster, OH 44691, USA.
| | - Ryan J Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
38
|
Gast RK, Guraya R, Jones DR, Anderson KE, Karcher DM. Colonization of internal organs by Salmonella Enteritidis in experimentally infected laying hens housed in enriched colony cages at different stocking densities. Poult Sci 2016; 95:1363-9. [DOI: 10.3382/ps/pew037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 01/08/2016] [Indexed: 01/12/2023] Open
|
39
|
Kogut MH, Genovese KJ, He H, Arsenault RJ. AMPK and mTOR: sensors and regulators of immunometabolic changes during Salmonella infection in the chicken. Poult Sci 2015; 95:345-53. [PMID: 26706353 DOI: 10.3382/ps/pev349] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/01/2015] [Indexed: 11/20/2022] Open
Abstract
Non-typhoidal Salmonella enterica induce an early pro-inflammatory response in chickens, but the response is short-lived, asymptomatic of clinical disease, results in a persistent colonization of the gastrointestinal (GI) tract, and can transmit infections to naïve hosts via fecal shedding of bacteria. The underlying mechanisms that facilitate this persistent colonization of the ceca of chickens by Salmonella are unknown. We have begun to concentrate on the convergence of metabolism and immune function as playing a major role in regulating the host responsiveness to infection. It is now recognized that the immune system monitors the metabolic state of tissues and responds by modulating metabolic function. The aim in this review is to summarize the literature that has defined a series of genotypic and phenotypic alterations in the regulatory host immune-metabolic signaling pathways in the local cecal microenvironment during the first 4 d following infection with Salmonella enterica serovar Enteritidis. Using chicken-specific kinomic immune-metabolism peptide arrays and quantitative real-time-PCR of cecal tissue during the early (4 to 48 h) and late stages (4 to 17 d) of a Salmonella infection in young broiler chickens, the local immunometabolic microenvironment has been ascertained. Distinct immune and metabolic pathways are altered between 2 to 4 d post-infection that dramatically changed the local immunometabolic environment. Thus, the tissue immunometabolic phenotype of the cecum plays a major role in the ability of the bacterium to establish a persistent cecal colonization. In general, our findings show that AMPK and mTOR are key players linking specific extracellular milieu and intracellular metabolism. Phenotypically, the early response (4 to 48 h) to Salmonella infection is pro-inflammatory, fueled by glycolysis and mTOR-mediated protein synthesis, whereas by the later phase (4 to 5 d), the local environment has undergone an immune-metabolic reprogramming to an anti-inflammatory state driven by AMPK-directed oxidative phosphorylation. Therefore, metabolism appears to provide a potential critical control point that can impact infection. Further understanding of metabolic control of immunity during infection should provide crucial information of the development of novel therapeutics based on metabolic modulators that enhance protection or inhibit infection.
Collapse
Affiliation(s)
- Michael H Kogut
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX
| | - Kenneth J Genovese
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX
| | - Haiqi He
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX
| | - Ryan J Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware
| |
Collapse
|
40
|
Kogut MH, Arsenault RJ. A Role for the Non-Canonical Wnt-β-Catenin and TGF-β Signaling Pathways in the Induction of Tolerance during the Establishment of a Salmonella enterica Serovar Enteritidis Persistent Cecal Infection in Chickens. Front Vet Sci 2015; 2:33. [PMID: 26664962 PMCID: PMC4672200 DOI: 10.3389/fvets.2015.00033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/24/2015] [Indexed: 12/14/2022] Open
Abstract
Non-typhoidal Salmonella enterica induce an early pro-inflammatory response in chickens. However, the response is short-lived, asymptomatic of disease, resulting in a persistent colonization of the ceca, and fecal shedding of bacteria. The underlying mechanisms that control this persistent infection of chickens by Salmonella are unknown. Recently, we found an expansion of the Treg population and subsequent increased in vitro immunosuppressive functions of the CD4(+)CD25(+) cells isolated from the ceca of the Salmonella-infected chickens by day 4 post-infection that increased steadily throughout the course of the 14 days of infection, whereas the number of CD4(+)CD25(+) cells in the non-infected controls remained steady throughout the study. CD4(+)CD25(+) cells from cecal tonsils of S. enteritidis-infected birds had greater expression of IL-10 mRNA content than the CD4(+)CD25(+) cells from the non-infected controls at all the time points studied. These results suggest the development of a tolerogenic immune response in the cecum of Salmonella-infected chickens may contribute to the persistance of Salmonella cecal colonization. Using a chicken-specific kinome peptide immune array, we have analyzed the signaling pathways altered during the establishment of this tolerogenic state. This analysis has revealed a role for the non-canonical Wnt signaling pathway in the cecum at 4 days post-infection. Infection induced the significant (p < 0.01) phosphorylation of the G-protein-coupled transmembrane protein, Frizzled 1 (FZD1), resulting in an influx of intracellular Ca(2+) and the phosphorylation of the Ca(2+)-dependent effector molecules calcium/calmodulin-dependent kinase II (CamKII), β-catenin, protein kinase C, and the activation of the transcription factor, NFAT. Nuclear translocation of NFAT resulted in a significant increase in the expression of the anti-inflammatory cytokines IL-10 and TGF-β. Increased expression of TGF-β4 mRNA activates the TGF-β signaling pathway that phosphorylates the receptor-activated Smads, Smad2 and Smad3. Combined with the results from our Treg studies, these studies describe kinome-based phenotypic changes in the cecum of chickens during Salmonella Enteritidis infection starting 4 days post-infection that leads to an anti-inflammatory, tolerogenic local environment, and results in the establishment of persistent intestinal colonization.
Collapse
Affiliation(s)
- Michael H Kogut
- Southern Plains Agricultural Research Center (SPARC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA) , College Station, TX , USA
| | - Ryan J Arsenault
- Southern Plains Agricultural Research Center (SPARC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA) , College Station, TX , USA
| |
Collapse
|