1
|
Ji W, Kim TY, Lee CW, Kim ZH, Jung JY, Ban BC, Kong C, Kim M. Supplementation of Parachlorella sp. in feed promote the gut microbiome colonization and fecal IgA response of broiler in both early and late period. Poult Sci 2025; 104:104572. [PMID: 39631282 PMCID: PMC11665406 DOI: 10.1016/j.psj.2024.104572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/09/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
This study evaluated the effects of Parachlorella sp. KSN1 (PA) supplementation on the gut microbiota and intestinal immunity of broilers of different ages. A total of 180 Ross 308 broiler chicks were weighed and divided into early (1 to 10 days post hatch) and late (11 to 28 days post hatch) periods, with six replicates of 10 chicks per cage assigned to two dietary groups. The experimental diets included a corn-soybean meal-based control diet and a treatment diet supplemented with 0.5% PA, replacing corn or corn starch, and fed ad libitum for the assigned experimental period. On days 10 and 28, two broilers from each of the six replicate cages, with 7 broilers per cage in each group, were selected and euthanized, and cecal feces and intestinal tissue samples were collected. PA supplementation did not significantly affect broilers growth performance during both the early and the late periods. However, PA supplementation altered the cecal microbiome, with Clostridiaceae and Clostridium exhibiting prominent and consistent changes. In terms of intestinal immunity, PA supplementation significantly increased the number of CD3+ and CD4+ T cells when administered only during the early period. Cecal IgA levels were significantly increased by PA supplementation during both the early and late periods. A significant positive correlation was observed between IgA, Clostridiaceae and Clostridium during the early and late periods. Gene expression analysis identified 40 upregulated genes, including polymeric immunoglobulin receptor (pIgR), and 142 downregulated genes, including marginal zone B and B1 cell specific protein and immunoglobulin lambda-like polypeptide 1 that were associated with the IgA response in PA-treated broilers during the early period. This study demonstrated that PA supplementation promotes gut microbial colonization and intestinal immunity development during the early age of broilers. These findings suggest that the early growth period of broilers is the optimal time for dietary immunomodulation to promote gut health in broilers.
Collapse
Affiliation(s)
- Woonhak Ji
- Department of Animal Science, College of Natural Resources & Live Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Tae-Yong Kim
- Department of Animal Science, College of Natural Resources & Live Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Chae Won Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Z-Hun Kim
- Hu Evergreen Pharm Corp., 164 Yeorumul-ro, Bupyeong-gu, Incheon 21445, Republic of Korea
| | - Ji Young Jung
- Biological Resources Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Republic of Korea
| | - Byeong Cheol Ban
- Department of Animal Science, College of Natural Resources & Live Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Changsu Kong
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Republic of Korea; Department of Animal Science, Kyungpook National University, Sangju 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224, Republic of Korea.
| | - Myunghoo Kim
- Department of Animal Science, College of Natural Resources & Live Science, Pusan National University, Miryang 50463, Republic of Korea; Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea; Future Earth Research Institute, PNU JYS Science Academy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
2
|
Chuaychu SB, Sirisereewan C, Techakriengkrai N, Tummaruk P, Thanawongnuwech R, Nedumpun T. Enhancement of systemic virus-specific T lymphocyte responses in pigs supplemented with algae-derived β-glucan. Vet J 2024; 306:106182. [PMID: 38897378 DOI: 10.1016/j.tvjl.2024.106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Algae-derived β-glucan has been widely used as a feed additive in the swine industry. The supplementation of β-glucan aims to improve growth performance and modulate the immunity of pigs. However, the potential effects of supplementing β-glucan from algae on immune responses in pigs-specifically antigen-specific immunity-must be determined. In this study, the effects of algae-derived β-glucan supplementation on growth performance, virus neutralising antibody and virus-specific T lymphocytes responses were investigated in pigs. Piglets (n=112 per treatment) were assigned to three treatments including non-supplemented group (control), β-glucan 100 g/ton supplemented group (BG100), and β-glucan 200 g/ton supplemented group (BG200). In this study, production performance of pigs was not found to be different between the experimental groups. Pigs supplemented with β-glucan exhibited high levels of classical swine fever virus (CSFV)-specific producing T lymphocytes and neutralising antibody titer, compared to the control group. Interestingly, supplementation of β-glucan significantly enhanced porcine reproductive and respiratory syndrome virus (PRRSV)-specific interferon-gamma (IFN-γ) producing T lymphocytes, including CD4+, CD8+, and CD4+CD8+ T lymphocyte subpopulations. Moreover, PRRS modified live vaccine (MLV) viremia was reduced in earlier for β-glucan-supplemented pigs compared to the control group. The findings indicate that the algae-derived β-glucan possesses biological potential as an immunomodulatory substance to enhance antiviral immunity, which may contribute to disease resistance in pigs.
Collapse
Affiliation(s)
- Sh B Chuaychu
- International Graduate Program of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - C Sirisereewan
- Graduate Program in Veterinary Pathobiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - N Techakriengkrai
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - P Tummaruk
- Department of Obstetrics Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - R Thanawongnuwech
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - T Nedumpun
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
3
|
Abdel Haleem MI, Khater HF, Edris SN, Taie HAA, Abdel Gawad SM, Hassan NA, El-Far AH, Magdy Y, Elbasuni SS. Bioefficacy of dietary inclusion of Nannochloropsis oculata on Eimeria spp. challenged chicks: clinical approaches, meat quality, and molecular docking. Avian Pathol 2024; 53:199-217. [PMID: 38285881 DOI: 10.1080/03079457.2024.2312133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
Although anticoccidial drugs have been used to treat avian coccidiosis for nearly a century, resistance, bird harm, and food residues have caused health concerns. Thus, Nannochloropsis oculata was investigated as a possible coccidiosis treatment for broilers. A total of 150 1-day-old male Cobb broiler chicks were treated as follows: G1-Ng: fed a basal diet; G2-Ps: challenged with Eimeria spp. oocysts and fed basal diet; G3-Clo: challenged and fed basal diet with clopidol; G4-NOa: challenged and fed 0.1% N. oculata in diet, and G5-NOb: challenged and fed 0.2% N. oculata. Compared to G2-Ps, N. oculata in the diet significantly (P < 0.05) decreased dropping scores, lesion scores, and oocyst shedding. Without affecting breast meat colour metrics, N. oculata improved meat quality characters. At 28 days of age, birds received 0.2% N. oculata had significantly (P < 0.05) higher serum levels of MDA, T-SOD, HDL, and LDL cholesterol compared to G2-Ps. Serum AST, ALT, and urea levels were all decreased when N. oculata (0.2%) was used as opposed to G2-Ps. Histopathological alterations and the number of developmental and degenerative stages of Eimeria spp. in the intestinal epithelium were dramatically reduced by 0.2% N. oculata compared to G2-Ps. Molecular docking revealed a higher binding affinity of N. oculata for E. tenella aldolase, EtAMA1, and EtMIC3, which hindered glucose metabolism, host cell adhesion, and invasion of Eimeria. Finally, N. oculata (0.2%) can be used in broiler diets to mitigate the deleterious effects of coccidiosis.
Collapse
Affiliation(s)
- Marwa I Abdel Haleem
- Department of Avian and Rabbit Diseases, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Hanem F Khater
- Department of Parasitology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Shimaa N Edris
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Hanan A A Taie
- Plant Biochemistry Department, National Research Centre, Dokki, Egypt
| | - Samah M Abdel Gawad
- Department of Parasitology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Nibal A Hassan
- Department of Biology, Animal Reproduction Research Institute, Pathology Department, Giza, Egypt
- College of Science, Taif University, Taif, Saudi Arabia
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Yasmeen Magdy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Sawsan S Elbasuni
- Department of Avian and Rabbit Diseases, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| |
Collapse
|
4
|
de Souza Theodoro S, Gonçalves Tozato ME, Warde Luis L, Goloni C, Bassi Scarpim L, Bortolo M, Cavalieri Carciofi A. β-glucans from Euglena gracilis or Saccharomyces cerevisiae effects on immunity and inflammatory parameters in dogs. PLoS One 2024; 19:e0304833. [PMID: 38820480 PMCID: PMC11142716 DOI: 10.1371/journal.pone.0304833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
Considering the differences in molecular structure and function, the effects of β-1,3-glucans from Euglena gracilis and β-1,3/1,6-glucans from Saccharomyces cerevisiae on immune and inflammatory activities in dogs were compared. Four diets were compared: control without β-glucans (CON), 0.15 mg/kg BW/day of β-1,3/1,6-glucans (Β-Y15), 0.15 mg/kg BW/day of β-1,3-glucans (Β-S15), and 0.30 mg/kg BW/day of β-1,3-glucans (Β-S30). Thirty-two healthy dogs (eight per diet) were organized in a block design. All animals were fed CON for a 42-day washout period and then sorted into one of four diets for 42 days. Blood and faeces were collected at the beginning and end of the food intake period and analysed for serum and faecal cytokines, ex vivo production of hydrogen peroxide (H2O2) and nitric oxide (NO), phagocytic activity of neutrophils and monocytes, C-reactive protein (CRP), ex vivo production of IgG, and faecal concentrations of IgA and calprotectin. Data were evaluated using analysis of covariance and compared using Tukey's test (P<0.05). Dogs fed Β-Y15 showed higher serum IL-2 than dogs fed Β-S30 (P<0.05). A higher phagocytic index of monocytes was observed in dogs fed the B-S15 diet than in those fed the other diets, and a higher neutrophil phagocytic index was observed for B-S15 and B-Y15 than in dogs fed the CON diet (P<0.05). Monocytes from dogs fed B-S15 and B-S30 produced more NO and less H2O2 than those from the CON and B-Y15 groups (P<0.05). Despite in the reference value, CRP levels were higher in dogs fed B-S15 and B-S30 diets (P<0.05). β-1,3/1,6-glucan showed cell-mediated activation of the immune system, with increased serum IL-2 and neutrophil phagocytic index, whereas β-1,3-glucan acted on the immune system by increasing the ex vivo production of NO by monocytes, neutrophil phagocytic index, and serum CRP. Calprotectin and CRP levels did not support inflammation or other health issues related to β-glucan intake. In conclusion, both β-glucan sources modulated some immune and inflammatory parameters in dogs, however, different pathways have been suggested for the recognition and action of these molecules, reinforcing the necessity for further mechanistic studies, especially for E. gracilis β-1,3-glucan.
Collapse
Affiliation(s)
- Stephanie de Souza Theodoro
- Veterinary Medicine and Surgery Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Maria Eduarda Gonçalves Tozato
- Veterinary Medicine and Surgery Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Letícia Warde Luis
- Veterinary Medicine and Surgery Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Camila Goloni
- Veterinary Medicine and Surgery Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Lucas Bassi Scarpim
- Animal Science Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Marcelino Bortolo
- Kemin Nutrisurance Nutrição Animal LTDA, Brasil, Vargeão, Santa Catarina, Brazil
| | - Aulus Cavalieri Carciofi
- Veterinary Medicine and Surgery Department, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| |
Collapse
|
5
|
de Carvalho RH, Callegari MA, Dias CP, Kirwan S, da Costa MCR, da Silva CA. Euglena gracilis β-Glucans (1,3): Enriching Colostrum of Sow for Enhanced Piglet Immunity. Animals (Basel) 2023; 13:3490. [PMID: 38003108 PMCID: PMC10668842 DOI: 10.3390/ani13223490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The effects of supplementing the diet of sows with βG-(1,3) derived from Euglena gracilis algae were assessed regarding quality and amount of colostrum as well as performance of piglets. A total of 120 sows (first (nulliparous) to sixth parity (multiparous)) from D85 of gestation until weaning were divided into two groups: the control diet group (n = 60) and the βG-(1,3) diet group (n = 60). Sows receiving βG-(1,3) exhibited an average increase of 870 g (24.9%) in colostrum production, leading to a 25.17% higher intake of colostrum by piglets. Furthermore, piglets in the βG-(1,3) group showed significantly superior weight gain of 34 g (50%) compared to the control group 18 h after birth (p < 0.05). Sows fed with βG-(1,3) produced colostrum with significantly higher concentrations of IgG (5.914 mg/mL, 16.16%) and IgM (0.378 mg/mL, 16.29%) than the control group (p < 0.05). Similarly, serum concentrations of IgG (13.86 mg/mL, 51.25%), IgA (17.16 mg/mL, 120.19%), and IgM (13.23 mg/mL, 144.78%) were significantly higher in sows fed with βG-(1,3) than in the control group (p < 0.05). Supplementing sows with βG-(1,3) derived from the Euglena gracilis algae resulted in increased colostrum production and consumption, along with greater weight gain in piglets during the first 18 h after birth. Additionally, both the colostrum produced by the sows and the blood serum of the piglets exhibited higher concentrations of immunoglobulins.
Collapse
Affiliation(s)
- Rafael Humberto de Carvalho
- Department of Zootechnology, Center of Agrarian Sciences, State University of Londrina, Londrina 86057970, PR, Brazil;
- Akei Animal Research, Fartura 18870970, SP, Brazil; (M.A.C.); (C.P.D.)
| | | | | | | | | | - Caio Abércio da Silva
- Department of Zootechnology, Center of Agrarian Sciences, State University of Londrina, Londrina 86057970, PR, Brazil;
| |
Collapse
|
6
|
Lozano J, Louro M, Almeida C, Victório AC, Melo P, Rodrigues JP, Oliveira M, Paz-Silva A, Madeira de Carvalho L. Isolation of saprophytic filamentous fungi from avian fecal samples and assessment of its predatory activity on coccidian oocysts. Sci Rep 2023; 13:8965. [PMID: 37268693 DOI: 10.1038/s41598-023-36120-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Fungal strains used in the biocontrol of animal gastrointestinal parasites have been mainly isolated from pasture soil, decaying organic matter, and feces from herbivores and carnivores. However, their isolation from birds and assessment of predatory activity against avian GI parasites has been scarce thus far. This research aimed to isolate filamentous fungi from avian fecal samples and evaluate their predatory activity against coccidia. A pool of 58 fecal samples from chickens, laying hens, and peacocks, previously collected between July 2020-April 2021, were used for isolation of filamentous fungi and assessment of their in vitro predatory activity against coccidian oocysts, using Water-Agar medium and coprocultures. The Willis-flotation technique was also performed to obtain concentrated suspensions of oocysts. A total of seven Mucor isolates was obtained, being the only fungal taxa identified, and all presented lytic activity against coccidia. Isolates FR3, QP2 and SJ1 had significant coccidiostatic efficacies (inhibition of sporulation) higher than 70%, while isolates FR1, QP2 and QP1 had coccidicidal efficacies (destruction of the oocysts) of 22%, 14% and 8%, respectively, after 14 days of incubation, being a gradual and time-dependent process. To our knowledge, this is the first report regarding the isolation of native predatory fungi from avian feces and demonstration of their lytic activity against coccidia.
Collapse
Affiliation(s)
- João Lozano
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal.
| | - Mariana Louro
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Cristina Almeida
- Exoclinic - Clínica Veterinária de Aves e Exóticos, Quinta de Santo António, 1495-049, Miraflores, Portugal
| | - Ana Cláudia Victório
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Pedro Melo
- Vetnatura - Serviços Veterinários, Lda., Calçada de Palma de Baixo, 1600-176, Lisbon, Portugal
| | | | - Manuela Oliveira
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Adolfo Paz-Silva
- Control of Parasites Research Group (COPAR, GI-2120), Department of Animal Pathology, Faculty of Veterinary, University of Santiago de Compostela, 27142, Lugo, Spain
| | - Luís Madeira de Carvalho
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| |
Collapse
|
7
|
Morales D. Food By-Products and Agro-Industrial Wastes as a Source of β-Glucans for the Formulation of Novel Nutraceuticals. Pharmaceuticals (Basel) 2023; 16:460. [PMID: 36986559 PMCID: PMC10051131 DOI: 10.3390/ph16030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Food and agro-industrial by-products provoke a great environmental and economic impact that must be minimized by adding value to these wastes within the framework of circular economy. The relevance of β-glucans obtained from natural sources (cereals, mushrooms, yeasts, algae, etc.), in terms of their interesting biological activities (hypocholesterolemic, hypoglycemic, immune-modulatory, antioxidant, etc.), has been validated by many scientific publications. Since most of these by-products contain high levels of these polysaccharides or can serve as a substrate of β-glucan-producing species, this work reviewed the scientific literature, searching for studies that utilized food and agro-industrial wastes to obtain β-glucan fractions, attending to the applied procedures for extraction and/or purification, the characterization of the glucans and the tested biological activities. Although the results related to β-glucan production or extraction using wastes are promising, it can be concluded that further research on the glucans' characterization, and particularly on the biological activities in vitro and in vivo (apart from antioxidant capacity), is required to reach the final goal of formulating novel nutraceuticals based on these molecules and these raw materials.
Collapse
Affiliation(s)
- Diego Morales
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; or
- Departmental Section of Galenic Pharmacy and Food Technology, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
8
|
Cao L, Li J, Zhang J, Huang H, Gui F, Xu W, Zhang L, Bi S. Beta-glucan enhanced immune response to Newcastle disease vaccine and changed mRNA expression of spleen in chickens. Poult Sci 2022; 102:102414. [PMID: 36565635 PMCID: PMC9801214 DOI: 10.1016/j.psj.2022.102414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The present study was performed to investigate the effect of oral administration of β-glucan (G70), a product obtained from the cell wall of yeast, on Newcastle disease virus (NDV)-specific hemagglutination inhibition (HI) titers, lymphocyte proliferation, and the role of T lymphocyte subpopulations in chickens treated with live NDV vaccine. In addition, the influence of β-glucan on splenic gene expression was investigated by transcriptome sequencing. The results revealed that the supplementation of β-glucan boosted the titer of serum NDV HI increased the NDV stimulation index of lymphocytes in peripheral blood and intestinal tract, and promoted the differentiation of T lymphocytes into CD4+ T cells. The RNA sequencing (RNA-seq) analysis demonstrated that G70 upregulated the mRNA expressions related to G-protein coupled receptor and MHC class I polypeptide, and downregulated the mRNA expressions related to cathelicidin and beta-defensin. The immunomodulatory effect of G70 might function through mitogen-activated protein kinase signaling pathway. To sum up, G70 could boost the immunological efficacy of live NDV vaccine in chickens and could be applied as a potential adjuvant candidate in the poultry industry.
Collapse
Affiliation(s)
- Liting Cao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Jun Li
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Jianrong Zhang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Huan Huang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Fuxing Gui
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China
| | - Wei Xu
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Li Zhang
- Immunology Research Center, Medical Research Institute, Southwest University, Rongchang, Chongqing 402460, P. R. China
| | - Shicheng Bi
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, P. R. China,Correspondence author:
| |
Collapse
|
9
|
Amer SA, Attia GA, Aljahmany AA, Mohamed AK, Ali AA, Gouda A, Alagmy GN, Megahed HM, Saber T, Farahat M. Effect of 1,3-Beta Glucans Dietary Addition on the Growth, Intestinal Histology, Blood Biochemical Parameters, Immune Response, and Immune Expression of CD3 and CD20 in Broiler Chickens. Animals (Basel) 2022; 12:3197. [PMID: 36428424 PMCID: PMC9687024 DOI: 10.3390/ani12223197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/18/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
This experiment evaluated the impact of the dietary addition of 1,3-β-glucans (GLU) on broiler chickens’ growth, intestinal histology, blood biochemical parameters, and immunity. Two hundred three-day-old male broilers (Ross 308) (97.93 ± 0.19 g/chick) were randomly assigned into four treatments with five replicates, each containing ten birds, in a complete randomized design. The four treatments were formulated with 0, 50, 100, and 150 mg 1,3-β-glucans kg−1 in broiler chicken diets. During the study, no significant impacts (p > 0.05) were observed in weight gain and feed conversion ratio (FCR) between treatment groups. Based on the results of total body weight gain and FCR, the optimal level of 1,3-β-glucan is 120 mg Kg−1. The intestinal histomorphology was improved by GLU supplementation, as indicated by increased villi height and villi height to crypt depth ratio (p < 0.01). All levels of supplemental β-1,3 glucan decreased the serum total cholesterol (TC), triglyceride levels, and low-density lipoprotein cholesterol (LDL-C) (p < 0.05). The serum levels of growth hormones (GH), triiodothyronine (T3), and thyroxine (T4) were increased in GLU-supplemented groups (p < 0.05). The serum immune indices (lysozyme activity, interleukin 10 (IL10), complement 3 (C3), and total protein levels) were increased in the GLU-supplemented groups (p < 0.05). Dietary GLU up-regulated the immunoexpression of CD3 (T-cell marker) and CD20 (B-cell marker) in the spleen of birds (p < 0.01). It can be concluded that 1,3-β-glucan can be added to broiler chicken diets for improving the development and integrity of the intestine and enhancing the bird’s immune status. The optimal level for 1,3-β-glucan dietary supplementation was 120 mg Kg−1. Dietary 1,3-β-glucan has a hypolipidemic effect and improves the hormonal profile of birds without affecting their growth rate.
Collapse
Affiliation(s)
- Shimaa A. Amer
- Department of Nutrition & Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ghadeer A. Attia
- Department of Nutrition & Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Abed Alsalam Aljahmany
- Department of Medical Basic Sciences, College of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia
| | - Aya K. Mohamed
- Department of Nutrition & Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Amer Al Ali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia
| | - Ahmed Gouda
- Animal Production Department, Agricultural & Biological Research Division, National Research Center, Dokki, Cairo 11865, Egypt
| | - Gehan N. Alagmy
- Department of Pathology, Animal Health Research Institute (AHRI), Agriculture Research Center (ARC), Zagazig 44511, Egypt
| | - Hend M. Megahed
- Department of Biochemistry, Animal Health Research Institute (AHRI), Agricultural Research Center ARC, Zagazig Branch, Zagazig 44511, Egypt
| | - Taisir Saber
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mahmoud Farahat
- Department of Nutrition & Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
10
|
Ebenezer TE, Low RS, O'Neill EC, Huang I, DeSimone A, Farrow SC, Field RA, Ginger ML, Guerrero SA, Hammond M, Hampl V, Horst G, Ishikawa T, Karnkowska A, Linton EW, Myler P, Nakazawa M, Cardol P, Sánchez-Thomas R, Saville BJ, Shah MR, Simpson AGB, Sur A, Suzuki K, Tyler KM, Zimba PV, Hall N, Field MC. Euglena International Network (EIN): Driving euglenoid biotechnology for the benefit of a challenged world. Biol Open 2022; 11:bio059561. [PMID: 36412269 PMCID: PMC9836076 DOI: 10.1242/bio.059561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Euglenoids (Euglenida) are unicellular flagellates possessing exceptionally wide geographical and ecological distribution. Euglenoids combine a biotechnological potential with a unique position in the eukaryotic tree of life. In large part these microbes owe this success to diverse genetics including secondary endosymbiosis and likely additional sources of genes. Multiple euglenoid species have translational applications and show great promise in production of biofuels, nutraceuticals, bioremediation, cancer treatments and more exotically as robotics design simulators. An absence of reference genomes currently limits these applications, including development of efficient tools for identification of critical factors in regulation, growth or optimization of metabolic pathways. The Euglena International Network (EIN) seeks to provide a forum to overcome these challenges. EIN has agreed specific goals, mobilized scientists, established a clear roadmap (Grand Challenges), connected academic and industry stakeholders and is currently formulating policy and partnership principles to propel these efforts in a coordinated and efficient manner.
Collapse
Affiliation(s)
- ThankGod Echezona Ebenezer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ross S. Low
- Organisms and Ecosystems, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | | | - Ishuo Huang
- Office of Regulatory Science, United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD 20740, USA
| | - Antonio DeSimone
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56127, Italy
| | - Scott C. Farrow
- Discovery Biology, Noblegen Inc., Peterborough, Ontario K9L 1Z8, Canada
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Robert A. Field
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Michael L. Ginger
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Sergio Adrián Guerrero
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral. CCT CONICET Santa Fe, Santa Fe 3000, Argentina
| | - Michael Hammond
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
| | - Vladimír Hampl
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec 25250, Czech Republic
| | - Geoff Horst
- Kemin Industries, Research and Development, Plymouth, MI 48170, USA
| | - Takahiro Ishikawa
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue 690-8504, Japan
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, Warsaw 02-089, Poland
| | - Eric W. Linton
- Department of Biology, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Peter Myler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute and Department of Biomedical Informatics & Medical Education, University of Washington, WA 98109, USA
| | - Masami Nakazawa
- Department of Applied Biochemistry, Faculty of Agriculture, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Pierre Cardol
- Department of Life Sciences, Institut de Botanique, Université de Liège, Liège 4000, Belgium
| | | | - Barry J. Saville
- Forensic Science, Environmental and Life Sciences Graduate Program, Trent University, Peterborough K9L 0G2, Canada
| | - Mahfuzur R. Shah
- Discovery Biology, Noblegen Inc., Peterborough, Ontario K9L 1Z8, Canada
| | - Alastair G. B. Simpson
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Aakash Sur
- Center for Global Infectious Disease Research, Seattle Children's Research Institute and Department of Biomedical Informatics & Medical Education, University of Washington, WA 98109, USA
| | - Kengo Suzuki
- R&D Company, Euglena Co., Ltd., 2F Yokohama Bio Industry Center (YBIC), 1-6 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kevin M. Tyler
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Center of Excellence for Bionanoscience Research, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Paul V. Zimba
- PVZimba, LLC, 12241 Percival St, Chester, VA 23831, USA
- Rice Rivers Center, VA Commonwealth University, Richmond, VA 23284, USA
| | - Neil Hall
- Organisms and Ecosystems, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, Norfolk, UK
| | - Mark C. Field
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
11
|
Lee W, Matthews A, Moore D. Safety Evaluation of a Novel Algal Feed Additive for Poultry Production. Avian Dis 2022; 66:1-11. [PMID: 36214407 DOI: 10.1637/aviandiseases-d-22-00043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022]
Abstract
Feed additives are critical components for poultry health and the economic viability of antibiotic-free poultry production. The aim of the present study is to evaluate the safety of a novel algal-derived feed additive, a dried biomass powder produced from Chlamydomonas reinhardtii strain crAL082, modified to express an N-acetylmuramoyl-L-alanine amidase (EC 3.5.1.28) and a lysozyme-type enzyme (EC 3.2.1.17). A 42-day oral toxicity study showed that the crAL082 dried biomass powder was fully tolerated by broiler chicken based on the lack of detrimental effects found in performance, mortality, hematology, blood clinical chemistry, and histopathologic results compared with those of a nontreated control group, resulting in a "No Observed Adverse Effect Level" of 5000 ppm, the highest dose tested. The study demonstrates the first-ever safety result of a C. reinhardtii microalgae dried biomass powder used as a feed additive in broiler chickens. Furthermore, safety is shown for the two additional enzymes expressed within the C. reinhardtii crAL082 strain and ingested by the birds.
Collapse
Affiliation(s)
- Weiluo Lee
- Axitan Ltd., Ground Floor Offices, Whittle Way, SG1 2FS, Stevenage, United Kingdom,
| | | | - Daniel Moore
- Colorado Quality Research, Inc., Wellington, CO 80549
| |
Collapse
|
12
|
Tounsi L, Hentati F, Ben Hlima H, Barkallah M, Smaoui S, Fendri I, Michaud P, Abdelkafi S. Microalgae as feedstock for bioactive polysaccharides. Int J Biol Macromol 2022; 221:1238-1250. [PMID: 36067848 DOI: 10.1016/j.ijbiomac.2022.08.206] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
Due to the increase in industrial demand for new biosourced molecules (notably bioactive exopolysaccharides (EPS)), microalgae are gaining popularity because of their nutraceutical potential and benefits health. Such health effects are delivered by specific secondary metabolites, e.g., pigments, exopolysaccharides, polyunsaturated fatty acids, proteins, and glycolipids. These are suitable for the subsequent uses in cosmetic, nutraceutical, pharmaceutical, biofuels, biological waste treatment, animal feed and food fields. In this regard, a special focus has been given in this review to describe the various methods used for extraction and purification of polysaccharides. The second part of the review provides an up-to-date and comprehensive summary of parameters affecting the microalgae growth and insights to maximize the metabolic output by understanding the intricacies of algal development and polysaccharides production. In the ultimate part, the health and nutraceutical claims associated with marine algal bioactive polysaccharides, explaining their noticeable potential for biotechnological applications, are summarized and comprehensively discussed.
Collapse
Affiliation(s)
- Latifa Tounsi
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia; Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Faiez Hentati
- Université de Lorraine, INRAE, Unité de Recherche Animal et Fonctionnalités des Produits Animaux (UR AFPA), USC 340, Nancy F-54000, France
| | - Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia
| | - Mohamed Barkallah
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia
| | - Slim Smaoui
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Route Sidi Mansour Km 6 B.P. 117, 3018 Sfax, Tunisia
| | - Imen Fendri
- Laboratoire de Biotechnologie des Plantes Appliquée à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, 3038 Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038 Sfax, Tunisia.
| |
Collapse
|
13
|
Microalgae Polysaccharides: An Alternative Source for Food Production and Sustainable Agriculture. POLYSACCHARIDES 2022. [DOI: 10.3390/polysaccharides3020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Carbohydrates or polysaccharides are the main products derived from photosynthesis and carbon fixation in the Calvin cycle. Compared to other sources, polysaccharides derived from microalgae are safe, biocompatible, biodegradable, stable, and versatile. These polymeric macromolecules present complex biochemical structures according to each microalgal species. In addition, they exhibit emulsifying properties and biological characteristics that include antioxidant, anti-inflammatory, antitumor, and antimicrobial activities. Some microalgal species have a naturally high concentration of carbohydrates. Other species can adapt their metabolism to produce more sugars from changes in temperature and light, carbon source, macro and micronutrient limitations (mainly nitrogen), and saline stress. In addition to growing in adverse conditions, microalgae can use industrial effluents as an alternative source of nutrients. Microalgal polysaccharides are predominantly composed of pentose and hexose monosaccharide subunits with many glycosidic bonds. Microalgae polysaccharides can be structural constituents of the cell wall, energy stores, or protective polysaccharides and cell interaction. The industrial use of microalgae polysaccharides is on the rise. These microorganisms present rheological and biological properties, making them a promising candidate for application in the food industry and agriculture. Thus, microalgae polysaccharides are promising sustainable alternatives for potential applications in several sectors, and the choice of producing microalgal species depends on the required functional activity. In this context, this review article aims to provide an overview of microalgae technology for polysaccharide production, emphasizing its potential in the food, animal feed, and agriculture sector.
Collapse
|
14
|
Choi J, Tompkins YH, Teng PY, Gogal RM, Kim WK. Effects of Tannic Acid Supplementation on Growth Performance, Oocyst Shedding, and Gut Health of in Broilers Infected with Eimeria Maxima. Animals (Basel) 2022; 12:ani12111378. [PMID: 35681844 PMCID: PMC9179276 DOI: 10.3390/ani12111378] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
The purpose of this study was to evaluate effects of tannic acid (TA) on growth performance, fecal moisture content, oocyst shedding, gut permeability, lesion score, intestinal morphology, apparent ileal digestibility, and the antioxidant and immune system of broilers infected with Eimeria maxima. A total of 420 one-day-old broilers were distributed to five treatments with seven replicates of 12 birds. The five treatments were the (1) sham-challenged control (SCC; birds fed a control diet and administrated with PBS); (2) challenged control (CC; birds fed a control diet and inoculated with E. maxima); (3) tannic acid 0.5 (TA0.5; CC + 500 mg/kg TA); (4) tannic acid 2.75 (TA2.75; CC + 2750 mg/kg TA); and (5) tannic acid 5 (TA5; CC + 5000 mg/kg TA). The TA2.75 group had significantly lower gut permeability compared to the CC group at 5 days post-infection (dpi). Supplementation of TA linearly reduced oocyst shedding of E. maxima at 7 to 9 dpi (p < 0.05). At 13 dpi, the TA2.75 group had significantly greater apparent ileal digestibility (AID) of dry matter (DM) and organic matter (OM) compared to the CC group. At 13 dpi, supplementation of TA linearly increased jejunal villus height (VH). Thus, this study showed that supplementation of TA at levels of 500 to 2750 mg/kg has the potential to be an anti-coccidial agent against E. maxima in broilers.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.C.); (Y.H.T.); (P.-Y.T.)
| | - Yuguo Huo Tompkins
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.C.); (Y.H.T.); (P.-Y.T.)
| | - Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.C.); (Y.H.T.); (P.-Y.T.)
| | - Robert M. Gogal
- Department of Biosciences and Diagnostic Imaging, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; (J.C.); (Y.H.T.); (P.-Y.T.)
- Correspondence: ; Tel.: +1-706-542-1346
| |
Collapse
|
15
|
Nutritional interventions to support broiler chickens during Eimeria infection. Poult Sci 2022; 101:101853. [PMID: 35413594 PMCID: PMC9018146 DOI: 10.1016/j.psj.2022.101853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
Different combinations of gut health-promoting dietary interventions were tested to support broilers during different stages of Eimeria infection. One-day-old male Ross 308 broilers (n = 720) were randomly assigned to one of 6 dietary treatments, with 6 pens per treatment and 20 birds per pen, for 35 d. At 7 d of age (d7), all birds were inoculated with 1000, 100, and 500 sporulated oocysts of E. acervulina, E. maxima, and E. tenella, respectively. A 4-phase feeding schedule was provided. The dietary treatments (TRT) 1 to 4 included the basal diet supplemented with multispecies probiotics from d0 to 9 and coated butyrate and threonine from d28 to 35 but received four different combinations of prebiotics and phytochemicals from d9 to 18 and d18 to 28. The basal diet for the positive control (PC, TRT5) included diclazuril as a anticoccidial. The negative control (NC, TRT6) contained no anticoccidial. Performance was assessed for each feeding phase, and oocyst output, Eimeria lesion scores, cecal weight, litter quality, and footpad lesions were assessed at d14, d22, d28, and d35. Body weight gain (BWG) and feed intake (FI) were not affected by dietary treatment. PC broilers had the best feed conversion ratio (FCR) of all treatments from d0 to 35 (P < 0.001). None of the dietary treatments resulted in better litter quality or reduced footpad lesions compared to the PC. Moreover, the PC was most effective in reducing oocyst output and lesion scores compared to all other treatments. However, broilers that received the multispecies probiotics (d0 to 9), saponins (d9 to 18), saponins, artemisin, and curcumin (d18 to 28), and coated butyrate and threonine (d28 to 35) had the best FCR (P < 0.001) and lowest oocyst output and lesion scores compared to other dietary treatments. This study suggests that although the tested compounds did not perform as well as the anticoccidial, when applied in the proper feeding period, they may support bird resilience during coccidiosis infection.
Collapse
|
16
|
Abstract
Alternative poultry production systems continue to expand as markets for organic and naturally produced poultry meat and egg products increase. However, these production systems represent challenges associated with variable environmental conditions and exposure to foodborne pathogens. Consequently, there is a need to introduce feed additives that can support bird health and performance. There are several candidate feed additives with potential applications in alternative poultry production systems. Prebiotic compounds selectively stimulate the growth of beneficial gastrointestinal microorganisms leading to improved health of the host and limiting the establishment of foodborne pathogens. The shift in the gastrointestinal microbiota and modulation of fermentation can inhibit the establishment of foodborne pathogens such as Campylobacter and Salmonella. Both current and potential applications of prebiotics in alternative poultry production systems will be discussed in this review. Different sources and types of prebiotics that could be developed for alternative poultry production will also be explored.
Collapse
Affiliation(s)
- Steven C Ricke
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI.
| |
Collapse
|
17
|
Fries-Craft K, Meyer MM, Bobeck EA. Algae-based feed ingredient protects intestinal health during Eimeria challenge and alters systemic immune responses with differential outcomes observed during acute feed restriction. Poult Sci 2021; 100:101369. [PMID: 34333388 PMCID: PMC8342793 DOI: 10.1016/j.psj.2021.101369] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 01/29/2023] Open
Abstract
Compounds in microalgae-derived feed ingredients in poultry diets may improve intestinal physiology and immunity to protect against damage induced by physiological and pathogen challenges, but mechanisms are examined sparingly. The study objective was to evaluate changes to intestinal morphology, permeability, and systemic immunity in broilers fed a proprietary microalgae ingredient during 2 separate challenge studies. In study 1, two replicate 28 d battery cage trials used 200 Ross 308 broilers each (n = 400) fed a control diet ± 0.175% algae ingredient. Half of the birds were subjected to a 12 h feed restriction challenge and fluorescein isothiocyanate dextran (FITC-D) intestinal permeability assay on d 28. Study 2 used 800 broilers randomly assigned to the same dietary treatments and housed in floor pens for 42 d. At d 14, intestine and spleen samples were collected from 10 birds/ diet. Half of the remainder was orally inoculated with 10X Coccivac-B52 vaccine in a 2 × 2 factorial treatment design (diet and Eimeria inoculation). The FITC-D assay was conducted at 1, 3, 7, and 14 d post-inoculation (pi) while intestinal and spleen samples were collected at 3, 7, 14, and 28 dpi for histomorphology and flow cytometric immune cell assessment. Study 1 validated intestinal leakage via FITC-D absorbance induced by feed restriction but showed no algae-associated protective effects. In study 2, algae preserved intestinal integrity during coccidiosis (P = 0.04) and simultaneously protected jejunal villus height as early as 7dpi (P < 0.0001), whereas intestinal damage resolution in control birds did not occur until 14 dpi. Algae inclusion increased splenic T cells in unchallenged broilers at d 14 by 29.6% vs. control (P < 0.0001), specifically γδ T cell populations, without impacting performance (P < 0.03). During Eimeria challenge, splenic T cells in algae-fed birds did not show evidence of recruitment to peripheral tissues, while control birds showed a 16.7% reduction compared to their uninoculated counterparts from 3 to 7 dpi (P < 0.0001). This evidence suggests the algae ingredient altered the immune response in a manner that reduced recruitment from secondary lymphoid organs in addition to protecting intestinal physiology.
Collapse
Affiliation(s)
- K Fries-Craft
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - M M Meyer
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - E A Bobeck
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
18
|
Omara II, Pender CM, White MB, Dalloul RA. The Modulating Effect of Dietary Beta-Glucan Supplementation on Expression of Immune Response Genes of Broilers during a Coccidiosis Challenge. Animals (Basel) 2021; 11:ani11010159. [PMID: 33445562 PMCID: PMC7827683 DOI: 10.3390/ani11010159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Avian coccidiosis is the leading parasitic disease in the poultry industry and means to control its damages continue to be explored. This study evaluated the feeding effects of a yeast-derived β-glucan on expression of immune response genes in the spleen, thymus, and bursa of commercial broiler chickens during an Eimeria challenge. The study consisted of two dietary treatments (0% or 0.1% β-glucan) each with or without a coccidiosis challenge. There were significant effects from dietary β-glucan, Eimeria challenge, and their interaction for several gene targets in the spleen, thymus, and bursa on days 10 and 14 of age. Based on the current results, supplementation of dietary β-glucan in Eimeria-challenged birds enhanced and modulated the expression of immune response genes during coccidiosis. Abstract This study investigated the effects of a yeast-derived β-glucan (Auxoferm YGT) supplementation on mRNA expression of immune response genes in the spleen, thymus, and bursa of broiler chickens during a mixed Eimeria infection. Day (d)-old chicks (n = 1440) were fed diets containing 0% or 0.1% YGT. On d 8 post-hatch, half the replicate pens (n = 8) were challenged with a mixed inoculum of E. acervulina, E. maxima, and E. tenella. On d 10 and d 14 post-hatch, the spleen, thymus, and bursa were collected to evaluate mRNA abundance by quantitative real-time PCR. Data were analyzed using PROC GLIMMIX model (2-way interaction) and differences were established by LS-MEANS with significance reported at p ≤ 0.05. In spleen tissues at d 10, expression of interleukin (IL)-10 and inducible nitric oxide synthase (iNOS) were elevated in both 0.1% YGT-fed challenged and non-challenged birds. In thymus tissues at d 14, expression of IL-10, IL-17F, interferon (IFN)-γ, iNOS, and macrophage migration inhibitory factor (MIF) were elevated in challenged birds fed 0.1% YGT. In bursal tissues at d 10 and d 14, expression of IL-10, IFN-γ, iNOS (d 10 only), and MIF were elevated in 0.1% YGT-fed challenged and non-challenged birds. Dietary β-glucan supplementation to chicken diets modulated their immune response to the Eimeria challenge.
Collapse
Affiliation(s)
- Islam I. Omara
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (I.I.O.); (C.M.P.); (M.B.W.)
- Animal and Poultry Division, Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Chasity M. Pender
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (I.I.O.); (C.M.P.); (M.B.W.)
| | - Mallory B. White
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (I.I.O.); (C.M.P.); (M.B.W.)
| | - Rami A. Dalloul
- Avian Immunobiology Laboratory, Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (I.I.O.); (C.M.P.); (M.B.W.)
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
19
|
Choi J, Kim WK. Dietary Application of Tannins as a Potential Mitigation Strategy for Current Challenges in Poultry Production: A Review. Animals (Basel) 2020; 10:ani10122389. [PMID: 33327595 PMCID: PMC7765034 DOI: 10.3390/ani10122389] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary There are diverse challenges in the poultry production industry that decrease the productivity and efficiency of poultry production, impair animal welfare, and pose issues to public health. Furthermore, the use of antibiotic growth promoters (AGP) in feed, which have been used to improve the growth performance and gut health of chickens, has been restricted in many countries. Tannins, polyphenolic compounds that precipitate proteins, are considered as alternatives for AGP in feed and provide solutions to mitigate challenges in poultry production due to their antimicrobial, antioxidant, anti-inflammatory and gut health promoting effects. However, because high dosages of tannins have antinutritional effects when fed to poultry, determining appropriate dosages of supplemental tannins is critical for their potential implementation as a solution for the challenges faced in poultry production. Abstract The poultry industry has an important role in producing sources of protein for the world, and the size of global poultry production continues to increase annually. However, the poultry industry is confronting diverse challenges including bacterial infection (salmonellosis), coccidiosis, oxidative stress, including that caused by heat stress, welfare issues such as food pad dermatitis (FPD) and nitrogen and greenhouse gasses emissions that cumulatively cause food safety issues, reduce the efficacy of poultry production, impair animal welfare, and induce environmental issues. Furthermore, restrictions on the use of AGP have exacerbated several of these negative effects. Tannins, polyphenolic compounds that possess a protein precipitation capacity, have been considered as antinutritional factors in the past because high dosages of tannins can decrease feed intake and negatively affect nutrient digestibility and absorption. However, tannins have been shown to have antimicrobial, antioxidant and anti-inflammatory properties, and as such, have gained interest as promising bioactive compounds to help alleviate the challenges of AGP removal in the poultry industry. In addition, the beneficial effects of tannins can be enhanced by several strategies including heat processing, combining tannins with other bioactive compounds, and encapsulation. As a result, supplementation of tannins alone or in conjunction with the above strategies could be an effective approach to decrease the need of AGP and otherwise improve poultry production efficiency.
Collapse
|
20
|
Kim JY, Oh JJ, Kim DH, Park J, Kim HS, Choi YE. Rapid and Accurate Quantification of Paramylon Produced from Euglena gracilis Using an ssDNA Aptamer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:402-408. [PMID: 31809034 DOI: 10.1021/acs.jafc.9b04588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The functional ingredients of microalgal biomass are receiving substantial recognition as the global demands for health supplements produced from natural sources are on the rise. Paramylon, a conglomerate of β-1,3-glucans, is one of the major valuable sources derived from Euglena gracilis having multiple applications, thus necessitating the development of an efficient quantification method. Here, we employed a DNA aptamer to quantify the amount of paramylon produced by E. gracilis. Paramylon-specific aptamers were isolated by the systematic evolution of ligands by exponential enrichment (SELEX) process. To evaluate the potential aptamers, the binding affinity between aptamer candidates and paramylon granules was confirmed by a confocal laser scanning microscope and the dissociation constants of the selected aptamers were determined by nonlinear regression analysis. The selected DNA aptamer was successfully used for the quantification of paramylon, and the results were compared to those obtained by the standard methods. The new approach was also used for quantification of paramylon from E. gracilis cells cultured to different cell stages and physiologies. It can be concluded that the aptamer-based protocol for the measurement of paramylon proposed in this study is highly accurate and comparatively less time-consuming.
Collapse
Affiliation(s)
- Jee Young Kim
- Division of Environmental Science & Ecological Engineering , Korea University , Seoul 02841 , Korea
| | - Jeong-Joo Oh
- Division of Environmental Science & Ecological Engineering , Korea University , Seoul 02841 , Korea
| | - Da Hee Kim
- Division of Environmental Science & Ecological Engineering , Korea University , Seoul 02841 , Korea
| | - Jaewon Park
- Department of Electrical and Electronic Engineering , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Hyun Soo Kim
- Korea Institute of Machinery and Materials , Daegu Research Center for Medical Devices and Rehabilitation , Daegu 42994 , Korea
| | - Yoon-E Choi
- Division of Environmental Science & Ecological Engineering , Korea University , Seoul 02841 , Korea
| |
Collapse
|
21
|
Anraku M, Iohara D, Takada H, Awane T, Kawashima J, Takahashi M, Hirayama F. Morphometric Analysis of Paramylon Particles Produced by Euglena gracilis EOD-1 Using FIB/SEM Tomography. Chem Pharm Bull (Tokyo) 2020; 68:100-102. [PMID: 31666462 DOI: 10.1248/cpb.c19-00769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Euglena gracilis EOD-1, a microalgal strain, produces large quantities of paramylon, a class of polymers known as β-1,3-glucans and has been reported to function as a dietary fiber and to improve the metabolic syndrome including obesity. However, despite its importance, the morphometric analysis of paramylon has not been conducted so far. In this study, we attempted to observe the detailed three-dimensional structure of paramylon by focused ion beam/scanning electron microscopy (FIB/SEM). Paramylon samples were fixed and three-dimensional image reconstruction and segmentation of the image stack were created using computer software (Amira v6.0.1, FEI). The results indicated that the inside of paramylon particles (diameter: 5 µm, thickness: 3 µm) was comprised of a dense structure with no evidence of the presence of large pores and gaps, although a small 100 nm crack was observed. The specific surface area of paramylon particles measured by the Brunauer-Emmet-Teller (BET) method, was not as large as activated charcoal, but similar to those of plant starches, indicating that the cholesterol-lowering effect of paramylon cannot be simply attributed to its adsorption ability. The FIB/SEM method was found to be useful for elucidating the internal structure of small solid particles.
Collapse
|
22
|
Effects of Euglena gracilis EOD-1 Ingestion on Salivary IgA Reactivity and Health-Related Quality of Life in Humans. Nutrients 2019; 11:nu11051144. [PMID: 31121913 PMCID: PMC6566313 DOI: 10.3390/nu11051144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023] Open
Abstract
Euglena gracilis EOD-1, a microalgal strain known for high yields of the β-1, 3-glucan paramylon, is suggested to function as a dietary fiber and enhance immunity. Here, we aimed to investigate the effects of E. gracilis EOD-1 biomass (EOD1BM) ingestion on immunoglobulin A (IgA) antibody titers in saliva, its reactivity, and the health-related quality of life (QOL) in humans. Reacting human immunoglobulin preparations and saliva with paramylon granules revealed the presence of anti-paramylon antibodies in the blood and saliva. We conducted a placebo-controlled, double-blind, crossover study involving 13 healthy subjects who ingested the placebo or EOD1BM for 4 weeks. Saliva was collected from each subject before and after ingestion, and IgA titers and E. gracilis EOD-1 paramylon (EOD1PM) reactivity were compared. In the EOD1BM Ingestion group, the anti-EOD1PM IgA content and titer increased after EOD1BM ingestion. No such change was observed in the Placebo group. Furthermore, the health-related QOL, especially mental health, increased in the EOD1BM Ingestion group. Thus, EOD1BM ingestion led to the production of paramylon (PM)-specific IgA antibody and increased salivary IgA antibody titers. We demonstrate that EOD1BM ingestion enhanced the immunity in the mucosal surface, evoked an antigen-specific response, and increased the health-related QOL, thereby contributing to health improvement.
Collapse
|
23
|
Gissibl A, Sun A, Care A, Nevalainen H, Sunna A. Bioproducts From Euglena gracilis: Synthesis and Applications. Front Bioeng Biotechnol 2019; 7:108. [PMID: 31157220 PMCID: PMC6530250 DOI: 10.3389/fbioe.2019.00108] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/29/2019] [Indexed: 11/24/2022] Open
Abstract
In recent years, the versatile phototrophic protist Euglena gracilis has emerged as an interesting candidate for application-driven research and commercialisation, as it is an excellent source of dietary protein, pro(vitamins), lipids, and the β-1,3-glucan paramylon only found in euglenoids. From these, paramylon is already marketed as an immunostimulatory agent in nutraceuticals. Bioproducts from E. gracilis can be produced under various cultivation conditions discussed in this review, and their yields are relatively high when compared with those achieved in microalgal systems. Future challenges include achieving the economy of large-scale cultivation. Recent insights into the complex metabolism of E. gracilis have highlighted unique metabolic pathways, which could provide new leads for product enhancement by genetic modification of the organism. Also, development of molecular tools for strain improvement are emerging rapidly, making E. gracilis a noteworthy challenger for microalgae such as Chlorella spp. and their products currently on the market.
Collapse
Affiliation(s)
- Alexander Gissibl
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, Australia
| | - Angela Sun
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, Australia
| | - Andrew Care
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Helena Nevalainen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
- Australian Research Council Industrial Transformation Training Centre for Molecular Technology in the Food Industry, Sydney, NSW, Australia
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
24
|
Horst G, Levine R, Chick R, Hofacre C. Effects of beta-1,3-glucan (AletaTM) on vaccination response in broiler chickens. Poult Sci 2019; 98:1643-1647. [PMID: 30476311 DOI: 10.3382/ps/pey523] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/08/2018] [Indexed: 11/20/2022] Open
Abstract
This 42-day study evaluated the effects of dietary supplementation with β-1,3-glucan (Aleta™) on the vaccination response to Newcastle disease virus (NDV), avian infectious bronchitis virus (IBV), and infectious bursal disease (IBD) in a non-challenged environment. This trial included 600 chicks (all vaccinated with IBD at the hatchery) which were assigned to 1 of 3 treatments: vaccination (NDV, IBV), no vaccination, or vaccination combined with feed supplemented with Aleta (100 g/MT of feed). The vaccination with Aleta treatment group showed a trend for improved FCR that was not statistically significant. Control birds that were not vaccinated for IBV had significantly lower IBV titers on day 21 compared to birds that were vaccinated (both with and without Aleta). Surprisingly, there was significant separation among treatment groups for NDV titer levels, especially on day 21, where birds vaccinated and supplemented with Aleta had significantly higher titer levels compared to vaccination alone or no vaccination at all. Critically, only 14% of the birds receiving the vaccine plus Aleta had titer levels below the critical titer threshold for immunity compared to 28% of the birds receiving the vaccine alone and 40% of the unvaccinated birds. This suggests that Aleta supplementation may help to improve the vaccination response by birds, especially for NDV.
Collapse
Affiliation(s)
- G Horst
- Kemin Industries, Inc., Des Moines, IA 50317, USA
| | - R Levine
- Kemin Industries, Inc., Des Moines, IA 50317, USA
| | | | - C Hofacre
- Southern Poultry Research Group, Inc., Watkinsville, GA 30677, USA
| |
Collapse
|