1
|
Guo S, Cong B, Zhu L, Zhang Y, Yang Y, Qi X, Wang X, Xiao L, Long C, Xu Y, Sheng X. Whole transcriptome sequencing of testis and epididymis reveals genes associated with sperm development in roosters. BMC Genomics 2024; 25:1029. [PMID: 39497056 PMCID: PMC11533344 DOI: 10.1186/s12864-024-10836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/25/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Chickens play a crucial role as the primary global source of eggs and poultry, and the quality of rooster semen significantly impacts poultry reproductive efficiency. Therefore, it is imperative to comprehend the regulatory mechanisms underlying sperm development. RESULTS In this study, we established transcriptome profiles of lncRNAs, miRNAs, and mRNAs in 3 testis tissues and 3 epididymis tissues from "Jing Hong No.1" roosters at 24, 35, and 64 weeks of age. Using the data, we conducted whole transcriptome analysis and constructed a ceRNA network. We detected 10 differentially expressed mRNAs (DEmRNAs), 33 differentially expressed lncRNAs (DElncRNAs), and 10 differentially expressed miRNAs (DEmiRNAs) in the testis, as well as 149 DEmRNAs, 12 DElncRNAs, and 10 DEmiRNAs in the epididymis. These genes were found to be involved in cell differentiation and development, as well as various signaling pathways such as GnRH, MAPK, TGF-β, mTOR, VEGF, and calcium ion pathways. Subsequently, we constructed two competing endogenous RNA (ceRNA) networks comprising DEmRNAs, DElncRNAs, and DEmiRNAs. Furthermore, we identified four crucial lncRNA-mRNA-miRNA interactions that govern specific biological processes in the chicken reproductive system: MSTRG.2423.1-gga-miR-1563-PPP3CA and MSTRG.10064.2-gga-miR-32-5p-GPR12 regulating sperm motility in the testis; MSTRG.152556.1-gga-miR-9-3p-GREM1/THYN1 governing immunomodulation in the epididymis; and MSTRG.124708.1-gga-miR-375-NDUFB9/YBX1 controlling epididymal sperm maturation and motility. CONCLUSIONS Whole transcriptome sequencing of chicken testis and epididymis screened several key genes and ceRNA regulatory networks, which may be involved in the regulation of epididymal immunity, spermatogenesis and sperm viability through the pathways of MAPK, TGF-β, mTOR, and calcium ion. These findings contribute to our comprehensive understanding of the intricate molecular processes underlying rooster spermatogenesis, maturation and motility.
Collapse
Affiliation(s)
- Shihao Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Bailin Cong
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Liyang Zhu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yao Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Ying Yang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yaxi Xu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
2
|
Li R, Qu J, Yan K, Chen Y, Zhao X, Liu Z, Xie M, Zhang Q, He Y, Niu J, Qi J. Deciphering dynamic interactions between spermatozoa and the ovarian microenvironment through integrated multi-omics approaches in viviparous Sebastes schlegelii. Development 2024; 151:dev202224. [PMID: 38572957 DOI: 10.1242/dev.202224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
The ovarian microenvironment plays a crucial role in ensuring the reproductive success of viviparous teleosts. However, the molecular mechanism underlying the interaction between spermatozoa and the ovarian microenvironment has remained elusive. This study aimed to contribute to a better understanding of this process in black rockfish (Sebastes schlegelii) using integrated multi-omics approaches. The results demonstrated significant upregulation of ovarian complement-related proteins and pattern recognition receptors, along with remodeling of glycans on the surface of spermatozoa at the early spermatozoa-storage stage (1 month after mating). As spermatozoa were stored over time, ovarian complement proteins were progressively repressed by tryptophan and hippurate, indicating a remarkable adaptation of spermatozoa to the ovarian microenvironment. Before fertilization, a notable upregulation of cellular junction proteins was observed. The study revealed that spermatozoa bind to ZPB2a protein through GSTM3 and that ZPB2a promotes spermatozoa survival and movement in a GSTM3-dependent manner. These findings shed light on a key mechanism that influences the dynamics of spermatozoa in the female reproductive tract, providing valuable insights into the molecular networks regulating spermatozoa adaptation and survival in species with internal fertilization.
Collapse
Affiliation(s)
- Rui Li
- MOE Key Laboratory of Marine Genetics and Breeding/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jiangbo Qu
- MOE Key Laboratory of Marine Genetics and Breeding/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Kai Yan
- MOE Key Laboratory of Marine Genetics and Breeding/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ying Chen
- MOE Key Laboratory of Marine Genetics and Breeding/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xi Zhao
- MOE Key Laboratory of Marine Genetics and Breeding/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zhiying Liu
- MOE Key Laboratory of Marine Genetics and Breeding/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Mengxi Xie
- MOE Key Laboratory of Marine Genetics and Breeding/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Quanqi Zhang
- MOE Key Laboratory of Marine Genetics and Breeding/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yan He
- MOE Key Laboratory of Marine Genetics and Breeding/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jingjing Niu
- MOE Key Laboratory of Marine Genetics and Breeding/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jie Qi
- MOE Key Laboratory of Marine Genetics and Breeding/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
3
|
Lv C, Larbi A, Li C, Liang J, Wu G, Shao Q, Quan Q. Decoding the influence of semen collection processes on goat sperm quality from a perspective of seminal plasma proteomics. J Proteomics 2024; 298:105141. [PMID: 38408605 DOI: 10.1016/j.jprot.2024.105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
This study aims to assess the impact of semen collection methods on goat semen quality and seminal plasma (SP) proteomes. Semen was collected by artificial vagina (AV) or electro-ejaculator (EE) and semen parameters were evaluated. Tandem mass tag coupled with liquid chromatography-tandem mass spectrometry was used to screen SP differentially abundant proteins (DAPs) between EE and AV. PRM was used to confirm the reliability of the data. In contrast to EE, a lower volume, higher progressive motility and concentration were observed in AV. No differences were found in total motility, membrane integrity, acrosome integrity, and ROS production between EE and AV. In total, 1692 proteins were identified in SP, including 210 DAPs. Among them, 120 and 90 proteins were down-regulated and up-regulated in AV compared to EE, respectively. The GO annotation showed that DAPs are mainly localized in the membrane, involved in deference responses to bacterium, RNA processing, and related to oxidoreductase activity. KEGG demonstrated tight associations of DAPs with specific amino acids, carbon metabolism, citrate cycle, and propanoate metabolism. In conclusion, this study provides valuable insights into the effects of semen collection on goat semen quality and explores the potential action mechanism based on the modification of SP proteomes. SIGNIFICANCE OF THE STUDY: The quality of fresh semen directly influences the results of artificial insemination and semen cryopreservation in livestock. This study represents the first attempt to evaluate the impact of semen collection methods including electroejaculation and artificial vagina on sperm quality and seminal plasma proteomes in goat. The results of this study demonstrated that semen collection methods directly impacted the quality of goat semen. Then, the proteomic strategy was used to explore the potential action mechanism of semen collection methods on sperm. Some differentially abundant proteins that potentially influence semen quality were identified. Furthermore, this study suggests the possibility of utilizing specific proteins as predictive markers for goat semen quality.
Collapse
Affiliation(s)
- Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Allai Larbi
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, Chouaib Doukkali University El Jadida, Morocco
| | - Chunyan Li
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Jiangchong Liang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Qingyong Shao
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China
| | - Quobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Engineering Research Center of Animal Genetic Resource Conservation and Germplasm Enhancement, Panlong District, Kunming City, Yunnan Province, China; Yunnan Provincial Genebank of Livestock and Poultry Genetic Resources, Panlong District, Kunming City, Yunnan Province, China.
| |
Collapse
|
4
|
van Dijk A, Guabiraba R, Bailleul G, Schouler C, Haagsman HP, Lalmanach AC. Evolutionary diversification of defensins and cathelicidins in birds and primates. Mol Immunol 2023; 157:53-69. [PMID: 36996595 DOI: 10.1016/j.molimm.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Divergent evolution for more than 310 million years has resulted in an avian immune system that is complex and more compact than that of primates, sharing much of its structure and functions. Not surprisingly, well conserved ancient host defense molecules, such as defensins and cathelicidins, have diversified over time. In this review, we describe how evolution influenced the host defense peptides repertoire, its distribution, and the relationship between structure and biological functions. Marked features of primate and avian HDPs are linked to species-specific characteristics, biological requirements, and environmental challenge.
Collapse
|
5
|
Tvrdá E, Petrovičová M, Benko F, Ďuračka M, Kováč J, Slanina T, Galovičová L, Žiarovská J, Kačániová M. Seminal Bacterioflora of Two Rooster Lines: Characterization, Antibiotic Resistance Patterns and Possible Impact on Semen Quality. Antibiotics (Basel) 2023; 12:antibiotics12020336. [PMID: 36830247 PMCID: PMC9952488 DOI: 10.3390/antibiotics12020336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
This study aimed to characterize the bacterial profiles and their association with selected semen quality traits among two chicken breeds. Thirty Lohmann Brown and thirty ROSS 308 roosters were selected for semen quality estimation, including sperm motility, membrane and acrosome integrity, mitochondrial activity, and DNA fragmentation. The oxidative profile of the semen, including the production of reactive oxygen species (ROS), antioxidant capacity, protein, and lipid oxidation, were assessed as well. Moreover, the levels of pro-inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interleukins 1 and 6 (IL-1, IL-6) and C-reactive protein, as well as the concentrations of selected antibacterial proteins (cathelicidin, β-defensin and lysozyme) in the seminal plasma were evaluated with the enzyme-linked immunosorbent assay. The prevailing bacterial genera identified by the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were Citrobacter spp., Enterococcus spp., Escherichia spp. and Staphylococcus spp. While the bacterial load was significantly higher in the ROSS 308 line (p < 0.05), a higher number of potentially uropathogenic bacteria was found in the Lohmann Brown roosters. Antimicrobial susceptibility tests revealed a substantial resistance of randomly selected bacterial strains, particularly to ampicillin, tetracycline, chloramphenicol, and tobramycin. Furthermore, Lohmann Brown ejaculates containing an increased proportion of Escherichia coli presented with significantly (p < 0.05) elevated levels of TNF-α and IL-6, as well as ROS overproduction and lipid peroxidation. Inversely, significantly (p < 0.05) higher levels of β-defensin and lysozyme were found in the semen collected from the ROSS 308 roosters, which was characterized by a higher quality in comparison to the Lohmann Brown roosters. In conclusion, we emphasize the criticality of bacteriospermia in the poultry industry and highlight the need to include a more complex microbiological screening of semen samples designated for artificial insemination.
Collapse
Affiliation(s)
- Eva Tvrdá
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Correspondence: ; Tel.: +421-37-641-4918
| | - Michaela Petrovičová
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Neuroscience, Second Faculty of Medicine (2. LF UK), V Úvalu 84, 15006 Prague, Czech Republic
| | - Filip Benko
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Michal Ďuračka
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Ján Kováč
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Tomáš Slanina
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Lucia Galovičová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Jana Žiarovská
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Miroslava Kačániová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1, 35-601 Rzeszow, Poland
| |
Collapse
|
6
|
Atli MO, Hitit M, Özbek M, Köse M, Bozkaya F. Cell-Specific Expression Pattern of Toll-Like Receptors and Their Roles in Animal Reproduction. Handb Exp Pharmacol 2022; 276:65-93. [PMID: 35434748 DOI: 10.1007/164_2022_584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Toll-like receptors (TLRs), a part of the innate immune system, have critical roles in protection against infections and involve in basic pathology and physiology. Secreted molecules from the body or pathogens could be a ligand for induction of the TLR system. There are many immune and non-immune types of cells that express at a least single TLR on their surface or cytoplasm. Those cells may be a player in a defense system or in the physiological regulation mechanisms. Reproductive tract and organs contain different types of cells that have essential functions such as hormone production, providing an environment for embryo/fetus, germ cell production, etc. Although lower parts of reproductive organs are in a relationship with outsider contaminants (bacteria, viruses, etc.), upper parts should be sterile to provide a healthy pregnancy and germ cell production. In those areas, TLRs bear controller or regulator roles. In this chapter, we will provide current information about physiological functions of TLR in the cells of the reproductive organs and tract, and especially about their roles in follicle selection, maturation, follicular atresia, ovulation, corpus luteum (CL) formation and regression, establishment and maintenance of pregnancy, sperm production, maturation, capacitation as well as the relationship between TLR polymorphism and reproduction in domestic animals. We will also discuss pathogen-associated molecular patterns (PAMPs)-induced TLRs that involve in reproductive inflammation/pathology.
Collapse
Affiliation(s)
- Mehmet Osman Atli
- Department of Reproduction, Faculty of Veterinary Medicine, Harran University, Şanlıurfa, Turkey.
| | - Mustafa Hitit
- Department of Genetics, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Mehmet Özbek
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Mehmet Köse
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Dicle University, Diyarbakır, Turkey
| | - Faruk Bozkaya
- Department of Genetics, Faculty of Veterinary Medicine, Harran University, Sanlıurfa, Turkey
| |
Collapse
|
7
|
Identification of Bacterial Profiles and Their Interactions with Selected Quality, Oxidative, and Immunological Parameters of Turkey Semen. Animals (Basel) 2021; 11:ani11061771. [PMID: 34198509 PMCID: PMC8231993 DOI: 10.3390/ani11061771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Overbreeding—and its associated increase in the chest areas of turkeys—has led to the loss of their natural ability to reproduce. Therefore, commercial production of turkey meat relies on artificial insemination. However, along with the physiology of the genital tract of turkeys, there is high potential for bacterial contamination of ejaculates. These bacteria may affect crucial semen quality parameters required for successful fertilization. As such, it is important to pay close attention to the bacteria present in turkey ejaculates and possible solutions to eliminate their adverse effects on avian spermatozoa. Abstract This study focused on the identification of naturally occurring bacteria in the reproductive fluid and impact on the quality of ejaculates obtained from the turkey breed British United Turkeys (BUT) Big 6 (n = 60). We determined possible relationships between the bacterial load and advanced sperm quality parameters that are important for effective artificial insemination and high fertility, as well as the concentration of selected antimicrobial proteins and pro-inflammatory markers of turkey semen. Sperm motility was assessed with computer-assisted sperm analysis (CASA), while the membrane and acrosome integrity were examined with smearing and staining methods. Reactive oxygen species (ROS) generation was quantified via luminometry, sperm DNA fragmentation was evaluated using the TUNEL assay, and the JC-1 assay was applied to evaluate the mitochondrial membrane potential. Cell lysates were prepared to investigate the extent of lipid and protein oxidation. Furthermore, levels of interleukins 1 and 6 (IL-1, IL-6), C-reactive protein, cathelicidin, and β-defensin were quantified in the seminal plasma using the ELISA method. The most dominant species identified by the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry was Escherichia coli, Proteus mirabilis, Staphylococcus lentus, and Citrobacter braakii. The bacterial load had a negative effect on the sperm motility (p < 0.001), as well as membrane (p < 0.05) and acrosome integrity (p < 0.01). A strong positive relationship between the bacterial load and DNA fragmentation (p < 0.001) was detected as well. Positive associations were recorded between the increasing presence of bacteria, ROS overgeneration (p < 0.001), and a subsequent oxidative damage to the proteins (p < 0.001) and lipids (p < 0.01). It was revealed that the antimicrobial peptides β-defensin (p < 0.001) and cathelicidin (p < 0.001) had a positive relationship with the motility. In contrast, pro-inflammatory markers, such as IL-1 (p < 0.001) and IL-6 (p < 0.001), had a negative impact on the motion behavior of turkey spermatozoa. Our results suggest that the semen quality may be notably affected by the bacterial quantity as well as quality. It seems that bacteriospermia is associated with inflammatory processes, oxidative stress, sperm structural deterioration, and a subsequent risk for a failed artificial insemination in turkey breeding.
Collapse
|
8
|
Liman N, Alan E, Apaydın N. The expression and localization of Toll-like receptors 2, 4, 5 and 9 in the epididymis and vas deferens of a adult tom cats. Theriogenology 2019; 128:62-73. [PMID: 30743105 DOI: 10.1016/j.theriogenology.2019.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 11/18/2022]
Abstract
Toll-like receptors (TLRs) are important molecules, which provide protection against infections of the reproductive tract. This study demonstrates for the first time the expression and localization patterns of TLRs in the caput, corpus and cauda segments of the epididymal duct (ED) and the vas deferens (VD) of adult domestic cats using immunohistochemistry and western blotting. While immunoblot analyses revealed relatively similar protein levels for TLRs 2, 4, 5, and 9 in three segments of the ED, the protein levels of TLR2 and TLR4 in the VD were found to be significantly higher than those measured in the ED segments (P < 0.05). On the other hand, immunostaining showed that TLRs exhibited regional- and cell-specific localization patterns. TLR2 and TLR5 were immunolocalized to the nucleus and cytoplasm of the principal cells in all ducts. TLR4 was restricted to the stereocilia, and TLR9 was located in the cytoplasm of the principal cells. Narrow cells displayed positive immunoreactions for TLR4 and TLR5. The basal cells of the different ED segments were positive for all four TLRs. TLR2, TLR5 and TLR9 were detected in the cytoplasmic droplets of the spermatozoa. TLR4 and TLR9 were detected along the entire length of the sperm tail, whilst TLR2 and TLR5 were absent in the midpiece. TLR2 and TLR5 were also detected in the equatorial segment of the sperm head. These results suggest that TLR2, TLR4, TLR5 and TLR9 are important not only for the protection of the ED, VD and spermatozoa but also for the maturation and storage of spermatozoa in the ED and VD, respectively.
Collapse
Affiliation(s)
- Narin Liman
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey.
| | - Emel Alan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| | - Nusret Apaydın
- Department of Surgery, Faculty of Veterinary Medicine, Erciyes University, 38039, Kayseri, Turkey
| |
Collapse
|
9
|
Overexpressing ovotransferrin and avian β-defensin-3 improves antimicrobial capacity of chickens and poultry products. Transgenic Res 2018; 28:51-76. [PMID: 30374651 DOI: 10.1007/s11248-018-0101-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/22/2018] [Indexed: 02/08/2023]
Abstract
Zoonotic and foodborne diseases pose a significant burden, decreasing both human and animal health. Modifying chickens to overexpress antimicrobials has the potential to decrease bacterial growth on poultry products and boost chicken innate immunity. Chickens overexpressing either ovotransferrin or avian β-defensin-3 (AvβD3) were generated using Tol-2 transposons. Transgene expression at the RNA and protein level was seen in egg white, breast muscle, and serum. There were significant differences in the immune cell populations in the blood, bursa, and spleen associated with transgene expression including an increased proportion of CD8+ cells in the blood of ovotransferrin and AvβD3 transgenic birds. Expression of the antimicrobials inhibited the in vitro growth of human and chicken bacterial pathogens and spoilage bacteria. For example, transgene expression significantly reduced growth of aerobic and coliform bacteria in breast muscle and decreased the growth of Salmonella enterica in egg white. Overall these results indicate that overexpression of antimicrobials in the chicken can impact the immune system and increase the antimicrobial capacity of poultry products.
Collapse
|
10
|
Ying S, Guo J, Dai Z, Zhu H, Yu J, Ma W, Li J, Akhtar MF, Shi Z. Time course effect of lipopolysaccharide on Toll-like receptors expression and steroidogenesis in the Chinese goose ovary. Reproduction 2017; 153:509-518. [DOI: 10.1530/rep-17-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/06/2017] [Accepted: 02/07/2017] [Indexed: 01/18/2023]
Abstract
The ovary of Chinese goose is easily infected by microorganisms because of the mating behaviour in water, which causes decreased laying performance. This study investigated the time course effect of lipopolysaccharide (LPS) on the steroidogenesis and mRNA expression of Toll-like receptors (TLRs), a class of key pattern recognition receptor, in the breeding goose ovary. The laying geese were treated intravenously with LPS for 0, 6, 12, 24 and 36 h, and all birds were slaughtered approximately 8 h after oviposition. The expression levels of TLRs in the white and yellowish follicles, and granulosa and theca layers of hierarchical follicles were examined by real-time PCR. All 10 members of avian TLR family were differentially expressed among the different follicular tissues. Moreover, at 24 and 36 h after LPS treatment, the hierarchical follicle morphological structure was altered, but the expression levels of TLRs were still higher than the control. Furthermore, during LPS treatment period, the expression pattern of TLRs 2A and 4 genes was similar to that of TLR15 in the white follicles, TLRs 1B, 5 and 15 in the yellowish follicles, TLRs 7 and 15 in the granulosa layer, and TLRs 1A, 2B, 3, 7 and 15 in the theca layer, which had a negative correlation with the kinetics of plasma P4 and E2 concentrations. In conclusion, the mechanism by which pathogen infection inhibited goose follicular growth and further decreased egg production may involve a gradually enhanced inflammatory response and reduced endocrine function. This may be due to stimulated TLRs in the ovary.
Collapse
|
11
|
Hu Y, Chen WW, Liu HX, Shan YJ, Zhu CH, Li HF, Zou JM. Genetic differences in ChTLR15 gene polymorphism and expression involved in Salmonella enterica natural and artificial infection respectively, of Chinese native chicken breeds, with a focus on sexual dimorphism. Avian Pathol 2017; 45:13-25. [PMID: 26488442 DOI: 10.1080/03079457.2015.1110849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chicken Toll-like receptor 15 (ChTLR15) has been shown to participate in immune activation in response to various pathogens and in the innate defence against infection. Two genetically distinct Chinese breeds of chicken (Qinyuan Partridge and Baier breeds) were used to study the correlation between ChTLR15 single nucleotide polymorphisms and the natural infection status of salmonella in hens, and also to examine genetic and sex-specific effects on ChTLR15 mRNA expression in heterophils and spleen during acute infection with Salmonella enterica serovar Enteritidis (SE) from 1 to 10 days after experimental infection. Three single-nucleotide polymorphisms (G168A, C726T and A1166G) in a single exon of ChTLR15 were identified in the two breeds, but only C726T showed a significant association with salmonella infection. Compared with layer-type Baier chicks, meat-type Qingyuan chicks showed a higher tolerance for capture stress and (SE) infection, as measured, respectively, by the modified body weight of chicks in the control group and in the infection group. Meanwhile, ChTLR15 down-regulation in heterophils and up-regulation in spleen were involved in the response to pathogenic SE colonization during the acute infection period. These significant genetic effects in females led to greater differences in both innate and adaptive immune responses than those exhibited in males. These results suggest that genetics, time and gender play important roles in the modulation of ChTLR15 mRNA level elicited by the SE-mediated immune response differentially in the two genetically distinct breeds, with a focus on sexual dimorphism.
Collapse
Affiliation(s)
- Y Hu
- a Jiangsu Provincial Key Laboratory of Poultry Genetics & Breeding , Institute of Poultry Science of Jiangsu Province , Yangzhou , Jiangsu 225003 , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu 225009 , P.R. China
| | - W W Chen
- c Luoyang Pu-like Bio-engineering Co., Ltd , Luoyang , Henan 471000 , P.R. China
| | - H X Liu
- a Jiangsu Provincial Key Laboratory of Poultry Genetics & Breeding , Institute of Poultry Science of Jiangsu Province , Yangzhou , Jiangsu 225003 , P.R. China
| | - Y J Shan
- a Jiangsu Provincial Key Laboratory of Poultry Genetics & Breeding , Institute of Poultry Science of Jiangsu Province , Yangzhou , Jiangsu 225003 , P.R. China
| | - C H Zhu
- a Jiangsu Provincial Key Laboratory of Poultry Genetics & Breeding , Institute of Poultry Science of Jiangsu Province , Yangzhou , Jiangsu 225003 , P.R. China
| | - H F Li
- a Jiangsu Provincial Key Laboratory of Poultry Genetics & Breeding , Institute of Poultry Science of Jiangsu Province , Yangzhou , Jiangsu 225003 , P.R. China
| | - J M Zou
- a Jiangsu Provincial Key Laboratory of Poultry Genetics & Breeding , Institute of Poultry Science of Jiangsu Province , Yangzhou , Jiangsu 225003 , P.R. China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , Jiangsu 225009 , P.R. China
| |
Collapse
|
12
|
Atikuzzaman M, Alvarez-Rodriguez M, Vicente-Carrillo A, Johnsson M, Wright D, Rodriguez-Martinez H. Conserved gene expression in sperm reservoirs between birds and mammals in response to mating. BMC Genomics 2017; 18:98. [PMID: 28100167 PMCID: PMC5242001 DOI: 10.1186/s12864-017-3488-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/11/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Spermatozoa are stored in the oviductal functional sperm reservoir in animals with internal fertilization, including zoologically distant classes such as pigs or poultry. They are held fertile in the reservoir for times ranging from a couple of days (in pigs), to several weeks (in chickens), before they are gradually released to fertilize the newly ovulated eggs. It is currently unknown whether females from these species share conserved mechanisms to tolerate such a lengthy presence of immunologically-foreign spermatozoa. Therefore, global gene expression was assessed using cDNA microarrays on tissue collected from the avian utero-vaginal junction (UVJ), and the porcine utero-tubal junction (UTJ) to determine expression changes after mating (entire semen deposition) or in vivo cloacal/cervical infusion of sperm-free seminal fluid (SF)/seminal plasma (SP). RESULTS In chickens, mating changed the expression of 303 genes and SF-infusion changed the expression of 931 genes, as compared to controls, with 68 genes being common to both treatments. In pigs, mating or SP-infusion changed the expressions of 1,722 and 1,148 genes, respectively, as compared to controls, while 592 genes were common to both treatments. The differentially expressed genes were significantly enriched for GO categories related to immune system functions (35.72-fold enrichment). The top 200 differentially expressed genes of each treatment in each animal class were analysed for gene ontology. In both pig and chicken, an excess of genes affecting local immune defence were activated, though frequently these were down-regulated. Similar genes were found in both the chicken and pig, either involved in pH-regulation (SLC16A2, SLC4A9, SLC13A1, SLC35F1, ATP8B3, ATP13A3) or immune-modulation (IFIT5, IFI16, MMP27, ADAMTS3, MMP3, MMP12). CONCLUSION Despite being phylogenetically distant, chicken and pig appear to share some gene functions for the preservation of viable spermatozoa in the female reservoirs.
Collapse
Affiliation(s)
- Mohammad Atikuzzaman
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Campus HU/US, Developmental Biology, Linköping University, Lasarettsgatan 64/65, Lanken, floor 12, SE-581 85, Linköping, Sweden
| | - Manuel Alvarez-Rodriguez
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Campus HU/US, Developmental Biology, Linköping University, Lasarettsgatan 64/65, Lanken, floor 12, SE-581 85, Linköping, Sweden
| | - Alejandro Vicente-Carrillo
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Campus HU/US, Developmental Biology, Linköping University, Lasarettsgatan 64/65, Lanken, floor 12, SE-581 85, Linköping, Sweden
| | - Martin Johnsson
- Department of Physics, Chemistry and Biology, Faculty of Science and Engineering, Linköping University, Linköping, Sweden
| | - Dominic Wright
- Department of Physics, Chemistry and Biology, Faculty of Science and Engineering, Linköping University, Linköping, Sweden
| | - Heriberto Rodriguez-Martinez
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Campus HU/US, Developmental Biology, Linköping University, Lasarettsgatan 64/65, Lanken, floor 12, SE-581 85, Linköping, Sweden.
| |
Collapse
|
13
|
Atikuzzaman M, Sanz L, Pla D, Alvarez-Rodriguez M, Rubér M, Wright D, Calvete JJ, Rodriguez-Martinez H. Selection for higher fertility reflects in the seminal fluid proteome of modern domestic chicken. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 21:27-40. [PMID: 27852008 DOI: 10.1016/j.cbd.2016.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 01/31/2023]
Abstract
The high egg-laying capacity of the modern domestic chicken (i.e. White Leghorn, WL) has arisen from the low egg-laying ancestor Red Junglefowl (RJF) via continuous trait selection and breeding. To investigate whether this long-term selection impacted the seminal fluid (SF)-proteome, 2DE electrophoresis-based proteomic analyses and immunoassays were conducted to map SF-proteins/cytokines in RJF, WL and a 9th generation Advanced Intercross Line (AIL) of RJF/WL-L13, including individual SF (n=4, from each RJF, WL and AIL groups) and pools of the SF from 15 males of each group, analyzed by 2DE to determine their degree of intra-group (AIL, WL, and RJF) variability using Principal Component Analysis (PCA); respectively an inter-breed comparative analysis of intergroup fold change of specific SF protein spots intensity between breeds. The PCA clearly highlighted a clear intra-group similarity among individual roosters as well as a clear inter-group variability (e.g. between RJF, WL and AIL) validating the use of pools to minimize confounding individual variation. Protein expression varied considerably for processes related to sperm motility, nutrition, transport and survival in the female, including signaling towards immunomodulation. The major conserved SF-proteins were serum albumin and ovotransferrin. Aspartate aminotransferase, annexin A5, arginosuccinate synthase, glutathione S-transferase 2 and l-lactate dehydrogenase-A were RJF-specific. Glyceraldehyde-3-phosphate dehydrogenase appeared specific to the WL-SF while angiotensin-converting enzyme, γ-enolase, coagulation factor IX, fibrinogen α-chain, hemoglobin subunit α-D, lysozyme C, phosphoglycerate kinase, Src-substrate protein p85, tubulins and thioredoxin were AIL-specific. The RJF-SF contained fewer immune system process proteins and lower amounts of the anti-inflammatory/immunomodulatory TGF-β2 compared to WL and AIL, which had low levels- or lacked pro-inflammatory CXCL10 compared to RJF. The seminal fluid proteome differs between ancestor and modern chicken, with a clear enrichment of proteins and peptides related to immune-modulation for sperm survival in the female and fertility.
Collapse
Affiliation(s)
- Mohammad Atikuzzaman
- Department of Clinical and Experimental Medicine, University of Linköping, Linköping, Sweden
| | - Libia Sanz
- Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | - Davinia Pla
- Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain
| | | | - Marie Rubér
- Department of Clinical and Experimental Medicine, University of Linköping, Linköping, Sweden
| | - Dominic Wright
- Department of Physics, Chemistry and Biology, University of Linköping, Linköping, Sweden
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia, CSIC, Valencia, Spain.
| | | |
Collapse
|
14
|
Hu L, Li Q, Yang P, Gandahi JA, Arain TS, Le Y, Zhang Q, Liu T, Y Waqas M, Ahmad N, Liu Y, Chen Q. Expression of TLR2/4 on Epididymal Spermatozoa of the Chinese Soft-Shelled Turtle Pelodiscus sinensis During the Hibernation Season. Anat Rec (Hoboken) 2016; 299:1578-1584. [PMID: 27532861 DOI: 10.1002/ar.23463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/07/2016] [Accepted: 06/09/2016] [Indexed: 12/23/2022]
Abstract
Spermatozoa are known to be stored in the epididymis of the Chinese soft-shelled turtle Pelodiscus sinensis for long periods during hibernation, but the mechanism that underlies the sperm storage is poorly understood. This study was carried out to confirm the presence of TLR2/4 (Toll-like receptor 2/4) in epididymal spermatozoa during the hibernation season and to analyze whether TLRs play a role in sperm storage. The structure and ultrastructure of a spermatozoon during the hibernation stage were investigated using light- and transmission electron-microscopy. RT-PCR was used to analyze mRNA expression, while protein expression was determined via Western blot. TLR2/4 mRNA and proteins were detected in spermatozoa. Immunofluorescence staining was used to confirm TLR2/4 localization in the spermatozoon, and TLR2/4 were localized in the midpiece and the posterior segment of the head of the spermatozoon, which corresponded to the cytoplasmic droplets (CDs) of the turtle spermatozoon. As TLRs play critical roles in detecting and responding to invading pathogens, this study provided molecular evidence that TLR2/4 might contribute to sperm storage in the epididymides. Anat Rec, 299:1578-1584, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lisi Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Quanfu Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Ping Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jameel A Gandahi
- Department of Anatomy and Histology, Sindh Agriculture University, Tandojam, Pakistan
| | - Tamseel S Arain
- Department of Anatomy and Histology, Sindh Agriculture University, Tandojam, Pakistan
| | - Yuan Le
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Qian Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Tengfei Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Muhammad Y Waqas
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Nisar Ahmad
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yi Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Qiusheng Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People's Republic of China.
| |
Collapse
|
15
|
Cheng Y, Prickett MD, Gutowska W, Kuo R, Belov K, Burt DW. Evolution of the avian β-defensin and cathelicidin genes. BMC Evol Biol 2015; 15:188. [PMID: 26373713 PMCID: PMC4571063 DOI: 10.1186/s12862-015-0465-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/21/2015] [Indexed: 11/10/2022] Open
Abstract
Background β-defensins and cathelicidins are two families of cationic antimicrobial peptides (AMPs) with a broad range of antimicrobial activities that are key components of the innate immune system. Due to their important roles in host defense against rapidly evolving pathogens, the two gene families provide an ideal system for studying adaptive gene evolution. In this study we performed phylogenetic and selection analyses on β-defensins and cathelicidins from 53 avian species representing 32 orders to examine the evolutionary dynamics of these peptides in birds. Results and conclusions Avian β-defensins are found in a gene cluster consisting of 13 subfamiles. Nine of these are conserved as one to one orthologs in all birds, while the others (AvBD1, AvBD3, AvBD7 and AvBD14) are more subject to gene duplication or pseudogenisation events in specific avian lineages. Avian cathelicidins are found in a gene cluster consisting of three subfamilies with species-specific duplications and gene loss. Evidence suggested that the propiece and mature peptide domains of avian cathelicidins are possibly co-evolving in such a way that the cationicity of the mature peptide is partially neutralised by the negative charge of the propiece prior to peptide secretion (further evidence obtained by repeating the analyses on primate cathelicidins). Negative selection (overall mean dN < dS) was detected in most of the gene domains examined, conserving certain amino acid residues that may be functionally crucial for the avian β-defensins and cathelicidins, while episodic positive selection was also involved in driving the diversification of specific codon sites of certain AMPs in avian evolutionary history. These findings have greatly improved our understanding of the molecular evolution of avian AMPs and will be useful to understand their role in the avian innate immune response. Additionally, the large dataset of β-defensin and cathelicidin peptides may also provide a valuable resource for translational research and development of novel antimicrobial agents in the future. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0465-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- RMC Gunn Building B19, Faculty of Veterinary Science, University of Sydney, Camperdown, 2006, NSW, Australia.
| | - Michael Dennis Prickett
- Dipartimento di Scienze della Vita-Edif. C11, Università di Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy.
| | - Weronika Gutowska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Richard Kuo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Katherine Belov
- RMC Gunn Building B19, Faculty of Veterinary Science, University of Sydney, Camperdown, 2006, NSW, Australia.
| | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
16
|
Peña FJ, Plaza Davila M, Ball BA, Squires EL, Martin Muñoz P, Ortega Ferrusola C, Balao da Silva C. The Impact of Reproductive Technologies on Stallion Mitochondrial Function. Reprod Domest Anim 2015; 50:529-37. [PMID: 26031351 DOI: 10.1111/rda.12551] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/09/2015] [Indexed: 12/11/2022]
Abstract
The traditional assessment of stallion sperm comprises evaluation of sperm motility and membrane integrity and identification of abnormal morphology of the spermatozoa. More recently, the progressive introduction of flow cytometry is increasing the number of tests available. However, compared with other sperm structures and functions, the evaluation of mitochondria has received less attention in stallion andrology. Recent research indicates that sperm mitochondria are key structures in sperm function suffering major changes during biotechnological procedures such as cryopreservation. In this paper, mitochondrial structure and function will be reviewed in the stallion, when possible specific stallion studies will be discussed, and general findings on mammalian mitochondrial function will be argued when relevant. Especial emphasis will be put on their role as source of reactive oxygen species and in their role regulating sperm lifespan, a possible target to investigate with the aim to improve the quality of frozen-thawed stallion sperm. Later on, the impact of current sperm technologies, principally cryopreservation, on mitochondrial function will be discussed pointing out novel areas of research interest with high potential to improve current sperm technologies.
Collapse
Affiliation(s)
- F J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.,Gluck Equine Research Center, University of Kentucky, Lexington, KY, USA
| | - M Plaza Davila
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - B A Ball
- Gluck Equine Research Center, University of Kentucky, Lexington, KY, USA
| | - E L Squires
- Gluck Equine Research Center, University of Kentucky, Lexington, KY, USA
| | - P Martin Muñoz
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - C Ortega Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - C Balao da Silva
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| |
Collapse
|
17
|
Lu S, Peng K, Gao Q, Xiang M, Liu H, Song H, Yang K, Huang H, Xiao K. Molecular cloning, characterization and tissue distribution of two ostrich β-defensins: AvBD2 and AvBD7. Gene 2014; 552:1-7. [PMID: 25127671 DOI: 10.1016/j.gene.2014.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/20/2014] [Accepted: 08/06/2014] [Indexed: 01/31/2023]
Abstract
Avian β-defensins (AvBDs) are a family of small antimicrobial peptides that play important roles in the innate immunity of birds. Herein, we report on two new ostrich AvBD genes, AvBD2 and AvBD7, which were isolated from the bone marrow of ostriches (Struthio camelus). The coding regions of ostrich AvBD2 and AvBD7 comprised 195 bp and 201bp, which encoded 64 and 66 amino acids, respectively. Homology analysis showed that ostrich AvBD2 had the highest similarity (up to 86%) with the swan goose (Anser cygnoides) AvBD2, while ostrich AvBD7 shared the highest similarity (up to 81%) with chicken AvBD7. Analysis of the codon-usage bias showed that the two ostrich AvBDs had different codon-usage patterns from other AvBDs. The two synthetic AvBD peptides exhibited antibacterial activities against both Gram-positive and Gram-negative bacteria, and these activities decreased significantly in the presence of 100mM NaCl (P<0.01). Real-time reverse transcription-polymerase chain reaction analysis showed that AvBD2 and AvBD7 were widely expressed at different levels in 17 different tissues. This is the first report of the nucleotide sequences of ostrich AvBDs. Further investigations of these two AvBDs may help us to gain new insights into the immune defense system of the ostrich and to make subsequent therapeutic use of ostrich defensins.
Collapse
Affiliation(s)
- Shun Lu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China; Wuhan institute of Animal and Veterinary Science, Wuhan Academy of Agricultural Science, Wuhan, PR China.
| | - Kemei Peng
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China.
| | - Qishuang Gao
- Wuhan institute of Animal and Veterinary Science, Wuhan Academy of Agricultural Science, Wuhan, PR China
| | - Min Xiang
- Wuhan institute of Animal and Veterinary Science, Wuhan Academy of Agricultural Science, Wuhan, PR China
| | - Huazhen Liu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Hui Song
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Keli Yang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Haibo Huang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| | - Ke Xiao
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
18
|
Michailidis G, Anastasiadou M, Guibert E, Froment P. Activation of innate immune system in response to lipopolysaccharide in chicken Sertoli cells. Reproduction 2014; 148:259-70. [DOI: 10.1530/rep-14-0064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sertoli cells (SCs) play an important physiological role in the testis, as they support, nourish, and protect the germ cells. As protection of the developing spermatozoa is an emerging aspect of reproductive physiology, this study examined the expression pattern of innate immune-related genes, including avian β-defensins (AvBDs), Toll-like receptors (TLRs), and cytokines, and investigated the time course of an inflammatory response in rooster SCs triggered by exposure to the bacterial endotoxin lipopolysaccharide (LPS). SCs were isolated from 6-week-old chicken, culturedin vitro, and stimulated with 1 μg/ml LPS at different time courses (0, 6, 12, 24, and 48 h). Data on expression analysis revealed that all ten members of the chickenTLRfamily, nine members of theAvBDfamily, as well as eight cytokine genes were expressed in SCs. Quantitative real-time PCR analysis revealed that LPS treatment resulted in significant induction of the expression levels of sixTLRs, sixAvBDs, and four cytokine genes, while two cytokine genes were downregulated and two other genes were unchanged. The increasing interleukin 1β (IL1β) production was confirmed in the conditioned medium. Furthermore, the phagocytosis of SCs was increased after LPS treatment. In conclusion, these findings provide evidence that SCs express innate immune-related genes and respond directly to bacterial ligands. These genes represent an important component of the immune system, which could be integrated into semen, and present a distinctive constituent of the protective repertoire of the testis against ascending infections.
Collapse
|
19
|
Anastasiadou M, Theodoridis A, Michailidis G. Effects of sexual maturation and Salmonella infection on the expression of avian β-defensin genes in the chicken testis. Vet Res Commun 2014; 38:107-13. [PMID: 24469393 DOI: 10.1007/s11259-014-9591-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2014] [Indexed: 10/25/2022]
Abstract
Rooster infertility is a major concern in the poultry industry and protection of the male reproductive organs from pathogens is an essential aspect of reproductive physiology. During the last years, research on antimicrobial protection has elucidated the critical role of the antimicrobial peptides avian β-defensins (AvBDs) in the innate immunity in chickens. AvBDs have been reported to be expressed in the hen reproductive organs, providing protection against microbial pathogens including Salmonella Enteritidis (SE). However, mechanisms of antimicrobial protection of rooster reproductive organs and especially the testis, mediated by AvBDs are poorly understood. The aim of this study was to investigate the expression of the complete family of the 14 AvBD genes, in the rooster testis in vivo, to determine whether sexual maturation affects their testicular mRNA abundance and to investigate whether SE infection alters their expression. Expression analysis revealed that 9 members of the AvBD family, namely AvBD1, 2, 4, 5, 6, 9, 10, 12 and 14 were expressed in the testis. Quantitative real-time PCR analysis revealed that the mRNA abundance of three AvBDs was up regulated and of three AvBDs was down regulated with respect to sexual maturation. In addition, SE infection resulted in a significant induction of AvBD4, 10, 12 and 14 in the testis of sexually mature roosters. These findings provide strong evidence to suggest that an AvBD-mediated immune response mechanism exists in the rooster testis providing protection against bacterial pathogens including Salmonella species.
Collapse
Affiliation(s)
- M Anastasiadou
- Laboratory of Physiology of Reproduction of Farm Animals, Department of Animal Production, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | | | |
Collapse
|
20
|
Cuperus T, Coorens M, van Dijk A, Haagsman HP. Avian host defense peptides. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:352-369. [PMID: 23644014 DOI: 10.1016/j.dci.2013.04.019] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 04/24/2013] [Indexed: 06/02/2023]
Abstract
Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense of many organisms. It is becoming increasingly clear that in the animal kingdom the functions of HDPs are not confined to direct antimicrobial actions. Research in mammals has indicated that HDPs have many immunomodulatory functions and are also involved in other physiological processes ranging from development to wound healing. During the past five years our knowledge about avian HDPs has increased considerably. This review addresses our current knowledge on the evolution, regulation and biological functions of HDPs of birds.
Collapse
Affiliation(s)
- Tryntsje Cuperus
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
21
|
Wang Z, Yu Q, Fu J, Liang J, Yang Q. Immune responses of chickens inoculated with recombinant Lactobacillus expressing the haemagglutinin of the avian influenza virus. J Appl Microbiol 2013; 115:1269-77. [PMID: 23937220 DOI: 10.1111/jam.12325] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 07/17/2013] [Accepted: 08/05/2013] [Indexed: 11/29/2022]
Abstract
AIMS To develop a safe, effective and convenient vaccine for the prevention of highly pathogenic avian influenza (HPAI), we have successfully constructed a recombinant lactobacillus (LDL17-pH) that expresses the foreign HPAI protein, haemagglutinin 1 (HA1 ). METHODS AND RESULTS The mucosal and systemic immune responses that are triggered by LDL17-pH following the oral administration to 10-day-old chickens were evaluated. The results showed that LDL17-pH could significantly increase the specific anti-HA1 IgA antibody level in the mucosa and the anti-HA1 IgG level in sera. Tissues were isolated from trachea and Peyer's patches(PPs)and caecal tonsils of chickens, and gene expression was analysed via real-time quantitative PCR. CONCLUSIONS The results showed that LDL17-pH could significantly induce the specific anti-HA1 IgA antibody level in the trachea and intestine and the specific anti-HA1 IgG antibody level in the serum (P < 0·05). Additionally, LDL17-pH was in the capacity to induce the expression of cytokines IFN-γ, TLR-2 and AvBD-9 in the PPs and caecal tonsils. Most importantly, the chickens that were immunized with LDL17-pH were protected against lethal challenge of the H5N1 virus to some extent. SIGNIFICANCE AND IMPACT OF THE STUDY Therefore, LDL17-pH could be a promising oral vaccine candidate against HPAI.
Collapse
Affiliation(s)
- Z Wang
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | | | | | | | |
Collapse
|
22
|
Marzoni M, Castillo A, Sagona S, Citti L, Rocchiccioli S, Romboli I, Felicioli A. A proteomic approach to identify seminal plasma proteins in roosters (Gallus gallus domesticus). Anim Reprod Sci 2013; 140:216-23. [PMID: 23896393 DOI: 10.1016/j.anireprosci.2013.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 11/29/2022]
Abstract
Considering the interest in avian semen processing and storage, the objective of this study was to identify the domestic fowl seminal plasma proteins using two-dimensional gel electrophoresis (2-DE) and mass spectrometry MS/MS. For three times in a 4-month period, seminal plasma was obtained from semen collected from four local male chickens (Gallus gallus domesticus) and prepared for two-dimensional polyacrylamide gel electrophoresis. A total of 83 spots were detected across all gels and analyzed by MALDI-TOF/TOF. Among these spots, 17 have been successfully identified. The most intensely stained spots were recognized as serum albumin, ovotransferrin, alpha-enolase, fatty acid binding protein, thioredoxin, trypsin inhibitor CITI-1 and gallinacin-9. From these proteins, two are characteristic of avian seminal plasma, the ovotransferrin and gallinacin-9, and one is specific of the Gallus species, the chicken trypsin inhibitor CITI-1.
Collapse
Affiliation(s)
- Margherita Marzoni
- Department of Veterinary Sciences, Pisa University, Viale delle Piagge 2, Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Anastasiadou M, Avdi M, Michailidis G. Expression of avian β-defensins and Toll-like receptor genes in the rooster epididymis during growth and Salmonella infection. Anim Reprod Sci 2013; 140:224-31. [PMID: 23830764 DOI: 10.1016/j.anireprosci.2013.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 12/19/2022]
Abstract
The epididymis is an organ involved in the maturation, transport, and storage of sperm prior to ejaculation. As epididymis is exposed to a constant risk of inflammatory conditions that may lead to transient or permanent sterility, protection of this organ from pathogens is an essential aspect of reproductive physiology. The families of antimicrobial peptides β-defensins and the pattern-recognition receptors Toll-like (TLR) mediate innate immunity in various vertebrates including avian species. As rooster infertility is a major concern in the poultry industry, the objectives of this study were to determine the expression profile of the entire family of the avian β-defensins (AvBD) and TLR genes in the rooster epididymis, to investigate whether sexual maturation affects their epididymidal mRNA abundance and to determine the changes in their expression levels in response to Salmonella enteritidis (SE) infection in the epididymis of sexually mature roosters. RNA was extracted from the epididymis of healthy pubertal, sexually mature and aged birds, and from sexually mature SE infected birds. RT-PCR analysis revealed that 10 members of the AvBD and nine members of the TLR gene families were expressed in the epididymis. Quantitative real-time PCR analysis revealed that the epididymidal mRNA abundance of certain AvBD and TLR genes was developmentally regulated with respect to sexual maturation. SE infection resulted in a significant induction of AvBD 1, 9, 10, 12 and 14, as well as TLR 1-2, 2-1, 2-2, 4, 5 and 7 genes, in the epididymis of sexually mature roosters, compared to healthy birds of the same age. These findings provide strong evidence to suggest that the rooster epididymis is capable of initiating an inflammatory response to Salmonella, through activation of certain members of the AvBD and TLR gene families.
Collapse
Affiliation(s)
- M Anastasiadou
- Laboratory of Physiology of Reproduction of Farm Animals, Department of Animal Production, School of Agriculture, Aristotle University of Thessaloniki, Greece
| | | | | |
Collapse
|
24
|
Jie H, Lian L, Qu LJ, Zheng JX, Hou ZC, Xu GY, Song JZ, Yang N. Differential expression of Toll-like receptor genes in lymphoid tissues between Marek's disease virus-infected and noninfected chickens. Poult Sci 2013; 92:645-54. [PMID: 23436515 DOI: 10.3382/ps.2012-02747] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Toll-like receptors (TLR) are trans-membrane sensors recognizing invading microbes. Toll-like receptors play a central role in initiating immune responses against several pathogens. In this study, we investigated the response of TLR and downstream genes to Marek's disease virus (MDV) infection. Forty 1-d-old chicks were randomly divided into 2 groups, with 20 chicks infected with MDV and 20 chicks mock-infected. Four chickens were euthanized respectively from infected and age-matched noninfected groups at 4, 7, 14, 21, and 28 d postinfection (dpi). Bursas, spleens, and thymuses were removed. The differential expression of TLR genes, including TLR3, TLR5, TLR7, TLR15, and TLR21, and downstream genes of TLR7, including MyD88, TRAF3, TRAF6, IFNA, IFNB, and IL6, in lymphoid tissues of MDV-infected and noninfected chickens was determined by real-time PCR. The results showed that the change of TLR genes was different in 3 lymphoid tissues. Expression of TLR7 and MyD88 was upregulated at 14 dpi and downregulated at 28 dpi in MDV-infected compared with noninfected spleens. The TRAF6 and IFNB were upregulated, and TRAF3, IFNA, and IL6 genes showed increasing trends in MDV-infected compared with noninfected spleens at 14 dpi. The expression of TLR3 and TLR15 genes was downregulated in MDV-infected compared with noninfected spleens at 28 dpi. The results indicated that TLR7 and its downstream genes were a response to MDV infection at 14 dpi. However, the function of TLR was impaired when the infection entered the tumor transformation phase. In bursas, TLR3 and TLR15 genes were upregulated at 7 and 4 dpi, respectively. It indicated that TLR3 and TLR15 might be involved in response to MDV infection in bursa at early phases. However, no differential expression of TLR genes was observed between MDV-infected and noninfected thymuses, which indicated that the thymus had little response to MDV infection mediated by TLR.
Collapse
Affiliation(s)
- H Jie
- Department of Animal Genetics and Breeding, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hong Y, Song W, Lee S, Lillehoj H. Differential gene expression profiles of β-defensins in the crop, intestine, and spleen using a necrotic enteritis model in 2 commercial broiler chicken lines. Poult Sci 2012; 91:1081-8. [DOI: 10.3382/ps.2011-01948] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|