1
|
Choi H, Garavito-Duarte Y, Gormley AR, Kim SW. Aflatoxin B1: Challenges and Strategies for the Intestinal Microbiota and Intestinal Health of Monogastric Animals. Toxins (Basel) 2025; 17:43. [PMID: 39852996 PMCID: PMC11768593 DOI: 10.3390/toxins17010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
The objective of this review is to investigate the impacts of aflatoxins, particularly aflatoxin B1 (AFB1), on intestinal microbiota, intestinal health, and growth performance in monogastric animals, primarily chickens and pigs, as well as dietary interventions to mitigate these effects. Aflatoxin B1 contamination in feeds disrupts intestinal microbiota, induces immune responses and oxidative damage, increases antioxidant activity, and impairs jejunal cell viability, barrier function, and morphology in the small intestine. These changes compromise nutrient digestion and reduce growth performance in animals. The negative impact of AFB1 on the % change in average daily gain (ΔADG) of chickens and pigs was estimated based on meta-analysis: ΔADG (%)chicken = -0.13 × AFB1 intake per body weight (ng/g·d) and ΔADG (%)pig = -0.74 × AFB1 intake per body weight (µg/kg·d), indicating that increasing AFB1 contamination linearly reduces the growth of animals. To mitigate the harmful impacts of AFB1, various dietary strategies have been effective. Mycotoxin-detoxifying agents include mycotoxin-adsorbing agents, such as clay and yeast cell wall compounds, binding to AFB1 and mycotoxin-biotransforming agents, such as specific strains of Bacillus subtilis and mycotoxin-degrading enzyme, degrading AFB1 into non-toxic metabolites such as aflatoxin D1. Multiple mycotoxin-detoxifying agents are often combined and used together to improve the intestinal health and growth of chickens and pigs fed AFB1-contaminated feeds. In summary, AFB1 negatively impacts intestinal microbiota, induces immune responses and oxidative stress, disrupts intestinal morphology, and impairs nutrient digestion in the small intestine, leading to reduced growth performance. Supplementing multi-component mycotoxin-detoxifying agents in feeds could effectively adsorb and degrade AFB1 co-contaminated with other mycotoxins prior to its absorption in the small intestine, preventing its negative impacts on the intestinal health and growth performance of chickens and pigs.
Collapse
Affiliation(s)
| | | | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (H.C.); (Y.G.-D.); (A.R.G.)
| |
Collapse
|
2
|
Froebel LE, Calik A, Emami NK, Blue CEC, Dalloul RA. Evaluating performance, intestinal lesions, and immunity related genes in heritage and modern broiler breeds during a necrotic enteritis challenge. Poult Sci 2024; 103:104339. [PMID: 39366291 PMCID: PMC11489053 DOI: 10.1016/j.psj.2024.104339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 10/06/2024] Open
Abstract
In this comparative study, the differential responses of heritage (ACRB; Athens Canadian Random Bred) and modern (Cobb) broilers to a necrotic enteritis (NE) challenge were evaluated. The design was a 2×2 factorial with breed (ACRB and Cobb) and challenge (non-challenged and NE-challenged) as main factors. On day (d) of hatch, 96 male chicks (48 ACRB and 48 Cobb) were allocated to 4 experimental groups with 8 replicate cages and 3 birds/cage. On d 14, birds in the NE-challenged groups were orally gavaged with 3,000 Eimeria maxima sporulated oocysts followed by 2 doses of ∼1×108 CFU of Clostridium perfringens on d 19 and 20. On d 21, 2 birds/cage were necropsied to score NE lesions, and spleen and cecal tonsils (CT) samples were collected from 1 bird/cage for assessing mRNA abundance. Challenged ACRB birds exhibited reduced growth performance and relative growth performance compared to challenged Cobb birds. There was no significant interaction between breed and challenge during the challenge period (d 14-21) for mortality. However, there was a challenge main effect (P ≤ 0.05) on mortality as manifested by greater NE-associated mortality compared to non-challenged birds. No significant breed × challenge interaction or breed main effect on lesion scores were observed in the duodenum, jejunum, and ileum. NE-challenged Cobb birds exhibited greater mRNA abundance of IL-18, TNFα, TLR1.2, TLR2.1, CCR5, CCR6, CCL20, and AvBD1 in CT compared to NE challenged ACRB birds. There was a significant breed × challenge interaction effect on mRNA abundance of IL-10, AvBD13, NK-Lysin, and LEAP2 in the spleen. Moreover, a main effect of breed was observed in IL-1β, IL-18, TNFα, TLR2.1, CCR5, CCL20, and NK-Lysin where ACRB birds had higher mRNA abundance than Cobb birds (P ≤ 0.05). The observed differences in performance, pathology, and mRNA abundance between ACRB and Cobb broilers during the NE challenge highlight the distinct immune response profiles of heritage and modern breeds, emphasizing the need for breed-specific nutritional, managerial, and genetic selection programs for modulating immune responses during enteric disease challenges.
Collapse
Affiliation(s)
- Laney E Froebel
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Ali Calik
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; Department of Animal Nutrition & Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, Ankara, 06110, Türkiye
| | - Nima K Emami
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Candice E C Blue
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Rami A Dalloul
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
3
|
Okasha H, Song B, Song Z. Hidden Hazards Revealed: Mycotoxins and Their Masked Forms in Poultry. Toxins (Basel) 2024; 16:137. [PMID: 38535803 PMCID: PMC10976275 DOI: 10.3390/toxins16030137] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/25/2025] Open
Abstract
The presence of mycotoxins and their masked forms in chicken feed poses a significant threat to both productivity and health. This review examines the multifaceted impacts of mycotoxins on various aspects of chicken well-being, encompassing feed efficiency, growth, immunity, antioxidants, blood biochemistry, and internal organs. Mycotoxins, toxic substances produced by fungi, can exert detrimental effects even at low levels of contamination. The hidden or masked forms of mycotoxins further complicate the situation, as they are not easily detected by conventional methods but can be converted into their toxic forms during digestion. Consequently, chickens are exposed to mycotoxin-related risks despite apparently low mycotoxin levels. The consequences of mycotoxin exposure in chickens include reduced feed efficiency, compromised growth rates, impaired immune function, altered antioxidant levels, disturbances in blood biochemical parameters, and adverse effects on internal organs. To mitigate these impacts, effective management strategies are essential, such as routine monitoring of feed ingredients and finished feeds, adherence to proper storage practices, and the implementation of feed detoxification methods and mycotoxin binders. Raising awareness of these hidden hazards is crucial for safeguarding chicken productivity and health.
Collapse
Affiliation(s)
- Hamada Okasha
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
- Animal Production Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Bochen Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, China; (H.O.); (B.S.)
| |
Collapse
|
4
|
de Souza M, Baptista AAS, Menck-Costa MF, Justino L, da Glória EM, Shimizu GD, Ferraz CR, Verri WA, Van Immerseel F, Bracarense APFRL. Modulation of Broiler Intestinal Changes Induced by Clostridium perfringens and Deoxynivalenol through Probiotic, Paraprobiotic, and Postbiotic Supplementation. Toxins (Basel) 2024; 16:46. [PMID: 38251262 PMCID: PMC10820081 DOI: 10.3390/toxins16010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Deoxynivalenol (DON) is a predisposing factor for necrotic enteritis. This study aimed to investigate the effects of a DON and Clostridium perfringens (CP) challenge on the intestinal morphology, morphometry, oxidative stress, and immune response of broilers. Additionally, we evaluated the potential of a Lactobacillus spp. mixture as an approach to mitigate the damage induced by the challenge. One-day-old broiler chickens (n = 252) were divided into seven treatment groups: Control, DON, CP, CP + DON, VL (DON + CP + viable Lactobacillus spp. mixture), HIL (DON + CP + heat-inactivated Lactobacillus spp. mixture), and LCS (DON + CP + Lactobacillus spp. mixture culture supernatant). Macroscopic evaluation of the intestines revealed that the CP + DON group exhibited the highest lesion score, while the VL and HIL groups showed the lowest scores. Microscopically, all Lactobacillus spp. treatments mitigated the morphological changes induced by the challenge. DON increased levels of reactive oxygen species (ROS) in the jejunum, and CP increased ROS levels in the jejunum and ileum. Notably, the Lactobacillus spp. treatments did not improve the antioxidant defense against CP-induced oxidative stress. In summary, a Lactobacillus spp. mixture, whether used as a probiotic, paraprobiotic, or postbiotic, exerted a partially protective effect in mitigating most of the intestinal damage induced by DON and CP challenges.
Collapse
Affiliation(s)
- Marielen de Souza
- Laboratory of Animal Pathology (LAP), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
- Laboratory of Avian Medicine (LAM), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (A.A.S.B.); (M.F.M.-C.); (L.J.)
- Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Ana Angelita Sampaio Baptista
- Laboratory of Avian Medicine (LAM), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (A.A.S.B.); (M.F.M.-C.); (L.J.)
| | - Maísa Fabiana Menck-Costa
- Laboratory of Avian Medicine (LAM), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (A.A.S.B.); (M.F.M.-C.); (L.J.)
| | - Larissa Justino
- Laboratory of Avian Medicine (LAM), Department of Preventive Veterinary Medicine, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (A.A.S.B.); (M.F.M.-C.); (L.J.)
| | - Eduardo Micotti da Glória
- Biological Science Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, Brazil;
| | - Gabriel Danilo Shimizu
- Department of Statistics, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | - Camila Rodrigues Ferraz
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of General Pathology, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (C.R.F.); (W.A.V.)
| | - Waldiceu A. Verri
- Laboratory of Pain, Inflammation, Neuropathy and Cancer, Department of General Pathology, Universidade Estadual de Londrina, Londrina 86057-970, Brazil; (C.R.F.); (W.A.V.)
| | - Filip Van Immerseel
- Livestock Gut Health Team (LiGHT), Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | | |
Collapse
|
5
|
Satterlee T, McDonough CM, Gold SE, Chen C, Glenn AE, Pokoo-Aikins A. Synergistic Effects of Essential Oils and Organic Acids against Aspergillus flavus Contamination in Poultry Feed. Toxins (Basel) 2023; 15:635. [PMID: 37999498 PMCID: PMC10675374 DOI: 10.3390/toxins15110635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Organic acids and essential oils are commonly used in the poultry industry as antimicrobials and for their beneficial effects on gut health, growth performance, and meat quality. A common postharvest storage fungal colonist, Aspergillus flavus, contaminates corn, the primary component of poultry feed, with the highly detrimental mycotoxin, aflatoxin. Aflatoxin adversely affects poultry feed intake, feed conversion efficiency, weight gain, egg production, fertility, hatchability, and poultry meat yield. Both organic acids and essential oils have been reported to inhibit the growth of A. flavus. Thus, we evaluated if the inhibitory synergy between combined essential oils (cinnamon, lemongrass, and oregano) and organic acids (acetic, butyric, and propionic) prevents A. flavus growth. The study confirmed that these compounds inhibit the growth of A. flavus and that synergistic interactions do occur between some of them. Overall, cinnamon oil was shown to have the highest synergy with all the organic acids tested, requiring 1000 µL/L air of cinnamon oil and 888 mg/kg of butyric acid to fully suppress A. flavus growth on corn kernels. With the strong synergism demonstrated, combining certain essential oils and organic acids offers a potentially effective natural method for controlling postharvest aflatoxin contamination in poultry feed.
Collapse
Affiliation(s)
- Tim Satterlee
- Toxicology & Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA; (T.S.); (C.M.M.); (S.E.G.)
| | - Callie Megan McDonough
- Toxicology & Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA; (T.S.); (C.M.M.); (S.E.G.)
| | - Scott E. Gold
- Toxicology & Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA; (T.S.); (C.M.M.); (S.E.G.)
| | - Chongxiao Chen
- Department of Poultry Science, University of Georgia, 110 Cedar Street, Athens, GA 30602, USA;
| | - Anthony E. Glenn
- Toxicology & Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA; (T.S.); (C.M.M.); (S.E.G.)
| | - Anthony Pokoo-Aikins
- Toxicology & Mycotoxin Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA; (T.S.); (C.M.M.); (S.E.G.)
| |
Collapse
|
6
|
Yu J, Yang Z, Yang H, Wang Z. Effects of cottonseed meal on growth performance, liver redox status, and serum biochemical parameters in goslings at 1 to 28 days of age. BMC Vet Res 2022; 18:347. [PMID: 36109808 PMCID: PMC9479387 DOI: 10.1186/s12917-022-03438-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background Cottonseed meal (CSM), a relatively rich source of protein and amino acids, is used as an inexpensive alternative to soybean meal (SBM) in poultry diets. However, the toxicity of free gossypol in CSM has been a primary concern. The present study was conducted to investigate the effects of CSM on growth performance, serum biochemical parameters, and liver redox status in goslings at 1 to 28 days of age. Three hundred 1-day-old male goslings were randomly divided into 5 groups (10 goslings/pen, 6 replicate pens/group) and subjected to a 28-day experiment. Five isonitrogenous and isoenergetic diets were formulated such that 0% (control), 25% (CSM25), 50% (CSM50), 75% (CSM75), and 100% (CSM100) of protein from SBM was replaced by protein from CSM. The free gossypol contents in the five diets were 0, 56, 109, 166, and 222 mg/kg, respectively. Results The results showed that dietary CSM was associated with linear decreases in body weight, average daily feed intake and average daily gain and linear increases in the feed-to-gain ratio from 1 to 28 days of age (P < 0.001). As the dietary CSM concentration increased, a numerical increase was found in the mortality of goslings. According to a single-slope broken-line model, the breakpoints for the average daily gain of dietary free gossypol concentration on days 1 to 14, 15 to 28, and 1 to 28 occurred at 23.63, 14.78, and 18.53 mg/kg, respectively. As the dietary CSM concentration increased, serum albumin (P < 0.001) concentrations decreased linearly and serum uric acid (P = 0.011) increased linearly. The hydroxyl radical scavenging ability (P = 0.002) and catalase (P < 0.001) and glutathione peroxidase (P = 0.001) activities of the liver decreased linearly with increasing dietary CSM. However, dietary CSM did not affect the concentrations of reactive oxygen metabolites, malondialdehyde, or protein carbonyl in the liver. Conclusions The increasing dietary CSM increased the concentration of free gossypol and altered the composition of some amino acids in the diet. A high concentration of CSM reduced the growth performance of goslings aged 1 to 28 days by decreasing feed intake, liver metabolism, and antioxidant capacity. From the primary concern of free gossypol in CSM, the tolerance of goslings to free gossypol from CSM is low, and the toxicity of free gossypol has a cumulative effect over time.
Collapse
|
7
|
Mesgar A, Aghdam Shahryar H, Bailey CA, Ebrahimnezhad Y, Mohan A. Effect of Dietary L-Threonine and Toxin Binder on Performance, Blood Parameters, and Immune Response of Broilers Exposed to Aflatoxin B 1. Toxins (Basel) 2022; 14:toxins14030192. [PMID: 35324689 PMCID: PMC8951136 DOI: 10.3390/toxins14030192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 01/14/2023] Open
Abstract
To evaluate the effect of L-Threonine (L-Thr) and Mycofix® Plus (MP) on aflatoxicosis, an experiment with a 3-way ANOVA model was carried out with 8 replicates and 640 birds. Treatments included two levels of L-Thr (100% and 125% of the requirements, Cobb 500, Cobb-Vantress), Aflatoxin B1 (AFB1) (0, 500 ppb), and MP (0, 1 g/kg). As the main effects showed, AFB1 decreased breast meat yield and carcass percentage (p < 0.001), serum urea, antibody titer against infectious bronchitis virus (IBV), and bone density (p < 0.05), while it increased the plasma concentrations of glucose and alkaline phosphatase (ALP) (p < 0.05). Mycofix Plus improved the grower feed intake (FI), tibia fresh weight, and body weight (BW) to bone weight (p < 0.05). L-Threonine increased the grower FI, breast meat yield, serum aspartate transaminase (AST), and glutathione peroxidase (GPX) (p < 0.05). There were positive interactions with breast meat yield, cholesterol, lactate dehydrogenase (LDH), and IBV titer. Of the treatments used, the combination of L-Thr and MP without AFB1 improved breast meat and carcass percentage. L-Threonine and MP significantly improved IBV titer in birds challenged with AFB1 (p < 0.001). In conclusion, L-Thr and MP were beneficial to improve immunity.
Collapse
Affiliation(s)
- Aydin Mesgar
- Department of Animal Science, Shabestar Branch, Islamic Azad University, Shabestar 5381637181, Iran; (A.M.); (H.A.S.); (Y.E.)
| | - Habib Aghdam Shahryar
- Department of Animal Science, Shabestar Branch, Islamic Azad University, Shabestar 5381637181, Iran; (A.M.); (H.A.S.); (Y.E.)
| | - Christopher Anthony Bailey
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA
- Correspondence: (C.A.B.); (A.M.)
| | - Yahya Ebrahimnezhad
- Department of Animal Science, Shabestar Branch, Islamic Azad University, Shabestar 5381637181, Iran; (A.M.); (H.A.S.); (Y.E.)
| | - Anand Mohan
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
- Correspondence: (C.A.B.); (A.M.)
| |
Collapse
|
8
|
Gao S, Zhang L, Zhu D, Huang J, Yang J, Jiang J, Wu H, Lv G. Effects of glucose oxidase and bacillus subtilis on growth performance and serum biochemical indicexs of broilers exposed to aflatoxin B1 and endotoxin. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
9
|
Ochieng PE, Scippo ML, Kemboi DC, Croubels S, Okoth S, Kang’ethe EK, Doupovec B, Gathumbi JK, Lindahl JF, Antonissen G. Mycotoxins in Poultry Feed and Feed Ingredients from Sub-Saharan Africa and Their Impact on the Production of Broiler and Layer Chickens: A Review. Toxins (Basel) 2021; 13:633. [PMID: 34564637 PMCID: PMC8473361 DOI: 10.3390/toxins13090633] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
The poultry industry in sub-Saharan Africa (SSA) is faced with feed insecurity, associated with high cost of feeds, and feed safety, associated with locally produced feeds often contaminated with mycotoxins. Mycotoxins, including aflatoxins (AFs), fumonisins (FBs), trichothecenes, and zearalenone (ZEN), are common contaminants of poultry feeds and feed ingredients from SSA. These mycotoxins cause deleterious effects on the health and productivity of chickens and can also be present in poultry food products, thereby posing a health hazard to human consumers of these products. This review summarizes studies of major mycotoxins in poultry feeds, feed ingredients, and poultry food products from SSA as well as aflatoxicosis outbreaks. Additionally reviewed are the worldwide regulation of mycotoxins in poultry feeds, the impact of major mycotoxins in the production of chickens, and the postharvest use of mycotoxin detoxifiers. In most studies, AFs are most commonly quantified, and levels above the European Union regulatory limits of 20 μg/kg are reported. Trichothecenes, FBs, ZEN, and OTA are also reported but are less frequently analyzed. Co-occurrences of mycotoxins, especially AFs and FBs, are reported in some studies. The effects of AFs on chickens' health and productivity, carryover to their products, as well as use of mycotoxin binders are reported in few studies conducted in SSA. More research should therefore be conducted in SSA to evaluate occurrences, toxicological effects, and mitigation strategies to prevent the toxic effects of mycotoxins.
Collapse
Affiliation(s)
- Phillis E. Ochieng
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium; (P.E.O.); (M.-L.S.)
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
| | - Marie-Louise Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Avenue de Cureghem 10, 4000 Liège, Belgium; (P.E.O.); (M.-L.S.)
| | - David C. Kemboi
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi 00100, Kenya;
- Department of Animal Science, Chuka University, P.O. Box 109-00625, Chuka 00625, Kenya
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
| | - Sheila Okoth
- School of Biological Sciences, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya;
| | | | | | - James K. Gathumbi
- Department of Pathology, Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi 00100, Kenya;
| | - Johanna F. Lindahl
- Department of Biosciences, International Livestock Research Institute (ILRI), P.O. Box 30709, Nairobi 00100, Kenya;
- Department of Medical Biochemistry and Microbiology, Uppsala University, P.O. Box 582, 751 23 Uppsala, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O Box 7054, 750 07 Uppsala, Sweden
| | - Gunther Antonissen
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (D.C.K.); (S.C.)
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
10
|
Bean-Hodgins L, Kiarie EG. Mandated restrictions on the use of medically important antibiotics in broiler chicken production in Canada: implications, emerging challenges, and opportunities for bolstering gastrointestinal function and health– A review. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2021-0015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chicken Farmers of Canada has been progressively phasing out prophylactic use of antibiotics in broiler chicken production. Consequently, hatcheries, veterinarians, and nutritionists have been mandated to contend with less reliance on use of preventive antibiotics. A topical concern is the increased risk of proliferation of enteric pathogens leading to poor performance, increased mortality and compromised welfare. Moreover, the gut harbors several taxa such as Campylobacter and Salmonella capable of causing significant illnesses in humans via contaminated poultry products. This has created opportunity for research and development of dietary strategies designed to modulate gastrointestinal environment for enhanced performance and food safety. Albeit with inconsistent responses, literature data suggests that dietary strategies such as feed enzymes, probiotics/prebiotics and phytogenic feed additives can bolster gut health and function in broiler chickens. However, much of the efficacy data was generated at controlled research settings that vary significantly with the complex commercial broiler production operations due to variation in dietary, health and environmental conditions. This review will summarize implications of mandated restrictions on the preventative use of antibiotics and emerging Canadian broiler production programs to meet processor specifications. Challenges and opportunities for integrating alternative dietary strategies in commercial broiler production settings will be highlighted.
Collapse
Affiliation(s)
- Lisa Bean-Hodgins
- New-Life Mills, A division of Parrish & Heimbecker, Cambridge , Ontario, Canada
- University of Guelph, 3653, Department of Animal Biosciences, Guelph, Ontario, Canada
| | - Elijah G. Kiarie
- University of Guelph, Department of Animal Biosciences, 50 Stone Road East, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
11
|
Criado-Mesas L, Abdelli N, Noce A, Farré M, Pérez JF, Solà-Oriol D, Martin-Venegas R, Forouzandeh A, González-Solé F, Folch JM. Transversal gene expression panel to evaluate intestinal health in broiler chickens in different challenging conditions. Sci Rep 2021; 11:6315. [PMID: 33737699 PMCID: PMC7973573 DOI: 10.1038/s41598-021-85872-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/08/2021] [Indexed: 01/31/2023] Open
Abstract
There is a high interest on gut health in poultry with special focus on consequences of the intestinal diseases, such as coccidiosis and C. perfringens-induced necrotic enteritis (NE). We developed a custom gene expression panel, which could provide a snapshot of gene expression variation under challenging conditions. Ileum gene expression studies were performed through high throughput reverse transcription quantitative real-time polymerase chain reaction. A deep review on the bibliography was done and genes related to intestinal health were selected for barrier function, immune response, oxidation, digestive hormones, nutrient transport, and metabolism. The panel was firstly tested by using a nutritional/Clostridium perfringens model of intestinal barrier failure (induced using commercial reused litter and wheat-based diets without exogenous supplementation of enzymes) and the consistency of results was evaluated by another experiment under a coccidiosis challenge (orally gavaged with a commercial coccidiosis vaccine, 90× vaccine dose). Growth traits and intestinal morphological analysis were performed to check the gut barrier failure occurrence. Results of ileum gene expression showed a higher expression in genes involved in barrier function and nutrient transport in chickens raised in healthy conditions, while genes involved in immune response presented higher expression in C.perfringens-challenged birds. On the other hand, the Eimeria challenge also altered the expression of genes related to barrier function and metabolism, and increased the expression of genes related to immune response and oxidative stress. The panel developed in the current study gives us an overview of genes and pathways involved in broiler response to pathogen challenge. It also allows us to deep into the study of differences in gene expression pattern and magnitude of responses under either a coccidial vaccine or a NE.
Collapse
Affiliation(s)
- L Criado-Mesas
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain.
| | - N Abdelli
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - A Noce
- Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - M Farré
- Department of Mathematics, Area of Statistics and Operations Research, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - J F Pérez
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - D Solà-Oriol
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - R Martin-Venegas
- Department of Biochemistry and Physiology, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028, Barcelona, Spain
- Research Institute of Nutrition and Food Safety (INSA-UB), Universitat de Barcelona, 08291, Santa Coloma de Gramanet, Spain
| | - A Forouzandeh
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - F González-Solé
- Animal Nutrition and Welfare Service, Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - J M Folch
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, Bellaterra, Spain
- Animal and Food Science Department, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
12
|
Nicholds JF, McQuain C, Hofacre CL, Mathis GF, Fuller AL, Telg BE, Montoya AF, Williams SM, Berghaus RD, Jones MK. The Effect of Different Species of Eimeria with Clostridium perfringens on Performance Parameters and Induction of Clinical Necrotic Enteritis in Broiler Chickens. Avian Dis 2020; 65:132-137. [PMID: 34339132 DOI: 10.1637/aviandiseases-d-20-00106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/15/2020] [Indexed: 11/05/2022]
Abstract
Necrotic enteritis (NE) is a common disease that causes great economic loss to the broiler industry due to mortality and reduced performance. Although Clostridium perfringens (CP) is a necessary component of this disease, coccidia species are a well-defined predisposing factor that exacerbates the condition. Different Eimeria species have been reported to influence NE to different degrees. In a pair of experiments, six different Eimeria species were evaluated in the presence and absence of C. perfringens. Male broiler chicks were housed in battery cages for the duration of both experiments. Feed conversion, body weight gain, and NE mortality were reported in both experiments. Experiment 1 challenged birds with E. maxima, E. acervulina, E. tenella, E. necatrix, and E. brunetti at day 13 and subsequently inoculated birds with CP on days 18, 19, and 20. In the second experiment, E. maxima, E. acervulina, E. tenella, and E. praecox were inoculated on day 15 and challenged with CP on days 17, 18, 19, 20, 21, and 22 of the experiment. In the first experiment, E. acervulina, E. brunetti, E. maxima, and E. necatrix with the addition of CP all stimulated necrotic enteritis mortality. In the second experiment, E. praecox had minimal impact on performance during the challenge (14-23 days) while E. maxima + CP decreased body weight gain and increased mortality compared to the CP alone control. Eimeria maxima had the highest mortality (21.9%) in this experiment followed by E. acervulina (6.3%). The remaining Eimeria with added CP in the second experiment did not induce NE mortality. While the challenge with CP alone did not induce mortality, feed conversion was increased compared to the unchallenged control group. When using isolated Eimeria species in these experiments, disturbances created by E. brunetti and E. maxima resulted in the most-severe challenges. These experiments highlight the NE risk of these species of Eimeria and give insight into how other species interact with the host in a controlled CP challenge model.
Collapse
Affiliation(s)
- J F Nicholds
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - C McQuain
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - C L Hofacre
- Southern Poultry Research Group, Watkinsville, GA 30677
| | - G F Mathis
- Southern Poultry Research, Inc., Athens, GA 30607
| | - A L Fuller
- Department of Poultry Science, College of Agriculture and Environmental Services, University of Georgia, Athens, GA 30602
| | - B E Telg
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - A F Montoya
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - S M Williams
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - R D Berghaus
- Food Animal Health and Management, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - M K Jones
- Southern Poultry Research Group, Watkinsville, GA 30677,
| |
Collapse
|
13
|
Xu L, Sun X, Wan X, Li H, Yan F, Han R, Li H, Li Z, Tian Y, Liu X, Kang X, Wang Y. Identification of a Bacillus amyloliquefaciens H6 Thioesterase Involved in Zearalenone Detoxification by Transcriptomic Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10071-10080. [PMID: 32815728 DOI: 10.1021/acs.jafc.0c03954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Zearalenone (ZEA), a nonsteroidal estrogenic mycotoxin produced by Fusarium graminearum, induces hyperestrogenic responses in mammals and can cause reproductive disorders in farm animals. In this study, a transcriptome analysis of Bacillus amyloliquefaciens H6, which was previously identified as a ZEA-degrading bacterium, was conducted with high-throughput sequencing technology, and the differentially expressed genes were subjected to gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses. Among the 16 upregulated genes, BAMF_RS30125 was predicted to be the key gene responsible for ZEA degradation. The protein encoded by BAMF_RS30125 was then expressed in Escherichia coli, and this recombinant protein (named ZTE138) significantly reduced the ZEA content, as determined by the enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC), and decreased the proliferating activity of ZEA in MCF-7 cells. What is more, the liquid chromatography-tandem mass spectrometry (LC-MS/MS) results showed that the relative molecular mass and the structure of ZEA also changed. Sequence alignment of the ZTE138 protein showed that it is a protease that belongs to the YBGC/FADM family of coenzyme A thioesterases, and thus, the protein can presumably cleave the ZEA lactone bond and break down its macrolide ring.
Collapse
Affiliation(s)
- Laipeng Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
| | - Xiangli Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
| | - Xianhua Wan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
| | - Hui Li
- College of Environmental and Resource Sciences, Henan Agricultural University, Zhengzhou 450000, China
| | - Fengbin Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou 450002, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou 450002, China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou 450002, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou 450002, China
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou 450002, China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou 450002, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou 450002, China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, China
- Henan Research Center of Germplasm Resources for Poultry, Zhengzhou 450002, China
| |
Collapse
|
14
|
Zanu HK, Kheravii SK, Morgan NK, Bedford MR, Swick RA. Interactive effect of 2 dietary calcium and phytase levels on broilers challenged with subclinical necrotic enteritis: part 1-broiler performance, gut lesions and pH, bacterial counts, and apparent ileal digestibility. Poult Sci 2020; 99:4861-4873. [PMID: 32988523 PMCID: PMC7810914 DOI: 10.1016/j.psj.2020.05.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/06/2020] [Accepted: 05/22/2020] [Indexed: 12/25/2022] Open
Abstract
This study investigated the hypothesis that high dietary calcium (Ca) would stimulate necrotic enteritis (NE) and reduce performance, gut health, and nutrient digestibility, and if increased, phytase would reduce NE. Ross 308 male broilers (n = 768) were randomly distributed to 8 treatments in a factorial arrangement. Factors were NE challenge (no or yes), phytase level (500 or 1,500 FTU/kg using 500 FTU/kg matrix values), and Ca level (0.6 or 1.0% starter, 0.5 or 0.9% grower, 0.4 or 0.8% finisher) with the same level of available P (0.40 S, 0.35 G, and 0.35 F). There were 48 pens, 16 birds per pen and 6 replications. Half of the birds were challenged with Eimeria spp on day 9 and 108 CFU per mL of Clostridium perfringens strain EHE-NE18 on day 14 and 15. Gain was higher in birds fed high phytase on day 14 (P < 0.01), day 21 (P < 0.01), day 28 (P < 0.01), and day 35 (P < 0.01). Birds fed high phytase had greater livability on day 21 (P < 0.01). Ca was more digestible in high-Ca diets on day 16, and an NE × Ca interaction (P < 0.05) showed this effect to be more pronounced in unchallenged than in challenged birds. A challenge × Ca interaction for apparent ileal digestibility (AID) of crude protein (CP) (P < 0.05) indicated lower AID of CP in challenged birds fed high Ca. The challenge decreased AID of Ca (P < 0.01). Ca level had no impact on C. perfringens count, but it decreased Lactobacillus (P < 0.05) and Bifidobacteria (P < 0.05) populations in the ceca. High dietary Ca decreased feed conversion ratio. Overall (42 D), the highest WG was observed in unchallenged birds fed high Ca and high phytase with the lowest WG observed in NE-challenged birds fed low Ca and low phytase. The results suggest that full matrix values for high doses of phytase may be appropriate during NE challenge.
Collapse
Affiliation(s)
- H K Zanu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - S K Kheravii
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - N K Morgan
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - M R Bedford
- AB Vista, Marlborough, Wiltshire SN8 4AN, United Kingdom
| | - R A Swick
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
15
|
Abdelli N, Pérez JF, Vilarrasa E, Cabeza Luna I, Melo-Duran D, D’Angelo M, Solà-Oriol D. Targeted-Release Organic Acids and Essential Oils Improve Performance and Digestive Function in Broilers Under a Necrotic Enteritis Challenge. Animals (Basel) 2020; 10:E259. [PMID: 32041160 PMCID: PMC7070292 DOI: 10.3390/ani10020259] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
An experiment was performed to evaluate the effect of four different microencapsulated blends of organic acids (OA) and nature-identical aromatic compounds (AC) on growth performance and gut health of broilers challenged with a recycled NE litter. A total of 600 one-day-old male Ross 308 broilers were randomly assigned to five treatments consisting of a basal diet (as negative control) supplemented with each of the tested microencapsulated blends: OA1 (malic and fumaric acid) + AC; 2.5 g/kg; OA2 (calcium butyrate+fumaric acid) + AC; 1.7 g/kg; MCFA (capric-caprylic; caproic and lauric acid) + AC; 2 g/kg; and MCFA + OA3(calcium butyrate + fumaric and citric acid) + AC; 1.5 g/kg. The AC used was the same for all treatments; including cinnamaldehyde, carvacrol, and thymol (8:1:1), as major compounds. Three tested blends enhanced growth performance by improving intestinal histomorphology (p < 0.001). The tested blends enhanced the abundance of some beneficial families such as Ruminococcaceae and Lachnospiraceae; while reducing that of harmful ones such as Enterobacteriaceae and Helicobacteraceae. A further dose-response experiment showed that 0.5 g/kg of the blend 2 and 2 g/kg of the blend 4 improved growth performance and intestinal histomorphology of chickens on d 42 and decreased fecal Enterobacteriaceae and C. perfringens counts. Similar effects to the previous experiment were observed for cecum microbiota.
Collapse
Affiliation(s)
- Nedra Abdelli
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain; (N.A.); (J.F.P.); (D.M.-D.); (M.D.)
| | - José Francisco Pérez
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain; (N.A.); (J.F.P.); (D.M.-D.); (M.D.)
| | | | | | - Diego Melo-Duran
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain; (N.A.); (J.F.P.); (D.M.-D.); (M.D.)
| | - Matilde D’Angelo
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain; (N.A.); (J.F.P.); (D.M.-D.); (M.D.)
| | - David Solà-Oriol
- Animal Nutrition and Welfare Service (SNIBA), Department of Animal and Food Science, Universitat Autonòma de Barcelona, 08193 Bellaterra, Spain; (N.A.); (J.F.P.); (D.M.-D.); (M.D.)
| |
Collapse
|
16
|
Liu N, Wang J, Liu Z, Wang Y, Wang J. Comparison of probiotics and clay detoxifier on the growth performance and enterotoxic markers of broilers fed diets contaminated with aflatoxin B1. J APPL POULTRY RES 2018. [DOI: 10.3382/japr/pfy003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Liu N, Wang JQ, Jia SC, Chen YK, Wang JP. Effect of yeast cell wall on the growth performance and gut health of broilers challenged with aflatoxin B1 and necrotic enteritis. Poult Sci 2018; 97:477-484. [PMID: 29211897 DOI: 10.3382/ps/pex342] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/27/2017] [Indexed: 01/15/2023] Open
Abstract
This study aimed to investigate the effect of yeast cell walls (YCW) on the growth performance, visceral lesions, intestinal integrity, enterotoxicity, and bacteria of broilers challenged with aflatoxin B1 (AF) and necrotic enteritis (NE) from 1 to 21 d of age. A total of 576 one-day-old broilers were assigned to a 2 × 2 × 2 design for diets containing AFB1 (0 or 40 μg/kg), NE (challenged or unchallenged), or YCW (0 or 500 mg/kg). The main effect analysis showed that AF depressed (P < 0.01) average daily feed intake (ADFI), average daily body weight gain (ADG), the mRNA profiles of polymeric Ig receptor (pIgR), claudin-1, and occludin, but increased (P < 0.001) liver lesion scores, serum endotoxin, and diamine oxidase (DAO). The NE challenge depressed (P < 0.01) ADFI, ADG, secretory IgA (sIgA), pIgR, claudin-1, occludin, and the populations of Lactobacilli and Bifidobacteria, but increased (P < 0.001) visceral lesions, endotoxins, and DAO. The main effect of YCW on growth performance, visceral lesions, and intestinal integrity was not significant, but decreased (P < 0.01) mortality, endotoxin, DAO, and C. perfringens, and increased (P < 0.05) the populations of Lactobacilli and Bifidobacteria. There were 3-way interactions (P < 0.05) on growth performance, intestinal lesions, integrity, and gut bacteria. Compared with the treatment with the dual challenges, there were pronounced effects (P < 0.05) of YCW on ADFI, ADG, lesions, DAO, pIgR, and Bifidobacteria. The results suggest that with the concurrent challenges of AF and NE, the YCW can partially protect the growth performance and intestinal health of broilers.
Collapse
Affiliation(s)
- N Liu
- Department of Animal Production, Henan University of Science and Technology, Luoyang 471003, China
| | - J Q Wang
- Department of Poultry Science, University of Georgia, Athens 30602, GA, USA
| | - S C Jia
- Department of Animal Science, Texas A&M University, College Station 77843, TX, USA
| | - Y K Chen
- Department of Animal Production, Henan University of Science and Technology, Luoyang 471003, China
| | - J P Wang
- Department of Animal Production, Henan University of Science and Technology, Luoyang 471003, China
| |
Collapse
|
18
|
Krueger LA, Spangler DA, Vandermyde DR, Sims MD, Ayangbile GA. Avi-Lution® supplemented at 1.0 or 2.0 g/kg in feed improves the growth performance of broiler chickens during challenge with bacitracin-resistant Clostridium perfringens. Poult Sci 2018; 96:2595-2600. [PMID: 28431095 DOI: 10.3382/ps/pex074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/20/2017] [Indexed: 11/20/2022] Open
Abstract
Avi-Lution® is a defined, patented, synbiotic product containing Saccharomyces cerevisiae, Enterococcus faecium, and Bacillus spp. Broiler chickens (n = 1,250) were experimentally treated as uninoculated controls (uCon), inoculated controls (iCon) with Clostridium perfringens, or inoculated and treated with bacitracin methylene disalicylate (BMD) at 55 mg/kg as an infected/treated control or Avi-Lution® at 1.0 (AvL1) or 2.0 (AvL2) g/kg in feed for 42 d. Each treatment was applied to 10 replicate pens of 25 straight-run, newly hatched chicks. Pens treated with AvL1, AvL2, or BMD showed improved growth, feed efficiency, or mortality from necrotic enteritis compared with iCon pens at d 14, 28, and 42. No differences in these measurements, however, were observed between pens treated with AvL1 and AvL2, which suggests that Avi-Lution® was effective at 1.0 g/kg in feed. Despite improved performance, BMD, AvL1, and AvL2 treatments did not decrease the severity of intestinal lesion scores through 42 d of age compared with the infected control. These results demonstrate that Avi-Lution® improved growth performance and feed conversion rates in broilers challenged with Clostridium perfringens despite no difference in severity of intestinal lesion scores.
Collapse
Affiliation(s)
| | | | | | - M D Sims
- Virginia Diversified Research Corporation, Harrisonburg, Virginia
| | | |
Collapse
|
19
|
Eucalyptus leaves powder, antibiotic and probiotic addition to broiler diets: effect on growth performance, immune response, blood components and carcass traits. Animal 2018; 12:2049-2055. [PMID: 29343313 DOI: 10.1017/s1751731117003731] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The study was conducted to investigate the effects of different levels of eucalyptus powder (EP), virginiamycin and probiotic on performance, immunity, blood components and carcass traits of broiler chickens. A total of 250, 1-day-old male broiler chickens (Ross 308) were randomly allocated to five treatments with five replicates and 10 chicks each, as a completely randomized design. The dietary treatments consisted of: basal diet (BD), BD+0.25% EP, BD+0.5% EP, BD+0.01% of diet probiotic (Protexin), BD+0.02% of diet antibiotic (virginiamycin). Dietary supplementation did not affect feed intake, BW gain (BWG) and feed conversion ratio (FCR) during starter and grower phases, but BWG and FCR were affected during the finisher and whole periods (P<0.05).The highest BWG and lowest FCR were obtained in birds fed with virginiamycin and 0.5% EP. Dietary supplementation significantly increased the relative weight of carcass and breast (P<0.05). Treatments had no effect on relative weights of internal organs and small intestine except for bursa that increased by treatments. Relative length of jejunum also increased by treatments (P<0.05). Antibody production against sheep red blood cells did not changed in primary titer (day 35), but it significantly increased in secondary titer (day 42) by 0.5% EP. White blood cell counts were increased and cholesterol decreased by dietary supplementation (P<0.05). In conclusion, the results of this study showed that 0.5% EP served as a useful replacement for antibiotic and would improve performance and immune response of broiler chickens.
Collapse
|
20
|
Prescott JF, Smyth JA, Shojadoost B, Vince A. Experimental reproduction of necrotic enteritis in chickens: a review. Avian Pathol 2017; 45:317-22. [PMID: 26813025 DOI: 10.1080/03079457.2016.1141345] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This review discusses key factors important in successful experimental reproduction of necrotic enteritis (NE) in chickens, and how these factors can be adjusted to affect the severity of the lesions induced. The critical bacterial factor is the need to use virulent, netB-positive, strains of Clostridium perfringens; disease severity can be enhanced by using netB-positive C. perfringens strains that are also tpeL-positive, by the use of young rather than old broth cultures, and by the number of days of inoculation and the number of bacteria used. Use of cereals rich in non-starch polysaccharides can enhance disease, as does use of animal proteins. Administration of coccidia, including coccidial vaccines, combined with netB-positive C. perfringens, increases the severity of experimentally-induced NE. Dietary manipulation may be less important in coccidia-based models since the latter are so effective. Disease scoring systems and welfare considerations are discussed.
Collapse
Affiliation(s)
- John F Prescott
- a Department of Pathobiology , University of Guelph , Guelph , ON , Canada
| | - Joan A Smyth
- b Department of Pathobiology and Veterinary Science , University of Connecticut , Storrs , CT , USA
| | - Bahram Shojadoost
- a Department of Pathobiology , University of Guelph , Guelph , ON , Canada
| | - Andrew Vince
- a Department of Pathobiology , University of Guelph , Guelph , ON , Canada
| |
Collapse
|
21
|
Kasab-Bachi H, Arruda AG, Roberts TE, Wilson JB. The use of large databases to inform the development of an intestinal scoring system for the poultry industry. Prev Vet Med 2017; 146:130-135. [PMID: 28992917 DOI: 10.1016/j.prevetmed.2017.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 06/29/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
Abstract
There is increasing interest among the poultry industry to develop a comprehensive index that can be used to evaluate overall intestinal health and impact on production performance. The Intestinal Integrity (I2) index is a quantitative measurement tool used to assess the intestinal health of flocks that use the Health Tracking System (HTSi), a global surveillance system developed by Elanco Animal Health that captures flock-level information on health and performance. To generate an I2 index score for a flock, the presence of 23 intestinal health conditions is assessed and recorded, then entered into a mathematical equation. The objective of this study was to use data from the HTSi dataset to investigate the association between health conditions contained within the I2 index and five performance outcomes: average daily gain (ADG), mortality during the first week, feed conversion ratio (FCR), European Production Efficiency Factor (EPEF), and percent livability. At the time of analysis, the HTSi dataset contained information from the years 2006-2015 on 921,646 individual bird necropsy records from over 153,576 flocks at 1,570 broiler production flows across 53 countries. Flock-level production data used for this study were available for a subset of this population, 33,212 total flocks representing 6 US and 4 UK production flows. A separate multivariable linear or logistic regression model, with farm as a random effect, was built for each of the five outcomes mentioned above. All models controlled for clustering of flocks within production flows. Significant associations were found between key performance indicators and ten intestinal conditions (gross E. acervulina, gross E. maxima, microscopic E. maxima, gizzard erosions, roundworms, excessive intestinal fluid, thin intestines, excessive intestinal mucus, feed passage, and necrotic enteritis) and two management parameters (production flow and down time). Results from this study demonstrate that large databases, such as the HTSi database, can be used to inform and evaluate changes that can optimize intestinal health, and hence welfare, productivity, and sustainability of the poultry industry. In addition, large databases can be used for monitoring and benchmarking intestinal health of poultry and informing the development of innovative indices such as the I2 index for scoring intestinal health and providing routine data for its calculation.
Collapse
Affiliation(s)
- H Kasab-Bachi
- Novometrix Research Inc., 4564 Nassagaweya-Puslinch Townline, Moffat, ON L0P 1J0, Canada
| | - A G Arruda
- Department of Preventive Veterinary Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - T E Roberts
- Novometrix Research Inc., 4564 Nassagaweya-Puslinch Townline, Moffat, ON L0P 1J0, Canada.
| | - J B Wilson
- Novometrix Research Inc., 4564 Nassagaweya-Puslinch Townline, Moffat, ON L0P 1J0, Canada; Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
22
|
Yang WC, Hsu TC, Cheng KC, Liu JR. Expression of the Clonostachys rosea lactonohydrolase gene by Lactobacillus reuteri to increase its zearalenone-removing ability. Microb Cell Fact 2017; 16:69. [PMID: 28438205 PMCID: PMC5404306 DOI: 10.1186/s12934-017-0687-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/21/2017] [Indexed: 01/08/2023] Open
Abstract
Background Mycotoxins are secondary metabolites produced by filamentous fungi that can contaminate agricultural crops in the field as well as during harvest, transportation, processing, or storage. Zearalenone (ZEN), a non-steroidal estrogenic mycotoxin, produced by Fusarium species, has been shown to be associated with reproductive disorders in farm animals and to a lesser extent in hyperoestrogenic syndromes in humans. Thus, the decontamination of ZEN in foods and feeds is an important issue. Results In this study, the gene encoding ZHD101, a ZEN-degrading enzyme produced by Clonostachys rosea IFO 7063, was cloned into an Escherichia coli–Lactobacillus shuttle vector, pNZ3004, and the resultant plasmid pNZ-zhd101 was then introduced via electroporation into Lactobacillus reuteri Pg4, a probiotic strain isolated from the gastrointestinal tract of broilers. The transformed strain L. reuteri pNZ-zhd101 acquired the capacity to degrade ZEN. In addition, the production of recombinant ZHD101 did not affect cell growth, acid and bile salt tolerance, and had only a minor effect on the adhesion ability of L. reuteri pNZ-zhd101. Conclusions To the best of our knowledge, this is the first report of successful expression of a ZEN-degrading enzyme by intestinal lactobacilli.
Collapse
Affiliation(s)
- Wen-Chun Yang
- Graduate Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Tsui-Chun Hsu
- Department of Animal Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Kuan-Chen Cheng
- Graduate Institute of Food Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan. .,Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.
| | - Je-Ruei Liu
- Department of Animal Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan. .,Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan. .,Agricultural Biotechnology Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
23
|
Calcium Montmorillonite-Based Dietary Supplement Attenuates Necrotic Enteritis Induced by Eimeria maxima and Clostridium perfringens in Broilers. J Poult Sci 2016; 53:329-340. [PMID: 32908401 PMCID: PMC7477164 DOI: 10.2141/jpsa.0150182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Necrotic enteritis (NE) is a poultry disease caused by Clostridium perfringens and characterized by severe intestinal necrosis. The incidence of avian NE has been progressively increasing following the removal of antibiotics from poultry feed. We evaluated the effect of diets supplemented with the thermally-processed clays, calcium montmorillonite (CaMM) on clinical signs, immunopathology, and cytokine responses in broiler chickens using an experimental model of NE consisting of co-infection with Eimeria maxima and C. perfringens. In Trial 1, Ross/Ross chickens were fed from hatch with a normal basal diet or a CaMM-supplemented diet with or without a fermentable fiber, an organic acid, and/or a plant extract, and co-infected with E. maxima and C. perfringens under conditions simulating clinical infection in the field. Chickens fed a diet supplemented with CaMM plus a fermentable fiber and an organic acid had increased body weight gain, reduced gut lesions, and increased serum antibody levels to C. perfringens α-toxin and NetB toxin compared with chickens fed the basal diet alone. Levels of transcripts for interleukin-1β (IL-1β), IL-6, inducible nitric oxide synthase, and tumor necrosis factor-α superfamily-15 were significantly altered in the intestine and spleen of CaMM-supplemented chickens compared with unsupplemented controls (p<0.05). In Trial 2, Cobb/Cobb chickens were fed an unsupplemented diet or a diet supplemented with CaMM or Varium®, each with a fermentable fiber and an organic acid, and co-infected with E. maxima and C. perfringens under subclinical infection conditions. Compared with unsupplemented controls, broilers fed with CaMM plus a fermentable fiber and an organic acid had increased body weight gain, and reduced feed conversion ratio, mortality, and intestinal lesions, compared with chickens fed an unsupplemented diet (p<0.05). Dietary supplementation of broiler chickens with CaMM plus a fermentable fiber and an organic acid might be useful to control avian NE in the field.
Collapse
|
24
|
Chan G, Guthrie A, Sivaramalingam T, Wilson J, Vancraeynest D, Moody R, Clark S. A framework for assessing the efficacy of antimicrobials in the control of necrotic enteritis in broiler chickens. J APPL POULTRY RES 2015. [DOI: 10.3382/japr/pfv017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Cravens R, Goss G, Chi F, DeBoer E, Davis S, Hendrix S, Johnston S. Products to alleviate the effects of necrotic enteritis and aflatoxin on growth performance, lesion scores, and mortality in young broilers. J APPL POULTRY RES 2015. [DOI: 10.3382/japr/pfv015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|